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Abstract. The Hopf algebra structure of a few parametric deformations of the continual
Virasoro algebra is proven.

1. Introduction
For various purposes of q-deformed structure construction [6] it is important to study
deformations of the Virasoro algebra [1], [4], [3]. In [4] four deformations of the continual
version of the Witt algebra (the centerless Virasoro algebra) were introduced, and to make
connections with Hopf algebras corresponding comultiplications were found, although antipode
and counit were missing. In [3], the Hopf algebra structure of the discrete form of one of the
q-deformed Virasoro algebra [1] was established. In this paper we unify these two approaches
to deformations of the Virasoro algebra and determine the full Hopf algebra structure [2] for all
four deformations. We formulate the definition of such deformations with central extensions in
terms of a family of deformed algebras parametrized by four parameters. The actual parameter
is the difference θ = β1 − β2 of the first two parameters.

Apart from pure algebraic interest for studies of quantum groups and generalizations of
vertex algebras, possible applications of the deformations under consideration can be found in
the domain of quantum exactly solvable models [5]. Namely, to every such deformation one
can associate a pair of q-deformed operators with the zero curvature condition applied giving
non-linear equations which could be solvable under some further assumptions on underlying
continual Lie algebra.

2. Deformations of Continual Version of Virasoro Algebra
2.1. Continual Virasoro Algebra
In this section we recall two known families of q-deformations [4] of the Virasoro algebra in a
continual Lie algebra form [7]. Let us introduce notations. In addition to ordinary commutator
we will use the standard (in the sense of [4], [3]) deformed commutator

[a, b]z ≡ zab− z−1ba,

as well as a commutator with inserted operation:

[a,z. b] ≡ a z.b− b z.a,
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where z can be an operator valued in corresponding algebra. Next we define

[z] ≡ qz − q−z

q − q−1
,

⟨z⟩ ≡ qz + q−z,

for z ∈ C.
Let E be a commutative associative algebra over a field K. The continual form of the Virasoro

algebra, a central extension (denoted by V ir(E)) of the Witt algebra [4], [7], is defined by the
commutation relations for the generators {C(ϕ, ψ), X(ϕ)|ϕ, ψ ∈ E}:

[X(ϕ), X(ψ)] = X(K(ϕ, ψ)) + C(ϕ, ψ), (1)

[C(ϕ, ψ), X(χ)] = 0,

K(ϕ, ψ) = ϕ∂ψ − ψ∂ϕ, (2)

where the symbol ∂ stands for a formal differentiation with respect to a parameter. Note that
(2) can be written as X

([
ϕ,∂ ψ

])
. Jocobi identies for generators of a continual Lie algebra

dictate cocycle property for the central element C(ϕ, ψ),

C(ϕ,C(ψ, χ)) + C(ψ,C(χ, ϕ)) + C(χ,C(ϕ, ψ)) = 0,

for any ϕ, ψ, χ ∈ E. The continual Virasoro algebra (1) can be Fourier decomposed to give the
commutation relations of the Virasoro algebra Vir with discrete generators {c, Lm|m ∈ Z}, and
ordinary relations

[Lm, Ln] = (m− n)Ln+m + c(m,n), [c, Ln] = 0 (3)

where

c(m,n) = δm,−n
m3 −m

12
c. (4)

2.2. Deformations
Next we consider the universal enveloping algebra of parametric deformations V irq(E) of the
continual Lie algebra V ir(E) defined by commutation relations (1) with the mapping (2). Let
U(V irq(E)) be an associative unital algebra over K with parameters (α, β1, β2, γ), α ∈ R, α ̸= 0,
βi ∈ {−1, 0, 1}, γ ∈ {0, 1}, and determined by generators

{
Cq(ϕ, ψ), T

±1 , X(ϕ)|ϕ, ψ, χ ∈ E}
subject to the commutation relations:

T T−1 = T−1T = 1, (5)

T Cq(ϕ, ψ) = Cq(ϕ, ψ) T
−1, (6)

Cq(ϕ, ψ) X(χ) = X(χ) Cq(ϕ, ψ) (7)

TX(ϕ) = X(q−θ∂ϕ)T, (8)

where θ is a parameter. The commutation relations for the generators X(ϕ) have the form:

X(qβ1∂ϕ)X(qβ2∂ψ) − X(qβ1∂ψ)X(qβ2∂ϕ) (9)

= T β2δβ1,0X(K(ϕ, ψ))T β1δβ2,0 + Cq(ϕ, ψ),
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where the mapping is given by

K(ϕ, ψ) = qγ(∂+α)ϕ · [∂ + α+ β1δβ2,0]qψ (10)

− qγ(∂+α)ψ · [∂ + α+ β1δβ2,0]qϕ

= mE ◦ (qγ(∂+α) ⊗ [∂ + α+ β1δβ2,0]q).
[
ϕ,⊗ ψ

]
,

and mE is the multiplication E ⊗E → E. We take θ = β1 − β2 in (8) as an effective parameter
regulating commutation relations (8), (13) and definitions of the the Hopf algebra structure (see
(18)–(32)). In [4] four specific deformations 1.–4. of the continual form of the centerless Virasoro
algebra (1) – the Witt algebra, were determined by the following choices of parameters,

(β1, β2, γ) = {(1,−1, 1), (1,−1, 0), (0, 1, 1), (1, 0, 1)} ,

so that θ = {2, 2,−1, 1} correspondingly. In (9) and (10) it is assumed that the formal series
qβ∂ of powers of differential operators acts on on the second and the first argument of X(ϕ)
generators in the ordinary bracket. In the limit q → 1, the generators T±1 commute with X(ϕ)
for every ϕ ∈ E, and Cq(ϕ, ψ) reduces to the central element C(ϕ, ψ) of the undeformed continual
Virasoro algebra (1). Thus these deformations V irq(E) reduce to V ir(E) in the limit q → 1.
Note that in the case of the deformations 1. and 2. the left hand side bracket can be written as
[X(ϕ), X(ψ)]qβ∂ , while for the deformations 3. and 4. as a bracket [X(ϕ),q

β∂
X(ψ)].

In discrete generator form the deformations V irq(E) (9)–(10) of [4] correspond to q-deformed
versions V irq of the Virasoro algebra V ir (3) [3], [1]. They are determined by the generators{
cq, T

±1, ln|n ∈ Z
}
subject to the commutation relations (in addition to the relation (5))

[cq, T ]q = 0, (11)

[ln, cq]qn = 0, (12)

[T, ln]
q
θ
2 (n+1) = 0, (13)[

lm,
qwt
ln

]
qβ1m+β2n

= ki(m,n)ln+mT
δβ1,0+δβ2,0 + C[m,n], (14)

where the operator wt takes the value of the deformed Virasoro mode index, i.e., wt(ln) = n,
and

k1(m,n) = [m− n]q, k2(m,n) = [m+ α]q − [n+ α]q, (15)

k3(m,n) = [m− n]q, k4(m,n) = q−1[m− n]q, (16)

for deformations 1.–4. correspondingly, and

C[m,n] ≡ c[m,n] c = δm,−n
[m][m− 1][m+ 1]

[2][3]⟨m⟩
cq. (17)

Note that m− n and (17) are limits of ki and C[m,n] when q → 1.

3. Hopf Algebra Structure
In this section we define the comultiplication ∆, antipode S and counity ε for the deformations
1.–4. (9)–(10) of the continual version of the Virasoro algebra V ir(E) and in the discrete form
V irq (11)–(17), and prove their Hopf algebra structure. For V irq these operations are given by
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(for the deformation 1., θ = 2, they were introduced in [3])

∆(T ) = T ⊗ T, (18)

∆(cq) = cq ⊗ 1 + 1⊗ cq, (19)

∆(ln) = ln ⊗ Tn + Tn ⊗ ln, (20)

ε(T ) = q±(2−|θ|)∂ , (21)

ε(cq) = 0, (22)

ε(ln) = 0, (23)

S(T ) = T−1, (24)

S(cq) = −cq, (25)

S(ln) = −T (1−θ)nlnT
(1−θ)n. (26)

The +/− sign in (21) corresponds to the left/right action of ε(T ) in the tensor product. For the
continual form of (5)–(9), in addition to (18), (21), (24) we introduce

∆(Cq(ϕ, ψ)) = Cq(Q1ϕ,Q1ψ)⊗ T 2−|θ| + T 2−|θ| ⊗ Cq(Q2ϕ,Q2ψ), (27)

∆(X(ϕ)) = X(Q1ϕ)⊗ T 2−|θ| + T 2−|θ| ⊗X(Q2ϕ), (28)

ε(Cq(ϕ, ψ)) = 0, (29)

ε(X(ϕ)) = 0, (30)

S(Cq(ϕ, ψ)) = −T−(2−|θ|)Cq(Q0ϕ,Q0ψ)T
−(2−|θ|), (31)

S(X(ϕ)) = −T−(2−|θ|)X(Q0 ϕ)T
−(2−|θ|), (32)

for any ϕ, ψ ∈ E. Here the operators Qi = Qi(q), i = 0, 1, 2 are distributions on E, commuting
with the formal differentiation ∂ with respect to q. As in [4] we demand (see the proof of
Proposition 3.1) the commutativity and projectivity of the operators Qi, i = 1, 2, i.e.,

X(Q2
iϕ) = X(Qiϕ), X([Q1, Q2]ϕ) = 0, (33)

and for β ∈ Z,
Y (Qiq

β∂) = ±Y (Qiq
−β∂). (34)

where Y ∈ {Cq(ϕ, ψ), X(ϕ)|ϕ, ψ ∈ E}, and lim
q→1

X(Qiϕ) = X(ϕ), for any ϕ ∈ E. We also require

that Y (Q2
0) = Y (1), for i = 1, 2, and

Y (Qa) = Y (Q0Qā), (35)

where ā is the opposite to a in the set {1, 2}, and Y (Q1q
−(2−|θ|)2∂) = Y (1) = Y (q(2−|θ|)2∂Q2),

for Y = Cq. The actual form of the distributions Qi(q), i = 0, 1, 2 can be determined [4] for
each deformation 1.–4. by the coinvariance condition of the comultiplication ∆ and antipode
S with respect to the defining relations (11)–(9) on generators of V irq(E). Then taking into
account conditions (33)–(35), we formulate the following

Proposition 3.1 The universal enveloping algebra

U(V irq(E)) = [T ;T−1]K ⊗K U(V irq(E)),

of (α, β1, β2, γ)-parameter q-deformation V irq(E) defined by the generators
{
Cq(ϕ, ψ), T

±1, X(ϕ)
| ϕ, ψ ∈ E}, subject to the commutation relations (5)–(9) with the mapping (10) (and for de-
formations V irq with discrete generators

{
cq, T

±1, ln|n ∈ Z
}
, relations (11)–(14), and mappings

(15)–(16)) possesses a non-commutative co-commutatvie Hopf algebra structure given by (18),
(21), (24), (27)–(32) ((18)–(26) correspondingly).
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Proof. We first prove the Hopf algebra structure in the discrete form (11)–(17) U(V irq).
Note that the case 1. was proven in [3]. It is clear that ε is an algebraic homomorphism,
ε(ab) = ε(a)ε(b), and µ(1⊗ ε)∆ = µ(ε⊗1)∆ = Id, where µ is the multiplication. One can easily
verify the coassoativity of ∆: (∆⊗1)∆ = (1⊗∆)∆. We next check coinvariance of the relations
(11)–(14) with respect to ∆. This is easy to see that for the relations (5), (11), (12) and (13).
Then we apply the comultiplication ∆ to the commutation relations (14) of generators ln:

∆(ln)∆(lm) = lnlm ⊗ Tn+m + Tn+m ⊗ lnlm

+ lnT
m ⊗ Tnlm + Tnlm ⊗ lnT

m

= lnlm ⊗ Tn+m + Tn+m ⊗ lnlm

+ q−θn(m+1)lnT
m ⊗ lmT

n

+ q−θn(m+1)lmT
n ⊗ lnT

m,

where θ = 2 for the deformations 1.–2., and θ = −1, θ = 1 for the deformations 3.–4.. Therefore
for all deformations we obtain

qβ1 wt∆(lm)qβ2 wt∆(ln) − qβ1 wt∆(ln)q
β2 wt∆(lm)

=
(
qβ1 wtlmq

β2 wtln − qβ1 wtlnq
β2 wtlm

)
⊗ Tn+m

+Tn+m ⊗
(
qβ1 wtlmq

β2 wtln − qβ1 wtlnq
β2 wtlm

)
= ∆

(
qβ1 wtlmq

β2 wtln − qβ1 wtlnq
β2 wtlm

)
= ∆

([
lm,

qwt
ln

]
qβ1m+β2n

)
= ki(m,n)∆(ln+m)∆(T δβ1,0+δβ1,0) + c[m,n]∆(cq).

We conclude that the commutation relations (14) are preserves by the comultiplication. Thus
∆ is an algebraic homomorphism.

It is also clear that µ(1 ⊗ S)∆ = µ(S ⊗ 1)∆ = η.ε, for some η, and S2 = 1, where µ is
the multiplication in U(V irq). Next we check that S is an algebraic anti-homomorphism. The
antipode S preserves (5) and (11)–(13),

[S(cq), S(T
n)]qn = 0, [S(cq), S(ln)]qn = 0,

for any n ∈ Z. We also have

qβ1m+β2nS(lmln) = qβ1m+β2nS(ln)S(lm)

= qβ1m+β2nT (1−θ)nlnT
(1−θ)(n+m)lmT

(1−θ)m

= q−β2n−β1mT−(1−θ)(n+m)lnlmT
−(1−θ)(n+m).

Thus [
S(ln),

qwt
S(lm)

]
qβ1m+β2n

= S
(
[ln,

qwt
lm]qβ1m+β2n

)
= ki(m,n) S

(
T δβ1,0+δβ2,0

)
S(ln+m)

+c[n,m]S(cq).

Therefore the commutation relations (14) are preserved by the antipode S. Thus we conclude
that U(V irq) is a Hopf algebra.
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Now we show that the universal enveloping algebra U(V irq(E)) in the continual form of
generators has a Hopf algebra structure. The algebraic homomorphisity of ϵ is obvious. The
coassociativity of the comultiplication, (1 ⊗ ∆)∆ = (∆ ⊗ 1)∆, and the condition S2 = 1
(since Y (Q2

0) = Y (1)), lead to the commutativity and projectivity of operators Qi, i = 1,
2. It is easy to check µ(1 ⊗ ε)∆ = µ(ε ⊗ 1)∆ = Id, using the projectivity of Qi, i = 1,
2, i.e., Cq(Qiϕ,Qiψ) = QiCq(ϕ, ψ), (35), and the left or right action of (21). Next for
µ(1⊗ S)∆ = µ(S ⊗ 1)∆ = η.ε, we use (6) and (35). Indeed,

µ(1⊗ S)∆(Cq(ϕ, ψ)) = Cq(Q1ϕ,Q1ψ) T
−(2−|θ|)

−Cq(Q0Q2ϕ,Q0Q2ψ) T
−(2−|θ|)

= 0 = ε(Cq(ϕ, ψ)),

µ(S ⊗ 1)∆(Cq(ϕ, ψ)) = −T−(2−|θ|) Cq(Q0Q1ϕ,Q0Q1ψ)

+T−(2−|θ|) Cq(Q2ϕ,Q2ψ)

= 0 = ε(Cq(ϕ, ψ)),

µ(1⊗ S)∆(X(ϕ)) = X(Q1ϕ) T
−(2−|θ|) −X(Q0Q2ϕ) T

−(2−|θ|)

= 0 = ε(X(ϕ)),

µ(S ⊗ 1)∆(X(ϕ)) = −T−(2−|θ|) X(Q0Q1ϕ) + T−(2−|θ|) X(Q2ϕ)

= 0 = ε(X(ϕ)).

Using (6) we also have S(TCq(ϕ, ψ)) = S(Cq(ϕ, ψ)T
−1), and similarly for (7) and (8). Applying

the comultiplication to the commutation relations (9) we obtain

∆(X(qβ1∂ϕ)) ∆(X(Q1q
β2∂ψ))−∆(X(qβ1∂ψ)) ∆(X(Q1q

β2∂ϕ))

= X(Q1q
β1∂ϕ) X(Q1q

β2∂ψ)⊗ T 2(2−|θ|) −X(Q1q
β1∂ψ) X(Q1q

β2∂ϕ)⊗ T 2(2−|θ|)

+ T 2(2−|θ|) ⊗X(Q2q
β1∂ϕ) X(Q2q

β2∂ψ)− T 2(2−|θ|) ⊗X(Q2q
β1∂ψ) X(Q2q

β2∂ϕ)

+T 2−|θ| X(Q1q
β1+(2−|θ|)θ)∂ϕ)⊗X(Q2q

β2−(2−|θ|)θ)∂ψ) T 2−|θ|

+T 2−|θ| X(Q1q
β2∂ψ)⊗X(Q2q

β1∂ϕ) T 2−|θ|

−T 2−|θ| X(Q1q
β1+(2−|θ|)θ)∂ψ)⊗X(Q2q

β2−(2−|θ|)θ)∂ϕ) T 2−|θ|

−T 2−|θ| X(Q1q
β2∂ϕ)⊗X(Q2q

β1∂ψ) T 2−|θ| (36)

= T β2δβ1,0 X(Q1K(ϕ, ψ)) T β1δβ2,0 ⊗ T 2−|θ|

+T 2−|θ| ⊗ T β2δβ1,0 X(Q2K(ϕ, ψ)) T β1δβ2,0

+T 2−|θ| ⊗ Cq(Q2ϕ,Q2ψ) + Cq(Q1ϕ,Q1ψ)⊗ T 2−|θ|

= ∆(T β2δβ1,0 X(K(ϕ, ψ)) T β1δβ2,0 + Cq(ϕ, ψ)),

where it was assumed that Qi, i = 1, 2 commutes with ∂. Cross terms in (36) cancel when the
condition (34) is satisfied.

By similar computations one checks that S given by (31)–(32) is an algebraic anti-
homomorphism. Indeed, when the distribution Q0 satisfies X(K(Q0ϕ,Q0ψ)) = X(Q0K(ϕ, ψ)),
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for any ϕ, ψ ∈ E, then

S(X(qβ1∂ϕ) X(qβ2∂ψ))− S(X(qβ1∂ψ) X(qβ2∂ϕ))

= T−2(2−|θ|) X(q(β2−(2−|θ|)θ)∂Q0ψ) X(q(β1+(2−|θ|)θ)∂Q0ϕ) T
−2(2−|θ|)

−T−2(2−|θ|) X(q(β2−(2−|θ|)θ)∂Q0ϕ) X(q(β1+(2−|θ|)θ)∂Q0ψ) T
−2(2−|θ|)

= T−(2−|θ|) X(qβ1∂Q0ψ) X(qβ2∂Q0ϕ) T
−2(2−|θ|)

−T−2(2−|θ|) X(qβ1∂Q0ϕ) X(qβ2∂Q0ψ) T
−2(2−|θ|)

= S
(
T β1δβ2,0 X(K(ϕ, ψ) T β2δβ1,0 + Cq(ϕ, ψ)

)
.

We proved that the commutation relations (5)–(9) are preserved by the comultiplication and
antipode actions when operators Qi(q) satisfy the property (34). Thus U(V irq(E)) possesses a
Hopf algebra structure.
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