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Abstract In this essay, we argue that the emergence of classically connected
spacetimes is intimately related to the quantum entanglement of degrees of free-
dom in a non-perturbative description of quantum gravity. Disentangling the de-
grees of freedom associated with two regions of spacetime results in these regions
pulling apart and pinching off from each other in a way that can be quantified by
standard measures of entanglement.
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1 Introduction

The gravity/gauge theory correspondence [1; 2; 3] in string theory represents ex-
citing progress towards finding a general non-perturbative description of quantum
gravity. It posits that certain quantum gravitational theories with fixed spacetime
asymptotic behavior are exactly equivalent to ordinary quantum field theories. We
can view this correspondence as providing a complete non-perturbative defini-
tion of the quantum gravity theory via a quantum field theory. However, despite
a great deal of evidence for the validity of this correspondence, we do not have a
deep understanding of why or how spacetime/gravity emerges from the degrees of
freedom of the field theory.

In this essay, we will argue, based on widely accepted examples of gauge
theory/gravity duality, that the emergence of spacetime in the gravity picture is
intimately related to the quantum entanglement of degrees of freedom in the cor-
responding conventional quantum system. We will begin by showing that certain
quantum superpositions of states corresponding to disconnected spacetimes give
rise to states that are interpreted as classically connected spacetimes. More quanti-
tatively, we will see in a simple example that decreasing the entanglement between
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Fig. 1 Gravity interpretations for the entangled state |ψ(β )〉 in a quantum system defined by a
pair of noninteracting CFTs on Sd times time. The diagram on the right is the Penrose diagram
for the maximally extended AdS-Schwarzschild black hole

two sets of degrees of freedom (e.g. by continuously varying the quantum state in
the field theory description) effectively increases the proper distance between the
corresponding spacetime regions, while decreasing the area separating the two
regions.

2 Classical connectivity from quantum superposition

The most familiar example of gauge-theory/gravity duality involves an equiva-
lence between conformal field theories (CFTs) and asymptotically anti-de Sitter
(AdS) spacetimes. For specific CFTs, each state of the field theory on a sphere
(× time) corresponds to a spacetime in some specific theory of quantum gravity
where the asymptotics of the spacetime are the same as global AdS spacetime.

Let us now consider a slightly more complicated example, where we build a
larger quantum system by taking two (non-interacting) copies of our conformal
field theory on Sd . As usual, the Hilbert space for this system will be the tensor
product H = H1⊗H2 of the Hilbert spaces for the component systems.

In our new system, the simplest quantum states to consider are product states
(i.e. states with no entanglement between the two subsystems)

|Ψ〉= |Ψ1〉⊗ |Ψ2〉.

It is easy to provide a gravity interpretation for such a state. Since the degrees of
freedom of the two CFTs do not interact in any way, and since there is no entangle-
ment between the degrees of freedom for this state, the interpretation must be that
we have two completely separate physical systems. If |Ψ1〉 is dual to one asymp-
totically AdS spacetime and |Ψ2〉 is dual to some other spacetime, the product state
is dual to the disconnected pair of spacetimes.

We next consider a state in which the two subsystems are entangled. If |Ei〉
represents the ith energy eigenstate for a single CFT on Sd , let us define the state

|ψ(β )〉= ∑
i

e
−βEi

2 |Ei〉⊗ |Ei〉 (1)

This state is a sum of product states |Ei〉⊗ |Ei〉. Since we just argued that each of
these product states should be interpreted on the gravity side as a spacetime with
two disconnected components, the literal interpretation of the state |ψ(β )〉 is that
it is a quantum superposition of disconnected spacetimes. However, it has been
argued [4; 5; 6] that precisely this state |ψ(β )〉 corresponds to the (connected)
eternal AdS black hole spacetime, whose Penrose diagram is sketched in Fig. 1.

The motivation for this statement is as follows. This is a spacetime with two
equivalent asymptotically AdS regions, suggesting that the dual description should
involve two copies of the CFT. An observer in either asymptotic region sees the
Schwarzschild AdS black hole spacetime, which is understood [7] to correspond
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to the thermal state of a conformal field theory. On the other hand, starting from
the state (1), and tracing over the degrees of freedom of one of the CFTs, we
find that the density matrix for the remaining CFT is exactly the thermal density
matrix:

Tr2(|ψ〉〈ψ|) = ∑
i

e−βEi |Ei〉〈Ei|= ρT .

Furthermore, the presence of horizons in the black hole spacetime which forbid
communication between the two asymptotic regions may be naturally associated
with the absence of interactions between the two CFTs. Thus, the state |ψ(β )〉 has
properties which are completely consistent with its interpretation as the eternal
AdS black hole.

If this identification is correct, we have a remarkable conclusion: the state
|ψ(β )〉 which clearly represents a quantum superposition of disconnected space-
times may also be identified with a classically connected spacetime. In this ex-
ample, classical connectivity arises by entangling the degrees of freedom in the
two components. In the next section, we will try to test the idea that emergent
spacetimes in gauge-theory/gravity duality are built up by entangling degrees of
freedom in the non-perturbative description.

3 A disentangling experiment

Let us return to the simpler case of a single CFT on Sd . We would like to do a
thought experiment in which we start with the vacuum state of the field theory,
dual to gravity on pure global AdS spacetime, and see what happens to the dual
geometry when we gradually change the state to disentangle some of the degrees
of freedom. To be specific, we divide the sphere into two parts (e.g. hemispheres)
which we label A and B.

Since the CFT is a local quantum field theory, there are specific degrees of
freedom associated with specific spatial regions, so we can decompose the Hilbert
space H = HA ⊗HB. A simple quantitative measure of the entanglement be-
tween A and B is the entanglement entropy (see, for example: [8]), defined to be
the von Neumann entropy

S(A) =−Tr(ρA logρA)

of the density matrix for the subsystem A,

ρA = TrB(|Ψ〉〈Ψ |).

This is typically a divergent quantity, but we can consider a field theory defined
with a cutoff (e.g. on a lattice), such that the entanglement entropy is finite. Now,
starting with the vacuum state, we can ask what happens to the dual spacetime
when we vary the quantum state in such a way that the entanglement entropy S(A)
decreases. Using the recent proposal of Ryu and Takayanagi [9], we can make a
very precise statement about what happens: the area of the minimal surface Ã in
the dual spacetime which separates the spherical boundary into its two compo-
nents A and B decreases, in direct proportionality to the decrease in entanglement
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Fig. 2 According to [9], the entanglement entropy S(A) between regions A and B in the field
theory is related to the area of the minimal surface Ã in the dual geometry such that the boundary
of Ã coincides with the boundary of A: S(A) = Area(Ã)/(4GN). In the diagram, spatial geometry
in the gravity picture is represented by the interior of the ball, while the geometry on which the
field theory lives is identified with the boundary sphere

Fig. 3 Length L of geodesic (dashed line) connecting boundary points in C and D must go to
infinity if mutual information between C and D decreases to zero

entropy (see Fig. 2). Since the surface Ã is a dividing surface between two regions
of the dual space, we see that as entanglement is decreased to zero, the two regions
of space are pinching off from each other.1

Another insight into the behavior of the dual geometry as we decrease entan-
glement comes from considering the mutual information (see, for example: [8])
between any two subsystems C ⊂ A and D⊂ B, defined to be

I(C,D) = S(C)+S(D)−S(C∪D).

It can be shown that I(C,D) is always non-negative, and zero if and only if the
density matrix for C∪D is the tensor product of the density matrices for C and D.
As the entanglement between A and B decreases to zero, the mutual information
between any two regions C and D goes to zero also.

From the geometrical point of view, we will now argue that this decrease in
mutual information between C and D implies an increase the proper distance be-
tween the corresponding regions near the boundary of spacetime. First, we note
that mutual information provides an upper bound on correlations in a system. It is
straightforward to prove [10] that for any operators OC and OD, acting only on the
subsystems C and D, we have

I(C,D)≥ (〈OCOD〉−〈OC〉〈OD〉)2

2|OC|2|OD|2
. (2)

Thus, if we continuously vary a state such that the mutual information between C
and D go to zero, then all correlations must decrease to zero also. In the context
of AdS/CFT, certain two-point correlators of local operators (those dual to very
massive particles in the dual spacetime) provide a direct measure of the proper dis-
tance through the spacetime between the boundary points at which the operators
are inserted. Specifically, we have:

〈OC(xC)OD(xD)〉 ∼ e−mL (3)

where m is the mass and L is the length of the shortest geodesic connecting xC
and xD (again, we can work in a field theory with explicit cutoff so everything is
finite). Combining (3) and (2), we see that as the entanglement between degrees of
freedom in region A and region B (and therefore the mutual information I(C,D))
drops to zero, the length of the shortest bulk path between the points xC and xD
must go to infinity (Fig. 3). Together with the result of the previous subsection,

1 Here and below, we should keep in mind that the spacetime will likely cease to have a
completely geometrical description before the entanglement is strictly zero.
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Fig. 4 Effect on geometry of decreasing entanglement between holographic degrees of freedom
corresponding to A and B: area separating corresponding spatial regions decreases while distance
between points increases. The boundary geometry remains fixed (despite appearances in the
diagram)

Fig. 5 Spatial section of eternal black hole for two different temperatures (corresponding to a
horizontal line through the middle of the Penrose diagram of Fig. 1). For low temperature (large
β ), where entanglement between the two CFTs is smaller, the asymptotic regions are further
apart and separated by a surface of smaller area

we obtain the following picture. As the entanglement between two sets of degrees
of freedom in a nonperturbative description of quantum gravity drops to zero,
the proper distance between the corresponding spacetime regions goes to infinity,
while the area of the minimal surface separating the regions decreases to zero.
Roughly speaking, the two regions of spacetime pull apart and pinch off from each
other, as shown in Fig. 4. As seen in Fig. 5, these quantitative features can be seen
explicitly in the example of the eternal AdS black hole, where we can decrease
the entanglement between the two CFTs by increasing the inverse temperature
parameter β .

4 Conclusions

We have seen that we can connect up spacetimes by entangling degrees of freedom
and tear them apart by disentangling. It is fascinating that the intrinsically quantum
phenomenon of entanglement appears to be crucial for the emergence of classical
spacetime geometry.
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