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SLAC and Physics Department, Stanford University, Stanford, CA 94025/94305, USA

(Dated: March 23, 2010)

Abstract

In the last few years, we have realized the existence of a new class of topological excitations,

which are rather distinct from the platonic world of monopoles, monopole-instantons and instan-

tons. All of the latter arise as solutions of the Prasad-Sommerfield type first order differential

(self-duality) equations and have been extensively discussed in the context of confinement

and chiral symmetry breaking for the last 30 years. However, new calculable deformations of

asymptotically free chiral and vector-like gauge theories give us a new picture of these physical

phenomena. Most often, the excitations which lead to confinement are not solutions to PS-type

equations, they are non-selfdual and they are often bizarre. They are referred to as magnetic

bions, triplets, and quintets, due to their composite nature. Bizarre as they are, combined with

large-N volume independence, these novel non-self-dual excitations may also provide hope that at

least some non-abelian gauge theories may be solvable.

Dedicated to Misha Shifman on the occasion of his sixtieth birthday. This write-up summarizes

my interactions with him during our fruitful collaborations and important open problems in gauge

theories.

PACS numbers:

1



Contents

I. Selfduality and non-selfduality: Tip and the iceberg? 2

A. Misha, smoothness conjecture and bions (almost) everywhere! 5

B. One cannot overstate the importance of the index theorem. 7

C. Chiral gauge theories and deformation program 9
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The real voyage of discovery consists not in seeking new landscapes

but in having new eyes. Marcel Proust.

I. SELFDUALITY AND NON-SELFDUALITY: TIP AND THE ICEBERG?

A metaphor, even an imperfect one as described below, may often provide a useful insight

into challenging situations. The story of Pandora’s box (jar) is well-known. In its most

common interpretation, Pandora opens the box due to curiosity and many evils, along with

hope spread to earth. As this is an article not on moral but non-abelian gauge theories, the

reader should replace the word evil with mystery or weirdness in what follows. (Although I

must admit that gauge theories often have diabolical recipes for us.) Hope may remain the

same, due to reasons which will become apparent.

I started to think about topological excitations in asymptotically free non-abelian gauge

theories in early 2007. A distinguished member of such gauge theories, QCD, is perhaps

one of the most challenging part of nature. The non-perturbative aspects of these theories

have always been a source of fascination, excitement and doubled-curiosities. As described

by Sasha Polyakov in his memoirs, perhaps mathematically the most important objects

in addressing the non-perturbative aspects of gauge theories are instantons and monopoles.

These topological excitations are solutions to first order self-duality equations, such as Fµν =

?Fµν ≡ 1
2
εµνρσFρσ for the BPST instanton. Similarly, the monopoles or instanton-monopoles

are solutions to the first order Prasad-Sommerfield type differential equations. When I
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started to think about topological excitations in gauge theories, my hunch was, there would

in fact be more interesting and more important topological excitations pertinent to vector-

like and chiral gauge theories. The problem that we were unable to see these excitations

was tied with the absence of controllable (and calculable) deformations and the right tools.

Around that time, I realized that such tools may indeed exist, if theories are compactified

on a spatial (non-thermal) circle of size L. Due to the work of Gross, Pisarski and Yaffe

from early 80’s, I already knew that studying thermal compactifications would be beating

a dead horse, so I did not care about it. My intuition was based on the sharp differences of

quantum versus thermal fluctuations and I hoped that a more hospitable territory accessible

via circle compactification existed.

With some optimism, I decided to examine SU(2) QCD(adj) (a decidedly low-N theory)

by taking advantage of a very unique and welcoming feature: its unbroken center symmetry

1 even at arbitrarily small S1×R3. By the time I decided to do so, I did not know the index

theorem for topological excitations on this geometry, but knew the famous APS-index (which

applies on R4), and also knew lesser-known Callias (which applies on R3) index theorems.

Combining the two, I was able to guess the form of the leading monopole operators.2 The

results were rather surprising. Although monopoles were there and they were the leading

topological excitations in the semi-classical expansion, they were not responsible for the

mass gap for gauge fluctuations and confinement per se, which is counter to the mid-70’s

dream of confinement à la Polyakov, ’t Hooft, Mandelstam and others. I realized that I

had stumbled upon a new class of topological excitations, but I did not first appreciate how

general it could be. This realization was going to come from a phone call from Misha, to

which I will return in the next section. First, I need to explain few aspects of these elusive

topological excitations that revealed their existence in QCD(adj).

Let me briefly remind the reader the pair of relevant quantum numbers, useful in dis-

1 The precursor of this idea was large N volume independence of QCD(adj). A special form of volume
independence is the famous Eguchi-Kawai reduction proposed in 1982. The first four dimensional working
example appeared 25 years after the birth of the idea in 2007 and, as the reader may guess, it is QCD(adj)
with periodic spin connection for fermions, a manifestly non-thermal compactification.

2 As it should be clear, this was an educated guess. Later in 2008-CAQCD held in Minnesota, Erich Poppitz
asked me a question about confinement in some gauge theories of his interest. My answer was, “if you
tell me the index theorem for topological excitations, I will tell you what the answer is . . . ” I will return
to this later.
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cussing topological excitations: magnetic charge and topological charge; (
∫

F,
∫

FF̃ ). On

R3 × S1, there are two types of monopoles, BPS and KK, as opposed to one (just BPS) as

would be the case in the Polyakov model on R3. (This crucial aspect was realized in 1997

by Lee and Yi by using D-branes and Kraan and van Baal in gauge theory.) The existence

of KK monopoles is due to compact topology of the holonomy. The charges of these exci-

tations are BPS:(1, 1
2
), KK:(−1, 1

2
) with negations for the anti-monopoles: BPS : (−1,−1

2
),

KK : (1,−1
2
). By using abelian duality, index theorem, and symmetries, I was able to show

that the topological excitations which lead to confinement in this theory have charges (2, 0)

and (−2, 0). Those familiar with topological excitations may find this strange for multiple-

reasons: (a)Unlike instantons or monopoles, these new objects have vanishing topological

charge. In this sense, they are indistinguishable from perturbative vacuum! (b) They are not

solutions to Prasad-Sommerfield type equations and hence they are manifestly non-self-dual.

BPS

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)

KK

 

Magnetic monopoles 

Magnetic bions

FIG. 1: Cartoon of the leading topological excitations in SU(2) QCD(adj) with nf = 2. The BPS

and KK operators are eiσψ4 and e−iσψ4, where σ is dual photon and ψ is fermion zero mode. Flavor

indices are suppressed. The product BPSKK is the usual instanton operator, ψ8, with eight zero

modes as per APS-index theorem. Because of the fermion zero modes, monopole operators cannot

generate a mass gap for gauge fluctuations and confinement. Magnetic bions carry non-vanishing

magnetic but zero topological charge. This corresponds to the e2iσ + e−2iσ operator, which is the

root cause of the mass gap for gauge fluctuations and confinement.

I referred to this topological excitation as magnetic bion as it is a composite, bound-state
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of BPS and KK monopoles, shown in Fig.1. There is a puzzle here though: The constituents

(each of which has charge +1) interact repulsively with a 1/r potential induced by photon

exchange and there are no other apparent force carriers in the system. Perhaps, the biggest

surprise that I came to grips with in this theory was that the bions were stable due to a

fermionic pairing mechanism, induced by fermion zero-mode exchange. This exchange gen-

erates a 2nf log r attraction, which means a combined potential, VBPS−KK(r) = 1
r
+2nf log r.

This attraction implies the dynamical stability of magnetic bions.3 The long-distance dual

theory made it manifest that the magnetic bions were the root cause of confinement and the

mass gap in gauge sector of QCD(adj).

A. Misha, smoothness conjecture and bions (almost) everywhere!

The day after I posted the magnetic bion paper, I received an early morning call from

Misha. Misha was pleased with the very simple fact that these excitations were there, but

he was not surprised that their existence were not realized earlier. He tied the elusiveness

of these objects to their indistinguishability from the perturbative vacuum in the sense of

topological charge. Of course, no sensible gauge theorist with a sound mind would go out

to search for topological excitations with
∫

FF̃ = 0 property! To my view, we were simply

lucky that these non-self-dual excitations arose so naturally in QCD(adj). Misha has his

very unique perspective and deep intuition on strong coupling gauge dynamics, and he was

telling me something that I may have not appreciated/pursued otherwise: His main point

was inspired from the large-N (planar) orbifold/orientifold equivalences. The essence of his

argument was following:

“The magnetic bions are surely there in the weak coupling—small L—domain;

presumably, they must also exist in the large L domain, but in a non-dilute form.

At large L, there is an exact non-perturbative equivalence between QCD(adj)

3 Later, Larry Yaffe pointed out to me that similar fermion zero mode induced pairing (∼ nf log r attraction)
of topological excitations, in an instanton-anti-instanton molecule, was found earlier by Callan, Dashen
and Gross in the mid 70’s. Apart from this similarity, there are no others between these composites.
Bions, in particular, have a net magnetic charge and generate a mass gap in gauge sector. On the other
hand, instanton-anti-instanton molecules are not of any particular importance for confinement.

5



and QCD(AS/S/BF).4 Thus, the magnetic bions must also exist in these theories.

How can we make them visible? ”

Implicit to Misha’s question was the staggering dissimilarity between QCD(adj) and

QCD(AS/S/BF) in the small L domain. All of the latter theories exhibited breaking of

their center at small L and were decidedly unlike QCD(adj). We needed to come-up with

something which would disclose the semi-classical domain of these theories.

Incidentally, I was thinking on a proposal which makes large N volume independence

work all the way down to arbitrarily small L > 0 for YM theory, in collaboration with Larry

Yaffe. Motivated by adjoint fermion induced stabilization of center symmetry, we had the

idea of using the double-trace deformations of YM theory to satisfy volume independence.

This turns out to be a very interesting trick due to what I will call,

First magic of double-trace deformation: At large N , double-trace deformations of

the action are an order N2 effect and prevent center–breaking of YM theory on small S1.

On the other hand, the observables of YM theory (in the confined phase) and the ones of

deformed YM theory for any L > 0 differ only by O(1/N2) effects in the large N limit. In

a sense, the deformation, after doing the good deed, sequesters itself.5

One should note that this is a very peculiar deformation, as typical O(N2) deformations

of the action would alter the dynamics of the theory completely. Misha wanted to know

about the small N and small L incarnations of such deformations. We thought for few days

and had doubts about pursuing that direction: Our concern was the apparent non-locality

of the Wilson line deformation. But we realized that this was an aesthetic issue. In fact,

such deformed theories have nice renormalizable UV completions which yield our deformed

action upon integrating out heavy KK modes in the small circle limit, and even without

such, there is no harm to view these small S1 × R3 theories as effective 3d theories. This

leads to the second magic of double-trace deformations.

Smoothness conjecture: At small or finite N , a deformation could be “engineered” in

such a way that a sub-class of QCD-like theories on R4 could be smoothly connected to the

deformed-QCD (QCD*) on arbitrarily small S1 × R3.

4 These are YM theories with nf anti-symmetric, symmetric or bi-fundamental representation Dirac
fermions. QCD(AS) is same as QCD(F) for N = 3, thus a natural large N limit thereof.

5 The last sentence is coined by Gabriele Veneziano in a private conversation at GGI, Florence.
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Needless to say, this is what we were looking for despite the aesthetic issues. Regardless,

this was a useful tool enabling us to move forward and identify interesting topological exci-

tations. In the mean-time, we also learned about the existence of a very interesting lattice

gauge theory work by Myers and Ogilvie. These authors have independently proposed defor-

mations to study phases of partial center symmetry breaking and realized that, in a lattice

formulation, the center symmetric phase can be continued to arbitrarily small S1. Hence,

with this non-perturbative confirmation, we decided to move on. This latter part is the

main benefit of the “deformation program”: It helps us to reveal the topological excitations

in gauge dynamics.

Immediately, we were able to solve all interesting one-flavor QCD* theories on small

S1×R3, and analytically demonstrate the existence of a mass gap, confinement and discrete

chiral symmetry breaking. This was done by pin-pointing the non-perturbative source of

each effect. Non-perturbative aspects which are quite hard in the original theory become

straightforward tree-level phenomena upon a duality transform. Magnetic bions are ubiq-

uitous, bearing responsibility for the mass gap, generally speaking, in almost all QCD-like

theories with 2-index representation fermions.

B. One cannot overstate the importance of the index theorem.

Despite these solutions, neither Misha nor myself knew the exact index theorem for

topological excitations on S1×R3, but we were able to proceed by using intuition based on

the Callias and APS index theorems and, more often than not, bions were responsible for

mass gap generation. The exact form of the index theorem is crucial to reveal the origin

of confinement, which depends on the matter content of the theory! (This is again an

unexpected aspect that we learned recently.)

There were a number of interesting gauge theories that Misha and I were unable to

address, and this was due to the absence of a useful form of index theorem. I found a

mathematics paper in the Differential Geometry arXiv by Nye and Singer, which addressed

an index theorem for Dirac operator on S1 ×R3. Both Misha and I highly appreciated this

paper and advertised this work in our paper. However, it was very hard for me to get a

useful form of the index formula which we could use for concrete gauge theory applications.

Eventually, Erich Poppitz and I (but mostly him) provided a new, insightful and elegant
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c) Magnetic triplets 

b)Magnetic bion 
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FIG. 2: SU(3) QCD(S): a)monopoles with indices (I1, I2, I3) = (4, 4, 2) do not induce a mass gap

in the gauge sector because of their zero-modes. Note that Iinst =
∑3

i=1 Ii = 10. b) magnetic bions

and c) magnetic triplets generate a mass gap for gauge fluctuations. Note that all zero-modes

need to be soaked up for the composite to contribute to a mass gap for gauge fluctuations. d)

SU(2) chiral theory with I = 3/2 representation fermion and a cartoon of a magnetic quintet.

(IBPS, IKK) = (4, 6). Note Iinst. =
∑2

i=1 Ii = 10. The magnetic quintet is a composite of 3 BPS

and 2 KK monopoles. In the absence of index theorem on R3×S1, it would perhaps be very hard, if

not impossible, to guess these purely bosonic topological excitations, which generate confinement.

The magnetic quintet is flipped from its original figure W to an M(isha) for the occasion.

derivation of the index formula, by using axial current non-conservation—an exact operator

identity valid on any four-manifold—and a center-symmetric holonomy. We were in part

being influenced by E. Weinberg’s work on the Callias index theorem on R3. The derivation

also provided a useful and simple form of the index formula which is easy to use for concrete

(both supersymmetric and non-supersymmetric) gauge theory applications.

In order for the reader to appreciate how weird things can get regarding confinement,

and why the index formula is so important, consider two gauge theories: Vector-like SU(3)

QCD(S) and chiral SU(2) with an I = 3/2 Weyl fermion. I picked these two examples,

because both theories have Iinst. = 10 zero modes in the background of an instanton. The

topological excitations, zero mode structures and the non-selfdual excitations which generate

the mass gaps are shown in Fig. 2. This figure is the reason why knowing the index theorem

is so important in our understanding of gauge theories. The actions of various topological
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excitations, in a center-symmetric background, relative to an instanton are given by:

{Smon, Sbion, Striplet, Squintet} =

{
1

N
,

2

N
,

3

N
,

5

N

}
×

(
Sinst =

8π2

g2

)
.

Moreover, since e−Sinst ∼ e−N and e−Smon/bion ∼ e−1 in N -counting, the leading (composite)

topological excitations, unlike instantons, are not suppressed in the large-N limit.

C. Chiral gauge theories and deformation program

Around this time, I had another phone conversation with Misha. I was thinking of pursu-

ing the deformation program for multi-flavor QCD-like theories due to an exotic phenomena

I had in mind: I wanted to show that QCD-like theories may generically possess phases of

confinement without chiral symmetry breaking on S1 × R3, a phenomena first realized in

QCD(adj). But this time, Misha had something different in his mind: Chiral gauge theories.

On the phone, I remember him saying that “this is an uncharted territory” despite chiral

theories being “familiar” for almost three decades. Lattice does not work, string theory is

not useful so far and large N techniques are not useful either. The only known thing is the ’t

Hooft anomaly matching, while being one of the most powerful results in gauge theories, is

not a dynamical framework. (In fact, there are examples of misleading anomaly matchings,

that is to say, despite the matching of UV anomalies by some IR “composites”, there are

cases in which such composites do not describe the IR-physics.)

In a short time, Misha and I studied two main classes of chiral gauge theories by using our

deformation program: Type I, chiral quiver theories and Type II, SU(N) chiral theory with

one AS , and N − 4 anti-fundamental representation left-handed Weyl fermions. Currently,

deformation theory is the only microscopic framework to understand the dynamics of these

gauge theories.

Because of center-symmetric holonomy and abelianization, one expects topologically sta-

ble monopoles. We discovered a very strange phenomena (which never occurs in QCD-like

theories). The monopole operator contributions to the non-perturbative dynamics of chiral

gauge theories vanish identically!6 Upon averaging over all zero modes, in particular the

6 In particular, for type II theories, monopole operators are almost all fermionic and the index is in general
odd(!), similar to the number of instanton zero modes in an SU(2) gauge theory with an odd-number of
doublets. The latter class of theories, as shown by Witten, have a global anomaly and do not exist as
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global U(1) angles, all monopole operators drop out. On the other hand, one can show that

new topological excitations with more involved fermion zero-mode structure (monopole-ring

operators) and bions are still there. They govern, respectively, chiral symmetry realization

and mass gap for gauge fluctuations.

D. La Belle Époque, the supersymmetric era and today

I think that our understanding of non-perturbative aspect of non-supersymmetric gauge

theories has seen a drastic change in the last two years in an unanticipated way. It is

unanticipated because earlier solutions/scenarios of confinement generally relied on self-

dual topological excitations. Our solutions for vector-like and chiral theories indicate that it

is often non-self-dual topological excitations which generate a mass gap in the gauge sector

and confinement.

To put things into context, I would like to tell my opinions regarding past works on

confinement in non-abelian gauge theories. Of course, la belle époque of this problem is

the mid-70s to early 80s. To me, the most important solution of that era is the one of

Polyakov, where he mapped the partition function of a gauge theory to a dilute gas of

self-dual monopoles (3d -instantons). The dual superconductivity scenario of ’t Hooft and

Mandelstam was also born during that era, but had to wait almost two decades for an explicit

construction, eventually being realized in the very elegant solution of Seiberg-Witten, in ’94,

in the supersymmetric context. In both cases, the self-dual (BPS) objects play crucial roles.

When I realized the existence of magnetic bions, I did not think that they could be this

generic in gauge theories. Misha’s intuition, the use of double-trace deformations and the

relevant index theorem changed my opinion. Now, I think that the magnetic bions and

similar non-selfdual topological excitations are very likely the most important topological

configurations in typical gauge theories. These objects are rather messy, mysterious and

often bizarre, as shown in Fig.1 and Fig.2.7 But now, we have the correct mathematical

tools to study them rather precisely, on R3×S1, where the theory is locally four dimensional.

consistent quantum theories. In our case, there are no such global anomalies and these are fine quantum
theories.

7 It would be interesting to see whether the non-self-dual topological excitations such as magnetic bions,
triplets, etc. have a counter-part in string theory, and whether they could be useful there as well.
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The world of these new non-selfdual topological excitations is almost contrary to the platonic

world of self-dual monopoles, instantons, and the dreams of the past. Returning to the title

of this work, I think the Pandora’s box for QCD and chiral theories is now open, or at least

ajar, for the first time, so that we can have a glimpse of gauge theories’ inner goings-on.

Many interesting things just happen to be in there and I am sure we will see more. I also

think that the combination of these novel topological excitations and another unexploited

concept from the past, the large-N volume independence, carry hope that we can come to

a fuller understanding of most of these gauge theories.

This is, of course, an idiosyncratic point of view. Many people today hope that,

gauge/string duality may provide useful insights to gauge dynamics in four dimensions.

Perhaps important problems like conformality, confinement, and the mass gap in YM the-

ories with or without fermionic matter fields will be understood by geometrization. Some

prominent string theorists even argue that this is the best analytic approach at hand now,

but I disagree with these claims for good reasons. When I started to think about topological

excitations in gauge theories, the reason I did not pursue a stringy approach was due to my

belief that one could construct new microscopic field theory techniques which could be more

beneficial than what string theory can do under similar circumstances.8 I think that a few

people, including Misha and me, partially achieved this goal by revealing the existence of

new non-selfdual topological excitations and their role in confinement.

8 Polyakov mentions in his scientific memoirs that the reason he decided to move from semi-classical tech-
niques to the string description was the belief that the semi-classical approach cannot fully describe the
strong coupling regime of QCD. I think this is most likely true. But the caveat here is that all known
string theory descriptions of QCD-like theories either have non-decoupling states which prevent them from
reducing to pure large-N QCD, or they are phenomenological (bottom-up) in their nature. The latter
approach is not useful for the type of questions that I find interesting in gauge theories. The first may
be fine modulo its caveats. In my view, the importance of semi-classical techniques is no less than any
string theory approach, perhaps more. They are microscopic, can address finite N , and have taught us
about the existence of new mechanisms of confinement, conformality, non-self-dual topological excitations
and new scales in QCD-like theories. This is a sufficiently good reason to argue that this approach merits
more attention.
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E. References and suggested reading

Since this short note is written as a scientific memoir of my interactions with Misha and

describes our program based on recent papers, I did not attempt to give references. Instead,

I will mention a few papers which influenced my thinking about gauge theories on R3 × S1,

and a few references that may be useful to guide interested readers.

Ref [1] : This is the first use of duality in a relativistic gauge theory, and establishes the

role of monopoles in confinement.

Ref [2] : Polyakov model with adjoint fermions; and a must-read complement of Ref

[1] . The authors relies more on symmetries than dynamical aspects. Consequently, physical

interpretation of some topological excitations are missing. These are explained in Ref [6] .

Ref [3] : A beautiful field theory discussion of N = 1 SYM on S1 × R3, in the sprit of

the first two, and one of the papers that I like most. The gaps regarding the interpretation

of confinement in N = 1 SYM are filled in Ref [6] .

Ref [4, 5] : Introduced KK-monopole, a self-dual monopole-instanton, and an essential

ingredient of the magnetic bion mechanism.

Ref [6] : This is the first analytic solution of a locally four dimensional non-abelian

(non-supersymmetric) gauge theory on S1 × R3. It introduced magnetic bions, a new class

of non-self-dual topological excitations. Its discussion about N = 1 SYM should be viewed

as a complement to Ref [3] .

Ref [7] : This index theorem is the most crucial result that will shape the understanding

of gauge theories on S1 × R3. However, it is hard to read and the way the results are

expressed are not particularly useful for gauge theory applications. The index theorem here

is far more refined than the familiar Atiyah-Singer index theorem for instantons on R4. This

paper is so far not appreciated in the physics literature.

Ref [8] : Gives a new derivation of the index theorem by using an exact operator

identity—axial-current non-conservation—valid on any four-manifold, and by paralleling

E. Weinberg’s discussion of the Callias index on R3. It also provides a calculation of the

index in specific backgrounds and a discussion of its jumps, properties which are of interest

for concrete gauge theory application.

Ref [9, 10] : The first paper is where double-trace deformations are introduced to for-

mulate the smoothness conjecture. This construction allowed us to see that magnetic bions
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were pertinent to most interesting gauge theories, chiral or vector-like. The use of the de-

formations and the index theorem essentially puts the understanding provided in non-susy

QCD or even chiral theories more or less on the same level with SQCD of Ref [13] .

Ref [11] : Deformed YM theory can be used to study phases of partial center symmetry

breaking on lattice, and a sufficiently large deformation stabilizes the center symmetry at

any value of the bare lattice coupling. See the beautiful Fig.1 therein.

Ref [12] : Fully center-stabilized deformations of large-N YM theories obey volume

independence.

Ref [13] : For SQCD, the smoothness conjecture is exact. The vacuum of the theory on

S1 × R3 knows about the vacuum structure on R4. This paper has many good examples

of the derivation of non-perturbative superpotentials by using holomorphy and symmetry.

Using the index theorem provides a microscopic derivation of some of these superpotentials.
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