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HORIZON WAVE-FUNCTION: FROM PARTICLES TO BLACK HOLES
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Abstract. Localised Quantum Mechanical particles are described by wave pack-
ets in position space, regardless of their energy. From a General Relativistic point of
view, when a particle’s energy density is larger than a certain threshold, the particle
should be a black hole. We combine these two pictures by introducing a horizon wave-
function determined by the particle wave-function in position space, which is used to
compute the probability that the particle is a black hole. The sources are modelled as
simple Gaussian wave-packets and using the horizon wave-function formalism we cal-
culate the probability for these particles to be Schwarzschild black holes, respectively
Reissner-Nordstrom black holes (in the case of charged particles). We also derive an
effective Generalised Uncertainty Principle (GUP), which is obtained by adding the
uncertainties coming from the two wave-functions associated to the particle.

Key words: Horizon wave-function, black boles, Planck scale, Gaussian wave-
packets, generalised uncertainty principle.
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1. INTRODUCTION

Our present understanding of the Universe relies on two theories: the theory of
General Relativity which is applicable at very large scales, and Quantum Mechanics
(QM) which is a very good description of the microscopic universe. While these two
theories work very well, each in its own regime, one regime in which they collide
is near the Planck scale, when QM wave-packets can turn into Black Holes (BH).
Another interesting problem is the description of the gravitational collapse which
again leads to the formation of BHs (first investigated in the seminal papers of Op-
penheimer and co-workers [1, 2]). A lot of work has been done on this subject, but
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a good description of the physics of such processes is still challenging. There is a
vast amount of literature on this subject (see, e.g. Ref. [3]), but many technical and
conceptual difficulties remain unsolved, such as accounting for the QM nature of
collapsing matter.

Until now, the only unanimously accepted idea is that gravitation becomes im-
portant whenever a large enough amount of matter is “compacted” within a suffi-
ciently small volume. K. Thorne formulated this idea in the hoop conjecture [4],
which states that a BH forms when two colliding objects fall within their “black
disk”. Assuming the final configuration is (approximately) spherically symmetric,
this occurs when the system occupies a sphere whose radius r is smaller than the
gravitational Schwarzschild radius,

r .RH ≡ 2`p
E

mp
, (1)

where the Planck length is denoted by `p and mp represents the Planck mass.∗

One can find many attempts at quantising BH metrics in the literature, which
focus on the purely gravitational degrees of freedom, and result in a description of
the horizon which is unrelated to the matter state that sourced the geometry to be-
gin with [5]. The approach discussed in this paper, the Horizon Wave Function
(HWF) formalism [6–8], is instead based on the quantum version of the Einstein
equations. It relates the size of the horizon to the (quantum) state of matter. When
applied to several case studies [9–11], the results were found to be in agreement with
(semi)classical expectations, which makes us hopeful that it will help further our
understanding of the quantum nature of BHs.

The formalism starts from the spectral decomposition of the QM state that rep-
resents the matter source. The total energy is then written in terms of the gravitational
radius, as it is classically determined from Einstein equations, and the spectral de-
composition then yields the HWF. The normalized HWF is then used to compute the
probability for an observer to find a horizon of a certain areal radius centered around
that particular QM source.

Electrically charged BHs were subject to many theoretical studies in the past [12].
In Refs. [13, 14] we extend the HWF formalism to the Reissner-Nordström metric
and investigated the probability for an electrically charged source represented by a
Gaussian wave-packet to be a BH, and to have an actual inner horizon. These find-
ings will be detailed in Section 2.2. The inner horizon is a Cauchy horizon and is
associated with an instability known as “mass inflation”: any small matter perturba-
tion will blue-shift unboundedly just outside this horizon and inevitably produce a
large deformation to the background geometry [15], although the existence of this

∗We use units with c = kB = 1, and always display the Newton constant GN = `p/mp, so that
~= `pmp.
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effect is still debated (see, e.g. Refs. [16–18]). It is thus interesting to study under
which conditions the inner horizon survives in the QM treatment.

2. THE HORIZON WAVE-FUNCTION FORMALISM

The formalism described in the section below was proposed fairly recently, and
it already resulted in some very interesting findings. [7, 9, 13, 14]

We start with the wave-functionψS of a massive QM particle, which is localised
in space and at rest in the chosen reference frame. In the present work we focus on
particles that, for simplicity, we consider to be spherically symmetric. A simple
example for such a source is the Gaussian wave-function

ψS(r) =
e−

r2

2`2

`3/2π3/4
, (2)

of width ` assumed to be the minimum compatible with the Heisenberg uncertainty
principle

`= λm ' `p
mp

m
. (3)

Here λm is the Compton length of the particle of rest mass m.
The state can be expanded in Hamiltonian eigenmodes as

|ψS〉=
∑
E

C(E) |ψE〉 , (4)

where the Hamiltonian is specified depending on the model we wish to consider.
One can then invert the expression of the Schwarzschild radius, represented by

the identity from Eq. (1), to obtain the total energy E as a function of RH, and use it
to define the HWF as

ψH(RH)∝ C (mpRH/2`p) , (5)

whose normalisation is fixed in the inner product

〈ψH | φH 〉= 4π

∫ ∞
0

ψ∗H(RH)φH(RH)R2
H dRH . (6)

We think of this normalised wave-function ψH simply as yielding the probability that
one would detect a horizon of radius r = RH associated with the particle in the QM
state ψS that we begun with. Unlike general relativistic horizons, such a horizon is
necessarily ”fuzzy”, like the position of the particle itself.

With the HWF at hand, one can proceed to calculate the probability density for
the particle to lie inside its own horizon of radius r =RH:

P<(r < RH) = PS(r < RH)PH(RH) , (7)
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where

PS(r < RH) = 4π

∫ RH

0
|ψS(r)|2 r2 dr (8)

is the probability that the particle is inside a sphere of radius r =RH, and

PH(RH) = 4πR2
H |ψH(RH)|2 (9)

is the probability that the horizon is located on the sphere of radius r =RH.
Finally, the probability that the particle described by the wave-function ψS is a

BH will be obtained by integrating (15) over all possible values of the radius,

PBH =

∫ ∞
0

P<(r < RH)dRH . (10)

The reader should keep in mind that depending on type of particle being taken
into consideration, the space-time metric changes and in some cases more than one
horizon exist. In Section 2.2 the results obtained in the case of electrically charged
particles will be presented. Charged BHs are described by the Reissner-Nordström
metric, which has two horizons: an exterior and an interior one.

2.1. NEUTRAL PARTICLES. SCHWARSZCHILD BLACK HOLES

P<

1 2 3 4

0.1

0.2

0.3

0.4

RH/`p

Fig. 1 – Probability density P< in Eq. (15) that particle is inside its horizon of radius R=RH, for
`= `p (solid line) and for `= 2`p (dashed line).

Figure 1 represents the probability density P< for the particle to be within its
own radiusR=RH. The probability density is plotted for two values of the Gaussian
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Fig. 2 – Probability PBH in Eq. (10) that particle of width `∼m−1 is a BH.

width: ` = `p and ` = 2`p. The reader is reminded that these values correspond to
m = mp and m = 0.5mp. The plot shows that, as expected, the probability density
is larger for larger values of the particle mass (narrower spread of the wave-packet).
One can integrate the probability density and calculate the probability PBH for the
particle/wave-packet to form a BH.

The probability PBH is shown in Fig. 2 as a function of ` (in units of `p).
One can see that the probability for the wave-packet to be a BH is equal to one for
widths of the Gaussian smaller than the Planck length and that it decreases slowly
until it becomes negligible for widths around 3`p. This behaviour, the fact that the
probability decreases smoothly and is different from zero even for energies bellow
the Planck mass is due to the quantum effects (otherwise, BH formation is a threshold
effect which appears exactly at the Planck scale).

2.1.1. Effective GUP

For QM wave-packets near the Planck scale, such as the Gaussian packet con-
sidered herein, there are two sources of uncertainty. One is the standard QM uncer-
tainty, and then there is the uncertainty in the localisation of the horizon radius (the
complete details can be found in [7]). By linearly combining the two, we find

∆r ≡
√
〈∆r2 〉+γ

√
〈∆R2

H 〉

=

(
3π−8

2π

)
`p
mp

∆p
+ 2γ `p

∆p

mp
, (11)
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Fig. 3 – Uncertainty relation (11) (solid line) as a combination of the QM uncertainty (dashed line)
and the uncertainty in horizon radius (dotted line).

where γ is a coefficient of order one. The result is plotted (for γ = 1) in Fig. 3, where
it is also compared to the usual Heisenberg uncertainty in the position.

2.2. ELECTRICALLY CHARGED PARTICLES. REISSNER-NORDSTRÖM BLACK HOLES

Let us now turn our attention to the results obtained for charged particles, case
in which the metric that describes the resulting BH is the Reissner-Nordström metric:

ds2 =−f dt2 +f−1 dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (12)

with

f = 1− 2`pM

mp r
+
Q2

r2
, (13)

where M represents the ADM mass and Q the charge of the source. The above BH
metric contains two horizons, namely

R± = `p
M

mp

(
1±
√

1−α2
)
, (14)

where α=
|Q|mp

`pM
is the specific charge of the BH. These classical relations are lifted

to the rank of equations for the operators R̂± and M̂ , operators chosen to act mul-
tiplicatively on the horizon wave-function. The specific charge α is viewed as a
parameter.

Without going into too many details (for more information, the reader is re-
ferred to [13, 14]), in this case a HWF can be expressed for each of the two hori-
zons. This is the case because the total energy can be expressed in terms of only R+,
respectively R−.

(c) 2016 RRP 68(No. 3) 923–934 - v.1.1a*2016.9.2
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The probability densities for the particle to lie inside its own horizons of sizes
r =R± can now be calculated as

P<±(r < R±) = PS(r < R±)PH(R±) , (15)

where the expressions for PS(r < R±) and PH(R±) are calculated using the same
method as their corresponding quantities from Eq. (8), respectively (9).

Finally, one can integrate the previous equation (the case with the upper signs)
over all possible values of the horizon radius R+ to find the probability for the parti-
cle described by the wave-function (2) to be a BH, namely

PBH+ =

∫ ∞
Rmin+

P<+(r < R+)dR+ . (16)

The analogous quantity for R−,

PBH− =

∫ ∞
Rmin−

P<−(r < R−)dR− , (17)

will instead be the probability that the particle lies further inside its inner horizon.
It is already clear from these definitions that PBH− < PBH+, and it is only when
PBH− is significantly high that one can say that both R− and R+ are physically
realised. The expressions for the HWFs and their normalisations, along with more
details about obtaining the above mentioned probabilities can be found in [13].

2.2.1. Inner Horizon of the Quantum Reissner-Nordström Black Holes

We shall now present our findings for the case 0<α≤ 1, which classically pos-
sess at least one horizon. Once again, to determine the HWF and then calculate the
probabilities for both the inner and outer horizon to exist, the classical relations (14)
are lifted to the rank of equations for the operators R̂± and M̂ , which are chosen to
act multiplicatively on the horizon wave-function.

Figure 4 shows PBH+ and PBH− as functions of α for particle mass values
above, equal to and below the Planck mass. The plot shows that PBH+ stays very
close to one for mass values larger than the Planck scale. When m ∼mp (when the
width of the Gaussian wave-packet ` ∼ `p), the probability starts to decrease below
one as the specific charge increases to one. Note that this probability is not exactly
zero even for values of the mass smaller than mp. For instance, in the case m =
0.5mp, corresponding to a width `= 2`p of the Gaussian wave-packet, PBH+ ' 0.2
for a considerable range of α values. It only decreases below 0.1 when α approaches
one, therefore when the BH becomes maximally charged.

The situation is very different for the inner horizon. The same plot shows that
the probability PBH− is approximately zero for small values of the charge-to-mass
ratio and slowly increases with α. The larger the mass of the particle, the smaller
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Fig. 4 – Probability PBH+ in Eq. (16) for the particle to be a BH (thick lines) and PBH− in Eq. (17)
for the particle to be inside its inner horizon (thin lines) as functions of α for m= 2mp (continuous
line), m=mp (dotted line) and m= 0.5mp (dashed line). For α= 1 the two probabilities merge.

the value of α for which the probability starts to become significant. What is very
interesting is that for a considerable range of values of the specific charge, while
PBH+ ' 1 thus making the object a BH, the probability for the inner horizon to exist
is approximately zero.

The probabilities PBH± as functions of the mass m for constant values of the
specific charge (α= 0.3, 0.8 and 1) are shown in Fig. 5. It is found that the smaller the
value of α, the smaller value of m at which the probability PBH+ starts to increase
from zero to one. The opposite is true when analyzing PBH−. For α = 0.3 for
instance, it is only around m ' 6mp that both probabilities PBH+ and PBH− have
values close to one, while PBH+ already increases to one aroundmp. Therefore in the
range from mp to 6mp, the probability PBH+ ' 1 while PBH− ' 0. This domain of
values increases even more for smaller values of the specific charge, but it decreases
to zero when the BH is maximally charged.

We therefore find a considerable parameter space for particle mass values (around
the Planck scale) and α < 1 in which

PBH+ ' 1 and PBH− ' 0 . (18)

The existence of the outer horizon determines the fact that the particle is a BH, which
we consider equivalent to PBH+ ' 1. The existence of an inner horizon at r =R− is
important in light of the ”mass inflation” instability and puzzling features of Cauchy
horizons. Eq. (18) therefore means that the particle is a BH, but no such peculiarities
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Fig. 5 – Probability PBH+ in Eq. (16) for the particle to be a BH (thick lines) and PBH− in Eq. (17)
for the particle to be inside its inner horizon (thin lines) as functions of the mass for α= 0.3

(continuous line), α= 0.8 (dotted line) and α= 1 (dashed line). For α= 1 thick and thin dashed lines
overlap.

are expected.
We should not leave this section before stating that also in this case one natu-

rally recovers an effective generalised uncertainty principle like in Section 2.1.1, in
the sense that the dependence on the momentum ∆p is the same, but with different
pre-factors.

2.2.2. Superextremal black holes. Notes on the Cosmic Censorship Conjecture

In the General Relativistic treatment, the maximum value of the specific elec-
tric charge is one. This way, the cosmic censorship conjecture forbids a priori the
existence of naked singularities. In this section we will go one step forward, in what
we consider to be a very interesting mathematical exercise, and we will investigate
the regime of overcharged sources, represented by values of the specific charge in the
range α > 1. It will be interesting to see if QM affects the predictions summarised
above.

The main issue in the α > 1 regime is that the operators R̂± are not Hermitian.
One option would be to just say that there are no observables which correspond
to R̂± in the regime α > 1. However, let us make a simple choice, which allows
us to proceed and probe the classically forbidden region. Let’s take the real parts
of the multiplicative operators R̂±, which are certainly Hermitian, to correspond to
quantum observables. With this choice, the modulus squared of the HWF is given by
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932 Roberto Casadio, Octavian Micu, Fabio Scardigli 10

(for further details please consult [14])

|ψH(R)|2 =N 2 exp

{
−2−α2

α4

m2
pR

2

∆2`2p

}
. (19)

We point out that for α > 1, only one HWF exists and R replaces both R+ and
R−. This HWF is still normalizable in the scalar product (6), if R belongs to the real
axis and the specific charge lies in the range

1< α2 < 2 . (20)

We, therefore, conclude that no normalisable quantum state with α2 > 2 is allowed,
or that there is an obstruction that prevents the system from crossing α2 = 2.

As a quick check that our using the real part of the multiplicative operators R̂±
(later denoted by R̂) to correspond to quantum observables is not too far fetched, we
calculated the expectation value of this operator and showed that what we find in the
limit α↘ 1 equals the expectation value of R̂± when α↗ 1:

lim
α↘1
〈R̂ 〉=

4`2p/`

2 +e
√
π erf (1)

= lim
α↗1
〈R̂± 〉 . (21)
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Fig. 6 – PBH as a function of α for m= 2mp (solid line), m=mp (dotted line) and m= 0.5mp

(dashed line). Cases with m�mp are not plotted since they behave the same as m= 2mp, i.e. an
object with 1< α2 < 2 must be a BH.

Using Eq. (16), we proceed to calculate the probability PBH that the particle
is a BH for α in the allowed superextremal range (20). We notice in Fig. 6 that, for
a particle mass above the Planck scale, PBH is approximatelly one throughout the
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11 Horizon wave-function: from particles to black holes 933

entire range of α (thus extending a similar result that holds for α < 1). Moreover,
even form significantly belowmp, PBH approaches one in the limit α2→ 2. We need
to emphasize that for smallm, PBH� 1 is related to `�〈R̂ 〉, and the system is thus
dominated by quantum fluctuations in the source’s position well below the Planck
scale. On the other end, both 〈R̂ 〉 and ∆R blow up in the limit α2 = 2, therefore
the superextremal configurations with a significant probability of being BHs contain
strong quantum fluctuations in the horizon’s size.

Let us emphasise again that, in order to achieve the above results, we had to
continue the HWF and and the operators that are straightforwardly defined for α < 1
into the superextremal regime. This choice is not necessarily unique, one might
wonder whether different options would lead to very different outcomes. Although
we have not performed a full survey, we should note that we were able to ensure the
continuity of expectation values across α= 1, like in Eq. (21).

3. CONCLUSIONS

The HWF formalism was introduced as a tool to allow one to effectively de-
scribe the emergence of horizons in localised Quantum Mechanical systems. We
applied the HWF formalism to particles described by spherically symmetric Gaus-
sian wave-functions, and we obtained non-vanishing probabilities for the particles
to be BHs when their masses are larger than about mp/4 (for all the details, see
Refs. [7, 9, 13, 14]). This shows that, contrary to the case of a purely general rel-
ativistic treatment when there is strict threshold at the Planck scale, QM effects do
allow BH formation even below the mp. Of course as the particle mass decreases
more and more below the Planck scale, the probability for that QM wave-packet to
be a BH is smaller until in vanishes around mp/4. We want to draw our reader’s
attention that in one of the articles cited above, Ref. [9], we reached similar conclu-
sions for the case of the collision between two QM wave-packets.

In the case of electrically charged BHs with α ≤ 1, we found that in a quan-
tum regime (let’s say m. 10mp) quantum fluctuations around the inner horizon are
strong enough to prevent the instability expected according to the semiclassical anal-
ysis [13]. The probability for any instability to occur will be as small as PBH−. QM
effects also allow us to continuously go into the region of superextremal BHs with
α > 1. This means that overcharged quantum BHs might be possible [14].

We therefore find that the HWF formalism supports the existence of a mini-
mum BH mass in a genuinely QM fashion, since it produces negligible probabilities
for particles with masses much smaller thanmp to be BHs, rather than giving a sharp
value above which the transition from particles to BHs occurs. Further, the descrip-
tion of BHs that the HWF formalism entails is shown to be compatible with GUPs,
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since it yields the same kind of uncertainty relation in phase space.
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