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Abstract. We review the achievements of the project C.9. Topics addressed include the magnetic moment

of the ρ-meson, elastic pion-nucleon scattering in various settings of chiral perturbation theory, the reaction

πN → ππN as well as new directions in chiral perturbation theory.

1 Introduction

The project C.9 has been funded over the third period of

the SFB/TR 16. It grew out of the project C.3, that was

funded in the first period. Within this project, we have

carried out detailed investigations of pion-nucleon scatter-

ing using various formulations of baryon chiral perturba-

tion theory (ChPT) and addressed the role of the Δ(1232)

isobar. Furthermore, we have explored the possibility

of extending the applicability of ChPT beyond the low-

energy region, verified the consistency of the complex-

mass renormalization scheme at the two-loop level and

performed a number of applications in the two-nucleon

sector. This project has been quite successful which is

partly due to the intelligent use of the lump sum funds.

Our contribution is organized as follows. In section 2,

we present the calculation of the pion-mass dependence

of the magnetic moment of the ρ-meson. Sections 3 and

4 are devoted to elastic πN scattering and the reaction

πN → ππN, respectively. Next, in section 5, we discuss

new directions in ChPT focusing, in particular, on the ap-

plicability of the complex-mass renormalization scheme

beyond the one-loop level and a possibility to extend the

ChPT framework beyond the low-energy region. Finally,

section 6 describes the applications in the nucleon-nucleon

(NN) sector. Here, we discuss the electromagnetic form

factors of the deuteron, a non-perturbative inclusion of the

subleading contact interaction in the 1S0 channel within

a renormalizable framework and new fixed points of the

renormalization-group equation.

2 The magnetic moment of the ρ-meson

In Ref. [1], we have analyzed the pion mass dependence of

the magnetic moment of the ρ-meson at the leading one-
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Figure 1. The reaction ππ → γππ. Dashed, wavy and wiggled

lines refer to pions, photons and ρ-mesons, respectively. “Rest”

denotes the non-resonant contributions.

loop order. To this aim, we have employed the most gen-

eral chiral effective Lagrangian for ρ- andω-mesons, pions

and external sources

L = Lπ +Lρπ +Lω +Lωρπ , (1)

where the individual terms are taken in the parametrization

of the model III of Ref. [2]. For a general review of effec-

tive chiral Lagrangians with vector mesons, see Ref. [3].

We made use of the universality of the vector-meson cou-

plings, which was shown in Ref. [4] to follow from the

consistency of an effective field theory (EFT) with respect

to perturbative renormalization. Furthermore, the coupling

constant gρππ obeys the KSFR relation M2
ρ = 2g2

ρππF
2
π, with

Fπ denoting the pion decay constant.

The magnetic moment of the ρ-meson can be extracted

from the resonant part of the five-point function in the re-

action ππ → γππ as visualized in Fig. 1. Assuming that

the interaction terms with a higher number of derivatives

and/or more fields are suppressed by powers of some large

hadronic scale, we have performed a one-loop calculation

in terms of the expansion parameter ξ = g2
ρππ/(4π)

2 � 0.2.

At tree level, the magnetic moment is found to be real,

and the gyromagnetic ratio is gρ = 2. One-loop diagrams

yield corrections of the order of 10% and lead to a small

imaginary part of gρ. The resulting pion mass dependence

of gρ is shown in Fig. 2. At the physical point, we found

Re(gρ) � 2.2 in good agreement with the most recent lat-

tice QCD calculation of Ref. [5], (gρ)unquenched = 2.4(2).
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Figure 2. The gyromagnetic ratio gρ of the ρ-meson as a function

of the pion mass.

Earlier lattice QCD studies have reported the values of

(gρ)quenched ∼ 2.3 [6], (gρ)unquenched = 1.6(1) [7].

3 Elastic pion-nucleon scattering

Elastic pion-nucleon (πN) scattering certainly belongs to

the the most extensively studied processes in ChPT [8–16].

The πN scattering amplitude enters as a subprocess into

the interactions between two and three nucleons at large

distances. Thus, its detailed understanding is a necessary

pre-requisite for deriving high-precision nuclear forces in

chiral EFT [14, 17, 18].

In our paper [19], we have analyzed πN scattering up

to fourth order Q4 within different formulations of ChPT.

Specifically, we employed the heavy-baryon (HB) formu-

lations utilizing the standard counting of the nucleon mass

as mN ∼ Λb (HB-πN) with Λb denoting the breakdown

scale of the chiral expansion, and the counting scheme

with mN ∼ Λ2
b/Q (HB-NN) employed in few-nucleon

studies. We have also performed calculations within a co-

variant (Cov) formulation of ChPT based on an extended

on-mass-shell (EOMS) renormalization scheme [20–22].

Our analysis differs in several aspects from the already

mentioned earlier studied of this topic. First, the deter-

mination of the low-energy constants (LECs) was carried

out using directly the available πN scattering data instead

of having to rely on partial wave analyses (PWA), see also

Ref. [23] for a similar approach. Secondly, we have bene-

fited from the developments in the project B.6 by employ-

ing a novel approach to estimate the theoretical uncertainty

from the truncation of the chiral expansion formulated in

Ref. [17] in order to stabilize the fits with respect to the en-

ergy range. Finally, we have discussed in detail the renor-

malization and finite shifts of the various LECs within the

covariant formulations and studied the role of the Δ(1232)

isobar by treating it as an explicit degree of freedom at

lowest order in the chiral expansion.

The main results of our study can be summarized as

follows. In theΔ-less case, all three considered approaches

are found to lead to a comparable description of low-

energy πN data, and the extracted values of the LECs com-

pare well with those reported in the literature at the cor-
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Figure 3. Reduced χ2 for fits up to various values of the maximal

energy T max
π in the Δ-less (left panel) and Δ-full (right panel) for-

mulations of ChPT. The blue/red/green bars denote the results

for the HB-NN/HB-πN/Cov counting. The theoretical uncer-

tainty is estimated using the approach of Ref. [17] and assuming

Λb ∼ 600 MeV.

responding chiral orders. While the inclusion of the the-

oretical uncertainties in the definition of the χ2 helps to

stabilize the fits by decreasing the relative weight of high-

energy data, we found clear indications of the lower break-

down scale of the chiral expansion than the assumed one

of Λb ∼ 600 MeV [17]. This conclusion is supported by

the increasing behavior of the reduced χ2 with energy as

visualized in the left panel of Fig. 3. It is also reflected

in the extracted values of the LECs, which show sizable

sensitivity on the energy range used in the fits, see the up-

per panel of Fig. 4, and to the chiral order. Furthermore,

some of the LECs take rather large numerical values. For

example, at order Q4 in the covariant approach, we found

the values of

c1 � −0.82, c2 � −3.56, c3 � −4.59, c4 � 3.44

for the order-Q2 LECs in units of GeV−1 and

d1+2 � 5.43, d3 � −4.58, d4 � −0.40, d14−15 � −9.94

for the relevant order-Q3 LECs in units of GeV−2.

Clearly, one expects the convergence of the chiral ex-

pansion for πN scattering to be slow due to the appear-

ance of the Δ(1232) resonance. The situation can be

improved by treating the Δ-isobar as an explicit degree

of freedom [24–26]. To quantify the effects of the Δ-

isobar, we have repeated our analysis including its lowest-

order contributions. The only new parameters, namely the

Figure 4. The dependence of the order-Q2 πN LECs ci, given

in units of GeV−1, on the maximal incoming pion energy Tπ
used in the fits at order Q4 in the Δ-less approach (upper panel)

and at order Q4 + δ1 in the Δ-full approach (lower panel). The

blue/red/green points and lines denote the results of the HB-

NN/HB-πN/Cov formulations.
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Figure 5. Predictions for selected S- and P-wave phase shifts up

to Tπ = 100 MeV in the covariant Δ-full formulation of chiral

EFT. Orange dotted, pink dashed and red solid bands refer to

Q2 + δ1, Q3 + δ1 and Q4 + δ1 results, respectively. The truncation

errors are estimated using the approach of Ref. [17] and assuming

Λb ∼ 600 MeV. Blue points show the results of the RS equation

analysis of Ref. [27].

mass of the Δ and the πNΔ coupling constant, were fixed

to its Breit-Wigner and the large-Nc values, respectively:

mΔ = 1.232 GeV, gπNΔ = 3/(2
√

2)gA = 1.35. While the

quality of the reproduction of the πN scattering data well

below the Δ-region is not significantly impacted by the ex-

plicit inclusion of the Δ-isobar, we indeed found an im-

proved convergence of the resulting EFT. The correspond-

ing breakdown scale is consistent with or even slightly

larger than the estimated Λb ∼ 600 MeV, see the right

panel of Fig. 3. Not surprisingly, the Δ-full formulation al-

lows for a more reliable determination of the LECs, which

turn out to be rather stable with respect to choosing the

fitting range, see Fig. 4. We also found all LECs in the Δ-

full approach to be of a natural size. In particular, at order

Q4 + δ1 in the covariant approach, we obtained the values

c1 � −1.15, c2 � −1.57, c3 � −2.54, c4 � 2.61

for the order-Q2 LECs and

d1+2 � 1.27, d3 � −1.83, d4 � 0.37, d14−15 � −2.22

for the relevant order-Q3 πN LECs, to be compared with

the values in the Δ-less approach listed above.

Last but not least, the resulting phase shifts are found

to be in a very good agreement with the ones determined

within the project B.3 in the framework of Roy-Steiner

(RS) equations, where detailed error estimates of all input

quantities, the solution procedure and truncations was per-

formed [27–29]. As a representative example, we show

in in Fig. 5 our predictions for selected S- and P-waves

along with the estimated truncation errors in comparison

with the results from Ref. [27].

While the above results look rather promising and in-

dicate the importance of the explicit treatment of the Δ-

isobar, its inclusion beyond the tree level in the covariant

Figure 6. Phase shifts obtained from the Δ-full covariant ChPT

at leading one-loop order. Dots with error bars stand for the RS

phase shifts [27] while circles without error bars represent the

phase shifts from the George Washington partial wave analy-

sis [32]. The solid (red) line represents the result of Fit III of

Ref. [30]. The red narrow error bands correspond to the un-

certainties propagated from the errors of LECs while the wide

dashed error bands show truncation uncertainties at order Q3 es-

timated using the approach of Ref. [17].

framework is a rather challenging task due to a large com-

plexity of the calculations emerging from the Δ propaga-

tors. In Ref. [30], we have performed a complete analy-

sis at the leading one-loop order (i.e. Q3) in the covari-

ant chiral EFT with explicit Δ degrees of freedom. In

this work, all possible nucleon- and Δ-propagator contri-

butions have been calculated up to the leading one-loop or-

der. To achieve this goal, we applied the EOMS (complex-

mass [31]) scheme to diagrams involving pion and nucleon

lines (delta lines) and determined the corresponding renor-

malized LECs by performing fits to the phase shifts ob-

tained in the RS equation analysis of Ref. [27] up to the

center of mass energy of 1.11 GeV (1.2 GeV for the P33

partial wave). In Fig. 6, we show our results for the se-

lected partial waves along with the theoretical uncertain-

ties.

We have also looked at the πN sigma term but were un-

able to obtain an accurate prediction for this quantity. Our

results are, however, consistent with the value found in the

RS analysis, σπN = 59.1±3.5 MeV within the large errors

of our determination. We have also extended these studies

to the SU(3) sector by calculating the masses and the cor-

responding sigma terms of the baryon octet and studying

the strangeness content of the nucleon.

4 The reaction πN → ππN
In addition to the elastic channel of πN scattering, we have

studied in Ref. [33] single pion production off nucleons

from threshold up to the delta resonance region, extend-

ing earlier ChPT studies from Refs. [34–37]. With three

pions in the initial and final states, the theoretical study of

this process provides complimentary information to elas-

tic scattering and offers access to certain LECs which are

not probed in the reaction πN → πN. In particular, the
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Figure 7. Predictions for the total cross section up to Tπ �
400 MeV in the covariant Δ-full (left panel) and Δ-less (right

panel) versions of chiral EFT. Dashed and solid lines refer to

LO and NLO results, respectively. The maximal energy used in

the fit at NLO is marked by the vertical dotted line. The bands

at NLO reflect the uncertainty from using different partial wave

analyses in the determination of the LECs ci as explained in the

text. Experimental data are from Refs. [45–47].

LEC d16 is of great interest as it governs the quark mass

dependence of the axial charge of the nucleon. If fact, the

lack of knowledge of the precise value of d16 is one of the

main sources of theoretical uncertainty in chiral extrapola-

tions of nuclear observables [38–44]. Notice further that a

good theoretical understanding of this process is expected

to provide useful constraints for multi-channel PWA of γ-
and π-induced reactions off the nucleon, which is the main

task of the project A.2.

In our exploratory study, we have restricted ourselves

to calculating the leading (LO), i.e. Q, and subleading-

order (NLO), i.e. Q2 contributions to the scattering am-

plitude which emerge from tree-level diagrams. We have

used both the HB and Cov formulations of baryon chi-

ral EFT with and without explicit Δ degrees of freedom.

Using the large-Nc value for the πNΔ coupling constant,

the results at LO come as parameter free predictions. At

NLO, several LECs have to be determined. For the LECs

ci from L(2)
πN , we have adopted the values extracted from

two different PWA of elastic πN scattering. Thus, our Δ-

less results at NLO are parameter free, too. In the HB

W
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Figure 8. NLO predictions for the angular correlation functions

in the π−p → π+π−n channel at fixed values of θ2 and θ1 = 91◦

(upper panel), θ1 = 76◦ (middle panel) and θ1 = 71◦ (lower

panel) for
√

s = 1301 MeV in the Δ-full (red lines) and Δ-less

(cyan lines) covariant chiral EFT approaches. The bands at NLO

reflect the uncertainty from using different partial wave analy-

ses in the determination of the LECs ci as explained in the text.

Experimental data are from Ref. [48].

Δ-full approach, one is left with three unknown LECs,

namely b4, b5 from L(2)

πNΔ and g1 from L(1)

πΔ
. In the co-

variant framework, one, in addition, encounters the contri-

butions from the LECs b3 and b6. These LECs have been

determined from the available total cross section data in

the reactions π−p → π0π0n, π−p → π+π−n, π+p → π+π+n,

π+p → π+π0 p and π−p → π0π−p, see Fig. 7 for represen-

tative examples. The extracted values of g1 are found to

be consistent with its large-Nc value of g1 = 2.27. We also

found strong anticorrelations between the LECs b4 and b5

as well as b3 and b6, which prevented a reliable determi-

nation of the linear combinations.

With all LECs being determined as described above,

we have looked at various differential observables. As a

representative example, we show in Fig. 8 our predictions

for the angular correlation function W, see Ref. [33] for a

precise definition. Here θ1,2 denote the angles between the

momentum of the incoming and the two outgoing pions,

while φ2 is the azimuthal angle of one of the outgoing pi-
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Figure 9. Diagrams a)-c): The two-point function at the two-

loop order. Solid and dashed lines refer to the heavy and light

particles Ψ and π, respectively. The vertices in graphs b) and

c) denote one-loop- and two-loop-order counterterms. Diagrams

d)-f): one-loop graphs contributing to Ψπ scattering.

ons1, see Ref. [33] for more details. Generally, the explicit

treatment of the delta isobar is found to result in a better

description of the data, most notably of the π−p → π0π0n
and π−p → π+π−n total cross sections at higher energies

and most of the differential cross sections. Still, certain

single- and double-differential cross sections could not be

properly described at this order in the chiral expansion.

This calls for extending these calculations to next-higher

order. Work along this line is in progress.

5 New directions in chiral perturbation
theory

5.1 Complex-mass renormalization scheme at the
two-loop level

ChPT can be straightforwardly extended to include meson

and baryon resonances as dynamical degrees of freedom

for soft processes, i.e. for reactions with external pion mo-

menta and three-momenta of the nucleons of the order of

Mπ, see e.g. the already discussed applications of Δ-full

formulations of ChPT. On the other hand, formulating a

consistent EFT at higher energy to study e.g. the proper-

ties of (axial-) vector mesons is a challenging task, see

[1, 49, 50] and references therein for the first steps along

this line using the complex-mass renormalization scheme

[31]. It is, however, not a priori clear that this scheme is

applicable beyond the one-loop level, i.e. that the renor-

malized expressions fulfill the power counting.

To clarify this issue, we have studied in Ref. [51] the

two-point function of a heavy scalar Ψ-meson, which can

decay into three light scalar fields π, at the two-loop level,

see diagrams (a-c) in Fig. 9. The restriction to a simple

model has allowed us to avoid complications due to the

spin and chiral structure of the EFT which are not rele-

vant for the discussion of the applicability of the complex-

mass scheme. By explicitly calculating the diagrams a)-

c) in Fig. 9, with the one-loop counterterm being deter-

mined from πΨ scattering graphs d)-f), and by employ-

ing the complex-mass scheme, we were able to explicitly

1The coordinate frame is defined by choosing the z-axis in the direc-

tion of the incoming pion and letting one of the outgoing pions to lie in

the xz-plane.
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Figure 10. The renormalized LECs ci in the generalized EOMS

scheme as functions of the sliding scale μ.

show the absence of power-counting-breaking terms in the

final renormalized expressions for the self-energy. Our

work opens the way for a systematic analysis of e.g. the

ω-meson in chiral EFT.

5.2 Baryon chiral perturbation theory beyond the
low-energy region

In Ref. [52], we have formulated a new approach to baryon

ChPT which is applicable beyond the low-energy region at

small scattering angles and applied it to the reaction πN →
πN. Specifically, instead of considering the kinematical

region of t = O(Q2) and ν ≡ (s − u)/(4mN) = O(Q) with

s, t and u being the Mandelstam variables as it is usually

the case in ChPT, we have demonstrated that the amplitude

can be systematically calculated in the region of t = O(Q2)

and ν2 − μ2 = O(Q) even for ν = O(1). In this kinematical

region, despite the higher energies, the quark structure of

hadrons is still not resolved.

To achieve this goal, we have re-arranged the effec-

tive chiral Lagrangian according to a new power counting

and exploited the freedom in the choice of renormalization

conditions for loop diagrams. The re-arranged effective

Lagrangian at any given order in the new counting con-

tains a finite number of terms but involves some vertices

of higher orders in the standard counting. Provided all the

relevant resonances are treated as explicit degrees of free-

dom, the re-arranged effective Lagrangian generates a con-

vergent Taylor series of the analytic part of the amplitude.

Notice that the LECs of the re-arranged Lagrangian differ

from the original ones by (known) μ-dependent shifts.

To ensure that loop diagrams obey the new power

counting, we have employed a generalization of the EOMS

scheme by shifting the renormalization point into the phys-

ical region above the threshold. More precisely, the loop

integrals are subtracted at the nucleon momentum p2 =

m2
N + 2mNμ. Since this procedure results in subtracting

also the imaginary parts of the integrals, the renormalized

LECs become complex in our scheme for μ > 0 as visual-

ized in Fig. 10.
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Figure 11. Electromagnetic form factors of the deuteron at LO

in the renormalizable chiral EFT approach of Ref. [54] as a func-

tion of the momentum transfer q in comparison with experimen-

tal data from Refs. [60, 61]. Solid and long-dashed violet lines

(short- and medium-dashed pink lines) show the predictions in

the chiral (pionless) EFT with and without using phenomenolog-

ical form factors of the nucleon, respectively.

As an application, we have used the resulting frame-

work to analyze πN scattering at low energy.2 With the

relevant LECs being fitted to the πN PWA, all phase shifts

in the threshold region were shown to be well described

within the new formulation, with the results being simi-

lar to those discussed in section 4. Our new approach is

not limited to elastic πN scattering and is also applicable

to pion photo- and electro-production reactions, Compton

scattering and processes involving several pions.

6 Applications in the two-nucleon sector

6.1 Deuteron electromagnetic form factors in a
renormalizable formulation of chiral EFT

In Ref. [53], we have analyzed the electromagnetic form

factors GC , GM and GQ of the deuteron at LO within

a renormalizable formulation of chiral nuclear EFT pro-

posed in Ref. [54], see Refs. [55–58] and references

therein for related earlier studies. This approach is based

on a manifestly Lorentz invariant form of the effective

Lagrangian without performing a non-relativistic expan-

sion for the nucleon propagators. The NN amplitude can

then be calculated by solving the corresponding three-

dimensional integral equation which satisfies relativistic

elastic unitarity [59]. The resulting scattering amplitude

at LO in chiral EFT is renormalizable, which allows one

to obtain regulator-independent results for observables.

At LO, the form factors of the deuteron only receive

contributions from single-nucleon currents, and the re-

sults do not involve any free parameters. In Fig. 11, we

show by the violet long-dashed lines the resulting LO

parameter-free cutoff-independent predictions for GC , GM

and GQ. Notice that the deviations from the experimen-

tal at momentum transfers of q ∼ 200 MeV and higher

can be largely traced back to the well-known slow conver-

gence of the chiral expansion for the nucleon form factors

[62, 63]. Indeed, replacing the LO single-nucleon current

2To go beyond the threshold region, one would have to explicitly take

into account the relevant contributions of the nucleon resonances. This

task is postponed for future work.

by the dispersion-theoretical form factor parametrization

of Ref. [64] as shown by the solid lines in Fig. 11, a very

good description of the data is observed even at rather high

values of q. The resulting predictions for the deuteron

magnetic and quadrupole moments, μLO = 0.826(e/(2m))

and QLO = 0.271 fm are in a good agreement with the ex-

perimental values of μexp = 0.85741(e/(2m)) and Qexp =

0.2859 fm.

The renormalizable approach also provides a clear evi-

dence of the importance of the one-pion exchange NN po-

tential by comparing the LO results in π-less and π-full

versions of the EFT as visualized in Fig. 11. Notice that

the quadrupole form factor of the deuteron vanishes at LO

in the π-less approach.

6.2 1S0 NN scattering in the modified Weinberg
approach

While the LO calculations in the novel renormalizable ap-

proach to NN scattering of Ref. [54] look promising, the

inclusion of higher-order corrections requires much more

extensive calculations than in the standard, non-relativistic

framework. In Ref. [65], we made a first step along this

line by analyzing the subleading contact interaction in the
1S0 partial wave. Given that the singular tensor part of the

one-pion exchange potential does not contribute in spin-

singlet channels, it is possible to include the NLO contact

interaction both perturbatively and without relying on per-

turbation theory. In the latter case, the scattering ampli-

tude shows a residual dependence on the subtraction point

μ. We have argued that the unnaturally large value of the

scattering length in the 1S0 channel requires the subtrac-

tion scale μ corresponding to the LO contact interaction to

be chosen of the order of the hard scale in the problem.

We have also addressed perturbativeness of the sublead-

ing contact interaction within our scheme and found it to

be advantageous to treat it nonperturbatively at energies

above Elab ∼ 50 MeV. Finally, we have demonstrated that

the predictions for the low-energy theorems for the coef-

ficients in the effective range expansion are strongly im-

proved when going from LO to NLO.

6.3 New fixed points of the renormalization group
for nonrelativistic two-body systems

The renormalization group (RG) is known to be a power-

ful tool to study the scale dependence of systems in various

areas of physics. For a system of two nonrelativistic parti-

cles interacting via short-range forces, the nontrivial fixed

point describing a system in the “unitary limit” and ana-

lyzed in Ref. [66] has attracted much interest in the context

of NN scattering in the 1S0 and 3S1 channels. While the

existence of other nontrivial fixed points of the RG equa-

tion for two-body scattering has been suggested in the lit-

erature, no explicit results were known. In Ref. [67], we

have presented a general method for constructing an infi-

nite number of possible fixed points by utilizing a separa-

ble ansatz for the potentials that arise in EFT description
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of such systems. Our results indicate a much richer struc-

ture than previously recognized in the RG flows of simple

short-range potentials.
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