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Specific subgroup chain adaptations of representations and corresponding 
CG-matrices are discussed. Simple applicable analytic formulas are derived 
which allow one to express supergroup CG-matrices in terms of subgroup 
CG-matrices. The results are applied to space groups. 

CHAIN ADAPTED IRREPS: Let G be a group and ~ a subgroup of G. We denote G- 
irreps by G ~ = {G'~(g) : g E G} where 7 E A(G) (= index set of G-irrep labels) and 
l~-irreps by H*' = {H~(h) : h E ~}  where /z E A(~)  (= index set of ~-irrep labels) 
respectively. An arbitrary ~-irrep G "~ subduced onto ? ' / in  general becomes reducible but 
does not automatically decompose into a direct sum of ~-irreps H~';/~ E A(~).  Thus in 
general we have 

Z tG (h)Z = H"(h) (1) 

with some non-trivial unitary matrix Z ~. The symbol m(Tl# ) denotes the frequency o f H  ~' 
ill G~. By definition every 6-irrep G" is called ~ ~ Tt-chain adapted if the unitary matrix 
Z~ commutes with every G'Y(h); h E 7-/. Note that this property is not automatically 
satisfied for arbitrary ~-irreps. It is commonly accepted that,  when talking about chain 
adapted ~-irreps, it is implicitly assumed that every ~-irrep is chain adapted with respect 
to the same subgroup 7-/. Thus to chain adapt inequivalent ~-irreps with respect to 
difyerent subgroups of ~ is possible but cannot be of practical utility as for instance the 
°rthogonaIity relations of subgroup-irreps are not usable. 

TWo conceptually different strategies are in use for constructing G ~ 7-/-adapted G-irreps. 
]~or the first case one starts from given 6-irreps and 7~-irreps and tries to compute suitable 
Z'matrices satisfying (1). This can be achieved by various methods, for instance the so- 
called projection method 1)~)3) or by the so-called eigen]unction method 4). However both 
raethods are inappropriate for yielding systematic results since in both approaches the 
multiplicity problem is resolved by Schmidt's procedure. Only the so-called auziliary group 
approach 5)6)7)s) allows one to solve the problem more systematically. 

~krt alternative way to construct G I ?-/-adapted 9-irreps is based on the "induction method" 
Where G-irreps are determined out of given 7"~-irreps. However to achieve this in a system- 
atic manner one has to assume in addition that T / =  N" is a normal subgroup of ~, since 
Otherwise there does not exist, at least to our knowledge, a systematic procedure to gain 
chain adapted irreps. If A/" < ~ holds then a well-known method 9}2)3), is straightforwardly 
applicable to achieve ~-irreps that  are automatically G .[ A/'-chain adapted. The induction 
method is in many cases much more appropriate than the first method as the computa- 
tional work is much smaller compared to the first one. Moreover the latter method is 
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in many respects more systematic as for instance the ambiguities caused by Sch_m.idt's 
procedure are avoided. 

SPECIAL CHAIN ADAPTATION:  To demonstra te  the induction procedure we discuss 
the following simple situation 1°). Let ~ be the supergroup and Af a normal  subgroup 
of index two. To simplify the discussion we assume in addition that  G is a semi-direct 
product group. 

= {e, g o } ( × ~ ;  go2 = e (2)  

This however does not present the most general si tuation where go~ = no E A/', no ~ e; i.e. 
where one cannot find coset representives which form a subgroup of ~. Even though (2) 
is very special it occurs very often for space groups in which we are primarily interested. 

To construct ~ ~ Af-chain adapted  ~-irreps we assume that  a complete set of Af-irreps 
N = {N ~' : u G A(A/*)} is determined. Starting from a n(u)-dimensional .V'-irrep N ~ = 
{Afv(n) : n E Af} where A(Af) denotes the set of Af-irrep labels one obtains induced 
G-representations by means of 

DvTG(n) = N~(n) ~ N~(go(n)); I 0  E ~ ) 
D ~ ' T C ( g ° ) =  E ~ o (3) 

The unit matrices are denoted by E ~ and go(n) = gongo G A f. Next one has to determine 
the corresponding little group G(v) = {g e GlN~'(gng - t  ) ~- NV(n); n C .h/'}. As go defines 
an outer au tomorphism mapping Af onto Af it thus induces a mapping  of A(Af) onto 
A(Af), i.e. go(v) = Vo E A(Af). Accordingly we have to distinguish two different cases. 

TYPE h ~o = ~ <=:=> G(v) = 9 (4) 

TYPE II: vo # v ¢==> g(v) = A f (5) 

I f  (4) holds then there must exist a unitary n(v)-dimensional mat r ix  Z~(go) satisfying 
NV(go(n)) = ZV(go)Nt'(n)Z~'(go) where ZV(go)Z~(go) = E v. Note tha t  Z~(go) is unique 
up to an arbi t rary  phase factor. Following along the lines of the general induction proce- 
dure, corresponding G ]~ .hi-chain adapted G-irreps are defined by 

G ( ~ ' ) t G ( g t  : ( - 1 ) ' z ~ ( g o ) N ~ ( . ) ;  s : 0 ,1;  g : gon (6) 

If  (5) holds then (3) akeady  defines G ~ A/'-chain adapted  G-irreps. By definition G-irreps 
are called standardized G ~ Af-chain adapted if 

Ga, b (go) a,b+xE ; a,b = 0,1 (7) 

holds where g(0) = u and u(1) = uo respectively. Still there is one point worth mentioning" 
Let us assume tha t  the Af-irreps have been fixed from the outset.  Then if u is of type If  
one has to be aware that  in general N~(go(n)) and NVo(n) are only equivalent Af-irrepS. 
This implies tha t  N~(go(n))  = V~N~o(n)Y ~t with some n0n-trivial V~. Thus in order 
to relate (6) with (3) one needs the similarity matr ix  V vr6 = E L' @ V L'. This suggests 
the redefinition of type H A/'-irreps by setting V ~ = E ~. Moreover to arrive at a complete 
set of G ~ X-cha in  adapted  G-irreps and to avoid redundancies one has to determine the 
representation domain AA(Af) .  This subset of A(Af) consists of all type I Af-irrep labels 
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t, and of one element of each type H orbit {l/, to} respectively. Finally to have a more 
concise notation we set (r,, s) T G = t,s and I/ T ~ = ,t, for type I and type II induced 
G-irrep labels respectively. 

SUBGROUP PROPERTIES OF STANDARD SPACE GROUP IRREPS: It is well known 
that any irrep of a given space group 9 containing a translation group T as normal 
subgroup must be equivalent to 9 ~ T-chain adapted G-irreps 2)1U. The latter are called 
standard and are of the form 

G~,s[(Rtv(R) + t) l  = Ak(R, + t)(_Stv(_S))l (8) 

Where a partly matrix notation is used. In detail, standard G-irrep labels are abbreviated 
by K = (k, A) 1" ~ where k e ABZ(G) (= "representation domain" of the Brillouin zone 
BZ(~)) and A E A(k) is a P(k)-irrep label. Moreover I t  g is a small irrep of the little 

RK[(RIv(R) + t)] = e-'k'tDA(R); (Rlv(R) + t) e ~(k) (a) 

Observe that DX(R); R E P(k)  are projective irreps of ~O(k) where ~'(k) ~- G(k)/T. Their 
factor systems are determined by FK(R, $) -- e z p { - i k ,  t(R, $)}; R, S E P(k)  where 
t(R, S) = v(R) + Rv(S) - v(R$)  e T. If G is symmorphic then the factor system reduces 
to unity but turns out to be non-trivial for non-symmorphic space groups. Finally the 
generalized ~-function Ak(_R, RS) = ~n~'(k),nS~'(k) determines the generalized permuta- 
tional structure of standard G-irreps, where the coset representatives R ,S  E ~(k)  which 
decompose p _~ G/T with respect to :P(k) are fixed by conventions. As has been dis- 
cussed in many places L~)13)14) standard 9-irreps are uniquely determined if and only if (i) 
the representation domain ABZ(G), (ii) the little co-group irreps D ~, and (iii) the set 
~(k) of coset representatives are JC~ed simultaneously by imposing further conventions as 
none of the three entities is unique. Recently various proposals 12)14)ls)la) have been made 
how for choosing the representation domains ABZ(G) to unify them. Clearly ~(k)-irreps 
are not unique if their dimensions are greater than one. In some approaches standardized 
Miller-Love-matrices 13)14) are used but in other approaches chain adapted P(k)-irreps are 
constructed via the so-called eigenfunction method 4). 

This raises immediately the question whether standard 9-irreps are chain adapted with 
respect to ~(k). Clearly this cannot be the case in general. Only if :P(k) is a nor- 
mal subgroup of P then G g decomposes into a direct sum of small irreps. Thus chain 
daptation of :P(k)-irreps does not lead in general to G ~ G(k)-chain adapted G-irreps. 

argue that this specific type of ~-irreps 4) is especially suited for describing so-called 
C°rrtpatibility relations 17) is incorrect. This is because compatibility relations for ~-irreps 
SUbducing G(k)-irreps differ essentially from the corresponding compatibility relations for 
P(k)-irreps due to their reciprocity is). Since ~-irreps subducing G(k)-irreps may become 
reducible if and only if ~(k') D ~(k) holds. Whereas P(k)-irreps may become reducible if 
P(k') C P(k)  is valid. 

ALTERNATIVE SPACE GROUP IRREPS: By virtue of our definitions alternative space 
~.:up irrepslZ) are specific chain adapted space group irreps. Their properties and ap- 
P cations to physical applications have been discussed in [12]. It is worth repeating that 
analytic formulas are derived for the corresponding Z u- and V~-matrices respectively. 
3?his allows one to carry out successively chain adaptations for composite chains like 
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Fm3m(2a) ~ Pm3m(a) ,~ Im3m(a) or P23(a) <~ P432(a) ,~ Pm3m(a) .~ Im3m(a). These 
composite subgroup chains refer to different Bravais lattices and except for the first chain 
to different point groups as well. This is of course a much wider class of chain adapta- 
tions in comparison to Chen's approach. Note that  the subgroup chains are not restricted 
to symmorhic space groups exclusively. For instance Pm3n(a) .~ Irn3m(a) combines a 
symmorphic with a non-symmorphic space group. 

To gain more insight into the present procedure when applied to chain adapted space 
group irreps we sketch one example 19)~°). The present example deals with "translation- 
sgteiche" space groups. Examples concerning "klassengleiehe" space groups have already 
been presented 12). We consider G = Pm3m(a) and A/" = P432(a) and choose the fol- 
lowing coset decomposition Pm3m(a) = {(EIO), (or zIO)}(×P432(a). Note that  the cor- 
responding point groups are P(A/') = O and P(G) = Oh respectively. Starting from the 
standardA/'-irrep label set A(A[) = {(kN,AN) : kN E ABZ(A/'); AN E A(kN)} one readily 
proves that the representation domain AA(A/', G) involves the set ABZ(A/', 6) = ABZ(6).  
Thus chain adaptat ion leads not surprisingly to the reduction of ABZ(Af) to ABZ(6) .  
In order to distinguish standard G-irrep labels from standard A/'-irrep labels we provide 
them with subscripts (ko,  Aa) and (kN,AN) respectively. To give an example later 
showing the multiplicity splitting we recall from [20] that (AN,2N) and (AN,3N) axe 
of type 11 satisfying go((iN,2N)) = (AN,3N) where go = (crz]O). One readily proves 
(AN,2N) T G = (AN,3N) i" G = (AG,3G). 

INDUCED CHAIN ADAPTED CG-MATRICES: The objective of this part is to sketch 
how the induction procedure for G-irreps can be extended to construct induced CG- 
matrices. For the sake of simplicity we assume that (2) holds. Moreover we assume 
that A/'-CG-matrices for Kronecker products (KPs) of A/'-irreps are known. The goal is 
to express CG-matrices decomposing KPs of 9 J, Af-chain adapted 6-irreps in terms of 
Af-CG-matrices. For convenience we treat the general case without referring to particular 
groups. N'-CG-blocks denoted by C~; have to satisfy 

= ~ ' ~'~ tnj (10) 

They are rectangular submatrices of the corresponding CG-matrix C~ ~' . The Af-KP 

N ~ ® N ~' is abbreviated by N "'~'. The multiplicity index varies from 1 to re(u; utluu) • 
Since two types of G .L A[-chain adapted 6-irreps exist we have to distinguish between 
three different forms of possible G-KPs. The KPs may be composed of type I-irreps, or 
of type II-irreps exclusively or of combinations of both. In every case type I- and/or type 
H-irreps may occur in the corresponding decompositions. 

Type I @ Type I - KP: One readily derives for the G-multiplicities 

-~(vs;~ 's '}~"¢')  = ~.+., .,,m(.; ~,'lv") (11) 
m(.s;u's ' l  * v") = m(v; v'lv") = m(~; ~'1~o") (12) 

cGV.;V'.' Iv".",~ = ~.+., ,,- CNV;V' Iv",~ (13) 

v.;v'.'l.v",~ f..v;v'lW.~ ' ' ] (x4) ca = L'~N ,(-I) "÷' ZVV (go) %v;v'lw'~vv''-~N 

The corresponding 6-CG-blocks are obtained by applying Schur's Lemma where the rang e 
of variation of the multiplicity indez w is due to (11) and (12) respectively. 
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Type I ® Type Lr - K P :  In every such case one arrives at 

m(.,,; * ~"1~'"*") = m(.,; .,'1.'") = ,-,*(,'; .,o'I.,") 
m(,,~; • ~"l * v") = ~(~,; '/1~'") + m("; vo'l,/') 

(15) 
(16) 

[ { 1;s+s"r,v;v'tv", w "l 
¢-~vs;*v'{v"s",w 1 i ~-- '!  ~ N  | 

t • ~ t t  i t  v v t v,v tv ,w v ~ °  = ~ [ [ z  ( a o ) ~ V  ] c  N z (ao)J 
CVS;.v' t~v" ,~ r f~vw, i#, ,w 

G,1 = L ~ N  0 

CVS',*v'l*v", w = [ ? 
a,2 C~V Iv'°,w 

o ] 
t t ~s ~ 

(_t),[zV(go) ® vv  l t c ~  ~ I~ ~ w  
t t t t  t 

(-1).[z~(go) ® w ] t c ~ °  x~ ~ w '  
O 

(17) 

Os) 

(lo) 

where the range of variation of w for the various ~-CG-blocks is due to the corresponding 
A/'-multiplicities occurring in (15) and (16) respectively. Hence in this method the mul- 
tiplicity problem for ~ is traced back to that for A/" which implies that we automatically 
gain in addition a natural separation of the multiplicity problem. 

Type I I  @ Type I I  - K P :  Finally in every such case one derives 

m(.~,; .  ~"l~'"~") - m(,,; ,,%") + m(~,;,.o%") 
-~(*~; * v'l * ~") = -~(~; ¢1¢') + m(~; ~o%") 

+ ~(,,o; v'iv") + ~(~,o;,,o'Iv") 

(20) 

(21) 

t t  # t t  1 1 (-1)" ~cN~ iv 

t ¢¢V~CcVt l V t ~  tll# t~a~ 

co,1 = ~  [vv®vv']tc~vt~"~z~"(go)J°  

I ° ] 
,*,~*~,'lv"," ,,, t ( - 1 )  C N 

t t I t  t t  
" ~ - ~  ~ t ~ v ; v o  I v  p w ~  v z 

0 
[ ~v;v Iv , 

c*V"*v'a,t I*v'' ,w = l ~N ! 

F O ,  

[° r, .v; .v' l,*v" ,~ 0 
" ~ G , 3  = f.-4 vo  ;v* I v  #~ , w  

""N 
O 

o 
o 

, 0 t 

[ w  ® v v ItChY t~" ~ v  v- 
O 
O 

[ w  ® vv . ' ]*c~ ' Iv"'~vv" 
0 

o 1 , t Vo.,,'lv" IV ~o ® v v ] C ~ '  ' ~ v  v'' 

0 
0 

(22) 

(23) 

(24) 

(25) 

(26) 
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L ~ " N  

,V-~,o'itou0,Uo lu' ,~V~' 
[ v ' °  ®- ~ ~ N  

0 
0 
0 

(2z) 

where the corresponding G-CG-blocks are automatically two- and fourfold split in accor- 
dance with the mutliplicity separation. Note that the range of w is due to the correspond- 
ing 2¢'-multiplicities occurring in (20) and (21) respectively. To summarize in all three 
cases one merely needs to know a subset of Af-CG-blocks and the corresponding similarity 
transformations Z ~' and V r respectively to arrive at G .~ .A/'-chain adapted G-CG-matrices. 
The merits of the present approach are obvious. Firstly the matrices Z v and V ~" are unique 
up to phase factors. Secondly we achieve automatically a separation of the multiplicity 
problem as it is traced back to that  of the subgroup A/'. Finally it can be easily applied 
to any composite chain because it is remarkably simple. Thirdly G-CG-blocks are ana- 
lytically expressable in terms of A/'-CG-blocks. The reader is referred to [21] where the 
symmetries of the ./V'-multiplicities with respect to the outer automorphism go E ~ have 
been derived. 

APPLICATION TO CHAIN ADAPTED SPACE GROUP CG-MATRICES: The applica- 
tion of the present approach to space group chains like Pm3m(a) ~Im3m(a) or P432(a) ,~ 
Pm3m(a) or Fm3m(a) ~ Pm3m(a) is straightforward. A series of illustrative examples 
concerning the above subgroup chains are extensively discussed in [19], [20]. 

To gain some insight into this procedure let us briefly sketch an example which is given 
earlier. To follow our approach we only have to consider the following A/'-KPs which are 
written in symbolical form. 

(AN,2N)@(AIN,3N)~(A_~,IN)(~(A~t2N)(~(qIN, 1N)(~(q~,IN) (28) 
(AN,2N)~go((AaN, 3N))~(A~,3N)(~(./k~,IN)~(qIN, 1N)(~(q~,IN) (29) 

General points of ABZ(A[) are denoted by qN. Note that  q~v E ABZ(Af) specifies to 
Co  E ABZ(~)  and q ~  E ABZ(Af) to J a  E ABZ(G) respectively. On the other hand 
the corresponding G-KP reads 

' 3 _ (Aa,3o) ® (AG, G) 4 

A" tA"  '~ ~ " 3 , ,  ,A,12 ~IA,, 3 

(*2){(CG, la) e (CG, ZS) * (Zs, 2s)} 
(s0) 

where four ~-irreps occur twice. Proceeding as usual one has to solve the multiplicity 
problem by some conventions. However by applying our approach one readily finds for 
(k~ ,  A~r) = (q~v, 1~¢) which is of type I that  (20) is realized. Both frequencies are one, i.e. 
m(v;v ' lu"  ) = m(V;Vo'lU" ) = 1, where u = (AN, 2N), V' = (A~v,3N) and v" = (q~v, 1N)" 
This leads automatically to a multiplicity separation for ((q~¢, 1N), s) T ~ since these two 
alternative ~-irrep labels coincide with (Ca ,  l a )  and (Co,  2a) respectively. 

GENERAL CHAIN ADAPTATIONS: Of course the present approach for constructing 
J. A[-chain adapted G-CG-matrices where A/" is of index two in ~ can be easily generalized' 

Let ~ be a supergroup and .b e a normal subgroup whose index with respect to ~ is/L, fite. 
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Then one can derive similar expressions for G-CG-blocks in terms of Af-CG-blocks. The 
latter approach allows one to express directly Pm3m-CG-blocks in terms of P23-CG- 
blocks without the intermediate step of determining the P423-CG-blocks as required by 
our original approach. 

In summary our philosophy is to start from a fixed set of standardized space group CG- 
matrices in canonical form 2~)~3)24) and to provide a software package running on IBM PCs 
to compute not only standardized CG-matrices and displaying them in canonical form but 
also to carry out any chain adaptation by pressing just a few keys at the keyboard. The ver- 
satility of our approach is that every chain adaptat ion can be carried out straightforwardly 
as analytic formulas have been derived that correlate the various subgroup CG-matrices 
with the corresponding supergroup CG-matrices. 
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