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Preface to the CCAST-Worid Laboratory Series

The China Center of Advanced Science and Technology V(CCA'ST)
was established in Beijing on October 17, 1988 to introduce
important frontier areas of science to China, to foster their growth
by providing a suitable environment, and to promote free exchange of
scientific information between China and other nations.

‘An important component of CCAST's activities s the

organization of domestic and international” symposium/workshops.

Each academic year we hold about 15 domestic syraposium/work-

shops which last an average of one month each. The subjects are

carefully chosen to cover advanced areas that are cof particular

interest o Chinese scientists. About 20-G0 participants; from
senior scientists' to graduate students, are. selected on a nationwide
basis for each program, During each workshop, these scientists
hold daily seminars and work closely with each other.

Since 1990, CCAST has also sponsored a vigorous program for
'young Chinese scientists who have already made werld-class
contributions and are currently dcing. research abroad. -They return
to China to lecture at CCAST and to collaborate with their
colleagues at home. In this way, they can bring to China their own
expertise, and when they go back to their institutions abroad ‘they
~will be able to circulate in turn the knowledge they have acquarpd in
China. :

China is at a pivotal pomt in her SLIGHIIfIC developmpnt She
. is gradually emerging as an important and dynamic force in shmmg
the advanced science and technology of the future. This series is
part of this remarkable evolution. It records the effort, dedication,
and sharing of knowledge by the Chinese scientists, at home and
abroad. . : : '

T.D. Lee

*The CCAST‘ inte-rnafional'symposium/workshopv series is pubiished =~

" separately by Gordon and Breach Scientific Publishers
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O sark D~,g:1" eg of Freedom in Nuclear Physics”

Wei-hsing Ma®, En-guang Fhao’, Han-xin WL\ and f‘em»-man Shen”

wenter of Theoretical FPhysics, CC )AJT( World Labox a.t,ory _),
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' . o o Absiract

The roles of guark degress of freedorm in nnclear physics are stndied in this paper. Our

iy on npelear force, electromagnstic p roperties of nucleon

- particular intevests focus prias

in quatk model, rmaltiguark clustess in nuclel, and six guark mechanisin of plon-rug Nens

double charge exchangs. The present sindy shows that al-l*onrv,h L i 11'5.11.(1:1@.
explicit experimental evidenca- sc 61 to prove tha presence of quark deg cclom
in nuclizi, it seems to be clear that the quark degreds of ‘[reedmu may be responsible foc

theoretically resolving many leng-standing puzsle problems in nuclear physics, such ag

the similarity of experimental charge formn faciors of “H and TH =, the observed cenfral
"hole” of 3He charge density, and the frst minimum location of the experimental angular

‘distribution of 164 MeV double charge exchange reaction 0O{zt, x° )1 B

all in strong conflict with conventional hadronic theory with meson currents,

*This work was partly Supported by \'\Lwna,l Natural Science Foundm fon 01' Clhina..

Negs)) which are




. quarks and gluons, and an mvesmgauon both theo
exphat qua,rk degrees of Ireedom in nuc.lcx.

1 Introduction

The traditional picture of the nuciens in low energy nuclear physics is that of an interaciing

" ‘many-body system of structureless, pointlike protons and neutrons. By low energy nuclear

physies we understand the region of e‘cutatlon energies JE smaller than the Fermi energy

(er & 30 — 40MeV) and momenturir uansfer §q < 1/R, where R is the nuclear mdup,

The situation changes as 6F and/or (Sq is increased by several hundreds of MeV up to a few -
GeV, the domain of intermediate energies physics. At this point, e.\.phcu mesonic degrees of

{reedom become directly visible. The Pion, in particular, is of fundamental. importmu/e With

its sma.ll mass of m,=140 MeV, it is by far the lightest of all mesons. As mesons become

nnportant. nudenns bogm to reveul their intrinsic structure. Insepamhy connected with

_ pionic degrecs of [rpedom is the role of the A(1232), the spm a/ I~isospin 3/2 isebar reached

from the nucieon by a strong spin-isospin transmtmn at an e*{cxmtmn energy 0B=Ma— My=

. 300 MeV the - xmcleon -mass difference,

At the same time as these dt-wlopments prmec-ded hlgh energy physics provided strong

9V1dence for the quark’ structure of ‘ualmns‘) n partu'ular. since the discover of the J/¥

- particle we ha.ve becomﬂ ﬂ\oroughlv t'mwmced ef the qu»rk su‘mture of hadron. As a conse-
quence, t}w;e ig-an ebvious newmty to mvesugate the phtnnmenulcgy of nmlaar constituents

;a,nd [mceq ﬁ'om i more *111dnmf-nt41 pomt of v1ew The rrlevunt issues zue masses, size and

other static properties of ba.ryom and mesuns meqon baryon couplmg consiants which rela,ted

‘ tu the descnptmn of the long- .:md mtermedlate dlstance propertms of the nucleon-nucleon

mtemctlon, a-description o[ nuv?eun—nuc]eon a.nd nucleon -antinucleon interactions at short

: _ _dmtauce, where the qua.tk t‘OI‘ES of the nurlebm overlap, directly in terms of interacting

etlcally and experlmmfally, of possible

Altogether, this is a ch&llengmg pmgram, a.nd thele is little doubt that activities in this
direction will represent a substantial branch of intermediate energy nuclear physlvs research

n C('l’ﬂlllg }'E&IS.

In this paper, we study quark degrees of freedom in mlclear phenomena. We suggest a
hybrid qualk hadron model to describe NN interaction in séction 2. In section 3, we firstly
derive quark- quark interaction from the idea of uontopologual soliton theorv and then we

‘ ‘calcula.te static properties of proton and SpE"‘JlOS(‘OpY of baryon by use of the quark-quatk
) mtemctmn. In section 4, we preaem sonw stroug ugnals for the existence of 11m1t1quark

dusters in nucle! As a paruuuudy ﬂv'dent exa.mple we dxscuss the abserved centrai * hole




of *He charge density in this section in a hiybrid quark Ladron model. We point out in section
5 that the quark degrees of freedom are responsible for the mintmuam location of experimental
engular distribution of 164 MeV double charge exchiange (DCX) reaction. We claim that the

164 MeV DCX reaction may be a goud stage for dibarvon, a six-guark cluster, t6 manifest

{. Finally, we reserve our concluding vemarks stemed from the present study for section

2 NN interaction in hybrid quark hadron model

PBecause of its importance to nuclear physice, the NN interaction gives rise to a large.
amount of models, Some of them ae purely phenomenclogical, designed 1o fit the rich body
of existing experimental data. Asis known, some undersiandings of the NN interaction have
been gained during the last ten vears and, in opinion of many, including us, consideration of
parely phenomenological potentials without inclusion of well-established theoretical elements
is no longer justified. On the osher hand, there is now a consensus that a reasonable chwzeflra]
approach to the problein of nuclear force can be based on the breaking of the interaction into .

two parts:

. . . . L i . ) A .
{1 'I‘iwiong range and mf*dium range pari where hadrenic (mnesons and isobars) degrees

of r'uedam pruvlue a very good approximation. In this part, consideration of querk degress

o

of { eﬁum is nneconomical and Unnecessary.

{ii) ""‘he short range part where subhadronic {quazks, gluons) degrees of freedom are
em)mted to play a signific ant role. The preblem, however, is to find reliable methods to

handle thoae degrees of freedom.

Tn fact‘ at present, the patenfirﬁ models that are the most frequently voed in the ﬁteia—
tures are the Bonn?, Panis®), Super-solt core?), Reid-soft core®, Argonne V) and new Boun-
: pmentnal 7, Thev are all derived from hadronic degrees of freedom. For expamle" in the Pazis

utemml 1, e long— cmd mcdmmmanqe parts{r > (.8{m) ave given by the {7 + 27 + w) meson
: mchfmge while the short - range part 1t < 0.8fm ) is described snmp]v by a phenomenolog-

ical wﬁ care cnnstreuned by expemmnt'tl data. Thevefore, we do need to undersiand this -
shox’t—mnge part of N"\I mtemctmn theoretically. On the other hand, although these potential
: modeh havo pas»ed many berlouq exp«erlmental tesis with success there exist many difficulties

' m underqtandma oi data, such &s, the tmt«m lnnlmg energy

' mven thc two - br)dy {orws the tnton bmdvm; enesgy can be calc ulatod e.\au‘tly The




results obtained with different potentials are shewn in table 1.

Table 1: The triton binding energy predicted by different two-body interactions.

-

Potential | Paris? | $5C | RSCY | V&) | 71259 | New Bonn” | Eixp.

E(*H) | 7.64 | 7.53 | 7.35 |7.67| 7.56 6.70 3.48
(Mev) ' ‘ 0 , |

Obviously, all these two-body pofentials underbind the triton by about 1 MV, T his is a

big discrepancy between theory and data, and has to be resclved.

The interaction between quarks is governed by QCD which has two basic properties:
asymptotic frecdom’&nd cé'nﬁnement. This means that at short distance, the quark-gluon
coupling constant becomes so small that the perturbative QCD is applicable. However, at
long distance the quarhs and gluons interact sc strongly that the perturbative calcwlations
“are no longer vahd Asa result, we propose a 113 brid interaction model of quark and hadron

to describe N’\' fuue. In the model, the quark and gluon exchange interaction is asseraed to
~ be dommzmt only in the vegion where fhe two nucleomc Clll'itf‘l‘% overlap, whils the hadronie
: degrens of hcedom are eﬁeatw at the mterm“dlate - and long - ranges. This model has the
good feature that it does not need any amblguous coupling of quarks to mesons. Thus, the
equwalent lecal poientw.l will be cut off sharply at a distance R, and replaced, outside R,
by the (m + 27 +w) ex¢ hange potential. The two - pion exchange potential cun be cale ulated
via dispersion relations in the same way as that in the Paris potential model. The proposed
model conld be materialized by the following potential

V(').) = /‘!Wﬂfk(")f(r)‘ " ‘;";rze;ait(?.)[:l - rf(',,)] ‘ ([)

L

Ladere una,k Is given by QCD theory, and i,,,,,,m,, = (7| + 27 4+ w) exe h'mve porential. The cnt

off function is chosen of the form ‘
. . .

10 = Ry

_ ’I‘he shazpness of f(r) is realized by choosing o = 10, R, is adjusted to fil the dﬂlt(‘FU“

bmdmg ennrgy which yields R =0.626 ‘m. The calculations of different phase shifts and

(2)

' -other physua.] qu&lltitlf.‘a in the hybrid modd are m progress
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3 Stabtic properties and spectroscopy of baryon in quark

model

Understanding the structure of ihe nucleon is one of the key issues in both paricle and
nuclear physics. For example, one needs the proton’s charge form factor { and even that
of the neutron ) to accurately calculate nuclear charge form factors. At the same time the
inclusion of nucleon siructure in theoretical calculations alters some traditional Comcepts in
nuclear physics. For instan ce, in mean - field approximation the nuclear saturation is a direct
effect of the nucleon motion becoming relativistic?. But, if considering quark structuze of
nacleon the whole sateration mechanism is altered'®. It is a consequence of the relativisiic

motion of the guarks, not the nucleons

The ‘bax-yons consist of quarks and gluons. The interaction between qu(arks. has "Lxefm
successfully described by a non- Abelian gauge theory called Quanturm Chwﬁmcizzjms,‘mi&;::
(QCD). At present considerable efforts are made to solve the QCD equations on large com-
_putérs, using Monte Carlo techniques. There is, however, still only limited direct lmipact of
such celeulations on the problem of low energy hadron dynamics and nucleas forces. Tt will
be iaecessary‘ to rely on phénOnz';enoimgical models which ipcorporate basic properties ex pected
from QCD. ‘ ' Lol

" The best known of these models is the MIT bag model'™, However, the original MYV bag
medel is not _easily‘ compatible with basic nuclear facts. I the bag radius R is adj usted to
obtain reasonable baryon niasses, one finds B > 1.0/ m! A bag of this size would he diffioil
m'mma‘noda,tc with tfim_‘ observation of well isolated nucleon quasiparticles in nuclei. Also,
the mass of the pion as a pair of confined quark and antiquark cones out much too I.arg;e ii
the standard bag model. This is 2 serious poinf for nuclear physics since the pion comapton
w&ve’helngthl /\»- = ;;f;; = L4 m defines the .na,‘tn‘.l;m}. length scale for nuclei. It is amusing to
in}m,gi'nez, for example, haw the deateron would look like if the pion mass were not 140 MeV,
bt & m‘uitiplelof 140 MeV. On the other hand, due to the sharn boundary Ath-e axial current
in MIT bag model is not conserved. This also is & serious point for its application in nuclear

vhysics.

Another commonly ased model is harmonie oscillation quazk bag nwdel”)_. The boundary
of this model is so ambiguous that it is usvally named a soft wall potential model'in contrast
with the hard wall potential of MIT bag medel. The radius of nixcleon predicted by this

mode] turns out to be also inadequately large.




In fact,.in spite of their successes, the static bag modals cannot be expected to yield
an adequate description of hadronic collisions, NN annihilation and many other dynarnical
phenomena since their noncovariant, non-Hamiltonian formulation. A description of hadron-
hadron interactions requires more than bag statics. As a particular example, consider the
N-N interaction. The static energy of six-quark bag kas been calculated as a function of a
shape, or N-N separation, and parameters. Qualitative understanding of the N-N potential
was obtained. However, in ofder to calculate scattering or bound- state guantities, it is
usually necessary to insert the ” potential” into a Schrodinger, Dirac, or Lippmann-3chwinger:
equation. This i‘equires a knowledge of the mass parameter which enters in the kinetic-

" energy term. Static bag models cannot yield the kinetic mass paratneter becaunse they are
not associated with a complete Hamiltonian. There exist un .expression for the energy, a
differential equation; and a boundary condition, but ne Hamiltonian. Thus, these difficuliies
spur, us to quest for alternative bag formulations wlich can be debcnbed by a complete

: Hamxltoman and are mamfestly covariant.

I‘riedbetg and Lee have pmposcd a model™ based on a‘cbxxlplete Lagrangian or Hamilto-
nian Iormulatmn of the problem, and which therefore admits dvn&nm al soluilons of structure
__and ecattermg problems le model contains only a few adjustable parameters, but is ex-

' tremely rlch in the vanetv of pmbmms ié can address.

We follow cloeely the idea of Fmedberg and Lee'® who have demonstrated that it is
possible: to obtain conﬁmng guark states from soliton solution of an effective Lagrangian
which contains quarks and a scalar o field. In the Fnedberg-Lee s non - tOpO;O{?)J.Ld,l soliton

_ model™, the QCD theory is approximated by an effective Lagrangian density
SR ENTPINEE PP o
Ly = BNin0” - go(r)(r) + 3tV ~U@) - (3)

where:izz'y,,é)"zb describes the quzu'l's as Dirac particles. The last two terms in Eq.(3) describe
the scalar soliton field o(r}; which represexts the- cumplex stracture of the vacuum, arising
irom vn'tual gluons and quark-pairs interacting among themselves. The non-tinearity of the

soliton field enters through the se]f-mtemgtmn U(o) of the o field

U(o) =B + azo (r) +a50 (7) + a0’ (1‘) | | (4)

o "\vhere'the polyno*mal temunates in fnurtl) order to ensure renmmahzabﬂny, even though we
are. dealmg with an effective Lavrangmn Ufe:=0) = Bi is to be identified with the "bag
'v"-‘:_mnstant” or volume energy densxty oI a csmty With a s Jultable adjustment of 1he constants,

., the functmn ha.q two mmuna,: ne at ¢ = 0 and a.nother, lower minimum, &t 0 = oo The




~physical vacunm cdrrespd'nds to the second minimuem, and the constant B is chosen so that
U(oo) = 0. The non-lincar features of U(o) permits soliton-like solutions for appropriate
choices of parameters. These solutions have the property that qnark density Y1) goes 1o zero

rapidly beyond some radins R which determines the hadron size.

The term --gg;’—)cr(r)vjf in Eq.(3) describes interaction of quarks with the soliton field where
¢ is coupling célistant be't.weén quark and soliton field. In the presence of valence quarks, the
Ul(e) +.gdalr)d mdy have a minimum near o(r) = 0 (the perturbative vacuum ). This leads
to a cavity in the o field, which is called the ” bé,g * The quark dig a lloie in the vacuum.
This is the origin of confinement in the model. In the model all observed hadrons appear as
solitons in the scalar o field with ¢uarks trapped inside them.

Although there is no direct relation to QCD in Eq.( 3),~ one might think of the o field as
deseribing the long-range, non- perturbative QCD effects. fn fact, by starting from QCD in
a finite volume and then taking the infinite-volume limit, Friedberg and Lee {ound that there
iz a’” phase-tta.nsiti*on” phenomenon, which implies the existence of a long-range order in
‘the vacuum for an infinite volume. This long-range order is represented by Lorents sc alars,
because of relativistic invariance, such Lorentz scalars can in turn -be identified with the

phenomenological scalar field used in a soliton bag model of hadrons.
‘The Hamiltonian density, 711 obtained from Eq.(3) can bc written

1, . o .
=37+ \VUU‘))"+U(0)+ \—mv + By (5)

with & and 8 being the usual Dirac matrixes. Consider now a classical o ﬁold for wlncnrb
the comugatc field & commutes with o itself. This means that the state of lowest cnnrgx has
o = 0, hence o is time - mdepcndent The total Ha.mitom«m is then glvr nbhy H = [ JH
-whlch can be decomposed into a sum of two terms: a quaslclasen al part d.]\d a quantum
correctlon, H Hya + Hgop.

Although a complete Lagr&nblm should 'LISO contain the vertor ng@,s held nnd counten-

' erms whlch are for renorma.llzatlon purpoees, at present stage of our 1e.~,earch we shall not.

Ll consnder tlns Lomphcated cabe. ‘We also 1cqtnct our.subsequent discusion to the: sector of

o ' ;H,,, : We sha.ll treat H,,,, as a Lorrectlon in our comlng papet.

’I‘he lowest elgenva.lue E of the quark-o field system desmbed by Hyy can be derived by'
' dlstnbutmg quarks to the same spmor state, but with dlﬂerem colors. Consequently, B is '
R the mnumum of E(o) where B

E(o*) -’.-_-Nﬁ}a 4 ]dsr [%(60)2%‘U(a)}.‘ K (8 | |




where o(r) is a c- number function of » and the E, is defined to be, the lowest positive

eigenvalue of the Dirac equation
(i@ + By = Eu. . (7)

From Eqs.(6-7), one sees that the minimum of E (=) nccurs when the o(r) field approximately
satisfies " ' ' ‘
d."'a(r_) d U(o) _

. . ' ’z'
&2r do 0. : (8)

Eq (8) provzdes a good approach to the sub_]ert in a sense that the quark density ¢ goes
to zero rapldly bevond some radius R which determsines the hadron size and the coupling
copstant g is nogbgﬂ:-ly small inside the hadron due to requirement of asymptotic freedomn',

Substituting Eq. {4) into Eq. (8) and then solving the resulhnu equatmn lead to a Wood\,-
Saxon-like P\prasswn of the o(+) field,
)
1+ expl-mq(r — R)]

C"(‘I‘) = (9) E

with m7! being the diffusive thickness of the boundary and R stands for the radius of the
bag. Lq (7) shows that the conhnm potential for quarks is now given by

V(r} = ga(r) _.‘ : +'e p[f::a(, 7 {10)

Consequcntly, the local quark mass V(r) = go(r) is small inside the hadron. At the bl]lid( @
of hadron the ¢ field cha.nges very aapldly towards its vacuum value op. The oﬁectlve quark
'mass Outmde the hadron is given by a value gay whlch can be choqen very large bV adjustment

8 of the t.ouphng constant of quark and o field.

The model de%nbes a sltt.anon where quarks are essentmlh {ree inside, with a relatlvelv
‘shzu P transmon region frum inside to outside the hadron

It shauld be emphased that in contrast with the work of R ‘Goldflam and L. Wilets') who
'».juumencally resolved the cuupled dxﬂ'erentml equauon satxshed l)y 'dJ and oin lowest order in
B ‘:7 and obtamed their numericul sulutlon o{ o, we obta.m the analysm exprassmn of o. Needless

to say, tlus 1s vcry easy to use in many cases

We e‘wand 1;1 inEq. (7 )in tetms o[ a complete set of orthonormal c- numbu tlme mdupundcm
' ".;spmor [unctmns u,,,(r) and v“(i")

'd(7 f/ Z{ac(i")e"ﬂ .t b + Va7 e‘E"" d" 1, ©(11)
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where o denotes the set of quantum 'num’bergﬂneéessar'y to spectiy the quurk states?'inc}uding

flavor. The color degrees of freedom is also assumed to be implicit in the ov. Here b annililates

a quark and Jf

creates an antiquark in the orbit a.'The u () and v,(F) are determined hy
A& T 4 BV (I g (el .
[—& -7 4+ BV ()= BV o ()

with V{r) = go(r) for massless quarks. The normalization of the Dirac spinors is

[ g (uatiy = / o (FealF) = 1. G

,..
(=]
~—

The quark wave lanction can be wriiten in the form

;.
S R S VR W
() = | 90T )”ﬂumm

(.L'v.q 3
- . , (&4
\ G- Ffarfr
with a‘),,,,qr) Lemg the spinor harmonics \
ro o _ N ,jm_ - T . ,;:.\
(Pnjm(i } = m}‘,; Cfrt);\%mi. }t’m!\/ } X.%ms . {135 )
RIS
and the normalization is [[°dr [oF, () + f2,()) = 1. The antiquark wave functions are
unpA?; Sali 1
obtained by charge conj ngutnm. '
./ - N P I3 .
o RN TR Feste fangdr )i [ n
Valjm (7,») =, - (‘___;_)) 1 ) - . \, *'/f‘fj—m-("') . (16}
o g:”l_{(.;».;/r
where 7, is an arbitrary phase with jn,]° =
The upper and lower components of Divac wave funciions g,(r) and Fol5) satisfy
d foir) ' G B
L) e v+ Balgalr) - ) = 0
dr r
d go(r) ’ : k , o
= a + [+ V(I) + Bl falr) ~ e (r)=0 ‘ (17}

where & = F(7 +1/2) for j = 1£1/2. Soiﬁng Bq.{17) numerically, we can obtain quaf}\

..eigenfunctions and eigenvalues in our Woods-Saxon-like confining potemxal mode—l of quarks.

‘ A calcuhtxon for massle-Ss non- strdrge quarko i pcrfurmed in thxs werl The theowuml
rf-su} is dl’ld Lompmmf* to other m odel predictions are shown in Fig. 1-3. The eigenvalues a,re
ngn m. Fig.1, where the energies for sy state in three different bag models havé besn
afhwted to be the same, Our caleulation mau&teg that the confinement of quarks in this
model is stronglv dependent on the strength of the confining potential, ¥, = gop. This means

tha.t qua.lkc are partially con’ipcd in the bag Iegmn for finite V. ’1 his feature of the seliton




mode] is not particularly troublesome. Furthermore, the limit of large V5 can be carriéd out
after the completion of the calculations, thus ensuring that no spurious results occur due to

discontinuities of the bag surface as is.the case in the MIT model.

The behaviors of the upper and lower components of quark wave function are shown in
Fig.2 in a comparisive way. Obviously, the two model predictions are quite similar. The
maximum of our eigenfunction could be moved towards Regensburg position by changing the
radius of our éonﬁning bag. This consistency can be thought of as being an evidence that
our Woods-S_axon-liké confining potential model of quarks has its great validity.

In Fig.3, we show the upper- and lower components u(r) = g(r)/r and v(r) = f(r)/r of
quark eigenfunctions, reépectively,_ for three different models. As is seen from the figure, at
short distance (r < (.8{m) there is no difference between MIT bag model and ours, whi,le» at |

. large distance '( r > 0.8fm) our model behaves like Regensburg harmonic bag model.

The calculated static properties of nucleon in our Wooeds-Saxon- like confining potetial
bag model are presented in the following:

{(1). Charge radii: the charge density is derived from: the time- like coropuonent of the

qllark|c111':ent Qv ‘
Pen(F) == 3 Qoud (Fua ()bl ba {(18)
[+

wheee the Q is quark chaige aid o denotes the occupied quark orbits { including flavor ).
For three valence c,uarks forming nurlwmc core, the root-mean-square charge radius is then

defined by

\ <r’>= | /‘rzdsf" < N!pc,u,(f")i_N' > . '_ (19)
‘ ch‘)r,‘u‘proton in the state of a ’ |

o <t somin [ @+ Ee. @)
, So; usmg the 15y state wave [unctions gy,, (r) and .flu (r)in Eq. (17), we gct the charge radius
: ‘Jbof proton in sy state, rp = 0. 87fm. ! '

(2) AXMJ charge 9,4 Cons1der nuw the quark aual current |
Ap("?) ¢(ﬂ7;¢'}'5"" ’(1.'.) : ’. ' o ) o (21) )

. We re,mterested in thc matrix elements of Dq (?1) takcn bvtwr‘en nucleon quark core states

o »llV >, m pa.rtxcuhu thoqo w1th 1-3 a.u(. the space par.. o[ A,‘. The axml chzuge g4 ﬁf fIUdFk

L ]0




core can be defined by

ga < Gy -7y >= | [ 87« NS, = U)]N > ’ (22)

\

v

where < Gn - v > refers to the matrix element taken with nucleon ( rather than o uvirk } spin -
P

and i 1suspm operators. In the absence of center -of- mass currmmun with three quarks in .ls

orbits , one obtains

— .‘? o 2 ',. 1‘ 2 ; — 5 é " 2 s vy
g4 =3 ~47r/0 dr [ () = 3, (=3 L= 5 '47% Frosyu(r)dr] - (23)

- Therefore, in the non-relativistic quark model with f{r) = 0, one obtains the result predicted
by the standard S8U(4) model: g4 = 2. This should be compared to the empirical value of
g4 = 1.255%0. 006. Ow: model gives g4 = 1.18 which is befter than the MIT model prediction
of gq4 = 1.09. :

(3)- Magnetic moments: the magnetic moment of nucleon is defined by
11

11,y + ‘ R
By =< J\T, :--;-[ ['d37'[1-">( ]3!1\/ ;—)‘ >v - (21)

“where the spin s (1/2) and its. z- pmJectwn $:(1/2) luwe heen unde exphmt ) is LhL

3-vector part of elecfromagncnc current

) = 4:: Q. :"a("-")'\?ua(f)b:[’a (25)
Then, i, can be rewritien as

2 ) S ) o
Hp = — 4y 'ZMN/ rar gus, (v} fu, () - ' (46)

3 e 4 P o
with gy = 77y being nucleon magneton. The corresponding neutron inagnetic moment is
' ‘ 2 : .
o fhy = ——g_up. (27)

Our model prediction for u, is 2.27 in the unit of nucleon magneton. We tabulate our

calculated results of the 7, g4 and y, in table 2 for compazison with data®®), .

Table 2. Static propertles of prnton from quark core rontmbutmn fox

0--4ofm'1 m;t = 0,06 m. ',"
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rp(fm) » ga Hp

Exp. 0.87 Co1ass 27 |
Theor. 0.87 Co1aes | 221 |

The parameters in the preseni calculations are determined by mass difference of nucleon
aud isobar, My — My, and stabllxty condition of nncleon, id—'?,‘—’f’]:oﬁ = 0 where b is the size of

bare quark core,

(4). Form factors: In the following, we study the nucleon elastic form factors. Given the

electromagnetic current J,(z), the relevant form factors are defined by
< N(p',s') |J.(0)] N(p.s)>
. ; o ) e . _
= u,:(p')feFl(q‘)'yP + T—‘T"F2(‘1 Jiowa” JL“ (28)
where uy(p) are the nucleon spirors ( du=1 ), » and p' are incoming and outgoing nucleon

four momenta, wn;n 1)’2(1r) = M?%, the square of the nucleon mass. The g, is the four

momentum transfers, g, = (¢ = p)u, and

2

F=q-F . (29)

In the Brei,t-,ﬁ;gme 1;7 =—p=g/2 and qo = 0, we have

6, ,
~ 4 = - ; 30
N( )s)IJO(O)' V( v3)> \m( E(q )’ ( )
and
q-.l = l}‘ 2'<$’|0-'.Xq-’ls> 9 «
< N(Z, } -8 = * 31
< (‘Z §)|J({)|N( 2 ) > Zf\'lvm Gulq) (31)

where 7 = "I%P' The charge and magnetic form factors are related to the Dirac and Pauli
form factors Fl(qz) a.nd Fg(q") by

Gv(ff)—l* (q’)—nF>(q yo | (32

and
Guld) = Filg) + B(d). IR € )

* The charge form factors of proton and neutron at the value of ¢* = 0 are required, to be -
G =0=1, GH=0)=0, - (39)

B R R R




while Gy (4* = 0.} is related to the magnetic moment of proton or neutron by

ap

b T =0). ; 35
F;,n ?UN A (g® = 0) - . {35)
The experimental values of Gy(g? = 0) for proton and neutron respectively are

Ghld® =0) =279,  Gh{¢® =0)= =191 o (6)
The measured form factor follows very closely a dipole form'®)

\

Go(g®) =1 - ¢°/0.71]2 - (37) -
with q being in the unit of Gev/c. This is t‘nc' most salielit feature of all 'tho icrm lactors.

There are sweral mudelq used to fit or p1ed1ct the nucleon ela.suc {orm facters. “Ihe
'tradltmnal vector domlnanre models (VDM)‘G) descube the virtual photon in tenus of its
 hadronic components. The mtemctmn is described by the coupling of a ohown to varion
.vector mesons { dominated by p-at low ¢2), Whlch are then absorbed by the nuc]eo-x as

deseribed by a meson- nur‘]eon form factor. The main problem with VDM mode] is that they
have many free parameiers and do not prhmtly take mtc account the qualk strmt'm of the

nucleon. ' ’ o .

Anof!ﬁ’e;: apbroéch”) ﬂlat does explicitly use the valence quark }'omponents ;s'tlte afpih a
tion of perturbative QCD and concepts from dimensional scaling. In this case the mteractmn )
iz &eqcmhed by the pomt like coupling of a virtual photon $0'a single quark; comblmd w1th
several” hard_ gluon exchanges between the quarks to keep them 'ilymg apart. ‘In practme,.
the strength of the strong coupling constant a«, o 0.3 at eXper’imeﬁtallv acéessib’lo'.q? vaiues
ma.kes the perturbatlve assumption que stmnable, and so far onlv the leading order dmgmm

1 has been calculated.

Of course, some progresses are also being made in pred;ctmg the nucleou form factom
by c%alua.tmg the QCD Lagmnglan in Lattice gauge theory and QCD sum Rules'™. Al
though quantitative predlctlons are not pD‘:S]ble at present, advances in computer power nnd

ca,kulailcmal techniques make ‘rhese approaches very prommng {or t]xe futuw

vVe try to fit the form {ac tme by nse of our quark Lunimlno nwdel Conside ung three

qua.rk in proton are in sy orblt then the. cloctrc,magnetxr form factors uf prot on are given

by
G‘iv(q?)=47?./(; d’r.io(qrf),lg'i’s%(r)+.f-fx§(7')]f @9
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. 'and' "

" aM |
Ghulg) = = an [ dr ir(anfu (g () (39)
in l\.a.dlng order in n = —4—%,—;— Therefore, given ga(r) and fa(r), we can casnlv obtain the
electromagnctlc form iactors G%(g%) and G%;(¢*). Qur theoretical results are shown in Fig.4.
Asis seen from the compamsons with other phenomenological models, our model seems to be

more realistic.

Tt should be noted that we only calculate the contributions from quark core of nucleon to
Ty G4y Hpy Gi(q?) and G4 (¢®) in this paper. An actual comparison-with the experimental
data must require to deal with the contributions from pion cloud surrounding the quark core
since a nucleon consists of a quark core and a pion cloud surrounding the core in chiral quark
bag model. The charged pions contnbute to the total current, and therefore play an important
rolc n detcrmmmg electromagnetic propertles of nucleon We are going to estimate these

contributions.

, 4 Multhuark clusters in nuclei

~ .Many expeumental observahles are in strong conflict with the expectation given by tra-
Adltlﬁn&l nuclear theories involving meson exchange currents, and ‘support the theoretical idea
- o{ the. {or.ma,txon of multhuark clusters in nuclei?®, For e},ample, it has been- known for
S over decade that the 3He charge form factor cannot be understood in terms of the unpul:;.o

- apprommatmn - scattcrmg from nucleons whose clla,rge and current distributions are given

: . by the 3H e wave function. VVlth improved knowlcdge o{ the N-N potential and the ability

' :to accura.tely solve the three - body nuclear problem over the past decade, one must con-
"clude that tradltxona.l nuclear physics is not adequate, and non-nucleonic aspects of nuclei .
. must be cons1dered A number of theorists have attempted to fit the expenmental data
by mtroducmg meson currents“) and experiments have also proven the presence of meson
' currents in nuclex”) Howcver, most hadronic theories w1th meson currents, including Delta
contnbuuonb”), fail to fit the 3He data. Thls is a serious .test of meson exchange currents.

~One of_ the most stnkmg results of traditional hadroni¢c models with meson currenis is

e the predlctmn that the meson current contnbunons for 3He are much smaller than for ?

The reason is qulte simple. Due to the 5 coupling, the largest meson current rontnbutmg
’ t’“ three-body cha.rge form factor is the pwn pa.u current deplcted in Fig.5, where the photon




is conpling to a NN pair. \

The operator for the charge' part { the fourth component ) ol the two-body pion pair

current is

g, Fowe Q%) P el K2 St e T
JL_T;\ y j- N8 (_IS_I_)I___@_(_\__ (Fy - K NFy - Q)
]1L' X . .
X [GUN R $ 7 GUNE ) + (1= 2) - {40)

where (A, Q) are the (photon, pion) moinenta, fis a constant, the F are the vertex f\mctiom
contained NN pair, and the 7 (isospin) and" 3 ( spin ) operators act in nucleonic space 1
and 2. It is clear from Eq.(40) that for values of A'? such that the isoscalar dnd isoveator

vu

. nucleonic form fac tors { G* ) do not change sign, the isoscalar and isovector terms will

contribute cons!ru( tively for *He since the Il He)y =Lt and dastructively. fr)r 3H since the
T.(°H) = ~1. Thus, we expect that the 3H¢ and 3 l{ charge fvx'm {actors gtwn by traditional

hadronic, models with meson ('ument should be quite different. (,«mtlary te our expectation,
" the observables of *He and *H charge form factors are quite similar to each other. So, this
unexpected discrepancy provides a crucial test of the use of meson current in explaining the

experimental data.

It is now believed that the conflict between traditional theory and data.is a (lmr signal
of explicit quark effects, and a good example for quark nuclear physics. Since the discovery
of the J/¢: particle we have Lecome tiwroughly convinced that hadron is composed of yuarks
and gluons. A nucleus can be thought of as being a system of quark clusters. Huwe-ve
since the averaoe distance betwwn the centers 0[ two nacleons in puclear matter s @bout the
diameter of a nucleon, a sizable fraction of nuclear matter consists of uverld.ppu g nucleons.
In quark model, this leads to a large probability for a nuclaon to be part of a six- or ‘nine-

“quark cluster. Furthermote, the density ol *He and 3H are suﬁlrwnrlv close to the density of
“nuclear matter to provide important information at mtemucleon sepamtlon of less than 1.im
where quark degrees of freedom might be expected to be 1mpu1tant We claim thaf a modern
concept of the 3H e and 3H structure should Le hybud both nuclecnic and guark degrees of

freedom must be included with care not double count.

Kisslinger and Ma proposed a Hybrid Quark Hadron (HQH) model to describe nuclear
structure?®). In this model, the configuration sface is divided into two distinct 1égions an’’
mterlor quark region and an exterior hadronic region. In the interior quark regmn, nucleon
‘bags oveﬂdp and six- and for nine - quark clusters are formed ‘One 1o longer has nucleons.

In the extenor hadronic region, quarks are confined w1thm hadrons, and we trmt a trad}-‘




tional nuclear system. The boundary separating these two distinct regions is described by a
phenomenological parameter, 7o, in terms of which projection operatots can be defired. For
bound state, the probability for a nucleon to be part of six-yuark cluster is determined by

nuclear wave function in the exterior hadronic region?".

The wave function in the HQH model is defined by projections onto the outer and the
inner region. Tor instance, for two baryon bound system in a channel o, the wave 'iunction is
given by '
go o o | ¥BGBYLEp0) 7> 1o (a1
BBy =y e . ‘ 41

Y g =N Some) e
Where Cf' are the amplitude of the six-quark configurations ¥ (6¢) and satisfy ¥, | C® |2=. 1.

N is the normalization constant determined from the probability conservation law, i.e. ,

N?= Pog= 1~ [|83,5,0r) [ 07 = ro)dr (42)
Which ®%, p,(r) being the relative wave functions of the two nucleon system, whick is the
best known part in the traditional nuclear theory. '

The external wave functions for *He and *H used in our calculations are five channel
Faddeev solutions?®) obtained with several two- body potentials, such as Reid soft core, Super
soft core and Argonne Vi4. Corresponding six- and nine - quark cluster probabilities in the
*He are listed below in %, with v = 1.0fm.

Table 3. Probabilities for six - and nine-quark clusters in *He with ry = 1./ m for

different two-body interactioun

T

inté_ra.ctiml , I Py, Py,
Reid soft core 13.396 . D427
super soft core 14.129. | 0.500 -
Argonne Vi, 14.230 | 0.498 |

Note that the maltiquark cluster probabilities are not very sensitive to the choice of two-

body nuclear interaction.
The charge form factors for 3He and °H in the HQH rmodel are given®¥ by

- (@) = F@®) + FY () + Fald) + Fof (@) Co3)

»

with F54(4%), FX (4*), Fil(¢%) and F2(g?) being contributions from impulse a.pplqujm:it.ion,

meson exchange current in the exterior hadronic region, six- , and nine -quark clusters in the
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interior quark region, respectively. The detailed description of Ff(g7) are given in Rel.{24).
As is seen from Ref.(24), thﬁole’ctronngm‘lic form factors of “Hv and *H } have been simul-
taneously reproduced by the HQH model withont any adjusiment of ]‘i;«h'll(“(!s (e g =]
fm for both *H= and *H). The model works suce ressfully, and is attractive in resolving the
long-standing puzzles of the observed similarity of charge form factors for this two three -

body systems.

The long-standing puzzle problem for 3He charge density is the observed central "hole® }
as shown in Fig.7 by crosses. According to our best kncn'avlpdge the observable has not been
reproduced by any traditional three - body wave function, We behew this is also euggezuvc
of our hybrid quark hadron model. The reason is qmte simple. Thu ‘density of *He can be

wntten as
Pro(F) =< 4 (*He) | }j @l (F=7) | Y(PHe) > (44)

which now depends on 7. y(3He) in Eq. (44) stands for uurlmr wave function of the ’Hf
When one calculates the ratio of central density /),.wu() = 0) in th« '{QH reode] and Prossol T =

0) in traditional hadrouic model, ane may obtain »
p,n;w(v- =0) = [1 = Po, = PoJoroulr =0) - (45)

with Pg, and Py, being probabilities of six- and nine - quark clusters, respectively. Using the
probabilities given in the table 3 , We see thm due to the formation of multiquark cl nxtels in
3He its chaxgt densi tv at center is greatly reduced. Therelore, the observed central ” hole ™

seems to be naturally underbtood.

In fact, we have mimerically carried out in this paper the fourml tmusfmmauun of Eq. ( 13)
and obzamed the charge density of the 3He theoremallv ‘he results are shown in Fi 2.6 by
the sohd curve. Indeed, the HQH model gives a perfect fit to the wa’rmg data. Compdnsuu
© with the prediction of traditional nuclear theory with méson current in Ref. (25) shows that
the expenmental data strongly support our HQH model. Therefore, we may claim that the
observed central "hole” of 3H e charge density might be an evxdem signal for p()sblble existence
of multiquark clusters in nuclei.

5 Quark degrées of freedom in DCX reaction

The mam interest in plon - nucleuq double charge Lxchanoe (DCX) reaction stems from

, the fact that any ]e&dmg process of DCX must involve two dlﬂ'erem nucleons, a iea.ture that
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is not present in most other nuclear phenomena where two nucleon prucess appear ouly as
high- order corrections, T hus, pion DCX reac Lmns are jdeal lur the btlldV of NN correlation
at short range. In recent years, a large amount of good quality data from LAMPF, SIN.
and TRIUMF has become available. These data have played a decisive role in improving our
understanding of the DCX dynamics and in proving, in turn, the existence of six - quark
cluster in nuclei.

Comparing the new data to various theoretical calculations done in past decade clearly

'

indicates:

(1). the calculated excitation functions have a wrong energy dependence. The inclusion of
medium rencrmalization effects and meson cxchange Luuent help but do not entirely Temedy.

(2) the calculated position of the first minimam in the angular rhsmbutwn at 164 MeV
for transition to the analogue state in hght nuclei is around 30° whereas experimentally it is
near 20°.

(3). an intriguing observation is the existence of large noa- analog cross sections for (77,
7~) reaction or T=0 nuclei. As can be seen in the oxygen isotopes, at 164 MeV ‘the cross
section for T8 Q(T = 0) is nearly as large as that for BO(T = 1). Thatis, R = {;:3 Z,'?) 3:1
at 164 MeV, but R = 20 : 1 at 292 MeV. The ratios are strongly energy dependent and

ronsequentlv rale out simple cxplanatwns based oa conventmnal nuclear structure.

Kf-epmg these difficulties in ones raind, one may say that we are, mdeed al a gate way to
undersmndmg of DCX reaction: In fact, we have carried vut a laborious cale ulation of meson
exchange currents in Ref.(27). Our pnmtlpa! finding is that although the meson exchange
current theory p.'rovid('s some understanding of the reactiou, the three long-standing pnzzle
problems mentionaed here still exist. We have to search for other sources to resolve these

difficulties.

We study contribations from six-quark mechanisia to cross section of DCX reaction at

‘the A (1232) resonance region. We prapose a Hybrid ‘Quark Hadron Model for describing

DCX reaction to take place. In the model, DCX reaction proceeds in two distinet. wayﬁ :

(a). At internucleon separation of less than a phenomenological length, ro, the two nu-

cleons form a six - quark claster, Thus, DCX proceeds via six - quark cluster mechanism as -

“shown graphically in the Fig.7 where, taking the direct term as an example, a 7T is absorbed

by a down (d) guark which _is then turned into an up (u) quark after the absorption, and

“finally, a 7~ is emitted from another d quark which becomes an u quark after the emission.




(b). At internucleon separation of larger than ro, the two nucleons is in a traditional
nuclear system. Thus, DCX pr.oceedsv via the conventional mechanism as depicted in Fig.x
, whér._e, taking Fig.8 (a) as an exinnple, a 7+ scaiters with a neutron to give rise to a 7%
through A* excitation and the produced x° then interacts with the second neutron to give
rise to a m~p through A? excitation. This two - step techanism is the standard approach

used in all literatures.

In the HQH model, the relevant T- matrix of DCX reaction 4(x", %7 )B can be written

as '
Tig) = Poy < they | Ty | sy > +(1 = Pog) < ¥y | :’wm | dun > -6
Where P, is given by Eq.(42). The first term in Eq.{46) is the contribution frowm six- gnark

cluster mechanism in the interior quark region. The second term represents the hadronic

“contribution from conventional mechanisms in the exierior hadronic region. We.define the

scattering amplitude, F(g), in such a way that '
v ' ('10' oy 3 -
| gg = Fla)] o - ()
with - : o . S \
o1 ' , .
Flq) = ~-—T(q) : : (48)
47 : )

where the T- matrix clements are given by Eq.(46).

The pion - quark interaction is given by the axial vector ntcraatwn., T}'e pion - nucleon

interaction is rairuiatcd from cloudy bag model®, i.e.
, | ) :
A ey /dg.r ']”é c— IR ) < B a(&)rivs¢(3) | o > 49)

i T BF (i)t (= Ji) < 51 2(@)7ive6(9) | (49)

where o, B are quark wave functions of the system under consideration. g{x) is Lh‘ev'quark
' ﬁeld and f, the plon decuy constant. Then. the {ormulae of the T- matrix 10r quark sector
in the I-TQH modél can be written ‘

(b F) = () (f;j’”)--—u(m)uu Ro)

/'“" Ps,(R) &R - L<flvaa AT a)lm
s a=1
ZEm i\ g . . ' ‘.
T <ml ;,-Icr.;.(b)|z>‘ ()
b. -

,_..

u(kR) M is form factor. R,G the radius of six - quark bag. k and E are the initial and

final pion momentum. |7 >, | m > and | f > are tespectively the initial, intermediate and
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final states of six - qué,rk clusters. All states are formed by placing six.quarks in the lowest
energy single quark orbits (n=1, k= - 1). For a bag composed of two neutrons, the initial
- A N

state is

A

ji>=|6g, S=0, T::vl, T. = ~1 >, {(51)
and for a bag made up of two protons, the final state is
|f>=|6g, §=0, T=1, T:=+1>. o (82)

The intermediate states | m > are those connected to |1 > and | f > by axidl vector pion-.
quark interaction. These states have S=1, T=0 and S=1, T=2 with eigenvalues of {2904i140)
MeV and (500 + i280) MeV?®), respectively. '

The matrix elements of the axial vector coupling operator are determined by employing

tabulated coefficients of fractional parentage. The essential reduced matrix elements are

. 6
<§=1,T=2 | 0. -mll5=0, T=1>=8V2 (53)
) a=1 .
and
o . |
<S§=1, T=0, | Y ool $=0, T=1>=-10. (54)
. . a=l .

Using the above discussion the T-matrix elements in Eq.(50) can be easily calculated.

Th‘e T-matrix elements for the conventional mechanism depicted in Fig.8 have been thor-
oughly studied in Ref.(30). In order to avoid making the paper of too length we do not give

the detailed calculations here. The wave function for two relavent nucleons in 0 is given®"
by

Yy = 0948 (1ds)*, J=0> +0.318 | (Ls3)%, J=0> - {55)

from which we can easily obtain the probdbility of six- quark cluster. The calculated ‘proba--
bilities are tabulated in table 4.

Table 4. Dependence of the probability of six- quark cluster on ry, with nuclear

wave function given by Eq.(55).

ro(fm) 108 0911011121314
o (%) 2.34 | 3.22 | 4.25 | 5,427 6.71 | 8.10 | 9.58
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" The coupling com*ants used in our present calculatu)ns of the conventional lIl(‘Ch&nlSle
shown in Fig.8 are
f2 fq:?

= 0.081 0.36, f Y
4 — ax A7 5

——
(74
[oy)

~——

for tNN, 7NA and 7AA coupling vertices; respectively.

So far, we have only consldvled the calculations of DCX amphtude from a pair of nucleons,
This is the minimum step necessary for the reaction to take place. Of course, in real nucle
nothing prevents the pion from ¢ olliding any number of times with other nucleons in the target
nucleus. Indeed, such additional collisions give rise to a strong distortion of the plon wave.

We follow for this purpose the dlstoxtum technique based on the Glanber approsimation®,
" In the Glauber multlpk scaltering Lhe.us' the mnphtmio of DCX reaction with the distortion

eféct invinced can be writien

F(q) = i'-Y’-/d)b S Doy (1) Tors(Bl o . 57 -
with
Toex(b) = u”er& / &Ge -'”F"'d"'s(-‘). V
= g [ P (58)
where T(q’) is given by Eq.(46) ( Fari(d) = ~-L7(§)), and ’
Tors(h) =< | [[[1=TC =501 | 4 > - (59)

F;’)(g—- &) is isoscalar part of profile function, l",(g) = l"§’)(lj) + I";f"‘)(g)f,,. - 7;y and 4 are the
nuclear wave functions of nuclear core (150 ). H we take a spin-isospin averdge parametenized
pion-nucleon elementary amplitude
iko et ‘
f;u\’ = “(1 - !ﬁ)t’ ! . , (60)
as input in Eq.(59). Then, the T'pie(b) can be explicitly written as

(1 -1 2
Tprs(b) = [1- 2= _ 2a

L—ala?fuq-m?/#r
4 14 20732

1 a(l——zp)( a? 20 - Zath?
v 27 1+2a°87  3(1+2028%) 7 31 + 2:1 [:7")3
‘“C\’gb? 12 '~
o 0 (51)




for's, p shell nuclei. The parameters o, p, 5 are energy dependence, and given by experiments.

" This procedure has long begn recognized as a good approximation®?.

A calculation in this HQH model is performed ior BO(x+, 77 )'® Ney,. at the energy of

164 MeV. The results are shown in Figs.(9-10).

As is seen from the Fig.9, the conventional mechanism in the exterior hadronic region
~ as shown dlagrdmmamallv in Fig.# does not produce an agreement in both magnitude and
the minimum location of the experimental angular disiribontion. But, 1.11e six- quark cluster
mechanism in the interior quark region as shown graphically in Fig.7 produces a quite good
improvement over the conventional calculations. In particular, the minimum location, and
shape of the experimental differential €Toss section seem to be reproduced successfully by the
six quark cluster contributions . This reeult clearly indicates that quark degrees of. freedom

play an essential role in this peculiar case of VCX reaction.

Fig.10 evidently shows that unlike the amplitude given by the conventional mechanisms
which changes its phase at 30 fho m quark cluster amplitude changes its phase at 21°,
This is a very important featnre of our HQH model and leads to a quite good theoretical

description of data..

However, the magnitude of the cross section predicted by our HQH model is much larger
than data in forward angles. Some further improvements are really needed. We speculate
this discrepancy may attribute to contributions from other six-quark cluster mechanisms and

from absorption of pions in nuclevs, which are not considered in our present calculations.

It is also worthwhile to mention that M. Johnson and his collaborators®™) used p meson
exchange for short rahge part of the main diagrams as shown in Fig.8. They found a bad phase
compared with ex.perirhent. However, without p meson, the magnitude of their amplitude
was wrong. Thus, Their finding may also be thought of as being a support to our conclusion
here that the six-quark cluster contribution is responsible for 164 MeV DCX reaction to take

place.

8 Conéludihg remarks

Based on the point of view of quark structure of hadron we study quark degrees of
freedom in NN interacticn, spectroscopy of baryon and its static electromagnetic properties,

multiquark cluster effect in aaclei and six-quark mechanism of DCX reaction at A resonance
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vegion. Our principal findings are as follows:

(1). It has been known from extentive study that quark model gives a natural description
of NN interaction at short range. In particular, we see that the one- glnon exchange, which is
an essential feature of the quark cluster madel, represents an important part of the interaction..
For example, the one-gluon exchange together with the quark structure of the barvons yields
the short range repulsion both in the NN and YN interaction. However, the quark model
description fails to reproduce the intermediate range attraction indispensable for the binding
of nucleons in nuclei. The QCD is not applicable at long range where qQ.raks and gluons
interact strongly. The perpurbative calculations, i.e., ’the‘ expansion of physical qnantities in
terms of a power series in running coupling constant «,, are no longer valid and NN interaction
is quantitatively, successfully described in terms of hadronic degrees of freedom. Thus, we
suggest a hybrid model to describe NN interaction. In the hybrid model, guark exchange is
assumed 1o be responsible {or short range part and meson exchange. for long -and niedium
- range part of the interaction. The culculations of different phase shifts and other physical
guantities in the hybrid model are under way. IHowever, our prefiminary results show that
the model seems promisiag.

(2). Under the approximation of E¢.(3);, Friedberg nﬂd T, Lee’s uon-topological soliton
bag model Jeads naturally to onr Woods- Saxon-like condiring potential mod el of quarks. Qur
model produces a reasonatble description of static properties, and electrs umnnms form factors
of proton. It also agrecs with theovetical prejudices based on MIT model, Based on the

present forin of our model, an attractive quark confining potential model would be developed

in terms of inclusion of pion cloud surrounding bare quark core as well recoil correction

and mass- ol-center motion in defining the wave function. We believe that the soliton bag

model can be regarded as satisfactory approximation schemes” bridging” conventional nadron

physics and non-per turbative QCH.

(3). Our HQH model gives a good, natural prlanatmn of the observed central "hole”
of 3He charge densltv This may be thought of as being an evident signal for a posuble
existence of multiquark clusters in ‘nuclei since, accor ding to our best I\nnw]edgp, no orher

theories could solve this long - standing puzzle problem so far.

(4). Quark degrees of fre(-.-dom in DCX reaction at 164 MeV are likely responsible for

the first minimum location of experimental angular distribution. Our six - guark cluster

mevhamsm produces a favorable agreement with the data. Unlike the amplitude given by

conventional mechanisi which changes ity phase, at least, at 31)“, the amplitude of the quark’




‘part in our HQH model changes its phase at 21°. This is a very important point of our HQH k

model and leads to a quite good tiheoretical description of data.

In summary, the present study shows that the quark degrees of freedoni 1may be so impor-
tant in modern nuclear physics that it must be considered in any assessment of short range

nuclr-ar phenomenon. Along thls line, a groa! deal of work is in abundant demand.

Howeve-t, it should be noted that there are still some problems with our modelg presented -
in this paper. For example, the HQH model is in its infancy. There are many places which
should be improved in our present HQH calculations. Therefore, it is difficult.to say that
our principal finding in this paper is a great evidence for the presence of quark degreeq of

freedom in nuclei. For this purpose more efforts should be donated.

a) Institute of High Eneréy Physizs, Academia Sinica. P. 0. Box 218(4) Beijin‘g’ 160039,
China ' , , . '

b) Institute of Theoretical Physics, Academia Sinica. P. O. Box 8730 ‘Beijing 100080, China
¢) China Institute of Atomic Energy. P. 0. Box 275(18) Beijing 102413, China
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Fig.l. Scheme of energy levels for a simple quark confinement in three different poten-
tials. I the scalar vector harmonic potential®, Uir) = ¢(1. + 7o) I infinite
square potential’®, and T1I: our Woods-Saxou-like confining potential model with ¥, =

425fmt m 7Y = 0.075 fmoand R = 1.1 o,

Fig.2. Numerical results of Dirac wave functions of the sy stale given by (wo dilferent
confining potentials. g(») and f{r) are the upper and lower components of quark
eigenfunciions, respectively. The g,(») and fi(r) { the solid curves) are produced by
our confining potential, £q.(10). The g2{r) and fo(r) ( the dashed curves ) siand for

the predictions ol Regensburg potential*), U(r) = cr?

Fig.8. The upper and lower components of 1s; state wave functions. The solid lines denote
7 . . '

the results of our Woods-Saxon-like potvential model, the dotted lines represent the

results of infinite square potential (MIT bag model), and the dashed curves afe the

results of the scalar vector hanmonic model'®.

. '
Fig.4. Electromagnmeltic form factors of proton in our Woods-Saxon-like confining potential
model. a) charge form factor of proton G%(¢%); b) wagnetic form factor of protun

G4(@®). The experimental data is taken from Ref.(19).
Fig.5. Two- body meson exchange curreni: the pion pair current.

Fig.5. 7He charge density. the dashed curve stands for theoretical prediciion by traditional
\
nuclear theory . The solid cucve is the prediction of our HQH model. The data comes

from Ref.{26).

Fig.7. Six-quark mechanisms of DCX reaction. a) direct Lerny b) cross term.

Fig.8. Conventional mechanisms of DCX reaction at the A resonatice region, a) the sequen-

Ctial mechanising b) the successive mechanism.

‘Fig.9. Angular distribution of 164 MeV' DCX reaction in our HQH model. The curves 1,2
and 3 denote respectively the contributions from quark part, mnventmn&l part in the
HQH niodel and the foll ITQH model predutiun

Fig.10. Amplitude of 164 MeV DCX reaction in the HQH 1odel versus scattering angles,

with 7o = 1.0fm and without inclusion of width of six quark states.
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K+ NUCLEON TWO BODY POTLNTIAL

AND
K*t-NUCLEUS OPTICAL POTENTIAL1 |
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Abstract

The K+-Nucleon two;body potential is derived in the framework of the
constituent quark model and it may provide‘ reasonable explanation for
the large K +-nucleon scattering phase shift of P-wave I = 0, J = 3 chan-
~nel. On the bases of the derived K -nucleon interaction, the real part
of the K* -nucleus optical potential is constructed. Reasonable good
agreement between thedretical cross section and experimental data may
be reached by requiring a weak imgaginary part of the eptical potential,

as expected for the K+ -nucleus scattering.

!Work supported by Natlona.l Natural Science Foundation of Chma and Stdte Educatxon
Committee of China :
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It is well known that the K+ -nucleus(K*A) interaction is rather weak
on the hadronic scale, corresponding to a mean free path in nuclear matter
of roughly 6fm, a typical nuclear size. Interest in Kt A scattering arises from
a desire to learn more about nuclear interior structure, more about the K+
-nucleon (K*N) and K+A interaction [1-5]. A Widely accepted approach
of constructing the KA Optical potential is the "tp” approximation with
nuclear density p fixed from electron scatering and the KTN two—body t-
matrix prox;ided by the measured K*N phase shifts. Although the é.greemeh@
of the theoretical results with experirﬂental data is fairly reasonable, there
are non-negligible differences between the calculated values of cross sections
| prediced by using different input K*N \phzise shifts, resulting in uncertainties
in the theory. Furthermore, the K+ N physics is not fundamental. -

A more fundamental way to obtain the K+t N two-body potentml by anal—
ogy with the nucleon-nucleon case, is to use the so-called constituent quark .
" model (CQM) based on the quark-(anti) quark interaction. A pioneering study
of the K+ N interaction at the quark level has been performed by Bender et
al.[6,7],but it contains only central part of the K+ N potential and is not able to
reproduce the measured K+ N P-awve phase shifts. It was found[6] that spin-
orbit (SO) coupling in QCD residual interaction can not be neglected, whercas
the especially large scale for the I = 0,J = 5 channel was not reproduced by
the K*N SO potential derived from ref.[8]. ‘

‘ The‘bpurpose of the present work is twofold: (1) We try to derive a: prac-
tically useful KN two-body potential from duark-(a,nti) quark interaction
based on the existing works. We improve the model of ref.[7] by adding the
SO part of one-gluon exchange (OGE) to the effective hamiltonian in CQM
for K*tN system and using a new form of the SO part of quark-quark interac-
tioxl[g]. We give only a brief describtion of the above K+ N interaction model
in this letter, complete calculations can be found in later publication[10]. (2)
We try to construct the real part of the K+ A optical potential fi'om the de- -
rived J(+ N two- body potential and make a crude estimate by comf)aring with_. v

experimental cross sections to hnd the rcqlured imaginary part of the K+ A
optical potential.
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The effective Hamiltonian for the K +N system 1s

FZ(VOGEw"“"f) o

g ?ma <

where P; is the momentum of the ith hght quarl\ (numbercd from 1 to 4), P, is
the momentum of the strange antiquark (with the number 5). m, the masses of
the light qudrks and m, the strange-quark mass. The potential acting between

quarks consists of the one-gluon exchange potentlal VECE and the confinement
potential Vc""f :
1 & -1 2n1 2r 1 w, 1
OGE _ =, Y.\ fj— _ 22 - _ 2% §
veoE = el G- o 500%) = (g + 75
, 1 . - - - - - - — - -
= fripl(ris x Pyg) - (G + 05) = §Tij x (P + Pj) +(di = o'j)]}
. @
veons _ | —%D(\i . i‘\’jr?j_‘ (for a pair of quarks) (3) .
N 1 =1D'(=Xi- (3))r%  (for a quark — antiquark pair)

vJ

with :
= -1 - (4)
S~ m-ﬁ m; §zs
Pi= = (5)
3 7 ”
Flrij) = Aije™5, (6)

@, is the QCD fine structure constant. J\; is the set of Gell-Mann matrices
acting on quark i. The form of f(r;;) is from ref.[9]. The gaussian form is
not only easier to use, but it also simulates to some extent the effect of gluon

confinement in the nucleon. The strength parameter 4;; is defined as
. ’ 3 N ) ‘ v
. Aij = I’é(l -+ ‘,.(,ij/zb)s/zAM. . (7)

For the interaction between ligllt quarks the range parameter y;; = 0.726fm=%,b =
0.36fm™2, AM = 92MeV. For the interaction between light quark and strange
anthuark, according to réf.[10], a factor m,/m; should be added in eq.(7). The

other parameters are -

my = 0.26GeV m, = 0.45GeV
= 0.6 D ~ D' = 0.33GeV - frn~?
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Tho nucleon and kaon are two color- smglet quark cluster\ The total wave
function d(‘p@ﬂ(lb on the five quark coordinates Ty,+ere ’L_., and s denotes
the coordinate of the '%tmnge antiquark. In the generator coordinate method

- (GCM) the trial wave function for the KN system has the form
»=A /c(.ﬁ)t/)ﬁdsﬁ o (8)

Y = (1, 53,75, 74, 45 )¢ (9)

Here x°/© is the combined spin-isospin-color wave function. The orbital wave :

function is assumed to be

1+k 5 2Q 3
bn = {ma (el + HE L 2 preapl-ae - 1A
20K ,;/4 - 3 =9 ’
— —Qk(2
(T Mempl k(i — 1 FY)
o » (10)
with K = mq/ms and © = 1.94fm2. By use of the standart moment-.

expansion technique within the GCM framework we can evaluate the inter-
action 1\611161 together with the norm kernel of the non-local Hill- Wheeler
equation. From these kernels we obtam the central and SO part of the K+ N

two—body potential for sach i 1e,ospm channel:

yI= 0( ) = 0. 04066.7,])( -4.437r2 )+() 1001exp(—2 4?67'2) 0.0500exp(—1. 9417‘2)

(11)
VIS

_ 0.1839exp(—4.437r%) 4 0. 20016’81)(-—? 565r‘) 0.2002¢xp(—2.426r2) + 0.4508ezp(—1. .

— exp(—1.941r?) 7
(12)
/L%maowmmﬁfwwﬁﬂm4wmw(1%h% ©(13)
yist (r) _ —0.0936exp(—2.469r2) — 0. 2882633])( 1.941r?)
‘ 1-{0.1310 +0. 64407‘1)6J;p( 1.941r2)
The potentia’s obtained above are plotted in F1g 1. In order to compare the
derived potentials with the experimental data, we calculate the K+ N scatter-
ing phase shifts for S-and P-wave. The results show that the potentials may
provide reasonable explanation f01 the I{t N data, pcutlcularly for the large 'b
phase shift of P-wave I = 0,J = = (ha,nnel[IO] Thus the derived K+N tvs o-
body potential seems to be recuvmble The results differ from ref. [8] malnly |

due to the new form of the SO part of quark-quark interaction.

(14)
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In order to exam suitability of the resuiting K*N two-body potential, the
K*A opt1cal potential which dcscrlbes the elastic scattering of K* from nuclei
is constructed by folding nuclear density p with this K*N interaction. The
‘ foldmg potential has the form

Vonlr) = (2 5 | P@taon(Decp(~id- a7 (15)

where t4cnm s the K*N intera,ction in the K*-nucleus center of mass system

and

taone = [ Zelke) Bu(k) By (k) By ()
Ei(ka)Ew(ky)En(ka)En(k})

is the transformation from the K+N center of mass system to that of the
K* -nucleus. The real parts of the K*N two-body t-matrix are taken to be
the above derived K* N interaction [see Eq.(11)-(14)], so the real parts of the
- Kt A optical potential, or equivalently, the imaginary parts of the K+ A optical

1 2ta0m (16)

potenital can be determined more precisely. Following the standard procedure
of the folding model, the imaginary parts of the K*A optical potentml or
equ:va,lently, the imaginary parts of the K*N two-body t-matrix are built
;n a phenomenological way. Since the real parts appear as a combination of
'ga,ussia.ns,' the imaginary parts in each isospin channel I are parametrized in -
the gaussians form: , '
Imtl(q) = alexp(-B.4%) - (17q)

Imtgo(q) = agoexp(—Bsoq’). . ‘(170)

The weights o, ), and the ranges 3.,8,, are adjusted such fa?ht the differential
cross-section for K+ — 12C elastic scattering is fitted at P, = 800MeV/c. We
obtained -

' o= = 0. 1OFeV

I=1 —0.05GeV

c
ko =0
B = Bso = 4.0fm?
The nuclear density p(r) for 2C is given by usual Woods-Saxon form with
exactly the same parameters as in our previous papers[1,5].
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~In view of the importance of nucleon swelling in nucleus[11], we have ac-
counted for this nuclear medium effect by multiplying the K*N two-body
interaction by the density dependent factor 7(p) of ref.[11]: » |
_ ’\P(") -2 » -
n(p) =[1~ W] e (18)
with A = 0.2 and py = éfm‘3. - - _
The K+ — '2C optical potential obtained from the above calculations is
displayed on Fig.2. We can see a repulsive real part with the central value of
28.5MeV and a quite shallow imaginary part with the central value of -4. 0MeV.
After ‘corrections of the relativistic kinematics, the th( ") is inserted into the
usus! Klein-Gordon equation which is solved to obtain K+ scattcrmg wave
functions and differential cross section at 800MeV /c. The results are shown in
Fig.3 and 4. Fig.3 illustrates the variations caused by different values of the
range parameter B, of Imt!(q) [see eq.(17)] and Fig.4 illustrates the variations
- caused by the weight parameter a.. As can be seen, the agreemcnt with the
- experimental data is quite reasonable and the dlffucntlal cross sectxon is not
very sensitive to the parameters 8, and of
From our results of the calculations for the K+ N two-body potentlal and
'K+ A optical potential, we have reason to believe that: 1) A practically useful
K+N two-body potential may be obtained from the constituent quark model
and it may provide reasonable explanation for the large +PJ scattering phase
shift of P-wave I = 0, J = :: channel. 2) The real part of the KT A optical
potential can be constructed from the derived K+ N two-body potential and
reasonable good agreement between theoreticalv cross section and experimen-
tal data may be reached by requiring a weak imaginary part of the optical
potential, as expected for the K™ A scattering processes. Indeed, the main
 features of the obtained K+ A optical potential coincide with the fact that I+
meson is a weakly absorbed hadronic probe of nuclei,however, do not coinside
With a recently published result[13], in which the KtA optical potential has
a qmte shallow real part and a strong imaginary part, even both the reai and
imaginary parts are absorptwu in the entire interaction range.
In this work we have concentrated on the K+ — 2C scattering. Since the
existing data also include scattering from 4°Ca, we have performed similar

calculations for K+ —*°Ca scattering, and we draw again the same conclusion.
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Quark effect in nucleon-nucleon interaction

Shen Peng-nian and Dong Yubing
CCAST(World Laberatory) P O. Box 8730, Beijing 100080, P. R. Clina
Institute of High Fuergy Physics, Acudemia Sinicn, P. O. Box 918, Beijing 100039, P. . China

, ‘As a basic quantity in nuclear physics, the nucleon-nucleon interaction is well
established on the hadron- meson level. This potential is in general described by the
meson exchange plus the phenomenological replusive cote. It is natural fto ask where
is the origin of the repuisive core. Is it possible to explain the N-N interaction in the
subnucleon degrees of {reedom? Since the QCD theory was introduced, developing a
quantitative nnderstanding of the N-N interaction in an underlying QCD description
has been put into the nuclear physics research program. .

It is well known that there are two basic assumpticns in the QCD theory, vamely,
the asymptotic frée in the small distance (or large momentum transfer) and the phe-
nonenological confinement in the large separation (or small momentum transier).

Interaction between quarks is believed to be governed by the QCD theory. At very
short distance, the perturbative QCD is applicable. As a result, quallm are considered
as some simple particles whick interart with each other at least via cne-glron exchange.
ia terms of this idea, Rujular, Georgi, and (:r[&bhﬂ“fll proposed oné-gluon exchange po-
tential. Later, by employiug that potential, Oka et al.l?! and Faessler™ et al. calculated
the N- N"smtwring‘ and showed that the short-range repulsion between two nucleons
can be obtained via the quark exchange together with the color magnem interaction.
This is a big step toward the understanding of the N-N interaction in the qua.ll\ -gluon
degrees of freedom.

Although the short-range N-N interaction is successfully e\plamcd in the subnu-
cleonic degrees of freedom, the phenomenological o-meson exchange and long-range #-
meson exchange must be additionally employed to fit emperical N-N phasv shifts. More-
over, in the qua.rk quark interaction, the phenomenologlcal confinement term should be
remained no matter what kind of type it is. Can these phenomenoalogical interactions
which have large effects in the medinin and long distance be understood in the quark
degrees of freedom? :

We know that if the distance betwwen quarks i is not so short, the perturbanve QCD
‘ma.y not be valid again. There should exist the nonperturbative effect of QCD. In 1979,
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Shifinan, Vainstein, and Zakharovil poinied out that when distance between quarks
2¢-g becomes larger, ¢ — ¢ and gg can condensate into the vacaum. They introduced
the nonzero < 0|m,qg|0 > and < 0]%GGJ0 > because of the complicated structure of
. the nonlinear QCD vacuum. It is obvious that these condensates can contribute to the
medium-and long-range g-q interactions. Shen, Li and Guo 9! studied the non- per-
turbative effect of QCD on the gluon propagator, derived the full gluon-propagator by
considering one ¢g or gg condensate and consequentely derived the modified g-q interac-
tion which partially includes the nonperturbative effect of QCD. They also pointed out
that the condensation mechanism can automatically give the confinement term r and
deconfinement term -r°. Bian and Huang!® considered more condensates in the ladder
approximation in the gluon propagator and obtained (—1) 7%+ terms. Referring the
confinement potential in the form of (1-exp(-ur)), which obtained from the lattice gauge
calculation, we believe that the (.onﬁnement should behave like linear potential at the
short distance and becomes weaker ai the longer distance. This is so called the color
screening effect. In order to study this effect, Yang, Deng, and Zhang!" proposed a
confinement potential with the shape of the error function. )

. In order to exam the nonperturbative effect of QCD, we study the hadronic spec-
trum and N-N interaction by using various types of confinement potentials. In table
‘I, we tabulate the N and A spectra, and experimental ‘data. From these results, we
see that, although all confinement potential used have the color screening effects (or
include the nonperturbative effects) in different ways, the obtained spectra can well fit
the experimental data, and the ar — br3 ‘type and error function type potentials look
better. This showes that the condensation mechanism may be a better way to take into
account the nonperturbative cffect of QCD, which can Lontubutc to the medium-range
interaction.

. However, there is a defect in the ar — br® type confinement. it we use this type
of confinement potentla.l to calculate the N-N scattering, we will find the long-tailed
color Van de Waals force. Of course, it is not a physical result, because we igncred
the modification factor caused by the non- -validity of the formulation in the small q
region’® and higher order condensations. To solve this problem, one of the easiest ways
is adopting the error function type confinement potential. By using this potential, we
calculate the phase shifts of the N-N interaction.

In this calculation, the trial wave function of the N-N system is taken as

\IJ = {)NN + @t"t'.-L'—'O + (T)IC'C'.‘L:Q, ‘ (1)

®YY is the tna.l wave function of the N-N channel, which has the form of

where
oM = Ay 2, @)

& L=0 and ¢°'<"L=2 are distortion function in the.compound region for L=0 and L=2,
‘respectively, which take the form of

&L=t = gl yixt = 7, (2 = 00r2), (‘3) '
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bl Y 3 .
kere x ¢ F=¥ is the resonance type function
Irl = { 40
\c:,i,L 1} = (" ,af "”\/.l*r( 2A—‘~)}'3P.L']7 —w\ R )’ . ) ‘4)
and

yEE o b "" = (271¢) (2”")"1)’1 earp(—ni R’ )) (B (5)
The hamiltonian is taken as that in Ref. By using Kamimura variational nethod,
the phase shifts can be obtained, T hey are plotted in Fig.1. From this figure, it is seen
that . -
(1 Due to the consideration of the nonperturbative effect of QCD, oue can oblain
a better agreement between the theoretical tesult and experimental qata.

(2) The strength of the phenoinenological o-meson exchange potential is reduced
about 10%. This means that by considering the nonperturbative effect of QCD, one can
~obtain a reasanable confinément, vunbequenulv, a physical color Van de Waals force.
This color Van de Waals force provides parr of the medium- -range attraction of th(
nuclear force.

‘Furthermore, we should point out that by uamﬂ the q g pair creation mudel ’1
Lhdnwr, and Shen obtained a effective one-meson Lxchanse potential and a effective two-
‘meson exchange potentml between two nuclears’®. The result: showed that in the q-g
level, the obtained one- meson exchange potential is very similar to the conventional one-
meson exchange potential at the large distance, and the obta.med two- nws«m e’mhan
potential is somewhat wéaker than the o-meson potentld]

Although we can successfully understand the short-x ange nuclear force and partially
explain the medivm- and longe- range N-N interactions.in the q-g level, we should em-
phasize that:

(1) There exists the quark effect in the nuclear force. .

- (2) There should be other nonperiurbative QCD effect such as the sea guark effect’in
the medium-range. In fact, Yu, Zhang, and Shen have shown('% that the sea qlmr]\ effect
can provide a color mdependent term in the g-¢ interaction. As a result, this term would
offer a medinm-range attraction between two-nucleons. We should put more effects on
the investigation of the medium- range nuclear force.
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Table I. The comparison of the theoretical spectra and c-\perunental datalll for. ]Jd.I\ ‘Ons
N and A in Gev.

u JY Error function Conf. LXp.
Nit)s 0936 0.938
1.496 1.40051.480
1.736 1.680+1.740
1958 - '
2.017 —
Nasjp | 1777 1.600+1.800
1.893 —
1.947 —
].”74 T i
Nyt 2 1.724 1.670+1.690 |
: 1943 1.88022.175 | -
1.986 N(2.000)
Npejp | 1.951 1.950+2.050 )
Ni- 1 1.572 1.520+1.560
1.608 - 1.620+1.680
2.089 N(2.090)
Ns- 12 1.520 1.516+1.530
1.672 1.670-1.730
, 2.037 N(2.080)
"Ny 1 . 1.630 1.660-+1.690
: 2.178 1.900+2.230
No-ja |- 2193 2.120+2.230
Ne-sa | 2.233 2.100+2.270

.43




Table 1. Continued.

'JP.v

Error function Coni. - Exp.
N 1.907 71.850+1.950
1.923 —_
Qs+ 1.206 1.230+1.240
1774 1.500+1.900
1.856 1.860+2.160
1.978 —
N ©1.933 1.890+1.920
1.975 A(2.000)
N 1.924 1.910+1.960
2.387 A(2.390)
Aoty 2.341 A(2.300) .
Ar- g 1.652 1.600+1.650
o 1.989- 1.350+2,010
Ag- /g 1.653 1.630+1.740
1.988 A(1.940)
As- /s 1.925 1.8901.960
. 2.341 A(2.350) -
Ar- g 2.341 A(2.200)
Ag-/3 2.386 © A(2.400)
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Nucleon form factors in a self-induced potential '

J-W. ZHANG(*, W. Z. DENG®, and L. M. YANG(a:)
(@) (CCAST (World Lakoratory), P. O. Boz 1024, Beijing 100080, China
A and
®)* Institute of Theoretical Physics and Department of physics,
Peking Univeraity, Beijing 100871, China
A generalised Nambu-Jona-Lasinio. model is proposed and solved in relativistic Hartree approx-

jmation. Au effective confining potential for individual quarks is obtained in a self-consistert way .
through an ansatz ou the form of the interaction kernel. Various nucleon form factors and static g
properties are evaluated comparably with the empirical measuremént.

1. INTRODUCTION

Both particle and nuclear physics research has now becn probed deeply into the stratification to study the structure
of nucleons. To the particle physics point of view, nucleons ;:omprises three quarks interacting through gluon fields in
conformity to the possible fundamental theory of quantum chromodynamics (QCD). In the empirical measurement,
e.g., for the study of the short range correlation of nucleons, it should be defined exactly for the short range con-
tribution and repulsive core of nucleons, and also for the deep inelastic lepton scattering from nucleons and- nuclei
collisions in high energy physics. Understanding modern nuclear plysics craves for elaborating the internal structure
of nucleons, especially the change of such internal structure for nucleons embedded in m'.clea\r medium.

As for nucleons in low lying states it is too involved to be able to make the direcl application of QCD for the
non-perturbative propertics of gluon fields. Theorists have been working for the phenomenology for more than twenty
years. Apart from Monte Calo siinulations, modeling QCD is now still the only game of the town.. There has seen
a remarkable proliteration of nucleon models, catologuing from constituent quarks bound in a confining potential
[1] to non-topological chiral' quark-meson solitons [2]. More recently the Nambu~Jona-Lasinio (NJL) model [3] in
basic qua.rk“ degrees of freedom suitably generalized which links in some ways between the more phezomenological
models and QCD becomes increasingly popular [4]. This is because this model, deals explicitly only with the effective
interaction between quarks, is a scheimatic oue which consolidates all of the relevant (global) symmetries and main
properties as many as possible, and especially visualizes the chiral symmetry breaking pattern (5] of the low energy
regime of QCD, but is still sufficiently simple to permit actual‘calcﬁlations. Multi-gluon machanism is frozen and

. absorbed in an effective interaction between quarks. )

The interaction kernel gi(21, 232, 23, 24) of the generalised NJL-type (GNJL) model represents local interaction
called as piont contact interaction. One might include six- or more- point fermion terms in principle except for the
lowest four-fermion ones, the later is asked to satify Fierz rearrangement invariance, even though it is still quite
involved for a pratical calculation. The GNJL lagrangian or. the action may be fnally fixed exactly by fitting the
experimental data. It is expected to accurately describing the properties and éredicting some new physi_cs.' The
color confinement is believed to be stenined from multi-gluon mechanism, however, it is generally considered that
the confinement mechanism of QCD is able to be sustained effectively no matter that GNJL deminishes the glounic
degrecs of freedom. The relevant confinement sector is hidden in the effective quark-quark interaction kernels in the
general formalism [6]. The ambitions aim is to make it clear that how large in amplitude of such gluonic degrecs of
freedom and their properties would be rcattrieveq in a generalised formalisgn. Still now, however, there is no way to
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deduce it from the first principles. As a first step we would like to consider valence qiza.rks 999, sea quark pairs g7
and diquarks g¢ and all the other possible kinds of degrees of freedom, and test the effective quark-quark interaction
kernels in the composite structure of hadrons by expreiments, then we should improve various concrete forms tc give .
the information and to deminish the uncertainty.

The general form of a GNJL action has been mvestlgated by a number of authors in the past {4,6]. In tho present
work we take the followmg one:

S=5+Sr, (1.1)
where

So = / d455(z) (7,8 — mg) (a) ,

1= / d'zd'y [($(2)Te¥(2)) silz ~ ) (B(9)Te9 ()]
Cwith »
- Ii= {l,iﬁb,qy,vufys} ® {flavor and color},

only the two-flavor sector is considered here. The interaction kernel g;’s are taken to depénd on the difference (z—y) to
insure translational iuvariance. The action preserves the relevent synimetries of QCD, namely (2lobal) color syminetry

8U,(3), chiral syanmetry SUL(2) ® SUg(2), baryon number gymmetry and the discrete symmetries .2.C.T".. Further
Sy is chosen to be Fiers invariant, namely,

51 = [atzaty {mle - o) (505 + BB + (51258 + Pa‘:’Pés"))
ol ) (VD + A AD)  so(e ) (VYD - A 42) |
V . +g5(z = y) ( ’)Vo'(’,’) (‘)A(")) -+ color octet bcrms} . ' : (1.2)
vhere, e.g., ‘ ’
Sso = P(z)7 - 5°9(x)

Py = $(2)8 - Xice ()
Here 7 is the isospin operator and 6%, A° the SU.(3) generators. The interaction kernals g;’s are nonlocal and still ‘
quite arbitrary apart from their covariance property, but we intend to incovporate in them the general features of -
QCD, namely, asympototic freedom and confinement.

Since there are so many unknown elelnents in our model that has té be searched anﬁ tested by confronting the
deduction with experimental data, we prefer to make simple assumptions. At first we would like to make a dmahc
appr oxxmat.lon on g;’s: All the forms are in the same shape but with different strength. And instantoneous approxi-
mation in which the retardation of the quark interation is negnected reduces further the formalism into three space
(hmensxons Namely we take the following form:

gi(e~ o) = o (¢ — ) gl —x']) = o 6(¢ — #) o(r) | - | , (L3)
where ¢;’s 'a.re constants and g(r) is chosen by the general properiies of low energy QCD and from ‘hadron phe-
nomenological. T]us i the so called static approximation. cherthelcss we should finally reserve the rotational and
translational invariance L0, g;’s. - : °

In Sec, I we will discuss the further simplifying steps, including relativistic mean field (MF) approximation. Nucleon
form factors are given in relativistic Hartree approximation (RHA) quark states in cne of the simplest forins of the
effective quark-quark interaction kernels. In Sec. III, numerical results of various form facters and the corresponding

static properties of the nucleon, and a brief discussion will be given.
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II. FORMALISM
A. The self~cdnsisi:ent'relati‘}iétié Hartree approximation

The next major sxmphfymg step is the use of the relativistic MF approximation. As the scalar MF the Iowest
order self-energy D(r) is evaluated from the effective interactions gy (r) which includes confinement and a set of simple
partlcle wave functlons is defined.

In nuclear physxcs MF approach is more fam!.har to the: natural studies. An MF gets out the main contnbutlons of
quark interaction as much as possible, and minimizes tle residual interactionns. This is from often used bound state
method of the resently developed theory dealing with relativistic nuclear many-body problems [7]. The mean field in
configuration space breaks the translational invariance of both hadronic states and the physical vacuum. In principle
' it may be restored by the relativistic momentum projection and boost method to obtain -phy‘éidél hadron states with
well-defined momentum. » k )

The MF can also contain confinement to make quarks bound where is single (anti) quark-in the vacuum (ground
gtate). Brockmann, Weise and Wérner (8] proﬁoaed that effective quark-quark contact interaction with position
dependent coupling strength postulated to be determined by the multi-gluon sector is impossible to be calculated
from first pi'inciples, although it is widely believed to be small at origin (hadron center) and increases rapidly towards
the hadron surface, even if it has come to scene the assumed color screening effect. Therefore one needs to introdﬁce
an effective kernel for induvidual quarks in a phenomenological manner to seek @ posteriors justification in finding
its confomity with the supposed qualitative behavior of the position-dependent coupling strength in the contact
interaction. . _

On the other hand, the quark-quark interaction kernels reduced from the instantoneously approximative Bethe--
Salpeter equation verify that one can also obtain a scalar Hartree mean field in the first order, which represents an
one-point contribution to the sel-energy of quarks. In- this work:we consider only the Hartree term contribution
of the self-energy. The Fork term, which is a two-point one and is of order 0(1/N.), is negnected. This is the
same approximation scheme used in the original NJL model. The explicit evaluation of the Fock term is possible by
following the method of Ref. [9], but we will not purse this further here. The self-encrgy of individual quarks in the
Hartree vacuum is .

2) = [ dr'aler) O e 2 = 2() . (2.1

provided that the two-body-kernel of quarks g(r,r') is parameterized with qualitative praperties of the effective
interaction quoted above, in Eq. (2.1) G(%) (', r') is the Green function in the lowest level, )

GOx' ¢') = folT {(%(=")P(x") |0) .
For the sake of simplicity, in this work we make the foﬂowmg ansatz:
9@, ) =g(lr—r')),

as an instanton-reduced interaction as mentioned in Sec. I (seé Eq. (1.3)). This procedure is manifest to keep Lorentx
invariance in three-dimensinal space, i.., the kernel g( |r — x'|) is translational and rotational invariant. There are
some clues from the results of the lattice gauge simulations of QCD that the confine kernel is approximate linear
increase within the intermediate separation between quarks. In practical calculation the effective interaction kernel
g(r) is simply taken to be a linear confining form:’

g(r) Cr, (C>0). ‘ : i ’_ (2.2)

This means that at a short separated distance quarks-only weakly interact, while at large dlstance there is a linear
increased confine interaction.




In a trancated quark configuration space of a hadrou state, however, the scalar self-energy available above not only ‘
breaks chiral symmetry spontaneously, but also provides a confinement part of interaction in Haitree MT level, The

interaction which is determined by Dirac equation cf independent quarks or anti-quarks in Hartree vacuum,
(v -V = mg = B(r))9(r) = Egy(r) , : ' (2.3)

where $(r) is the single quark wave function in the splere sclf-induced potential V(r) = my -+ Z(r), E, is the
single quark eigenenergy. A solution to the time reverse invariant independent-quark wave function is conventionally

obtained in two-component spatial form as:

¢n1'l¢e(f] = <ia G;;,i:?{;/r) (Yl(i’)xi/z)jm Xi/Z . (2.4)

In this work we assume as in soliton. models that the three quarks of the baryons are in their ground state With .
JP=1 (o= L) and J, = Js = 1. Solutions of Eq. (2.3) and Eq. (2.1) would be obtained by a standard
self-consistent iterative method with the interaction kernel under the assumption of Eq. (2.2).

B. Nucleon form factor definitions
Assuming the quarks to be point-like particles, the nucleon vector current is taken as the sum of the quark currents
Pq(r)1utq(r), the nucleon axial-vector current as the sum of the quark contributions ¥ (x)7.¥s %l,bq (r). The Dirac and
Pauli form factors F; and F; are measured by elastic scattering of electrons on nucleons. The general form of matrix

elements of the electromagnetic cwrrent J,(z) from Lorentz invariance under reflections and charge conservation
between nucleon states is as follows:

(VIO = o', Vs ) + SR (Plulor5), (2:5)

where ¢ = p’ — p is the four-momentum transfer, S the spin. They ave related to the Sachs form factors by

Gr(g®) = I (¢?) - nFa(e?),

Gule?) = Fi(¢?) + Fa(q?) (2.6)

here 7= “JM_Q‘, with normalizations Gf;(0) = 1, G},(0) = p, = 2.793 for the proton and Gy (0) = pp = —1.913 for
the neutron. Isoscalar and isovector combinations are

sta,M (*)= %[G%,M(qz) +G% e (d®)],

CEm(d®) = 3G 1 (¢%) = G% ar(a®)],
" with G3(0) = G (0) = &, G§,(0) = us = 0.440 and G¥,(0) = py = 2.353.

The current matrix elements take a simple form in the Breit-Fermi frame (the electron-nucleon certer-of-mass irame)

- between nucleon states
(N (390 (0)[Ns (= 3a)) = (1 + 1) "*/2Gp(¢*)8s:s 28)
(Ns'(%q)wm)uvsh%q)) = (14 M) Gae(¢)xh Gt s o

: (27)

with ¢, = (0,q), p* = p2 = M2, p= —p' = —1q, and po = E = (4M, - g2)1/2.
‘The axial-vector current A, has isovector property as the Pauli matrix 7. The corresponding matrix elements of
this current between nucleon states involve the axial-vector form factor G4(g%) ‘and the induced pseudoscn,la.r form

factors Gp(g?) as follows: ‘ . _ ; : .
(NEALOING) = o06) [1Cale) + 2220 ()] re5ute) 29).
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The axial-vector form factor has the normalization of G, (0) =g4 = 1.265 :i:‘0.00G. The induced pseudoscalar-vectér

form factor is connected with. the pion-nucleon strorg interaction forin factor InN N‘(q"’) as, -

mZ g N w (4%) : : E )
G ~ LA Gp(0),
P(q ) m’r qz GeN N ( ) o ) ,

“where the (charge) pion mass-r, = 139.6 MeV, on pion maas-shell a2y N(q = mZ) /47r & 14.3. Also in Breit-Fermi
frame one finds for the components of A' (A )

- Wor (B4 Ve (~§a) = xbxh [ -Gl
. p ‘
o
+(Gale®) +nGp(d") or] 5xbxk ’ ' (2.10)
while the time component (Ns/r:(3a)|A*(0)|Nsr(—Lq)) = 0 in this frame. Here the transverse and longitudinal
spins are o7 = 0 — d(o - q) and or = §(o - §).
The slope of the form factors at g% = 0 determines various radii by

6 dG(¢%)
(f’)‘—'m P 7\  (2.11)

\

The empirical nucleon charge, magnetic and axial radii are [10]:

(r,;)pmto“ (0.86 £0.01) fm , v |
('E)it{itron (_0'12 =+ 0'0'1) fm )

(rbl)protoxx [0 86+ 0. 06) fm,
{3} shatson = (0.83 £0.07) fm,

(r3)M2 = (0.63£0.06) fm .

nucleon

So there are different kinds of radii of the nucleon, its size depends on the probe.

I NUMERICAL RESULTS AND bISCUSIONS

Within the present framework some static properties of nucleons are investigated. These include magnetic moment
i, mean-squied radius (r?)y, and axial-vector couplant ratio {ga /gv) for B decay of nucleons, ect.

There would be an appreciable contribution to the energy E, due ro the motion of the center of mass (CM) of the
three-quarks systemn. The expressions for the static quzmhtxes need to be modified Lakmg mto account CM motion.
Then accordingly the corrected expressions for them can be wrriten as

1 : M, :
corr . 4 P - ‘
BN = ¥ tn + 52 {'i/uv + My Qn(1 5N)] ) . (3.1)

(rg)err = 2_|_52 Z [ ZE Qq ( ) ] (rg), , » (3.2)

and -

(9a/gv)eo™ = ﬁ%;(aA/w), a ; ' (3.8)
where ‘ )

62‘—<M2/F2>—1-<P >/E,%. b = (Mx/En) m B1+63) .

* Here Py is the center-of-mass momentum, and Qy is the charge of the nucleon. The relativistic energy of the quark
. core of the nucleon is - ‘
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E.N = Z Eq " Einh':

q

(3.4)

where Eiy is the energy from the residual scalar and pseudoscalar interaction of Eq. (1.2). To be consistent with the

Hartree approximation, the exchange term is -also not included in it. The physical mass of the bare nucleon core js

My = (Ey ~ (P3))/?,
and (P

2.) is evaluated with the usual approximation (P%) =

(3:5)

3>.{P%). DEvaluation of the mean-squired average of

the independent quark momenta (P%,), would lead approximately to the correct estimation of the skatic properties

of the nucleon.

TABLE 1. List of values in MeV of the parameter C in

the kernel Eq. (2.2} fit to a nucleon mass My and the

correspendingly calculated ‘constituent’ quark mass at .

hadron center M (0) and at the quark core radius M (re),
" scalar (Es) and pseudoscalar {£p) interaction energies,
total energy Ey and the CM momentum (P2,

C M(0) M(r)) E, Es Ep (P)/* Ly My

114 307 375 542 362 172 555 . 1093 941

TABLE II Static properties of the nucleon calculated

from the relevant form factors and the corresponding OM
corrected values. The radii are in fm, magnetic moments

in unit of the Bohr magnetons.

(B2 (R D wy pa ga

€

no CM corrected values

0.94 0.50 0.95 1.62 -1.08 1.48
with CM corrected values

0.85 0.81 0.86 1.91 -1.24 1,62

Now we present the calculated nucleon properties with quarks interacting by the linear confining kernel Eq. (2. 2).

As the only parameter of this schematic model, C in Eq. (2.2) is fixed through fitting the recoiled correction mass of

the nucleon MN to the empirical value. The single quark energy E,, the resmual interaction energy between quarks

G (6%)/ ¢ (0)

0.0 0.2 04 0:6 0.8 10
‘ g* (GeV?)
FIG. 1. Proton charge form factor G% [q )/G%(0) cal-
culated in the present rnodel (The sohd h.ne corresponds
to the recoil corrected form factor, the dashed line the
bare one.) in comparison with the relativistic confining
potential model [11] (dashed-dotted line), as well as with

the experimental data.

1% G (4*)/ G4 (0)

0.8

00 02 04 06 08 1.0
g% (GeV?)
FIG. 2. 'The same as Fig. 1 for the proton magnetic form

factor Gf,(q%)/G%,(0).




 Eine and the total CM momentum of the micleon {P%)1/2 are listed in Tab. I Of the interaction energy part, here

both scalar and pseudoscalar components, Es and Ep, respectively, contribute at the Hartree level. The unrecoiled
energy Ey in Eq. {3.4) then reduces ~ sl’ so the spurious CM energy of the nucleon is approximate equal to the single
particle eigen energy of the quarks. It is worth noting that the value of the scalar confining potential M(r) in the
center of the nucleon is happened to be about one third of the recoiled mass My in Eq. (3.5). This number is the so
called “constituent mass” of quarks. Two values of this mass are presented for comparison, one is at the center and
another is at the empirical quark core radius r. ~ 0.6 fm.

We show in Figs. 1 and 2 the results obtained for proton electromagnetic form factors G%(¢%) and G%,(q%),
respectively, in comparison with the relativistic confining potential model resulits {11} as well as with the experimental
data [12]. ’

The recoil corrections of the quark core are made in similar to Ref. [11]. The details will be given in a subsequent
paper where the meson states are also well-tréated. The corresponding recoil corrected form factors are shown for
comparison. They are generally harder than the static ones.

We observe an fair overall qualitative agreement with the experiment data, with discrepencies quite prominent in

the higher |q|? region. It is argued that these deviations are caused by the absence of the derect pion meson cloudy

1.0 FY (¢#)/FY (0) o L FY (¢%)/F¥ (0)

0.8¢
0.6}
0.4

0.2r N\
N

00 02 04 06 08 10

¢ (GeV?)
FIG. 3. The same as Fig. 1 for the isovector form factor FIG. 4. The same as Fig. 1 for the isovector form factor
FY (¢®)/FY (0). - FY (6®)/FY (0).

contributions. This model faileld to give nuetron charge form factor G (q?), while experimentally G% (g®) is. much
less than G%(¢?) in the low |q?| region, so that G (%) = G¥%(q?) according to Eq. (2.7). In order to isolate meson
cloudy effects, it always be useful to discuss the isovector parts of the form factors FY (¢2) and FY (%) [11,13},

FY (@) = 125 [6h() - $1G% ()], |

FY (%) = 12 [364(¢°) - GR(&)] -
Results for Eq. (3.6) are shown in Figs. 3 and 4. Characteristically these again fit the empirical data [14] fairly well.
The results for the axial form factor G4(q?) in the normalised ratio-G4(g%)/G4(0) has been plotted in. Fig. 5 in
comparison with the experical data [13;14]. The fit is better than that in Ref. (11} ‘

The results of the static properties of the nucleon calculated from the form factors and'the corresponding CM recoiled

corrected values are listed in Tab. II. The charge radius of the nucleon computed from Eq. (3.2) is {r3)!/2 = 0.78 fm.
This value is less that in Ref. [11]. The magnetic radius is 0.83 fin. It is almost the same as the charge radius. They

both fit the experimental data well. The axial radius calculated here is not so Jarge as 0.97fm in Ref. (11}.

(3.6)
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The results of the static properties of the nucleon calculated from the form factors and the corresponding CM recoil

correction v;tlues are listed in Tab. II. We sce the recoil 1.0'5\ GA(g%)/G.a(0)
‘correction gives'less radii.” This is nothing but through L )

}*a.\damng the relevant form factors. The charge radius 0.8 -

of the nucleon computed from Eq. (3 2) s (r)1/? = 0.5

fm. This va.lue is less than that in Ref. [11). I‘he mag- 0.6
. netxc mdlus is 0.81 fm. It is approximate the same as the

chargéradius. They both fit the experimental data well. 0.4

N . N
The axial radius calculated here is 0.86 frn. In Ref. {11} is 0.2 NS \\
. . . - -2 r N

is as large as 0.97fm. The calculated magnetic moments ~ "~
of thénucleon are 30% less in amplitude than the empir- RN P
ical'data. The axial-vector ‘couplant; in the other way, 0.0 . 0.2 0.4 0.6
i 530“*”1&&@1’ It indicates that corrections from meson ¢* (GeV?)

cloudy (md color gluonic exchange may be significant. It FIG. 5. The same as Fig. 1 for the Axial form factor

will be our mt»rest of further works. GA(‘J'Z)/ Ga (0)

Now we would hke to make some concluding remarks and dxscussnons of this work. Thc main ldeal of the presens
.approach:js:to -obtain a self-consistent confining potential from. the effective quark-quark interaction kernel. The
simplest way to realize it is to work in the relativistic Hartree MF. Scalar interaction with the sea'quarks in the

lowest order gives rise to a self-energy which serves as a scalar potential, or an MF to the lowest energy single particle

states. There are other ways of dealing with the MF and the vacuum. For example, qua.rkv pair condensatiog [18] in

the quark vacuum by means of the Bogoliubov transformation is formulated, though working with quarks in the MF
is esseﬁtially Workﬁng with dresced quarks. Residual interactions will help to restore symmetry violated by the MF
approximation [16]. By means of RPA equation it is possible to get the quark structure of hadrons, including the qq
cloud surrounding the baryons [17]. We expect to reproducing much more better there the properties of nucleons and
there radial excited states, including the charge form factors of the nuetron and the Ropef resonance.

The single quark wave functions solved by the Dirac Eq. (2.3) is not the eigenstates of the momentum. There are a
significant amount of contribution to the total energy of the nucleon by the CM motion. So using the translationally
invariant nucleon wave function obtains a significant improve to the static form factors. This correction will be done
in a subsequent work by the "‘DA and RPA approaches in a larger configuration space.

Finally we would like to point out that although we tuke g(r) to be a linear form in r. it doesn’t mean that we
should rely on this concrete form of g(r) to get confinement, Actually the similar results will come out irrespectively
for the g{r) in different ways. Confinement in this scheme is realized essentially as long as the interaction strength

between quarks is Jarge enough so that quark pair condensate prevails in the physical vaccum.
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. Abstract

The two nucleon DCX transition matrix element is under consideration
in the framework of QCD. The interactions in the DCX process including
the perturbative and non-perturbative effects are discussed. The interaction
operators are given. ' ‘

It came as a big surprise, When 1984 the first Pion-nucleus double charge exchange
‘reaction (DCX) measurement below the A - resonance had been conducted. Navon et
all'l and later Leith et all? measured the DIAS transition on C at an incident pion
eneryg of T, = 50MeV and found that there the forward angle cross section is as large
as at T, = 300MeV and even is close to the forward angle cross section for SCX on
MC at-T, = 50MeV. This observation was in clear-contradiction to expectations. Since
the destructive interference of s- and p- waves in the 7N- system causes the SCX cross
“section bo unidergo a deep minimum near T, = 50M eV, one could speculated that also
something similar would happen for the DCX process. -In order to account for this
unexpectedly large DIAS cross section on C at T, = 50MeV , at first non-nucleonic
processes were proposed, such as the double charge exchange on six quark clusters®,
However, conventional explainations!! have also been found soon, based on a ¢areful
‘treatment of nucleon-nucleon correlations: Nevertheless, a commou feature of both
‘eXotic and conventional explainations is that both these treatments stress the relevance
of short distances (< 1fm) between the nucleons participating in the DCX process®l,
This is a region in which nucleons overlap so that the conventional multiple scattering
treatment may be an oversimplification. A more correct consideration of the process

occuring at such short distance from quark degrees of freedom is still needed.

' *Mailing address
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The main purpose of this article is to develop a more sophisticated QCD treatment
for the two nucleon DCX transition matrxx element, especially to take into accaunt some
non-perturbative effects.
~ The S- metrix of DCX reaction in the Heisenberg Represent,ation can be expressed
as k s

fd4 / z' z(k x'=kx) o

(2W)32\/5)W1? - | (1)
(O, +m. ) (Og + mz)(pplT((ﬁ,r (z")¢x (c))inn)
whore the matux elements can bc expressed in figure 1, in which the dashed external
lines represent the Green function for the ¢,-(z) field. Considering the Goldstone effect,
we have

(pp7r |S|nn7r ) =

a‘bAud = i?mqﬁ(”c)'yqd(m)
u(l - \/—fﬂ'm ¢7l’ 7‘)

where 4% , = Ty*“ysd, From the dynamxcal spontancous breacking of chiral symmetry
we have the effective lagrangian term[)

V2

—i fm(’ii'y5cl¢,,+(m) | (2)
Using the equation : ‘ ‘ . _
(O, + m2)Ap = —ibé(z — y) (3)
where Ay is the Feynman prop'a.gator for pions, we can get
-9
Slrn: /d" / ' ik X =kex)
e ISPn ) = g 4)

(p p|T(mqu'ysd(:r')mqu'ysd(m))|n n) :

Making a tmnsldtmn h ansfouna.tlon we have -

(PP'W"I'SIWW )= F‘jmy(l»' +p - —'p)/d'*xe"(k"xf

(p p]T(mqu'yg,cl(a:),.mqﬁ'ysd((‘)‘))In n).

(8)

where k’ is the outgoing momentum of 77, k is, the incident momentum, p’ is the
momentum of (pp), p is the momentum of (nn).

We emphasize that the above discussion is, based on the nonpertm bative dfects In
order to carry out the calculation we shall use the QCD sum rule: According to the
operator product expansion, we have

" T(@(e)ysd(=) T(0)y5d(0))
=:7(x)ysd(2) W0)v5d(0) : |

+ 1 5(0)y5d(0) W(0)y5d(0) : Co(x) : ’"iuGﬁu :
o+ T(0)y5d(0) T(0)75d(0) : Coa)my : 7(0)g(w) :

(6)

56




The first term in the right hand side is the perturbative effect, which has the con-
tribution ' - - | -
nzzjd"xe'(k p p| : Wysd(z), myuysd(0) : |n n). (7)

Because of the energy momentum conservation the lowest order contribution of eq.(8)
can be represented by figure 2. ‘
For Fig.2.(1), the contribution is

N 1 S
u.(Pl)g 2 T (Pl _ k' _ p,l)z (ﬁ1 _ ]6’ - m)’)’s,(’l(pl)

i A (&)

) S )

For Fig.2.(2), the contribution is

)‘u

w(py)7s B+ F - m)

1
=
p1— k' —pi)? (P)

(9)

o EA i . '
u(pg)—— - d
For Fig.2.(3), the contribution is

A 1 i ’
U’(pl)q B 7”(171 _ k, _p/l)2 (ﬁl _ Ié, _ Tn)‘)Sd(pl) ‘

(10)

—f 1 L A Ed( 2,
For Fig.2.(4), the contribution is ‘

i Ae 1
P ORAW — - d
u(p}) /5(151 . m)‘g D) 'Yu(pl — k' —p)? (p1)

(11)

i

Z' a
(e 57 : 0 (e
' (ra)y (a+pbi—p—F—m) 2 ! ({)

For the calculation of the second term of the time-ordered product expansion, namely
the contribution of gluon condensation, we adopt the fixed-point gauge techniquel™.
* In this method we introduce an external gauge field A (z) with the gauge condition

z#A%(z) = 0. The external gauge field A?%(x) can then be expressed directly in terms
of gauge convariant quantities , {

1, 1. | ; ,
Au(z) = 52 G, .(0) + -3—a:°‘a:"DaG,,,,(0) + (12)

To calcu’la,té the contribution of gluon condensation we shall employ the di agram shown
as Fig.g. This contribution can be expressed as '

—i—g;GZA(O)GZ—_l—mQ—);{m(¢+m)+(;6+m)o-n,\}, , (13)

57




where

) : )
Ty = E(%%\ — MAVn)-

After some derivation, we can get all of the contributions from these diagram. For

Fig.4.(1), the result is

u(p, — k' — ‘1)9""’7# [fl(qz)g”” + fa(d ) ] = ,ff)z nod(m)

Ili'

- A®
;]'gu(m +k+ Q)QT)"YuW’st(Pz)( v Gua),

where

_ imPg’ s z(1 — z)g* + 3m?
A 115272 /( —2) (m? —z(1 fm)q2)3dm

2 ___zmg / N3 —2z(1 —2) lx
fa(q®) 115272 J (1-2) (m? —=2(1 - 2)02)3“’

The result of Fig.4.(2) is the same as that of Fig.4.(1).
For Fig.4.(3), we have

e o1 k'
1 N A —_—— v
u(pr— K — 095V po LHl(q )g" + Ho(q ) ] (o ) = mﬂsd(m)

1 3
:]_“(1‘)2 +k+ q)g 2 7”( n ’\,)——_2-75 (p2)< T v I“’a)1

where
2y - 2¢(1 — x)¢*
Hl_(q ) 23047r2 / =(1, x)(m2 a1 —x)g?)? v

1 2 2
oy / o
e = 23067 ) (m? - 'r(l —z)¢?)?

For Fig.4.(4), the corresponchng one is

% Ly

*E(z’n — K- q)vsm 5T 2d(p1) [fl(q )g" + f2 (qz)—;]

‘ 7(?2 +k+ Q)g—.z—%m%?——ﬂad(l)zx Gua),

For Fig.4.(5), it takes the following form

oA

[ S L WY, L
(e D =gy —m? 2

2‘ nv. 2 ququ
5 Qd(pl) Hi(q")g" + Ha(q )-qT :

K

1_
&7“(1’2 +.k + Q)Q'z—%@;*_—k)?—'—ﬂsd(m)( " Gua),

The contribution of Fig.4.(6) is the same as that of Fig.4.(4).
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{

The Fig.4.(4), (5) have their exchange terms. They can be given as the followings
respectively.

1 ‘ ¥ |

u - Bt fy sd(p1
u({h ¥ q)g qu [fx(q )" + fa(qh)% ] (i — By = 27 (P ) o)
N . N B A - A

q—l—u(Pw +k+ q)"y’s—'———( T o)t —m? 295 W d(p2){G, . LGua),
. K
U(px — K —Q)g——% [Hl(q )" + Hy(q* )q ! ] — s )

(pr — k)2 —m (21)

“z‘ﬁ(pz +k+ q)vs(—;—k—];;—zg X Y d(p2)(GL, G va),

The exchange term of Fig.4. (6) takes the same form as Fig.4.(4).
Similarily, we can write down the contributions of Fig.4.(7), (8) as the follomng,b
respectively, and Fig.4.(9) has the same result as that of Fig.4.(7).

/

uUp -k - Q)%G——-—k)ﬁ_ﬁ%%ﬁd@l) [fl(q?)g‘.“' + fz(qz)quun

iy (22)
TP+ e T () (63, G,
i} b u
(o - @%——jnr—~2%;M@ﬂPMun+H(fﬂﬁ]
f - (28)

_ A A%
?“(Pz +k+ q)%(——;,;k)—g—-?n—z 5 Y. d(p2 G5, G uva),

The third term of eq.(6) is the contribution of quark condensation. In order to
~ determine this contribution it is necessary to consider the following diagrams in Fig.5..
The contribution from Fig. 5(1) can be written in the following formula,

— L e 2 _QE kv g
0 -t q”z”wK“)(w ”>ﬁ~w;m%4“) (24)
3 e i 1 -
—U(p2 +k + (1)93%16————2 . m‘st(Pz)*é<¢‘¢),
where "
‘ K(¢*) = 2"17 (25)
For Fig.5.(2‘)Aand (3), we have
— | ! A? | L | '
u(pr — k' — 4)75(;—;6)_? D) 'Yu K(q ) ( g ) d(p1) '
(26)

_ E o)L
u(ps + k + q)g 3 7,, e kY mz"/sd(Pz)6 (),
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VI /\ | N
a(pr— ¥ —Q)%() —————q’iz ‘m,gw d(m)K(q?)( -9 ) ’“"'(27)
A .
R gj;——;n—zg % (m) (1)

The next step is to ert(" down fhe six qumk wave funcmon of (nn) and (pp) in the
nucleus and calculate the matrix element.. The result will be given in the future.

The authors are grateful for the hospitality of CCAST and this work is also partly
supported by the National Natural Science Foundation of China.
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~ Abstract

In analogy to the idea of the effective interaction commonly used
in the non-relativistic approach, the relativistic effective interactions.
are adopted to incorporate the relativistic Brueckner-Hartree-Fock

(RBHF) results in the relativistic mean field approach (RMF) or rel-
ativistic Hartree-Fock approach (RHF). It is desired to remedy the
deficiencies of RMF and RHF without losing the features of the rel-
ativistic G matrix and at same time retain the simplicity. The rel-
ativistic effective interactions are used to describe the ground state
-properties of nuclei and medium-energy nucleon-nucleus scattering in
this paper.

1 Introduction

During past ten years péoplé have devoted considerable efforts on the rela-
tivistic approach in nuclear physics[1-3]. One mnay ask why we need a rel-
ativistic approach in nuclear physics. In the non-relativistic approach the
nucleus is considered as a collection of non-relativistic nucleons. It is a non-
relativistic many-body system. To deal with the non-relativistic many-body
problems one starts from a static nucleon-nucleon (NN) interaction, such as

*This work was supported by/ the National Natural Sciencé Foundation of China
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paris, Bonn potentials etc., which fits the low energy NN scattering data,
phase shifts and deuteron properties. With the many-body technique one
solves the Schrodinger equation. The non-relativistic approach is quite suc-
cessful in explaining low energy nuclear physics and has provided important
" insights into,nuclear physics. Despite of the success, there are still some
longstanding problems, which have to be solved. It is well known that the
calculated nuclear matter saturation points can not meet the empirical value.
‘The saturation points calculated with different two-body NN interactions are
located in a narrow band, which is called Coester band[4]. Taking account of
“three and four hole line contribution the results still can’t hit the empirical
value. Similarly, for three body system with modern NN potentials, the *He
system is underbound by 0.8 MeV[5] and the calculated rms charge radius
is'about 9% too large. For finite nuclei, it is necessary to add a phenomeno- -
“logical density dependent term[6]. To show the shell structure the spin-orbit
interaction has to be put in by hand. These might suggest that there need
some additional mechanisms to let nuclear matter saturate at the right po-
sition. ‘ o : : ‘

It is known that NN scattering amplitude has large scalar and vector com-
ponents. The nuclear bulk properties could be mainly described in terms
“of the scalar and vector componenis: The Lorentz structure of the inter-
action provides an additional saturation mechanism, that is not present in
" the non-relativistic approach. As the nuclear density increases the attractive
scalar potential saturates. The vector potential dominates at high density
and produces the minimum in the binding curve.” The nuclear matter satu-
ration point is reproduced nearly quantitatively in RBHF approach[7]. The
relativistic impulse approximation (RIA) is very successful in explaining the
scattering of medium-energy proton from nuclei[8]. RIA calculations agree re-
markably well with the data, particularly for the spin observables. The Dirac
- phenomenological optical potential (DPOP) predicted the spin observables
much better than the non-relativistic optical potentials[9]. The calculations
of the RMF for finite riuclei clearly reveal a shell structure[2]. It is due to the
fact that the spin-orbit interaction is obtained naturally in the relativistic .
approach. These may indicate that the relativistic many-body approach is‘a

“useful tool in studying the nuclear structure and nuclear reaction.

In addition, in the future experiments nuclear systems will be examined under
extreme conditions of density and temperature. A néw generation of acceler-
ators, e.g., RHIC may produce nuclear density of-§ times equilibriuin density,
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‘the temperature of nuclear system may reach 100 to 200 MeV. CEBAF will
provide continuum electron beam of 4 GeV with high resolutions. The ex-
periments will carry out with high momentum and high energy transfers.
The high energy baryon accelerator will provide a complete information of
the polarization of the protor-nucleus scattering. These future experiments
will clearly involve 1 I)hysics'béyond the Schrodinger equation. Therefore, it is
necessary to develop a reliable and relativistic theory. '

It is commonly accepted that the quantum chrom odynamies ( QCD) is a fun-
- damental theory of the strong: interaction. It has already drawn a lot of
interests and has made a significant progress. However, it is still far from
complete to use QCD directly to describe many-nucleon systems now. There-
fore, to explain the future experiments it is attractive to develop a reliable
and practicable model based on the hadronic degrees of freedom. The rel-
ativistic many-body approach and the quantum hadrodynamics (QHD)[1-3]
is a satisfied candidate. It has been intensively investigated in the past ten
years. The simplest model is RMF, which starts from an effective Lagrangian.
In this model the meson fields are treated as classical fields. It is considered
to be an efficient model to study the nuclear structure and nuclear reaction.
However, the effective interactions of a nucleon in the nuclear medium are
.treated in a rather crude way in this simple model. A more sophisticated
and fundamental way to deal with the many-body problem is to start iromn
a static NN force. Taking account of nuclear short range correlations, the
relativistic G matrix is evaluated by solving RBHF equation[1,7]. The rel-
ativistic G matrix is of density and momentum dependence. Obviously, it
is rather complicated.. In analogy to the idea of the effective interaction,
which we ofteh used in the non-relativistic approach, the relativistic effective
interactions are adopted to:incorporate the RBHF results in the RMF. The
relativistic effective interactions are required to contain as much information
of G matrix as possible. They have first to be examined in study of the
nuclear structure and nuclear reaction at the normal condition of density
and temperature. Then they are ready to be extended to the nuclear system
away from the normal condition. ‘

In Sec.2 we briefly present RMF and RBHF and then success and defects
in explaining the nuclear structure and nuclear reactions. The relativistic
effective interactions, which 1ncorporatc the RBHI‘ results, are dcsc,nbed in
' Sec 3. Finally, bec 4 cont&ms a-suminary. ‘ :
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2 RMF and RBHF
The RMF approach is to ktart from an effective Lagrangian,
| £= £+ £1,
o = P(i7,0* — M) + (3 0'6“0' —-mio?) — —F“VF“” ' —;-mf,w,‘w“, (1)
| £I = .%1/’0'7/1 - gw¢7ﬁtw 1/’7 |

nl
.P”” = ' “U)V il | yw“,,

where 1 is the baryon field, o and w are the neutral scalar and vector felds, |
respectively. The effective coupling constants g, and g,, are to be adjusted.

The field equations, i.e. the Euler La.grantre eqlmtloje can be obtained fxom H
the eﬁ'ectwe Lagranglan :

(3,,,5“ + m?,)a' =-99E¢7_ ’ ‘ :

[74(i0, = guwy) ~ (M = go0)|tp = 0. R

When the sources are large, the meson field operators can be replaced by
their expecta.tion_values. ‘The meson fields are treated as cl'z_pssical- fields. In
the uniform infinite nuclear matter the meson fields are constants. The effec-
tive coupling constants are adjusted by fitting the nuclear matter saturation -

conditions. In this simple approach the nucleon self-energy ¥, and £,, are
constant in the momentum,

gs . .
o
Eo = —q'(";'/j’ﬁv
my,

where p, and pp are the scalar and vector densities, respectively, -

Lo

3

Ty on / M
P TSV S g (kv
pB =< Yy >= —“:kF» 1 (4)
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M =M-+%, E'=+E+

The incompressibility of nuclear matter K calculated in RMF is about 590
MeV, which is overlarge compared with the experimental value 210430 MeV.
It indicates that the effective interaction calculated in RMF do not have
a correct behavior of the density dependence. To solve nuclear structure
. problems, we deal with a finite system. Therefore, the meson fields are of
.spatial dependence. For spherical nuclei, the meson fields as well as th= scalar
and vector potentials depend only on. the radius. To solve the Dirac equation
the negative energy states are neglected. The positive energy spinors can be
written as Lo A

- 1/ e N ]
- Yl ) = ( Fifa-) 7 ) Yem(T, 0)x2(€), (5)

where r, o,'¢ are the space, spma.nd isospin variables, respectively. The
- quantim number « refers to (n, &, m, 7) and a to (n, &), where n is the
principal quantum number, xk==£(j + 1/2) for I = j £+ 1/2 and r=1 for pro-
ton and -1 for-neutron. In order to make a' quantitative coraparison with
actual nuclei some additional dynamics have to be introduced, e.g. ¥ to ac-
count for the Coulomb interaction, s meson for the nuclear symmetry energy.
Therefore, the upper and lower radial components satisfy the equation,

—d— ( g:((:)) ) = (M -E'a+;‘i:zr) '- Eo(r) | M Fht zﬁ::(r) ;';om )( f,:((;)) ) :
LRl N et " ®)

r

where : D

- Ey(r) = Vo(r),
; v 1 .
Zo(r) = Vul(r) + V,(r)r + 5 (L +7)Ve(r).
The scalar and vector potentials ar‘e’jithe expécﬁation values of meson fields in
the ground states. They depend on the wave function of the ground state and
the baryon ,density. Therefore, the eq.(6) has to be solved self-consistently.
In this approach, there are only four adjustable parameters, the coupling
constantsg,,g., g, and the scalar meson ‘mass m,. Lhe other quantities,
such as masses of nucleonw and ‘meson and the strength of electromag-
netic interaction. o are taken their physical values. ~Actually, the ¢,, g, and
9, are adjusted by the nuclear matter saturation properties. This method
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208,

0.0t

r{fm)

, 'Figu're‘ 1: Charge density distribution for 26Pb [10]. The shaded ;egion'
~ ‘represents the experimental data. The solid curve is calculated in RMF.
The dotted and dashed curves are the results of DDHF and DDHF-I-RPA

respectively.

has turned out to be a very s ur'cessrul tool for the description of nuclPar
structure. First, the shell structures appear automatically due to the spin-
orbit interaction, which is obtained naturally in the relativistic approach.
The ground state properties of all closed-shell nuclei, such as charge density
distribution, binding energy per nucleon, rms charge radius, right ordering .
of single particle levels, are well reproduced by RMF[10]. They are as same
“level of accuracy as density dependent Hartree-Fock (DDHF) results in the
‘non-relativistic approach. Figure 1.gives an example of the charge density
distribution for ***Pb, which is adopted from ref.[10], calculated in RMF
and compa:med with two non-relativistic calculations. Recently, this method
* has been also extended to odd and deformed nuclei throughout the periodic
- table. It was found that most of the ground state properties can be success-
fully described by RMF, Applymg RMF to ‘the nuclear reaction, we have
investigated the relativistic microscopic optical potential (RMOP). Taking
account of the medium effects, we calculated the self-energy of a nucleon in
the nuclear medium. It is known that the self-energy cf a nucleon is identical
- with the optical potential of the nucleon. Since the scattering problems are
- studied in a large energy range. The energy dependence of the scalar and-
vector potentials are certainly important, which are absent in RMF. The
Fock terms contribute a weak energy dependence of the potentials, which
are included in our calculations. We let the Hariree and F och self-energles of
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a nucleon be the real part of RMOP and the imaginary parts are calculated
_in the lowest order diagram. Therefore, the calculated self-energy is complex
and momentum and density dependent.

E(k,ke) = Du(k, kr) = 5ok, br) +i7 - kSu(k ke).  (7)

By the standard local density approximation (LDA) the cbmplex self-energy
of a nucleon is substituted into the Dirac equation,

o - p(1+ Zo(r)) +7°(M + Zy(r)) = So(m(r) = B(r). (8
It can be reduced to sca.lé.r—vector form,

[a‘p‘i"Yo(M‘*‘Us)"*'Uo]Ip:Etbr o (9)

Sy~ LM -, +EX,
U= BTy 2Tt PR

To solve the Dirac equation, the Schrodiﬁger type equation is obtained by
eliminating the small components in the Dirac equations. ‘

2 . E'Z _ M2
[‘;E <+ Uc:nt(i) ny V.C(r) + U:raa * L]‘r”(") = '—'-:‘—;"ET”‘"(P(T), (10)
Uaeme(r) = Uy + 55 (Us(2M + U) = (Us + V2)*],

1 dD(r)
o T2ErD(r) dr '
- D(r)= M+ U,(r) + E = Us(r) = V(r)-

" USQ('I')‘ ".::

~ There are central and spin-orbit potentials, which are called Schrodinger
equivalent potentials. It is quite encouraging that without any readjustable
parameters this model could reproduce main features of the phenomenolog-

" ical optical potential. The real parts of the central potentials are changed
from attractive at low energies to repulsive at high energies. The imaginary
- parts of the central potentials have surface absorption at low energies and vol-

ume absorption at high energies. Especially, the strong spin-orbit potent.ia-ls ‘
_are obtained.naturally. It is known that the scattering observables mainly

depend on the volume integral of the optical potentials. The COmP?'ri?Ofl ?f
‘the volume integrals of RMOP with the empirical values are given in Fl%--af
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Figure 2: Volume integrals of the central part of the Schrodmger equivalent
potentials for “Ca. 0

It is found that RMOP obtained i in this model isin a rea.sona.ble agreement
with the empirical values at the energy below 300MeV. We have calculated
the scattering observables for various targets at this energy region. A general
agreement with the experimental data is found. But, RMOP does not agree
with the empirical values at high energies. This is due to the fact that the
momentum dependence of self-energy may not be treated properly in this
model. In order to show the momentuin dependence of the self-energy in
Fig.3 the calculated self-energies are compared with that of DPOP, which is
given by Hama et al.[13]. From °q, (10) it is found that U.en; is roughly equal
to U + U, at the low energy and U, + U, at the high energy around 1 GeV.
Since the real part of U, is attractwe there is a large cancellation between
scalar and vector potentials. As a result, an attractive potential is obtained
‘at low energies. The vector potential dominates at high energies. That is
‘the reason why the central potential changes from attractive to repulsive at
high energies. Though the absolute values of U, and U, at low.energies for
DPOP are larger than RMOP, the difference between U, and U, are similar.
Thus, they have similar Schrodinger equivalent potentials at low energies.
The momentum dependence of RMOP due to the Fork term is very weak.
Therefore, the vector potential remains strong at hlgh energies. The repul-
sive central potential of RMOP becomes overlarge at hlgh energies. This
may indicate that the density and momentumn dependence of the effective
interaction in this model is not correctly described. More fundemantal and
sophisticated method ‘to deal with many-body problems is RBHF. Starting
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Flgure 3: Energ v dependence of the scalar and vector potentials at r=0
or °Ca. The solid curves are phenomenological potentials{13] and dashed
curves are calculated in the o — w model.

. ) . S
from a bare NN interaction of one boson exchange potential (OBEP) one
solves the Bethe-Goldstone equation, which is a three-dimensional reduction
of the Bethe-Salpeter equation in the nuclear medium,

G=V+VQiG, ' (1)

where G is the two nucleon correlated effective interaction matrix. V is
the bare NN interaction. & is the Pauli operator, which forbids scattering
to intermediate occupied states. § is the single particle proper propagator,
which maintains elastic two body unitary in nuclear matter. If V' is taken
‘as OBEP with a relatively weak tensor force, the nuclear matter saturation
properties are reproduced nearly quantitatively by RBHF(7]. The calculated
' relativistic G matrix is of strong density dependence and weak momentum
dependence. The incompressibility K of nuclear matter for RBHF turns out
to be 290 MeV in a good agreement with the generally accepted empirical
value. The effective mass M*/M of a nucleon in nuclear matter depends
on the scalar potential, which is about 0.6~0.7. The encouraging results of
RBHF in nuclear matter lead us to think that this theory should describe
nuclear structure and nuclear reaction reasonably well.

Unfortunately, it is an awkward task to solve RBHF equation for finite nuclei.
Though there are a few attempts to work alone this line[14], it is very compli-
cated and under investigation. However, it is feasible for nuclear scattering:
problems. The self-energy of a nucleon i in nuclear matter can be obt:.uned n
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Figure 4: The differential cross section, analyzing power (A,) and spin rota-

tion function (@Q) for the p-*°Ca sacttering at 497 MeV. The solid and dashed ~
curves show the results with complex and real effective mass, respectively,
calculated in RBHF approach. o -

RBHF. Using the standard LDA the RMOP for the proton-nucleus scatter-
ing is obtained. We calculated proton-nucleus scattering of “°Ca for energy

- region of 160-800 MeV(15]. The differential cross sections and spin observ-
. ables are compared with the experimental data. The results-show a very

good agreement with the experimental data(Fig.4). These may suggest that
the effective interactions ca.lcula.ted in RBHF have a good behavior of both
density and momentum dependences. Therefore, RBHF is certainly superior
to RMF except for its complexity. In regard to some applications the follow--
ing question may arise. Could we incorpoate the RBHF results in RMF ?

That is the idea of the effective interaction, which is commonly used in the

non-relativistic approach.

\
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3  Relativitic effective interaction

Only in very recent years thbre are some atterapts to work alone this line.
Gmuca[16] proposed a method by using a density dependent scalar meson
mass to reproduce the nuclear matter saturation curve. Brockmann and
Toki[17] proposed a method based on the analyses of the self-energy. They
introduced density coupling constants of ¢ and w mesons to reproduce the
scalar and vector potentials. QObviously, the information of the momentum
dependence of the relativistic G matrix is lost in' these approaches, where
RMTF is used. Fortunately, the momentum dependence of the effective inter-
action is weak, which may be neglected in the calculation for finite nuclei.

© Gmuca assumed a density dependent scalar meson rmass

my = m2(1 - ap+ Ap*%), (12)

and adjusted the parameters g, g,, « and § to reproduce the nuclear mat-
ter saturation curve, which is calculated in RBEF. It is considered to be
equivalent to the relativistic G matrix. He has solved Dirac equation with
the density dependent scalar meson mass seli-consistently for **O[16]. It is

found that the calculated ground state properties of °0 are in a very good

agreement with the experimental data. In this approach the scalar and vec-

tor components of the self-energy are not individually reproduced.

Brockmann and Toki proposed a method by fitting the scalar and vector po-
tentials with density dependent coupling constants of ¢ and w mesons. They
called it as relativistic density dependent Hartree approach (RDDH). The

‘scalar and vector potentials calculated in RMF with constant couple con-

stants and in RBHYF cross nearly at the nuclear satuation density. Therefore,
the counhng constants of g,, g, in RDDH are similar to those in RMF at
the nuclear saturation density. The coupling constants become large at low
density and decrease at high density. It is found that the coupling constants

at kp = 0.8 fm~1, which is just at the nuclear surface for finite nuclei, are
~ about 40% bigger than those at the nuclear matter saturation demsity. It

means that the coupling constants at the nuclear surface are much bigger

" than thosé in the interior, which is a rather important surface effect. The
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surface effect will improve the rms radius for finite nuclei and certainly in-
fluence on the response of nucleus in the quasielastic electron scattering. It
is known that the theoretical predictions for the longitudinal response of nu-
cleus overestimate the experimental data about 30% ~50% . This effect. will
‘certainly improve the theoretical prediction. It is known that the Fork term
could contain the information of momentum dependence in the relativistic
G matrix. It is certainly an interesting problem to solve the RHF equation
for finite nuclei. Bouyssy and his colla.borators[lS] did a pioneer .work on it.
The RHEF approach for finite nuclei may reveal some new physics, since it
could contain psedoscalar meson = and other important information. But
it is rather complicated and the investigations are still under way. To deal
with the scattering problems, the momentum dependence of the relativistic
G matrix might not be neglected. We have investigated the scattering prob-
“lems by the effective meson exchange (EME) in RHF approach(19], which
was first proposed by Elsenhans et al.[20]. The relativistic G matrix is split -
into two parts, the bare NN interaction and the correlation term,

G =V +AG. . o a3)

The bare NN interaction is chosen as OBEP. The correlation term AG is
parameterized in terms of an effective meson exchange model in the RHF ap-
proach. The coupling constants and masses of the effective mesons explicitly
depend on the density, which are listed in Table 1. The largest contribution
shows up in the exchange of an effective isoscalar vector meson. The negative
coupling strength means that the two-body correlations reduce the repulsive
contribution of w meson in OBEP. '

To show the momentum dependence of the self-energy calculated in this
model, we give the self-energy as a function of the nucleon energy at a given
- demsity in Fig.5 in comparison with those calculated by the o — w model in
RHF approach. The Hartree contributions are similar in two models. The
Fock terms produced by o and w mesons are small and very weak energy
dependent. They enhance the strength of both scalar and vector potentials
in the ¢ — w model. Conversely, the Fock terms in EME model have large
cancellation among the isoscalar, isovector and the effective meson contribu-
tion. The effective isoscalar vector meson contribution with a negative cou-
pling strength sizably reduce the vector self-energy. As a result, both scalar
and vector self-energy in EME model are reduced considerably. The vector
potential at the energy of 1GeV in EME model is about 100 MeV weaker
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Tmeson o w K & n
g4 5.7480  8.8562 12.7767 0.7536 1.1396 2.2486
-m(MeV) .551.86  T783.97 122.75 609.48 611.90 785.97

kF(fm—l) R o’ W’ o’ p)

’ 1.0  g¢*/4r 02333 -14.0488 -3.2537 -1.8501
.m(MeV) 403.32 1500.0 928.67 974.73

1.2 g 4m  0.2056 -7.1425 -2.6242 -2.0438
m(MeV) 440.90 1108.3 928.43 1102.5
1.4 4w -0.0195 -5.8792 -2.6549 -2.4787
m(MeV) 250.00 939.15 970.81 1193.1

1.6 @ /4m  -0.0791 -5.9348 -3.3569 -4.4052

m(MeV) 275.06 919.23  1097.0 1500.0

Table 1: The ébuplih& constants and masses of mesons for the bare potential
V and effective mesons for the correlation AG. The tensor-vector ratio for p
. meson is f,,/g,,-3 128.
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Figure 5: Sca.lar and vector potent1als of the nucleon self-energy X (dash-
dotted curves) at krp=1.4 fm~! a) in the ¢ — w and b) in the EME model.

" The dashed lines are the Hartree contributions. The solid curves are scala,r
and vector potentlals Us,. U, in the Dirac equation (9).
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]
. Th«. RBHF approach, starting from a static NN interaction is a more funda,-
mental and sophisticated way to deal with the many-body problems. Taking
account of the nuclear short range correlation both the effecctive interactions
show a good behavior of both density and momentum dependence. Of course,
it is much complicated and time consuming in the numerical calculation.
In regazd to possible applicatious, it is desirable to remedy the deficiencies of
RMF and RHEF approsches with an effective interaction without losing the
features of the relativistic G matrix and at the same time retain the simplic-
ity. This i the idea of the relativistic effective interactions. It has first.to be
examined in the nuclear system at a normal condition. Then, it is ready to
be extrapolated to the nuclear system away from the normal condition.
* The direct application. could be the study of properties of the nuclei far from -
the stability line, the nuclear response of quasielastic electron scattering-and
the phenomena of dense matter at high temperature produced by the nucleus-
nucleus collision and astrophysics. Very promising features dis cussed‘a,bove.
have been already seen for these applications.

It is still a challenge to the theoretical physicists to develop a reliable a.nd
efficient method, which describes the future experirnents at norma.l and ex- -
treme coudltmns
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Effect of tensor coupling of p meson in
relativistic Hartree theory for Ca isotopes

Ma Zhongyu'? and Chen Baogiu'
1) China Institute of Atomic Energy, Beijing 102413
2) Institute of Theoretical Physics, Beijing 100080

~ The recent xperimental program using radioactive nuclear beams has
opened a new era in nuclear physics [1]. The study ol properties of nuclei
far from the stability line is an attractive topic for both experimenters and
theorists, because extremel v neutron rich nuclei have shown different charac-
teristics from those of nuclei near tLe stability line. A new aspect of exciting
findings in very neutron rich nuclei is neutron halo such as "'Li and MBe in-
light nuclel. . '

The relativistic method[2] is strongly pushed by the success in describing
both the plO])eltlLS of ﬁmLe nuclei in the relativistic Hartree theory and the
intermediate pr oton-nucleus scattering in the relativistic Brueckner Hartree-
Fock approximation. Meanwhile, a great effort has been made in a micro-
scopic understanding of various nuclear properties starting with inter acting
nucleon and meson fields within the relativistic framework. The relativistic
mean field (RMF) theory with the inclusion of non-liriear o terms and the
isovector- vector rho meson field terms provides extremely excellent results
for the binding energies and other properties of not only the spherical nuclei.
but also of some known deformed nuclei throughout the periodic table[3]. Tt
would be interesting to extend the RMF calculations to nuclei far from the
stability line and near the neutron drip line[4,5].

In this work, the isotopes of a given 7 till the neutron drip line are studied
in RMF using ¢, w, p as the interaction between nucleons. It 1s well known
that the p meson (an isovector), which couples to the nuclecn isospin, is

*This work was supported by The National Natural .;ufnce’Foundation of China.
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M (MeV)  m,(MeV) m,(MeV) m,(MeV) = gq Jw 9p
HS | 939.0 - 520.0 783.0 770.7 1047 13.80 4.04
TS 939.0 597.6 783.0 770.0 11.206 12,72 2.78
Table 1: The paraméter sets of HS and TS, which are taken from ref.[4,5]

important for the binding energy of neutron rich (or proton rich) nuclei and
the location of the neutron drip (proton drip) line. In usual RMF calculations

of the stable nuclel, the contribution of the tensor coupling of p meson with

~nucleons is neglected, which is very small [4-6]. Here we emphasize that
the contribution of the tensor coupling of the tho meson to binding energy
for very neutron rich nuclel may not be neglected and it has not negligible
- centribution in the neutron drip (proton drip) line when the rate of proton
and neutron number becomes very large. ‘ '
Following the work of Walecka for the description of the relativistic Hartree
theory [2], the effective lagrangian density can be written into two parts:

L=L04L ; (1)

where £° is the free lagrangian density including nucleon and meson (o, w,

p ) fields and has the following forms:

1l s = 1

o - 1 1 | .
\'C’O = z/fJ(Z ’}‘uau"']"-[)zr/’“i";;(@xaﬁua_m‘ga)'_ZF;LI/F#‘U‘{_”3777'3;“"M°"“"“G;LV'G#'U"‘;
o | 2
Fu = 0wy, — 0w,

-
~

(qu =0,py — dupu

where

¥ is an SU(2) baryon field with mass M and o, w, 7, are the sigma, omega
and rho meson field with mass m,, m,, and m, respectively. The interacting
lagrangian density is : :

L1 = —goibop — gubywt - Goby, p* - T+ E%ZJUW(?V pr T (3)
The ¢,, g, and g, are the NNo, NNw and NNp coupling constant, respéc~
tively, given in Table 1, which are taken from ref.[4,5]. In the Hartree ap-
proximation, the contribution of the pion field is zero, sc it is not taken into

&L -

-
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account. The Euler-Lagrange equation provides a Dirac equation for the nu-
cleon and Klein-Gordon equation for the meson fields. The detail expression
of the equations can be found in ref [4.5,7].

The parameter sets, HS and TS in ref.[4,5], differ in the sigma meson
mass my. It was determined in reproducing the meson charge radius for HS
and the binding energy for TS, respectively. We can see that the values of
g, i HS and TS sets are slightly different. The ratio of tensor to vector
coupling f,/g, is chosen to bei. . - ... 3.7 and taken the same for
HS and TS. Due to the spherical model we have used, we limit our study to
even-even nuclei and choose proton magic nuclei Ca.

~The pNN coupling provides an isospin dependent interaction among nu-
cleons. The interaction produces by the pNN vector coupling depends on the
difference of neutron and protoun matter densities,

5 oy N R
'pr. or p '-:' . >__, [G';(T') + F,:(l’)] (4)

w2
4 R

-

where G,(r) and F,(r) are the upper and lower coraponents of the single
particle radial wave funciions. The nuclei far from the stability line have
a large difference of neutron and proton matter densities. Therefore. their
ptoperties are greatly influenced by the isospin dependent interactions.[4]
Patra et al. [8] shown that the tensor coupling of the ¢ do not contribute -
for even-even nuclei in the RMF approximation used and given an exact
" proof in appendix of ref.[8]. We believe that the contribution of the tensor
coupling of p meson is not negligible for nuclei far from stability line. The
reason 1is 1;ha7t the tensor couplin‘é of pPNN depends on the tensor densities,

(&)
~—

T 1 — oy ™ )
Pr oy = }__, 2(,1“(7‘)_1«‘1(1“)., (

Though it is usually small due to the interference, the mixing terms of the
vector and tensor coupling of p meson are not small, which mainly influence
the spin-orbit interactions. In order to explore it and to show the influence,
the tensor coupling of the p meson is included in the RMF calculations in this
work. As an exa,{nple, we show our numerical results for the various nuclear
radii and the binding energy of Ca isctopes using T35 and HS parameters
in Fig 1 and 2, where solid and dashed lines denote the results calculated .
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calculated with the parameter set of TS in table 1. a) the proton and neutron
root mean square radii; b) the binding energies per particle B/A. The solid

(dotted) lines are for the case without (with) the tensor coupling of the p

meson.

without and with the tensor coupling of p meson, respectively. Our results
demonstrate that the tensor coupling of p meson is not ueglmble for neutron
drip nuclei. The contribution of the tensor coupling to.the binding energy
- becomes less bound and the neutron ris radius is expanded, when the rate
of neutron and proton number becomes very large, and to the rms radii of

tke proton is small. We also calculate the proton and neutron density distri-

busions for various calcium isotopes as a function of the radial coordinate r
with sets HS and TS. When this work was finished, we saw a newly published
paper{9]. which pointed out the incorrect corcluswu of no contribution from
the p tensor coupling in ref.[8].
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Figure 2: Same as ﬁgﬁre 1, except for the parameter set of HS in table 1.
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Abstract

A renormalized Schene baeed on the functional approach is developed for
e*cchcmma diagrams and mescn propagators in the framework of the Walecka
model. The direct and exchange diagrams in the balzj,zaa_pmpagmtor are calcu-
lated self—consistently. The effects of the vacuum fluctuations generated by Vir-
tual nucleou——antmuclcon pairs are included. The result is a set of finite
nonlinear integral equation for the b‘]rvon self—energy and meson propagator
that has to be solved self—conslstently ‘

A model of strongly interacting nucleons and mesons was propoced by
Walocka[l] and has been successful in the mean—field theory approximation
(MFT) or the one-loop level (¥ relativistic Hartree approximation” or
RHA)[1-10], where the meson fields are replaced by their ground—state expec-
tation values at & finite density of nuclear matter. In the MFT the contribu-
tion froi the Dirac sea, which includes divergent pisces, is omitted, while a
renormalization procedure is performed in the RHA. The original motivation
for these studies was that the ‘\/H*T should become increasingly valid as. the
density increases and that the MET and RHA could be good nonperturbative
SLavung points for the cqlculanon«; at a normal nuclear density[2].

It is well-known that the renormalizable meson—baryon quantum field
theory provides a consistent theoretical framework for studying the dynamics
of the quantum vacuum in the nuclear medium. Therefore, much work has
been dome to see if nuclear physics can be adequately described by a
renormalizable field theory which employs effective baryonic and mesonic de-
grees of freedom[1-3,11-22]. To remove the divergences from the Dirac

sea, Chin first suggested a diagrammatic treatment method in the RHA[3,11].

Then a functional approach to subtract the divergent terms was presented by
Bielajew and Serot[2,13]. Dunng the last a few years, a number of authors
have commented on the existence of poles at space—like momenta in the
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renormalizable meson—nucleon fields[13-15,17-22].

One decade ago attempts were started to solve the nuclear many—body
problem in the relativistic Hartree—Fock approxunaixon(RHF) for the popular
o, model[2]. These attempts up to now include self—consistent calculations[4],
which Tc'eep' both the direct and exchange terms, but eliminate the vacuum fluc-

-tuations, as well as ‘the discussion of renormalization[13]. The renormalized
relativistic Hartree—Fock approximation, which includes contributions from
both positive—energy states in the Fermi sea and negative—energy states popu-
lating the Dirac sea, proceeds with a suitzble definition of counterterms de-
fined in terms of vacuum amplitudes. ' | '

In this letter, foliowing the Bielajew and serot’s method[2, 13] we develop a
renormalization technique involves expandmo the propagators and self—ener-

‘ gies in power series of the free Fermi propagator. By the power counting it is
stralghrforward to extract the divergent terms in the expansion series. These
- diver gent amplitudes raay be isolated and removed in terms of spectral func-
tions. A unified and formulated dzscription of the renormduzed relativistic
Hartree Fock approximation is obtained.

Our considerations are based on the Walecka model {1] (¢, © model) with
Largrangian,

1 v

| . 1, 4 1 ;
£ =iy 0" — M)W +5 coaﬂcp—-micp’-)qmj,v“m ~3F"F,,

~g P —g WV b +6£ ., o (1)

where ¥ rcpresents the nucleon field, while @(V,) is the scalar (vcctor) meson
ficld Wxt"n mass m, (m,) and coupling constant g, (g,). F,, =3,V,—2V, is the
‘vector meson ficld—-strength tensor. The additional term 5;& CTC denotes
counterterras that are for the purpose of renormahzatlon '
The nomm.cractmg baryon propagator contains two pieces, k

G () = G () + G (B) = (3 k" + M)
» k,—M +ic

-l-gi—(y”k"+M)}5(k0—Ek)8(kF-lkl), O

where E, = &’ +M )2 k2=1k*k? and M is the nucleon mass. G% incorpo-
rates the propagdtlon of virtual nucl\,ona and antinucleons. The density—de-
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pendent piece G, that describes the propagation of nucleon holes in the Femi
sea corrects the nucleon part of G% for the Pauli exclusion principle.
Note that the Feynman propagator satisfies following relations

265w =600, | :
22 G50 = ~ G, G “

The effect of interactions on the baryon propa gationt may be included 10 all
orders by Dyson’s equation,

Gk = G (k) + G ()G k), ‘ ‘ 5y

where % is t'm, Laryon self-energy. Because of the transiational and rotational
- invariance in the rest frame of infinite nuclwr matter, the self-energy may be
generally writtan as .

=2 ® =, T W= 6y 2@y kR (6

The Dyson’ s equation (5) can be solve 1 formally, yielding

G =0 k" + M
I\ —M +za
Toolky —E0G) |k D=6, ) +G, k"), ()
;- | ,

- * : s s - %2 w2 L v 7 o
where M =M+Z,E =& +M'2, k" =k"+2 k, =k,
+Z°). The propagators ( r(k ) and Gp(k ") take forms analogous to those in
qu(A). It can be easily ,Ve_rxﬁed that the Feynman piece of the propagator
Gg(k ™) still obeys the same Dyson’s equation as G(k),

G (k") =G0 + 6L (DEG (lr ). : ! @)

Tterating Eq.(8), then using (3),(4) and (6), one finds
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- ‘,,, 1 s @
G (k )= Z m-:ct:‘o(m I),!'(Z M

M 7{”)" (k) )

In ' the RHA only tadpolc dxagrams are retamed in the baryon
prepagator,

7 2
v Fe Ak gy 5B, \ (10)
Hartres 4 m w 2717 7" 3 ' . '
2 2 n
= —1rG (k")
Hartrey m, 271:) mg D .
(1)

where pg= 2k3 / 3n* is the baryon density, n is the dimension of integrals and
equa' to 4 for the physical case. : :

The vdcuura tadpole in- Zi,. . from the vector meson exchange vanishes
ag a result of the symmetric integration. Thc second terna of the s¢alar self—eri-

ergy ) Hectres in Eq.(11), which is finite due to the step function G(K. ‘K ‘

in G, that describes the propagation of real nucleons in the Fermi sea. While
the first term generated by the propagation of virtual nuclcons and
antinucleons from thé Dirac sea is divergent and a counterterm is required to
subtract the divergence. Inserting (9) into (11), one has

s 5 1 dk

Hartiee )'7’1 M_OI_“(m _ ‘)|[| j().

Q2

s g

k\.

[(*' 2 >"‘“’(z“;-§;->‘c~z‘;(k>}

<

o3 pe -+ finite terms. ) (12)

“For the ph} sical dimension n= ‘ -4, 1t is clear from simple power cofmtino
that only the terms with 0<m<{3 and 1--0 m ‘Eq.(12) are divergent(see appen-
dix B in ref.2 ). These dlvexgmces may be 1emoved by mtroducmc a
counterterm defined as, :

3l 4

\ .

e ® 1, 1 31 | :
6;,&: cre =%, P+ 3 2‘ -i- 70,0 a0 (13)




From the Feynman rules for the counterterm vertices, it is easy to
' see that the counterterm contributes to the scalar self-energy and vields,

1 .
5 =3 )(2>"‘a | e

cre. . Rl!nl(l’rxY

4
To subtract the divergent terms, one finds

4 m—1
d k F
g o= — il trlb———=G . (0], 1<m<A4. (15
" J.(Z'n:)4 aM™ T ) o )

Therefore, the scalar self—energy in the RHFA may be rewritten as

31g

- ~-j-—:r(*(k)] + =" )

Hartice

m+l
LEX]

It is as same as Serot and Chin’s result[2,3]. :
In the RHF, the exchange diagrams in the vacunm would lead to momen-
turn—dependent corrections to the baryon propagator. The density dependent
baryon propagator Gy, gives a finite contribution to the self—cnergy in the
loop integral, while the contribution from the Feynman propagator involves
divergent integrals over the occupied negative--energy states. We inay carry out
the renormalization procedure for the scalar and vector meson term by
term. The sclf—~ene_rgy from the exchange contribution may be written as,

l*ocx

GEPMON )+2, )+ }., * 1 finite terms, - an

where %° (k and 2, (,c ) are the contribution of ¢ and w meson ex-

changes from the Dlrac sea, respective ly. They have the forms,

”n

2k )= ig jrc-)—c (k" +4¢ A, o Coas)
k)= g, d”";v G,k -i—hq')y ). I (19)
@r)y" * v
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3

The nomninteracting meson pro pagato’rs have their standard relativistic forms, .

NR=E im0
D, ()=(—g, +kk,/m)D (k) PR =(k—m> +in)”". (1)
‘We have dropped the longitudinal k k, term in the vector propagatbr, since it

does not ccmtnbute to the energy density. Inserting Eq (9) into (18) and
(19), we find

o L. ]

. d q ,x 2 m—l 50 0
Tk )=ig, X L—pm f( oy & 52 ey "Gyl + A" @),
, 22)
@, , __-_,"2 2R 1 d"q”‘, s D \m=l '
EF(K )_ z.gwmz.:o E:u(n’l —l)'l' ‘[(275)" '“[(E 3M) (2 ) ¢ (k + q)]
x‘v,_Do(q)f | (23

{

From the Feynman parameter integral mecthod and the method of
dimensional regularization[23], it can easily be demonstrated that only the
termas with 0<<m<Z 1 and 0<{1<{1 in Eqs.(22) and (23) are divergent for the
' ‘physical dimension n=4. These divergences can be removed = by the
_ following counterterms for the baryon mass and wave function and also the
. baryon—scalar vertex, '

&

8E e =M, W+C My K ~M>w+cww @)
The Feynman mles for these counterterms yleld

Fock » W ' s ' : R
Toe =M+ 0K M) E 25)

Thus, with the deﬁnitions we have,

, 4
M= -ig I——) Gk + A" @

4
. 2 q .0 : (] . )
+ig )57, G (k+a)y D (9), : 26
I(zn)d u F;w ’ﬂ:_)y” g (Q) o B ‘ . ( )




Lok @

+ig, f*-—‘;v”[mG (!H q)]v D°(g), o @7
.2 Z'l d* q |
= - G k A
Gy =—ig, k —MI(21:) °k+a)A’ (@)
2 3 d' q 0, . 0 . o
+ zgmyx.kx_MI el [ G (k+ 7)]v,D @), 4(28>

As a result, the self—energy of the Fock terma may be rewritten as

4 » ' :
.20 d ‘ . .
% = 81 -G+ A (@)~ ig), =Ly Gk + 9),D°(q)

Fock An)

. : “ ! s ) ’ s .

. We now apply the technique in the precedings to the meson propagator.
The one—loap scalar poplarization insertion is given by

I (q)= —ig 5

trtG(k)G(k + q)] =1II, (q) + I‘I @. (30)

The nucleon—-antinucleon pair NN contribution to Ii labeled as l'If , in-
volves the integral of Gpk " )Gg(k” “+q ‘), which is divergent. The particle—hole
conmbuhon(HD) corrects the NN contribution for Pauli blocking. It con-
tains at least one Gp int he; loop integral and is finite. N

nf(q)- -~ng £ 1o,k )G k" +q ) - @1
I (g)= - a >+G k)G, +a")

+GD(k );D(k ) D <~

Applying Eqs.(9) to (31), one has
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P m 0 i 1 l
@)= —ig’ T £ =2 e
S R () B T m = D G= D

Il

dk
8 j(27r

i@ " @ e g
(33)

Similary, we use the Feynman ﬁarameter integral and the method of
dimensional regularization[23]. For the physical dimension n=4, itis clear
that th~ divergent terms in Eq.(33) are only '

: 2. d k kS
divergent terms= —ig_J|-— ' —(Z )
s ' | 27;)4 M
+ 3 Z ro ——) G W k+ . G4

“According to £q.(34), the required counterterms include ¢, ¢°, ¢* terms
,which shifts M— M ™. In addition, there are other two counterterms that
are required to subtract the divergence in the momentum—dependent terms.

co® 1 1 1 4, o
b‘£c3‘rc=' "qo +31 3(p *'Z_, 4(9 +€1¢V.#3”(0+Cz(03“3u¢‘- (35

‘A...

Their contributions can be written explicitly as

(1 (q))cw-—a +o T + (L) +{,7,9" +5 Lq (36)
‘W_hére - v
o | = ig |25 0[GL(RG Lk + @), \ i)
4 _ ' o . '
«, =‘zgjj(‘2?’ )"’ tr{—a—:[oi’,.(k)ei(m)]}, | | (38)
v, =ig' Lk c (G OG, G+, | 39
T e | |
[, —igi L j‘”‘;rr{z“ Skl @0

y,q (2m) ok C




=gl Jﬁ—k— r{(®f ) GG kgl @41
(27r) ak" . v

2
1,

‘It is clear by power counting that the counterterms of Eq‘.(36) remove
the divergence in (33) and render the scalar meson polarization IT  finite. The
fin.ite result has the form,

2

& irGHRIGKE + gl + ,z}am(z) et L)

I (q)— - ig: f

Next we consider the vector meson propagator. The polarization insertion v
I1,, is decomposed into an NN (I'IF » and a particle—hole contribution (I‘IW
The NN piece is made finite (HR’” ) by subtrz<ting an appropriate counter—
term (IT;)eres ' : ' -

()= ig:_(gff;‘“; oDy, G (k" W, G,k +g @ e @

By analogy, mscrtmw Eq (9) mto (43) and then subtractin g dwergcnt

TcI‘I‘IIS we can fiad that its contribution to vector meson propagatm is written
exphcltly by

4

m(q) ig f

TE

tr[v Gk, Gk m>]+<n Derer (@4

where ,
o F 1o d'kE 0, 0.
@@ e = — z'gm.f——-—)-; tr{*,v”GF(_Ic)y;,GF(k +q)]

4

—igl LK 2 (k)y G, (k+q)]}
(2-7z ak” \
—ig d’ ’§ s ) [y G° (k)v (k+q)1} L (45)
( 27) R

This renormalization procvdure w111 naturall ,r ouarantuc the current conservi-
tion relation and I .OTentz covariance. -
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" The method presented. above is esscntmlly te yxtract the dxvergence by ex-
panding propagator Gg(k*) around M * =M and k * = X in nuclear matter.
Following the power counting it is easy to find that only first a few terms in
this expansion are divergent. To render the expressions finite, a few suitable
deﬁned counterterms in terms of vacuum amphtudes are added to remove the
. 4d1vcrgence : : = :

For the purpose of this letter, we restrict ourselves to descnbe the
effects of vacuum fluctuations in the o, model. It may be straightforward to
include other mesons for renormalization in the relativistic many—body
meory
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Abstract

An approach to describe the medium energy pion inelastic scat tering from
- nucleus with an excitation to a negative parity state is proposed by combining
the Fikonal approximation with the {spd{} Interacting Bosor Model..The cal-
culated differential cross sections of the 7% —'18 §n and n¥ —1%2 §'m scattering
exciting the target from 07 to 37 state and the defermation parameters of the

.37 state agre€ with experimental data quite well.

Distrorted wave impulse approximation(DWIA) has made considerable successes in
describing hadron-nucleus scattering at high energy. However, for some scattering from
collective nuclei, DWIA is not accurate at high momentum transfer!!l. Ginocchi et
alll have devoloped a simple scheme combining the Interacting Boson Model(IBM)FI
and the Glaubep or Eikonal approximation!®® and applied it to study the elect‘ron[‘s],'
photonl”l, protonl? and pionl® elastric scatterings and the inelastric scatterings from
ground statc to positive parity excited states. The results are encouraging. Untill now,
however, there are still no discgssion on the pion inelastric scatterings from ground state
‘to negative parity excited statel®'U in this scheme. Therefore, our purpose in this letter
is to apply the scheme to describe this kind of transition. in order to do this, instead of
the usual IBM, we have to combine the {spdf} TBMI12-13] with Eikonal approximation.

In the Eikonal Approximation theorvl®™ for the scattering from . target with an
initial state {Z;,M;} to a final state {L;,M;} the scattering amplitude F in the isospin -

*Mailing address
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space T’ (7 =T + qb is the operator of total isospin, and T, ¢ represent the isospin
“operators of the nucleus and pion) can be expressed as

() ' ) e [, . 70 G R
'lil(,!)ﬂ!,L;I\af;(Q)’:"Zk(—-z)wj[) Tty (0, 0) {85 — €7 (L M|~ P Lidi) Jodb - (1)

. where k is the incident momentum, q is the momentum transfer, b is the impact pa-
- rameter, Jy, is the Bessel function of rank | M|, 7[)(1)(b) is elastic profile function which
can be written as

. too
T ? ) 1 YIRS
0 = 5 [ (8 + 5V (r)dz (@)

with ‘
. (1 1) 17
A7 = 2 polr) + 4O po(r)
() = (VDO -®
| pol(r) = (I = 2)p8(r) |
where y1)(r) are C-G coefficients(the values were listed in ref.[14]), AP and A are the
isoscalor, isovector parameters of picn-nucleus optical potential respectivelyl!4, pé' ) (»)
is the ground state density for proton or neutron. 1/),(T)(b) is the excitation function. It
can be expressed as ) - ‘ .
| 7 (b) = ¢ (b) - OV , (4)
in which €7 (b) is the transition profile function. OW is the transition operator of 2-pole
transition. t
For the scattering exciting the target from the ground state to a negative parlty state,
the excitation is usually recong,mzed as the electric octupole excitation, i.e ,1/), (b) =
¢(T)(b) ,
Assuniing that the collective states of the target nucleus can be described in the

- framework of {spdf}IBM, the most general Hamiltonian involving cne-body and two-
body interactions of the bosons can be expressed as °

3

H=Y e+ 7 kO . OW 4 Zn o . oW o (5)

=0 L=0

where 7 = 3, bmb,',, is the nubmer of the boson with spin 1. (A?(L) ()(L) are the 2'-pole
_magnetic, electric (L=odd) or electric, rnagnctxc(L:evon) t1ans1t10n operators reqpoc-
tlvely, and they can be given as |

Q(’“’—[1+(x‘2)—1)5n-](d’d)"‘)+ S xRt by b (1 - 61,:2)“" (6)

1102
11<lp
h+lz-—eu»n
O =(s'p+p 3)(1)5L1 +(stf 4 @8+ 3 xbLE +oLRIP (1)
| rona
l;+l ,-odd
{ @
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The states of a nucleus can be labelled by the irreducible repm«eni ations of the
group chain

U(16) 5 (U(6) 3 Uul5) > 04(5) > 043N BTy (10) > (5®) D7) -
2 (03 B(04(7) > 04(3)) D 04s(3)) 2 Opuy(3) )

It means that the basis of the states can be expressed as
|LM)™ = |N[n,navac; La[ny)(npLynvpas L) Loy L™ M) (9)

The energy spectra and the wave functions of the nucleus can be determined by
diagonalizing the Hamiltonian (5) in the space spanned by eq.(9).

Combining the Eikonal apprommahon theory with the {spdf}IBM, 1/),(7)(13) can be
written as ;

F(b) = () - (s + £15)O + XD d + a5 +x P F + 7DV (20)
The octupole exc1tat10n profile function is given as 4
“’(bj =L 70 w220 — L) &0 (8, o)ds (11)
Su —213%00 ot ror 12 3 Al )0z ‘ o
where :
&7 (r) = MDas(r) + 7DD ag(r)

aalr) = (N + 2)af(r) (12
ao(r) = (N = Z)al’(r) |

i g :
. 7r N . .
CS(@,L/)) =\ "7—1/-3#(9) ®) . o ' (13)

a{)(r) can be taken as the Tassie forml! o) (r) = wr- £ 4 o8(r). in which wl is the
. structure function of octupole excitation. It is something like the octupole deformation
.parameter. In accordence with the norinalization condition, w:(.f) can be determined by -
the experimental data B(E3) with relation

B(E3,0} — L7) = [f° o (r)r®ds]”
. . . N 2 (14)
(L= (st 7+ ffs)m + X\ 2(otd+ diF)3) + X F o+ D)@ | of)]

According to the charactu istic of octupole deformation, &; )(b) have four nonv: an-
ished compone,nts They can be decided with eq.(11). Under the peripheral appr oxima-
)(b) has only one mdependent nonvanished component

tlon z—O €3,
o 2 1(2 20 12)]1 V8., (18
ar (b) = 2k / [k (3:"" + rar r2 g & (7')dz ' ' (15)
‘and ' ' ' |
e (b) = f 531)(b) o (16)
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Because mauy-{ (f, p} boson state has not been obscrved expenmenta]]v“q the posi-
tive parity state of nuclei can be regarded as the state with zero-{f, p} bosons, and the
‘negative parity state as one-{ f,p} boson Then the scattering matrix clement can be
simply gwen as

<]\r[]\r ~ 1in Vdade[l](n,, p"‘lfo)Lpr Mle '-1//‘ (b)ll\rnd =Ls=n ! = L,y = L = 0)
= /—NIC(N nara® aMN- ]*""('y(z) 7(2)\21:}&1
E (LaMyLy; M,y lL'A/{)CLr!M}l!‘B”d"'de]Wd(’)O » V2 ))

maMpy o ‘ ‘
b | . (17
- where - j : (2V }-‘3)” , e
=| R (s
Cy-1)nava [(N — —nd)'(w)'(‘nd"l"ud N (18)
i, (=1
dopf =
c : 19)
» LpyMpy = { 6M . (Lps = 3) (19)
Buyouary (16 ,722)) = --;([udjudadeMu(W’ dhye0) (20)
a = chAg
shA R
ﬂ“ 5 Sty 2 1)
0 Y ) ’
’YSZ) = g'-‘-z—(l — ch)g) : (21)
(3) _ 14+ )(b) f»(;a) shy
6 = (—1ytmien shdo + 35 (-~ — 1)
. CAd T Ae
o= [—elP () + 2P (b)? - 25 (b) + 2 Gy o (22)
60 = X9 3 (=1l 68 (1pama 3ma)
TG
(2’==xf§) > (- 1>*+"“ ooy (2p3ma|3m) (23
mam, .
(3) = X(s) Z (— 1)"”@&:,)13 :}.,3(3/.!977121;577%3>
| mamg

Because all the discussions up to now are performed in the isospin space, one should
malke a transformation from i 150‘;pm space to the phy Jsmdl channels before a cross section
can be calculated : - ; :

(T 27— T-
FL,M,OO(‘J) f+1FL,M,00(Q) + (T+1)(2 T L,I-t'-I],)O(1(‘.I) + z’irﬁ FI(,,MI,)()Q((I) (24)

T41
,M,OO(Q) L(,,Atr,)on(‘l) .




Finally the differential cross section from the ground state to the I 1 state is
do

15519 = 510, o) (25)
4o ]‘/ff \ //

where ¢ refers to 7~ or 7.

With this approach we deseribe the 7% — 18 §py and w152 Sm inelastic scattering
which excite the target from 0F state to 37 state. In the calculations, the isoscalar pa-
rameter )\(()1) any isovector parameter ,\§” are determined from free pion-nucleus scatter-
ing phase shiftsl7, The ground state proton and neutron density distributions in the_\nu-
cleus are taken from electron scattering experiments, i.¢., /J((:)(T) = py/ [1 + ct;rp( ’-;(Lf)('-)]
where R() is the nuclear radius al balf density and a{*) is the thickness parameter.

When the energy spectra and electromagnetic transition rates arve 1.'<?prod:.,1ce?('1 pretty
well, we get the matrix elements (37| (usz: -+ f’(g")(B) + .\f},i)(l)itj** (ﬂ‘]})(B) + x,(;)-’;d.'wf +
f ]LJ)(:’) I| 0F) for 850 and 25 as shown in table 1. With the parameters irr table 2
and eq.(14) we get the octupole deformation parameters of 1850 and '5*$m as shown
in table 3. Figures 1 and 2 are the calculated differential cross sections of #% —113 gy,
and 7wt 152 G, scattering with excitation from 07 to 37 state and the comparisons
with experiments and DWIA caleulation yesulis. » '

- .. . .. 18 o 1152 ¢
“Table 1. The matrix elements of B3 transition of *¥¥5n and Y28
HSgy | 1529y,

Matrix Flement | 5.992 | 8.3667

‘Table 2. The parameters of 850 and 1%25m

e (fm) | RO (fm) | B(E3)T(e?fm®)
8 Gy 0.54 5.275 1.78x10°
1528, 0.581 5.804 1.36x10°

Table 3. The caleulated results of w() of HU8Sn and %28m and the comparison with
ab 3
: experiments

. Calculated Experimental
H8Gn 0.177 0,188
1528m, 0.117 0.12° :

® taken from ref.[18], *taken from ref.[9]

From table 3 and figures 1 and 2, we know thdt without adjusting any parameters the
calculated results agree with experiments pretty well. It shows that, with the negative
parity boson f and p being taken into account, the iuelastic scattering exciting the
nucleus from the ground state to a negative parity state can be described quite weil
in the scheme of combining the Eikonal approximation and the IBM as well as the
scattering preserving the parity. "
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{18]R. H. Spear, At. Data Nucl. Data Tables, 42 (1989) 55.
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Figure 1: Comparison of the present calculated result(solid (‘urve<‘) of the differen- ,
- tial cross section for the inelastric scattering of 163MeV ¥ —18 Sn with an

excitation from 0‘; state to 37 state with the experimental data(Ref.[10]).
The dashed curves are taken from DWIA. ’
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A.BSTR.APT

A r(-'mble pl'-onrnnr-nologh,al analysis of superdeformed (3D) bands shows that,

‘ rlh, so-called “identical” bD bands in general may ha.v‘, different bandhca:i moments

“of inertia \aJo/Jo > 10"”) Bec:mse the dynamic moment of inertia J® varies w;th, L
w much 1'\..tcr thau the Lme'nahc r.mmem. of inertia J, and the w v—mduun ot o

- moments of inertia raay- be quite-different for various SD bands, undcr certain con-
ditions a near equality of JA (hence B.Y of two “identical” "D b'mds Ay océur
in_certain frequency renge (68, /B, | = |67/ J@H| ~ 1079), and the anguler mo-
menturn alignments ruay appear to be approximately quantized. But the sitastion
turns out to be different in other fre\;{uency regions. The present phenomenoleg-
ical :maly..ls seermns to be cansistent \v1tu the configuration amg‘nmen‘n -made Dy
the u.v.nl..bl microscopic thecry in the framework of strong-coupling mudel. No

pseudospin symmetry is involved in present analysis
v, ; e O L3N o -« - v e ) s
- Xey words: identical SD bands, ¥nematic and dynamic moments of inertia,

augulor momentue alignment, signature spiitiing, pscude-spin symmeiry.

)
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Recent years have seen tremendous progress in experimental 1 and. theoretxca.l [2] stud-
ies of nuclea.r supetoe(ormed (s D) mta.tmnal ba.nds One of the most : mmzxng propt.rtma of |
SD bands 18 the dxsccwery of .deana..” SD bands in some a.djarent nuclel [J—5] i e ., the
obscrved cascade E2 v. tmnomon “nerg‘les of SDbande in. some adJacent nuclex are almost

identical within certain fmquency range (3, 4]
| 5E;'/Ev"~ 167, Co e ¢}

which implies tha.t their dynamic. moments of inertia are almost eauaJ This fact seems
very difficult to understand in classical models. For example; according to the rigid-body or
irrotational fluid model, the difference in moment of inertia §.J ‘of adjacent nuclei’ (assummg
the same deformat;on) is

87 [T =644 ~1072, ' C(2)

where A is the nuclear mass number. Stéﬁhéﬁs et al. [4, 5] argued that the very similar SD
bands can be characterized as havmg virtnally ldentlcal moments of mertla., but dlﬂ'erent
augular momen:um ahgnmentq and the dlﬁ'erence xn ang‘ula.r momentnm a.hgnment seems
to be quantl..ed (multlplea of h/" ). Stephens et al ~considered t‘tus phenomenum may be
- attributed to ‘cht, p‘xeudo-spm syrnmat*y 6], which ha.s rmsed serious debate and comments
[7, 8]. Until now th«, eus envse.o[.xqentlca.lw_SD bands still remains & puzzle.

But, does the near equality of transition energies observed actually imply ‘a’near equalily
of moments of inertia?® In other words, docs the “identical” SD bands ﬁealiy hate identical
moments of inertia (bandhead momuzf of ineriia, kmcmatzr and dynam:c mamems of iner-
tia and their variation wzth w, “ate. )" To account for the near equahty of tra.nmtmn emrges,
this paper preseuts 2 serious pnenomcnology.cal analysls which seems to be consmtent with

the available microscopic caleulations [9, 10 11] and in which no pseudospm symmetry s

mvolo» ed.

One of the most serious difficulties in’experimental studies on niclear SD bands is that
so far the angular momenta of SD band can not be measured, heuce we can not exiract
the kinematic nioment of inertia’ J) and angnlar momentum alignment directly from the

observed &y Usmg the usual expression {or rotational spectra

,2 i
E(I) = ;'—JI(I+1), - (3)

lo4




E2 v transition energies can be expressed as {strictly speaking, the momeatum of inertia J

is I-dependent) , , .
13 : ,
El)2 BU) - B -2)= 5=(2[~1). . )

If the ang lar momenta have been assigned, the kinematic moment of inertia can be ex--

tracted from the observed £, as follows,
JO(T w1y = (26 - 1R ELD). e
The difference in E,’s of two neighboring v-raye is
AE(I) = Ey(I+2)~ .Eé,(f) = ¢h?/J, (8)

and the dynamic moment of inertia is usually extracied by,

<

Ty = 4h2JAEL(D), - o

~where there is uo need to know the angular momenta. _

Becker et al. [12} developed a method to-determine the angular momenta of SD band; 1.
e., the dynamic raoments of inertia J(? are least squares fit to the Hearris three-parameter
w?-expansion, aud then integrated with w to gev the angunlar momenta. There has been
some comments on this method [7, 3]. The m.a.inidefect of this method in application is its '
rather large uncertainty about the angular momentum assignment due to the large errog
in measured AEy. In refs. [13—15] was presented a more effective and convenient method
to determine the angular momenta of SD band. The angular momenia of most SD bands
_ observed in the 4 ~ 190 and 150 regions have been determined by making use of this
‘method. Thus, we can make a thorough aunalysis of the moments of inertia And angular’ ‘
momentum alignments of $D bands, particnlarly the “identical” SD bands in the 4 ~ 190
region to clarify the essence of “identical” SD bands. ‘ '

It is seen ifbm eq. (7) that ’t’he neer equality of E,'s of two “identical” SD bands,
no doubt, implies the near equality of their dynamical momets of'inertia, JE H'os%ever,
it should be emphasized that the near equelity of the Eﬁ,’s.. of “ldéntical” SD bands are
established experimentally only in certain angular frequency range [4, 5] (e. g. in 4 ~ 190
" region, it is established only within Fuw ~ 0.‘2——0.{MeV), which, therefore, does not imply

“the ‘near equality of J® outside ‘this.mnf;e, ps.rticu]a.rly does not imp!yv the equality of
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bandhead moments of inertia Jo. Moreover, it does not imply the near equality of kinematic
moments of inertia J(1}, o , ‘

As illustrative examples, let us analyze the SD bands observed in %*Hg and 9°Hg,
which have been a.ddre;sed qui‘te“ widely [4, 3, 12]. To obtain more reliable information on
the moments of inertia;, in stead of the ab expression adopted in refs. {14] and [15], we will

use an improved expression for rotational specira (abe formula) 18]
E() = o[ TT (T4 )~ 1] + eI +1), O

The ab formula can be derived from the Bohr Hamiltonian with suibta.ble. pOteﬁtial energy
under the assumption of small nuclea: axial a.symmetry.[iG, 17]. The Ias£ term on the
right side of eq. (8) is introduced by considering the effect of higher order term (A*) in the
potential energy of Bohr Hamiltonian [13] (to first order perturbation). Accbrding to eq.

'(8), the corresponding kinematic and dynamic moments of inertia are given by

il

BRI = ab{l 4 bI(T + 1)) Y7 4 2, @)

h'l/J'{Q)

ab{l + 61T + 1)) +2¢, (10)
and the bandhead moment of inertia is

Jo = K?/(ub + 2c). ‘ | (11)

The observed E.’s of the‘iour» SD b@&s, 192f g and Y*Hg(1, 2, 3), are least squares fit by
eq. (8), and the results are given m Table 1. It is seen that all the,oi)served transition energies
. of sixty-nine y-rays are reproduéed incredibly well ({Ecal E"‘p| < 0.5keV). ’I‘hémiore, the

moments of inertia calculn.ted by egs. (9—10) (using the ad]ustmg parameters a, b and c) are
very reliable and more accurate tha.n those extlacted by the difference quotient expressions
{3) and (7). m Fig. 1 is shown the comparison of the w variation of the moments of inertia '
for the SD bands *Hg(1), (2), (3) and ¥*Hg. Usually, the yrast SD bands of “?Hg is
considered to be idensical wu;‘hvthe_exc‘itéd SD bands 19‘H;§(3, 3), but not with the yrast
SD band of **Hg (194Fg(1)) ‘ , _
Leat us analy7e the ‘oa.nd‘wad momcnt of inertia Jy, which i is mn'na.tely connected mth_. ‘
the intrinsic structure (conn«rurauon) of SD. band at w = 0 [9—11], pasticularty depénds en
the components of high-V intruder cox-hgurahons 2 ] ‘The extracted Jo's ‘(‘usmg‘wq. (113

of the SD bands in '¥?Hg and "9‘Hg are as {ollows
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Table 1| Companson of the caleulated and observed I,'s for the SD bands | g and

194Hg(1, 2, 3).

CHE a=0 WG G =0 D) a=0 Vg e et

E(I) E.(1) - £,() E\(+1).
I expt cale - expt cale expt calc expt calc .
(1] [19] [20] [20] ”
48 881.7 €63.1 363.8 879.5
46 852.7 8410 340.7 835.8 . 851.3
14 822.3 312.9  512.7 (807) 807.0 522.4
42 793.4  793.4 783.9 7841 777 1716 (793)  793.0
40 762.8  763.0 546  754.9 74786 7475 T62.7  762.3
33 7321 7321 7254 T25.0 - TI8.7  T16.6 B2 1320
36 7008 7006 6938 3943 6845 6849 -  Too4 700.4
34 6686 668.5 662.4  662.9 652.2  652.4 5656.0  §88.1
32 6358 635.7 630.5  630.6 619.3 6192 8351  633.0
30 602.3  602.1 - 5972 5974 - 5859 585.1 6009 801
28 5679 S67.7-  563.6 -563.3 550.3  850.1 386.4  3566.5
26 5324 5324 . 5233 5289 5143  5l4.4 5318 5312
24 496:3° 496.3 492.3 4992 4777 4778 494.6 495.0
22 459.1  459.1 455.2 4551 440.7 #4053 183.3 4581
20 4208 42098 4170 4169 402.1 4023 4204 4203
13 LS 38LT 3778 4778 363.7 2834 3821 2813
16 341.1 3414 - 3377 2376 3238 52338 3428 438
14 299.9  300.0 296.2  296.4 283.3 2835 202.5 3023
2 277 /TT 2543 9544 2425 2427 2623 2695
10 .2146 2144 211.4 201.3 2013 221.3
S8 170.3 , 167.8 ‘ 1584 179.8
6 1255 123.6 STy : 137.9
4 30.1 8.3 4.7 95.7
2 344 338 . 321 53.2
alkeV) 65973 10855 22052 C19241
b x 10t 8.16¢ 5.796 3.102° o 3.297
e(keV) 3.043 2.438 - 1.923 2.153
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Fig. 1 The v vanaiion of the moments of inertia of SD bands *Hgil..2, 3} and “?Hg.

The calculated morents of inertia using eqs. (9) and (10) are denoted by solid {for ¥*Hg;
and dotted {(for Y¥92Hg) curves. The momente of inertia extracted direct ly from the observed

E.'s using eas. (5) and (6) are rmarked by o (1% Hg, Jihy v 194Hg J) o (192Hg, JU)),

and V( Hg JCY), respectively.

SD bands  '9?Hg SHg(1) 194Hg(2) 194 Eg(3)
Jo(h®MeV-l) 8715 8859 9357 93.89
It is clearly seen that the Jg's of the signature partner SD bands, l94H(,;(v'2, a = 0) and
194H.g;(fl, a = 1), are very similar (6Jy/Jy ~ 1073), which is not surprising because both
SD bands have the same configuration strusture at w = 0. However, it is quite astounding -
that the difference in Jo's of the usually called “identical” SD bands, 19235 and ¥4Hg(2,
3), is rather lai:ge (6Jo/Jo ~ T%), quite similar to the difference in Jy's o{ground bands in’
n'orma.il‘y-deformed even-eveu nuclei ((6J0/j0 > 10"2)). On the Eoutrary, the diﬂ'érence in
'Jo of the yrast SD ba.ads 1920 ¢ and 19“‘I:[g(l) though usuaﬂy not consxdered as 1dent1ca.l
is much smaller (6JofJo ~ 1.6%), 1.e. o

Jo(***He(1)) - ol ““Hg) <« Jo("*He(2, 3)) - Jo(¥%Hg).
bmularly, 1t is found that w:thm the observed w-range, (see Fig. 1)
JOOAREL1)) - J(U(l%ﬂg) & J(l)(mHg(2 3)) ](1)(192]15),

which is qualitalively consistent with the microscopic calculations for these SD bands. In

fact; a.ccordingito tefs.: [2, 9—11), both the neutron a.nd_pro'ton configurations of the sD

0108 |




bands *?Hg and ®*Hyg(1) (at w = 0) are considered as quasi-particle vacuum, and their
high-N components are 76*v7* (x and v denote proton and neutron respectively, n-o" meaz; 3
that there are four protons occupying the N=6 major shell, ¥7* meaus that there ars four
nentons occupying the N=7 major shell). Therefore, it is nndorst&.ndable that bot} SO
bands have very similar Jy values. On the contrary, the confignrations of the excited 5D
bands 194Hg(2, 3) are assigned to be “192Hg core” ®[1624 9/2]®{1/51" 5/?2]v i. e, there are
two unpaired neutrons occupying the orbits [624 9/2] and [512 5/2]. The blocking effecis
of unpaired neutrons lead to a larger bandhead moment of i inertia for ¥*Eg(2, 3) tha,n that
of 192Hg
But how can we account for the observed fact that the + transition snergies of “identicsl”
SD bands are almost éqiia.l? The essential points are: (a) The near equality is esiablished
only in a limited range of {requencies (or angilar momenta). (b) In the same SD band
the dynamic moment of inertia J(2) changes with increasing w much more rapidly than the
kinematic morment of iﬁertia J(). (¢) The w variation of the moments cf inertia of two
- “identical” 5D bands may be different. Therefore, though the bandhead moments of inertia
of two “identical” SD bands are different (6Jy/Jo > 107%), under certa;n'conditibﬁs (see
below), their J)’s may be very sumlat within certain {requency range, hence §E,/E, ~

1077, As a rough estimadte, using eq. (1), we have

éE_EZ = {}'E - QJ{' | | (12

For “identical” SD bands in adjacent nuclei [22], §I/1 ~ 1/21 ~ 1072 Therefore, if 67 and
5.]' are of the same sign and the difference in kinematic moments of inertia (wit’nin certain

{requency range) keeps |6J/J| ~ 10~ %), two térms on the n;rht hand side of eq. (12) may

cancel with each other, rosultmg in

~ 1073 _ (13)

le.

g2
E

Jey

1
. Two beautii’ul examples are displayed in Fig. 1(b) and (¢). From Fig. I it is seen that
I o(Y?Hg) < Jo(w‘Hg(" 3)) and within the observed frequency ra.nge J'(l)lmzﬁg) < J
(IMHg( 3)). However, becanse J(*) increases. with w much more ra.pldly than g’ . and
“in the range Aw < 0. 4 MeV the moments of inertia of the SD band 192Eg increase with w -
fa..ter than mHy( 3), it is found that J“‘(‘QQHV) ™ ](2)(194Hg(2 .3)) holds wnH w;tmn
‘the &equem.y renge *uu ~(0.2—0. 4) MeV as observed (éJm/J(’) ~ 10- 3) However it is
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" geen that in the range iw < 0.2 MeV and hw > 0.4 MeV the ca.lcula.ted T Hg) <
- J@(9Hg(2, 3)), just as have been observed in the ra.nge i ~ (0.1—0.2) MeV. What
afford one much food for thought is, thout,h usnally the SD bands 1”Hg and LE"*Hg(l) are

not considered as identical, the bchavtor of their moments of inertia (J(“ a.nd J ‘) is qulte-

sirmilar, which xmphes their qulte sxmxlm' mhnsu struc*ure

Microscopic ca.lcula.tmns (2, 9——11] show that in the A~ 1“‘0 n:glon there exist a stable
SD valley in the potential energy suriacu evm for I = 0, which implies that the SD band
may extend to I = 0 state. In view of the chellent a.greement between the ca.lculated E)s
by the abc expressxon and the observa.tlon (see Table. 1), the predicted E., va.lue= for the
v-rays (not yet Qb_served) in the ranges [ < 10 and [ > 43 are meaninginl. From Table 1,
it is seen that ‘ ‘ o | u '

1 0 ’ 5 y » H
‘— {E,u + 1, P*Hg(3) + E,(1 -1, 1,‘-‘*5,«;(3))] ~E(I, **Hg )I

= |Ef(, 19*Hg(‘>))— E.(1, “?Hg)| > | E,(I, **By(1)) - Eo(1. 192Hg\l

However, if we compare E,(I +1, 19‘Hg(3)) with E(1, 192Hg), itis found that in the spin

range [ ~18—42 the following relation holus rather well (deviations not exceedmg 1 keV,

etcept for I=24, 28, and 30)
EyI+1, 194Hg(3 a = 1)) = BofI, W Hy(e = 1)) . (14)

which is jnst the reason why people called +hem as identical SD bands. But, this is only

an apparent phenomenon occuring 1r' a hrmt;d range of angular momenta. In fact, just

as have been obsprvad in the spin range I ~ 10—20, the calculted E,(I, 192Hgy's for-

I<10 become smaller than the corresponding E,(I+1 w‘Hg,(S)) s, but become larger
than E,{({ +1, 19‘1’}E[g(3)) for I > 40.

In Fig. 3 are d]spla.yed the angular momentum alignments I, = wJ of the three SD

bands in 1¥*Hg relative to the SD band I”Hg,

i(w)}: Ii(w, 19"Hg).‘v-I,~(u,‘192Hg.)'.‘ B e (15)

Indeed it is seen that (“’) = zW 19"{g(‘> 3)) I,(w 1"""Hg) 1 holds in>the i:#nge ‘hw =~
0.2—0.4 MeV. However, slgmhca.nt dev1a.tlon oiz from 1 occurs in the ranges Aw = 0.1—0.2
[MLV (obsened) huw < 0.1 MeV and hw > 0. 4 VIeV (mot yet observed) In sha.rp contrast
“to thls, no quantized spm-ahgnment dﬁfexence is found fcr the SD ba.nd 194Hg(l) relanve to
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Fig. 2 $E, = E,("Hg) - E,(1%Hg, I). Fig. 3 The same as Fig. 2, but for
The observed 46E,'s for the SD bands the angular momentum alignment, i =
194Hg(1, 2, 3) are denoted by ¥, o, and L(™Hg, w) - L(Hg, ).

e, respectively. The solid lines are the cal-

culated results using eq. 8.

~the SD band **Hg, which reflects that the high- N components of both SD bando grac uallx
change with i u'crea.smg w: v

So far in the Hg 1sotop#s tlnrtnen SD bands have been observed, six of whxch (Y4Hg(1),
3Hg(1), 9%Hg, ¥'Hg(1), “*°Hg, “’"Hg) are yrast SD bands, and the reémairding seven
(193Hg(4), and signature partuers 1941g(2, 3), 9Hg(2, 3), and PTH?2, "))‘ are excited SD
bards. Usually, the three signature partners are considered as identical w1t*h the SD band
192f]g, and their spin alignments relative to 1 Hy ace approuma.tely quantwed (i=.1)
within the range fiw ~ 0.2—0.4 MeV. Table 2 shows the systemahc comparison of the
.observed and calcula.ted (using eq. (8)) £,’s of the three signature pcm;ners It can be seen
that the agreement is exceilent (|E¥ — F“Pl < 0.5 keV). It is found that for'both the

observed and calculated E,’s, the following relations hold quite well,
1 ,
5 B, Hg(2), I+ 1/2) + E,('Hg(3), I -1 /2)]
1 Ger o ' ‘ A
=z [.37(19"11;;(2), I+1/2)+ E,(*Hg2), T - 1/2)] = E,(**Hg(2), )

(B Bg(2), =172+ (M Eg(3), T+ 1/2)]

roj —

= % [E(Hg(2), T~ 1/2) + E,(PHy(3), I +1 [2)] = E,("™Hg(3), [)  (16)
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Ta.ble4 2 Comparison .of the calculated znd observed Ey's for the sighature partner SD
bands, " Hg(2, 3), ¥ Hg(2, 3) and ¥Hg(2, 3). ’

Ead + 2, a=1/2 EJIV. a=0. . E{l-1j2), a=~1]2 TENTA 0, a=1
19ng(2) 193Hg(2) 194 Hg(:} ) 191 Hgt 3) : ) ISJH;;(-'” ‘194 Hg( 3
I expt  calc expt  calc expt  calc expt  calc expt  calt  ° expt cale
' 22 3 __ (23] (22 - = (23]
18 : 363.5 3795
16 ' 346.3 . 835.6 . ) 351.3
4 ‘ T BT %0T:0  &07.0 7985 : 3224
2 SR T8 Y776 . 763.9 793.0 7930
106 R R TaH.6 TRT.0 T4TS T4T.S TS T44.3 80T 7625
3o TH4 T263 T80 . TIBT T15.6 T07.5 7074 } TILS  C T322 7320
36 5092 #9901 6245 6343 5545 684.9 675.2 675.4 6785 700.4  700.4
34 $66.0 6660 661.5 551.8 632.2  652.4 642.6  642.8 545 0. 6440 - 668.0  585.1
32 631.9 6320 6286 628.7 619.5 619.2 609.2  609.0 611.0 810.7 635.1 635.0
30 596.9 5972 595.0 504.7 535.2 3851 5743 5746 5754 . §76.0 -« 8009 601.2

28 561.8 561.5  539.9 560.0 550.3  550.1 5395 3324 5407 5405 . 566.4 - 5868
26 3251 3251 5249 5245 514.3 5144 503.3 503.3 504.7 504.8 5316  531.2
24 1851 483.0 488.1  483.1 1717 4778 468.5 466.5 465.7  168.2 4946 4950
22 449.9 450.1 4510 4510 440.7 440.5 429.1 428.9 431.5 4309 4583  458.]
20 411.5 4116 4122 4120 402.1 4023 390.2 3905 3927 3929, 4204 4203
187 3725 3724 3742 3743 3637 3634 0 351.6  351.3 3535 3541 28217 3818
16 332.9 3326 334.2 3349 3225 3238 3118 3118 3147 3146 3428 3426

14 2920 2923 2949 2947 3833 2835 271.5 274.6 27440 2025 7 3028
12 2514 2540 2540 2427 2427 - . 230.7 233.7 0 233.5 .. 2623 2623
10 C10.2 ©212.6 2013 2018 C U ises 0 T 1s20 221.3
8 ‘ 168.6 ‘ 170.7 159.4 147.7 150.0 '179.8
6 C128.T © 1284 117.2 105.3 107.5 137.9
4 34.6 S0 858 CMTeT. el 835 64.6 Sh ST
2 ‘ 42.3 42.9 , 32.1 ' 53.2
a(keV) 61411 15181 209052 3762 51159 . 719241
bx 104 1,504 - 3%08 3.102 ‘ 10.00 N -1 . 3297
e(keV) S R004 © 2,408 - 1,923 R 3.552 O34T 2153
112 .




“The compazison of the moments of inertia of SN bends, MHg(2, 3), ‘J-in'g(g’ 3) and -
L1f (2, 8) is displeyed in Fig. 4. In Figs. 5 aud 6 is skown the w varietion of the momants
of inertia of SD bands "3Hg(1, 2, 3) and W g1, 2, 3), in wlich also is shown the SD band
1928y ac a reference. The corresponding aagular momentem alignments of 3Hg(1, 2, 3)
and Y'Hg(L, 2, 3) relative to “?Hg are displayed in Figs. 7 and 8. It is seen that:

(a) The bandhead moments of inertia of signatnre partner SD bards are very similar:

SD band WHg2, 3)  9Hg2,3) %2, 3)
Jo (A°MeV-l) . 04.45, 9434 9309, 9272 95.57, 93.89
(8Jo] ) 2 10° 1.1 .38 3.4

(b) Alrmost no signature splitting in moments of irertia is observed for the gigusture part--

wers “3Hg(2, 2) and W*Hg(2, 3), but there exist & relatively large signature splitting for

9lyy i ; . o . .
1915 g(2, 33, which may be qualitatively understood from their conf guration structures (see
below).

a3
of 1995 (2, '5) and PSUHg(2, 3) differ sig-

nificanily from that of Y (§Jy]Js ~ 6—T%), it Tusarmic morments of inertia J2) of

1 (2, 3) and ¥lHg(2, 3) are nearly equal to that of Mg

{c) Though the bandhead mcements of lreis o

Rt Uw fra,quem.y range

o ~0.2—0.4 MeV, and the spin eligame nts (zelative to M2Hg) ave ) =iy quar-

tized (i = 1). However, when hw < 0.2 MeV, systematic ddferenm_s in their J(" §

oy “g

and systematic deviations of spin aligninent ¢ from 1 occur.

The phenomencicgical analyéis 6f the SD bands in **Hg end ¥ Hg given above is helpful -

for studying their configuration stracture. According to the calenlations made in Refs. [2,

9, 10, 11}, there oxisis a gap in the neutron single-particle level scheme at V=112, around
which are distributed the following single-particle energy levels (most of them having larger

3 valoes):

X
I.-J
—
[
o
"" .
=1
e~
1
b
-

., (542 3/2F], 1761 /2], IV =112)], [624 9/27), [B12 5/27], [752 3/2"

According to the znalysis by Meyer et. al. {11}, the confignraiions of the four 5D bands in
135 & guclens (ot w = 0) may be considered as & velence neutron coupled with the “1*%Hg

ceve” (or “Y¥4H core”). The valence neutron sccupies the following oroitals:
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moments of inertia (h'My™)

Pw (MeV)

v 194Hg(2) °o v Heg(2) 7 o v Hg(2) 1
p w3
. Ha3) ; ' Hg(Z) 2 v Hg®)
07 0.2 03 0.+ 0.1 0.2 03 24 04 0.2 03 04

- Fig. ¢ Comparison of the w variation of the moments of ineriia for the signature partner

SD ‘bands, 19 Hg(2.
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I‘lg 5 The w variation of the moments of inertia of the SD E\auds 935401, 2, 3).
referem-e, the SD vand 92Hg is also presented (cf. Fig. 1).

IR

3), Y3Hg(2, 3) and MIg(2, 3) (cL. Fig. 1).

Che (MeV):
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" Fig T The angular momentum ahgn- ”
" ments of the SD bands 19301, 2, 3) rel-

moments of inertia(h’Ma)
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Fig.'6 The same as Tig. 5, but for the SD bands wlﬂi’(l, 2, )
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ative to the SD band 1%2Hg (cf, Fig. 3),

i=[("Hg, w)- L(9Hg, o).
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= —1/“, for Y3Hg(1), (Jo=15/2, Jo = 92.23h*MeV 1)

(512 5/27], «

62’& 9) 7‘*]) Q= 1/2, for 193}218(2)’ (.r(’:zl/z' Jo : 93.09712M6V"1) :‘
(628 9/2+], o= ~1/2, for Hg(3), (h=19/2, Jo = 92.73K"Me¥~1)
(752 5/27) o= =1/2 for WCHg(H), (lo=27/2, Jo = 103.387MeV")

Becauss almost no signature sphttmg is obwvea in the 5D bands 19"’Hg(2 3) and

there exist large differences in Jy's bnt weer WIHg(2, 3) .md l""Hg, it seems’ wasonable to
assign the configuration of W Hg(2, 3) as s neutron in high-£ orbital [624 9/2] roupled with

the “92Hg core” Other most, po';mble camhda.t(.a for ‘the. crblta.l of N=113. neutron are

[512 5/27] and {752 5/2 -1. The v <mdm-t1ng bntween the SD bands ‘93Hg11} and 1'%113(4)

have been estabhshed exponmentv.lll [23], wlnch is allowed only when two ba.nds have the
same parity and sxgnatnre Considering the ld.rge dxfferem.e in Jg's between 1937 g(1) and
193 g(4) (Jp = 92.3, 103.TH*MeV Y, respectively ), it seems reasonable to assume that the
valencg neutrons of '**Hg(1) and ?”H_g’({i) occupy the orbitals [512 5/27] and [752 51271,
respectively. ‘ - ‘ k. |

According to Riley, et al. [9] and Satula et al. [10], the configuration of the yrast SD
band ¥1Hg(1) (a = ~1/2) is“‘mHg core” &{v761 3/2]™*, with high-V component 76*57°.
Because the high-NV orbital (761 3/2] has a large signature splitting, the sign»‘af:ufe partner
SD b'md lHg(1) (@ = 1/2, isexpected to be’ diiﬁcult to observe. The most po‘ssxble config-
uration of the excited SD ba.nd 91Hg(2, 3) is abmgm.d 10] to be “97gg core"@[um!;" 3/27,

" as compared with the configuration’ of 1¥9Hg(2, 3) (“192Hv core"®@[r624 9/2)), which can
acconnt for, why the features of the moments of mertm of 19t “Hg(2, 3) and 193Hg(z 3) are
similar {except that 199, 3) heve a larger signature. sphttmg)

In summary, the phenommologxcal analysis (bardhea.d moment of inertia Jo, w vafiation
of T“) J(Z) ard a.ngul&r moraentum alignment, signature splitting, etc.) of the SD bands
in Hg hotopes seems to be conuxstwt with tlw lfollowuvr conhguranon cb\Slg'umt“*Q

‘ ’ 19‘}1g ‘”Hg ‘ugn N *omponcntﬂ .'.-.re To w‘
193Hy,(2 3)— ‘m‘Hg core” @{v624 9/"] Q.= 1/2 -1/‘7 i
19lg (2, 3)=““°f3’g, core” ®[v642 3/;]‘1,_, o= 1/2,5-—1/?» i
19 g(2, 3)="1"Hy core” 1624 9/2) ® [¥512 5/2), « = 0, 1 R
193 g(1)="1"Hg core” ®[v512 5/2}, a = ~1/2 .
1938 g(4)= “1?Hg core” @752 5/2), a = —-1/2.
- lHg(1)=“"Hg core” @[y 761 3/2]~1, a = ~1/2
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Spin-Spin Interaction in Cranked Shell Model
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Abstract

A o - o interaction added to the cranked shell model Hamiltonian is investigated in
the pmrtlcle -number-conserving approach. The degeneracy between doublets | £ Q] is
removed as e\cpectcd The gap paraneter A is also dependent of the existence of the ¢ - o
interaction. However, the bandcrossing frequency and the yrast-yrare interaction stren gth,
spin alignment, and the occupation probahilities over the single particle levels appear to be
nearly unchanged when the o - o interaction is included. ' '

\
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The importance of the spin-spin (hereafter call ¢ - o) int'emction‘ has been rec-
ognized for a long time in the nuclear structure theory. For example, the splitting

of the doublet states |y & Q| existing in the even (even-even or odd-odd) nuclei,

the so-called Gallapher-Moskowski coupling scheme, is originated from the o - o
interaction between the unpaired nucleons [1]. For reproducing the systematics of
the collective parameters, such as nuclear moments of inertia and gyromagnetic
ratio, the o - o interaction plays a indispensable role [2]. In some papers [3] the
o - o interaction was also introduced to account for the odd-even staggering in the
nuclear spectroscopy. However, to our knowledae, this interaction has not been
yet included in a variety of cranked shell model (CSM) calculations. Therefore, it
should be useful to investigate that to what extent the conclusions drawn from the
previous CSM calculations (without o - o interaction) maintain if this interaction is
included. This becomes more neccessary in consideration of the fact that the recent
experimental advances in the nuclear superdeformed bands have evoked a heatéed
discussion about the influence of the pairing correlation and other residual 1nterac—
tions (e.g. octupole correlation) [4,5]. In this report we would like to discuss thé oo
interaction in the framework of the pa1t1c;e-number—conqervmg (PNC) treatment of
the single-j CSM.

A Hamiltonian
The Hamiltonian is taken as’

. H = Hesm + Hy (1)

where Hce is the usual CSM Hzxmiltonia;n

Hosm = Hopp + Hp + He . . e (2)

with the single particle Hamiltonian

Hgp = Z &y (aIa,, + aIa;) , | , (3)
| , v \ W0 : S G
the pairing correlation. o . _ R
. Hp = — Z aia]-lcz,;au, T : : (4)
. "J‘VU‘>,0 '. i B B S - B

and the Coriolis interaction

. Hg =,~u.? #l.lal” N

‘e

byt
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H, is the o - o interaction, for simplicity, taken the \fr.prm of

"y
L

. = VS.8()-5()
: iy ’

!

= ~,%9'ﬁ2230(i)~a<j> @

i<y

In tkis report, we confine ourselves to the single-j model [6], namely, with the
single particle energies

30— 41 o
EQ = K—-.-,_.—]—S'J—i——-—), . IQ‘ =

13 BN
o (7)

3 . .
7:)-""1.7’1 J =

N

" which is believed to be a geod approximation of the intruder orbits playing a decisive
part in tke high-spin state physics. The o - ¢ interaction coupling constant Vj is
r@thgr arbitrarily chosen as Vy/x = 0, 0.1, 0.2, and 0.3. The pairing correlation
strength G is fixed as G/k = 0.15 in the calculation of Vo = 0. When ¥ # 0, a
renormalized value of G is adopted to reproduce the first excited 0% state (at w = 0)
with the same energy as that in the case of Vp = 0.

The Hamiltonian (1) is diagonalized with the PNC approach which has been
proved to be useful and effective in the CSM calculations [7,8]. In the calculation
an MPC (many-particle configuration) truncation was used to diminish the MPC
space. The truncation energy is assumed to be E,/x == 3.5.

B Routhian

The Hamiltonian (1) has been diagonalized for the systems of even particie
aumbers, N = 2,4, .-, and 12 in the ¢13/2 shell. Only the results of the six particle
system ave given below for saving space. But the situation is siiilar for the others.

The eigenenergies for lowest bandheads with signature @ = 0 in the N = 6
system are shown in Fig. 1. It is seen that when Vo = 0 the first excited band
K = 1 is degenerate to the band K = 6 because in these states the unpaired -
particles occupy the same single particle levels 6337 and 6427. 'Similarly for the
“bands K =2and K =35 (6337 = 6517) and the bands K =3 and K =4 (6337 &
6607). When the o - o interaction is switched on, the two-fold degeneracy rermoves.
The doublet splitting is ~ (0.10 — 0.15)x ~ (250 — 400)keV for Vo/k = 0.2 -0.3,
comparable to that observed in the rare-earth region (~ 100 — 600keV).

As pointed out above, the pairing strength G is renormalized under the request
that the first excited 0% state is located at the same energy as that in the case of
Vo = 0. Therefcre, with increasing Vp, the G-value decreases step by step. This is
understandable because the o - o interaction has also a coherent effect. The values
of G and V, used in the calculation are as follows.
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Vo/e | 0 0.1 02 03
G/x | 0.1500 0.1404 0.1245 0.0880

The comparison of the eigenenergies obtained in the cases of Vo/s =0 and 0.2 is
given in Fig. 2. At least for the lowest four bands, the energies and their variations
with frequenr'y are almost the same in these two cases, except for the doublet
splitting. This can be shown more clearly in the yrast reference (Fig. 3). - For
example, the bandcrossing frequency Aw, = 0.123« and yrast-yrare interaction Vo=
0.241« for Vo = 0 are very close to Aw, = 0.121x and V, = 0.227x for Vo = 0.2x.

C Spin alignments

The spin alignments _ ; 6E’7 _ _
2*(Jx>f‘"a_u;" S (8)
for the yrast and yrare bands are shown in Fig. 4. One may hnd that the s
calculated with Vo/x = 0 and 0.2 are nearly identical with each other. This is
a reflection of the resemblance between the eigenenergies. In both cases, iy is
larger than iy in low frequency 1eg1on but Zyrae < %yrase at high frequencies.

zyrare - 7'yrm'e at We.
D Gap parameter

In the PNC approach the gap parameter A is defined as 9 ' v
A=a/(Pip), Pt=Yaldl NG

u>0
which coincides with

A=GFP) o ae

'a.dopted in the HFB approximation [9]. Beca.usc A depends eyphubly on the choice

of G, it is expected that the calculated A in Vo/k = 0.2 is c‘early different from
that in V5 = 0. However, the values of A/ G obtained in both cases are very similar
(see Fig. 5). The Aymg / Gis larger than _X,lm/ G. The fonner decréases smoothly

- with w, while the latter remains ne(uly unchanged in a Wlde range of fxequencxes

In both cases, Ayrasc/ G decreases by 10 — 15% when hw/k mcxeases from 0 to 0.15

~(~ 400keV). No paann«r collapse i is found in these cases.

B Moméhts of Inertia

The kinematic and dynamic moments of inertia L , _
(1) _ ; (2) - dZ ) : |
J v J dw | (11)
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L

can be calculated and the results for fhe th ce lowest bands are shown in Fig.
6. When Vp = 0 the kinematic and dynamic moments of inertia for the yrast
" band remain almost unchanged below the bandcrossing. Afterward, both of them

decrease with increasing w, but J® decreases more rapidly. The o - o interaction
seems not to have a remarkable influence, at least in the single-j shell, on the
moment of inertia for the yrast band, conirary to the results of ref. [2] Whmh find a-
reduction by about 15%. When Vp/x = 0.2, the kinematic and dynamic moments of
inertia reveal similar features, but vary with a rather large amplitude. For the yrare
and the second excited bands, J®) and J® flectuate with very large amplitudes,
both in the cases of Vo/x = 0 and 0.2. This is because the excited bands distribute
more densely, so that the cross talk among them is more frequently. In this aspect
one may find a distinct result that the dynamic moment of inertia grows up and
has a sharp peak at low frequencies when Vg = 0, vis-a-vis that in Vo/k = 0.2 which
goes down slowly until a shallow valley appears.

It is mtmestmg to note that for the yrast band the ratio

EA. |

_ maintains nearly a constant below the bancl(,rossmg, This is expected from the ab
expression for the rotational spectrum [10] and R is equal to the bandhead moment
of inertia. However, same behavior cannot be found for the excited bands. Of
course, this does not contradict with the result obtained from the ab expression
because the excited band does not have a stable intrinsic structure [7,3].

F Occupation Probabilities over Single Particle Levels

The occupation probabilities over the single particle levels are shown in Fig.
7 for the yxast and yrars bands. It is clear thcn; the occupation probabilities in
Vi/r = 0.2 are almost the same as those in Vo = 0. At w =0 the yrast band is
a coher ent state composed of fully-paired configurations, while the yrare band is a
pair-broken state with unpaired particles occpying levels 6427 and 6337. As w in-
creases, they gradually lose their original characters due to the band mixture. In the
bandcrossing iegion (fiw, ~ 0. 171») ‘the yrast band becomes a complicated compos1-
tion of fully-paired configurations and pair-broken conﬁgumtmns with appreciable
probabilities occupying levels 6427 and 6337 (the total occupation number by the
unpaired particles is about 1.1, xmplymg that there is a possibility of about 30%
in pair-broken states), while the yrare band has two unpaired particles distributing
over levels 6607, 6517, 6427, 6337, and 6'741‘ (Wxtn total occupation number of about
2.1). ‘




G Concluded Remarks

The o - o interaction has been inve stigated in the framework of CSM with the
PNC treatment. As for a smgle - shell, the appearance of the ¢ - ¢ interaction
seems not to alter rema.rkably the main results (e.g. bandcrossing frequency and

yrast-yrare interaction strength, spin alignment, and occupation probabilities over
~ the single particle levels) obtained without spin-spin correlation, except for the
removal of the degeneracy between doublets |Ql 4 le existing widely in the even-
even deformed nuclei. In addition, the gap parameter A is also dependent on
the existence of the o - ¢ interaction, roughly proportional to the pairing correlation
strength G, provided a renormahzed G valuesis sdopted. The moments of inertia for
the yrast band are nearly independent of V; (at least in the region of Vj [k =0-0.3),
but those for the excited bands seem to bc, Vo-dependult pe111aps more or- less
randornly. C S :

It should be emphasmed that the dlS(,uS.:lOIl on the o0 mteractlon ma.de in
this report is limited to the case of a single-j shell. An overall investigation in a
more realistic single pa,rtlcle leével scherne is needed. Moreover, a simplified form for
the o - o interaction is used where the radial dependence and the possible exchange
term are ignored. Calculation with the Nilsson potential demonstrates quahtatlvelv
a reproduction of the doublet splitting in the rare cap‘h region, but not numerically.
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Fig.

Fig.

Fig.

Figure Captions

1 Thc bandheads of the lowest bdnds thh algnaf.ure a =0 for N =6 systcm ,
in 1,13/‘7 qhell

2 The eigenenergies of the lowest bands with sxgnatute @ =0 for N = 6
system 1n 113/2 shell. ‘

3 The exgenenergxeq (yrast re*erence) of the lowest bands w1th axgnature a=0
for N = = 6 sy stem in113/2 shell.

4" The spin dhgnmcnts for the yragt and yrare bands for N = 6 system in
u3 /2 shell

5 The gap pcuameters A for fhe yrast and yrare bands for N = 6 system in

- 113/2 shell.

Fig

.6 The moments of inertiafor the lowest bands for N = 6 system in ‘iiB/ 2

v shell. The kmenntw and dynamic moments of inertia are denoted by thin

Fig.

and thu‘k hnes mspef‘tw(-‘ly The open circles stand for the R's defined i in eq.

(12).

7 The occupmtlon probabilities over the single-particle levels for the yrast
and yrare bands for NV = 6 system. The open bar represents the probability
occupying by a particle pair, while the shadow bar denotes that by an unpaired
particle. The letters A, B, -+, and F stand for the single particle levels
1] =1/2,3/2,++, and 11/2, ’
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The Triexial Motion In Mo Isotope I clei

Wendong Luo!? and Y.S. Chen®? o
. 'CCAST(World Laboratory), P.O.Box 8730, Beiji 100080
YInstitute of Atomic Energy, Beijing 102413, ¢ -ina*
* SInstitute of Theoretical Physics, Academia Sinica, B ting 100080

Abstr&ct

The nuclear shapes of trausitional Mo isotope nuclei are calcul:
by means of the model based on the cranking approximation and
Strutinsky method. The recent experimental results of the high :
spectroscopy and the lifetime mieasurement of $*Alo are studiec
detail and explained by the evelution of the + deformation with
quasiparticle configurations. The shape calculations with the Mo -
fied Harmonic Oscillator potential, but not the folded Yukawa or =
so called universal Woods-Saxan potentials, give the correct crit
neutron number N 2> 47 for the spherical shape of the Mo isoi. »
nuclel. , |

1. Intreduction

In nuclei with Z~ 10 and N~ 46 the leve] spectra exhibit o v -sition
from the collective rotation to the particle-like motion structures. T G183
region thus has been receiving an increasing heud recent years. Mic  scopi-
cally, the complexity of the nuclear structure in this region is origine:  from

t

*mailing address
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the abundance of the energy gaps in the Nilsson diagram of the single par-
ticle energy, the N, Z = 38 gap at a large deformation, the subshell closure
N,Z = 40 and the major shell closure N = 50. Therefore the shell effect
manifests itself in a dramatic way: the addition or removal of one or two
nucleons 1s relatively more important in the determination of nuclear shapes,
and the region becomes very rich of the shape coexistence. Further more, the
energy gaps are located relative to the gs/2 high-j shell at just below (40),
‘above (50) and inside (38) the shell. Consequently, there must be a dra-
matic shape driving effect of rotating go/; proton and neutron orbits on the
soft core of coexisting shapes. It was observed experimentally that the low
lying spectra are characterized with the rotational motion of the deformed
rotor for the NV. < 44, but the particle-like motion for the N > '47. The
N = 43 isotone nuclei with Z ~ 40 are thus very interesting subjects to
study the transitional structure both theoretically and experimentally. Re-
cently, the high spin spectroscopy and the lifetime measurement of & Mo were
completed *). The yrast rotational band of positive parity was measured up
to the /™ = 49/2% state, far beyond the backbend, and the tentatively as-
signed negative parity bands are also rotational. Further more, the deformed
shape of this nucleus can be proved by the lifetime measurement which yields
large B(E2) values, around 900 € - fm* for the transitions above the 17/2%
state, corresponding to a transition quadrupole moment of (i =~ 1.6e-b. The
measured transition quadrupole moments of the yrast states show a drastic
vising by about a factor of 2 after the backbend, indicating a change of the
structure from the ground band to the aligned hand. 1t is a challenging task
for the theory to reproduce all of these .experimental results. The purpose
of the present model calculation is to investigate the shape evolution caused
by the v deformation drive of the rotating high-j quasiparticle(q.p.) orbits
to gain an insight into the interplay between rotation and deformation in -
transitional nuclei. It is also a goal to achieve a good understanding of the
high spin spectroscopy of Mo and obtain'ep"correct shape evolution with
the neutron number among the Mo isotope nuclei. A brief -description of
~ the model is given in section 2, the results of calculation and discussion in
section 3, the summary in section 4. '

2." A brief deseription of the model
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Obviously, the configuration dependence of nuclear shapes must be taken
into account in the study of the structure of this mass region. The Hamilto-
nian of quauipamelcs moving in a quadrupolely deformed potentlal rotating
around the x-axis with & frequency w may be written as,

Hw:: 2 sp(’&'?,sh’}') - AN 4 ;-JP* ) —wlg, \ (l)

where the H,, denotes the deformed hamiltonian of single particle motion,
‘the second term of the right side is the chemical potential, the third term
is the pairing interaction and the last term stands for the Coriclis and cen-
trifugal forces. The Modified Harmonic Oscillator (MHO) potential with the
parameters £ and g for the mass region taken from ref.?) is employed in the
present calculation. The paumg gap parameter is determined empirically
by A = ﬁ.;‘)&oe, and the A, is got from the experimental odd-even mass
difference 9. 'Ihf- total routhian surface(TRS), namely the total energy in
rotating frame as a function of the ¢, and v deformations, of (Z, N) nucleus
for a ﬁyed G-p- con‘igursmtmn may bhe caiculated by

“:f(e-g 7:”) EM(E 1y f)""“ uurr(eh Yiw = O‘ +Eral(~21 7y w) ---‘t('t:jﬂ (‘, »Y)s
(2)
where thc, Py is the qumd Drop Model energy *), the ... is the quantal
effect correction to the energy, which includes bofh shﬂﬂ ") and the pairing )
corrections. The collective rotational energy ¥, may be calculated micro-
scopically as the energy difference between the expsctation values of the Hv
with and without rotation, by using the wave funcuions for the q.p. vacuum
- configuration 7). The last term of the equation (2) is the sum df the q.p.

energies bﬁi@ngmg to the configuration ¢f, which generates the deformation
drive. The hexadecapole deformation is fixed £, = 0 in the present calcu-
lation as a good approximation. All of the terms in equation (2) depend
on the (Z, N) numbers which are not writien explicitly. The equilibrinm
deformations of nucleus may be calculated by minimizing the total routhian
energy of equation (2) with respect to the g, and v deformations for each
configuration, o ’ ' ‘

3. Re ults of cakulatmn and discussion
3.1, SIGNATURE SPLITTING AND ’}’.‘RIAXIATLI'I'Y
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It is .well studied and generally accepted that the triaxial motion of nu-
clear shape in an odd mass nucleus may be identified with the signature
energy splitting of the rotational bands in question, a change of the signa-
ture splitting implies most probably the change of the v deformation 9,
The routhian energies of the lowest two q.p. orbits of the gy, shell are calcu-
lated as functions of the v deformation and plotted in Fig.1 (a) for N = 45
neutron system and Fig.1 (b) for Z = 42 and Fig.1 (c) for Z =40 proton
systems. The A; and B; above the curves denote the two lowest Go/2 q.p.
- rotating orbits with the signature ¢ = 1/2 and -1/2 respectively, where the
¢ = (n,p) for (neutron, proton).” It is seen from Fig.1 (a) that the signature

splitting, namely the energy difference between the orbits with the signature
a=1/2 (solid) and & = —1/2 (dote), is nearly zero at v > 0° and becomes
large at the negative v values, and a strong v drive toward the negative
values is visible. This is a, typical feature of the 7 drive and the signature
splitting in an odd mass nucleus when the Fermi level of the odd mumber
of particles lies at the middle of a high-j shell, the vgq/y shell in the present
“case and the Thiyy shell in the light rare carth nuclei. The disappearness of
the signature splitting after the first backbend observed in the nhy1/2 bands
of the light rare earth region 1011} can be well explained by the mechanism
that the v deformation change from the negative values to near zero, which
is caused by the v deformation drive of the aligned 443/, neutron pair 9,
- However, the large signature splitting observed in the vge/; bands of 5"Mo
-does not disappear but extends to high spins and maintains alrnost constant
after the backbend D). It is not surprising that no disappearness of the sig-
nature splitting occurs in Mo, since the 7 deformation driving tendency of
the gg/, proton orbits completely differs from that of the t13/2 neutron orbits,
the later presents a very strong positive v driving force since the neutron
Fermi level lies at the beginning of the shell. For Mo with the Z = 42 the
proton Ferrmi level lies at a bit lower than the middle of the ga/2 shell so that
a strong v deformation’drive of the lowest two q.p. orbits marches toward
negative values and there is only a gentle drive from 0° to 60°, as shown in
Fig.l (b). It is expected that the 7 deformation of the ggjz 1 qip. bands
‘has a negative value around —40° due to the v negative driving tendency as
shown in Fig.l (a) and should not change its negative value when going to
the 3 q.p. bands after the backbend due to the negative v driving property
of the aligned gy, proton pair as shown in Fig.1 (b). Indeed, the calculated
equilibrium v deformation is —40° for the [An] 1 q.p. configuration and =35°
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ig responsible for the large and almost constant signature splitting observed

e e R

1)

¢

A4;A/B;] 3'q.p. confignration. The almost unchanged y deformation

the vgejs baids of **Mo: The ¥y driving tendency of the go/s 'proton orbits
becomies & ipoéitﬁve ' drive tpwaﬁrd 60° 'When"‘gfpingf ‘frorvnfv Z = 42to Z = 40, as
ishown'in Fig.1 (c). The opposite change of the driving tendency is triggered

b ’”‘fth@ﬁ@bﬁp@rﬁcﬂ,‘eimmfoiv&l‘@fﬁ the filling degree of freedom in the go/2 shell. It

“igexpetted that the signature splitting of the vgoy bands of 5Zr would disap-

pear.aftér the backbend, caused by the ¢hange of the 4 deformation from the

negative to'the positive values due to the alignment of the go/, proton pair.

enomenos of the signature splitting disappearness, the role of the
> alignsnent of the ggsz q.p. protons ih 5*Zr is similar to that for the alignment
- of the .p. neutrons in the light rare earth nucle’ *9). It is certainly in-
“teresting 1o look ‘at experimentally whiether such a phenomencn couid occur
“iny thigh go 4 miettron bands of %5 Zr. Unfortunately , the bands under the ques-
4161 Were measured not well beyond the backbend, although the 'signature
‘gplitting ‘observed in the 1 q.p. neutron bands is large and quenched at the
‘backbend; but o 'more data for the 3 q.p. bands **). However, the signature
-splitting data'ef the 3 qp. bands - are important for justifying whether the
turning point of the v driving téndency toward the positive y values is at
7 =40 protons and then providing an accurate test for the theory. Accord-
Jing tothe mechanism, the other light isotone nuclei of IV =45 neutrons, such

cds %8¢ and 9K, are expected to have the signature splitting disappearness,

namely a large signature splitting in the ground state bands, but an almost
-vanishing splitting in the proton pair aligned bands since the go/; proton q.p.
‘orbits near the Permi suifacs bevome the source of a strong positive 4 drive
i < 40 isotone nuelel. Indeed, the disappearness of the signature splitting
‘was: observed ir #I(¢ 13} ‘and explained by the above mechanism ™). The.
relevant bands it S wers not measured beyond the backbend'®), the lack
of the ékperimental data is just like that n ®Zr

i+ The routhian’ energiés of the lowest four negative parity ‘orbits for the
N =45 neutron system are calculated and plotted as functions of the v
deformation in Fig:2. The B, and'G,, orbits have the sighature o = 1/2'and .
the F;land Hy with the signature @ = —L/2. The present TRS calculation

- of g?MQ yields & ‘prolate shape rotating around ftsisymme,vtry';a.’x’is,j'nkamély

= =120°, for the [Bi] configuration and'a prolate shape, v = 0°, for the
{Gr) and {F,] configurations. The /7 =12 isoméric state fdﬁnd;at around
‘BSGKeV excitation energy in the light N'== 45 nuclei “"w?l"’_)'mé.y be based on
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the [E,] configuration and has the nature of the vp; /. The low lying negative
parity state of configuration [E,] was not found in *”Mo probably due to
the too weak population of this isomeric state in the emnployed heavy ion
reaction 1) beacuse of its single particle property. The tentatively assigned
neLdtIVc parity bands Wlth a small signature splitting found in 8"Mo may
be explained as the [G,] and [F,] bauds which have the vy deformation of
~ 0° and thus a small signature splitting, as shown in Fig.2. It should be
mentioned that either the G, or E, orbit has the nature of the vp1/2 and

i fs/2 shells because the strong admixture between these two ¢ .,hell‘; are found
at around vy = 0°.

3.2. TRANSITION QUADRUPOLE MOMENT

The result of the negative v deformation for 8 Mo is contrary to thctt given
in ref.'), where the equilibrium ~ deformation for the aligned yrast band is
positive, v = 26°, determined together with the deformation 3y = 0.28 as a
constrained solution of the equations of the (f3;,v) variables, namely .

3 . cos(y -+ 30° .
Q= 2R, 2020, (3)
V4T c0s30°
JW = M ERG(1 + \ 7 B2zt + 30 M (4)-
5 4T .
where By = 1.2A'Y° fm and M is the mass of nucleus, the transition

quadrupole moment J; and the static moment of inertia J) are set, to
their experimental values for the aligned bands. The ¢ is approximately
equal to 0.943; and the more accurate relation formula with higher order
terms can be found in the literature, for an example ref. l") - The problem
is that the positive  deformation value results in an almost vanishing sig-
nature splitting for the gg/, neutron bands in Mo after the backbend as
discussed above and seen in Fig.l (a), and thus it is in disagreement with
the experiment. And it seems that the rigid body expression (4) of JO) is |
incorrect to apply to the rather low spin region where the pairing interaction
still play a very important role zm.d'the spin alignment’ of individual quasipar-
ticles contribute significantly to the moment of inertia. The deformations of
(€2,7) = (0.16,—35°) obtained in the present calculation, see Fig.3 (b), are
more reasomlble since they reproduce not only the C\pcmmwta[ signature
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splitting but alse the Q. datz. The calculated @, by equation (3) with these
deformation parameters is (J; = 1.7e- & which is in a nice agreement with the
experiment. ' '

- Fig.3 {a) is the TRS diagram calculated for the ground state band [A,],
¥{goz)t configuration of Mo and the eguilibrium deformations are deter-
mined by the minimum of the total energy as ¢, = 0.19 and v = —40°.
The equilibriuin deformations for the aligned band [A, 4, B}, ¥(ge/2)'7(ge/2)?
configuration are (g3 == §.16,y = -35°). The reduction of the &; deforma-
- tion when going from the ground 1 q.p. band to the aligned 3 q.p. band is
caused by the ¢; deformation drive of the aligned go, protons toward small
values, as shown in Fig.4, in which plotted ave the calculated routhian ener-
" gles of the lowest two goyy proton orbits as functions of the ¢; deformation
at a fixed v = —40°. One can see from Fig.3 (a) that thz potential energy
surface exhibits a soffness when going from the minimum toward the origin
- of coordinates along the gy-axis at 4y = —40°, so that even a gentle ¢, drive
as presented in Fig.4 could have a considerable effect on the reduction of the
&, deformation of the sofi core. An other suriking feature presented in the
TRS diagram of Fig.3 (a) is that the v deformation is extremely soft from
—40° to —80° al the equilibrium £, deformation. Such an extremely shallow
minhmnum coexisted with other shallow minima is the characteristics of the
calculated TRS diagram for the transitional nuclei. Such a shallow minimum
indicates that the rotational motion ¢f a soft rotor may be accompanied with
the vibrational motion, most likely the «y vibration. The standard cranking
shell model calculation with the calculated ground state deformation param-
eters and the pairing gap A, = 0.13 Awe can not reproduce the band crossing
frequency ohserved in ®*"Mo, rather too small for the theory. By considering
the influence of the vibrational motion, if an effective v deformation is chosen
as 4 = —60° the average of the v deformations of the two shallow minima
shown in Fig.3 (a), the caleunlated crossing frequency and the spin alignment
is Aw. = 0.43 MeV and i, = 8.7} respectively, which are in agreement with
 the experimental values Aw, = 0.45 MeV and i, = 6.5%. It should be kept
in mind that this treatment is only a qualitative estimation by considering
one fact out of others which may effect on the crossing frequency in such a
soft nucleus. A striking feature observed in the yrast band of ¥*Mo is the -
drastic rising of the transition quadrupole moment Q; after the backbend,
from ~ 0.Te. b in the ground band to ~ 1.6e- b in the aligned band, here the -
- quantum wamber & = 5/2 was taken inthe calculation of the @, {from mea-
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sured B(E2) values. " The calculated déformation parameters for the a wned‘
band states reproduce well the Q; data after the backbend, however, those
for the ground band states lead to a factor of 2 larger @ value for the ground
band states and thus can not explain the rising feature of the Q. As a guess,
‘the rather small Q; value of the ground state may be originated from the
weakenmg effect of the possible vibrational motion on the 2 collectivity for
a very soft rotor. It was found that the calculations of the Strutinsky type
by means of both the folded Yukawa potential ") and the Woods-Saxon po-
tential with the universal parameters 18) give a basically spherical shape for -
both the ground band and the aligned band states and thus can not repro-
duce the Q; data of 3Mo. The possible shape change that wouid be indicated
by the sharp rising of the Q; after the backbend, is.in contradiction with the
&, and ~ driving tendencies of the gg/; proten orbits, see I'ig.2 and Fig.1-(b).

Despite of the successful calculations and satisfactory e‘cpl"tnatlons in other
aspects, the discrepancy between the theory and the experiment about the
sharp rising of the @, after the backbend obs served in 8 Mo remains to answer
satisfactorily. It should be noticed that the 879KeV transition just above the

17/27 state which connects the ground and the aligned bands has the biggest
B(E?) value, and thus the biggest ();. It is hard to understand at the base
of the mean field theory why the transition which connects the states with
very different deformations can haw suc".\ a blg B(E2) value.

3.3. SHAPES OF MOLYBDENUM ISOT OPE NUCLEI
The total routhian surfaces ralculated for the ground state bands for
86Mo, ¥Mo, ¥Mo and Mo are shown in Fig.5. The deformed shape minima
are found for the Mo isotope nuclei with the N < 46, see Fig.3 (a), Fig.5 (a)"
and (b), and the spherical shape minima found for the N > 47 Mo isotope
nucle1 see Fig.5 (c) and (d). A deformed triaxial shape (¢; = 0.25,y = —32°)
is found for the ground state configuration [0] of 8No, N = 44, and a slightly -
deformed triaxial shape of (g, = 0.16, 7 = —20°) for the [0] configuration of
88Mo, N = 46, which is similar to that for Mo shown in T'ig.3 (a); A near
spherical shape (€, = 0.04,y = —120°) is established for the ground band
configuration [A,] in %Mo, N = 47, shown in Fig.5 (c), and a typical pattern -
~of a spherical shape presents in the TRS diagram of **Mo, shown in Fig.5 (d).
All thése calculated results are in exccllent agreement W11.h the experiments.
The yrast sequence of 3¥Mo was rneasured up to the 14% state and the strong

145




backbend is observed at spin I = 6 '°), the observed rotational structure
“of the spectrum provides a crucial evidence for the deformed shape. With
- one more neutron added to the system, the rotational structure disappears
in Mo according to the calculation. Indeed, the high spin level scheme of
890 was just established experimentally at Beijing Tandem Lab and found
no collective rotational structure in the spectrum ?°). The spherical shapes
for the N 2> 48 systems are proved in the recently done experiments of the
high spin spectroscopies of **Mo and **Mo, where the level spectrum obey
‘the spherical single particle coupling scheme #'). The high spin spectroscopy

of %Mo has not been measured yet, but the well deformed shape for the
‘N = 44 system has been well identified with the high spin spectra of the
neighbour isotone nuclei, for an example ®47Zr 22). It is noticed that the shape
calculations of the same type for the ground-state bands by means of both the
folded Yukawe potential 1) and Woods-Saxon potential with the universal
parameters '*) give a toc small critical neutron number N > 43 for the
spherical shapss for the Mo isotope nuclei, and thus are in disagreement with
the experiments, indicating a requirement of new sets of potential parameters
for the region.

4. The Summary

" By considering the configuration dependence of nuclear shapes, the crank-
ing approximation and the Strutinsky method that incorporates the (MHO)
potential are applied to the description of the high spin states of the transi-
tional nuclet, as a good example, ¥ Mo is studied in detail. The large signa-
ture splitting of the positive parity bands and the almost vanishing signature
~ splitting of the negative parity bands observed in ¥ Mo are reproduced by
the present calculation and explained by the triaxial motion driven by the
high-j rotating gey» q.p. orbits. The transition quadrupole moment Q: cal-
culated with the calculated deformation parameters for the v(go)! ’T(qgla) '
configuration is in a good agreement with the experiment (), value of the
aligned band in *'Mo. However, the calculated deformations for the v(gg/2)!
configuration overestimates the ¢J; value of the ground state band. indicating
that perhaps the vibrational motion should be taken into account for such a
very soft rotor. The nucléar shapes of the Mo isotope nuclei become spherical
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when the neutron number increases closing to the magic number N = 50,
the present calculation yields the correct critical neufron number N > 47
for the spherical shape. The calculations by means of the folded Yukawa
- and the so called universal Woods-Saxon potentiais are fail to reproduce the
experimental transition quadrupole moments for hoth the ground and the
aligned yrast bands in ¥ Mo, and give a too simall critical neutron number
N 2 43 for the spherical shape of Mo isotope nuclei, and thus the new sets
of potential parameters may be required for this transitional region.

The work is supported by the National Natural Science Foundation of
China. : o
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Captions of Figures

- Fig.1 The routhian energies of the two lowest positive parity rotating g/,
q.p. orbits at Aw = 0.025Aw, p‘oﬁ’ted as functions of the v deformation,
calculated at the g5 = 0.18 and the A, = 0.15%w, for the N = 45 neutron
system (panel (a}), the n}ap = 0. ](}hwo for the Z = 42 system (panel (b)),
the A, = 0.10hw, for the Z = 40 system (panel (c)). The orbits with the
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signature & = 1/2 and ~1/2 are denated by the A; (solid line) and B; (dots
line) respectively, here ¢ = (n, p) for (neutron, proton) system.

Fig.2 The routhian energies of the four lowest negative parity rotating q.p.
neutron orbits at hw == 0.025kwy, plotted as functions of the v deformation,
calculated with the g, = 0.18 and A, = 0.15hwq for the NV = 45 system. The
solid (B, F,,) and dots (G, H,) lines stand for the signature o = 1/2 and
—1/2 respectively. ' .

Fig.3 The calculated total routhian energy surfaces for *'Mo: (a) for the
ground band configuration [A,], v(gss2)!, at spin I == 9/2 and (b) for the
aligned band configuration [4,4,B,), v(gos2) m(ges2)?, at spin I = 23/2.-
The scale of an unlabeled line relative to its neighbor is 0.2 MeV and the.
crosses denote the rinima. 4 -

Fig.4 The routhian energies of the two lowess ge/2 Totating gg/2 q.p. pro-
ton orbits at A = 0.025%wy, plotted as functions of the €z deformation,
calculated at the v = —40° and Ap = 0.10kwy for the Z = 42 systera, the
solid and dots lines denoted by the A, and B, stand for the signature e = 1/2
and —1/2 respectively. | ‘

Fig.5 The calculated total routhian energy surfaces for the ground state
band configurations at hw = 0.025%w, for (2) ¥Mo, (b) %Mo, (c) *Mo and
#Meo. The scale of an unlabeled line relative to its neighbor is 0.2 MeV and
the crosses denote the minima. - ' ‘
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Abstract

A system of identical bosons with siagle angular momentum / and F-spin
1/2 is under consideration. The classification of it’s wave functions and the
evaluation of it’s coefficients of fractional parentage are discussed by using the
generalized Wigner-Eckart theorem of semisimple compact Lie groups.

1 Kn‘trodumian

It is known that the Interacting Boson Model(IBM) has been successful in describing
the nuclear coolective motionl!l, and the coefficients of fractional parentage(CFP)i2-3
method is one of the mest efficient techneque for constructing the IBM wave functions.
Even though many works have been done to study nuclear physics in the framework of
IBM, the discussion on the CFP of IBM is relatively meager. As a consequence, the work
load of calculation of some computer codes in the framework of IBM is tremendously
heavy. Moreover some of them can not be performed for the nucleus including relatively
many bosons. These defects have limitted the application region of IBM. It is fortunate
that Sun and their colaborators have recently put forward a simple formula to calculate
the CFP of IBM1€. And a computer code has also been set upl. With the code the

*The project supported by Doctoral Programm Foundation of Institution of Higher Education of .~
China and National Natural Science Foundation of China '

155




CFP’s of she system including 42 d-bosons can be obtained. It prowdps us convenience
to describe the nuclear superdeformed state and chaotic behavier of many boson system.
- in fact, as the nuciear physica being discussed in the framework of IBM, it is usually
ruongmw 2d that the IBM2 is the most efficient version to be used. It is certain that
the proton bo‘-'nn and che nsutron boson can be treated separately in this case. However
the confi guration space is enlarged remarkablely. It increases a great amount of the work
of colounlation, so that the application region is limitted. In the other hand the phyeical
meamng is not transparent enugh. To solve this problem, a formalism to determine the
CFP of IBMZ, w which ia Just the CFP of boson system with s qmgle angelar momentum /
cand Pespin /2, is pr(‘pmfd in the light of Lie group theory. In this paper we discuss
the classificasion of the wave function of the av&.h,m and the factorization of the CFP,
and give a vecurent formula (o evalvate the CFP with definite seniority sud Fospin.

2. ,,,ﬁifi‘E.aSSM‘;e:;aﬁmm of ‘W’ave Functions

The wave funclic s of the system with many bosons, each with mguim momentum |
and F-spin /2, sre classified a.cmrdmg, to ihe group chain

OEN@SUR) (N=2+1). (1)
Supnosing ‘
3ﬁiw = b'n&l""«” i (2’2}

i .

Yag ¥F hm]/?ua
A and annib ﬁu.ﬁum operatoss of Boson with angulur momentum I, F- -Spin
posent m fmm - And ey

L - 1')l feamnee F 23

dma = I’I»rmx 120

ke the inve
t’w fabels o

g] He tmmf a:oue:apcudmg £G by, The generators, Casirmir ope t.m‘s, and
earh subgroup in the group chain (2.1) are given in Table 1.

Fable L. The generators, Casimir operators and IRR¥P Iabels for groups in chain (2.1)

Group Generators : Casimir Operators 1 IRRP Labels
. Tl ¥ ]
ZJ"m 4 J.)(j”, =7 (U?b}@gu 'L Lf!z]\r) = }.‘i e Z:.,,M, = ”Ve: ‘ [ﬂ}
' - s v’m ¥
[
. ’U('”N) 3«{5;")( ' H’L"
Y
Uy | PEs VEBRY Corriay = .‘i“'f‘)-ﬁ ok [y
i TS ALY Y s
: = 2 o N ) + 28 F
(JV) }Dk’ b= ogd : G',ZQ(.{V} E Z: 7k ,P" . (Q}_,JQ)
P , Lo . C ' k"".u:lx-. .
Troad P . g me (an(N* L th - ‘)(,91 W
CO3) | Ly = \/’—(5 +VNBPEL Cwpg=L-L L
SU(2) = /Nj2B3L Casgigy = F - F F
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in which p! = f Lottt g, = (06)3}, is the creation and annihilation operator
of boson pair reopectxvply They sre the invariant quantities of group O(V)
- The wave functions of the boson system can then be written as

Inlav [mimoly (ovow) @« I B F},_‘ ' -

(2.3)
U@RN) U(N) O(N) 0@3) SU(2)

where a and § are additional quantum numbers. The reason for including these addi-
tional quantum number is that the reductions of U(N) D O(N) and O(N) 5 O(3) are
not simple reducible.

- The eq.(2.3) can be rewritten as

In(sf)aLBF) = l[nlw [ ol (o) a LA FY, -~ (24)

where
gy — 0’2

2 .

From eq.(2.3) we know that it requires 7 parameters to label the wave function com-
pletely. These 7 parameters can be chosen as the ones in eq.(2.4), i.e, n,s, f, e, L, 3, I
According to the definition of e (2. 4) [n(sf)aLBF) satisfies the following re;atlons,

3=Ul+02, f“'

- Cﬁmm - [ a(n + 2N —1) ]
Cwub @i—z)—’\—r-"—@ +2F( Ft 1) N
Coowy | In(sf)aLBF) = | n(n + ‘iN - 0) F2A(F+1) In(sf)aLBE). - (2.5)
Cr09) 1 ) L(L+1) |

L Cusu(z) | | i F(F + 1) ]

Because p!,$, are the invariant quantities of group O(N b In{sf)alBF) can be -
obtained by means of acting the opera.tor pl on |(sfeel) = |s(sf)al f) step by step,
ie., :

In(sf)aLpF) = C{(p})’|(sfal)}’ ¥, | (26)
/ v(rhere p = z :S, C is the norina.lizing constant. |(sf)alL) sutisfies the restrictions
shown in the following : -
]{rb . s . A ’ . _
Lo | WE+D) | 2.7
Pu . L 0- C

The discussion above shows that s is the seniority and f can be regarded as the
reduced I'-spir. ' : :
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3 The branching Rule of the Reduction U(2N) ™D
(U(N) D O(N) D> 0(3)) ® SU(2) | | |
(2) The Reduction of U(2N) D U(V) ® SU(2)

" The branching rule for this reduction is quite simple. It can be exﬁressed as

nlav = Y [minn © F, : (3.1)
nyng .
where -
n=n1~+ g, 14":.: L 2 —2‘

(b) The Reduction of U{(N) > O(NV)
Using the representation theory of group U(IV) and O{N)¥! one can get the following
vecurrent relations of the branching rule for the reduction U (N) D O(N) '

[p, nly=[n~2,n- oAy + Fin, n) — F(n =1, re ~ 1);
[n, n— 1y = F(n, n = 1); | | (32)

[na, nofy = [y ~ '3, naln + Fm, n;), '

where : |
F(?’u_, 1'&2) == z:('n'i - ﬂ + a, a);
B . ‘ _ |
ﬁ = N,y -~ 2,1’7.2 — 4,”. ....... ’Z 0; ‘(3“3)
CmB Bl e 0.

With the egs.(3.2) and (3.3}, all of the branching rules of this reduction can be
obtained., '

(c) The Reduction of O(N) 5 O(3)

" The method to get the branching rules for this reduction analytically has been pro-
posed by Wang et. al.#%. With the computer codes19 all the branching rules can be
obtained. ‘ ‘

4 The Coefficient of Fractional Parentage

The coeficient of fractional parentage for the system whose wave founction can be
labelled by the group chain (2.1) can be expressed in the second quantization represen-
tation as ’ ‘

(n{sf)aLBF{jn - 1(s'f)a’L'F'F') = \/%(n(sf)aL,dFl!bT In = 1(s' L' BF), (4.1)
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where (---[|b1}]---) is the reduced matrix element of the irreducible tensor bf,,. It is
easy to show that bl is the 1"reducxb1e tensor with rank [1]zy under: the group chain
(2 1), i.e., :
o, =t ([Uav. [l (1,00 Im 1/20). o {4.2)
U@N)U(N) O(N) 0(3) SU(2)

Then taking advantage of the generalized Wigner-Eckart theorem the reduced matrix’
element of b, , can be factorized according the group chain (2.1) as ‘

(n(sflaLp F||bfnn ~1(s' f) o L' F'
[17,]2}\; |

[’fL 1 712] N

<o op >
Nl .

_ [l [n =1y |
=i b
<l><olol>

I o

11 v [ng 2l [n1 o) .
<1l> fi<oioy> | B<oroy> | (4.3)

The CFP as shown in eq.(4.1) can then be rewritten as

(n(sf)eLBF|n = 1(s' j")a'L'B'F’)

ST (4.4)
= {1(s} )ﬂ”‘{ln - 1( f’)ﬁ'l”)((sf)aL{l(S’f')a’L'),
in whlch | .
(”(Sf)ﬂF{ln = 1(s ’f’)/3'F')
- [ 1~y [n—=1lay [n]an » [1“\ [ R [ ng}& (%.5)
1y Py nbln | [y ‘ > < oloy> | B o0 > J
can be called as the F-spin part »of_iC_FP. ,
l . ) , ./ , N (s < S '/]
(e arlit en) = § avs o 7 <j, {.} |=[<r> <> |2 ]
' o | ' (4.6)

can be refered as the orbital part of CFP. . _ .
(n(sf)BF{|n—1(s'f)B'F') can be culculated using |n(sf)LmezBF)(see eq.(2.6)). For
((s fa L{|(s', f' )o"’ L’ ), we imd thc followmg sunple formula to evaluate it .

12 =110 (al( ’2) Ij (s Ped T4 AV~ P, (@)

where C'is the nor mahzmg convtant
P(of L4 fio! L 1)

. ) ‘ '4.87‘
VP Lo L) s

(s f)(a"l L ,f{)LHb*II(S -1 ff)a’L') =

159




where

Ploy Iy fi o/ L' f') = §(ci o) (L4, L') 8( 2, F')

- T (U R TGr + DEE + DED )

franLy .
2\ jurrng )
Nwzsrflizogt | .
| (=1)fi+/'68(L", L) » { 1/2 f" i } { 1/2 f" f }]
EL+ IV +s—4)=f(f"+ 1)+ F(F+1) | f1/21 Fi/21

(s =1 f)od Lillbtlis ~ 2 "L (s = 1 f)ad FIEFI(s 2 f")a"L"),

. (4.9)
and we have the reciprocal relation ,
W @ =L _ 1),;,,% d(s — 1, f)(2L +1)
U CER 701 7 S 7 d(s, )L +1) (4.10)

{(11/2)(3—1,1")' (s, f) ]
! oL l(aaLif:)L ’

where d(s, f) is the dimension of the IRRP (s, f) of group O(N).
In this paper,the classification of wave functions and the factorization of the CFP for
the system with single angular momentum ! and F-spin 1/2 are discussed. A recurrent
formula to evaluate the CFP with well-defined F-spin and seniority is given. We hope
these discussion will i improve the IBM calculations.
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Abstract

A simple FORTRAN program called CFPOF,WhiCjI calculetes | fractional
parentage cqeﬁiéients ( CFPs ) for a fermion system is introduced.The pro-
gram CFPOF uses the new 1‘(1cur1‘entbforrnu'la. of the CFPs with well-defined
seniority and the multiplicity of an irre,duéiblé representation (Irrep) of O(3)
in an Irrep of group SP(N) (N = 25 + 1). It provides an efficient algorithm

for numerical computation.
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It is well known that the fractional parentage coefficients ( CFPs )!~2 method
is one of the most efficient method for the construction of shell model wave func-
tions. It is an iterative method. Many programs such as JJ CFP,B GENESIé[4'5]
et al were published.However,all these codes are not efficient enough for the sys-
tem including large number of fermions. They calculatéd the CFPs of n identical
fermions by diagonalizing the quadratic Casimir operators of group U(N) and
group SP(N) simultaneously, where N = 2j + 1, j is the anguiar momentum
of & fermior. Hong;Zh(»u Sun et al ] have given a new recurrent formula of
CFPs with well-defined seniority for identical fermions in j-j coupling. Using
the new recurrent formula and the multiplicity of an Irrep of group O(3) in an
Irrep of group SP(N ),@81 we wrote a FORTRAN proéram called CFPOF for
calculating the CFPs of identical fermions. This program is faster and inore
efficient for a fermion system with large fermion number.

We run flle (GENESIS and CFPOF on the VAX-8550 to calculate all the
CFPs of identi_cal fermions, the comparison between GENESIS and CFPOF is

shown in teble 1.

Table ‘1 The Running Time On VAX-8550 -

._ g 9/2 11/2 13/2 - 15/2
name of vcodc ' .
CFPOF §-seconds | 21-seconds |  6-minutes - | 3.5-hours
. : : over flow |
GENESIS 6-minutes | 33-minutes ' -
' when n=>5

There n is the fermion number.

’
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It is clear that the calculation speéd depends strongly on the number of
fermioxls and the a,ngu.lar momentum of each fermion. The calculation speed of
CFPOF is faster than GENESIS, because the ﬁew recurrent formula depends on
the seniority v but not on the total fermion number n. It avoids a lot of repetive
cémputatiq'ns.Moreover,the diménsion of < i" > is much smaller than that of
[1"]. These merits ‘lof the calculating method make the new code appreciably
faster. |

Helpful discussions W.ith' Professor Hong-Zhou Sun are acknowledged witﬁ

thanks.
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Abstract »

T]u. blandung rules for Group chain U(N) D .SP(N) 2 0(3) of the ir-
reducible xepxcseutatlons [2¢ 1%] of U(N) are dlscussc(] in some detail. Slmp](. ‘
’analytmal recurrent foxmnlav of these branching rules for above’ gxoup chain
are obtained. They are very eflicient to snnphfy the calculations of Fractional
Parentage Cdeﬂiciexlts. This method can be used to find the branching rules

for the Group cliain U(N) D O(N) D 0(3) teo.
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1 Introduction

For the single-j fermion system with isospin 1/2,the wave functions are classified

‘according to the following Gro‘up chain
'U(,‘ZN)“D (U(NJD SP(N) D 0(3))® SU(2) : (1)

Thcre are mémy d;ﬁ'erent v\zays[1 3 'of finding branclnng rules and some tables of the
brcm chme; rules hcwe "been pubhshed [4.5] In principle,the branching rules for above
group chain can be calcuia‘ted by &chur function method, but it is very complicated
when the mnks of g g,roups or the dnmensxom of representatlons are large. Usmg com-
puter one can ﬁnd soime bmuchmw rules, but because of the 1oundmg errors,some
brwnching rulcs cannot be obcmned However, this problem is very unportant
i'm apphcatmns. For example, ﬂc is very efficient to simplify the calculatlon., of -
chtxonﬂ Parentage C‘oefﬁuefat(CFP) (6.7] |

The z:@ohwhoa of U(?N ) D U(N} is well know,but the reduction of U (M) D

SP(N ) :) 0(3} is uomphcated In pmutxce we only need to dlscusq the reductions of
the i irx wiwzﬂrﬂ& rcpresentmmns (In rp‘l [2¢ 1?’] of the group U (N ). Thus the problem
of redau‘,wﬂ. m" U(N ) D SP( ?V ) 18 sunph‘ned l’n this paper t‘m bmnchmo; rule
Lonmula for U( N) 3 SP(JV} i5 given in Sec. II Thc bmnchmg, rule formula for
SP(N) 0(3) is gweﬁ in Sec HI

2 Branching rule for U(N) D SP(N)

For Group U(N) we have obtained!!!]

. [ j*t““ [ ‘] lga 1"’"“]‘——}--[2‘54"'193’9“5"2}'“5‘ sl Elc+a}‘, o L e>a ,C + a S N;
1@ [1% = ‘ ‘ ‘

' {20':16-—(!} ~+»{2a-.-1- '10-’0‘0‘2]._&;:’.,'{"-_{_ [2c+a-N 12N—c—a],, e>a,c+a>N.

| o | @
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Using (2/),Wé have
2217 = 1 @ 1) - 1] @ 1] o (3)

Thé formula of direct product decomposition of two totally antisymmetric Irrp of

SP(N) is

<I>@<1> = Y3y <21t s o>q,c+a < NJ2
. 1=0i=1 '
N/2'—Ca, . .

3o S <eireett s e >a,c4+a> NJ2 (4)

=0 1i=|]

i

~ The branching rules for [1%] of U(N) can be written as!®!

: ) ' < 0>, a=even
QB =<1">+<1*2>4... 4 .
‘ <1>, a=odd

Thus we obtain for ¢ = a + b < N/2
R =+ Y < 2f1e s, (5)
| | » - :
. where

a = O,>2,---Sc,rb=even,
= 1,3, <¢,b=odd,
ﬁmin = ]VIA.X(O,(L '--.CV),

ﬂmaa: = ]\'IIN(GI ,C — CV) ‘
Forc=a+4b> N_/Q,W@ have
[2°1) = [2¢ 152 + Sl s g1t s, . 6)

where

v o= 0,2,4,...,a—1
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Using (5),(6) the branching rules for the Irrp [2°1°] of U(N) with any dimen-
siéns can be calculated.We have Wfitten a program "ROUN” to éalcula.te these
branching rules and the results are checked by the dimensions. For example the

"branching rules for U(14)> S P(14) are listed in Table 1. From Table 1, we can
see that the brapching rules with V < 8 are the same as those in i‘e;f. [4], many
branching rules for Irrp of U (14) with large dimensions are given.The formulae
(5),(8) can' be used to find all i)axlching. mlesﬂ céhveniently witlu;ut limitatioﬁ forn
and dimension of Irrp. For example, for the single-j fermions system with isospin
1/2 and j = 15/2, the Irrp with"maximal»dimension of U(16) is [16 1](in which
n = 2a+b =16, T = b/2 = 1), its dimension is 66745536 , the calculated branching

rulés for this Irrp is
“ 16 1] O (140)+(100) + (6 0) +(20) -{- (141)
+2(121) + (10 1) +2(8 1) + (6 1) +2(4 1)
(2 1) + (12 2) + 2(10 2) + (8 2) + 2(6 2)

+(42)+(103) +2(83) + (6 3) + (84) ™)

3 Branching rules for SP(N) D O(3)
Using (4) we have
<> = <SRN >+ S>E< ¥t >
- g ottt ® < -ls o« jute-l o ® < -1l s (8)

" The bmnchihg rule formula of <1” > ighdl

1t 5 3D
. - J
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So the branching rules for SP(N) D O(N) can be written as

del‘
<21V = Z 'JX(M 1*2,J)
) J=dmin

where -

X(2717,0) = w(172,11 7, 5) w1t 117 )

+ w(1ﬂ1+lfz ,1u1—2 , J ,J) - w(1v1+uz—l , 1!1:-1 ,J ,J)

and

10, 21y + v, = even
Jmin =

1/2, 21/1 + l./z = odd
Jmaz = (Vl + Vg)(N -~ (V1 + Vg))/z + l/l(N - V1)/2

b o | J2maz J+J2 . o
w(llaal "I’])= Z 7(b9']2) Z “Y(a’Jl)

J2=J2min N =|J-J2]

)

(10)

(1)

We have written a program “ROSPN”. Uéing “ROSPN”, the branching rules for

SP(N) > O(3) ‘are calculated when' N = 4,6,8,...,16. These results are checked

by dimensions too.As an example, the branching rules for SP(14) D O(3) are given

in Table 2. This method can be used to find the branching rules for the Group

chain U(N) D O(N) S 0(3) too.

Helpful discussions with Profeéssor Qi-zhi Han are acknowleged with thanks.
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Table 1 Branching rules of U(14) D SP(14)

= 13/2,b = even

5. 114 |12 10| 8]6]4]2]ofJ12]10j8]6j4]2]10 s|6]4]8]6

2t 0 0 0 o|lojo|o0}joO 2 2 212124§°2 4 414]4)]6]6 d
n 2T :
0 0 1 1
20 1 105
4 0 1 1 1’ 3185
6 0 1 1 1 41405
8 0 1 1 1 1 1 1 273273
10 0 1 1 1 1 1 1 1002001
12 0O 1 1 1 1 1 1- 1 1 1 1 | 2147145
14 %0 1 - 1 1 1 1 1 1 1 1| 1 2760615
2 2 1 1 91
4 2 1 1 1 4095
6 2 1 1 1 112 1 63063
8 2 1 1 1 11211 1 1 455455
10 2 11| 1 1 1 {1 2 1 2 111 2 1 | 1756755
12 2 1 1| 1 1 1 2 1 211 1 1 l2f111 1] 3864861
14 2 1 1 1 1 1 1 2 112 1 2111212} 5010005
4 4 1 1 1 1001
6 4 1 1 1 1 1 25025 |-
8 4 1 1 1 1 2 1 1 2 1 225225
10 4 1 1 tjr]2ft v 221}t 975975
12 4 1 1 1 b i 211 2 1 21213|1}]2 A2277.275
14 4 1 1 1 1 2 1 211 1 2}13(2}1] 2] 3006003
6 6 1 1 1 1 3003
8 6 1| 1 i 1 1 1 1 45045
10 6 1 1 1 112 1 1 211 2 | 245245
12 6 1 1 { 211 112}2}1 2 637637
14-6 1 11 1 21112 12|31 ]2} 869508
8 8 . 1 ’ 1 1 1 3003
10 8 1 11 101 1| 2vo27
12 8 1 1 1 11]2 112 1 85995
14 8 1 1 1 2 1 -1 2 1 124215
10 10 1 1 1 1001
12 10 1 1 1 1 5005
14 10 1 1 112 1 8085
12 12 1 1 91
14 12 1 1 195
14 14 1 ) 1

n = 2e 4+ bfermion number,T = b/2,isospin.
s = 2u; - vg,seniority,t = v /2 reduce isospin.
y,




Jj =13/2,b = odd

continued from Table 1

s BT Tef7 83 nmJ[9[7[5]3 7157
2211121 f{1t1]1{1{1]3]|]3|3]3lsa 51517 d
n 2T
1 1 1 14
31 11 914
5 1 1j1i1 1 19110
71 if11111 1]1 . 182182
9 1 1{1f1§1 {1 1111 1 910910
11 U T O T O U I I I | 1 {1141 1]1 2576574
13 1 1 RN R R E RN R ! 1 1] 1| 4204290
3 3 1 1 i 364
53 11 1{1 12012
. 7 3 11 1{1]2 1 140140
v g 3 . 1it{1{1 11212 11 780780
1 3 Pyt jifjr ey jri2i2)2 112} 1]| 2342340
43 3 IR RN R 2122 2121 | 4008004
5 § 1 1 , 1 2002
7 8 1]t 1)1 11 38610
9 5 11 1112 11211 270270
i1 b 1{1451 |1 1)1 ]2]2 21211} 910910
| 13 5 'SEEERNERE! 1{2{212 2 13| 1| 1639638
7 7 ] 1 111 3432
9 7 : 111 111 111 40040
i1 7 1111 1|12 1l2¢1 168168
13 7 SRR ER 1212 11211 331240
9 9 ] ] 1 1 2002
11 9 f v 1{1 1 13650
139 1141 1]2 1 31850
11 11 1 1. 364
13 11 141 1 1260
13 13 1 14
n = 2a + bfermion number, T = b/2,isospin.

s = 2wy + v2 seniorily, §= vz /2 reduce isospin. o,
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7 =13/2,i2 = even

\

Table 2 Branching rules of SP(14) 5 0(3)

J 4] 1 2 3 4 5 6 T 8 9 10 . d
s 2t ’
00 1 1
20 1 1 1 1 ) 1 105
2 2 1 1 1 N 1 1 90
4 0 q 7 4 10 [} 12 8 12 9 12 3094
4 2 S 5 10 9 13 12 15 13 15 13 3900
4 4 1 3 1 4 3 4 3 5 3 4 ~ 910
6 0 2 28 28 56 54 75 74 91 83 99 88 37400
6 2 - 17 29 61 71 99 105 128 128 144 138 148 54978
6 4 3 16 22 33 38 48 49 56 56 59 56 20020
6 6 2 1 3 4 6 ] 8 []] 7 7 7] . 2002
80 45 80 | 166 | 196 | 275 295 360 368 418 412 445 . 214200
8 2 43 | 162 | 244 | 353 | 422 513 562 630} 6551 697 697 334152
8 4 29 67 | 123 | 156 | 205 230 268 282 308 |. 310 .323 139230
8 6 31 12 18 26 30 37 40 45 15 A7 47 18018
10 0 57 | 235 | 337 | 508 | 595 741 809 922 956 | 1040 | 1043 606424
10 2 130 | 335 | 585 | 772 | 904 | 1147 | 1327 | 1434 | 1562 | 1617 | 1G89 928200
10 4 41 | 145 | 230 | 319 | 392 |. 473 522 582 G617 648 | 660 . 340310
12 0 104 | 235 | 429 | 556 | 732 829 985 | 1052 | 1165 | 1205 | 1280 804440
12 2 103 | 342 | 541 | 764 | 938 | 1129 | 1268 | 1417 | 1509 { 1609 | 1654 1021020
14 0 28 | 118 | 172 | 256 | 304 377 414 476 498 | 544 551 - 379236
7 =13/2,v2 = odd
J 1/2 1 3/2 | 5/2 1 7/2 9/2 {1 1y/2 1 13/2115/2 | 17/2 | 19/2 21/2 . d
s 2 : : - . .
11 1 14
31 ] 1 2 3 3 4 4 4 4 4 3 896
3 .3 1 1 1 2 2 1 2 2 1 -2 " 90
51 9 17 25 32 39 43 ] 48 50 52 52 51 . 17850
5 3 G 12 17 22 26 29 32 33 31 34 33 . 10752
5 5 1 ‘2 4 4 5 5 -6 [ 6 G 6 . 1638
71 53 | 101 | 150 196 233 269 298 318 334 344 344 0. 152320
7 3 10 80 | 117 151 182 208 229 245 256 260 | 262 108290
75 11 22 32 41 49 | 56 - 61 G5 G7 68 67 24960
77 2 1 2 4 3 4 5 4 5 5 4 . 1430
91 166 | 325 | 482 627 756 874 976 | 1053 | 1116 | 1159 | 1180 .. 618800
9 3 128 | 260 | 380 491 599 G687 761 827 870 897 915 452608
9. 5 34 67 98 127 154 176 195 209 220 ) 225 227 102102
111 269 | 533 | 785 | 1025 | 1244 | 1441 1613 | 1755 | 1869 | 1953 | 2006 1188096
11 3" | 177 | 350 | 516 672 816 943 | 1053 | 1144 | 1216 | 1266 | 1296 . 729300
131 183 | 353 | 527 GO0 834 | 971 1091 | 1188 | 1272 | 133G | 1374 884884

s = 2v1 4 va,seniority,t = v /2 reduce isospin.
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The Effect of Symmetrical Energy and Shell Correction to the Cluster
Formation in Q\ID

Li Junging®®, Liu Jianye“'b, Zhao Enguang‘”‘" and Zhu Quanling®

* CCAST(World Laboratory), P. O. Box 8730, Beijing 100080, China
b Institute of Modern Physics, Academia Sinica, Lanzhou 730000, China
¢ Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China

Since some time the quantum molecular dynamxcs(QMD) model! has been a pow-
erful tool to investigate the formation of clusters during a heavy ion collision in the
intermediate energy region. The model is based on the nucleon-nucleon interaction of
Skyrme-type which is supplemented by a long range Yukawa interaction in order to
reproduce surface effects and an effective charge Coulomb interaction®3). With this
kind of interaction, the model simulates heavy ion reactions on an event-by-event ba-
" sis, therefore, may preserve correlations and fluctuations, and thus can describe the

formation of clusters. The reaction process may be figured out like that: when the
projectile collides with the target at a intermediate energy, the composite system is -
first compressed, during the time some nucleons may be emitted, then the system
begins to expand, while clusters may be formed due to the attractive short range
- nucleon-nucleon foreeldl. The propagating process, however, is governed by the classi-
cal canonical equation since actually in the model nucleons are considered as classical
- particles throughout the reaction course. Clusters are identified in the way that if all
. nualeons within the cluster are close to each other less than 3fm and far apart from
" others more than 3 fm.

Recently we have checked the numbers of protons and neutrons for each cluster
~which were calculated by QMD model and found that some so-called clusters have
very unreasonable N,Z numbers. Actually we found 2, 3 even 4 neutrons or protons

stay together and formed so-called mass A=2, 3, or 4 clusters. Several protons can
also stay together without the accompaniment of neutrons since the Coulomb force is
over simplified so that the system is treated as a umfoxmly cha,rged sphere, wlere all

particles have a charge Z/A.

Skyrme force is usually used to the normal nucleons. Here in the reaction course
the density of the nuclear matter may be extremely-dense on one hand or dilute on
the other hand. And instead of Schrodinger equation, the characteristic property
of nucleus or clusters naturally can be given by the classical canonical equation. For
comnpensation, in addition to the additional Yukawa interaction for acquiring reasonable
nuclear surface effects, another interaction which concerns the numbers of neutrons and
protons, is considered in the current work.

The Hamiltonian used here is:

H= Vloc’f'Vyuk‘*'v.caul"l"V(NnZ) (1) 7
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wherelV;, Z; are the neutron and proton numbers of ith cluster. And
. ’ p

Viee =ty - 6(F1 — 73) + 22 - 6(r1 — r2)6(F1 — 13) ‘ (2)
exp{—|fi — Fal/m . )
Vwk =1 pl(Fl I__l’rz!;:n‘/ )a m= 0.8frn ] (3)
V(N Z) aymmetry + Vet + mer - (4)
® .

and NZ

) )
which is the symmetry energy from liquid drop model w1th k =179, a; -15 877,

a; =18.56. N, Z, A are the numbers of neutrons, protons a.nd mass of individual

- clusters. Vg, is the pairing energy. V. is the shell correctlon, for which we have a
phenomenolagical formularl® as follows: '

Vaummetrv (N Z = fC[alA - azAz/S](

F(N) + F(2)] - '
S(N,Z) = C{{(—(A)/_i)_ﬁi_,_)] -~ C,AY%} | ~ (6)
for axial symmetrical deformation .
| o . CyZ? | |
Serit = 2Cad(2)(1 - 203' A) ' : (7

where C, = a3[1 — .‘C(N — Z[A)?],do = 0.27,C3 = 0.717 ~

Cif

Vsheu (N, Z) = Scn't[l + lg(s/scnt] . (8)
o _ o LD — M 1)) o
o= , = 0.6 9
=M oMo G ©)
M(I1)=0,2,8,20,28,50,82,126,184...... .

when I=1,2,3...;..9 ......

» F(N)= Qu[N = M(I-1)] - C[N/*—MI-1)*4. - . (10)
F(Z) has the same formalism as F(N). '

By considering the N,Z dependent potential those clusters which own teasona.ble
neutrons and protons , and Z and/or N are close/equal to any magi¢ number, are more
stable than those in the opposite cases. As a price one has to judge in which cluster
~ each nucleon is at each time interval during the numerical calculation.

The N, Z dependent V(N,Z) has been used for calculating 49Ca(30MeV/A) +*°Ca
reaction for the four different impact parameters b=0,2,4,6. Fig. 1) shows the multiplic-
ity distribution of fragments of the reaction. The left column for the case with V(N,Z) .
and the right column for the case without it. Both cases showed a very similar be-
haviour. At central collision we observed essentially two components, and the same for
other collisions. The first one on the left consists of nucleons and very light particles,

175




ey

which were eémitted during the compression stage and evaporated from some Lulk
nuclear matter on. The second component distributed nearby the pro jecsile-like us
well as the target-like nucleus, which should mostly come from evaporation remanders
since 30MeV/A is not a very high energy. At b = 2fm, this component moves to the
left because some angular momentum has been incorporated to the system, so that
bigger bulk could not be formed. But when b is getting larger, at b = 4, 6fm, this
component moves back to the right. Since now two nuclei are far from each other,

the interaction between the projectile af the target is getting weaker, less relative
energy could be dissipated, and thus less particles could be emitted. The component is
_contributed from incomplete deeply inelastic collisions. For the four cases, the second,
component in the left column distributed more towards the left as comparing with that
in the right column, annoucing deeper disassembling. This is because that °Ca is a
nucleus with double magic number, when two “°Ca nuclei meet together, the composite
system no longer has any magic number. The correction of V/(, Z) would ,mcmlxe the
system unstable. :

In Fig.2. the number of some extremely ‘unreasonable clusters is indicated as a
function of mass A, with circles for the case with modification V(¥, Z), and with
squares for the case without V(N, Z} . Both are marked with crossing symbols. The
number inside circles and squares denotes the Z number. The number of some stable
clusters with magic number for N and/or Z is also given for two cases and marked
witly triangles. These are the results for 10 time simulation of **Ca(30M1eV/4) +%Ca
with b = 2fm, and at the interacticn time T = 200fm/c. Obviously the case with
V{(N, Z) has less unreasonable clusters and more stable clusters with magic number
in contrast to the case without considering V(NV, Z).

Fig.3. shows how the unreasonable so-called clusters evolve with reaction time for
the case with V(N, Z) (denoted with circles) and the case without V(NV, Z) (denoted
with squares). All conditions are the same as that in Fig.2.. One may find that
in the case with V(IV, Z) some unreasonable clusters formed by fluctuations, but it
is corrected gradually by having taken the V(IV, Z) into account. While in the other
case, all the unreasonable clusters are governed by randomness throughout the reaction
course. Once the cluster is formed, since it is apart from others for at least 3fm, if
any individual nucleon velocity is not extremely large, it usually would stay for ever.

Nevertheless, one may find that even with the V(IV, Z) correction, unfortunacely,

still some unreasonable clusters survived. V{N, Z) is calculated according to the N, Z
number of clusters, it only offers an additional excitation energy to make cluster more
- stable or unstable. A complete remedy is not achievable. More thorough way might be

-to'caicula'te the gradient of V(N, 2),ie. 5% and g% to prevent unreasonable clusters

. ov ‘
from bemg fbrmed There are some problems to carry it out, since actually bR and

: OH
v are mtxma.tely connected thh ;3—— To solve the problem is rather soph1st1cau=d :
T
: evertheless, the task is in progress.

We are grateful to pmff,‘ Ge Linxiao for very fruitful discussions.
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Figure captions: .

(1] The multipliéift? ditribution of clusters as a function of mass A for “’Ca(30MeV/ A)+*Ca
reaction at 4 'Eimpact parameters b=0,2,4,6. The left column indicates the results:
with the cosideration of V(N,Z) and the results in the right column are those

- without it. ‘

2] The number of extremely unreasonable clusters and the number of clusters with
at least. one magic number are given as a function of mass A for both cases with
(dencted by circles) and without (denoted by squares) V(N,Z) modification. For
details read the text. ,

[3] The time evolution of some unreasonable clusters for the case with V(N,Z) (cir-

~ clés) and the case without V(N,Z) (squares) . Inside the symbol circle and square
are the specific cluster X with mass A, Z protons and N neutrons. The figure
before the symbol indicates the number of this kind of clusters.
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Alpha pa,rtlde elastic scattermg on 16O in the

four a-particle model*
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Abstract

A folding potential describing the alpha particle scattering on 0 is con-
structed based on the four a-particle model of the nucleus 0. This folding
potential provides a good description of the experimental data covering a broad |

energy range.
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i Introduction

The gcattering of ﬁghf héavy-ion « particle by nucléi has been special inferest_ in
the study of heavy-ion reactions [1-4]. The a +¥ 0 clastic scattering is one of the
reactions that have relatively sysitema,tical and complete experimental data. These
data were analysed by using the pheniomenalogical optical potcﬁtial [5]. Recently,
a :alculation of a +16 0 elastic scattering was per{ofnled with the double-folded
potential based on the DDMJY eflective interaction and good agreement with 'thé

experimental data was obtained {6].

- On the other M.nd, 180 is a typical & structure nucleus, it is assumed to consist
of four a%particiés and these mup&rticies temain the features as a free a- particle.
| This kind of 4o structure model of ¥O nucleus has been examined successfully in .
the electron scattering [7,8], the intermediate energy proton scattering [9,10], and the

pion scattering [11].

The purpose of the present work is to consider farther the application of the 4o

stru¢ture model of 190 to the o+ O elastic scattering.

Tn the a-paiticle model, the a+60 scaﬁgring can be t.:unsidc_r'ed‘ as the scattering
of the incident a by the four a-particles in 160, Thus using the o — a interaction
and the a-pmmde density in the nucleus, we can ohtain the {folding potential for the
description of the « +! O scatiering. The basic difference between this a- pamcle
folding mod@i_and the usual folding model is that, in the former model the a-particle

is treated as the "clementary” particle, but in the latter model the nucleon.

Bl'- Azab Farid used a a-folding model in the analysis of the a +1° O scattering
‘at 48.7 MeV [12]. However, because an oversimplified a-particle wavefunction was

used in the calculation, so a senous devxatmn from the data in the angular range of

100° — 150 was obtained.
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In the present work, a more realistic a-particle wavefunction of **O nucleus is nsed

in obtaining the a6 O folding potential and the comparison with experimental data

is extended to a broad energy range.

In section 2, we briefly present the wavefunction of O nucleus in the a-particle

model and the :folding’model° The results and discussion are given in section 3.

2 Folding model and the a-particle wavefunction

 In the theory of Eea?y—ion reactions, the generally used standard folding model is-
that thé real part of the potenﬁal is derived by folding a N-N effective interaction with
the nucleon densi~ties of the incident and targeﬁ nuclei. The folded potehtial (including
a renormalization factor), together with a Woods-Saxon imaginary pdtential and a

Coulomb potential, is used to describe the scattering of two composite nuclei.

In the a-pﬁrticle model, 0 is composed of four alpha particleé. We can obtain
the o —1 O interaction by folding the interaction between the incident & and the
o’z—pai‘ticle in the nucleus with the a-particle density of 0. As the alpha particle is - A'
treated as ”elementary” particle, the real part of the mteractlon between the incident

« and 16O nucleus can be expressed as a single foldlng potentlal

VB = [ & V=P e ()

where. p, () is the «-particle density distribution in the O nucleus and V,, is the

_interaction between the incident o and-the a- particle in *O nucleus.
In our calculations, V., was taken as that given by Buck et al. [13], i.e.
Vaa(r) = —122.6225 exp(—0.22 r?) (2

This potential can reprodute; the measured a + « sca.ttering'?'ph&se shifts very well

for c.m. energies up to 40 MeV.
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" The density po(F) in equation (1) can be obtained from the 4« model of 0. We

" have proposed an independent a-particle model for the four alpha nucleus 60 {8].

The major points of this model are (i) the a- p#rticles in the nucleus are regarded

as "elementary” bosens; (ii) each o-particle in the nucleus moves independently in a

mean field with & repulsive core. Basing on this model, the ground state wavefunction

of the *O nucleus can be written as

B(, P, ) = B () 387(7) ()26 () )

,%here‘ 7i{f = 1,%,3,4) are the position vectors of the alpha particles in the nucleus,

@5(‘”) is the Ic»wesﬁ orbltaﬁ wavefanction of an alpha particle in the nuclear field and

| hés been gwan in [8] as

EYGE f[olo<r>~ozo(r)1yoo<e,w> )

where Yo{8, ) is the usual spherical harmonic function, Oy(r) and Ogg(r) are re-

spectively the 1S and 28 harmonic oscillator radial wavelunctions, i.e.

Op(r) = z(a@ﬁ)-m g7/
8 3 r ~r%f2a
On(r) = |f2atny el - (L1 e )

where @ is the harmonic oscillator constant, for 0 nucleus a = 1.2fm.

This (x-spamcle model of 1*0 can reproduce the cross sections of electron scattering

on 60 very well up to g* ~ 9fm™% [8], and alse have been upphed successfully to the

intermediate energy proior scatiering [10] and the pion-nucleus scattering [11]. In

the present work, we apply this model to heavy-ion scatterings to examine the model

Once more.

rom eﬁua.tions (2}-(5) one can obtain the folding potential defined in equation

{1). Then, the total optical potential used to describe the o +1% O scattering can be

- written as

UR)= N,V(R) +i WER)+Vi(R) | (6)
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where V(R) is the real folded potential defined in equation (1), N, is the renormal-
ization factor and V,(R) the Coulomb potential. The imaginary part of the potential
W (R) is taken to have a Woods-Saxon shape, i.e. |

W(R) = —W,o{1 + e:cp( )} -1 (7)

3 Results and discussion

/

The general procedure performed in a folding model calculation is that the four
parameters N;, Wy, R, and a, are adjusted as free parameters to optimize the fit to
the experimental data by using a least-squares program. Bgcé.use our basic purpose
“in this work is to‘exa,mine the predictive ability of the folding model based on the
«- particle model, but not to find fhe optimum fit to the data, so our procedure are
(i) taking the parameters R,, a, fixed values '[or all energies in the cilculations;
only the two parameters N, and W, are adjusted as {ree parameters to fit the data. :

(i) instead of using a least-squares method, the ”optimum” fit is obtained by. wsual

evaluation.

'According. to reference [1], we take R, = 1.4 AY3fm, ay = 0.7fm and the
reduced Coulomb radius r, = 1.3fm in our calculations. Using cq'uations (1) - (6), the
available experimental] data of the « +-6 0O evla.stic scattering differential Cross sectibn
at ten incident ehergies in the energy region of 20 MeV to 60 MeV are analyzed.

As these data cover the whole angular region, 'thus it makes the test to the model
| more strict. Although there are also available experimental data for incident energieé
.above 100 MeV (e.g. T, = .104 and 146MeV), but as the Euck’s « — o interaction
is not applicable above 80 MeV, so the folding potential based on equation (2) is no

longer suitable for these energies. Thus we did not extend our analysis to the energies

above 100 MeV. °

B ]

- The results of our calculations for a +6 O elastic scattering at 25.4, 26.6, 28.1,

A
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991,  30.0, 309, 322, 303, 487 and 54.1 MeV together with the
experimental data are shown in Fig.1 and Fig.2. It can be seen that the a-folding
modél can reproduce the experimental data quite well. In reference [6], the two
angular distributions at incident energies 48.7 and 54.1 MeV were analyzed by using
a phenemenological real and imaginary Woods-Saxon potential, but the fits to the
experimental data were rather poor. A DDM3Y double-folding model analysis for the
same systerﬁ at {our incident energies above 32 MeV was also performed in the same
paper, and good agreement with the data was obtamed Comparmg our results shown
in Fig.l with those obtained by the DDM3Y double-folding modei in reference [6],
one can see thut both the a-particle folding model and the DDM3Y folding model
give almost equally good fits to the experimental data. However, in the DDM3Y
" model calculations in [6], an imaginary potential with six free parameters (in a form
of the sum of Fourier-Bessd functions) and a least-squares program were used to fit

‘the data. In contrast, only one parameter for the imaginary part of the potential is

~ adjustable in our calculation. It is expected that if the same procedure as above are

a&@pted in the o {olding model calculations, some improved fits to the data will be
cbtained. As menmoned a.bove, the purpose of this work is not to get the optimum fit
but w exsinine the predictive ability of the a-particle model, for this goal the results

shown in an.l and Fig.2 are sufficiently satisfactory.

The values of N, and Wy corresponding to the results of Fig.1 and Fig.2 are
plotted in Fig.3. For the DDM3Y model in reference [6] NV, = 1.40, 1.39, 1.3§ and
1.35 are required to fit the data at incident energies 32.2, 39.3, 48.7 and 54.1 MeV
- respectively, while for the a-particie zﬁodei the corres.ponding values of N, required
are 0.87, 684 0.82 and 0.82. The magnitude of | N, — 1]is a measurement of the
successiulness of the folding model, for the DDM3Y model their values are 40%, 39%,
39% and 35%, while for the a-particle model are 13%, 16%, 18% and 18%.

The shape of the unren'ormalized (i.e. N, = 1) « folding potential is shown in
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Fig.4. The value of the volume integral per nucleon pair for the real part of the

potential Jgp/4A4, for the incident energies 48.7 and 54.1 MeV as an example, is 340 = =

MeV fm? for the a-particle model, which is in agreement with Jp/44 ~ 350MeV fm?3
concluded from the DDM3Y model analysis [6]. This value of 340 MeV fm® also agrees
with that about 350 MeV fm? obtained from a "model independent” analysis for the
a +** Ca system [3]. The above results demonstrate the success of the folding

model] in predicting the shape and the strength of the real potential.

Besides the noticeable difference in the ren(;rmalization factor mentioned above, it
should be emphasized that there is a significant difference betwegn'the DDM3Y model
~and the o-particle model, that is, the elementary interaction used in the DDM3Y
model is an effective one, while in the a-particle model is a free @ — « interaction
(i.e. bare interaction). As shown by Satchler [14] that, if a free N-N interaction is
used in constructing the folding potential, the real potential will be overestimated by
a factor of two or more, theré{ore an effective N-N interaction is used to reduce the
foldi:?g potential. This can be understood as that the interaction for two nucleons
embedded in nuclear medium is different from that for two free nucleons. However,
in the present work we used a free o — « interaction and obtained a set of the folding ‘
potentials more approaching to ones required by the experiments. This fact indicates
that the a-particle in the 0 nucleus behaves basically like a free one. This is just.

the basic physical idea of the nuclear o-particle structure model. ‘This isin agreement
with the fact that an a-particle is bound much more weakly than a nucleon in the
%0 nucleus. Thus, the present success of using a free elementary interaction may be

considered as a strong support to the « structure model of %0 nucleus.

In conclusion, basing on the 4« structure model of 0 nucleus and using a free
‘@ —.  potential as elementary interaction, a single folding potential is obtajned for
the description of the interaction between the incident « and. the %0 nucleus. This

« folding potential provides a satisfactory description of the experimental data in
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a broad ramge of incident energies. This success gives a support for the four alpha

structure model of the 0 nucleus.
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Figure Captions

Fig.1. Differential cross sections for &+1_°0 elastic scattering at the incident energies
32.2, 39.3, 487 and 54.1 MeV. The curvés, show the results of the a- particle
folding model. The data are from refs.[15], {5}, [6]. | '

Fig.3. Differential cross sections for ;H-“O elastic scattering at the incident energies
254, 96.6, 28.1, 29.1, 30.0 and 30.9 MeV . The curves show the results of the
a-particle folding model. The data are from ref.[15].

. Fig.4 Values of the cenormalization factor N, and the central imaginary depth W,

as a function of the incident energy for the a-particle folding model.

Fig.4 The a model foiding potential (unrénorm&lized) for a +5 0.
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--Application. to the Isotones of ***Pm and Eu:
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Abstract The calculation method for the transitional odd-2 nuclei
is studied. The theoretical calculation on the energy level

structure of the.isotones **'pm and 9e4 is performed ,by
coupling 1+3 quasiparticle to anharmonic vibration -of the -
core. A particle-number conservation treatment is made by

means of the projection method. The effects of the particle-

" number projection, three-boson excitation and residual inter-
actions on the lower excited states for odd-a nuclei in the
transitional region are discussed. '

Key words 1+3 quasiparticle, anharmonic vibration, tran51t10na1
odd- A nuclel, number- prOJectlon, ‘truncation methcd

1. Introduction

In the past'decade, several works ‘based on the intgractiné
boson-fermion model (IBFM) [1] and its equlvalent the particle-

truncated gquadrupole-phonon coupling model (PTQM) ‘[2] have. been
147-453

-donei gor ghe low-lying energy spectra of 1soEop Eu (3]

and **77*%pn 4] as well as isotones %43Pr '*7Eu [51. But these

works have some shortcomings. First of all, they take the adjacent
even-even nuclei as the inert cors for every odd-mass nucleus in
2 sequence of isotopes or isotones and introduce a set of parame-
ters respectively. So, as a whole, there are too much free parame-
ters’ involved in the calculation and the systematicness is lower-
ed. Secondly, they deal with the core by means of IBM only and

the results deviate from the experimental data. In consequencs, ik
i3 impossible to obtain the accuzate description <for ithe higher
axcitad states of odd system. In order to make a systematic and
accurate deseription for odd-a nuclai in the transitional region,
we choose a common core for all nuclei in the same series of iso-
topes or isotones.and describe the core with IBM. The extra nucle-

ons are described by one- or three- quasiparticle and the residual
interactions between the extra nucleons are taken into account. We
hope that the residual interactions will counteract in somewhat
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*"the deviation'caused by describing the core with IZM oniv.
. Following from the inclusion of three gquasiparticie states,
.. the number of particlies is no longer conserved and ' the spurious

- . states arise. In order to solve this problem and investigate its

~influence on the results, the projection method is adopted in this
article at a price of a big increase in the computation work.
Moreover, that coupling 1+3 guasiparticles to the core results in
the rapid expangion of the configuration space and makes the com-
putation very tedious. Therefore, it must be imperative to cut off
the configuration space. In the usual method, one should make the
truncation in the quasiparticle-core coupling space. But in this
way, the computation work is still considerable. Alternatively, we
have used an appropriate truncation method. Our calculations show
that it is feasible and can simplify remarkably the computatlons.

With the above model and truncation technique, ‘we have com-
pleted the calculatlons for the low-lying energy spectra of the
isotones *"pm and **°Eu. The experimental results were reproduced
quite well.

2. Model and formallsm
2.1 Model hamlltonlan-

The model hamlltonlan congists of three parts

H=H+H+HB ' , (1)

where, H% describes the quasiparticles outside the core,  in which
the residual interactién is included. H; denotes - the core hamilto-
nian. E%B is the particle-core coupling hamiltonian. We give the

further explanation for the three hamiltonians respectivelj‘ as
follows: ' '
(1) In the particle representation ,we can write

H = + 2 < v >a a_a
. Z&ﬁa 'y A 2 af3|Viys 3n 6a . (2)
. . .
where, a (aa) are the creatlon (annhllatlon) operators.*a-(y m ),
- ia-%a K

a=(=) (Ja}qui stand for the quasiparticle statas. We introduce

a z-dependent canonical transformations

d = Yo (ua - zv a2)
QR e o a Q-
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~with

: 1 1)
. !
d = Y (ua - zv a-)

a a ol

it

2 2 ' ‘ ‘ : ,
o (s 2P ] {4
o3 a a o

here v and u represent the amplitudes of gusiparticle and quasi-
a -y .

hole respectively. Using the inverse transformation 6fﬁeq.(3), the
hamiltonian in (2) can be rewritten as

H}=»H + H + H + H + H + H + H + H # H R . (5)

o0 14 20 02 22 3 13 40 04
with '

. H =H': # =H'; # =§8". , . (6)
The concrete expressions of each terms in eg.(5) can be. seen in

Ref.[7). Introducing the geherating function of quasiparticle vac-
uum, one guasiparticle and three gquasiparticles states  and using

v ¥
the commutation relations of operators d (d ) we can derive the

matrix elements of the hamiltonian (5) and the tensor operators of
rank A between the generating functions and then get' the matrix-

- elements of the above operators with the particle-number conserved

by the loop 1ntegratlon. In our calculaflon, the residual inter-
actions contained in H are taken as the quadrupole-quadrupole in-

teraction (QQI) and the aurface 3] interaction (SDI) respectlvelyw
Both interactions reflect in some extent the main features of the
nuclear force and have simple forms convenient to deal with.

(2) Since the odd-A nuclei that we concern about are -close to
the spherical region, the tore hamiltonian H can be taken- as the

SU(5) limit of IBM, whlch equals to the - anharmonlc quadrupole v1b—
ration hamiltonian:

H H
B SU(S)

.
£ - d d+
£, 9ds I

H'ULOZ-‘&

i

(2L+1)1/2C’L£(d+d+)( (dd)‘™ 1 (7).

[ SRR

: + : . ' .
where”dp(dh) are the creation (annhilation) operators of d-bosons.

£ 1is the energy of a d-boson. The corresponding wave functions are
| naL>, where n represents the number of d-bosons, L stands for the.
total angular mementum, a is an additiodnal gquantum number needed
to c¢lassify the states. Since for n<3, the states are completely
definite for the fixed n and L, in the follow1ng we use |nL> onlv

‘to denote the babls functions of the core.
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(3) The particle4core coupling hamiltonian are represeﬁted‘as

172

H = - Ffeln/2) ) , ' (8)
- Eeln/z ):“Qz“&'z“(ﬁd:

where\f“descfibes the strength of the coupling, Q;“ is the quadru-

pole operator for the core. The reduced matrix elements of Q;u be-

tween the states of the d-bosons are deduced from the experimental
E2 transition rates and quadrupole moments of the core. In detail.
the off-diagonal matrix elements are chosen to be

(n'L'liginL) = k [{(2L°+1) B(E2:L L) 12 (9)

the fdctor k is determined so that {121iQli00) eéuals to the harmo-
nic value v5. The diagonal matrix elements are defined as

(nLiQinL)= k 2 qr2m®’? @ (10)
' b nL ‘ ,
where Q;Lis the exprimental guadrupole mement in the state of |[nL>

" and we assume that [8]
(2°) = - * ") = g2%)
24 2), 9(21)‘ Q(4‘) Q .
2.2 Truncation method
In the case of incorporating three-quasiparticle excitations,
the dimension of the configurations is too large for the available

- computer vaxg8e600. For exaMple,,for I= E, even though the number of

d-boson are merely taken up to 2, the dimension of _configurations
become 500. which makes it impossible to adjust the parameters so
as to fit the exprimental data. In view of this, the configuration
space must be cut off. The method that we adopted are as follows:
(1) freezing the degree of freedom of the core and only consi-
dering the excitation of the particles in the open shells. The
corresponding wave functions are Ijaijabjc;JMS>' solving the

’energy'eigenequations-for every J respectively, we can obtain the
wavefunction : '
VY oM sy C (G5 3 FINT G I FiaM > (11)
Jd aJ “a’b ab’e a"b ab’e J
‘and then rearrange the wavefunctions in the size of corresponding

eigenvalues EY. Here cJ denotes the order of the wave functions
with angular momentum J, which we take as ‘an additional quantum
number.
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(2) Choosing the truncation energy E and coupling all wave'

trun
functions laJJ@REIEQJﬂH$>‘with Egd(E*run to the bosons wavefunc-

tion to construct the basis functions for the coupled quasiparti-
cle-boson representation ' )

lot JnL,IM> = ZM (JM LM {IM)|o JM ) |nLM > S (12)
N | JML J L Jd J L
where the brackets stand for the Clebsch-Gordan coefficients. The
total wave functions of the nuclear system can be expanded to the
basis .functions
(L)
§IM =L
The matrix eiements of the total hamiltonian (1) between the basis
functions‘[eqn(lZ)] is

. Y (a L 1) (o TnL I (13)
aJJhL o = J .

<@;T'n'L',IM|H|a JnL,It> = T | Cot.'}(jc:jb’jo,l;jc'j') Cp T 3T 3 )
all j .
088 (L3 19,3,9,,3,9
ST T3, 3,3, 3, D <ntl T aL>
-Es(n/s)i/?(—)“nhl{ >y } (a5 Qll nL)
AR ngg g as

In the first step, the largest dimension of the matrix we need to
evaluate is 29. And in the second step it is possible to limit the
dimension below 200 by adequatly choosing the truncation energy.
Therefore, the configquration space is remarkably reduced and the
whole process is convenient to handle by computers. '

3. Results and discussion

As an illustration, we have applied the above model and ﬁrﬁn-
cation method to calculate the low-lying energy levels for the.
. 147 _ - 149 146 . 147
~isotones Pm and Eu. Nd is taken as a common core. . Pm
and *"Ey has one and three protons outside the coag respectively.

Since there are not complete observed spectra for ‘rh and wisaHo,
 which have five and seven extra particle respectively, we have not

included these two neclei in the'calculations, In consideration of

that there are only two extra protons -in *°gu more than in 147Pm,

we neglec¢t the effects of the Coulomb  interaction. The quasiparti-

cle levels are taken as g -, d , d and s . We do not. solve
7/2 5/2 -3’2 1/2 :

the gap equations for simplicity. The energies and the occﬁpatioh
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numbers of the quasiparticles are obtained from the experimental

values in Ref.[9]. The guasiparticle energies are £ =0.0, £ =
: © T2 5/2

125.¢6, E =1300.0 and E =1400.0. (keV). The observed excitation
v 3/2 1/2

energies as well as E2 transition rates and gquadrupole moments of
the core needed to calculate the matrix elements of the H; and H

can be found in Ref.{10]. We take the d-boson energy as the first
exciting energy of the core , i.e., £=453.86 keV. The anharmonic
parameters are C;=7.78, C;=395.48 and §i=135.45 (keV). The values

of reduced quadrupole matrix elements for the core are

(120Q400) = ¥5, (24 QI12)= 3.63,
(201Q112) = V2, (120Q12)= -2.60,
(2211 00) = 1;g§, (221Q122)= 2.60,
(2200i12) = v10, ‘ (240l 24)= -2.60.
(1) *pn
SlnLE there is only one single proton outside the core *°Nd for

Pm, it requirs merely one guasiparticle to describe the proton.
For comparison, we have completed three different types of
calculations as shown in Fig.l with (a), the experimental results;
(b), the results for projected one quasiparticle coupled to tLhe
core; (c), as (b), except for unprojecting. We have included boson
states up tc two bosons in (b) and (¢) and three bosons in (d).
The later is the same as (b) except for the bosons states. The
coupling strength is fixed to §=1.5. It can be seen in Fig.l1 that
the three types of calculations present almost identical results,
Up to the energies near 1000 keV, the differences between (b) and
(c) are not notable. This is because of that the first excitation
energy of the core is relatively larger. Thus, the effects of

" three boson excitations just appear at even higher states. The ob-

served energy levels can be clearly devided into three groups. The
lowest group consists of the ground state and the first excitation
state. The levels between 400-700 keV form the second group. and
the levels above 900 keV belong to the third group. These have
been satisfactorily reprodued by three theorstical spectra. Farth-
ermore, the energy densities of all groups are reproduced quite

- well.

(2) ¥*%gy

Fig.2 present calculation results’for 449pu. In which (a) is the

observed spectrum; (b) the calculated spectrum obtained by coup-
ling projected 1+3 quasiparticle to the core guadrupcle vibration
and choosing quadrupole-quadrupole interaction as the residual in-
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teraction; (c) as (b) except for taking surface delta interactian’
‘as the residual interaction .and (d) same with (b) except for un-
projecting. The strengths of the residual interaction are z=1.30
keV/fm' in (b) and (d) and %=80.0 keV in (c). Comparing the cal-.
culated spectra with the observed one, we can see that the theore-
tical results in (c¢) deviate far from the observed spectrum. On
the other hand both (b) and (c) reproduced the experimental
results very well. Especially in (b), not only the energy density
fits well, but the order of energy levels of the whole spéctrum
agrees with the experiments quite well.

According to our calculation and the above analysis, we can make
preliminary conclusions that o

(1) 1In the case of single particle outside the core, it wont
make much difference whether projecting or not. While, if the num-~
ber of extra particles more than one, the results obtained by pro-
jecting are better than the one by unprojecting. :

(2) The three-boson excitations of the core contrlbutes only to
the higher lying levels of the odd-A nuclei.

(3) For describing the residual interaction, the quadrupole-qua-
drupole.lnteractlon " is better than the surface delta interaction.
And the energy level structure of odd-A nuclei is very gsensitive
to the stréngth.of residual interactions.

In the forthcoming articles, we apply the 1+3 quasiparticle-core
coupling model to analyse the energy spectra and electromagnetlc

ualltles for the sequence of isotones Pm, 451Eu, 153 Tb and
®Ho. The results supports the conclusions mentioned above. We

have also obtained some other conclusions by analysing the wave

functions. And the validity of the model are indicated further.~
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"Abstract

The dynamical symmetries of the nuclear spdf Interacting Boson Model

are discussed systematically. The possible dynamical symmetry group chains

are given, The branching rules of reductions in the group chains, the dynam-
* ical symmetry Hamiltonians and the energy spectra of the limits. S Upar(5),
spdf(b‘) S Uspdf(3) and O.s,,df(ll) are presented. '

-‘ ry J ReCentIy 4 great- numbm

of experimental activities and microscopic analyses have shown that there are probably.

nuclei with octupole deformationl®l. In order to attempt ay ?5‘,0%1 ctivesmodel’ descnptlon
of octupole deformation in nuclei in the framework of IBM an mteractmg boson model




containing s, p, d and f bosons(spdf IBM) has been introduced®~8 and applied to de-
scribe the properiies of light actinide nuclei*® and neutron rich rare-earth nucleil’® with
' sOImMe Success. o

When the p, f bosons are introduced alongside s and d bosons, the space spanned
by single boson states is 1 + 3 + 5 +.7 = 16 dimensional. The corresponding algebraic
structure is U(16). This structure is quite large and complicated. However Engel and
Tachello have discussed the SU(3) and O(4) limits!?l. Nadjakov et.al.'] and Sun et.al.®!
have discussed some of the SU(5) and O(6) Limits besides the SU(3) limit. Moreover
Kusnezov has shown that there are 7 dynamical symmetry limits with 165 group. chains.
Some of the algebric structure of these groups was givenl’?. However there has no
systemastic discussion on the description of nucleus with the symmetries.

It is known that nuclear collective motion preserves not only the boson number(duc
to the preservation of nucleon number) and angular momentum but also the parity. It

means that when the dynamical Hamiltonian is written in the form

.3 :
H=Y e+ 35 VikulOhh) 0500 (L)
=0 lida 3 e k

there should be h + L+l + 4 = evcn(O < ll,lz,ls, Iy < 3) However, for some group
chains given by Kusnezov, the Hamiltonian constructed with the Casimir operators of
the subgroups in the symmetry group chain do not meet this restriction, such as the
one with interaction (ptd)® - (d'd)®. A thorough analysis shows that there are 142
of the 165 group chains satisfyiné the restrictions. they can still be classified into 7
dynamical symmetry limits SUpar(5), Oupar(6), SUpdr(4), SUspas(3), Opay(5), Ospar(4) and
O,4(3). Because the symmetry of the O(5) and O(3) limits are quite lower, and SU(4)
is isomorphous to O(8), the important ones are the SUpy(5), Oupar(6), SUpur(3) and
Q,par(4) limits. In this paper we will discuss detailedly the branching rules of reductions
in the group chains ‘of these four limits. The dynamical symmetry Hamiltonians, the
wave function and the energy spectra of these limits will be constructed. In section 2,
3, 4, 5 we discuss in some details the limits SU(5), 0(6), SU(3) and O(4) respectively.

Finally in section 6 we give a brief concluding remark.

2 The SU(5) Limit

A systematic analysis shows that there are four kinds of group chains on coupling
level SU,4(5) in spdf IBM. The typical ones are

U,par(16) D U,4(6) ® U,5(10) D Uy(5) ® Upy(10) O o
SU(5) ® SU,(5) D SUpar(5) D Opyy(5) D Opdj(3) (2.1)
Uaptr(16) D Oupr(10) D SUpy(5) D 0p4/(5) D Opy(3)

In SUyqy(5) limit symbolized by the first of eq.(2.1), the dynamical symmetry Hamil-




tonian can be expressed as

H = eCy,y(6) € Cru,,(10) + ACus0,(5) + A Cas,(5) T BC25U(5) T € C20,41(5) + DC20,,(3)-
‘ (2.2)

The wave function can be written as _
IIZ)(LW)) = |N Nsd [nd]s’ Npf [’\11 )‘27 )‘33 ’\4]5; [nlv ng, N3, n4]5 (V.l: U2.)5 a L ) (23)

SU,(5) SU,¢(5) SUss(8) Ouaps(5) Oupy(3)

with
+, nNpy = even;
= { =, nyy = odd,

where « is the additional quantum number to distinguish the same L belonging to the
same (v1,v2). All these values can be determined by the branching rules of the IRRP
reductions. , '

" The branching rules for every step of the reductions are the followings.

(1) Usz)df(m) D U.(6) ® Upf(lo)
For the total symmetric IRRP [N] of U,,q(16), the branching rule is

= 3 0[] ® [y (24
where n,9 and n,; are the posible nonnegative integers satisfying the relation n,y+n,; =
N. o '

©(2) Uaa(8) D SU(5)
Tlns reduction has been detailed in sd IBM. For the. symmetnc IRRP ["2sd), the result
is B
['n_.,d](,- = [0‘]5 @ [1]5 (&) [2]5 D--- GB [nsd]ﬁ ) ‘ (25) :
(3) Ups(10) D SU,4(5) :
This reduction has been discussed in refs.[8,12]. For the IRRP [n,]

[77'pf]10’? [‘ﬂpj,77'pf,0,0]5 @ [npj - lyhpf -1, 1, 1]5 @ [npf - z)npf - 2;272]5 oS-

' (2.6)
® [Z5t, 2oL, “eL, Zet] (nps = even); ;
[17.22!4-»1, npf2+1 ,v’npjz""l , Mpf— 1]5’ (npf — Odd)

(4) SUd(E)) ® SUps(5) D SUpy(5) .
Using Young tableaux techneque[13 16] op Schur function method”8l we can get the
branching rules of this reduction. It can be concluded as

[A /\ 0 0]5 ® nd 5 = Z @[)\"f"'fnl,A m2] . (27)

my,m2

where my + mg = ng, 0 < my < A

[AI,A17/\2,}‘2]5 ® [nd]E L @[Al +m] —777,3,A1 —mg, A2+m3 —mg, AZ - m3] (28)

my,m2,m3,
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Cinwhich i b me+ma=1ng, 0<my <A -2, 05 m; < /\2

(8) SUpgs(8) D Opy(5) |

With the Young tableaux techneque or Schur function method being used, the branch-
ing rules of this reduction can be obtainned. For the lowest ung,atlw parity states, which
contain only one p,f boson, the IRRPs of SU,4(5) can be [ny4-1] and [n4, 1, 1], the IRRPs
of Opqp(5) can be written as

((ng+ 1,105 ® (g~ 1,15 B (ng—3,1)s 8-

@(3,1) €9(1 s
®{nq,0); @ (ng — 0) @ (ne — 4 0)s - ‘

D(2,0), . (ng4 = even);
{?Zd -+ 1, 1]5 =

—~
o
O.

(ny+1,1)®(ng—1,1)s @ (na—3,1)s D -~
@(41 1)5 @ (2v 1)5 )
@(ﬂg, 0)5 ﬂﬁ ('H.,; - 2, 0)5 [ (’ﬂ-,f - 4.0)5 SEE .
{ a(3,0)s ® (1,0)s, (ng = odd).

e, L 1s = (na, s ®(na — 1, 1)s D (a = 2,1)s @ - - -
@(2a1)5@(1a1)5 \
(6) Opdfxm o Op-i/(")

- This reduction has been discussed in dd:ulb[“‘ -22 With the computer. codes!341* 2)

all of the branching rules can obtained.
The energy of the state L can be expressed as

B(I7) = By + engy + € nyp + Afng(ng +5)
A DA+ 4+ 2(As +2) 4+ A2 Aglhg = 2) = H0 4 Xa o+ Ag o+ M)
~l~i¢[n1m; - 4) + naing + 2) + nd + ny(ng — 2) — %(”1 4 ng A ng - ry)?)
+Clon -+ 3) o valva + 1)) + DL(L + 1). '

(2.10)

The typical energy spectrum can be shown in figure 1.
Tn SU,4(5) limit indicated by the sccond of eq.(2.1), the dy namical s symmetry Hamil-
tonirn s
Cet P - s ' - 917"
H = eCyy i) + AC20,,400) + B‘Uzs(/,.,.,m 4 CCa0,45) + DCa0,0(3)- (2.11)
The wave function con be expressed as

Pp(L73) = [N (my, ™My, Wiy, Mg, 13 )10 [Yl.],’ﬂg,n;g,ﬂ‘;ls' (m,m)so L) (2.12)

Oupay(10) "Uupf(f?f Oups (5} Oupy(3)

With the reductions of the ILRPs betug aumnphshcd the wave functions w:th this
symmetry can be determined. The branching rules thai have not discussed above are
the followings. ' '

(1) Uspqr (16) D Oupar (1)




The branching rules of this reduction have been discussed in refs. [12] and [18]. The .
result is .

[N]w:(%%%%"%)lo@(ﬂ N‘*L%—l,% —1,—1} D ®- - |
(2.13)
@ { (%,0,0, 0,0)10, (N=even);
(5,33 5 3ho,  (N=odd).
‘ (2) Ospdf(]-O) D SUpdj(5)
This reduction is rather complicated, however, it can be realized with the Schur

function method'™!8], For some special IRRPs of O,p(10), we have branching rules
analytically as

(e =Y 8 —4,v =177l (2.14)
i v
where 1 =0,1,2,---,v,and j = 0,1,2, - v — 1

(V7 07 Oa 0, 0)10 = z @[Va k: ka k]S ) (215) ‘
. ' k ' .

where £k =0,1,2,-- -, v. \ \
The energy level of state L can be expressed as

E(L™) = Eo+ eN + A[Tﬂl(m1 + 8) + my(ms + 6) + ma(ms + 4) + my(my + 2) + mi]

+B[n1(n1 + 4) + na(ng + 2) + n3 + na(nd — 2) — §(n1 + n2 + ns + na)?]
+C[V1(V1 + 3) + 1/2(1/2 -+ 1)] -+ DL(L + 1)

, - : , (2.16)
where b, madng=even;
"= {-, ng + ng = odd.
3 The O(6) Limit |
There are two Oy (6) dynmﬁcal group chains in spdf IBM. They are
Uspes(16) D Usa(6) ® Ups(10) D O5a(6) ® Ops(6) D Oupar(8) D Opas(5) D Opay(3) (3.1)

 Uspar(16) D SUpas(4) ® SUspas(4) D SUspar(4) (R Oipas(6)) D O (5) D Oy (3)

For the O,,4(6) limit shown by the first of eq.(4.1), the dynamical symmetry Hamil-
tonian can be expressed as

H = Cry,y6+ € C10,;(10) + AC20,4(6) +-A C20,y(6) + BC204y(6) + CC20,5(5) + DC10,(3)-
. - o ' (3.2)

- The wave function can be written as ’
[H(L™)) = |N 144 (94> 0,0)6, nps (G(ps)13 T(ps)2 O(pf)3)ss (91,02,03)s (V1,02)s @ L) (3.3)
0.4(6) 0,1(6) Oupes(6). Oups(8) Oups(3)
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in which « is the additional quantum number. They can be decided by the bmnchmgj
‘yules‘in this group chain.

The branching rules of the reductions Uy (16) D Us(6) ® Upr(10) and O,4(5) >

O,yy(8) in this group chain have also been d:qcuqsed in section 2. The other branching

rules are shown in the following.

(1) Uau(6) D Osa(6) :

This reduction has been detailed in sd IBM", The result is

Ensd](i = E@(%d)ﬁ

_ : 3.4
Ugd = Ny, Mg — 2,N5g — 4,---00r 1. (3.4)

(2) U,p(10) D Oy (8) -
This reduction has ever been discussed in refs.[8]and [12]. The branching rule is
’ prhe = Y @(a — 28,0 - 28 - 27,0 — 48 - 27)s (3.5)
By
where & = 1,7,y — 4,757 — 8,- -, and @ — 28 > a — 28 - 27 2 |a — 44 - 27| 2 0. For
the lowest excited p,f hoson states, we have

“]10 = (13 lv 1)6) :
[2li0=(2, 2, 2)s @ (2, 0, 0)s, (3.6)
[3]10 = (3: 3y 3)6 & (37 1, 1)6 8] (1’: 11 —]')6'

(3) O:4(6) @ G (6) D Ospyy (6)
This reduction can be realized with the Young tableaux techneque or Schur function
method. For the lower excited p,f bosoa states, the branching rules are

=1y (e 0, 0)6 B (2, 1, 1)6 = (00 +1,1, e ® (0, 1, 0)s D (0sg — 1, 1, —1)g
npg =2, (a4 0, 0)s®(2 2, )6 = (05 +2, 2, 2)6 ®(osa-+1,2 1)@ (04, 2, 0)
(:B(U,d -1, 2, 1)6@ (’73:{ -2, 2, '"2)6
{,U.m’,v Oa 0}(5 ‘QS)l‘z, (l, 0).;3 :

‘23 0’ Q)Sa . (assi = 0)7
(37 07 0)‘3 @ (29 1': 0)6 ® (17 07 O)G’ (aml = ,1);
(dad - 2’ 07 0)6 ] (”sth 01 0)6 ® (asd + 27 01 0)6

(000 =1, 1, Qs D{osu+ 1,1, 06 B (0sas 2, 0)s, (05 = 2).

‘and in general

{600y 0,06 (L, L, Do =Y B(00a+1—-3j, L, 1-3)s  (k=min(2,0.)). (3.8)
j=U .
H) Oupay (6) D Opyy(8) :
The branching rules of this reduction can be obtamed divectly with the Gel'fand-Zetlin
}ulcm] It can be expressed as

o1, 02, 3o = }: @, »)s | - (3.9)

op Sy Sy
o351 So2
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The energy of the state L can be expressed as |

E(L™) = Eo + engy + €nyp + A0yg(00a + 4)
FA0m e +4) + 020 +2) + 0F )

+Blo1(01 +4) + 0a(02 +2) + U%] + Clvi(n +3) + V;(V2 + DI+ DL(L +1).
(3.10)

where

/
i

+, N,y = even;
= { -, Ny = odd.
The typical energy spectrum for the system N=3 is shown in figure 2.
The dynamical symmetry Hamiltonian of the limits shown as the second of eq.(3.1)
can be written as

H = eCu,y06) + AczsU(“) (4)®SU§,‘:?#

)+ BC0,y0) + CCho,(5) + DCQOM(‘S). (3.11)
The wave function can be written as ' . |
[(L™)) = IN [n1,n,n4 (01,02,08)s (1, v2)s ¢ L) (3.12)
SUspdr(4)  Oupay(6)  Oups(5) Oups(3)

where « is the additional quantum number. Their values can be obtained by the
following branching rules and those momentioned above.
(1) Uspar(16) D SUspas(4) ® SUapas(4)
This reduction has been discussed in refs [5] and [12]. For the IRRP [N] of Uspdf(16) _
the branching rule is ‘
[Nw=" 3. @[ni,nz,na)4 ® [n1,n2,n8)4 (3.13)
1 mz,na
in whichn; 2ny >n3>0,n1+ny+ng =N -4k, k=0,1,2,---,[N/4].
(2) SUspar(4) ® SUspay(4) D Ospas(6)
Considering the isomorphous relation of- SU(4) and O(6), this reduction can be real-
ized by the reduction of SUspas(4) ®SUspar(4) D SUspas(4), of which the branching rule
can be determined with the Young tableaux techneque or Schur function method. Then,
with the following relations we can get the IRRPs (01, Oa, 03) of Ospdf (6) from the IRRP
[ny,n2,n3] of SUpgr(4) :

g = %(nl + ng —ng)
gy == %(nl —ng + n3) ' (3-1,4)

a3 = "(77'1 - nz‘— ns)
" The ener gy of the state L with this symmetry can be expr essed as
E(L™) = Eo + eN + A}[3(n? +n2 + n3) — 2(niny + nang +ngny) + 4(3ny + 0y — 713)]

+Bloi(oy +4) + o3(03 + 2) + 02+ Cla(v1 +3) + va(va + 1)) + DL(L + 1)(
3.15)

207




4 The SU(3) Limit

There is only one grovp chain on the couphng levcl S Uspdf(3), whose Hamlltoman
keewq the parity prf*sewed It can be written as

s,nu(w) D U.4(6) ® Ups(10) D SUsd(3) ® SU,4(3) D SU,4(3) D o,,d,(3) (4.1)

The dynaraical symmetry represented by this group cham is the so called S U (3) limit.
Its dyna,mvcal symmetry Hamiltonian can be expressed as

H= fcwm(c) +e Czu,;,(‘lo) + ACQSU.,,(S) + A'Czsu,,,(a) +B Czsu,p,,,(a) + DC20,4(3)- (4.2)

The wave function can be labelled by the IRRPs of the groups in the chcun, and it can
be written as

W)(L”)) = [N ngy (}‘sn') Hsd)3 Tipg (’\pfv /ipf)3§ ('\, K)a K L) (4-3)

SU.4(3) SUpp(3) . SUupas(8)  Oupy(3)

where K is the additional quantum number to differate the same L in the (A, pu). The
reduction rules that have not appeared prevnouslv are the followings.
(1)U,4(6) D SU(3) ;
" This reduction has been solved completely in sd IBMI2. The branching rule is

[Psdls = > @(2n,q — 4p — 64, 2p)s. ' (4.4)
2t . ! '
ie.,
(Asd, fisd )z = (2120, 0), (21,0 — 4,2), (2neg —~ 8,4),- - -, .
{(Zn,q ~ G,IG), (Zngg — 10,2),(2n,q — 14,4),- - -, (4.5)

.......

(2)Ups(10) D SU,(3)

This reduction is rather complicated, but it can be realized with thc usual Elliott
methodl®®, For the Eower excited p,f boson’ states, refs.[5] and [8] have given the branching
wles ‘ :

{Llo = (3,0)
{le = (6)0)> {27 2)
{3]“’) = (95‘ 0)1 (57 2)1 (3:3)7 (01 3)1 (31 0)

W‘m = (12) O)’ (8’ 2)1 (ﬁv 3)9 (69 &)’ {3’3)1 {4a 4)‘7 (4‘ 1)7 (076)’ (27 2)’ (07 0)
. _ (4.6)
(noslio = (31, 0), (3”10.7’ —4,2),(3n,5 - 8, 4)7 v, ‘ v

(371 uf = 6 0) (377,,,] - 10 2)
(3n,, 6, 3) (Sn,,f 9, &), “ ‘

............




{(3)SUs(3) ® Sups(3) D SUspas(3) |
- This reduction can be realized by means of the Young tableaux technique or the Schur
function method. The branching rule can be analytically expressed as(?4]

(A1, /11) Y (/\2,#2) = Z@K(M,Hh Ay i, Py )M + A2 —p—2¢q,p1 +p2 —p+ (1)- (4'7)

pP.g

where K (A1, fi1, Az, ft2, P, ) should satisfy the following relations

I{(’\la/-Lla)‘Za ”27p)({) I{(,U], /\11/127/\21p Q7—Q) (48)
I((Alall'l”\ZaHZap;Q) I{(/\"a/*‘b’\l),u'hpaQ)

Then taking gy = min(Aq, pa, )\z,pz) the values of K (A, fi1, Az, pi2, P, ¢) can bc listed in
the following table.

Table 1. The Values of K(\; 1 Az 2P q)

p|po| P+l P1 p+1 el p prtl | i pi=pa—po

K11 2 joipi=potlip—potl{--|pr-potl|p—po] - 1

in which

S po= ——min(O, q), q= —py,—py+1,-++,0,- ,m'm()\'l, Ag)
p1 = man(a, b), p2 = maz(a, b),
a =min(pg, A1 —¢), b=min{p, s —q).

(4)SUep(3) D Opy(3)
This reduction has also been solved®d. For the IRRP (A p) of S U,gpdj(d) the values
of L are ‘
K,K+1,K+2, -, K+ maz(\p), (K # 0);
' . 0 (p.= even)
. / - . Y : K =0).
maz (A, 1), maz(\, p) — 2, mac(A, 1) — 4, ,{ 1 (= odd) ( 0)
where K = min(A, i), min(\, u) —2,--+,1 or 0.
The energy of the state L can be experssed as

E(L™) = Eo + enga + €nys + AN + Asafiod + 162 + 3(Asa + #sa)]
+ A 2 Dpgitpg + 2+ 300y + pipg)] + B+ A 6?4+ 30+ W) (4.10)
+DL(L + 1),
whereﬁ

[+, n,;=even;
= -
—, Ny = odd.

- The typical energy spectrum is shown in figure 3.
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5 The O(4) Limit
There are three group chains on coupling level Os,,d,(4). They are

Unpig(16) D SUnps(4) @ SUy(4) > SPL)(4) @ SPY(4) D Opr(4) D O (3)
Uspar (16) D Oy (16) D sp} ) (4) ® sp‘(’,” ) (4) D os,,d,(4) 5 Opar(3) (5.1)
Unpas(16) D Crpar(10) D 5P (4) ® SPLY(4) D Oupay(4) D Opuy(3) '

We can symbolize them as O(4)(I) limit, O(4)(11) limit and O(4)(I IT) limit respectively.
For the O(4)(I} limit, the dynamical symmetry Hamiltonian can be expressed as

H = eCiy, 4016) + Aczsv‘ﬁ;’”(zs)@SUﬁ:}?‘,(q; + B0, spte) (4)®.§Pf:;,(4) + CC20,,4(4) + DCh0,4(3)-

apdf
(5.2)

The wave function of the system can be written as
(L) = IN [, e, s (56, (1,67 @ (r,w02)s L) (5.3)

| SUny(4) SEEY4) SPUY4)  Oupg(4) Cuns(3)

where « is the additional quantum number to distinguish the same (wl,wg) belonging to
the same (I, 1"} ® {149 10y, '

The branching rules that have not discussed in previous sections dre given in the
following,. ‘

(1)SUsp4:(4) @ SUspar(4) D SPipas(4) @ SUopas (4)

This reduction can be easily realized by means of the Young tableaux technique or
Schur function method. For the IRRP [r1, 12, 3] of SUpar(4), the brlanching rule is

{m,ng, n3}4 = E:(n] - ?:., Ny — Ng — ’L)/l (5.4)

wherei = 0,1,2,-- - min{ng, ny — ngy)

(2)S Popgp(4) @ SPopuas(4) D Oopyy(4)
 'This reduction is, in fact, the reduction SPuyg(4) @ SPopip(4) D SUspar(2) ® SU,pe(2)
75 Oupyy(4), in which reduction SP,py(4) O SU.pq(2) has been solved*~'9. Then the
IRRP {wy,ws) of (4(4) can be decided with the relations wy = jo + jo, w2 = [jo — s,
where {jz) @ (7o) is the IRRP of SU,u(2) @ SUspa(2). ’

(3)0apar(4) D Cpr(3)

This reduction is quite easy. For the IRRP (wl,wg) of Ospy(4), the branching rule is

{wn, wz),¢ = 3 ®L (5.5)

where L = wy, {wz, + 1), {twg + 2}, 0+ oy 0n.
Then the energy of the state with O(4)(1) symmetry can be expressed as . »
E(L™) = Eg +eN + AM3(n? +n + n2) — 2(nyng 4 ngng 4 namy) + 4(3ny + ny — na)|
+2B[h{h + 4) + b{ly + 2)] + Clwi(wy +2) + wi] + DL(L +1).

' (5.6)

210




* For the O(4)(ZI) limit, The dynamical synimetfy”Hamiltonian is
H = eCly,, 406 + AC20,,4(16) + BC?SPS;Z,(’i)@S‘PxLy(“) -+ CCZO,M,(A) + DCh0,,(3)- (5.7)
The wave function can be written as _
W) =N e (W BN (10,84 @ (w00 L) (58)

Oupy(16) SPLY(4) SPYY(4)  Oupar(4) Oups(3)
in which « is the additional quantum number.
Except for the reduction Uy (16) D Ogpay(16) and Ogpar(16) D SPayir(4) ® SPapir(4),
the branching rules in this group chain have been discussed. The reduction Us,qy(16)
D O.p4s(16) is trivial. For the IRRP [N] of U, (16), we have

[Ns =3 ®(v)e. e (5.9)

wherev=N,N —2,N —4,..-.,00¢r 1. .
The reduction Ogpar(16) D SPi4r(4) ® SPspys(16) can be realized in the light of
the reductions Us,,df(lfS) D nglif(lﬁ) and Usp,_{f(16) B} SUspdf(‘L) ® SUsz;df(‘l:) )] SPSPJI(A)
®S Popar(4). The result is ‘
{1} = {v]} = {lr = 2]} - ‘ (5.10)
where {(v)} is the IRRPs of SP,,4(4)® S Pspdf(4') belonging to the IRRP (v) of Oy, (16).
{[v]} refers to the IRRPs of SP(4) @ SP(4) belonging to the IRRP [v] of U,y (16).
The energy of the state L with dynamical symmetry O(4)(II) can be expressed as

E(L™) = Eo+eN+ Av(v+14)+ 2Bl (I -+ 4) + (1, -1'—2)]+C[w1(c91 +2)4wj]+DL(L+1).
, (5.11)

For the O(4)(111) lirnit, the dynamical symmetry Hamiltonian can be written as.
H = Chu,,, (16)+AC20,,4(10)+B[C +C [4+CCho0,,4 1)+ DCs0,, () (5.12)

2P ()T Y asP) (4)

The wave function can be written as
[B(L™)) = |V (ma,ma, ma,ma,msho (B2, 17)4 (I, 67)s o (wi,we)e L)~ (5.13)

Oupa(10) 5P§§3/_(4) SPO(4)  Ouar(4) Oups(3)

‘where a is the additional quantum number. - The reduction of the IRRPs in this chain
that should be solved is only Opg(10) D SPypu(4) ® SPipas(4). The results are

(a) (N, 0,0, 0,010 =Y ®(0,11)s ® (0,15)a. (5.14)

li,l2

where

b=k k—2k—4,1or0;,=N—kk=N,N—1,N—2,--,0.
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® (NN N, Nho=Y (b ® (hb). (5.15)

b2
where '

L=N,N=-2N—4,..10r0;; =0,1,2, -, [,/2].

() (N41,1,1,1, 1)10—269(1 h)s ® (1, b)a. (5.16)

1,02

n Which ,
=N =281y - kilp=0,1,2,-- N =243 =0,1,2,-- -, [N/2];'k =0,1.
The energy of the system can be given as

B(L™) = By + N + Almy(m, +8) +ma(ms + 6) + ma(ms + 4) + ma(m, + 2)
+mgms) + 2BIEIIY + 4) + 90 + 2) + @ + 4) + A 4+ 2]
+Clwr(wr + 2) + wl] + DL(L + 1).
(5.17)
In O(4) limit, the parity of the system is determined by the IRRP of O,y (4). For
the state with IRRP {(wy,w,), if wy = 0, the. energy level sequence is 0*,17,2%,3",.

If wy # 0, the states are parxty doublets, i.e., the energy sequence is wj ,(wz + 1)*
{(wg + 2)%, - - (for even wy) or w¥,(wy + 1), (wy 4+ 2)F,- - - (for odd wy). v ,
" Form eq«.(n.ﬁ), (6.11}, (6.17) we know that the energy of the state with O{4) sym-
metry can be simplified as

E(L") = Eo+ Clws(w; + 2) +w?] + DL(L + 1). (5.18)

The typical energy spectrum is shown in figure 4.

6 Concluding Remark
In this paper, the possible dynamical syminetries of the spdf Interacting Boson Model
have been discussed. They are classified into 7 kinds of dynamical symmetry limit, of
which the SU,4{5), Oupar(8); SU,per(3) and Oypgy(4) limits are investigated in detail. The
branching rules of reductions in the group chains, the dynamical symmetry Hamiltonians
and the energy spectra of the limits are given. From figures 1-4 of the typical energy
spectra, we can sce that the SU(5) limit includes some characteristics of rotation besides
‘that of vibration of the sd IBM. The O(4) limit is analogous to the motion of melecu-
lar vibration-rotation. The SU(3) and O(6) limits remain the aspects of rotation and
y-—-unstable motion respectively, and give much more energy bands.
" These discussions on the limits of the spdf Interacting Boson Model are much help-
ful for us to understand the symmetries of the octupole and quadrupole deformation,
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Moreover the phase transition between different kinds of collective motion can be in- -
vestigated by considering the changing between the corresponding dynamical symmetry
limits. Otherwise, real nuclei do not have one of these so strong symmetries, but the
mixture of some of these symmetries. To describe the nuclear collective motion with some
quadrupole and octupole deformation, it is necesary to perform numerical calculation.
To this end we set up a computer code SPDFBOSP. It has been checked by means
of the group chain method®” with respect to the SU(5), O(6), SU(3) and O(4) limits.
With this code the nuclei with total boson number N = n, + ng + np +n 7 =15 can be
described. The application results will be presented elsewhere. ‘

This work is partly supported by the National Natural Science Foundation of China.

Helpful discussions with Professor Qizhi Han and Professor Mei Zhang are acknowledged
with thanks.
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Figure Caption: -

Figure 1. The Energy Spectrum of SU,4(5) Limit(N =3, € =_0.02M6V, € = 0.8MeV,
A=A =0,B=0.02MeV, C =0.01MeV, D = 0.08MeV).

1

Figure 2. The Energy Spectrum of Ogpy(6) Limit(N = 3, e = ¢ = A = A" = 0,
B = ~0.01MeV, C = 0.015MeV, D = 0.005MeV). ’

Figure 3. The Energy Spectrum of SUsp(8) Limit(N = 3, € = 0, € = —0.6934 MV,
A=A =0, B=-0.02MeV, D = 0.006MeV).

Figure 4. The Energy Spectrum of O,pq(4) Limit(N = 4, C' = —0.005]\4@_1/,‘ D =
0.006MeV).
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Diadabolic neutron-pair transfer in isotopic
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ABSTRACT

The neutron pair transfer matrix element ( diabolic pair transfer ) be-
tween neighboring even IV particle systems ( yrast band to yrast band
) for isotopic chain of Hf nuclei are calculated by a particle-number-
‘ cdnserving treatment for the eigenvalue problem of the cranked Nils-
son Hamiltonian. The results clearly show that sign change ( diabolic
points ) does exist for a neutron pair transfer of **Hf — 1%°Hf, in
contrast to the previous conclusion that no such sign change occurs

drawn from the cranked single-j shell model.

- PACS numbers: 21.10._k,21.60.Cz,03.65.Bz,21.60.Ev,27.70.+q
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1 INTRODUCTION

In' Quantum Mechanics it is well known that the wavefunction of a state is
determined to a phase factor e=E4/%, However, it has been proved by Berry in his
1984’s article that apart from this dyn‘a,mical phase, the wavefunction also acquires a
non-integrable topological phase when a system is transported adiabatically around
a path in parameter space, i. €. , in a cyclic adiabatic process[1]. This phase now
usixaﬂy refered as Berry phase does not vanish in cases the path enclosing a diabolic
point (A diabolic point is an exceptional point, in the sense that it violates the no-
crossing rule of the Voo Neumann and Wigne;[?], in parameter space where the

‘interaction between the two energy surfaces with the same symmetry vanishes )
and has been generalized to a very abstract definitionin of the manifold of line
bundles, a3 given in the paper of Aharonov and Anandan(3], where the concept of
adiabaticity and siow and fast variables is not used. For the past several years,
Berry Phase and its generalization have been found to be of interest in a number
recent investigations in diverse field of physics, for a review see [4,5).

In Nuclear Physics, especially in the high spin physics, the reaction for the
transfer of  pair of identical nucleons coupled to zero angular momentum has been
investigated with keen interests recently. As the transfer of a pair of identical nu-
cleens coupled to zero angular momentum to a state in the yrast band ( states of

" the lowest energy for a given angular momentum I ) of a neighbouring deformed
nucleus can give informations about the pa,if correlation near the Fermi level, the
study of Berry phase in nuclear physics has been an quite active research field dur-
ing the past several vears[6-14]. It was Nikem and Ring who first realized that an
oscillating beimvim of the pair transfer matrix element as a function of rotational
frequency ( diabolic pair transfer ) is the direct consequence of the Berry phase[6],
which is analogous to the DC-Josephson effect in superconductor in the presence of
a magnetic field. It was alzo noted that the oscillating behavior of the pair transfer
amplitude is‘closely connected with the oscillating bghaviér of the backbending[15].

So far, however, the occurrence of this phenomenon has only been predicted theoret-
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ically. Even worse, for one side, without exception, all the‘ calculation are confined
to even-neutron éven—proton nucleus and no calculations about odd-odd or even-odd
nucleus are available. For the othér, experimentally, all the physical quantities are
| only defined on the discrete points on lattice in the particle numbér and angular mo-
mentum (N, I) space. However, most of the above results have been demonstrated
within the framework of cranked Hatree-Fock-Bogoliubov ( HFB ) appréach. For
example, in the HFB approximation, the actual discrete quantum numbers, the
particle number ¥ and the angular momentum I , are respectively replaced by the .
continuous parameters, the éhemica,l potentiél A and the angular frequency w. The
continuous parameters A and w are based on semiclassical consideration and are not
observables in strict séxise[12]. So the crucial problem arises is that the number of
" nucleons in a nucleus (~ 102), pa.rticuiarly, the number of valence nucleons (~ 10)
| which dominate the features of low-lying excited states, is very limited. Therefore,
the serious defects ( particle number nonconservation, excessive spurious étates;
blocking effect, etc. ){16] should be taken into account and the conclusions drawn
from the HFB approximation need reexamination. A well-known exémple[l?] is
that in all self-consistent solutions to the cranked HFB équation a pairing collapse
is always found[18], but calcula’cion with particle-number pro jec’pion before variation
showed that the gap parameter decreases very slowly and no sharp phase tran‘sition‘
is found[19]. Similar result was obtained in the exact particle—number—cgnserving
(PNC) treatment for the eigenvalue problem of Hggp[20]. However, it should be
emphasized that the particle-number projected HFB method (NHFB) is not équiv—
alent to the PNC treatment, in which the particle-number is stictly conserved from
beginning to end. A striking difference can be found in the investigation of the
yrast-yrare i’nteractioﬁ V. ( The particle-number-conserving calculation in ref. [12]
seems fo be wrong for the reason that for a single-j CSM it showed an w-independent
yrast rounthian (eg. see Fig.1(a) in ref.12) below the first bandcrossing (w < w,,
no Coriolis response) and a sharp bandcrossing between the yrast and yrare bands

occurs at w ~ wy). The exact PNC calculation in the same single-j CSM[14,20]
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showed that there only exists yrast bands with strong Coriolis response, because
all thé particles in a high-j shell have strong Coriolis resporise and nd abrupt ex-
ch(m\ge of feature between the yrast and yrare bands oceurs aroud w ~ we.In other
wor da, the vra.staymre mteractlon 1s always strong and no periodic oscillation of V
with the degree of shell filling is obtained|20]. In ref. [14], the behaviors of the pair
tranéfer m:a.tmx element has been discussed in a cranked single-j shell model using
the gdftscle number-ronservmg { PNC ) method, and no sign change of the pair
{zansfer matrix element oceurs for cranked single-j shell in contrast to the previ-
ous conclusions. Theoretically and experimentally, much work has to be done in
order to gain & better understanding of the Berry phase, backbending and the vari-
ation of pair correlation in high spin physics. However, more realistic calculations
are absent except the cranking calculation for '**Hi[6,7] and angular momentum
projected Tamm Dancoff approximation for Yb- and Hf-nuclei ( with unconserved
particle number NV }{11]. It is not fully clear whether the conclusions drawn from
the approximating approach are reliable in the realistic cases. Ili thiékpaper we will
generalize the study of ref. [14] to the isotopic chain of Hf nuclei and address the
behaﬁor of the pair transfer matrix element for Hf;nuclei in the cranked shell model

with PNC approach.

2 PATR TRANSFER MATRIX ELEMENT

As usual, the PNC CSM Hamiltonian is expressed as{21]

HCSM:I&P'*’Hpair"“wJ:c ) ' (1)
Ho =S evata, e
Hur=-GP*P, P*=Tafey @)
v>

where H, is the single particle Hamiltonian and ¢, 4t.he single particle energy, Hpgir

is the pairing interaction with constant pairing strength G ( A = G < P > being

222




the gap pafameter),' and wJ; is the Coriolis interaction with cranking frequency
w about r axis ( perpendicular to the symmetry z axis ). It should be poinfed
out that although cranked HFB formalism allows the use of the general result of
Berry phase[l] concerning the eigenstateé of a Hamiltonian which is function of
several continuous parameters ( here Hisayy = Hisp(Mw) ), the PNC cranked
formalism does not hinder the appearence of Berry phase[3]. As we are interested
in the diabolic pair transfer between the yrast bands of neighbouring Hf nuclei,
which is easy to observe experimentally and mainly connected with the neutron

bandcrossing, the effect of proton are negelected for the following discussion.

The PNC calculation for '*°Hf-1*Hf is carried out to illustrate how the pair
transfer matrix elements va.ry with the rotational frequency It should be emphsized
that in the calculation no free parameter is 1ntroduced Since the deformation
pa.ra.meters does not change very much in Hf nuclei we have used fixed parameters
€ = 0.235 and . g4 = 0.005 of 168F]f in the calculation, which are chosen accordmg to
the Lund systematics ( including the choice of the modified oscillator parameters &
and pu(22]). The reproduced single~particle level is given in Fig. 1, which has been
truncated according to €peip, = 0.40hwy and éabo,,e_ = 0.45Aw, relative to the fermi
surface of 188Hf with: '

th(neutron) =414"131 + (N — Z)/3A] ~ 7.78MeV ) (4)

Acmrdiﬁg to the truncated single particle level scheme, the ﬁumbers of the valence
particle for '®®~1"Hf are respectively N = 20 — —28. The details of the PNC
treatment can be found in ref. [16]. The accurate solution to the lox;vlying eigenstates
and eigenenergies of Hf nuclei are obtained by diagonalizing the Hamiltonié,n Hegar
in the truncated many-particle configuration (MPC) space with truncated MPC
energy ecg = 0.407‘10.:0. For 1%8-17Hf the dimensions of the truncated MPC spacés
~ of signature r = 1 for neutron systems of *SHf,'5*Hf,'"°Hf,'"2Hf and Hf are 364,
300, 122, 253, and 209, respectively. Consider the quite different ché.racter of each
large shell, depending on whether they belong to the same large shell, the ﬁairing
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interaction strength is reasonably but somewhat arbitrarily chosen as:
o

o Same large shell

1 Ga
i 0.2Gy exp[-—l()zwz]‘ Dif ferent large shell (5)
Withﬁ?q = (.04fwy. Calculation shows that the conclusions drawn below remain
valid for other G values within é. reasonable reigon. The lowest nine eigenenergies
Eifhwe [ 1 = O(yrast),l(yrare),Z,..,,8 | for N = 20,22,...,28 particle system are dis-
played in Figs. 2 and 3. The first (‘yrast—yrare ) backbending frequencies are about
o Biop = 0.01,0.03,0.02,0.03 and 0.15 for N = 20,22,24, 26, and 28, respectively. It
should be pointed out that the intémction strengﬁh between yraét and yrare‘ bands
for Hf nuclei | | ,
V=B Byrastome B (6)
oscillating with different neutron numbers, in contrast with the single-j CSM the in-
teraction strength between yrast and yréxe bands there is always strong[14]. For re-
alistic Hf chains cases, in fact, the ymst surface EQ(N , w) and yrare surfé.qe Ey(N,w)
in the pm*ameter {N,w) space may touch. Thgrefbre we will focus on the investiga-

tion of the w variation of the pair transfer matrix element

Pw)=< N +2,w|PtN,w > ‘ (N
where [N,w > is the PNC wave function of Hggy for a IV particle system at
frequency w. However, the eigen-function of Hesyr at each point (NV,w) in the
parameter space is determined up to an arbitrary phase. In the PNC calculation the
relative phase of wave functions are chosed in such a way that at w = 0 the matrix
clement in eq. (7) is positive and the concept of natural Hermitian connection[23]
is used; i.e. the overlap between two nzighboring PNC wave functions |V, w > and
[N,w + € > should be unity up id quadratic terms in the infinitesimal parameter e
< N wN w+e>= 1+ Oc) (8)

The pair transfer matrix element ( normalized o unit for w = 0')
< N4 2,w|PHN,w >/< N + 2,0 =0[P*|N,w=0> (9)
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for yrast band to yrast band as a function of w is shown in Fig. 4. Although the
pair transfer matmx element soon decrases to zero, still it is clearly seen that in
the PNC treatment sign changc of the pair transfer matrix element ( yrast band to -
| yrast band ) occurs around the rotational frequercy w = O.IOBwq for a neutron pair
transfer reaction in '8Hf — $8Hf in contrast with the prew}ious result obtained
by the single-j CSM[14]. Here the rotational frequency at which the sign change
of the nuetron pair transfer matrix element occurs seem have nothing with the
related bandcrossing frequency, this means that diabolic pair transfer is closely -
connected with diabolic pbint not banderossing. It could be understood from the
N(A) variation of the the interband interaction of yrast bands and yra,re‘ band. In
fact, a oscillating N (/\) variation of the interband interaction of yrast bands and
yrare band is clearly demonstrated in Fig. 3 and diabolic points between the yrast
and yrare bands may appear around w = w,. Therefore, it is not surprlsmg that
an oscillating behavior of pair transfer matrix element is found for a neutron pair

transfer reaction in '*8Hf — !%Hf, as shown in Fig. 4.

3 Sﬁmmary

Based on PNC cranked Nilsson model we have carried out a systematic investi-
gation of the occurence of Berry phase and diabolic neutron pair transfer for isotopic
chain of Hf nuclei. In the calculation we have adopted a reasonable truncated MPC
configuration space and a fully quantum mechanical treatment of particle number

degree of freedom.

Since the particle number here is quantized, we no longer have continuous pa-
rameters and no longer apply the arguement of Berry[Al]. Therefore we have intro-
duced anothgr kind of Berry i)hase' on a discretized path similar to ref. [10,11]. As
we are onlly interested in the diabolic neutron pair transfer between yrast bands: of
neighbouring even isotopic chain of Hf nuclei, which is maily determined by neu-

tron if the proton-neutron residual interaction are negelected, so the calculation are
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ca'med out in neutron MPC space. we ha,ve found that thc. sign of the neutron pa.lr
‘ tmmf@r matrix element ( yrast band to yrast band ) changes a.round the rotational
frequency w = 0.10%wg fox 169Hf — mst in contrast with the previous result that
no such sign change occurs for yrast band to yrast band obtained in the single-]
PNC CSM[i4]. However this does that means that the calculation of ref. [14] is

wrong, instead it is because that in single-j shell no states of normal parity exist.

It should be emphasized that the unique role of atomic nuclei among many body
quantum sysiem is based on the strong short range atiractive interaction between
its constitient particles and its large but yet “ﬁnite’."number of such constituent
particles. Though great success has been achieved since the transplant of the BCS
method and the concept of quasiparticle excition from the superconducting theory of
;netal to nuclear physics at the end of fifiies, some important conclusions drawn from
the BCS or HFB methods ( pairing collapse, oscillating behavior of backbending
and pair transfer matrix element in a single-j model ) have been turned out te be
unsuitable, mainly due to the finiteness of particle number ( ~ 10 — ~10% ) in a
nucleus.  These résults remind us that some statements for nuclear system drawn
from the BCS or HFB approximation should be reexamined carefully. The realistic
calculation hers and 2 single-} PNC CSM in ref. [14] give a strong support for the

above statement,

i The authors ave grateful to Px‘bﬁiﬁ; S, Wu for helpful discussion and to CCAST
for the hospitélitya,nd supports during the workshop period. This work is partly
supported by the National Natural Science Foundation of China, and the Grant

LTWTZ-1298 of ’“‘hmcse Academy of Science.
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Figure Captions

Figure 1: The truncated neutron Nilsson single p;a.rticle level scheme in 8Hf ( Lund

systematics [22] ).

Figure 2: The w variation of the lowest nine eigenenergies ( signature r = 1)
of Hosy for the neutron systems of Hf-chains 166[£-17Hf in the nilséon model (
€y = 0.235, eq = 005 ) obta.ined by exact diagonaﬁzation of Hosa in the truncated
MPC space ( for the details see the text ). The lowest MPC configuration energy

is chosen as zero.

Figure 3: The same as Fig. 1, but the yrast band is taken as reference.

Figﬁre 4: The pair transfer matrix elements ( normalized to unit for w = 0 )
< N +2,w|PHN,w> /< N+2w=0PN,w=0> (solid lines ) for N =
18,20,22,24., and 26 (yrast band to yrast bafxd) . The dashed lines represent»the.
gap parameters A = G < P*P >[20] averaged over the initial and final systems:
[A(NY + AN 4 2)]/2. It could be seen that an oscillating behavior occurs for the

"neutron pair transfer reaction in %3Hf — 1S6H{,
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