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Abstract

It is known that the classical limit of the second order BPZ null vector decoupling equation for the 
simplest two 5-point degenerate spherical conformal blocks yields: (i) the normal form of the Heun equa-
tion with the complex accessory parameter determined by the 4-point classical block on the sphere, and 
(ii) a pair of the Floquet type linearly independent solutions. A key point in a derivation of the above result 
is the classical asymptotic of the 5-point degenerate blocks in which the so-called heavy and light contri-
butions decouple. In the present work the semi-classical heavy–light factorization of the 5-point degenerate 
conformal blocks is studied. In particular, a mechanism responsible for the decoupling of the heavy and light 
contributions is identified. Moreover, it is shown that the factorization property yields a practical method of 
computation of the Floquet type Heun’s solutions. Finally, it should be stressed that tools analyzed in this 
work have a broad spectrum of applications, in particular, in the studies of spectral problems with the Heun 
class of potentials, sphere–torus correspondence in 2d CFT, the KdV theory, the connection problem for the 
Heun equation and black hole physics. These applications are main motivations for the present work.
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1. Introduction

1.1. The Heun equation

To begin with let us consider the Heun equation, i.e., the Fuchsian equation with four singu-
larities. The most familiar form of the Heun equation reads as follows [1]1

d2�

dz2 +
[
γ

z
+ ω

z − 1
+ ε

z − x

]
d�

dz
+ αβz − Q

z(z − 1)(z − x)
� = 0. (1.1)

Eq. (1.1) has four regular singular points at 0, 1, x and ∞. In (1.1) it is assumed the condition 
ε = α + β − γ − ω + 1 needed to ensure regularity of the point at ∞. The complex number 
Q is called the accessory parameter. Another representation of the Heun equation known as the 
normal form looks as follows [2]

d2�

dz2 −
[

A

z
+ B

z − 1
+ C

z − x
+ D

z2 + E

(z − 1)2 + F

(z − x)2

]
� = 0. (1.2)

Eqs. (1.1) and (1.2) are linked by the substitution �(z) = zγ/2(z − 1)ω/2(z − x)ε/2 �(z), where

A = −γω

2
− γ ε

2x
+ Q

x
, B = γω

2
− ωε

2(x − 1)
− Q − αβ

x − 1
,

C = γ ε

2x
+ ωε

2(x − 1)
− xαβ − Q

x(x − 1)

and

D = 1
2γ

( 1
2γ − 1

)
, E = 1

2ω
( 1

2ω − 1
)
, F = 1

2ε
( 1

2ε − 1
)
.

In the present paper we study a realization of the Heun equation in a two-dimensional con-
formal field theory (CFT2) and discuss some of its consequences. In CFT2, the Heun equation 
occurs in the normal form (1.2) usually written as

d2�

dz2 +
[

δ1

z2 + δ2

(z − x)2 + δ3

(1 − z)2 + δ1 + δ2 + δ3 − δ4

z(1 − z)
+ x(1 − x)c2(x)

z(z − x)(1 − z)

]
� = 0. (1.3)

From (1.2) and (1.3) one has

−A = δ1 + δ2 + δ3 − δ4 + c2(x)(x − 1), −B = δ4 − δ1 − δ2 − δ3 − c2(x)x,

−C = c2(x), −D = δ1, −E = δ3, −F = δ2. (1.4)

Here we just only briefly announce that eq. (1.3) emerges in Liouville field theory (LFT) and 
in a model independent chiral CFT2. These two contexts are related to computations of certain 
conformal blocks. For this reason, before we express our concrete goals and motivations of the 
present work, we would like to spell out basic information about the quantum and classical
conformal blocks. In particular, we will list some interesting current research topics related to 
them.

1 Eq. (1.1) is called now the Heun equation in honor of its first investigator — German mathematician Karl Heun 
(1859–1929).
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1.2. Quantum and classical conformal blocks

Let Cg,n be the Riemann surface with genus g and n punctures. The basic objects of any 
two-dimensional conformal field theory living on Cg [3,4] are the n-point correlation functions 
of primary physical vertex operators defined on Cg,n. Any correlation function can be factorized 
according to the pattern given by the pant decomposition of Cg,n and written as a sum (or an 
integral for theories with a continuous spectrum) which includes the terms consisting of the 
holomorphic and anti-holomorphic conformal blocks times the 3-point functions of the model 
for each pair of pants. The Virasoro conformal block Fc,
p [
i](Z) on Cg,n depends on the 
cross ratios of the vertex operators locations denoted symbolically by Z and on the 3g − 3 + n

intermediate conformal weights 
p. Moreover, it depends on the n external conformal weights 

i and on the central charge c.

In the operator formalism [5,6] the conformal blocks on the Riemann sphere are defined as 
matrix elements (vacuum expectation values) of radially ordered compositions of the primary 
chiral vertex operators (CVO’s) acting between Verma modules — the highest weight repre-
sentations of the Virasoro algebra. Conformal blocks on the torus are traced cylinder matrix 
elements of 2d Euclidean ‘space–time’ translation operators and CVO’s insertions, i.e., ‘chiral 
partition functions’. Conformal blocks are fully determined by the underlying conformal sym-
metry. These functions possess an interesting, although not yet completely understood analytic 
structure. In general, they can be expressed only as a formal power series and no closed formula 
is known for its coefficients.

Among the issues concerning conformal blocks which are still not fully understood there is 
the problem of their classical limit [7]. This is the limit in which all parameters of the conformal 
blocks tend to infinity in such a way that their ratios are fixed:


i, 
p, c −→ ∞,

i

c
= 
p

c
= const.

For the standard parametrization of the central charge c = 1 + 6Q2, where Q = b + 1
b

and for 
‘heavy’ weights (
p, 
i) = 1

b2 (δp, δi) with δp, δi = O(b0) the classical limit corresponds to 
b → 0. There exist many convincing arguments that in the classical limit the conformal blocks 
behave exponentially with respect to Z:

Fc,
p [
i](Z)
b→0∼ e

1
b2 fδp [δi ](Z)

.

The functions fδp [δi](Z) are known as the classical conformal blocks [7,8].
Conformal blocks may also include the ‘light’ conformal weights 
light which appear as con-

tributions from the ‘light’ chiral vertex operators V
light(y). The light conformal weights are 
defined by the property limb→0 b2
light = 0. It is known (but not proven in general) that light 
insertions have no influence to the classical limit, i.e., do not contribute to the classical blocks:〈

n∏
i=1

V
heavy(zi)V
light(y)

〉
b→0∼ �(y) e

1
b2 fδp [δi ](Z)

. (1.5)

Recently, a considerable progress in the theory of conformal blocks and their applications has 
been achieved. This is mainly due to the discovery of the so-called AGT correspondence [9]. 
The AGT conjecture states that the Liouville field theory correlators on the Riemann surface 
Cg,n with genus g and n punctures can be identified with the partition functions of a class Tg,n

of four-dimensional N = 2 supersymmetric SU(2) quiver gauge theories. A significant part of 
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the AGT conjecture is an exact correspondence between the Virasoro blocks on Cg,n and the 
instanton sectors of the Nekrasov partition functions of the gauge theories Tg,n. Soon after its 
discovery, the AGT hypothesis has been extended, in particular, (i) to the correspondence be-
tween conformal Toda correlators and SU(N) gauge theories partition functions [10]; (ii) to the 
relation (cf. [11]) between irregular conformal blocks [12–14] and Nekrasov’s instanton partition 
functions for ‘non-conformal’ N = 2, SU(2) super Yang–Mills theories.

The irregular conformal blocks discovered by Gaiotto were introduced in his work [11] as 
products of some new states belonging to the Hilbert space of CFT2. These novel irregular 
Gaiotto states are kind of coherent vectors for some Virasoro generators. It is also known that 
irregular blocks can be obtained from standard (regular) conformal blocks in properly defined de-
coupling limits of the external conformal weights, cf. [12,13]. Furthermore, the Gaiotto vectors 
can be understood as a result of suitable defined collision limit of locations of vertex operators in 
their operator product expansion (OPE), cf. [14].

Interestingly, the classical limit exists also for irregular blocks and consistently defines the 
classical irregular blocks. This claim first time has appeared in [15] as a result of non-conformal 
AGT relations and yet another new duality, the so-called Bethe/gauge correspondence [16].

Let us recall that the AGT correspondence works at the level of the quantum Liouville field 
theory. At this point it arises the question as to what happens if we proceed to the classical limit 
of the Liouville theory. It turns out that the semi-classical limit of the LFT correlation functions 
[7] corresponds to the Nekrasov–Shatashvili (NS) limit of the Nekrasov partition functions [16]. 
In particular, a consequence of that correspondence is that the classical conformal blocks can be 
identified with the instanton sectors of the effective twisted superpotentials [17,18].2 The latter 
quantities determine the low energy effective dynamics of the two-dimensional gauge theories 
restricted to the so-called �-background. The twisted superpotentials play also a pivotal role in 
another duality, the aforementioned Bethe/gauge correspondence [16] that maps supersymmet-
ric vacua of the N = 2 theories to Bethe states of quantum integrable systems (QIS). A result 
of that duality is that the twisted superpotentials are identified with the Yang–Yang functions
which describe spectra of the corresponding quantum integrable systems. Hence, combining the 
classical–NS limit of the AGT duality and the Bethe/gauge correspondence one thus gets the 
triple correspondence:

CFT2 2d N = 2 SU(2) SYM 2-particle QIS

Classical Virasoro blocks twisted superpotentials spectra of Schrödinger operators

which links the classical Virasoro blocks to the SU(2) twisted superpotentials and then to spectra 
of some Schrödinger operators. Indeed, let us note that 2-particle QIS are nothing but quantum-
mechanical systems. The above correspondence can be extended to the following:

CFT2 2d N = 2 SU(N) SYM N-particle QIS

Classical Toda blocks twisted superpotentials Yang–Yang functions

if we take the classical–NS limit of the generalized AGT conjecture [10].

2 On the relation between the quantization of the Hitchin system, SYM theories, CFT2 and the geometric Langlands 
program, see also [19].
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Concluding, the interest in the classical conformal blocks and their uses has recently dramat-
ically increased. Almost every day one may find in a literature more new, additional to those 
described above, fascinating contexts, in which these functions emerge. Some of these topics 
are: spectral problems for some Schrödinger operators [15,20–22]; the Painlevé VI equation 
[23]; the KdV equation [24]; the isomonodromic deformation problem [25]; S-duality in N = 2
super Yang–Mills theories [26]; entanglement entropy in CFT2 and CFT2/AdS3 holography [27,
28]; quantum chaos [29]; the connection problem for the Heun equation and scattering in black 
hole backgrounds [30–32]; black holes, holography and information paradox [33]; semi-classical 
spectra and restrictions on holographic two-dimensional CFT’s [28,34]; holographic interpreta-
tion of classical blocks and classical bootstrap [34–41].

1.3. Objectives, motivations, outline

As has been already mentioned, in two-dimensional conformal field theory the Heun equation 
emerges in two circumstances.

First, eq. (1.3) one gets in the classical limit from the BPZ null vector decoupling equation 
[3] for the Liouville 5-point function of primary fields with one light degenerate field V
2,1(z, ̄z), 
where 
2,1 = − 1

2 − 3
4 b2. The accessory parameter c2(x) in eq. (1.3) is determined in this frame-

work by the classical Liouville action on the 4-punctured sphere.
On the other hand, the degenerate 5-point blocks in the Liouville correlation function fulfill 

the same null vector decoupling equation as the physical correlator itself. Applying to this equa-
tion the asymptotic (1.5) with n = 5 and 
light = 
2,1 one gets the normal form Heun equation 
with the two linearly independent solutions (�+, �−) known as the path-multiplicative or Flo-
quet type solutions, cf. [23,42]. Here, the Heun accessory parameter c2(x) is a complex-valued 
function determined by the classical 4-point block on the sphere. In fact, one obtains the follow-
ing claim:

Proposition 1.1. The accessory parameter c2(x) in the Heun equation (1.3) is given by the 
derivative of the classical 4-point block on the Riemann sphere w.r.t. the modular parameter x,

c2(x) = ∂

∂x
fδ

[
δ3 δ2
δ4 δ1

]
(x), δ := 1

4

(
1 − λ2

)
(1.6)

iff the two linearly independent solutions (�+(z), �−(z)) of the equation (1.3) are of the Floquet 
type and have diagonal monodromy along a curve γ (0, x) encircling both 0 and x, and the 
corresponding monodromy matrix Mγ (0,x) obeys Tr Mγ (0,x) = −2 cos(πλ).

Recall that the path-multiplicative (Floquet) solutions of the Heun equation are related to two 
singularities, for example, z = 0 and z = 1. Let γ be a smoothly parametrized closed contour 
encircling these points: γ : z = ϕ(s) for s ∈ [0, 1], ϕ(0) = ϕ(1) = z0. A Floquet solution y(z) is 
defined as a solution satisfying y(ϕ(1)) = e2πiσ y(ϕ(0)). So, it is a solution which is multiplied 
by a constant factor e2πiσ if we pass around a simple closed contour in the z-plane that encircles 
two of the three singularities 0, 1, x. The value σ is called a Floquet exponent or path exponent or 
characteristic exponent. It depends on the parameters of the Heun equation [42]. Within the CFT 
realization the characteristic exponent σ is determined by the intermediate classical conformal 
weight δ.

To get the claim above one can use perturbative methods (see [43,44], where the implica-
tion ⇐ was shown) and a standard conformal field theory machinery. It should be stressed 
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that the CFT tools, such as the OPE, allows to find monodromy properties of the solutions 
(�+(z), �−(z)) without their explicit computation. However, it would be interesting to know 
if these solutions can be calculated within CFT2. For this reason in the present paper we study 
a mechanism of the semi-classical ‘heavy–light’ factorization (1.5) in the case of the degenerate 
5-point blocks. Our aim here is to answer the question whether the formula (1.5) for n = 5 and 

light = 
2,1 really allows to explicitly compute the Floquet type Heun’s solutions.

Indeed, little is known about a concrete form of the Floquet type solutions (cf. the end of sub-
section 3.2.1 in [42]) and an elaboration of any method useful for practical numerical calculation 
is of great importance. In particular, in [42] one can read that the path-multiplicative Heun’s 
functions ‘theoretically can be constructed as series’

+∞∑
−∞

cnfσ+n(z) (1.7)

with conjectured form of the coefficients fσ+n(z) given by the hypergeometric function 
fσ+n(z) = zσ

2F1(·; ·; ·; z), where dots denote dependence on the combinations of parameters 
of the Heun equation and the characteristic exponent σ . However, further one can find in [42]
that ‘in the general case, the form of the dependence of the path exponents σ on the parameters of 
the Heun equation is lacking, and hence expansions (1.7) cannot be used for practical numerical 
calculations.’

The answer to the above question allows to make contact with the perturbative techniques 
used to solve the monodromy problem for the Heun equation determining the classical 4-point 
block, cf. [43,44]. Both, the CFT and complementary perturbative methods can be capitalized in 
concrete applications. In particular, it seems very promising to use the CFT methods in the study 
of scalar perturbations of certain black hole (BH) backgrounds described by the Heun equation. 
This particular application is our main motivation for the present work. We spell out it in more 
details below.

It is known that the Klein–Gordon equation in the Kerr–AdS5 background [45] can be re-
duced to the two (angular and radial) Heun equations by a separation of variables [46].3 Having 
in mind two contexts in which the Heun equation appears in 2-dimensional CFT one may con-
sider an idea of the formal correspondence between the dynamics of a scalar field in Kerr–AdS5
and the Liouville theory/chiral CFT2. Such concept has recently occurred in [48].4 First, it 
would be nice to explore this relation at the formal level, i.e. to complete a dictionary and to 
describe formal implications, as it has been partially done in [48]. Interestingly, this identifica-
tion has many common features with what is known as the Kerr/CFT correspondence [49]. It 
would be very interesting to examine whether it is an accidental similarity or indeed something 
deeper.

Then, one may ask about its possible application in the computation of the so-called BH 
quasi-normal modes (QNMs), cf. [50]. These quantities are certain complex frequency modes
that resonate when the BH is weakly perturbed, e.g. by the weak scalar field. The quasi-normal 
modes are important for studying a stability of the black holes. They are also useful in the study 
of a plasma through the finite temperature AdS/CFT correspondence. For the Kerr–AdS5 BH a 

3 In fact, a bit more general situation can be considered, than those in [46], namely, for the metric of the 5-dimensional 
charged AdS BH, cf. e.g. [47]. Such BH solution contains the electric charge Q in addition and for Q = 0 reduces to the 
metric discussed in [45,46].

4 See also [30–32].
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preliminary analysis shows that the parameter in the radial and angular Heun equations, which 
can be interpreted as the frequency of the BH oscillations, is determined by the complex acces-

sory parameter, and so, by the calculable complex-valued classical 4-point block fδ

[
δ3 δ2
δ4 δ1

]
(x). 

Using such an identification one can express the frequency as a function of the other parame-
ters in the radial/angular Heun equation and the characteristic exponent related to δ. However, 
to interpret the frequency parameter as the BH frequency QNMs the scalar field, and hence, its 
radial and angular parts have to fulfill physically appropriate boundary conditions at the horizon 
(purely ingoing waves) and at the spatial infinity (purely outgoing waves).5 Therefore, one of the 
key points that needs to be clarified here is to answer the question whether the solutions available 
within CFT2 obey these boundary conditions.

The above ideas should work also for other BH backgrounds. For instance, the radial equation 
for the scalar perturbation of the Kerr–NUT–(A)dS BH in four dimensions is reducible to the 
Heun equation. Next, confluent Heun equations determine the scalar perturbations of the Kerr 
metric in four dimensions.6 It is an interesting question of how to get the latter, i.e., the confluent 
Heun equation together with its certain solutions entirely within the formalism of CFT2. Perhaps 
one needs to analyze the collision and classical limits of the BPZ equation for the 5-point blocks. 
In such a way the quantum and classical irregular conformal blocks should come to the game, 
cf. [31].7

Closely related to the scattering problems in the black hole backgrounds is the connection 
problem for the Heun and confluent Heun equations, cf. e.g. [42,51]. It is a question of how 
to express any of the pairs of linearly independent solutions of eq. (1.1) around some singular 
point 0 or 1 or x or ∞ as a linear combination of any one of the other three such pairs. Recently 
some progress in the solution of the connection problem has been achieved mainly due to the 
application of the so-called ‘isomonodromic approach’ and results relating regular and irregular 
conformal blocks to Painlevé VI and Painlevé V τ -functions, cf. [30–32].

The structure of the paper is as follows. In subsection 2.1 a well-known fact is reminded, 
namely, it is shown how the CFT machinery determines a monodromy of the Heun’s solu-
tions referred to in the Proposition 1.1. In subsection 2.2 the Heun equation is studied within 
purely mathematical representation theoretic formalism of the conformal blocks. The formula 
for the linearly independent solutions of the normal form Heun equation in terms of the clas-
sical limit of the conformal blocks is derived. In subsection 3.1 the heavy–light factorization 
property of the degenerate 5-point blocks is studied. This analysis leads to a computation of the 
limit defining the Floquet type Heun’s functions and in fact yields a new method of the cal-
culation of the latter. A concrete example of the path-multiplicative Heun function computed 
in this way is presented there and in the appendix B. In subsection 3.2 the x → 0 limit of the 
solution extracted from the conformal blocks is computed. This calculation confirms that the 
‘CFT solution’ of the Heun equation has for x → 0 the expected form in terms of a hyperge-
ometric function. In subsection 3.3 a comparison with the perturbative techniques is discussed. 
In section 4 conclusions of the present work and open problems for further research are col-
lected.

5 Exactly, the presence of the horizon implies that the boundary value problem, which must be solved to determine BH 
QNMs, is non-hermitian and associated eigenvalues (= QNMs) are complex.

6 These equations are known in the literature as the Teukolsky equations (cf. [42] and refs. therein).
7 Moreover, it is reasonable to expect that there exists a monodromy problem for the confluent Heun equation whose 

solution matches the CFT results.
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2. The Heun equation in CFT2

2.1. Classical limit of BPZ equation for the degenerate five-point function

Let us consider the projected 5-point function on the sphere in the diagonal theory (
i = 
̄i):

G
(z, x) :=
〈
V4(∞,∞)V3(1,1)V− b

2
(z, z̄)P
,
V2(x, x̄)V1(0,0)

〉
,

where V
α=− b

2
is the degenerate field with the conformal weight


− b
2

= 

α=− b

2
= α(Q − α) = −1

2
− 3

4
b2, Q = b + 1

b

and Vi ’s are the four heavy primary operators (
i = b−2 δi , δi = O(1)). The function G
(z, x)

satisfies the following null vector decoupling (NVD) equation [3]:[
∂2

∂z2 − b2
(

1

z
− 1

1 − z

)
∂

∂z

]
G
(z, x)

= −b2

[

1

z2 + 
2

(z − x)2 + 
3

(1 − z)2 +

1+
2+
3+
− b

2
−
4

z(1 − z)

+ x(1 − x)

z(z − x)(1 − z)

∂

∂x

]
G
(z, x). (2.8)

Our aim now is to consider the classical limit of the equation above. The key point here is an 
observation that in the limit b → 0 only the operator with weight 
− b

2
remains light (
− b

2
=

O(1)) and its presence in the correlation function has no influence on the classical dynamics. 
Then, for b → 0

G
(z, x) ∼ �(z) e
− 1

b2

(
Scl(δ4,δ3,δ)+Scl(δ,δ2,δ1)−fδ

[
δ3 δ2
δ4 δ1

]
(x)−f̄δ

[
δ3 δ2
δ4 δ1

]
(x̄)

)
. (2.9)

Indeed, assuming that the light field does not contribute to the classical limit we are left with the 
projected 4-point function of the heavy operators:〈

V4(∞,∞)V3(1,1)P
,
V2(x, x̄)V1(0,0)
〉

= C(
4,
3,
)C(
,
2,
1)F1+6Q2,


[

3 
2

4 
1

]
(x)F̄1+6Q2,


[

3 
2

4 
1

]
(x̄)

b→0∼ e
− 1

b2

(
Scl(δ4,δ3,δ)+Scl(δ,δ2,δ1)−fδ

[
δ3 δ2
δ4 δ1

]
(x)−f̄δ

[
δ3 δ2
δ4 δ1

]
(x̄)

)
.

The quantities Scl(δ3, δ2, δ1), known as the classical 3-point actions, are the classical limits of 
the structure constants C

(

i,
j ,
k

)
. The functions

Fc,


[

3 
2

4 
1

]
(x) = 
4 1 x


3




2


1

= x
−
2−
1

(
1 +

∑
n>0

xnF (n)
c,


[

3 
2

4 
1

])
(2.10)

and
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fδ

[
δ3 δ2
δ4 δ1

]
(x) = lim

b→0
b2 logF1+6Q2,


[

3 
2

4 
1

]
(x) (2.11)

are quantum, and classical 4-point blocks on the sphere respectively. The substitution of eq. (2.9)
into the NVD eq. (2.8) leads, within the limit b → 0, to the normal form of the Heun equation 
(1.3) with the accessory parameter c2(x) determined by the classical 4-point block, according to 
(1.6), cf. [23].

Alternatively, the parameter c2(x) can be found once the solution of certain Bethe-like saddle 
point equation defining the twisted superpotential of the SU(2) Nf = 4 N = 2 SYM theory is 
known, cf. [52].

Let us stress that the holomorphic accessory parameter c2(x) is related to that which emerges 
in the uniformization theory of the 4-punctured sphere. The real-valued accessory parameter 
for C0,4 can be found by taking the classical limit of the NVD equations obeyed by the physical 
Liouville 5-point function on the sphere with V

α=− b
2
, cf. [7,8,52,53]. The latter is nothing but the 

projected correlation function discussed above integrated over the Liouville field theory spectrum 

 = 
α , α = 1

2Q + iR+ with the structure constant C(
3,
2,
1) identified as the Liouville 
3-point function [7,54].

Monodromy properties of the solutions

Let us consider monodromy properties of the independent solutions �± of eq. (1.3) with the 
accessory parameter given by (1.6). It turns out that the substitution (2.9) automatically fixes 
the solutions �± to be of the Floquet type with the characteristic exponent σ determined by 
the intermediate classical conformal weight δ = 1

4 (1 − λ2) [23]. First, note that the functions on 
both sides of eq. (2.9) should have the same monodromy properties along the contour encircling 
the points 0 and x. Secondly, from a completeness of the intermediate states follows that the 
monodromy properties w.r.t. z of the 5-point function G
(z, x) along a curve encircling both 0
and x are the same as the monodromy of the 4-point correlator:〈

V4(∞,∞)V3(1,1)V
− b
2
(z, z̄)V
α(0,0)

〉
(2.12)

for a curve encircling 0. The z dependence (i.e., an overall prefactor) of the correlator (2.12) can 
be read off from (holomorphic part of) the OPE:

V− b
2
(z)Vα(0) = z


+−
− b
2
−
α

C
(

+,
−b/2,
α

) [
Vα+(0) + descendants

]
+ z


−−
− b
2
−
α

C
(

−,
−b/2,
α

) [
Vα−(0) + descendants

]
,

where 
± ≡ 
α± , α± = α ± b
2 , and explicitly,


+ = 
α − αb + b2

4
+ 1

2
,


− = 
α + αb − 3b2

4
− 1

2
.

Assuming that the intermediate weight 
α is heavy, i.e.,

α = 1
(1 − λ) ⇔ lim b2
α = 1 (

1 − λ2
)

= δ

2b b→0 4
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then in the limit b → 0 one gets 
± − 
− b
2

− 
α → 1
2 (1 ± λ). Therefore, in the space of 

solutions of eq. (1.3) there exist basis solutions �±(z) ∝ z
1
2 (1±λ) which analytically continued 

in z along the path encircling the points 0 and x satisfy the condition:

�±(e2πiz) = −e±iπλ�±(z). (2.13)

This corresponds to the monodromy matrix with trace equal −2 cos(πλ).
As a final remark in this subsection let us notice that knowing monodromies (2.13) of the 

solutions of eq. (1.3) one can determine the classical 4-point block solving the Riemann–Hilbert 
problem formulated as follows: adjust c2(x) in such a way that the eq. (1.3) admits solutions with 
the monodromy around 0 and x given by (2.13). The latter was Zamolodchikov’s idea which 
allowed him to find (i) a large classical intermediate weight behavior of the classical 4-point 
block, (ii) a large quantum intermediate weight behavior of the quantum 4-point block and its 
nome q(x) expansion [55].

2.2. Classical limit of BPZ equation for the degenerate five-point blocks

Let V(n)
c,
 denote the vector space generated by all vectors of the form:

|
n
I 〉 = L−I |
 〉 ≡ L−k1 . . .L−k�(I)

|
 〉, n = k1 + . . . + k�(I) =: |I |, (2.14)

where I = (k1 ≥ . . . ≥ k�(I) ≥ 1) is a partition of n,8 Ln’s are the Virasoro generators obeying

[Ln,Lm] = (n − m)Ln+m + c

12
(n3 − n)δn+m,0, (2.15)

and | 
 〉 is the highest weight state with the following property:

L0|
 〉 = 
|
 〉, Ln|
 〉 = 0, ∀ n > 0. (2.16)

The representation of the Virasoro algebra on the space:

Vc,
 =
∞⊕

n=0

V(n)
c,
, V(0)

c,
 =R|
 〉

defined by the relations (2.15), (2.16) is called the Verma module with the central charge c and 
the highest weight 
. It is clear that dimV(n)

c,
 = p(n), where p(n) is the number of partitions of 

n (with the convention p(0) = 1). On V(n)
c,
 exists symmetric bilinear form 〈 · | · 〉 uniquely defined 

by the relations 〈 
 | 
 〉 = 1 and (Ln)
† = L−n.

Let V
 be the Verma module with the highest weight state | ν
 〉. We define the chiral vertex 
operator (CVO) as the linear map

V 
3∞ 
2
z


1
0 : V
2 ⊗ V
1 −→ V
3

such that for all | ξ2 〉 ∈ V
2 the operator

V (ξ2|z) ≡ V 
3∞ 
2
z


1
0 (| ξ2 〉 ⊗ · ) : V
1 −→ V
3

satisfies the following conditions:

8 We will use the notation I � n.
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[Ln,V (ν2|z)] = zn

(
z

∂

∂z
+ (n + 1)
2

)
V (ν2|z) , n ∈ Z (2.17)

V (L−1ξ2|z) = ∂

∂z
V (ξ2|z) , (2.18)

V (Lnξ2|z) =
n+1∑
k=0

(
n+1
k

)
(−z)k

[
Ln−k,V (ξ2|z)

]
, n > −1, (2.19)

V (L−nξ2|z) =
∞∑

k=0

(
n−2+k
n−2

)
zk L−n−k V (ξ2|z)

+ (−1)n
∞∑

k=0

(
n−2+k
n−2

)
z−n+1−k V (ξ2|z) Lk−1, n > 1 (2.20)

and 〈
ν
3 |V (ν
2 |z

) |ν
1

〉= z
3−
2−
1 . (2.21)

The commutation relation (2.17) defines the primary vertex operator corresponding to the highest 
weight state | ν2 〉 ∈ V
2 . Eqs. (2.18)–(2.20) characterize the descendant CVO’s.

Let | 0 〉 denote the vacuum state, i.e., the highest weight state in the vacuum module with 
the highest weight 
 = 0. Conformal blocks on the Riemann sphere are defined as the matrix 
elements

〈0 |V
n(zn) . . . V
1(z1)|0 〉 (2.22)

of compositions of the primary chiral vertex operators9:

V
j
(z) ≡ V

(
νj |z

) ≡ V
αj

αk,αi
(z) : V
i

−→ V
k
, 
l = 
αl

= αl(Q − αl),

cf. [5,6]. By inserting projection operators10
P
̃p

on the intermediate conformal weights 
̃p, 
p = 1, . . . , n − 3 into the internal channels of the spherical blocks (2.22) one gets the latter in 
terms of the formal power series. Coefficients of these series consist of three-point blocks (forms 
ρ defined below) and inverses (G(n)

c,
)IJ of the Gram matrix(
G

(n)
c,


)
IJ

= 〈
n
I |
n

J 〉. (2.23)

For a given triple 
1, 
2, 
3 of conformal weights we define the trilinear map

ρ
3∞ 
2
z


1
0 : V
3 ⊗ V
2 ⊗ V
1 −→ C

induced by the matrix element of a single chiral vertex operator

ρ
3∞ 
2
z


1
0 (ξ3, ξ2, ξ1) = 〈 ξ3 |V (ξ2|z) | ξ1 〉 , ∀ | ξi 〉 ∈ V
i

, i = 1,2,3.

The form ρ
3∞ 
2
z


1
0 (three-point block) is uniquely determined by the conditions (2.17)–(2.20). 

In particular,

9 We adopt here three equivalent notations for primary CVO’s.
10

P ˜ are identity operators in V ˜ built out of the basis vectors (2.14) and their duals (cf. calculations below).


p c,
p
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1. for L0-eingenstates11 L0| ξi 〉 = 
i(ξi)| ξi 〉 , i = 1, 2, 3 one gets

ρ
3∞ 
2
z


1
0 (ξ3, ξ2, ξ1) = z
3(ξ3)−
2(ξ2)−
1(ξ1)ρ
3∞


2
1


1
0 (ξ3, ξ2, ξ1) ; (2.24)

2. for basis vectors νi,I ≡ | ν
i,I 〉 ∈ V
i
, i = 1, 2, 3 one finds

ρ
3∞

2
1


1
0 (ν3,I , ν2, ν1) = γ
3

[

2

1

]
I

,

ρ
3∞

2
1


1
0 (ν3, ν2, ν1,I ) = γ
1

[

2

3

]
I

, (2.25)

ρ
3∞

2
1


1
0 (ν3, ν2,I , ν1) = (−1)|I |γ
2

[

1

3

]
I

,

where for a given partition I = (k1, . . . , k�(I)), ki ≥ kj ≥ 1, i < j ,

γ


[

2

1

]
I

≡
�(I )∏
i=1

⎛
⎝
 + ki
2 − 
1 +

�(I )∑
i<j

kj

⎞
⎠ . (2.26)

Let us stress once again that using the three-point blocks


3 z 
1


2

≡ ρ
3∞ 
2
z


1
0 (ν3, ν2, ν1)

and the inverse (G(n)
c,
)IJ of the Gram matrix (2.23) one can construct the matrix elements of 

various compositions of the primary chiral vertex operators.12 For instance, the four-point block 
in the s channel reads as follows


4 z3 
s z2 
1


3 
2

=
∑
I,J

ρ
4∞ 
3
z3


s

0 (ν4, ν3, νs,I )
(
Gc,
s

)IJ

ρ
s∞ 
2
z2


1
0 (νs,J , ν2 , ν1). (2.27)

Precisely, eqs. (2.25) and (2.27) yield a function introduced in (2.10),


4 1 
s x 
1


3 
2

= x
s−
2−
1

⎛
⎝1 +

∞∑
n=1

x n
∑

|I |=|J |=n

γ
s

[

3

4

]
I

(
G

(n)
c,
s

)IJ

γ
s

[

2

1

]
J

⎞
⎠ .

11 Note that for the basis vectors {| νi,I 〉} one has 
i(νi,I ) = 
i + |I |.
12 It should be stressed that the compositions are well defined when the weights in the internal channels are non-
degenerate.
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Curious class of CVO’s form the degenerate operators [3] V
rs (z) having conformal weights:


r,s = Q2

4
− 1

4

(
rb + s

b

)2
, Q = b + 1

b
, r, s ∈N

being zeros of the Kac determinant [56–60]:

det
(
G

(n)
c,


)
IJ

= det 〈
n
I |
n

J 〉 = const.(n) ×
∏

1≤rs≤n

(
 − 
r,s)
p(n−rs).

Let us consider the degenerate chiral vertex operators of the form

V
(±)

2,1

(z) ≡ V
−b/2
β±,β (z), 
2,1 = 
−b/2 = −1

2
− 3

4
b2. (2.28)

If β± = β ± b
2 then

1. the CVO’s V (±)

2,1

(z) satisfy the differential equation

1

b2

d2

dz2 V
(±)

2,1

(z)+ : TV
(±)

2,1

(z) : = 0 , (2.29)

where

: TV
(z) : ≡
∑

n�−2

z−n−2LnV
(z) +
∑

n�−1

V
(z)Lnz
−n−2 ; (2.30)

2. conformal blocks with V (±)

2,1

(z) obey certain partial differential equations (PDE’s), in particu-

lar, the 5-point degenerate conformal blocks13:

F±(z, x) ≡ 〈α4|V α3
α4,β±(1)V

−b/2
β±,β (z)V

α2
β,α1

(x)|α1〉

= α4 1 z

α3

β±

− b
2

x
β

α2

α1

obey the following PDE14:[
∂2

∂z2 − b2
(

1

z
− 1

1 − z

)
∂

∂z

+ b2

(

1

z2 + 
2

(z − x)2 + 
3

(1 − z)2 +

1+
2+
3+
− b

2
−
4

z(1 − z)

)

+b2 x(1 − x)

z(z − x)(1 − z)

∂

∂x

]
F±(z, x) = 0. (2.31)

In what follows we will compute the classical limit of eqs. (2.31). Let us assume that all 
‘momenta’ αi , β are heavy, i.e.15:

αi = ηi

b
, β = η

b
(2.32)

13 Here | αi 〉 ≡ | 
αi
〉 and the operator-state correspondence is assumed.

14 Eqs. (2.31) are nothing but eq. (2.8) rewritten for conformal blocks.
15 Here β is the same as α in the previous subsection and 2η = 1 − λ.
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then, in the limit b → 0 one gets

F±(z, x)
b→0∼ �± (∞,1, z, x,0) e

1
b2 fδ

[
δ3 δ2
δ4 δ1

]
(x)

, (2.33)

where fδ

[
δ3 δ2
δ4 δ1

]
(x) is the classical spherical 4-point block (2.11) with δ = limb→0 b2
β =

η (1 − η), δi = limb→0 b2
i = ηi(1 − ηi) and

�± (∞,1, z, x,0) = lim
b→0

〈α4|V α3
α4,β±(1)V

−b/2
β±,β (z)V

α2
β,α1

(x)|α1〉
〈α4|V α3

α4,β
(1)V

α2
β,α1

(x)|α1〉 . (2.34)

To see that the semi-classical asymptotic of F±(z, x) has the factorized form (2.33) let us 
define for Z = (z4, z3, z) the ratio (cf. appendix C.2 in [61])

�±,n(Z) ≡ 〈0|V α4
0,α4

(z4)V
α3
α4,β±(z3)V

−b/2
β±,β (z)|βn

I 〉
〈0|V α4

0,α4
(z4)V

α3
α4,β

(z3)|βn
I 〉 , (2.35)

where | βn
I 〉 ≡ | 
n

β,I 〉 are the basis vectors of the form (2.14). Let us note that the numerator in 
(2.35) is a four-point block of two generic primary CVO’s, a degenerate primary CVO and a gen-
eral descendant CVO, respectively. On the other hand, the denominator in (2.35) is a three-point 
block built out of two generic primary CVO’s and the generic descendant.

One can see that the functions �±,n(Z) are light in the limit b → 0, i.e., �±,n(Z) ∼ O(b0). 
Let us employ the notation X := V

α4
0,α4

(z4)V
α3
α4,β±(z3) and consider first the case n = 0,

�±,0(Z) = 〈0 |XV
−b/2
β±,β (z)|
β 〉

〈0 |X |
β 〉 . (2.36)

Note that the denominator of �±,0(Z) for Z = (∞, 1, z) equals one, cf. (2.21). Then, the func-
tions �±,0(∞, 1, z) are nothing but the degenerate four-point blocks, which are well known to 
be given by the hypergeometric function 2F1, e.g.:

�+,0(∞,1, z) = z
β+−
2,1−
β (1 − z)
(α3− b
2 )−
3−
2,1

× 2F1
(
b(α3 − α4 + β̄ − b

2 ), b(α3 + α4 − β − b
2 );b(2β̄ − b); z) ,

where ᾱi = Q − αi and 
(α − b
2 ) − 
α − 
2,1 = bα. In the classical limit αi ’s and β scale like 

(2.32) therefore the functions �±,0(∞, 1, z) are really light in this limit.16 Next, let us choose a 
basis state of the form L−k| 
β 〉. Then,

�±,k(Z) = 〈0 |XV
−b/2
β±,β (z)L−k|
β 〉

〈0 |XL−k|
β 〉 . (2.37)

16 Let’s remind that a relation between the four-point block in arbitrary locations of the vertex operators and the block 
in (z4, z3, z2, z1) = (∞, 1, z, 0) is of the form

〈0 |V
4 (z4)V
3 (z3)V

(− b

2 )
(z)V
β

(z1)|0 〉

= (z4 − z1)

3+
− b

2
−
4−
β

(z4 − z)
−2
− b

2 (z4 − z3)

− b

2
+
β−
4−
3

× (z3 − z1)

4−
β−
− b

2
−
3 〈
4 |V
3 (1)V


(− b
2 )

(z)|
β 〉
as it follows from the SL(2, C) invariance of the vacuum state.
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Using (2.36) and (2.17) one can compute

〈0 |XV
−b/2
β±,β (z)L−k|
β 〉 =

∑
i=4,3,z

[
(k − 1)
i

zk
i

− 1

zk−1
i

∂i

]
〈0 |XV

−b/2
β±,β (z)|
β 〉

=
∑

i=4,3,z

[
(k − 1)
i

zk
i

− 1

zk−1
i

∂i

]
�±,0(Z) 〈0 |X |
β 〉

= �±,0(Z) 〈0 |XL−k|
β 〉
+ z−k(k − 1)
− b

2
�±,0(Z) 〈0 |X |
β 〉

−
∑

i=4,3,z

(
z1−k
i ∂i�±,0(Z)

)
〈0 |X |
β 〉 ,

where ∂i := ∂zi
, zz := z, 
z := 
− b

2
. Dividing both sides of this equation by 〈 0 | X L−k| 
β 〉

and taking into account the definition (2.37) one gets17

�±,k(Z) = �±,0(Z) + z−k(k − 1)
− b
2
�±,0(Z)

〈0 |X |
β 〉
〈0 |XL−k|
β 〉

−
∑

i=4,3,z

(
z1−k
i ∂i�±,0(Z)

) 〈0 |X |
β 〉
〈0 |XL−k|
β 〉 .

The above calculation can be simply generalized to any basis state (2.14).
So, one sees that the functions �±,n(Z) are light in the limit b → 0. Second property of 

�±,n(Z) (already seen in the calculation above) is that the ‘lightness property’ of the ratios of 
the type (2.35) does not depend on the level n. Indeed, using (2.35) one may find

〈0 |XV
−b/2
β±,β (z)L−m|βn

I 〉 =
∑

i=4,3,z

[
(m − 1)
i

zm
i

− 1

zm−1
i

∂i

]
〈0 |XV

−b/2
β±,β (z)|βn

I 〉

=
∑

i=4,3,z

[
(m − 1)
i

zm
i

− 1

zm−1
i

∂i

]
�±,n(Z) 〈0 |X |βn

I 〉

= �±,n(Z) 〈0 |XL−m|βn
I 〉

+ z−m(m − 1)
− b
2
�±,n(Z) 〈0 |X |βn

I 〉
−

∑
i=4,3,z

(
z1−m
i ∂i�±,n(Z)

)
〈0 |X |βn

I 〉 .

As before dividing both sides of this equation by 〈 0 | X L−m| βn
I 〉 we see that the ‘shifted’ ratio

�±,n+m(Z) := 〈0 |XV
−b/2
β±,β (z)L−m|βn

I 〉
〈0 |XL−m|βn

I 〉 = �±,n(Z)

+ z−m(m − 1)
− b
2
�±,n(Z)

〈0 |X |βn
I 〉

〈0 |XL−m|βn
I 〉

−
∑

i=4,3,z

(
z1−m
i ∂i�±,n(Z)

) 〈0 |X |βn
I 〉

〈0 |XL−m|βn
I 〉 (2.38)

17 Note that for z4 = ∞ we have 〈 0 | X | 
β 〉 = z

4−
3−
β and 〈 0 | X L−k | 
β 〉 = z


4−
3−
β−k
(cf. (2.21)).
3 3
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is also light.
Using the fact that the ‘lightness property’ of the ratios (2.35) does not depend on the level 

n and taking into account that the generic four-point block with heavy weights exponentiates in 
the classical limit,

Fc,
β

[

3 
2

4 
1

]
(x) ≡ 〈α4|V α3

α4,β
(1)V

α2
β,α1

(x)|α1〉 b→0∼ exp

{
1

b2 fδ

[
δ3 δ2
δ4 δ1

]
(x)

}
,

one can compute

F±(z, x) = 〈α4|V α3
α4,β±(1)V

−b/2
β±,β (z)PβV

α2
β,α1

(x)|α1〉

=
∑
n≥0

∑
I,J�n

(
G

(n)
β

)IJ 〈α4|V α3
α4,β±(1)V

−b/2
β±,β (z)|βn

I 〉〈βn
J |V α2

β,α1
(x)|α1〉

=
∑
n≥0

∑
I,J�n

(
G

(n)
β

)IJ

�±,n(Z) 〈α4|V α3
α4,β

(1)|βn
I 〉〈βn

J |V α2
β,α1

(x)|α1〉

b→0∼ �± (∞,1, z, x,0) exp

{
1

b2 fδ

[
δ3 δ2
δ4 δ1

]
(x)

}
.

In eqs. above (G(n)
β )IJ is the inverse of the Gram matrix (G(n)

β )IJ = 〈 
(β)nI | 
(β)nJ 〉.18 The 
above calculation defines the functions �±(Z), so one can write

�±(∞,1, z, x,0) = lim
b→0

F±(z, x)

Fc,
β

[

3 
2

4 
1

]
(x)

. (2.39)

Turning to the problem of the classical limit of eqs. (2.31) it is easy to see that the limit b → 0
taken from eqs. (2.31) after the substitution (2.33) yields the normal form of the Heun ordinary 
differential equation (1.3) with a pair of Floquet type linearly independent solutions given by 
eq. (2.39).19

In the next section we will look once again into depths of eq. (2.33) in order to explicitly 
compute the limit (2.39).

3. Heavy–light factorization and Floquet type Heun’s solutions

3.1. Path-multiplicative solutions from conformal blocks

In this subsection we analyze the way the degenerate five-point blocks factorize in the classical 
limit. Without loss of generality, let us focus on F+. The analysis of the case F− is analogous. 
Its expansion in terms of intermediate states reads

F+(z, x) = 〈
4|V
3(1)P
β+ V
2,1(z)P
β V
2(x)|
1〉
= x
β−
2−
1z
β+−
2,1−
β

∑
m,n≥0

xnzm−n 〈m;
β+|V
2,1(1)|n;
β〉︸ ︷︷ ︸
=: Am,n

, (3.40)

18 Here and below we use the equivalent notation 
β ≡ 
(β).
19 For consistency of our calculations one can check that limb→0 b2∂z�± = 0 and limb→0 b2∂x�± = 0.
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where we used the following notation

V
a (x)|
b〉 = x
−
a−
b
∑
n≥0

xn|n;
〉 ,

|n;
〉 :=
∑
I�n

β


[

a

b

]I
L−I |
〉, β


[

a

b

]I :=
∑
J�n

(
G

(n)



)I J
γ


[

a

b

]
J

.

(3.41)

Formulas for bra vectors can be inferred from those above. The formula (3.40) can be given yet 
another form that is more useful for further study, namely

F+(z, x) = z
β+−
2,1−
βF
β

[

3 
2

4 
1

]
(x)

∑
m∈Z

zmχm(x), (3.42a)

where

χm>0(x) :=
∑
k≥0

xkAm+k,k∑
k≥0

xkF (k)
, χm<0(x) :=

∑
k≥0

xk−mAk−m,k∑
k≥0

xkF (k)
,

χm=0(x) :=
∑
k≥0

xkAk,k∑
k≥0

xkF (k)
.

(3.42b)

The prefactor of eq. (3.42a) is the four-point conformal block defined as

F
β

[

3 
2

4 
1

]
(x) = x
β−
2−
1

∑
n≥0

xnF (n) , (3.43a)

and

F (n) := F (n)

β

[

3 
2

4 
1

]
:=

∑
I�n

γ
β

[

3

4

]
I
β
β

[

2

1

]I
. (3.43b)

Let us consider for definiteness χm>0. The matrix element Am+n,n has the following structure

Am+n,n =
∑
M�n

〈n + m;
β+|V
2,1(z)L−M |
β〉β
β

[

2

1

]M ∣∣∣
z→1

. (3.44)

Developing the matrix element under the sum yields

〈m + n;
β+|V
2,1(z)L−M |
β〉

=
�(M)∑
s=0

∑
1≤i1<...<is≤�(M)

(−1)s〈m + n;
β+|L−M�
s

ad−Ms V
2,1(z)|
β〉 , (3.45)

where M�
s is a complement of a partition Ms such that M�

s ∪ Ms = M for any s. Explicitly, for 
1 ≤ i1 < . . . < is ≤ �(M) they read

M�
s = (k1, . . . , ki1−1, ki1+1, . . . , kis−1, kis+1, . . . k�(M)) , Ms = (ki1 , . . . , kis ) .

In particular M�
0 = M�(M) = M , and M0 = M�

�(M) = {0}. We also denoted

ad−Ms V
2,1(z) :=
[
L−ki

, . . .
[
L−ki

, V
2,1(z)
]]

.

s 1
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In order to get further insight in to the formula (3.45) we notice that operating the Virasoro 
algebra element L−m on the state 〈
;n| yields

〈
;n|L−m = (
 + m
b − 
a + n − m)〈
;n − m| , m ≤ n.

The generalization of this formula to L−M := L−k1 · · ·L−k�(M)
, |M| = m ≤ n reads

〈
;n|L−M = γ
+n−m

[

b

a

]
M

〈
;n − m| . (3.46)

Using the above result to the matrix element in eq. (3.45) and noticing that |M�
s | + |Ms | = n we 

obtain the general form of the term that contributes to the expansion (3.45)

(−1)s〈m + n;
β+|L−M�
s

ad−Ms V
2,1(z)|
β〉∣∣
z→1

=F (m+|Ms |)

β+

[

3 
2,1

4 
β

]
γ
β++m+|Ms |

[

3

4

]
M�

s

γ
β

[

2,1


β++m+|Ms |
]
Ms

. (3.47)

Observe that the first factor in the above equation is m + |Ms |-th coefficient of the four-point 
conformal block with a degenerate weight 
2,1. As it has been already mentioned, the latter is 
well known to be related to hypergeometric function 2F1, namely

F
β+

[

3 
2,1

4 
β

]
(z) = z
β+−
2,1−
β

∑
n≥0

znF (n)

β+

[

3 
2,1

4 
β

]

= z
β+−
2,1−
β (1 − z)
(α3− b
2 )−
3−
2,1

× 2F1
(
b(α3 − α4 + β̄ − b

2 ), b(α3 + α4 − β − b
2 );b(2β̄ − b); z) ,

where ᾱi = Q − αi . Thus, the coefficient of the conformal block can be read off from the above 
relation, which yields (
(α − b

2 ) − 
α − 
2,1 = bα)

F (m+|Ms |)

β+

[

3 
2,1

4 
β

]
=

m+|Ms |∑
k=0

(−1)m+|Ms |−k

× (bα3)m+|Ms |−k

(
b(α3 − α4 + β̄ − b

2 )
)
k

(
b(α3 + α4 − β − b

2 )
)
k

(m + |Ms | − k)!k! (b(2β̄ − b)
)
k

. (3.48)

Combining eqs. (3.47), (3.45) and (3.44) we arrive at the explicit form of coefficient Am+n,n, and 
hence, the nominator of χm(x) that, when written in a suggestive form, reads

∑
n≥0

xnAm+n,n =
∑
n≥0

∑
M�n

�(M)∑
s=0

∑
1≤i1<...<is≤�(M)

x|M�
s |γ
β++m+|Ms |

[

3

4

]
M�

s

β
β

[

2

1

]M
× x|Ms |F (m+|Ms |)


β+

[

3 
2,1

4 
β

]
γ
β

[

2,1


β++m+|Ms |
]
Ms

.

Instead of summing over levels n we can rearrange the sum so that it runs over |M�
s | and |Ms |

separately. This rearrangement has an effect in the appearance of the symmetry factor multiplying 

β
β

[

2

1

]M
that comes from different ways one subpartition is immersed into the other. For 

instance, keeping summation index |M�
s | and partition M�

s fixed while summing over |Ms | we 
find that there are many terms with the same shape of total partition M = M�

s ∪ Ms that differ 
only by the distribution of parts of the partition M�

s between parts of Ms which occurs provided 
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both have equal parts. As a result of this reshuffling of terms in the series we get (|M�
s | ≡ |I | = r , 

|Ms | ≡ |J | = u)

∑
n≥0

xnAm+n,n =
∑
u≥0

xu
∑
J�u

⎛
⎝∑

r≥0

xr
∑
I�r

(
I∪J
I

)
γ
β++m+u

[

3

4

]
I
β
β

[

2

1

]I∪J

⎞
⎠

×F (m+u)

β+

[

3 
2,1

4 
β

]
γ
β

[

2,1


β++m+u

]
J

,

where 
(

I∪J
I

)
is the number of ways the partition I is immersed into the partition I ∪ J . As it may 

be inferred it equals

(
I∪J
I

) :=
∏
i≥1

(
mi(I ∪ J )

mi(I )

)
, (3.49)

where mi(I ∪ J ) is a multiplicity of a part i in a partition I ∪ J , whereas mi(I ) denotes a 
multiplicity of i in a partition I . The term in the parentheses can be rewritten in yet another form∑

n≥0

xnAm+n,n =
∑
u≥0

xuF (m+u)

β+

[

3 
2,1

4 
β

]

×
∑
J�u

⎛
⎜⎝∑

r≥0

xr
∑
I�r

γ
β++m+u

[

3

4

]
I
β
β

[

2

1

]I (
I∪J
I

) β
β

[

2

1

]I∪J

β
β

[

2

1

]I
β
β

[

2

1

]J
⎞
⎟⎠

× γ
β

[

2,1


β++m+u

]
J

β
β

[

2

1

]J
. (3.50)

Observe, that the expression in the parentheses resembles the contribution to the conformal block 
(see eq. (3.43b)) with the intermediate weight 
β shifted as 
β+ = 
β + 1

2 + b2

4 −bβ , multiplied 
by ratio of components of β forms. In the classical limit in which weights scale as


i ∼ δib
−2, for i = 1, . . . ,4, 
β := β

(
b + b−1 − β

)
∼ δb−2,

β ∼ ηb−1, c ∼ 6b−2 ,

the term exponentiates to the classical conformal block provided the mentioned ratio decouples. 
This occurs if and only if the quotient of components of β forms has the following asymptotic 
behavior

β
β

[

2

1

]I∪J

β
β

[

2

1

]I
β
β

[

2

1

]J b→0∼ 1(
I∪J
I

)(1 +O(b2)
)
. (3.51)

As we have checked in a few cases (cf. appendix A), this indeed takes place. It means that the 
expression in parentheses in eq. (3.50) in the classical limit looses the dependence on J and there-
fore decouples from the series over u in the classical limit. The decoupled series exponentiates 
to the classical block, so that we are finally left with the function

∑
xnAm+n,n

b→0∼ e
1
b2 fδ

[
δ3 δ2
δ4 δ1

]
(x)

hm(x) ,
n≥0
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where

hm(x) :=
∑
s≥0

hm,s(δ1, . . . , δ4, δ)x
s = lim

b→0
χm(x) ,

and

hm,n(δ1, . . . , δ4, δ) =F (m+n)

β+

[

3 
2,1

4 
β

]
F (n)


β

[

2,1 
2


β++m+n 
1

] ∣∣∣
b=0

+ . . .

becomes the coefficient of the Heun’s function in vicinity of x = 0. The Heun’s function obtained 
as a limit b → 0 of (3.42a) reads20

�+(z, x) := lim
b→0

F+(z, x)

F
β

[

3 
2

4 
1

]
(x)

= z1−η
∑
m∈Z

zmhm(x) , (3.52)

where the coefficients for m ≥ 0 are given in the appendix B. As for the part of the Heun’s 
function with m < 0 we get∑

k≥0

Ak−m,kx
k−m = x|m|∑

k≥0

Ak+|m|,kxk,

so that

hm<0(x) = x−m
∑
s≥0

h−m,sx
s , (3.53)

and the coefficients are the same as for m ≥ 0 and are presented in eqs. (2.65a–2.65c).

3.2. Hypergeometric limit

Solutions in the limit x → 0

Let us consider the ratio of the matrix element (3.42a) and the four-point conformal block which 
we denote as

H+(z, x) := F+(z, x)

F
β

[

3 
2

4 
1

]
(x)

= zbβ̄
∑
m∈Z

χm(x)zm , (3.54)

in vicinity of the point x = 0. As it follows from eq. (3.42b) at this point the only contribution to 
H comes from χm with m ≥ 0. Expansion of this coefficient about x = 0 yields

χm≥0(x) =
∑
k≥0

xkAm+k,k

1 + ∑
k>0

xkF (n)
= Am,0 +

(
Am+1,1 −F (1)Am,0

)
x +O(x2) .

Hence, at this point it amounts to

χm>0(0) = Am,0 = 〈m;
β+|V
2,1(1)|
β〉 = F (m)

β+

[

3 
2,1

4 
β

]
, (3.55)

so that, taking into account the relationship of the four-point conformal block with one degenerate 
weight with the hypergeometric function, H+ from eq. (3.54) amounts to

20 Note that 1 − η = 1 (1 + λ) ⇒ �+ has correct monodromy, cf. eq. (2.13).
2
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H+(z,0) =F
β+

[

3 
2,1

4 
β

]
(z)

= zbβ̄ (1 − z)bα3
2F1

(
b(α3 − α4 + β̄ − b

2 ) , b(α3 + α4 − β + b
2 ) ;b(2β̄ − b) ; z) .

(3.56)

Since at the classical limit parameters αi and β scale as αi ∼ ηi/b , β ∼ η/b, we can immediately 
take the limit b → 0 and obtain explicit form of the Heun’s function at x = 0 that reads

lim
b→0

H+(z,0) = z1−η(1 − z)η3
2F1

(
η3 − η4 − η + 1 , η3 + η4 − η ;2(1 − η) ; z) . (3.57)

The hypergeometric equation vs. the Heun equation

Since the accessory parameter (1.6) takes the explicit form

c2(x) = (δ − δ1 − δ2)
1

x
+
∑
n>0

nxn−1f (n) , (3.58)

the content of the square bracket in eq. (1.3) amounts in the limit x → 0 to

δ1

z2 + δ2

(z − x)2 + δ3

(1 − z)2 + δ1 + δ2 + δ3 − δ4

z(1 − z)
+ x(1 − x)c2(x)

z(z − x)(1 − z)

x→0−−−→ zδ3 + (z − 1) (zδ4 − δ)

(z − 1)2z2 , (3.59)

so that we finally arrive at the following equation

A� :=
[

d2

dz2 + zδ3 + (z − 1)zδ4 − (z − 1)δ

(z − 1)2z2

]
� = 0 . (3.60)

This equation can be transformed into the form of the hypergeometric equation. Namely, the 
transformation UAU−1U� = Ã�̃, where U = z−a(1 − z)−b yields

Ã = d2

dz2 + 2(a − (a + b)z)

z(1 − z)

d

dz

+ (1 − z)z
[
(a + b)

(
1 − (a + b)

)− δ4
]− (1 − z)

(
a(1 − a) − δ

)− z
(
b(1 − b) − δ3

)
(z − 1)2z2 .

The operator Ã can be brought to the canonical hypergeometric form

H := z(1 − z)
d2

dz2 + (γ − (α + β + 1)z)
d

dz
− αβ ,

by multiplying by z(1 − z), redefining δ = η(1 − η), δ3 = η3(1 − η3) and setting

a(1 − a) − η(1 − η) = 0 , b(1 − b) − η3(1 − η3) = 0 . (3.61)

The solution of the above equations reads

a = η ∨ a = 1 − η and b = η3 ∨ b = 1 − η3 (3.62)

such that we obtain

Ā = z(1 − z)
d2

2 + 2 (a − (a + b)z)
d + ((a + b)(1 − (a + b)) − δ4) .
dz dz
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Depending on the choice of the solution (3.62) of eqs. (3.61) we get the relationship between the 
classical block parameters η, η3, η4 and those from the hypergeometric operator H, i.e., α, β, γ . 
For a = 1 − η and b = η3 we have

α = η3 − η4 − η + 1, β = η3 + η4 − η, γ = 2(1 − η) .

Hence, the solution for a = 1 − η and b = η3 canonical at z = 0 is the hypergeometric function 
2F1 with the following parameters

�̃+ = 2F1 (η3 − η4 − η + 1, η3 + η4 − η;2(1 − η); z) .

Thus, the original function being a solution to eq. (3.60) takes the form

�+ = U−1�̃+
= z1−η(1 − z)η3

2F1 (η3 − η4 − η + 1, η3 + η4 − η;2(1 − η); z) (3.63)

for a = 1 − η, b = η3 .

The above solution has been labeled with �+ to match the one in eq. (3.57) that stems from the 
five-point degenerate block in the classical limit with a given choice of fusion rule. The second 
solution of the equation (3.60) reads

�− = U−1�̃−
= zη(1 − z)η3

2F1 (η + η3 − η4, η + η3 + η4 − 1;2η; z) for a = η, b = η3 .

3.3. Comparison with other methods

The path-multiplicative solutions of the Heun equation can be computed by making use of the 
perturbative methods. Such technics have been developed lately by Menotti in [43] to solve the 
monodromy problem determining the complex-valued accessory parameter in the Heun equation. 
An elegant and useful generalization of the perturbative approach has been recently developed in 
[62] and used to calculate the monodromy representation of the (generalized) Heun’s opers.

In [43] (see also [44]) the author study the monodromy problem for the eq.

y′′(z) +Q(z)y(z) = 0, (3.64)

where

Q(z) = δ1

z2 + δ2

(z − x)2 + δ3

(1 − z)2 + δ1 + δ2 + δ3 − δ4

z(1 − z)
+ C(x)

z(z − x)(1 − z)

and δi = 1
4 (1 − λ2

i ). The ‘potential’ Q(z) in eq. (3.64) is almost the same as in eq. (1.3). The 
only difference is in the definition of the accessory parameter, namely, C(x) = x(1 − x)c2(x). 
Further, it is assumed that C(0) = δ−δ1 −δ2. This assumption is precisely met by x(1 −x)c2(x), 
according to the formula (3.58). The monodromy problem considered in [43] is the same as stated 
in the last paragraph of subsection 2.1, i.e., the accessory parameter C(x) must be adjusted so
that the monodromy of the fundamental solutions along a contour encircling both 0 and x has 
the trace −2 cos(πλ).

To reconstruct the accessory parameter C(x) as a power series in x, a specific contour 
including both the origin 0 and x is chosen in [43] for the monodromy calculation. Then, 
the appropriate fundamental solutions (y(1)(z), y(2)(z)) are computed in the form y(i)(z) =
y

(i)
(z) + y

(i)
(z)x + . . . by perturbing the Heun equation in small x. More precisely, the method 
0 1
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relies on an expanding of Q(z) in small x, Q =Q0 + xQ1 + x2Q2 +O(x3), where in particular 
one gets

Q0 = δ

z2 + δ3

(z − 1)2 + δ4 − δ3 − δ

z(z − 1)
,

Q1 = 2δ2 − C′(0)

z2(z − 1)
+ 2δ2 − C(0)

z3(z − 1)
,

Q2 = − C′′(0)

2z2(z − 1)
+ 3δ2 − C′(0)

z3(z − 1)
− 3δ2 + C(0)

z4(z − 1)
.

The calculation starts with the solutions (y(1)
0 (z), y(2)

0 (z)) to the zeroth-order equation y′′(z) +
Q0(z)y(z) = 0 and then subsequent corrections in powers of x are computed. The accessory 
parameter C(x) thus obtained exactly matches the formula (3.58).

In order to compare the method quoted above with the calculations made in previous subsec-
tions let us point out that the zeroth-order equation is nothing but the eq. (3.60) whose solutions 
are given in terms of the hypergeometric functions. In refs. [43,44] these zeroth-order solutions 
are built out of the hypergeometric functions canonical at z = 1. An argument that appears in 
[43] for such a choice is a reasonable observation that ‘working near z = 0 is difficult due to the 
singular nature of the kernel’ Q(z). On the other hand, we have obtained that in the limit x → 0
the solutions extracted from the conformal blocks yield the zeroth-order solutions built out of the 
hypergeometric functions canonical at z = 0. In the present work we leave this discrepancy with-
out an explanation. It requires a better understanding of a mechanism of an analytic continuation 
of the solutions parallelly within perturbative and CFT approaches.

4. Concluding remarks

In the present paper we have studied the mechanism of the heavy–light factorization which 
occurs in the classical limit of conformal blocks with the heavy and light contributions. We have 
examined the factorization property in the case of the simplest 5-point degenerate spherical con-
formal blocks F±. Our goal was to answer the question whether this semi-classical asymptotical 
behavior of F± determines the linearly independent Floquet type solutions of the normal form 
Heun equation. Recall that the Heun equation in its normal form can be obtained in the classical 
limit from the null vector decoupling equations obeyed by F±. Analyzing the semi-classical fac-
torization in the case under consideration we have identified the mechanism responsible for the 
decoupling of the heavy and light contributions. In particular, a crucial observation made in the 
present work is the limit (3.51) which we have checked in many cases. This leads to an interesting 
novel way of computing the path-multiplicative Heun’s functions (see the result written down in 
appendix B). Indeed, if the observation (3.51) is true then an analysis performed in subsection 3.1
yields a practical method of computation of the Floquet type Heun’s solutions which is suitable 
for numerical calculations. In subsection 3.2 we have computed the x → 0 limit of the Heun’s 
solution within CFT framework and have confirmed that this has an expected form in terms of 
the hypergeometric function. A demonstration of a complete compatibility of our approach with 
the perturbative methods requires further study of the mechanism of the analytic continuation of 
the solutions. We aim to analyze this problem soon.

Finally, let us stress that methods developed in this work have immediate applications in black 
hole physics problems listed in the introduction. We plan to examine these contexts very soon. 
Moreover, we plan to continue an exploration of the correspondence between the Heun equation, 
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the classical limit of the null vector decoupling equation for the 5-point function/blocks and the 
BC1 Inozemtsev integrable model. The latter is nothing but the Schrödinger spectral problem 
for a class of elliptic so-called Treibich–Verdier potentials built out of the Weierstrass elliptic 
℘-function. This spectral problem is yet one more incarnation of the Heun equation and on the 
other hand it can be obtained in the classical limit from the null vector decoupling equation 
written in elliptic variables living on the torus (cf. [63] and refs. therein). It turns out that this 
identification has some unspoken so far intriguing consequences for: (i) the theory of elliptic 
solitons, i.e., the solutions of the Korteweg–de Vries equation given by the above-mentioned 
Treibich–Verdier potentials; (ii) the study of modular properties of N = 2 gauge theories; (iii) the 
correspondence between the sphere and torus correlation functions in the Liouville theory as well 
as between the sphere and torus conformal blocks.

Appendix A. Ratio of beta forms in the classical limit

In what follows we present the results of computations of asymptotic of the ratio of coeffi-
cients of β in the limit b → 0 given in eq. (3.51) which we denote here as

RI∪J :=
β
β

[

2

1

]I∪J

β
β

[

2

1

]I
β
β

[

2

1

]J .

• |I ∪ J | = 2, |I | = 1, |J | = 1

R(1)∪(1) = 1

2

+ −2
(
3δ2 + (5δ − 3)δ2

)
δ1 + (5δ − 3)δ2

1 + (δ − δ2) (δ(δ + 3) + (3 − 5δ)δ2)

4δ(4δ + 3) (δ − δ1 + δ2) 2 b2

+O(b4).

The value of 
(
(1)∪(1)

(1)

)= 2.

• |I ∪ J | = 3, |I | = 2, |J | = 1
� I = (2) , J = (1)

R(2)∪(1) = 1

+ 2 (δ1 − δ2)
(−2

(
5δ2 + (7δ − 6)δ2

)
δ1 + (7δ − 6)δ2

1 + (δ − δ2) (3δ(δ + 2) + (6 − 7δ)δ2)
)

3δ(δ + 2) (δ − δ1 + δ2)
(−3δ2

1 + 2 (δ + 3δ2) δ1 + (δ − δ2) (δ + 3δ2)
) b2

+O(b4).

The value of 
(
(2)∪(1)

(2)

)= 1.

� I = (1, 1) , J = (1)

R(1,1)∪(1) = 1

3

+
(−2

(
3δ2 + (5δ − 3)δ2

)
δ1 + (5δ − 3)δ2

1 + (δ − δ2) (δ(δ + 3) + (3 − 5δ)δ2)
)

3δ(4δ + 3) (δ − δ1 + δ2) 2 b2

+O(b4).
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The value of 
(
(1,1)∪(1)

(1,1)

)= 3.

• |I ∪ J | = 4, |I | = 3, |J | = 1
� I = (3) , J = (1)

R(3)∪(1) = 1 +O(b2) ,
(

(3)∪(1)
(3)

)= 1 .

� I = (2, 1) , J = (1)

R(2,1)∪(1) = 1
2 +O(b2) ,

(
(2,1)∪(1)

(2,1)

)= 2 .

� I = (1, 1, 1) , J = (1)

R(1,1,1)∪(1) = 1
4 +O(b2) ,

(
(1,1,1)∪(1)

(1,1,1)

)= 4 .

In the last item for |I ∪ J | = 4, because of their sizable forms, we have omitted the terms of 
order O(b2).

Appendix B. Coefficients of the Heun’s function

In this appendix we present the explicit form of numerical derivation of the coefficients of the 
Heun’s function given as

�+(z, x) = z1−η
∑
m∈Z

hm(x)zm, hm(x) =
∑
s≥0

hm,s(δ1, . . . , δ4, η)xs ,

where particular values read

h0(x) =1 − (δ1−δ2+(η−1)η)(η((η−1)η−δ3+δ4−1)+2δ3−2δ4+1)

4(η−1)2η
x + . . . , (2.65a)

h1(x) = δ3−δ4+(1−η)η
2(η−1)

+ (δ1−δ2+(η−1)η)

8(η−1)2η(2η−3)

(
(−2δ3 + 2δ4 + 1) η3 + (8δ3 − 6δ4 + 4) η2

+
(
δ2

3 − 2 (δ4 + 5) δ3 + (δ4 − 1) (δ4 + 3)
)

η − 3 (δ3 − δ4)
2

+ 3 (δ3 + δ4) + η4(η − 3)
)
x + . . . (2.65b)

h2(x) = (5−2δ3+2δ4)η
2+(6δ3−4δ4−2)η+δ2

3+(δ4+2)(δ4−2δ3)+η3(η−4)

4
(
2η2−5η+3

)
− (δ1−δ2+(η−1)η)

48(η−2)(η−1)2η(2η−3)

(
(−3δ3 + 3δ4 + 16) η5 + (24δ3 − 18δ4 − 7) η4

+
(

3δ2
3 − 3 (2δ4 + 25) δ3 + 3δ4 (δ4 + 11) − 23

)
η3

+
(
−21δ2

3 + 6 (6δ4 + 19) δ3 − 3δ4 (5δ4 + 4) + 32
)

η2

+
(
−δ3

3 + (3δ4 + 49) δ2
3 − 3 (δ4 (δ4 + 22) + 28) δ3

+ (δ4 − 1) δ4 (δ4 + 18) − 12) η

+ 12 (2δ3 + δ4) + 2 (δ3 − δ4)
(

2δ2
3 − (4δ4 + 17) δ3 + 2δ2

4 + δ4

)
+ η7 − 7η6

)
x

+ . . . (2.65c)
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