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Abstract: Single Event Effects (SEE) are a major concern for integrated circuits exposed to
radiation. There have been several techniques proposed to protect circuits against radiation-induced
upsets. Among the others, the Triple Modular Redundancy (TMR) technique is one of the most
popular. The purpose of the Triple Modular Redundancy Generator (TMRG) tool is to automatize
the process of triplicating digital circuits freeing the designer from introducing the TMR code
manually at the implementation stage. It helps to ensure that triplicated logic is maintained through
the design process. Finally, the tool streamlines the process of introducing SEE in gate level
simulations for final verification.
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1 Introduction

Single Event Effects (SEE) are a major concern for integrated circuits used in a radiation envi-
ronment, especially for circuits fabricated in modern deep sub-micron technologies. For reliable
system operation in environments such as the Large Hadron Collider (LHC) it is necessary to pro-
tect the logic from radiation-induced SEE. Many techniques have been proposed in order to protect
the circuit against SEE. Virtually all methods rely on data redundancy. It is assumed that if the
information is stored in several places (circuit nodes), it can be properly reconstructed even if some
of these nodes are disturbed. Among the SEE hardening techniques, some are based on hardening
standard cells [1, 2] while others address the problem on a system level, by utilizing error correcting
coding (ECC) [3], temporal redundancy [4], or Triple Module Redundancy (TMR) [5, 6].

The Triple Module Redundancy Generator (TMRG) [7] tool developed at CERN automatizes
the process of triplicating digital circuits freeing the designer from introducing the TMR code at
the implementation stage. The TMRG tool is part of the toolset assisting the user during the whole
digital implementation flow. In this paper, the TMRG toolset is presented. A typical digital design
flow incorporating TMRG toolset is presented in section 2, followed by examples and discussion of
the TMRG tool architecture in section 3 and 4 respectively.

2 Digital design flow with TMRG toolset

The TMRG toolset is integrated with the digital flow as shown in figure 1. The main components
of toolset are: the TMRG, the Placement Generator (PLAG), the Single Event Effect Generator
(SEEG), and the Test Bench Generator (TBG).

As detailed in figure 1, one can see that TMRG adds several new steps with respect to the
standard digital design flow and affects some other steps. The philosophy of the tool is that a user
writes regular (non-triplicated) Verilog code and then uses the TMRG tool to transform it to code
containing triplicated elements. Automatizing this step reduces the coding time and minimizes the
probability of introducing errors during the manual triplication process. The behavior of the tool
can be controlled by user-applied constraints (described in more details in section 3).
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Figure 1. Digital design flow including TMRGcomponents: TripleModule RedundancyGenerator (TMRG),
Placement Generator tool (PLAG), Single Event Effect Generator (SEEG), Test Bench Generator (TBG).

The code generated by TMRG tool will contain redundancy and therefore the synthesizer will
want to remove it, compromising the production of SEU/SET robust digital circuits. The TMRG
tool helps to ensure that triplicated logic is maintained during the synthesis process by generating
a set of constraints for the synthesis process.

In modern deep sub-micron technologies, the probability of multiple bit upsets caused by the
same particle is not negligible. In order not to compromise TMR structures, the redundant cells
should be placed away from each other so that one particle cannot affect multiple cells storing the
same redundant information. The PLAG tool was created to streamline the place and route process
by generating constraints which ensure that triplicated cells are not placed too close to each other.

The TMRG toolset is completed by two tools assisting the user in the verification process. The
first one is SEEG which provides a uniform mechanism to introduce in a random manner SEU and
SET in a gate level transient simulation. The second tool TBG creates a test bench instantiating
the Device Under Test (DUT) in non-triplicated and triplicated versions, the required fan-outs and
voters, as well as the SEE generator.

3 Constraining the design

In order to ensure maximum robustness against SEU and SET one should triplicate all circuitry in
the chip. Unfortunately, it is not always possible as the triplication does come with penalties. Just
to name a few, one should mention an increase in occupied area, an increase in power consumption,
and a reduction in the maximum clock frequency. Moreover, not all blocks can be easily triplicated,
e.g. I/O ports or some analog blocks. The TMRG tool allows the designer to decide which blocks
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and signals should be triplicated. It also automates the conversion process between triplicated
and non-triplicated signals. There are two basic conversion schemes: if a non-triplicated signal is
connected to a triplicated signal a simple passive fan-out is added, if a triplicated signal is connected
to a non-triplicated signal a majority voter is added. There are several ways to pass constraints
to the TMRG tool, the simplest and the most intuitive is to put directives directly in the source
code. The directives are placed in comments, so they do not affect other tools. For the sake of the
demonstration, let’s consider only three directives:

// tmrg default [triplicate|do_not_triplicate]

// tmrg triplicate netName

// tmrg do_not_triplicate netName

The first directive specifies the default behavior for the entire module. The default behavior can
be changed for individual nets and registers using directives from lines 2 and 3. Let us consider a
simple combinatorial module:

module comb (in,out);

input in;

output out;

wire combLogic;

assign combLogic = ~in;

assign out = combLogic;

endmodule

which is schematically presented in the center of figure 2. By applying different constrains
the designer has control over how the TMRG tool triplicates the design. Applying the
default triplicate constraint leads to the triplication of all elements (see figure 2a). If
do_not_triplicate directive is used for a signal, a fan-out or majority voter is inserted respec-
tively as shown in figures 2b and 2c. The TMRG tool does not assume any particular architectures,
therefore the designer may generate any variation of the circuit as presented in figures 2d and 2e.

Using constraints presented above one can triplicate any circuit, including a state machine.
Among others one can obtain the three most popular types of triplication: a) triplication of registers
only, b) triplication of registers and clock signals, c) triplication of registers, combinatorial logic,
voters, and clocks. At this point it should be mentioned, that because of the tool’s flexibility it is
possible to generate designs which despite being triplicated are not immune to SEE.

The constraints presented above are only a subset of all available constraints supported by the
TMRG tool. Among the others, the TMRG features constraints allowing for accessing voter error
output (to be used for error detection), accessing individual signals from a triplicated bus, and speci-
fying various voting and fan-out cells. Moreover, TMRG has features enabling the user to instantiate
already triplicated code, while still being able to benefit from other components of the toolset.

4 Architecture and implementation

The TMRG toolset is implemented in Python programming language [8]. Python offers cross-
platform runtime environment rich in standard libraries. The slower (compared to compiled lan-
guages) execution time is offset by the fast development time.

– 3 –
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Figure 2. An impact of TMRG constraints on the generated code. The same code (represented by the circuit
in the center of diagram) leads to different outputs depending on applied constraints.
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Figure 3. Architecture of TMRG tool.

The TMRG flow is presented in figure 3. In the first phase, files are loaded and parsed by
parser based on Pyparsing library [9]. Tokens obtained from the parsing process are elaborated.
In this step, the structure of the code is analyzed, and essential information (like signal names,
directions of ports) are captured. Afterwards, the module hierarchy for the whole project is built.
In the next step, user constraints are applied to the design. The constraints may be passed to the
application in various ways, including comments placed in the source code, command line, or an
external configuration file. It is important to mention that the constraints propagate automatically
through the design hierarchy. In the next step, the triplication process itself takes place. The
triplication process uses tokens and user constraints as inputs and produces triplicated tokens and
Design Compiler constraints at its output. Finally, the output code is generated from the triplicated
tokens. Using this approach, it is possible to ensure that the output code is human readable and
formatted in a consistent style across all output files.
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5 Summary and outlook

In this paper, the TMRG toolset has been presented. The TMRG toolset assists the user along
the process of designing electronics resistant to Single Event Effects. The TMRG tool targets the
typical ASIC design flow commonly used in the HEP community, however, it can be also used to
triplicate Verilog code targeting FPGA applications. At the moment, the TMRG tool is not able to
generate specific constraints for the FPGA synthesis tools, but, due to the tool modular architecture,
such support can be added as a plug-in. Due to its architecture, it only lightly constrains the user’s
coding style while allowing to obtain various flavors of TMR (registers only, registers and clock,
full triplication). Besides triplicating the user code, the toolset assists the user in the physical
implementation stage (synthesis, P&R) and the verification stage (generation of SEE). The TMRG
toolset was already used in several projects, reducing their development time.
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