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1. Introduction

Continuous work on algorithms has improved our ability to perform simulations of QCD at
light quark masses and on fine lattices. This was possible due to progress in many domains: solvers
for the Dirac equation with only a mild scaling towards the chiral limit have been developed as
well as better representations of the quark determinant that allow larger step sizes in the integration
of the molecular dynamics equations of motion. These methods are combined with reweighting
techniques to stabilize the simulations and many other improvements concerning the numerical
and theoretical aspects of a simulation. At the same time, the computer hardware available to these
computations has become much more powerful too.

Understanding these developments and bringing them together in efficient packages has re-
duced the cost of current light quark algorithms over the methods available roughly a decade ago
by orders of magnitude. A review of some of these methods and an approach towards a theo-
retical understanding of the determinant splitting techniques is presented in the first part of this
contribution.

The focus of these developments has been the ability to simulate light quarks, but for con-
trolled results, also taking the continuum limit is essential. This has so far been hindered by the
problem of the freezing topological charge as the lattice spacing is decreased. Practically, this
makes large volume simulations below 0.05fm exceedingly difficult, because below this value,
the autocorrelations associated with the topological charge become much longer than typical run
lengths and reliable measurements are therefore impossible.

A solution to this problem is to choose a setup where topological sectors do not form in the
continuum limit, by using open boundary conditions in time. With these boundary conditions,
the topological observables show, in numerical simulations with pure gauge theory, precisely the
scaling of the autocorrelation times as expected from the algorithm, i.e., the T;, rise with the inverse
lattice spacing squared. This then provides a basis for the estimation of the required run length as
the simulations move towards the continuum limit, as will be explained in the second part of this
writeup.

2. Update algorithms

Practically all current simulations with dynamical fermions are performed using a variant of
the Hybrid Monte Carlo algorithm (HMC)[1]. Here the gauge field update is achieved by introduc-
ing momenta 7 conjugate to the field variables and numerically integrating the molecular dynamics
(MD) equations of motion derived from the Hamiltonian

H[z,U] = %(ﬂ,ﬂ)+Sg[U]+Sf[U], @1

where S,[U] and S¢[U] give the gauge and fermion part of the action.

The numerical integrators for the molecular dynamics equations of motion are not exact, but
lead to an energy violation 6 H = H, — H; after a certain molecular dynamics time 7, with H; and
H, being, respectively, the value of H at the beginning and the end of the trajectory. Despite this
integration error, the algorithm is made exact with a Metropolis step, where the configuration is
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accepted with probability
Pyc =min{1,exp(—6H)}. 2.2)

It turns out that a higher acceptance rate can not only be reached with a smaller step size and
by tuning the integrator of the MD equations of motion, but also by using the flexibility in the
representation of the fermion determinant. It is in particular this choice of S¢, or more precisely the
factorization of the fermion matrix, where the various fermion algorithms, like Hasenbusch’s mass
splitting, the RHMC or the DD-HMC, differ.

As will become clear in the following, the crucial point is that one cannot discuss the merits of
different effective fermion actions on their own, without taking into account the interplay between
the action and the integrator. We therefore first introduce the integration algorithms in Sec. 2.1 and
how to analyze their performance using the shadow Hamiltonian in Sec. 2.2. In this framework,
we can then analyze the effect of the determinant splitting (Sec. 2.4), which we demonstrate for the
Hasenbusch decomposition in Sec. 2.6.

2.1 Integration algorithms

The HMC algorithm requires the use of symplectic and reversible integrators, which are con-
veniently constructed by alternating updates of the fields 7y and the momenta 7. A popular second
order integrator[2] is given by

I={Ty(87A) Tz (87/2) Ty (0T(1 —2A)) Tr(07/2) Ty (6TA) }" (2.3)
with

Tp: (n,U) — (', U")= (- F(U)d7,U) (2.4)
Ty : (x,U) — (', U") = (n,U+nd7),

with step size 87 = 7/n and a tunable parameter A. Here we only give a single time-scale and
a single force F!, = 8)2 S, but multiple time scale integrators are frequently used[3] and will be
briefly discussed in Sec. 2.7.

The many force components and integrator options can lead to a bewildering number of
choices. Theoretical understanding that can facilitate the analysis of this optimization problem
comes from the theory of symplectic integrators. For a given Hamiltonian, the integrator con-
serves a so-called shadow Hamiltonian, which can be constructed as a power series in the step-size
671. Even though the radius of convergence of this series is not clear, in practical applications the
first order of this series turns out to give a good approximation at least for reasonably small step
sizes, as has been shown in a series of papers by Clark et al., whose line of argumentation we
follow[4, 5, 6, 7].

For the integrator in Eq. 2.4, the shadow Hamiltonian up to 572 reads

H=H+8t{cY 9¢,808,S—c2 ¥ n¢, b, 08,00, S+ = H+AH (2.5)
X, X, U
»v

with coefficients ¢; = (642 — 64 +1)/12 and ¢; = (1 — 61)/24. Omelyan, Mrygold and Folk[2]
have computed the leading term of the shadow Hamiltonian for a large number of integration
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schemes, also including higher order and force gradient integrators. For the purpose of this discus-
sion, however, we restrict ourselves to second order integrators. Without further knowledge of the
two second order contributions to AH, they suggest to choose A such that c% + c% is minimized. As
each of the two coefficients has a significantly smaller magnitude than for the leapfrog integrator
(two steps of which correspond to A = 1/4), this turns out to be a sensible choice in a typical QCD
setup[8], giving roughly a gain of a factor two in step-size.

2.2 Integrator tuning

To improve on this, Clark et al. propose to measure the values of the leading contributions
to the shadow Hamiltonian as found in the actual simulation. It turns out, that its distribution
does not change significantly during a trajectory, such that an equilibrium measurement on a few
configurations is meaningful. An important insight gained in their work is that the size of the
individual terms does not matter in the first place. This observation will also be relevant in the
following section when the choice of fermion action will be discussed, where frequently the size
of the fermion force (the first O(872) term in Eq. 2.5) has been a leading guide in the analysis of
improvements.

To understand why the size of the forces is an insufficient basis of argumentation, one first
needs to notice that there are cancellations between the two terms at O(§72). But the size of
AH does not matter either. What ultimately matters only is the acceptance rate in the HMC, in
which only the difference 0 H between the value of H at the beginning and the end of the trajectory
0H = H, — H; enters. Since up to corrections of order 57" the shadow Hamiltonian H is conserved,
we can rewrite this as

0H = (Hz —gz) — (Hl —Fll) +O(6T4) = AH, —AH2+O(5T4). (2.6)

Because the mean value (AH) drops out in this difference, the fluctuations of AH are the quantity
that determines the acceptance rate P,... In fact, for small energy violation the acceptance rate of
the HMC is given by

Pyec = erfe(y/(6H?)/8) , 2.7)

and therefore minimizing (§H?) constitutes a meaningful criterion according to which algorithm
can be optimized. Assuming that the fluctuations AH; and AH», are independent and equally dis-
tributed, this is equivalent to minimizing the variance of 6 H, because then[6]

(8H?*) = 2var(AH). (2.8)

The acceptance rate is to leading order given by the variance of the difference between H and the
shadow Hamiltonian. The value of the norm of the forces drops completely out in this criterion.
Since the variance of the norm squared gives one contribution to this improvement criterion, it
might still be considered in the absence of a measurement of the second derivative of the action.

2.3 Fermion determinant

The strategy to evaluate integrator improvement can now be used to provide some understand-
ing in the functioning of the determinant splitting techniques which have brought such dramatic
progress towards realistic fermion simulations.
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In the standard HMC, the quark matrix determinant — here for simplicity for two degenerate
flavors — is represented using a single pseudofermion[9] field ¢

det 0° = z1¢, [106)a6" expi~(0,029)} 2.9)

with O = 5 D the massive Hermitian Dirac operator and ¢ complex-valued spinor fields. This
identity leads to an effective one pseudofermion action Sy,¢ which is to be compared to the “exact”
action Sex, where

Sipr = (¢,07%9) and Sex = —trlog Q2. (2.10)

In practice the one pseudofermion action leads to very expensive light fermion simulations[10].

Although the pseudofermion action Sypr for a given realization of the field ¢ might be very
different from Sy, the force Fipr deriving from Sypr is a stochastic estimator of the force Fex in the
sense that the average over the pseudofermions of the former equals the latter

(Fipt)p = —trQ >8Q% = Fex . @.11)

This is at least true at the beginning of the trajectory. The fluctuations in this estimator, however,
are large such that |Fipf|? > |Fex|? and

(|IFipt = (Fip)o*)o = (IFipt*)o — [Fex|* = (|Fipel >} - (2.12)

The large values for the norm of the fermions forces observed in practical simulations are thus a
consequence of the one pseudofermion force being a poor stochastic approximation to Fy.

2.4 Determinant factorizations

More suitable representations of the fermion determinant can be found by splitting the con-
tribution into several parts, each of which is introduced separately by a pseudofermion field. The
physics motivation for the different methods varies, some focus on the properties of the stochastic
estimator, some aim at a hierarchy of forces (in size), which then can be integrated on different time
scales — possibly with the higher frequency forces being much cheaper to compute. The shadow
Hamiltonian analysis can provide a framework to discuss this in a more systematic manner, and
it has already become clear that just aiming at smaller forces (or equivalently a better stochastic
estimate of the determinant) is not the primary target.!

Several decompositions have been proposed, the three most popular of which are mass pre-
conditioning, the RHMC and domain decomposition. The first of those was introduced by Hasen-
busch[11] and Hasenbusch and Jansen[12] where the determinant is split using a stack of (twisted)
quark masses 0 = 1 < tp < --- < uy and the identity

Q2
detQ? = H det —— Ty
i=1 Q l+1

'Smaller forces can still be beneficial as they help avoid problems in connection with the stability of the MD
integration.

x det(Q® + 13) , (2.13)
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Figure 1: Decomposition of the Dirac operator in the DD-HMC algorithm. The solid lines indicate the
gauge links contributing to Qx.

where each determinant is represented by a single pseudofermion field.> These masses can be
tuned, a choice which will also influence the relative cost of their evaluation[13].

Alternatively, the RHMC[14] decomposes the determinant into equal factors using the N-th
root of the fermion matrix, which needs to be implemented by a rational approximation

N
detQ* = [ det \/ Q2. (2.14)
i=1

Each of these factors is again represented by a pseudofermion. The RHMC is primarily used for
simulating single flavors, but is also employed for pairs of degenerate quarks as in Eq. 2.14. The
evaluation of the rational approximation, however, is quite costly, in particular because the fre-
quently employed multi-shift solvers do not combine well with the inexact preconditioning tech-
niques used for light fermions.

Finally the DD-HMC algorithm[15] is based on a geometrical block decomposition, where the
Dirac operator restricted to the blocks Q4 is considered in one factor

detQ* =[] det Q3 x det Q5 , (2.15)
A

and the second factor is a matrix which has the same determinant as the Schur complement of
0 with respect to the block projection. This algorithm as been successfully used in many Wilson
fermion simulations, however, it suffers from the links between the blocks which do not get updated
during a trajectory, which causes increased autocorrelation times[16, 17].

A detailed comparison between these algorithms for light quark simulations has not been pub-
lished. Just because of its simplicity, we now study the effect of the quark determinant splitting at
the example of the Hasenbusch decomposition.

2.5 Numerical examples

The numerical examples in these proceedings come from a simulation described in detail in
Ref. [18]. In particular we use a run with 2 4+ 1 dynamical flavors of non-perturbatively improved

2There are many versions of this splitting, with shifts in the mass, the twisted mass and also applying the factoriza-
tion in Eq. 2.13 to the Schur complement in even-odd preconditioning. This version is chosen for ease of notation.
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Figure 2: Distribution of the norm of the force with the one pseudofermion action and using three pseud-
ofermions in the Hasenbusch splitting. The size of the forces is only marginally reduced, but the fluctuations
of the norm of the force decrease drastically. Note the different scale of the x-axes.

Wilson fermions and the Iwasaki gauge action. This setup has been extensively studied by the
PACS-CS collaboration[19, 20]. The pion mass is 200MeV and strange quark mass is at physical
value, which means that the 64 x 323 lattices at a lattice spacing of about a = 0.09 fm have L ~
3.1fm and m L ~ 3.1.

In this simulation, which has been performed with the publicly available openQCD code,’
open boundary conditions in time have been used together with twisted mass reweighting, which
will both be described below. The three twisted masses in the frequency splitting, applied on the
Schur complement of the even-odd preconditioning, have been chosen roughly equally spaced on
a log-scale. The strange quark is simulated with the RHMC algorithm. Although some details
will be different, the main statements are expected to carry over to different gauge and fermion
discretizations.

2.6 Effect of the Hasenbusch decomposition

To illustrate the impact of the Hasenbusch mass splitting, we have measured the first and
second derivative of the action on the ensemble introduced in the previous section, using 10 gauge
configurations and 30 realizations of the pseudofermion fields on each. In Fig. 2, the distribution
of the norm squared of the fermion force is shown. In the left panel just one pseudofermion field is
seen to lead to large fluctuations in the norm of the force. By using the Hasenbusch splitting with
N = 3, these fluctuations are drastically reduced. Note that the norm of the force itself is not very
much smaller, i.e., the fluctuation of the force remains large; mass preconditioning is doing little
towards getting a better stochastic estimate of the force.

However, as we have seen in the previous section, this is not needed. Smaller fluctuations of
the norm of the force are already more significant, but what actually counts is the variance of the
higher order terms in the shadow Hamiltonian AH that enters the acceptance rate Eq. 2.7. The

3The code is available under http://cern.ch/luscher/openQCD.
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Figure 3: Fluctuation of the value of the shadow Hamiltonian around its mean value, fermionic contribution
only. Left panel the one pseudofermion action, right panel using three pseudofermions in the Hasenbusch
splitting.

width of its distribution shown in Fig. 3 is drastically reduced by the two additional pseudofermion
fields. To achieve the same acceptance rate, this allows for an order of magnitude larger step size
and a correspondingly cheaper simulation.

The discussion in this section just wants to illustrate the functioning of the determinant split-
up. Also domain decomposition and the RHMC are successfully used in modern dynamical
fermion simulations, which hints on a similar effect on the distribution of AH for these algorithms.

2.7 Multiple time scales

The size of the gauge and the many components of the fermion force frequently varies over
many orders of magnitude. This has lead to the suggestion to integrate them on different time
scales[3], which is particularly natural if the larger forces are also much cheaper to compute. The
gauge forces, e.g., have typically a much larger norm and require significantly less computer time
than the fermion forces. Technically, if the total action is split in two parts S = §; + 5>, one
integrates one component of the action S with the integrator in eq. 2.4, but instead of 7, one puts
m steps of eq. 2.4, where only the force corresponding to S, is applied.

Also the split determinants have been combined with multiple time scales[21, 13]. From the
shadow Hamiltonian it can be understood why large hierarchies in the size of the forces do not
necessarily translate to corresponding hierarchies in the time steps. The shadow Hamiltonian for
the multiple time scale integrator reads[4]

H=H+57*{c, Y 0¢,810¢ 81— Y m ymh, 98,00, S1 + €208 181985,
X, U XU
g

| (2.16)
W(Cl 28)2#528)2“& — czZnﬁunyfv8zu3yfvS2)} +...,
X, x,;{/t
Y

where the term in the second row reflects the hierarchy of the integration steps. The third term in the
first row containing the interference between the forces from S; and S,, however, is not suppressed
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by 1/m? even though it depends on S,. Since in typical settings the forces deriving from S, are
much larger than those from Sy, this term can give a large contribution.

Obviously, all this depends on the covariance of the various force contributions and a complete
picture needs detailed measurements of these terms. The smaller the covariance between the two
forces, the better the multiple time scale method will work, but in particular for the various com-
ponents of the fermion force, large covariances are to be expected. In any case, if the forces from
S> dominate, or are much cheaper to compute, the multiple time scales can be beneficial[13].

To suppress this contribution from the interference term, the coefficient ¢, can be tuned to zero
by choosing A = 1/6. Although this is not a good integrator for the forces deriving from §; — it
does not profit from the cancellation between the two contributions in the shadow Hamiltonian —
this can be a good choice if these forces and their fluctuations are small.

2.8 Stability of Wilson fermion simulations

Large forces are known to cause the numerical integrators to become unstable above a certain
step size. Here light Wilson fermions have a particular problem due to the lack of a spectral
gap, which results in potentially unbounded forces where eigenvalues become zero. The most
obvious consequence of this are the so-called “spikes”, exceptionally large values of 6 H, which
are observed during the simulation. Furthermore, the molecular dynamics trajectories cannot cross
the surfaces of zero eigenvalues, at least if the integration is exact. This means that the simulation
is not ergodic and ergodicity depends on integration errors. Also thermalization can be affected by
the evolution being stuck in one of these sectors.

Introducing a small twisted mass during the simulation into the light Dirac operator can cure
these problems and it has been argued in Ref. [22] that even on typical large volumes its effect can
be reliably cancelled by including a corresponding reweighting term into the measurement. Two
possible replacements for the fermion determinant have been proposed

2 2
detQ® {det(Q + 1) Type |

(2.17)
det(Q* + u?)?/det(Q*> +2u?) Typell,

where the second option has the advantage that the contribution from large eigenvalues A of Q to
the reweighting factor R —corresponding to the ratio of detQ? to what it has been replaced with
— is suppressed by u*/A*, whereas the first falls of with u?/A2. Since large contributions in the
ultraviolet limit the reach in u of the reweighting, and therefore the benfits that can be achieved in
the infrared, the second choice is likely to yield better results.

For the simulation described in Sec. 2.5, the second option has been employed, with u large
enough to efficiently suppress large values of |[§H|. In fact, on at most a few per-mille of the
trajectories it assumed values above 2. Still, as can be seen from the measured reweighting factors
in Fig. 4, its fluctuations are under control and only 15% of the configurations obtain a weight
below 0.5.

Also reweighting in the quark mass (instead of a twisted mass term) has been proposed[23]
and makes part of what is used in large scale simulations[19, 20, 24]. Here the emphasis is less on
a strict spectral bound but on possible corrections in the tuning or the possibility to reach smaller
quark masses more cheaply. In both reweighting methods, the over-sampling of small eigenvalues
can also lead to reduced fluctuations in some observables, e.g., the pion correlator.
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Figure 4: Reweighting factor R for the second type of reweighting in the simulation described in the text.

2.9 Solver

A main difficulty of going towards smaller quark masses has been the rise of the condition
number of the fermion matrix as am, — 0 and the associated increase in iteration count of the
iterative solvers. Deflation techniques which remove the contribution of the low-modes from the
linear system substantially alter this situation. Explicitly computing (an approximation to) the N
lowest eigenmodes, however, is not an option in large volume simulations, since N needs to be
scaled with V in order to keep the condition number approximately constant.

This has been changed by the advent of local deflation techniques[25], where the space which
is projected from the system is spanned by local (block) modes. The number of these modes per
block is kept fixed as the volume is increased, which means that the dimension of the space spanned
is growing with the volume. The resulting iterative, locally deflated solver shows only a very
modest, if any, increase in iteration count as the quark is lowered towards the chiral limit. Closely
related to this approach are adaptive multigrid algorithms[26, 27] which consequently show similar
performance gains and are also being developed for use together with domain wall fermions[28].

All these techniques require a certain amount of setup time and also the memory usage can be
substantial. This is, however, easily amortized as the force evaluation in the determinant splitting
techniques need the solution of the Dirac equation for many right hand sides on the same gauge
field.

3. Continuum limit

Approaching the continuum limit is an essential part of a field theory calculation, but in most
practical simulations the lattice spacing can only be varied by a modest factor (and still lie within
the scaling regime). This is due to the very steep increase in computational cost as the continuum
limit is approached if the physical volume is to be held fixed. The number of lattice points increases
with a=* and to get fixed acceptance rate with a second order integrator requires a~! steps per
trajectory. Furthermore, Monte Carlo time itself scales with the lattice spacing and autocorrelation

10
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times of observables A are expected to show a universal behavior
T(A) o< a 3.1)

with a dynamical critical exponent z, which for the HMC algorithm is z ~ 2 as argued in Sec. 3.1.
The total cost is, thus, expected to rise with the seventh power of the inverse lattice spacing, each
factor of two in a translating into more than two orders of magnitude in cost. There might be some
effects from reduced noise due to smoother gauge fields, but it is still necessary to produce a Monte
Carlo time history which contains at least O(100) times the largest exponential autocorrelation
time, setting a lower bound for the numerical effort, irrespective of the desired accuracy.

In the traditional setup of QCD simulations using periodic boundary conditions for the gauge
fields, an additional problem arises due to the global topological charge. Field space in the contin-
uum is disconnected and decomposed into sectors of different integer topological charge,

1

We therefore expect that close to the continuum limit any algorithm which changes the fields
(quasi)-continuously has difficulty changing the global topological charge of the gauge configu-
ration.

How quickly this continuum behavior is approached is a priori not clear and details will in
general depend on the gauge and fermion discretizations. However, pure gauge theory with the
Wilson gauge action has exhibited a drastic rise in the autocorrelation time of Q2, compatible with
’L’im(Qz) o a~, see Fig. 5, but could also be exponential in a~![29].

In a 2010 contribution to this conference series[30], Liischer observed that in pure gauge
theory, in a fixed volume the probability to find a configuration which has a large plaquette value
and is therefore in between topological sectors (plaquettes constructed from links smoothed by

the Wilson flow) decreases as a~©

as the continuum limit is approached and the volume is kept
fixed. This indicates the rapid formation of topological sectors and corresponds to the drastic rise
in Ty (Q?) as a — 0.

The situation with dynamical fermions has been discussed at this conference. For the ETM
collaboration, Deuzeman[32] reported an absence of slowing down of the topological charge to-
wards the continuum, whereas in the Wilson fermion simulations with the DD-HMC algorithm
Mondal found a substantial increase in autocorrelations[33]. An exceptionally slow evolution of
the topological charge in the presence of dynamical fermions has in the past also been found for a
variety of gauge and fermion discretizations[34, 35, 36, 37].

Let us briefly note that the problem of a slow global topological charge could in principle be
solved by fixing the topological sector during the simulation[38]. With a different motivation, the
JLQCD collaboration has been using this for their dynamical overlap simulations[39]. In this setup
one has to deal with power-like finite volume corrections that vanish only as V~140], and whose
analytic form is not known for all observables. The impact of the fixed topological charge on the
algorithmic performance has so far not been studied close to the continuum limit.

3.1 Expected scaling

The question remains whether the observed scaling for the topological charge is exceptional,
or whether there is reason to expect that autocorrelations should rise with a smaller power of the

11
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Figure 5: Integrated autocorrelation time vs. lattice spacing for a smeared Wilson loop of size (1fm)? and
the topological charge in pure gauge theory with Wilson gauge action. Data from Ref. [31].

inverse lattice spacing. From dimensional analysis of the HMC equations of motion autocorre-
lation times should scale with the inverse lattice spacing[41], once the trajectory length is scaled
accordingly. This does not match with the experience form measurements as in Fig. 5.

This free field theory result, however, cannot be expected to hold in the interacting theory
as has been argued in Ref. [42]. There, an attempt to prove the renormalizability of the five-
dimensional field theory — defined by the four-dimensional physical field theory augmented by
the dynamics in simulation time as a fifth dimension — has lead to a divergence that could not be
removed by a local counter term.

These methods have earlier been used to prove the renormalizability of the Langevin equation
for scalar field theory and gauge theory[43, 44]. This means that up to logarithmic corrections,
the free field result of z = 2 holds for algorithms based on this stochastic differential equation. In
Ref. [42] it has been conjectured that the HMC algorithm falls into the universality class of the
Langevin equation. For observables A with a proper continuum limit, it is therefore expected that
the integrated autocorrelation function scales with the inverse lattice spacing squared

FA (k’C)
LA(0)

(3.3)

1 w
Tint(A, W) oc a2 with Tin(A, W) = STHT Y
=1

and ' = ((A(t) — A)(A(0) —A)) the autocorrelation function and 7 the distance between two mea-
surements.

These arguments involve a continuum limit of the autocorrelation function and the question for
the algorithmic analysis is whether the limits @ — 0 and W — oo commute. For the performance of
the algorithms, one is interested at the W — oo limit at fixed lattice spacing, whereas the theoretical
arguments apply to taking the continuum limit first. But in general, a quadratic scaling should be
expected also for 7, and the scaling found in the topological charge can indeed be considered to
be exceptionally strong.

An illustration of these statements can be found in data from the CP° model[45] presented in
Fig. 6. For an earlier discussion of topological slowing down in this model see Ref. [29]. The

12
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Figure 6: Scaling of the integrated autocorrelation times with the lattice spacing in the CP® model[45]. The
topological charge squared shows a behavior compatible with an exponential growth indicated by the solid
line, the dashed line follows a power law with z = 4. For the magnetic susceptibility ), and correlation
length & the dashed lines show a scaling with £2, whereas the corresponding curve for the action density E
has z =0.12.

magnetic susceptibility y,, and the correlation length & show a scaling of Ty, compatible with a
dynamical critical exponent z = 2. They both have a meaningful continuum limit. This is not the
case for the action density E, which exhibits an almost constant behavior. However, the topological
charge shows a growth in the autocorrelation time which is compatible with an exponential behav-
ior, as already proposed in Ref. [29]. At a certain point, the dependence of the other observables on
the topological charge — small as it may be — dominates all autocorrelation functions and causes
a deviation from the previous behavior. This also exemplifies the danger the frozen charge poses
for simulations in QCD, where a seemingly decoupled observable can suddenly receive important
contribution to its autocorrelations from the slow modes.

3.2 Open boundary conditions

Since we have argued that exceptionally long autocorrelations of the topological charge are
linked to the topological sectors in the continuum, a setup in which these sectors do not exist is
likely to solve the problem. In Ref. [46] it has been proposed to use open boundary conditions in
time, such that the topological charge can continuously change over these boundaries. Field space
in the continuum is no longer disconnected; there is no integer topological charge. In the spatial
directions, periodic boundary conditions are kept. Technically, this means to impose for the quark
and antiquark fields y(x) and Y¥(x),

1
P+W(x)‘xo:0 = P*W(x)’xozT =0, Py = 5(13‘:7’0), (3.4
W(X)P*|x0:0 = W(X>P+ ’xO:T = 07
like in the Schrodinger functional. For the gauge fields

For()|yy_o = For(x)],y_y =0 forall k=1,2,3 (3.5)

13
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is chosen.

Since periodic boundary conditions in the spatial directions are imposed, the projection to
definite momentum of the operators is still possible and the impact on the physics analysis is min-
imal, because in the time direction the transfer matrix of the theory is not changed. The boundary
conditions will be reflected in the hadronic correlators, but the particle spectrum will be the same.

3.3 Observables

To ensure that a simulation is reliable, it is pivotal to have a Monte Carlo history that is much
longer than the longest exponential autocorrelation time. To this end it is not sufficient to exam-
ine the autocorrelation function of the observable in question, because in a noisy observable the
exponential tail in the autocorrelation function can easily be covered by statistical fluctuations; a
seemingly small Tj,(A) can be a consequence of a short run history. For the arguments concerning
the renormalizability of the algorithm to apply, it is also beneficial to consider quantities with a
well defined continuum limit

Such observables, which also have low statistical noise, can be constructed using the Wilson
flow[47, 48, 49], defined by a partial differential equation on the gauge fields

AVi(x, ) = —ago T (95, Sw) (Vi)Vi (x, 1), Vi, 1)|,—g =Ulx, ). (3.6)

Starting from the gauge fields U (x, 1), integrating this equation up to a flow time ¢ defines gauge
fields V (x, i) that are smoothed out over a radius r = /81.
In the following, we will consider three such observables, the action density and the topologi-
cal charge density summed over a time slice as well as the global topological charge
3

0(x0) =~ 3522 L uvpo r {Guv(x) Gpo (1)) 0=aY0(x): (7

P
E(x0) = YA Ztr{Gw(x) Guv(x)} -

For the sliced observables, the central time slice will be considered. The crucial point of these
observables is that the smoothing radius is kept fixed as the continuum limit is approached. In the
following, the flow time will be taken to at £, i.e., the flow time at which #?(E)|,—;, = 0.3 intoduced
in Ref. [48], which corresponds to a smoothing radius of /8ty ~ 0.42fm[50].

The smoothing has a notable effect on the integrated autocorrelation time, as is demonstrated
in Fig. 7 taken from Ref. [46] for pure gauge theory and a lattice spacing of a ~ 0.05fm. The
integrated autocorrelation time Ty, (E) increases by roughly an order of magnitude, highlighting
the importance of choosing smooth quantities with little noise. The behavior is well described by

an exponential approach to a constant i, (E) = a+ bexp(—t/c), with the autocorrelations at ¢ = f
being close to saturation.

3.4 Effect of the open boundary conditions on autocorrelations

The open boundary conditions in time have been studied in pure gauge theory with the Wilson
action in Ref. [46] from which Fig. 8 has been taken. It shows the scaling of the integrated au-
tocorrelation time with the lattice spacing on a lattice of constant physical volume V = (1.6fm)*.
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Figure 7: Integrated autocorrelation time of E as a function of the flow time in units of #y. The solid line
shows a fit to the data of the functional dependence discussed in the text.

Results for the stochastic molecular dynamics algorithm(SMD)[51] and the HMC algorithm are
shown. The two data sets show the same scaling behavior and differ only by a global normalization
factor.

All three observables follow the a~2 expectation, no sign of topological freezing could be
found, even though the scale covers roughly the same range of lattice spacings as in Fig. 5, which
was using the same gauge action with periodic boundary conditions. The autocorrelation time of the
topological charge is significantly reduced by the open boundaries. For the HMC at a ~ 0.05 fm,
we have rim(QZ) ~ 1000 with the periodic boundary conditions and Tim(QZ) ~ 180 with open
boundaries. Remarkably, the autocorrelation times of the topological quantities and for E are not
very different.

3.5 Effect on hadron correlation functions

Since the open boundary conditions work as expected for the autocorrelations, we now have
to study their effect on physical observables. On general grounds, one expects their effect to be
exponentially suppressed by the distance from xo = 0 and xo = 7. Closer to the boundaries, of
course, the boundary conditions are reflected in the temporal dependence of the correlators.

The (light) pseudoscalar correlation function is known to be dominated by pions in the long
distance and light quark mass regime. Since Dirichlet boundary conditions are generic in scalar
field theories, it is therefore natural to assume that the pion filed 7¢ vanishes on the boundaries

7 (30)|yg—0 = () sy = 0. (3.8)

For the pion propagator G (xo, o), one infers by solving the Klein-Gordon equation that for xo > yo
it assumes in the region of xp not too close to the boundaries the form

Gr(x0,y0) o< sinh(mz (T —xp)) . (3.9)

This is confirmed by the measured data shown in Fig. 9, where a fit of Eq. 3.9 to the data with
sufficient distance from the boundaries is shown.
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Figure 8: Scaling of the integrated autocorrelation times in pure gauge theory with open boundary condi-
tions in time towards the continuum limit. The observed scaling matches with a dynamical critical exponent
of z="2. The topological charge does not show exceptional slowing down. Filled symbols are results for the
SMD algorithm with Z = 1, open symbols for the HMC Z = 1.32.

As can be seen from this example, the analysis changes due to the new boundary conditions,
but not in a dramatic way. Experience with more complicated correlation functions will need to be
gained in order to have a more complete picture of their consequences.

4. Conclusions

Few of the methods discussed in this contribution are new, still recent years have witnessed
substantial progress in our ability to simulate QCD with light quarks on fine lattices. This is mainly
due to an improved understanding of these methods and synergies gained from combining them.

The determinant splitting techniques allow for much larger step sizes, which can only be un-
derstood using the theory of symplectic integrators. The determinant splitting, along with tech-
niques like twisted mass reweighting, significantly reduce fluctuations in the forces and in turn
make higher order and force gradient integrators proposed during the last decade profitable. And
also the sophisticated solvers for the Dirac equation have their setup cost easily amortized over
the many solutions needed in each individual step. Each of these components individually already
brings some gain, but it is in their combination that the full potential can be reached. And there
might be additional gains from better further understanding possible.

In the traditional setup, lattice QCD simulations are performed with periodic boundary condi-
tions, where the freezing of the topological charge causes a severe problem with ergodicity as the
continuum limit is approached. With typical resources, simulations with a lattice spacing below
0.05 fm are not possible, and the problem is sufficiently generic that an algorithmic solution seems
unlikely in the near future. Changing the lattice setup by using open boundary conditions, however,
solves the issue.

Still, QCD simulations are expensive. To keep finite volume effects under control, the size of
the box needs to be scaled with the inverse pion mass and physical pions require a box size of about
6fm. Fine lattice spacings are currently difficult to reach with such a volume.
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Figure 9: Pseudoscalar correlation function with the source at x) = a. A fit to the chiral perturbation theory
formula is shown, which supports the hypothesis of Dirichlet boundary conditions for the pion fields.

From the simulations as described in Sec. 2.5 but at the physical pion mass, we can now
estimate the order of magnitude of the computer resources needed to repeat the simulation on
a sufficiently large volume with spatial extent L = 6fm and a finer lattice. At a = 0.09fm, we

estimate Tip(E) ~ 20 and we assume that this is a one of the slowest observables. If we want a run

length of at least 100 x Ty (E ), we arrive at a cost estimate of such a simulation

a -7
—3TH ( ) . 4.1
C =3 Tflops x years X 0.09m 4.1)

This means that a @ = 0.045 fm lattice still requires 400 Tflops x years. Hopefully, further progress
will reduce this number.
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