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Abstract In the present paper we propose a further modi-
fication of f (R, T )-gravity (where T is trace of the energy-
momentum tensor) by introducing higher derivatives matter
fields. We discuss stability conditions in the proposed theory
and find restrictions for the parameters to prevent appearance
of main type of instabilities, such as ghost-like and tachyon-
like instabilities. We derive cosmological equations for a few
representations of the theory and discuss main differences
with conventional f (R, T )-gravity without higher deriva-
tives. It is demonstrated that in the theory presented infla-
tionary scenarios appear quite naturally even in the dust-filled
Universe without any additional matter sources. Finally, we
construct an inflationary model in one of the simplest repre-
sentation of the theory, calculate the main inflationary param-
eters and find that it may be in quite good agreement with
observations.

1 Introduction

According to current knowledge, based on experimental data,
there were (at least) two different epochs of dynamical evolu-
tion of our Universe when the key role was played dark energy
(DE): an inflationary stage at the early times of evolution and
a late time acceleration (l.t.a.) stage, which started recently
(on cosmological scales) and continues till modern time. We
know about the existence of modern DE (associated with
l.t.a.) with high precision from the different experiments,
the first of which relate to SNI data [1,2], whereas about
primordial DE (associated with inflation) we know only by
indirect detection such as general isotropy and flatness of
observable part of Universe and the non-flatness spectrum of
primordial scalar perturbations [3,4]. Nevertheless the true
nature of both DEs is unknown yet and this fact stimulates
researchers to find solutions of the DE problem outside of
standard physics.
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Modifications of the gravitational sector are well known
from early times and still are very popular, because differ-
ent corrections to the gravitational action follow for instance
from string theory [5,6] and one-loop quantum effects [7–9]
(see also [10,11] for cosmological applications). The number
of different approaches in this way is actually huge and we
only mention here examples such as f (R)-gravity [12–14],
Horndeski theory [15], unimodular gravity [16], teleparal-
lel gravity [17], theories with non-minimal kinetic coupling
[18]; see also [19].

Nevertheless there is another possibility to solve DE prob-
lem: we can introduce some exotic matter or modify the
right hand side (matter sector) of the equations. The activ-
ity in this direction is not so intensive, but we can mention
such attempts as phenomenological higher derivative matter
fields [20,21], bulk viscosity and imperfect fluids [22–24],
theories with non-minimally coupled Ricci scalar with matter
lagrangian [25,26] and one of the most popular subclasses of
this model, f (R, T )-gravity [27], where T is the trace of the
energy-momentum tensor (stress-energy tensor). Note that
the dependence on T may be induced by exotic imperfect
fluids or quantum effects (such as the conformal anomaly).
Also we can study such kinds of models as some phenomeno-
logical models, which arise from some more general theories.
Indeed it is well known that brane models can modify exactly
the r.h.s. of the equations of motions on the brane [28–31].
For these reasons in our paper we try to discuss a wider class
of f (R, T )-gravity models and incorporate a function depen-
dence by the derivatives of T (models containing �R-terms
also are known as possible modifications of f (R)-gravity
[32,33]).

This paper is organized as follows: in Sect. 2 we
derive general equations and discuss stability conditions;
in Sect. 3 we study a few concrete examples of functions
and find some cosmological solutions; in Sect. 4 we esti-
mate inflationary parameters for one of the simplest shapes
of the function; and in Sect. 5 we give some concluding
remarks.
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2 General equations and stability conditions

Let us try to generalize the well-known modified gravity the-
ory [27] in the following way:

S = 1

16π

∫
d4x

√−gF(R, T,�T ) + ε

∫
d4x

√−gLm,

(1)

where R is the Ricci scalar and T is the trace of the energy-
momentum tensor; ε is equal to 1 or to 0. First of all let
us ensure that this theory is ghost-free. For this task let us
introduce Lagrange multipliers in the following way1:

S =
∫

d4x
√−gF(R, T,�T )=

∫
d4x

√−g[F(λ1, λ2, λ3)

+μ1(R − λ1) + μ2(T − λ2) + μ3(�T − λ3)], (2)

variation with respect to μi give us

λ1 = R, λ2 = T, λ3 = �T, (3)

and variation with respect to λi

μ1 = Fλ1 , μ2 = Fλ2 , μ3 = Fλ3; (4)

thus the initial action (1) may be rewritten in the form

S =
∫

d4x
√−g[μ1R + μ3�λ2

+{F(λ1, λ2, λ3) − μ1λ1 − μ3λ3}]. (5)

We can see that the field μ2 is non-physical and as a con-
sequence decouples from the equation. Now let us focus on
the second term. It may be reorganized by introducing new
fields, λ2 = χ2 + ψ2 and μ3 = χ2 − ψ2:

S =
∫

d4x
√−gμ3�λ2

=
∫

d4x
√−g[χ2�χ2 − ψ2�χ2 + χ2�ψ2 − ψ2�ψ2]

=
∫

d4x
√−g

[
−∇ iχ2∇iχ2 + ∇ iψ2∇iψ2

]
, (6)

where we used integration by parts. Equation (6) tells us
that independently of the type of the function F(R, T,�T )

this theory contains three scalar fields (one additionally will
appear after μ1R decoupling) and at least one from it is ghost-
like. But there is one special case,2 which allows us to solve
this problem: if we put

F(R, T,�T ) = f (R, T ) + h(T )�T . (7)

Note that h(T ) �= const because in this case the contribution
to the equations will be trivial. In this case the theory will

1 In this section we exclude Lm from our discussion and concentrate
our attention on the function F .
2 One may note that the more general case of infinite rows like

∑
ci�i T

may produce a ghost-free theory, as has happened in the pure f (R)-
gravity case [34].

contain only two physical scalar fields and both of them may
be non-ghost, depending on the signs of h′ and fR . Indeed,
if we start from lagrangian (7) and introduce auxiliary fields
as λ = R, μ = fλ we gain the next action

S =
∫

d4x
√−g[μR + V (μ, λ, T ) − h′gik∇i T∇kT ], (8)

where the potential V = f (λ, T )−μλ and the last term from
(7) was integrated by parts. Further, producing a conformal
transformation of the metric ḡik = eχgik , χ = ln μ we have
the action in canonical form,

S =
∫

d4x
√−ḡ

[
R̄ − 3

2
ḡik∇̄iχ∇̄kχ + e−2χV (μ, λ, T )

− h′e−χ ḡik∇̄i T ∇̄kT
]
. (9)

We can see that the last kinetic term contains a multiplier
h′/ fR ; thus we need fR > 0 and h′ > 0 for the ghost-free
theory.

Now varying lagrangian (7) with respect to T we find the
field equation

h′�T + �h + fT (R, T )

= 2h′�T + h′′(∇ i T )(∇i T ) + fT (R, T ) = 0, (10)

and finally varying (7) with respect to the metric we have

fR Rik − 1

2
Fgik + (gik� − ∇i∇k) fR

= 8πεTik − ( fT + h′�T + �h)(Tik + Θik) + h′∇i T∇kT

− 1

2
h′∇mT∇mTgik, (11)

where

Θik ≡ glm
δTlm
δgik

. (12)

We can see that if take into account the field equation (10),
the Einstein-like equation (11) has an essential simplification

fR Rik − 1

2
Fgik + (gik� − ∇i∇k) fR

= 8πεTik + h′∇i T∇kT − 1

2
h′∇mT∇mTgik . (13)

Let us consider the solution of Eq. (10) in the form T = T0 +
δT and for the trivial solution R0 = 0, T0 = 0 (with the flat
background) we find the additional restriction fT T � 0 for
the absence of tachyon-like effective particles in the theory
(the case fT T = 0 cannot be totally excluded). For more
complicate cases of a non-flat background this relation will
have a more complicate structure and will contain h′′ as well,
but it is clear that the theory may be free from the tachyon
instability.
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Let us take the divergence of Eq. (11). The divergence of
the l.h.s. reads

∇ i
[
fR Rik − 1

2
Fgik + (gik� − ∇i∇k) fR

]
= (∇ i fR)Rik

+ fR∇ i Rik − 1

2
fR∇k R − 1

2
fT∇kT + (∇k� − �∇k) fR

− 1

2
∇k(h�T ) = (∇ i fR)Rik

+ fR∇ i Gik − 1

2
fT∇kT − (∇ i fR)Rik

− 1

2
∇k(h�T ) = −1

2
fT∇kT − 1

2
∇k(h�T ), (14)

where we follow [35] using ∇ i Gik = 0 and (∇ i fR)Rik =
(�∇k −∇k�) fR . Thus from the r.h.s. the conservation equa-
tion now reads

(8πε − fT − h′�T − �h)∇ i Tik

= −1

2
fT∇kT + (Tik + Θik)∇ i ( fT + h′�T + �h)

+ ( fT + h′�T + �h)∇ iΘik

− 1

2
∇k(h�T ) − ∇ i [h′∇i T∇kT

] + 1

2
∇k(h

′∇l T∇l T ),

(15)

which also may be simplified by using (10) as

8πε∇ i Tik = −1

2
fT∇kT

− 1

2
∇k(h�T ) − ∇ i [h′∇i T∇kT ]

+ 1

2
∇k(h

′∇l T∇l T ). (16)

Note here a very essential thing. Equations (13) and (16)
do not contain true limits at h = 0. If we want to find these
limits, we must use Eqs. (11) and (15). The reason of such a
kind of situation is quite understandable: for the limit h = 0
the field equation (10) is just absent (trivial) and any simplifi-
cation which would have been produced became impossible.
Exactly for this reason the proposed theory has a very sig-
nificant difference from the usual F(R, T )-gravity.

3 Some concrete examples for cosmological applications

Now let us discuss some particular cases of the gravitational
field equations. For cosmological application we usually used

Tik = (ρ + p)uiuk − pgik, (17)

with uiui = 1 and ui∇kui = 0. In this case the expression
for Θik takes the very simple form

Θik = −2Tik − pgik . (18)

3.1 The simplest case of functions: f (R, T ) = R + 2 f (T ),
h(T ) = αT

Let us discuss firstly the simplest case, f (R, T ) = R +
2 f (T ), for the Universe with FLRW-metric,

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (19)

filled by dust matter (p = 0, T = ρ). In this case Eq. (11)
gives us

3H2 = 8περ + f (ρ) + 1

2
αρ̇2 + 1

2
αρ(ρ̈ + 3H ρ̇), (20)

2Ḣ + 3H2 = f (ρ) − 1

2
αρ̇2 + 1

2
αρ(ρ̈ + 3H ρ̇), (21)

and Eq. (10) reads

α(ρ̈ + 3H ρ̇) = − f ′(ρ), (22)

and finally Eq. (15) gives us

8πε(ρ̇ + 3Hρ) = − f ′(ρ)ρ̇ − 1

2
αρ

d

dt
�ρ − 3

2
αρ̇�ρ, (23)

which may be transformed to

8πε(ρ̇ + 3Hρ) = 1

2
f ′ρ̇ + 1

2
f ′′ρρ̇. (24)

It is easy to test our system: let us take the time derivative from
(20), add (21) multiplied by −3H and cut from the result the
−9H3-term by using (20); as a result we find Eq. (23).

Now we can see that in this simplest case it is possible
to write a Friedman-like equation in the form H2 = b(ρ),
where b is some function of ρ. Indeed, expressing ρ̇ from
(24) and substituting into (20) and taking into account (22)
we find

3H2

[
1 − α

2

3(8περ)2

( 1
2 f ′(ρ) + 1

2 f ′′ρ − 8πε)2

]

= 8περ − 1

2
ρ f ′ + f, (25)

which for instance for f = 2λρ, ε = 1 reads

3H2
[

1 − 3α

2

(8πρ)2

(λ − 8π)2

]
= (8π + λ)ρ, (26)

and for f = λρ2, ε = 1

3H2
[

1 − 3α

2

(8πρ)2

(2λρ − 8π)2

]
= 8πρ. (27)

Note that these expressions look like the expressions which
arise from brane cosmological models.

Also it is useful calculate the value weff ≡ −1−2Ḣ/H2:

weff = −2 f + ρ f ′ + αρ̇2

16πρε + 2 f − ρ f ′ + αρ̇2 . (28)
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Comparison with the case h = 0 and analogy with scalar
field inflation

First of all, note that Eqs. (20) and (21) are very similar to
the equations that describe cosmology with a scalar field (we
need to substitute (22) there). Indeed there is a kinetic term
1
2αρ̇2 and some kind of potential f − 1

2ρ f ′. This fact is very
well understandable from (28): if we can ignore by 16πρ

with respect to 2 f − ρ f ′ (or put by hand ε = 0) we obtain
weff = −1 in the slow-roll regime when ρ̇2 � 2 f − ρ f ′.
This means we have classical inflation on the scalar field.
Thus our new term shows a behavior absolutely identical to
the scalar field one.

Now let us compare our theory with the limit case h = 0,
which was studied in previous investigations. In this case the
field equation (10) is absent and we need to use (11) instead
of (13). Equations (20) and (21) now reads

3H2 = 8περ + f + 2ρ f ′, (29)

2Ḣ + 3H2 = f, (30)

which corresponds to the EoS

weff = − f

8περ + f + 2ρ f ′ ,

and this is not equal to −1 even for ε = 0. Moreover, there
is no kinetic term here, which might have provided an exit
from inflation. Thus we can see that the difference is very
significant.

Unification of inflation and l.t.a.

Note also that it is possible to construct a cosmological model
which will unify inflation and late time acceleration by a
special shape of the function f (ρ). Indeed let us put

f (ρ) = a1ρ
n + b1ρ

m

a2ρn + b2ρm
, (31)

where we imply all constants are positive and n > m > 0.
This function has the limits

lim
ρ→+∞ f (ρ) = a1

a2
, lim

ρ→+0
f (ρ) = b1

b2
, (32)

and we can see from Eqs. (20) and (21) that the term f will
play the role of a cosmological constant in the beginning
(the case of large values of ρ) and in the end (the case of
small values of ρ) of the evolution of the Universe, whereas
the existence of a kinetic term ρ̇2 may provide a transition
between these two limit regimes. So in realistic cosmological
models, the constants must satisfy the following conditions:

a1

a2
≈ Λinf ,

b1

b2
≈ Λ0, (33)

where Λinf is the cosmological constant in inflation epoch
and Λ0 is the cosmological constant in the present time.

3.2 Non-minimally coupling case:
f (R, T ) = R + 2γ RT + 2 f (T )

In this case we have

3H2(1 + 2γρ) = 8περ

+ f (ρ) + 1

2
h′(ρ)ρ̇2 + 1

2
h(ρ̈ + 3H ρ̇) − 6γ H ρ̇, (34)

(2Ḣ + 3H2)(1 + 2γρ)

= f (ρ) − 1

2
h′(ρ)ρ̇2 + 1

2
h(ρ̈ + 3H ρ̇) − 2γ (ρ̈ + 2H ρ̇),

(35)

Eq. (10) reads

h′(ρ)(ρ̈ + 3H ρ̇) + 1

2
h′′(ρ)ρ̇2

= − f ′(ρ) + 6γ (Ḣ + 2H2), (36)

and finally Eq. (16) gives us

8πε(ρ̇ + 3Hρ) = 6γ ρ̇(Ḣ + 2H2) − f ′ρ̇

− 3

2
h′ρ̇(ρ̈ + 3H ρ̇)

− 1

2
h′′ρ̇3 − 1

2
h

d

dt
(ρ̈ + 3H ρ̇). (37)

It is easy to verify our system like in the previous case: taking
the time derivative from (34), adding (35) multiplied by −3H
and cut from the result the −9H3-term by using (34), we find
Eq. (37). Note also that the energy conservation law (37) takes
a very complicate form in this case.

Special solution

Now let us try to find some special solutions. We will find a
solution in the form

ρ = ρ0 ln[1 + (tc − t)],
which near the critical point t = tc may be decomposed as

ρ = ρ0

[
(tc − t) − 1

2
(tc − t)2 + 1

3
(tc − t)3

]
= ρ0(tc − t),

and therefore

ρ̇ = ρ0[−1 + (tc − t)], ρ̈ = ρ0[−1 + 2(tc − t)].
Now let us suppose for the sake of simplicity h = αρ and
f (0) = 0, which is quite natural if we do not want to
introduce cosmological constant by hand. Substituting these
expressions to (34) and taking into account that f = f ′(0)ρ

we find near the critical point t = tc the algebraical equation
for H

3H2(1 + 2γρ0x) + H

[
3

2
αρ2

0 x − 6γρ0(1 − x)

]
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+
[

3

2
αρ2

0 x − 8περ0x − f ′(0)ρ0x − 1

2
αρ2

0

]
= 0, (38)

where we denote x ≡ (tc − t). Equation (38) has the only
positive solution (after linearization with respect to x)

H = γρ0

(
1 +

√
1 + α

6γ

)
+ xF = H0 + xF, (39)

where F is the some function of parameters. Of course, such a
kind of solution may not exist for arbitrary set of parameters,
so let us ensure that the solution which we found satisfies all
equations from the system (34)–(37). First of all note that all
these equations will have a finite part, so for verifying we can
neglect all terms ∼ x . Substituting our solution into (36) we
find

6γ Ḣ0 = f ′(0) − 12γ H2
0 − αρ0(1 + 3H0), (40)

where Ḣ0 and H0 denote the finite part of Ḣ and H , respec-
tively. Substituting Eq. (40) into (37) we find

8πρ0 = 1

2
αρ2

0 (1 + 3H0), (41)

and this expression provides us with the relation between
ρ0 and the parameters of the theory, which is quite natural
because ρ0 is an integration constant which must be deter-
mined from the equations (the constraint equation). Finally,
combining (40) and (35) we have

H2
0 − 1

3γ
f ′(0) + α

3γ
ρ0(1 + 3H0)

−1

2
αρ2

0 + 2γρ0 + 4γρ0H0 = 0, (42)

which may be transformed by using (34) to

f ′(0) = αρ0(1 + 3H0) + 6γ 2ρ0 + 18γρ0H0 − αρ2
0 , (43)

which tells us that the solution found exists only for some
specific shape of the function f .3 We have a future solu-
tion near which for zero energy density ρ we have non-zero
Hubble parameter H .4

Special case γ = 0, f (T ) = 0

In this special case Eqs. (34)–(35) read

3H2 = 8περ + 1

2
h′(ρ)ρ̇2 + 1

2
h(ρ̈ + 3H ρ̇), (44)

(2Ḣ + 3H2) = −1

2
h′(ρ)ρ̇2 + 1

2
h(ρ̈ + 3H ρ̇), (45)

Eq. (36) tells us

h′(ρ)(ρ̈ + 3H ρ̇) + 1

2
h′′(ρ)ρ̇2 = 0, (46)

3 This situation may be changed if we use a more general function h.
4 For this solution we have non-zero Ḣ as well, thus it does not corre-
spond to an exact dS-solution.

and Eq. (37) takes the form

8π(ρ̇ + 3Hρ) = −3

2
h′ρ̇(ρ̈ + 3H ρ̇)

−1

2
h′′ρ̇3 − 1

2
h

d

dt
(ρ̈ + 3H ρ̇), (47)

and we have the effective EoS

weff = h′ρ̇2 + hh′′
2h′ ρ̇2

16περ + h′ρ̇2 − hh′′
2h′ ρ̇2

. (48)

We can see that in the case when ρ̇2 � ρ, which is quite
natural for the power-law solutions H ∝ 1/t , weff = 0, and
the dust stage is realized in the Universe. In some sense this
is the limit case without potential, but only with kinetic term.
Note also that this term may play a key role near the Big Rip
solution.

Future singularities in special case γ = 0, f (T ) = 0

Let us discuss the possibility of future singularities in our
theory. Since we interested in future singularities which may
appear due to the new kinetic term, we discuss this question in
the special case γ = 0, f (T ) = 0. According to conventional
classification [36] there are four types of future singularities,
which may be parameterized as follows (for more details see
the original paper). If we have a Hubble parameter H near
singularity, which occurs at the moment ts ,

H = H0 + h0(ts − t)−β, (49)

the values of the parameter β � 1 correspond to Type I of
singularities, values −1 < β < 0 to Type II, values 0 < β <

1 to Type III and β < −1 to Type IV [37]. Let us study the
possibility of the realization for every type consistently.

Type I: Let us suppose h ∝ ρn and ρ ∝ (ts − t)α . Substi-
tuting these relations and (49) to (44) and taking into account
(46), we find that such a kind of particular solution may be
realized for α = (1 − β)/(n + 1) and β > 1. Thus we can
see that Type I of future singularity, which is also known as
“Big Rip” may appear due to our new terms.

Type II: For this type of singularity we have Ḣ  H2 =
H2

0 near the ts point. It means that terms from the r.h.s. of Eq.
(45) also are much more higher than H2 and the only pos-
sibility to satisfy Eq. (44) is to put 2h′2 = h′′h, which leads
to a very specific shape of the function h = −1/(C1ρ +C2)

and contradicts our basic requirements for stability. Thus we
can see that this type of future singularity cannot be realized
due to our new terms.

Type III: In this case the situation is very similar to the
previous one: we have Ḣ  H2  1 and realization of this
type of singularity is impossible.
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Type IV: In this case we have H = H0, Ḣ = 0, while
higher derivatives of H diverge. From (45) we can see that
the only possibility to satisfy this equation is to have ρ̇ =
const �= 0 near the point ts . It implies the only possible
solution ρ = Λ0 + ρ0(ts − t), but even in this case we
need the additional condition 8πΛ0 + h′ρ2

0 = 0 to have a
consistent system (44) and (45). To satisfy this condition we
need to put h′ < 0, which contradicts the general stability
condition, or to put Λ0 < 0, which breaks the null energy
condition. Thus we can see that this type of singularity also
cannot be realized due to our new terms.

Finally, we can see that only Type I future singularities
may appear in our theory, but it is also quite clear that in
the most general case of non-minimal coupling f (R, T ) any
types of future singularities may appear due to the non-trivial
dependence of the function from R, as happens in the usual
f (R)-gravity. We shall address this question in future inves-
tigations.

4 Basic inflationary model and its parameters

In this section let us try to calculate the parameters of infla-
tion, which may be constructed by using the models previ-
ously described. The tensor–scalar ratio r and the spectral
index of the primordial curvature perturbations ns may be
expressed by using the slow-roll parameters in the following
way:

ns = 1 − 6ε + 2η,

r = 16ε,

where the slow-roll indices are defined in terms of the Hubble
rate as follows:

ε = − Ḣ

H2 ,

η = ε − Ḧ

2H Ḣ
.

As an example of the calculations let us take the model
described in Sect. 3.1 with arbitrary function h(ρ).5 Since
during the inflation stage we have a slow-roll approximation,
we can put the next relations ρ̈ � H ρ̇ and ρ̇2 � f and now
Eqs. (20)–(22) take the form

3H2 = 8πρ + f − h

2h′ f
′, (50)

3H2 + 2Ḣ = f − h

2h′ f
′, (51)

ρ̇ = − f ′

3Hh′ . (52)

5 The simplest case discussed above cannot produce viable inflationary
parameters.

It is clear that in the slow-roll approximation the Hubble
parameter changes slowly, so we have Ḣ � H2 and from
comparison of Eqs. (50) and (51) we can see that we have
equality only if we can neglect the 8πρ term with respect
to f . Thus such a kind of regime may be realized for any
f ∝ ρn with n > 1, because in this regime we have large
values of ρ. Finally, instead of (50) and (51) we have now

3H2 = f − h

2h′ f
′. (53)

Expressions for Ḣ and Ḧ , which are also needed for the
slow-roll parameters, may be calculated by consistent differ-
entiating of Eq. (53). Indeed we have for instance for Ḣ

6Ḣ = 1

H

(
f ′ − h′

2h′ f
′ − h

2h′ f
′′ + hh′′

2h′2 f ′
)

ρ̇

= − f ′

3H2h′

(
1

2
f ′ − h

2h′ f
′′ + hh′′

2h′2 f ′
)

. (54)

Now according to the definition the number of e-foldings
before the end of inflation Ne = ln ae

a∗ , where ae is the scale
factor related to the end of inflation and a∗ is the scale factor
related to Ne. By using the definition of the Hubble rate this
formula may be transformed as follows:

Ne =
∫ te

t∗
H(t)dt =

∫ ρe

ρ∗
H(ρ)

dρ

ρ̇
=

∫ ρ∗

ρe

3H2h′ dρ

f ′ ,

where we used (52), and finally we obtain

Ne =
∫ ρ∗

ρe

h′

f ′

(
f − h

2h′ f
′
)

dρ, (55)

where ρ∗  ρe. Now let us focus on the case of power
functions and put f = μρm , h = νρn . In this case Eq. (55)
may easily be integrated and we have

Ne = ν(2n − m)

2m(n + 1)
ρn+1∗ . (56)

Equation (52) takes the form

ρ̇ = −μm

νn

ρm−n

3H
, (57)

and for Hubble rate and its derivatives we have

3H2 = μρm 2n − m

2n
,

Ḣ = −m2μ

6nν
ρm−n−1,

Ḧ = m3μ2(m − n − 1)

6n2ν2

ρ2m−2n−2

3H
;

finally collecting all terms we find for the slow-roll parame-
ters

ε = m

2(n + 1)Ne
,

η = 2m − n − 1

2(n + 1)Ne
= 1

Ne

(
m

n + 1
− 1

2

)
,

123
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where we take into account solution (56).
Now let us take for example n = m = 2. In this case we

have, for Ne = 50, r = 0.107, ns = 0.9667; and for Ne =
60, r = 0.09, ns = 0.9778. We can see that the inflationary
parameters lie near the boundary of viable region and taking
more complicated functions may move them deeper into this
region.

Finally, let us ensure that all variables have physical val-
ues. From (56) we can see that ρ∗ has actually a large value.
ρ̇ < 0 and Ḣ < 0; it means that these variables both decrease
during inflation, as they must. Ḧ may has a different sign,
depending on the parameters, we see that for n = m = 2
it has negative values. Finally all derivatives ρ̇, Ḣ , Ḧ must
be small in comparison with ρ and H ; this fact puts some
additional restrictions for the parameters m and n (otherwise
our slow-roll approximation will broken). For instance in the
case n = m = 2 we have according to our formulas ρ̇ ∝ ρ−1,
Ḣ ∝ ρ−1 and Ḧ ∝ ρ−3 and since the energy density ρ has
a large value all time derivatives actually are small.

5 Conclusions

In this paper we discuss the possibility of a further general-
ization of f (R, T )-gravity by incorporating higher deriva-
tive terms �T in the action. First of all we find that in the
proposed theory inflationary scenarios appear quite naturally
and may produce viable inflationary parameters. Moreover,
higher derivative terms decrease more rapidly than the clas-
sic ones, but this may lead to future singularities of Type I.
Another important thing: since new terms produce a contri-
bution to the inflationary parameters it may resurrect such
inflationary models as Rn with n > 2, which are already
closed by modern observational data. We shall address this
question in further investigations. It may be interesting also to
generalize our theory by incorporating terms like

∑
ci�i T ,

which may produce a ghost-free theory for some specific sets
of coefficients ci . Thus we propose a theory which is free
from standard pathologies and promising for cosmological
applications.
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