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Abstract.

Grid computing was developed to provide users with uniform access to large-scale distributed
resources. This has worked well, however there are significant resources available to the scientific
community that do not follow this paradigm - those on cloud infrastructure providers, HPC
supercomputers or local clusters. DIRAC (Distributed Infrastructure with Remote Agent Con-
trol) was originally designed to support direct submission to the Local Resource Management
Systems (LRMS) of such clusters for LHCb, matured to support grid workflows and has recently
been updated to support Amazon’s Elastic Compute Cloud.

This raises a number of new possibilities - by opening avenues to new resources, virtual
organisations can change their resources with usage patterns and use these dedicated facilities
for a given time.

For example, user communities such as High Energy Physics experiments, have computing
tasks with a wide variety of requirements in terms of CPU, data access or memory consumption,
and their usage profile is never constant throughout the year. Having the possibility to
transparently absorb peaks on the demand for these kinds of tasks using Cloud resources could
allow a reduction in the overall cost of the system.

This paper investigates interoperability by following a recent large-scale production excercise
utilising resources from these three different paradigms, during the 2010 Belle Monte Carlo run.
Through this, it discusses the challenges and opportunities of such a model.

1. Introduction

DIRACI1, 2, 3] had supported job submission to LRMS from its outset, and has been efficiently
utilising grid resources for many years now. The recent rise of cloud technology was not initially
scoped in the design of DIRAC, however the modular nature of the framework facilitated its
integration. This work is described in section 2.

With this completed, several rounds of Monte Carlo production were carried out, using
the Belle experiment[4] as a test-case. Belle has a large peak in computational requirements
(approximately double its normal) for around three months of the year when Monte Carlo is
produced[5]. Belle was purchasing physical servers to accomodate this, which could go unused
for the remainder of the time. Cloud computing allows the rental of computing power even on an
hourly basis without the expensive capital investment, which opens the possibility of extending
the owned infrastructure. Further details are found in 3
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Using the three paradigms, instead of purely the grid, Belle was able to have short-term
access to resources additional to what it owned. This integration of heterogeneous pieces into a
single system implies interoperability of the different pieces, the significance of which is detailed
in Section 4.

2. Development
The late resource-payload binding (‘pilot’) model[6] employed by DIRAC on the grid has been
very successful[7]. Pilot jobs deploy and execute a JobAgent to obtain real jobs from a central
task queue, once executing on a worker node. This moves the matching of resources to jobs to
the worker nodes themselves, greatly reducing the load on central services and allowing quick
reaction to changes in the underlying resources pools. There are several auxillary benefits to this
approach, including allowing the assignment of priority to user jobs on a virtual-organisation
wide basis, verification of environment suitability and confirmation of resource availability.

This model was easily extended to work on the cloud. Rather than using grid mechanisms
to get Pilots onto the Worker Node, cloud APIs are used to instantiate Virtual Worker Nodes.
The cloud Worker Nodes have the Job Agent pre-installed and are ready to match and execute
payloads. Pilots are replaced by instantiating Virtual Worker Nodes but the modular resource
discovery, the central control of the scheduling and the late matchmaking paradigm remain. See
Figure 1

Three new components were created to facilitate the use of cloud:

e VirtualMachine Scheduler: Monitors DIRAC TaskQueues and requests new VM from
resource provider as appropriate

e VirtualMachine Monitor: On-VM module that reports activity and halts VM if no longer
needed

e VirtualMachine Manager: Collects information about requested, running and halted VMs,
and provides usage monitoring with functionality accessible as an extension to the DIRAC
web interface|§]

Cloud computing resources added to DIRAC are automatically integrated with other
resources, for instance Grids or local clusters. DTRAC ensures that there is good interoperability
among them and provides many additional features to manage, monitor and account all activities
and resource usage out of the box.

The full technical details of the modifications to DIRAC to enable work on the cloud can be
found in [9].

3. Results

The Belle Monte Carlo simulation task is divided into individual sub-tasks closely following the
data taking of the experiment. Each individual sub-task corresponds to a detector run' and
thus there is a huge dispersion in the cpu time and output data requirements, depending on the
duration and conditions of the corresponding run. The input for the simulation is taken from the
official sets of scripts and input data files provided by the computing group of the collaboration.
And, at the end of the execution, the simulated data and log files must be transferred to Belle
grid Storage Elements (SEs) and File Catalog (FC). The exercise was divided into three parts.

3.1. Cloud-only
The aim of this part was to verify the robustness of the newly developed cloud components,
described in section 2. 160 cores were run for two weeks, with a twenty-four hour ramp up using

LA run is the collision data registered by a detector in an uninterrupted manner with almost identical conditions,
its duration and the accumulated data may vary by several orders of magnitude.
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Figure 1. Applying the pilot model(top) to cloud-based Worker Nodes(bottom)

250 8-core virtual machines on Amazon EC2. Output was put to grid storage elements - at
KEK in Japan, GridKa in Germany and SiGNET in Slovenia. Though initially Grika was used,
two hours before the peak of the run, this storage stopped responding. In a good demonstration
of the DIRAC Configuration Service[10][11], one variable was changed to send data instead to
KEK. Highlights:

e Peaked at 2000 cores from Amazon EC2
e Data outbound to grid at 50MB/s
e Ran input data from cloud-based DIRAC SE

3.2. Cloud and HPC

This second section was used to investigate a new EC2 product - spot instance pricing, and
integrate non-grid enabled clusters. Where previously, we pre-staged input data to a cloud
storage element, in this instance we copied it directly from grid storage elements with no
significant performance impact. Highlights:

e 8.5 CPU years over 5 days
e 2 HPC centres in Barcelona (40%), Amazon EC2 (60%)
e Input data from the grid

3.8. Grid, Cloud and HPC

In our final run, we placed some emphasis in brokering jobs to different resources based on
their characteristics. The cloud and clusters were ideal for running long (>24 hours) jobs, and
on the cloud we were able to take advantage of the multiple core support in our software -
something that is near-impossible on the current grid infrastructure as detailed in user feedback
on EGI infrastructure and the WLCGJ[18][19]. During this, DIRAC was running on a pair of
low-specification (1 core, 2GB RAM) virtual machines in Barcelona and scaled without issue.

Highlights:
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e CPU efficiency >95%
e Up to 2,400 cores

e 6 grid sites(KEK in Japan, GridKa in Germany, 1JS in Slovenia, CYFRONET in Poland,
CESNET in Czech Republic and KISTI in South Korea), 3 HPC clusters and Amazon EC2

Figure 2 is perhaps the best depiction of the interoperability work - showing a clear grid
baseline (50%), supplemented by cloud(28%) and local clusters(23%). All of the cloud capacity
from EC2 in this excercise was derived from a product known as Spot Instances. These resources
are provided at a lower rate, but availability is dependant on the price at which they are aquired.
The resilience of DTIRAC enabled us to use this without issue, as any jobs failing due to loss of
a cloud virtual machine were automatically resubmitted.
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Figure 2. Distribution of CPU days by computing paradigm

Further interpretation of these results, with a detailed TCO analysis will be provided in a
future publication.

4. Interoperability

The interoperability between grids and clouds has been under investigation for some time. The
beginnings of the research can be seen in the work of adding the ability to make batch systems
‘dynamic’ - that is, adding and removing (often virtualised) Worker Nodes from a batch system
queue based on certain events[12, 13, 14, 15, 16, 17]. This has resulted in such modern projects
as INFN’s Worker Node on Demand[20], which deploys virtualized resources at the WLCG
Tier 1 in Italy. This methodology, aiming to make computing resources ‘elastic’ matches well
with cloud computing. According to a recent StratusLab survey[21], most administrators who
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responded were already using cloud or virtualization technologies or planning to deploy them in
the next 12 months.

EGEE, the peak general purpose grid infrastructure in Europe at the time, itself acknowledged
the potential of cloud computing in their 2008 study[22], concluding that “a roadmap should be
defined to include cloud technology in current e-Infrastructures ...”. As a result, currently
there are several[23, 24, 25] EU-funded projects working on various aspects of cloud-grid
interoperability, and providing simplified access cloud paradigm to the community.

However, despite this large amount of work on the infrastructure angle, little work has been
completed from the Virtual-Organisation side. In addition to our own previous work[26][27][9],
notable projects include clobi[28] which provides a cloud backend to Ganga[29] for the ATLAS
experiment[30].

The potential reasons for the lack of effort on this front is perhaps derived from the work of
Field, Laure and Schulz[31]. The paper details experience in grid deployment with a focus on
five interoperability mechanisms: Virtual Organisation Driven, Parallel Deployment, Gateways,
Adaptors and Translators and Common Interfaces. Field, Laure and Schulz note that “For
Grid Computing to achieve its full potential, different infrastructures must offer interoperable
services which a user can access in a seamless way...”, which is the overarching aim of our work.
However, several downsides are attributed to the VO-driven approach. The authors state that:

e it places significant effort on the VO in their development framework
o effort required also increases with the number of Grid infrastructures

e it often results in a keyhole approach where the minimum common subset of functionality
is used

However, if one notes that the DIRAC framework already has a large userbase with developers
commited to supporting it - the points about development effort become less relevant. The ideal
solution would be for middleware to support common standards, however the design effort
involved shows this trailing the user demand for the infrastructure, often by years.

In this work, Belle was able to utilise grid, cluster and cloud resources to contribute to its
Monte Carlo production - without any changes to job code. It is worth noting that other virtual
organisations with use of similar pilot framworks already supporting multiple grid backends
could make similar modifications to gain this functionality.

5. Conclusion

The cloud paradigm has gained enormous traction in the IT world, and DIRAC is ready to
provide seamless integration of these resources to its existing grid and cluster users today. High
Energy Physics is in the position to take a leading role in the integration, but scale will be a
key factor in deciding suitability.
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