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Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, A-1040 Wien, Austria

Abstract

The Fourier Monte Carlo algorithm represents a powerful tool to study criticality in lattice spins systems. In par-

ticular, the algorithm constitutes an interesting alternative to other simulation approaches for models with microscopic

or effective long-ranged interactions. However, due to the somewhat involved implementation of the basic algorithmic

machinery, many researchers still refrain from using Fourier Monte Carlo. It is the aim of the present article to lower

this barrier. Thus, the basic Fourier Monte Carlo algorithm is presented in great detail with emphasis on providing

ready-to-use formulas for the reader’s own implementation.
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1. Introduction

Since its introduction [1], the Fourier Monte Carlo (FMC) algorithm has proved to be a valuable tool for suc-

cessfully tackling a number of problems that had challenged or even defeated previous computational approaches.

Examples include the numerical determination of coarse-grained free energies with gradient corrections from a given

microscopic Hamiltonian [1], the observation of Fisher renormalized critical exponents in compressible spin models

[2], a study of the renormalization group flows in a step-by step numerical implementation of Wilson’s momentum

shell prescription [3, 4, 5] and the investigation of the universal properties of solid membranes [6]. FMC may not be

a general-purpose method. Instead, it should be regarded as a kind of surgical tool that represents a competitive (and

sometimes the only feasible) choice for many interesting problems, particularly such involving criticality in systems

with microscopic or effective long-ranged interactions (see e.g. Ref. [7]). In fact, the recently discovered [6] simple

modification of FMC to effectively suppress critical slowing down [8, 9, 10] promises to promote FMC in the current

top league of simulation algorithms from critical behavior.

Yet, even though there is definitely interest in using the machinery of FMC, despite past efforts [11, 12] many

potential users found the task of setting up the formulas and working out a concrete implementation to be too painful

to seriously consider using it in practice. It is the purpose of the present article to provide ready-to-use formulas and

practical implementation tips for FMC, such that this algorithm becomes more convenient to use for a wider range of

research groups.
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Listing 1: possible C implementation of parity function π(q)

i n t p a r i t y ( c o n s t i n t m[ dim ] ) { / / i n t e g e r c o o r d i n a t e a r r a y o f q
i n t d , n ;

f o r ( d=0; d<dim ; d++)

i f ( ( n=m[ d ]%(L / 2 ) ) ) break ; / / q on d− t h c o o r d i n a t e h y p e r p l a n e or BZ boundary ?
re turn ( ( n>0)−(n < 0 ) ) ; / / r e t u r n s i g n o f c o o r d i n a t e m[ d ] mod L / 2

}

2. Brillouin zone setup

We consider a d-dimensional simple cubic lattice Γ of linear dimension L and lattice constant a = 1 with periodic

boundary conditions. In what follows we assume L to be even. Let us denote a site of Γ by x ∈ Γ, and their total

number by N = Ld. A configuration ϕ of a lattice spin model on Γ is nothing but a collection {ϕ(x) : x ∈ Γ}, where

we assume ϕ(x) ∈ R for simplicity [13]. In order to employ the Fourier transform, let us start by identifying the set

of admissible wave vectors Γ̃ = (2π/L) · Z that are compatible with the given lattice data. Obviously, Γ̃ contains the

so-called reciprocal lattice Γ∗ := 2π · Zd of Γ as a subset [14]. The corresponding coset space Γ∗ := Γ̃/Γ∗ is known as

the (first) Brillouin zone (BZ) of Γ. Its elements, which will be denoted by [q] or simply q and which we shall also

call wave vectors, are represented by d-tuples of reals

qi = (2π/L)mi, mi ∈ {−L/2 + 1,−L/2 + 2, . . . ,−1, 0, 1, . . . , L/2 − 1, L/2} (1)

The reflection q → −q defined on Γ̃ leaves Γ∗ invariant and thus induces an involution ∗ : Γ∗ → Γ∗, q �→ q∗. The

subset

Γ0 := {qi = (2π/L)mi, mi ∈ {0, L/2}} ⊂ Γ∗ (2)

is invariant under ∗ and will be called the set of high-symmetry vectors. Since ∗2 = I, all other vectors q ∈ Γ∗\Γ0 can

be grouped in pairs (q, q∗). A order of such a pair can be defined by a convenient parity function π(q), which should

be zero for all vectors of Γ0 and ±1 for all others, such that

Γ∗ = Γ0 ∪ Γ+ ∪ Γ− (3)

where, of course, Γ± = {q ∈ Γ∗ : π(q) = ±1}. For instance, in C we might write code like that in Listing 1.

The foundation of the discrete Fourier transform on Γ is provided by the basic formulas [14]

1

N

∑
q∈Γ∗

e±iqx = δx,0,
1

N

∑
x∈Γ

e±iqx = ΔΓ(q) :=

{
1, q ∈ Γ∗
0, else

(4)

where we have introduced the lattice delta function ΔΓ(q) as a periodic generalization of the ordinary Kronecker delta.

The relations (4) immediately allow to conclude that there is a one-to-one correspondence

ϕ(x) ≡ 1

N

∑
q∈Γ∗
ϕ̃(q)eiqx, ϕ̃(q) ≡

∑
x∈Γ
ϕ(x)e−iqx (5)

between the representations of a microstate of the system by the set of real field-values ϕ(x) and one given by the

collection of Fourier amplitudes ϕ̃(q). Note that, in contrast to other conventions found in the literature, our normal-

ization is asymmetric. The advantage of normalizing the discrete Fourier transforms in this way is twofold. First of

all, note that with this convention the Fourier amplitudes ϕ̃(q) are extensive, which, usually being conjugate to an

external field that is intensive, is quite natural. Second, it turns out that in the FMC algorithm, upon rescaling the

bare coupling constants by powers of 1/N (see below), it allows to eliminate all explicit appearances of N from the

energy calculations. Moreover, this normalization is very convenient when comparing formulas to those derived from

a continuum formulation.
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If the field ϕ(x) were complex-valued, then, of course, all real and imaginary parts of the amplitudes ϕ̃(q) can

be regarded as constituting its 2N real degrees of freedom. Since, however, ϕ(x) is assumed to be real-valued, the

relations

ϕ̃(q∗) = ϕ̃∗(q), q ∈ Γ∗ (6)

from which it follows that in particular

ϕ̃∗(h) = ϕ̃(h), h ∈ Γ0 (7)

express the resulting redundancy in terms of its Fourier amplitudes. In this case, however, we can employ the above

parity-induced partition (3) to conveniently organize the actual independent degrees of freedom, according to which

we only need to keep track of the sets of real numbers

{ϕ(h) : h ∈ Γ0} and {	ϕ(q),
ϕ(q) : q ∈ Γ+} (8)

Since on a simple cubic d-dimensional lattice there are 2d vectors of parity zero, the first set constitutes 2d real

numbers. On the other hand, inspection of Listing 1 reveals that there are exactly N − 2d vectors of nonzero parity,

and therefore (N − 2d)/2 ones with positive parity, such that the second set contains N − 2d reals. Together, both sets

therefore hold a total of N real degrees of freedom as it should be.

After these preparations, we may proceed to rewrite a given model Hamiltonian (9) in terms of Fourier amplitudes.

In the following we will study lattice ϕ4 types of model. The prototypical Hamiltonian we exemplify here is that of

the nearest-neighbor ϕ4 model [13]

H[ϕ] =
D
2

∑
〈xy〉

(ϕ(x) − ϕ(y))2 +
A
2

∑
x∈Γ
ϕ2(x) +

B
4

∑
x∈Γ
ϕ4(x) (9)

We work out its Fourier representation, starting with the second summand. The more mathematically oriented reader

will immediately recognize the simple relation

A
2

∑
x∈Γ
ϕ2(x) =

A
2N

∑
q∈Γ∗
ϕ̃(q)ϕ̃(q∗) =

A
2N

∑
q∈Γ∗
|ϕ̃(q)|2 (10)

which immediately follows from inserting the definition (5) and employing the relations (4), as a form of Parseval’s

theorem [15]. Using similar manipulations, one also readily derives

D
2

∑
<xy>

[ϕ(x) − ϕ(y)]2 =
D

2N

∑
q

d∑
μ=1

4 sin2(qμ/2)|ϕ̃(q)|2 (11)

for the first term of (9). The fact that both (10) and 11 are diagonal in terms of ϕ̃(q) is a consequence of the translational

invariance and harmonicity of the original terms in the Hamiltonian (9). The central issue of the FMC algorithm is

how to deal with the remaining anharmonic fourth order contribution. In a naive straightforward approach similar to

the above, we would obtain the expression

B
4

∑
x∈Γ
ϕ4(x) =

B
4N4

∑
q1...q4∈Γ∗

ϕ̃(q1) . . . ϕ̃(q4)
∑
x∈Γ

ei(q1+...+q4)x =
B

4N3

∑
q1...q4∈Γ∗

ϕ̃(q1) . . . ϕ̃(q4)ΔΓ(q1 + . . . + q4) (12)

in which all products of Fourier amplitudes, whose q-vectors sum up to give a reciprocal vector, contribute to the last

sum. The resulting combinatorial complexity seems intractable from the angle of simulations. Instead, let us consider

the auxiliary field ϕ2(x) of squared amplitudes of our original field. As a field in its own right, ϕ2(x) has the Fourier

representation

ϕ2(x) =
1

N

∑
Q∈Γ∗

(̃ϕ2)(Q)eiQx, (̃ϕ)2(Q) =
∑
x∈Γ
ϕ2(x)e−iQx (13)
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where the capitalization Q indicates that Q originates from the sum of two possibly “smaller” wave vectors q1, q2,

a fact that will become of importance once we will have introduced a cutoff Λ in Γ∗ (see below). Quite trivially,

Parseval’s identity gives once more

B
4

∑
x∈Γ
ϕ4(x) =

∑
x∈Γ

(ϕ2(x))2 =
B

4N

∑
Q∈Γ∗

(̃ϕ2)(Q)(̃ϕ2)(Q∗) (14)

i.e. the sum is again diagonal, albeit not in terms of the amplitudes ϕ̃(q) but in terms of the amplitudes (̃ϕ2)(Q). Of

course, since ϕ2(x) is completely determined by ϕ(x), we can express its Fourier amplitudes by the set of ϕ̃(q) as

(̃ϕ2)(Q) =
∑
x∈Γ
ϕ2(x)e−iQx =

1

N2

∑
p,q∈Γ∗

ϕ̃(p)ϕ̃(q)
∑
x∈Γ

ei(p+q−Q)x =
1

N

∑
p,q∈Γ∗

ϕ̃(p)ϕ̃(q)ΔΓ (p+ q − Q)

=
1

N

∑
p∈Γ∗
ϕ̃(p)ϕ̃([Q + p∗]) (15)

As explained above, the coset notation [Q + p∗] implies that if the sum of wave vectors Q + p∗ ∈ Γ̃ happens to fall

outside of the boundary of the first Brillouin zone Γ∗, it needs to be “folded back” to the zone by subtracting a suitable

reciprocal vector G ∈ Γ∗. If we define

S̃ (Q) := N × (̃ϕ2)(Q) =
∑
p∈Γ∗
ϕ̃(p)ϕ̃([Q + p∗]) (16)

such that S̃ (Q) ∼ N2, then

B
4

∑
x∈Γ
ϕ4(x) =

B
4N3

∑
Q∈Γ∗

S̃ (Q)S̃ (Q∗) (17)

As promised, we are now able to eliminate all the cumbersome powers of N from our formulas by absorbing them

into the rescaled coupling constants

DN :=
D
N
, AN :=

A
N
, BN :=

B
N3

(18)

and arrive at

H[ϕ] =
1

2

∑
q∈Γ∗

D̃N(q)|ϕ̃(q)|2 + BN

4

∑
Q∈Γ∗
|S̃ (Q)|2 (19)

where the generalized dispersion D̃N(q) for nearest neighbor interaction is

D̃N(q) = AN + DN

d∑
μ=1

4 sin2
(aqμ

2

)
(20)

Obviously D̃N(q∗) = D̃N(q) is real-valued.

3. Working with subsets of the Brillouin zone

Eqs. (16) and (19) contain an order of N terms and so represent a quite expensive way to calculate the total

energy. In Monte Carlo (MC), however, it is not the total energy itself that needs to be calculated from scratch at

every move, but only the energy change. Nevertheless, as we shall see below, calculating this change takes the same

order of operations as the number of wave vectors that is involved. In terms of computational effort, this indicates

that for lattice Hamiltonians like (9) with short-ranged interaction, the resulting algorithm is certainly inferior to
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algorithms based on simple direct lattice moves. For studying criticality in systems with long-ranged interactions, on

the other hand, this is a completely different story, since then the calculation of the lattice interaction terms may take

O(N2) operations in a direct lattice setting, while the calculation of energy changes still requires O(N) operations.

In contrast, the effort to determine these energy changes in FMC is independent of the actual range of interactions,

since the Fourier-transformed lattice interaction will result in a dispersion term similar to that of (19) and (20), which

is diagonal in the space of Fourier amplitudes, the only requirement being that the lattice interaction is translation-

invariant, which is usually guaranteed. For Coulombic interactions, even an Ewald summation procedure in reciprocal

space is available [16, 17]. Thus, if we tabulate the resulting dispersion function D̃N(q) at the start-up phase of the

simulation, harmonic energy changes are therefore readily computed (concrete formulas are provided below).

At this point we would still be left with O(N) operations required to calculate energy changes with FMC. This,

however, is only true as long as the number of wave vectors involved in the problem at hand is equal to the number of

lattice sites N. A central advantage of FMC is, however, that it is designed to allow to study the behavior of the system

when only modes parametrized by a chosen subset B∗ ⊂ Γ∗ of the full Brillouin zone are allowed to participate in the

simulation. For consistency we should demand that B∗ is invariant under the ∗-operation.

• One type of such subset is defined by introducing a wave vector cutoffs Λ, i.e. setting

B∗ = B∗(Λ) = {q ∈ Γ∗ : −Λ ≤ qi ≤ Λ} (21)

While a spherical cutoff can also be introduced, for our purposes the cubic cutoff geometry implied by (21)

turns out to be more convenient. In fact, parametrizing Λ = Λ(l) by an integer 0 < l < L/2 as Λ(l) = 2πl/L, we

can just as well write

B∗ = B∗(l) = {q = (2π/L)(mi, . . . ,md) ∈ Γ∗ : −l ≤ li ≤ l} (22)

In terms of trying to accomplish the task of computing the full partition function of the system, all “fast” modes

ϕ̃(q) for wave vectors q � B∗(Λ) can be thought of “having already been integrated out” at the expense of leaving

an effective Hamiltonian governing the behavior of the remaining “slow” modes. In other words, as long as we

are not interested in microscopic specifics of our system but only in its universal asymptotic behavior at long

wavelengths, we are free to choose a convenient effective (Landau-Ginzburg) Hamiltonian from the appropriate

universality class subject to a convenient cutoff Λ. For small Λ, the number |B∗| of residual wave vectors

participating in such a simulation will then be considerable smaller than the original number of lattice sites N.

Conversely stated, since π resembles the lattice cutoff corresponding the zone boundary of the original lattice,

then the introduction of a cutoff Λ(l) amounts to effectively simulating a system with a linear size π/Λ(l) = L/2l
larger than the original one.

• Another important application of FMC concerns coarse-grained systems, in which one wants to integrate over

a “momentum shell”

B∗ = B∗(Λ,Λ0) = {q ∈ Γ∗ : Λ ≤ |qi| ≤ Λ0} (23)

where, of course, Λ < Λ0 (the terminology is inspired by quantum field theory). Similar to (22), this subset of

the Brillouin zone can be parametrized as

B∗ = B∗(l, l0) = {q = (2π/L)(mi, . . . ,md) ∈ Γ∗ : l ≤ |li| ≤ l0} (24)

Such momentum shells are encountered, for instance, in calculations of renormalization group transformations

following Wilson’s momentum shell prescription [3, 4, 5].

In a practical implementation of FMC it is important to recognize that, being composed of sums of two wave vectors

taken from B∗, the wave vectors Q parametrizing the array of amplitudes S̃ (Q) will generally not be elements of the

set B but rather of the larger set

C∗ := {q + p : q, p ∈ B∗} ⊃ B∗ (25)
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Thus, in a critical simulation of a long-range interacting system, the cutoff Λ must indeed be chosen much smaller

than π/2 in order to really gain an advantage over a real space implementation.

Apart from these considerations, a further and in fact major advantage of FMC in the simulation of critical sys-

tems is, however, the collective nature of its move set (as opposed to the local move set suggested by direct lattice

algorithms), and the possibility to dramatically reduce or even remove critical slowing down by optimizing the step

widths of amplitude shifts separately for each wave vector [6].

For convenience, we finally introduce the notation

Bp := B∗ ∩ Γp, Cp := C∗ ∩ Γp, p = 0,± (26)

Of course, all the above formulas, which were defined with respect to the full BZ, can be appropriately restricted

to the subspaces B∗,C∗ simply by declaring ϕ̃(q) ≡ 0 if q � B∗ and S̃ (Q) ≡ 0 for Q � C∗.
Dependent on the chosen cutoff geometry for the problem at hand, B∗ and C∗ may often contain the zone center

zero vector h = 0 (known as the so-called Γ point in spectroscopy [14, 18]), but exclude the remaining high-symmetry

vectors from Γ0. As some of the formulas for computing energy changes turn out to be slightly different for MC

shifts of real modes as opposed to complex ones, it turns out to be convenient to organize the arrays ϕ̃(q) and S̃ (Q) as

follows. In a C style array declared as double complex∗ phi, we would, of course, place ϕ̃(q = 0) at index 0, followed

by all values of the complex modes for vectors q ∈ B∗ of positive parity in a convenient order (for instance, partially

ordered by increasing size |q|), eventually adding the modes belonging to the remaining high-symmetry vectors h ∈ B0

in case they are needed.

The array double complex∗ S is organized similarly. As Formula (16) shows, each single step in sums generating

this array from the array of values η̃(q) requires to add pairs of vectors p∗ ∈ B∗ and Q ∈ C+, and so does each

FMC move (see formulas (36) and (37) below). One may therefore consider tabulating these sums and keeping the

resulting 2-dimensional index table, which we may declare as int ∗∗vsum, in memory during the simulation. In a

practical FMC study, one frequently studies the system with fixed lattice size and cutoff but at various values of the

coupling constants and initializations of the array ϕ̃(q). These choices neither affect the table ∗∗vsum nor any of the

other Brillouin zone data. Efficient use of CPU time therefore suggests to store this invariant structural information on

the Brillouin zone (total numbers of vectors in B0,B+,C0,C+ and their integer coordinate values) together with this

index table in a binary file, which is the read into memory at each start-up of an actual simulation run.

4. Formulas for energy changes under Fourier Monte Carlo moves

In FMC, the basic MC move consists of the following steps:

• Draw a wave vector k ∈ B∗ at random.

• If k ≡ h ∈ B0, draw a real number r from an interval [−ρ(h), ρ(h)] and shift

ϕ̃(q)→ ϕ̃(q) + rδq,h (27)

• If k ∈ B±, draw a complex number ε from an circle of radius ρ(k) in the complex plane and shift

ϕ̃(q)→ ϕ̃(q) + εδq,k + ε
∗δq,k∗ (28)

(in a practical implementation, we will only need the case k ∈ B+, but (28) is more convenient for proving the

formulas below).

4.1. Harmonic energy shift

We split the harmonic part of the Hamiltonian into the separate contributions of real and complex modes as

E2 ≡ 1

2

∑
q∈B∗

D̃N(q)|ϕ̃(q)|2 = 1

2

∑
h∈B0

D̃N(h)ϕ̃2(h) +
∑
q∈B+

D̃N(q)|ϕ̃(q)|2 (29)
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A shift

ϕ̃(q)→ ϕ̃(q) + rδq,h, r ∈ R, h∗ = h (30)

of a real-valued mode then induces a change δE2 := E′2 − E2 of the harmonic energy

δE2 =
1

2
DN(h)(ϕ̃(h) + r)2 − 1

2
DN(h)ϕ̃2(h) = DN(h)

[
rϕ̃(h) + r2/2

]
= DN(h)

[
rϕ(h) + r2/2

]
(31)

Similar straightforward manipulations show that a shift

ϕ̃(k)→ ϕ̃(k) + εδk,k0
+ ε∗δk,k∗

0
(32)

of a complex mode results in a change

δE2 = DN(k0)
[
ε∗ϕ(k0) + εϕ(k∗0) + |ε|2

]
= DN(k0)

{
2	 [ε∗ϕ(k0)

]
+ |ε|2

}
(33)

4.2. Anharmonic energy shift

Similar to the harmonic energy contribution, we can separate

E4 ≡ BN

4

∑
Q∈C∗
|S̃ (Q)|2 = BN

4

∑
H∈C0

|S̃ (H)|2 + BN

2

∑
Q∈C+
|S̃ (Q)|2 (34)

A shift S̃ → S̃ + δS̃ induces a change δE4 = E′4 − E4 of

δE4 =
BN

4

∑
H∈C0

[
(δS̃ (H))2 + 2S̃ (H)δS̃ (H)

]
+

BN

2

∑
Q∈C+

[
δS̃ (Q)δS̃ (Q∗) + S̃ (Q)δS̃ (Q∗) + δS̃ (Q)S̃ (Q∗)

]
(35)

Thus, it remains to calculate the changes δS̃ (H), H ∈ C0 and δS̃ (Q), Q ∈ C+. Actually the formulas turn out to be

identical for both cases. Under a shift of type (27) of a real mode ϕ̃(h), it is easy to see that

δS̃ (Q) = 2rϕ̃([Q + h]) + r2δQ,0 (36)

In contrast, a somewhat longer but equally easy calculation shows that shifting a complex mode ϕ̃(k) according to

(28) yields a change

δS̃ (Q) = 2εϕ̃([Q + k∗]) + 2ε∗ϕ̃([Q + k]) + ε2δQ,[2k] + 2|ε|2δQ,0 + (ε∗)2δQ,[2k∗] (37)

Formulas (31), (33) and (35)–(37) are all we need in order to calculate the energy changes under MC moves of type

(27) and (28). Based on these formulas, it is then straight forward to implement a standard Metropolis MC scheme.

To debug the resulting implementation, the author recommends to implement FMC for the simple nearest neighbor

ϕ4 model defined by Eqn. (9) without any cutoff restrictions, and to compare the resulting values for the total energies,

energy changes and so on with those of its “native” implementation on the direct lattice, which is a trivial thing to

do in comparison. In addition, after each single MC move, to detect errors in the code it is highly recommended to

constantly monitor and compare the configurations of the fields ϕ̃(k) and ϕ(x) and the resulting configurations S̃ (Q)

and ϕ2(x) generated by both codes during the test phase of an implementation of FMC by utilizing the discrete Fourier

transformation formulas listed above.
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