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Abstract

We consider various aspects of effective gravitational theories, including supergravity,

within the framework of the blackfold approach. The thesis is naturally split into three

parts. In the first part of the thesis, we explore the blackfold approach and explain how it

is possible to write down an effective theory for higher dimensional extended black holes in

a fluid/elastic perturbative derivative expansion. Moreover, we show that the approach is

quite universal and can be extended to various supergravities. Finally, we consider a new

generalization of the method, which allows us to treat (SUGRA) probe branes in fluxed

dilatonic backgrounds. In the second part, we construct and analyze thermal spinning

giant gravitons in IIB/M-theory. The analysis employs the thermal brane probe method

based on the blackfold approach. In addition to heating up the solution, and examining

the effects from having a non-zero temperature, we also switch on new quantum numbers,

namely internal spins along the directions of the wrapping sphere. We examine the effects

of this new type of excitation and in particular analyze the physical quantities in various

regimes, including that of small temperatures as well as low/high spin. As a byproduct of

our analysis, we find a new stationary dipole-charged black hole solution on the AdS× S
backgrounds of type IIB/M-theory. We finally consider, via a double scaling extremal limit,

a novel null-wave zero-temperature giant graviton exhibiting a BPS spectrum. Finally, in

the third part of the thesis, we switch focus and consider long-wavelength perturbations

of charged black branes. More specifically, we consider hydrodynamic fluctuations of the

black p-brane solution of Einstein/Maxwell gravity in D = p + n + 3 dimensions. We

extract the first order dissipative transport coefficients from our perturbatively corrected

solution, including the modified shear and bulk viscosities, and a new transport coefficient

associated with charge diffusion. Having obtained the transport coefficients, we consider

some of the usual hydrodynamic bounds and show that the shear viscosity to entropy

bound is saturated, as expected. We also consider some of the proposed bounds for the

bulk viscosity which are found to be violated in certain regimes of the charge. We finally

compute the next-to-leading order dispersion relations for the effective fluid. For small

values of the charge, the speed of sound is found to be imaginary and the brane is there-

fore Gregory-Laflamme unstable, as expected. For sufficiently large values of the charge

density, the sound mode is found to be stable, however, in this regime the hydrodynamic

mode associated with charge diffusion is found to be unstable. The electrically charged

black brane is therefore found to be (classically) unstable for all values of the charge in

agreement with thermodynamic arguments.
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Introduction

Since its discovery, almost one hundred years ago, general relativity has been studied in

great detail and has been used to probe the large scale structure of the observable universe

with great success. Black holes show up as an inseparable part of general relativity as a

mathematical consequence of Einstein’s field equations. These objects, by now observed in

abundance in nature [4], represent a locale of spacetime of extreme (ultimatively singular)

curvature. As is well-known, many properties of four dimensional black holes have been

established throughout the years. In particular, four dimensional black holes are known

to be completely determined by their mass, angular momentum, and electric charge [5].

Moreover, upon closer inspection, black holes are found to be essentially thermal in nature;

they radiate, the have an entropy and they even have an associated first law of thermody-

namics [6; 7]. Although tremendous work has gone into understanding the nature of black

holes, they are still profoundly mysterious. Despite the fact that Nature seems to hide sin-

gularities behind event horizons, the smooth geometric structure of spacetime must break

down in regions where the curvature approaches the Planck length i.e. close to the black

hole singularity. Moreover, the thermal properties of black holes and their uniqueness

theorems do not seem to be compatible in a quantum setting, information is lost. This

is the (in)famous black hole information paradox. Finally, the entropy of a black hole is

proportional to the area of its event horizon. Since, in general, the entropy of a system is

a measure of the internal degrees of freedom, this is a very weird result. The informational

content of a black hole seems to be entirely contained in surface fluctuations of the event

horizon.

These issues should all be explained by a satisfying quantum theory of gravity. As is

well-know, general relativity is notoriously incompatible with the framework of quantum

theory. Instead of directly quantizing classical gravity, general relativity is seen as a low en-

ergy effective description of the “true” (quantum) theory of gravity. The modern approach

to quantizing gravity is therefore proposing the quantum theory, requiring it to be mathe-

matically consistent and that it contains Einstein’s theory in the low energy effective limit.

One such proposal is string theory (or more generally M-theory) [8]. Although not veri-

fied (directly or indirectly) experimentally, string theory provides a promising framework

for unifying gravity and quantum mechanics. String theory correctly reproduces general

relativity viz. supergravity in the low energy effective description, albeit in higher dimen-

sions. Indeed, higher than four spacetime dimensions seems to be an essential property of

quantum gravity. This has sparked a large interest in higher dimensional gravity. Indeed,

1



Introduction 2

understanding the classical regime of any theory is vital for understanding its quantum

aspects. Of particular interest to string/M-theory, and their related supergravities, are p-

branes which, much like the black hole in four dimensions, show up as soliton-like classical

solutions to the supergravity equations of motion [9]. On the other hand, these objects

admit a dual description as (non-perturbative) excitations of the quantum theory. For in-

stance, the D-branes of string theory manifest themselves as extended hypersurfaces whose

quantum dynamics is described in terms of open strings whose ends are constrained to end

on them [10]. The dual description of D-branes in terms of supergravity (closed strings)

and gauge theory (open strings), along with the expectation that these two descriptions

essentially contain the same physics (heavily aided by powerful theorems in supersymme-

try), has lead to many fascinating results and insights e.g. the microscopic counting of

black hole entropy [11] and the celebrated AdS/CFT correspondence [12–15].

The AdS/CFT correspondence is the best understood manifestation of the holographic

principle which (in its original formulation) predicts the equivalence between IIB string

theory on AdS5 × S5 and N = 4 Super Yang-Mills, a conformal field theory, defined on

the four dimensional projective boundary of AdS5. Most studied in the planar limit, the

AdS/CFT correspondence has been used to gain new insights into the nature of strongly

coupled field theories. Although N = 4 SYM is not a viable theory for any real-world

quantum system, for obvious reasons, it has still been used to give qualitative predictions

for various strongly coupled real-world systems that are realized in the laboratory. In this

way the AdS/CFT correspondence has provided applications for string theory and higher

dimensional gravity outside high energy theoretical physics. In particular we mention

the predictions for the quark-gluon plasma (AdS/QCD) [16] studied at various colliders

and condensed matter systems (AdS/CMT) [17] including superconducting physics [18].

Related to the holographic study of the quark gluon plasma is the hydrodynamical limit of

AdS/CFT also known as the fluid/gravity correspondence [19–22]. Here one considers the

limit of the dual CFT where it is completely thermalized and have an effective description

in terms of hydrodynamics. This hydrodynamic behavior is captured by, through the

correspondence, long-wavelength fluctuations of the AdS black brane. Reversing the logic,

this allows one to extract the hydrodynamic properties of the dual CFT characterized by

a set of transport coefficients providing a holographic explaination for the experimentally

observed very low viscosity of the quark-gluon liquid.

In context of the AdS/CFT correspondence, probe F-strings and D-branes, typically

related to heavy operators on the gauge theory side, have played an important role for

uncovering the nature of the duality. In particular, the intricate interrelation between

the “blowing up” behaviour of multiple coincident probes [23; 24] (at large energies) and

the non-(linear/Abelian) structure of the DBI action has been studied in great detail. In

this context we mention the giant graviton configuration [25–27] (blown up from a point

particle probe) as well as the D3/D5 description of the multiple wrapped Wilson loop [28]

(blown up from a sting probe). The success of relating DBI probes to gauge theory ob-

servables has naturally lead to the use of probe string/branes in thermal backgrounds, i.e.,

hot AdS or an AdS black hole background, in order to gain insight into various aspects of

thermal strongly coupled theories. Applications include the study of meson spectroscopy



Introduction 3

at finite temperature including the melting phase transition of mesons and other types of

phase transitions with fundamental matter (see e.g. [29; 30]).

This thesis is centered around the so-called blackfold approach and some of its appli-

cations. The blackfold approach has been used to construct new approximate black hole

solutions with exotic horizon geometries [31–37]. Moreover the approach has been used to

map the effective dynamics of black holes to that of fluids and solids [3; 38–47]. Finally,

as will be explained in the following chapters, the blackfold approach has provided an

alternative framework for treating (thermal) probe branes in string/M-theory [48–53] and

in AdS/CFT [1; 2; 54]. The blackfold approach is an effective long-wavelength theory for

extended black objects in two-derivative Einstein gravity (including supergravity). The

approach builds on the universal principle that when a system exhibits two widely sep-

arated scales, the dynamics should simplify and be captured by an effective theory in a

perturbative expansion. The situation is well-known. We consider here two examples. i)

Consider the classical theory of hydrodynamics. Here the, in general extremely compli-

cated, short-wavelength physics of the underlying system can be integrated out when the

mean free path of its constituents is much smaller than the scale of which the system is

probed. This leaves a long-wavelength fluid dynamical effective theory whose (universal)

effective equations are just the conservation equations of energy and momentum. The

situation is reminiscent of that found in the fluid/gravity correspondence. Here the fluid

dynamic (derivative) expansion on the field theory side applies when the length scale of

the fluctuations of the AdS black brane is much larger that the length scale set by the

(inverse) temperature of the dual field theory. However, effective descriptions of black

holes in terms of hydrodynamics are not expected to be confined to AdS black holes and

holographic setups. Indeed, fluid dynamics is the natural generalization of the global ther-

modynamics for any black hole, including asymptotically flat ones. ii) Another relevant

example is the effective motion of a “small” black hole. If we consider a black hole propa-

gating in some background that varies on scales much larger than the horizon radius, it is

well-know (or at least in accordance with intuition), that the black hole can be given an

effective description in terms of a probe point particle whose effective dynamics is nothing

but the geodesic equation (and mass conservation) in the given background [55]. In a

nutshell: The blackfold approach is the natural synthesis of i) and ii).
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Outline of thesis

The thesis is naturally split into three parts. A part concerning the development of the

blackfold approach along with an analysis of blackfolds in external fields (Chap. 1), a part

concerning a concrete application of the effective methods to thermal (spinning) giant

gravitons (Chap. 2), and finally a part concerning the hydrodynamics of charged black

branes (Chap. 3). Each chapter is structured as follows.

• In chapter 1, we review the blackfold approach and explain how the effective theory

can be used to construct new approximate black hole solutions exhibiting non-trivial

horizon topologies. Having reviewed the basic ideas, we explain how the effective

theory naturally is extended to more general settings including supergravity. Finally,

we extend the formalism to blackfolds embedded in dilatonic flux backgrounds.

- The blackfold review aims to give an original presentation of the blackfold approach

developed in the papers [31; 36–38; 40; 44; 46; 56; 57]. Moreover, the chapter contains

a subset of results which will be presented in the future publication [58].

• In chapter 2, we apply the blackfold approach to study the giant graviton solution on

AdSm × Sn in IIB/M-theory as the background is heated up to finite temperature,

using the method of thermal branes originating from the blackfold approach. More-

over, the thermal approach allows us to switch on new quantum numbers, namely

internal spins in the directions parallel to the configuration. We start the chapter

out by motivating the approach and reviewing the usual DBI giant graviton. We

then move on to heating up the configuration and examine the effects from finite

temperature and spin. Finally, we consider a novel extremal double scaling limit

leading to a zero-temperature null-wave giant graviton, exhibiting a BPS spectrum,

which does not have an analogue in terms of the conventional weakly coupled world-

volume theory.

- The results are based on the papers [1; 2].

• In chapter 3, we consider intrinsic long-wavelength fluctuations of charged black

branes along the directions of the worldvolume. More specifically, we consider

the asymptotically flat Maxwell charged black brane (which we dub the Reissner-

Nordström black brane) of general spatial dimension and co-dimension. We analyze

and solve the full set of Einstein/Maxwell equations to first order in a derivative

expansion by requiring horizon regularity and asymptotically flatness. From the

obtained solution, we compute the transport coefficients of the effective blackfold

fluid including a new transport coefficient associated with charge diffusion. We then

move on to discussing some hydrodynamic bounds and finally we compute the next-

to-leading order dispersion relation of the black branes hydro modes and discuss its

stability properties.

- The results are based on the paper [3].

• In chapter 4, we summarize the obtained results and mention some open problems

and future directions.



1 | The blackfold approach

1.1 Introduction

In this chapter we introduce the blackfold approach [31; 36–38; 40; 44; 46; 56; 57], which

has been used to probe the effective dynamics of various black hole solutions (in certain

regimes), and to construct a wealth of new (approximate) black hole solutions. According

to the well-known no-hair theorem of black hole physics, all (regular), stationary, asymp-

totically flat solutions to the Einstein-Maxwell (EM) equations in D = 4 dimensions fall

into the Kerr-Newman family of solutions, and are thereby uniquely determined by their

mass M , angular momentum J , and electric charge Q [5]. In particular, the only possible

topology of the horizon of a stationary black hole in D = 4 is spherical i.e. that of an S2.

In D = 4, the black hole phase structure is therefore very simple, as there is only one phase

available. However, in higher spacetime dimensions D ≥ 5, the phase structure becomes

much richer. Already in D = 5, the phase structure becomes significantly more compli-

cated. Besides the usual Myers-Perry rotating black hole solution with horizon topology

S3 [59], the asymptotically flat black ring solution (horizon topology S1 × S2), was found

by Emparan and Reall in [60]. Moreover, [60] found a range of values for the mass and

angular momentum for which there exists a rotating Myers-Perry black hole solution, as

well as a black ring solution (actually two ring solutions). Later D = 5 black ring of EM

theory (and more generally of Einstein-Maxwell-Dilaton (EMD) theory) was found in [61].

The uniqueness theorems of four dimensional gravity do therefore not extend to higher

dimensions. In general, finding black hole solutions to Einstein gravity in D ≥ 4 is highly

non-trivial task due the tremendous complexity of the equations of motion. Unfortunately,

the techniques used in D = 5 are not available in D > 5, however, approximate meth-

ods exist in D ≥ 5 spacetime dimensions. One method, which will be considered in this

thesis, builds on the simple observation that in certain regimes of solution space, higher

dimensional black holes exhibit a clear separation of scales. In general in D dimensions a

(neutral) black hole has two length scales associated with its geometry determined by its

mass M and angular momentum J ,

`M ∼ (GM)
1

D−3 , `J ∼ J/M . (1.1)

For small angular momenta `J � `M , the physics of the black hole is expected to resemble

that of the D dimensional Myers-Perry solution. The regime where the two length scales

are of the same parametric order `J ≈ `M contains new very non-trivial black objects

5
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e.g. the black ring. This regime involves the full non-linearity of general relativity and

is in general very hard to access using analytical methods (however, various classification

schemes exist, see e.g. [62] and related works). Finally, we can consider the regime where

`M � `J . In this regime, corresponding to the ultra-spinning regime of solution space,

the black hole horizon topology exhibits widely separated scales in different directions.

This is in accordance with intuition; for very large angular momentum, the “centrifugal”

pull, due to rotation, forces the radius of the black ring to become very large (compared

to the horizon thickness), and the black ring locally looks like a boosted black string.

Similarly, in the ultra-spinning limit, the Myers-Perry black hole “pancakes” along the

plane of rotation and locally looks like a boosted black brane [63]. It is worth noticing

that, while the ultra-spinning regime can always be reached in D ≥ 4, it does not exist

in D = 4. Indeed, in D = 4, the Kerr bound requires that J ≤ GM2, so `J ≤ `M . In

conclusion, in certain regimes of solution space, complicated black hole solutions exhibit

a horizon topology where some directions are much larger than others. In this regime

the black hole locally looks like a (boosted) piece of black brane/string. This suggests

that, in certain regimes, black hole physics can be understood in terms of an effective

long-wavelength theory. This effective long-wavelength theory is the blackfold approach.

The reduction of a physical theory to a simpler effective theory, when the system ex-

hibits two widely separated scales, is well-known in physics. Indeed, the quintessential

example of an effective theory is hydrodynamics. Here the, in general extremely com-

plicated, short-wavelength physics of the underlying system can be integrated out when

the mean free path of its constituents is much smaller than the scale of which the system

is probed. This leaves a long-wavelength fluid dynamical effective theory whose effective

equations of motion are nothing but the conservation equations of energy and momentum.

Another example is the effective description of the Nielsen-Olesen vortex of the Abelian

Higgs model [64]. In general these string-like objects can bend and fluctuate and their

full non-linear behavior is extremely complicated. However, when one considers defor-

mations which are much larger than the radius of the vortex, the effective dynamics is

well-captured by the Nambo-Goto string action. Another well-known example of an effec-

tive theory comes from string theory and the theory of D-branes. In string theory D-branes

are introduced as planes where open strings can end. It is well-known that D-branes are

not static but dynamical objects in their own right, however, their full non-linear dynamics

is again very complicated. If we consider the limit where the deformations of the D-brane

(in both worldvolume embedding and fields) occur on length scales that are much larger

than the string length `s, the short-wavelength degrees of freedom can be integrated out

to yield the Dirac-Born-Infeld (DBI) effective action for D-branes [65].

Along these lines, we seek to develop an effective gravitational theory of perturbed

black branes. Instead of considering various ultra-spinning limits of known black hole

solutions, in the blackfold approach we turn the picture around and write down a long-

wavelength effective theory which tells us how to bend/perturb black branes. In essence,

the blackfold approach therefore tells us how to consistently glue small pieces of boosted

black branes together into a global (approximate) solution to a given order a perturbative

expansion. In this way, the blackfold approach is very powerful for probing various limits of
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certain black holes whose solutions are not known for the entire region of parameter space

(i.e. spin, charge, etc.), with the black ring in D ≥ 6 being the quintessential example.

When writing down the effective blackfold theory, we shall rely heavily on the intuition of

gluing flat black branes together which in turn is inspired by ideas from the fluid/gravity

correspondance [19] and Carter’s brane dynamics [66].

Notation: In the following we will use the standard notation used in the literature.

The total spacetime dimension is denoted D and we use Greek letters µ, ν, . . . to denote

spacetime indices. The background metric is denoted gµν and the corresponding covariant

derivative is denoted ∇µ.

In general, we use p to denote the spatial dimension of a given blackfold configuration

(constructed from p-branes). Moreover, the dimension of the (small) transverse sphere is

denoted by n+ 1. In this way, the co-dimension of the blackfold is n+ 2. Also note that,

D = n+ p+ 3 . (1.2)

The volume of the transverse unit sphere Sn+1 is denoted Ω(n+1).

Blackfold indices are denoted by Latin letters a, b, . . . . We will use σa to denote

the coordinates on the blackfold and the embedding functions are denoted Xµ(σa). The

collected worldvolume geometry of the blackfold is denoted Wp+1 and the spatial part of

Wp+1 is denoted Bp, so thatWp+1 ∼ time×Bp. Moreover, we shall reserve R to denote the

characteristic extrinsic scale of Wp+1 (i.e. characteristic radius of curvature of Bp). The

induced metric onWp+1 inherited from gµν is denoted γab and the corresponding covariant

derivative on Wp+1 (from γab) is denoted by Da. Finally, we denote the Hodge dual on

Wp+1 by ?(p+1).

1.2 The effective blackfold theory

In this section we explain the basics of the blackfold idea and argue how the effective

dynamics of a generic black brane can be replaced by that of a fluid brane i.e. a localized

submanifold with a (fluid) stress tensor on its worldvolume, when the brane exhibits a

large separation of scales, r0 � R. We also argue that the effective stress tensor Tab is of

the quasi-local type and explain how it is computed. The ideas presented in this section

were first considered in [56; 57].

1.2.1 The blackfold expansion

We consider a quite general theory of two-derivative Einstein gravity,

I =
1

16πG

∫
?R+ IM . (1.3)

Here IM denotes a generic action which describes potential matter fields of the theory and

their coupling to gravity (which could be zero i.e. pure Einstein gravity). The equations

of motion (EOMs) corresponding to the action S are

Gµν ≡ Rµν −
1

2
gµνR = 8πGT µν , T µν = − 2√

−g
δIM

δgµν
, (1.4)
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where we use boldface T µν to denote the gravitational stress in order to distinguish it from

the effective blackfold stress tensor Tab introduced below. A large class of asymptotically

flat exact black brane solutions to these equations are know for many theories (see e.g.

[67]).

In general a black brane solution is characterized by its spatial dimension p, a transverse

sphere Sn+1 (so that the total spacetime dimension D is given by D = n+ p+ 3), and a

set of geometric parameters collectively denoted Φ. In general Φ consists of the radius r0

of the transverse Sn corresponding to the black brane horizon, a boost velocity uµ of the

brane or equivalently the null Killing vector on the horizon, a set of charge parameters

(depending on the matter content of the theory), and finally the embedding coordinates

X⊥ of the black brane,

Φ = {r0, u
µ, . . . ;X⊥} . (1.5)

Here the ellipsis denotes the presence of possible charge parameters.1 As explained in the

introduction, in the blackfold approach we promote the collective brane parameters Φ to

worldvolume fields Φ→ Φ(σa) write down the effective gravitational theory as a derivative

expansion in these fields,

Φ→ Φ(σa) = {r0(σa), uµ(σa), . . . ;X⊥(σa)} . (1.6)

In order to handle the perturbative expansion, we introduce the notion of effective black-

fold currents. Here we will concentrate on the effective stress tensor, but other (matter)

currents follow the same principle and will be treated in Sec. 1.5. In the blackfold ap-

proach we replace the effective dynamics of the (slightly perturbed) black brane by a set

of localized conserved currents sourcing the long-wavelength fields of the (perturbative)

gravitational solution. In more detail, we assume that the metric splits up into a short-

wavelength component and a long-wavelength component, gµν . The short-wavelength

component of the metric lives close to the brane while the long-wavelength component

gµν permeates the entire spacetime. The effective action and associated stress tensor and

currents are then obtained by integrating out the short-wavelength degrees of freedom of

the black brane. Schematically,

I[gµν ,Φ] ≈ 1

16πG

∫
?R+ Ieff[gµν ,Φ] , (1.7)

where the effective action Seff[gµν ,Φ] comes from the coupling between the short-wavelength

component and the long-wavelength component. Due to the wide separation of scales, we

assume that the coupling is localized to a small neighborhood of brane; the blackfold. We

denote the (to leading order infinitely thin) submanifold spanned by the black brane by

Wp+1. The interaction can then be written

Ieff[gµν ,Φ] =

∫
Wp+1

?(p+1) Leff[gµν ,Φ] =

∫
Wp+1

dp+1σ
√
−γ Leff[gµν ,Φ(σa)] , (1.8)

1As reviewed in Sec. 1.5 for the Dp-brane there is one charge parameter Qp while for more general

p-brane bound states there will be additional charge parameters (or more properly currents) corresponding

to the distribution of lower-form brane currents dissolved on the worldvolume. In general this also includes

the possibility of transverse spin on the Sn+1 (thus breaking the symmetry in the transverse directions),

however, transverse spin will not be considered in this thesis.
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Here the geometry on the worldvolume of the blackfold Wp+1 is the one that is induced

by gµν . Therefore, denoting the embedding functions of Wp+1 by Xµ(σa), the induced

metric γab and extrinsic curvature K ρ
ab are given by

γab = gµν ∂aX
µ∂bX

ν , K ρ
ab = −∂aXµ∂bX

ν ∇µ⊥ ρ
ν . (1.9)

We refer to App. A for details on the induced geometry on Wp+1. We can now associate

an effective stress tensor to the worldvolume in the usual manner

Tµνeff = − 2√
−g

δIeff

δgµν
. (1.10)

This is in itself not a very useful expression for the blackfold stress tensor. However, the

fact that the gravitational coupling is localized allows us to compute the stress tensor

using well-known techniques as we will now explain.

1.2.2 The quasi-local worldvolume stress tensor

In the infinitely thin approximation, only directions tangential to Wp+1 will play a role

and the effective stress tensor (1.10) takes the form

T abeff = − 2√
−γ

δIeff

δγab
. (1.11)

We will now argue that the effective stress tensor T abeff is exactly the quasi-local stress tensor

originally introduced by Brown and York [68]. In order to see this we enclose a small

neighborhood around a given point on the brane by a timelike boundary hypersurface and

identify the effective action Seff with the classical on-shell gravitational action (of that given

region). In practice we imagine that we place the (transverse part of the) hypersurface

at the sphere Sn+1
r of radius r. In order to capture the full effective dynamics, we must

take r � r0, and eventually let r → ∞. Moreover, notice that far away from the brane,

r � r0, the geometry of the boundary hypersurface (in the brane directions) is just that of

Wp+1 while the metric reduces to that of the background. In this way the induced metric

from the gravitational solution on the boundary hypersurface, in the brane directions, is

just that induced by the background on the geometry Wp+1, which is exactly how γab
was defined (cf. Eq. (1.9)). The effective stress tensor is therefore precisely recognized

as the Brown-York quasi-local stress tensor, T abeff = T ab(BY). The quasi-local stress tensor

is computed according to the usual prescription by integrating over the transverse sphere

Sn+1
r ,

T
(BY)
ab = lim

r→∞

∫
Sn+1
r

τab ' lim
r→∞

rn+1τab . (1.12)

Here τab is the combination

16πGτab =
(
Θab − habΘ

)
− counter terms . (1.13)

where Θab is the extrinsic curvature associated to the enclosing surface, hab is the induced

metric, and Θ = habΘ
ab. As is well-know, since the extrinsic curvature contains terms that
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diverge as r → ∞, a set of counter terms must be included in order to render τab finite

[69]. In Minkowski spacetimes these counter terms can be introduced by the standard

background subtraction method [38; 57], however, special care must be taken in the case

of charged black branes [3; 36] (for a more systematic treatment of counter terms in the

blackfold approach see Ref. [70]).

1.2.3 The spacetime blackfold stress tensor

Equivalently, to leading order in the blackfold expansion, the stress tensor Tab can be

computed using the usual ADM prescription [71]. The method builds on the principle

of equivalent sources and the stress tensor is simply computed by determining the stress-

energy distribution that sources (1.4) to linear order (around the background gµν). In

essence, the stress tensor (1.11) replaces the (local) effective gravitational dynamics of the

(perturbed) brane on scales r0 � r � R. On scales ∼ R the total effective stress tensor

(denoted by hat) is thus given by [40]

T̂µν(x) =

∫
Wp+1

dp+1σ
√
−γ

(
Tµν(σ) δ(D)

(
x−X(σ)

)
√
−g

)
. (1.14)

The worldvolume scalar Tµν is tangential to Wp+1 and is related to the (local) effective

stress tensor (1.11) under the natural identification

Tµν = ∂aX
µ∂bX

ν T ab , ⊥ρν Tµν = 0 . (1.15)

Notice that the stress tensor (1.14) is manifestly diffeomorphism invariant. As we briefly

discuss below, the stress tensor (1.14) is in fact only the monopole contribution to the full

effective gravitational stress tensor. Dipole (and in general higher multipole) corrections

show up at higher order in the small blackfold expansion parameter ε = r0/R, and will

not be relevant for the applications considered in this thesis.

1.2.4 The blackfold equations of motion

Here we discuss the blackfold equations which govern the effective black brane dynamics

to leading order in the derivative expansion (1.6). The study of generic brane theories,

i.e. theories confined to supporting worldsheets of lower dimension than the background

spacetime, was originally carried out by Carter in [66], and many of the considerations of

this work carry directly on to the blackfold approach, however, with the important input

that the worldvolume black brane effective stress tensor is provided by gravity.

In order to derive the blackfold equations of motion, we rely on the fundamental

assumption that the worldvolume effective theory exists and can be consistently coupled

to gravity, or equivalently, that spacetime diffeomorphism invariance of the effective theory

holds. In the probe approximation, where the black brane does not back-react onto the

background spacetime geometry gµν , and in the absence of external background fluxes,

this assumption then translates into the condition that the effective blackfold stress tensor

(1.14) is covariantly conserved,

∇ν T̂µν = 0 , (1.16)
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where ∇ν refers to the background. Notice that when the blackfold carries charge, this

equation is supplemented by a set of (charge) current conservation equations, see sec.

1.5. The conservation equation (1.16) (+ potential charge current conservation equations)

determines the (leading order) EOMs for the collective worldvolume fields Φ(σa) captured

by the stress tensor Tab and extrinsic curvature K ρ
ab . To see this, we project (1.16) onto

directions tangential and orthogonal to the worldvolumeWp+1. The conservation equation

decompose according to (see Eq. (A.18))

∇ν T̂µν =

∫
Wp+1

dp+1σ
√
−γ δ(x−X(σ))√

−g

(
∂bX

µ
(
DaT

ab
)

+ T abK µ
ab

)
= 0 . (1.17)

The D spacetime equations (1.16) therefore split into p+1 worldvolume equations parallel

to Wp+1, and n+ 2 equations orthogonal to Wp+1,

DaT
ab = 0 (intrinsic) ,

T abK ρ
ab = 0 (extrinsic) .

(1.18)

The first equation is hydrodynamic nature and is simply the statement that the world-

volume effective stress tensor is conserved along the directions of Wp+1. It is referred to

as the intrinsic equation. The second equation is of elastic nature (see Ref. [41] for an

(relativistic) elastostatic interpretation) and can be interpreted as a balancing condition

for the blackfold worldvolume in the given background. It is referred to as the extrinsic

equation. We end this section by noting that the two blackfold equations (1.18) have a

clear interpretation: They are the higher dimensional p-brane generalization of the point

particle geodesic equation, uµ∂µm = 0, mu̇µ = 0.

1.3 The effective blackfold fluid

In general the monopole stress tensor is of hydrodynamic nature with time evolution

described by dissipative fluid dynamics. In the absense of time evolution, the configuration

is stationary, and the effective stress tensor should thus be described by a perfect fluid

stress tensor. This is indeed the case: Following [42], there is a natural way to see that

the effective stress tensor of a stationary blackfold must necessarily be that of a perfect

fluid. In the following we assume the configuration to be in thermal equilibrium with

the surroundings with temperature T . In general, stationarity requires a high degree of

symmetry of the embedding geometry and configuration. The stationary configuration

is therefore characterized in terms of the embedding X, the induced geometry γab, a

(timelike) Killing vector ka. The latter statement will be justified from a fluid dynamic

perspective below in Sec. 1.3.3. The only natural scalar one can construct from this data

is k ≡ (−γabkakb)1/2.2 Therefore, the action must be of the form

I[Xµ] =

∫
Wp+1

L(
√
−γ ,k, T ) =

∫
Wp+1

dp+1σ
√
−γ λ0(k, T ) . (1.19)

2This argument applies for neutral blackfolds along with Maxwell charged (q = 0) and top-form charged

(q = p) blackfolds. When lower form currents (0 < q < p) are introduced on the worldvolume, there are

additional (spacelike) vectors defining the stationary flow, see Sec. 1.5.6.
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We now consider variations of the embedding, δXµ = ΦaδaX
µ + Φinµi where nµi denotes

the ith normal vector of Wp+1. Under small variations the induced metric changes with a

Lie derivative according to

£γab = 2D(aΦb) − 2K i
ab Φi . (1.20)

Performing the variation of the action (1.19) wrt. the embedding Xµ, keeping the com-

ponents ka and the temperature T fixed, then yields

δI = −
∫

dp+1σ
√
−γ

[
Da

(
T abΦb

)
− ΦbDaT

ab − T abK i
ab Φi

]
(1.21)

where T ab is the effective stress tensor (1.11) evaluated using the stationary action (1.19).

We now demand the variation to vanish. The first term is a total derivative and in order

for the variational problem to be well-posed, we require that T abηa|∂Wp+1 = 0, where ηa

denotes the normal vector at the boundary ∂Wp+1. After this, the two equations coming

from requiring δI = 0, are recognized as the intrinsic and extrinsic blackfold equations

(1.18), respectively. However, we emphasize that the blackfold equations in general also

are valid outside the stationary regime.

As advocated above, the action of the form (1.19) directly implies perfect fluid dy-

namics expected for stationary configurations. To see this, simply notice that δk =

−k/2uaubδγab with ua = ka/k. We then have

T ab = − 2√
−γ

δI

δγab
= −λ0(k, T )γab + λ′0(k, T )kuaub , (1.22)

where λ′0(k) denotes the derivative of λ0(k) wrt. k. The stress tensor (1.22) is recognized

as that of a perfect fluid (fluid velocity ua, uau
b = −1),

T ab(0) = %uaub + P∆ab , ∆ab = γab + uaub , (1.23)

under the identifications

P = −λ0(k, T ) , % =
d (λ0(k, T )k)

dk
, s =

1

T
λ′0(k, T )k2 . (1.24)

The expression for the entropy density s follows from assuming the Gibbs-Duhem relation

%+ P = T s and using the fact that the local temperature T is given by a simple redshift

T = T/k for stationary flows (see Sec. 1.3.3). Finally, notice that the intrinsic equation

DaT
ab = 0 is trivially satisfied for the stress tensor (1.22), as expected (by virtue of

Killing’s equation).

1.3.1 The neutral black brane

Here we compute the effective fluid of the simplest black brane solution, namely that of a

neutral boosted (boost velocity ua, uau
b = −1) black p-brane of pure Einstein gravity,

ds2 = (∆ab − f(r)uaub) dσadσb + f−1(r) dr2 + r2dΩ2
(n+1) , a = 0, 1, . . . , p , (1.25)
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where

f(r) = 1−
(r0

r

)n
and ∆a

b = δab + uaub . (1.26)

Here ∆ab is the projector onto directions orthogonal to ua in the brane directions, dΩ2
(n+1)

denotes the metric on the transverse unit (n + 1)-sphere, and indices are raised/lowered

using the induced (flat) geometry on the brane i.e. with ηab. It is easy to evaluate (1.12)

for this particular solution. The stress tensor Tab is found to be that of a perfect fluid with

% =
Ω(n+1)

16πG
(n+ 1)rn0 , P = − 1

n+ 1
% . (1.27)

Notice that the pressure P is negative in accordance with the intuition that gravitation is

attractive. Using familiar techniques [72], it is straightforward to compute the temperature

T and entropy density of the black brane,

T =
n

4πr0
, s =

Ω(n+1)

4G
rn+1

0 . (1.28)

It is easy to verify that the thermodynamic quantities satisfy the usual first law along with

the thermodynamic Euler relation

d% = T ds , w ≡ %+ P = T s . (1.29)

These two relations are of course nothing but the local density generalizations of the usual

black hole thermodynamics.

1.3.2 Dissipative corrections

Perturbations longitudinal to the worldvolume are generically of hydrodynamic nature

meaning that i) the effective dynamics is captured by a hydrodynamic derivative expansion

in the worldvolume fields. ii) The effective dynamics is governed by energy-momentum

conservation DaT
ab = 0 of the (in general dissipative) fluid stress tensor.3

Following the usual procedure of relativistic fluid dynamics [73], to any given order n

in the derivative expansion, we decompose a general fluid stress tensor according to

T ab(n) = T ab(0) + Πab
(n) +O

(
Dn+1

)
. (1.30)

Here Πab is the viscous part of the stress tensor and contains derivatives up to order

O(Dn) while T
(0)
ab denotes the O(D0) perfect fluid stress tensor (1.23). To first order in the

derivative expansion, the viscous stress tensor is determined by two transport coefficients,

and is given by the familiar expression

Πab
(1) = −2ησab − ζϑ∆ab , σab = ∆ac

(
D(cud) −

ϑ

p
∆cd

)
∆db . (1.31)

Here σab is the shear tensor, ϑ = Dau
a is the fluid expansion.4 The coefficients η and ζ are

respectively the shear and bulk viscosity transport coefficients. Similarly to second order

3When the brane/fluid is charged these equations are supplemented by one or more charge conservation

equations, see Chap. 3.
4Notice Πab is written in the canonical gauge uaΠab = 0 (Landau frame). Also note that for conformal

fluids Πa
a = 0 and the bulk viscosity ζ must necessarily vanish.
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in the derivative expansion the stress tensor is characterized in terms of 10 (independent)

transport coefficients [74; 75]. In general, at order n in the derivative expansion, the

dynamics of the fluid is then given by energy-momentum conservation of the order n− 1

stress tensor,

O(Dn) : DaT
ab
(n−1) = 0 ⇒

%̇+ wϑ+ uaDbΠ
ab
(n−1)

wu̇a − γabDbP + ∆a
bDcΠ

cd
(n−1)

 = 0 , (1.32)

which constitute the fundamental equations of viscous fluid dynamics. To order n = 2 these

equations are the familiar Euler equations with first order viscous dissipative corrections.

Returning to the specific case of the effective blackfold fluid, in order to measure the

transport coefficients one has to do an actual full (bulk) gravity computation. For com-

pleteness of the presentation, we here briefly outline the procedure and refer to Chap. 3 for

a detailed account. In order to determine the effective stress tensor, and thus the transport

coefficients, one solves the full set of non-linear Einstein equations, while imposing regu-

larity at the putative horizon along with asymptotic flatness, in a derivative perturbative

expansion in the worldvolume fields and reads off the effective quasi-local stress tensor

(1.12) from the full corrected gravitation solution order by order. When going from order

n to order n+ 1 in the derivative expansion, the (fluid) conservation equation DaT
ab
(n) = 0

shows up as a constraint equation in the full set of Einstein equations. After imposing

these constraints, the remaining system of equation can then be solved while imposing the

boundary conditions, and the stress tensor T ab(n+1) can be computed. This was done in Ref.

[38] for the neutral (extrinsically flat) black brane (1.25) to first order in the derivative

expansion. In particular we mention that by computing the speed of sound in the effective

viscous fluid of the neutral black brane the authors of [38] were able to identify the unsta-

ble sound mode of the effective fluid with the Gregory-Laflamme (GL) instability [76]. We

also note that the general features of the instability can be seen already to leading order

i.e. at the perfect fluid level [57].

1.3.3 Stationary solutions

Here we write down the general condition for stationary intrinsic fluid flow and examine

the implications for the local thermodynamics and extrinsic equation. We therefore search

for solutions to

Da

(
%uaub + P∆ab

)
= 0 , Πab

(n) = 0 . (1.33)

To this end we invoke the general result [77] that in order for the dissipative tensor struc-

tures in the stress tensor to vanish (and ditto the divergence of the entropy current), the

velocity ua of the fluid must lie along an isometry of the worldvolume i.e. ua must be

proportional to a timelike Killing vector ka on Wp+1,

ua = ka/k , D(akb) = 0 , k2 ≡ −|k|2 = −kak
a . (1.34)

We note that uau
a = −1 implies that u̇a ≡ ubDbu

a = Da log k. It is easy to show that the

relativistic Navier-Stokes equation for a stationary fluid configuration implies [78]

u̇a = −Da log T , qa = −κ∆ab (DbT + T u̇b) , (1.35)
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where qa is the heat flux vector and κ ≥ 0 is the associated heat conductivity. Hydro-

dynamical stationarity and thermal equilibrium are therefore seen to be equivalent. In

particular stationarity implies for the local temperature T ,

T (σa) = T/k , T = const. (1.36)

Here T is a constant which can be interpreted as the global temperature of the station-

ary fluid. The local temperature T is thus obtained by a simple redshift of the global

temperature T .5

In the following we assume that the isometries of Wp+1 are inherited from the back-

ground so that ka extends to a Killing vector field of the background, kµ. Therefore

uµ = kµ/k , ∇(µkν) = 0 , k2 = −kak
a = −kµk

µ . (1.37)

In this manner the stationary fluid velocity can be extended to the background (at least

in a neighborhood of Wp+1). In the case of stationarity, where the stress tensor is that

of a perfect fluid, and the fluid velocity ua is given by (1.37), the extrinsic equation then

takes the simple form

− PKρ = w ⊥ρµ u̇µ , Kρ ≡ γabK ρ
ab , (1.38)

where we used the identity K ρ
ab v

avb =⊥ρµ v̇µ for any tangent va toWp+1 (cf. Eq. (A.16)).

We note that the local blackfold enthalpy density w = %+P is always found to be positive

(in agreement with the energy conditions). According to the discussion of Sec. 1.2.2, the

stationary extrinsic equation (1.38) can be derived from the action6

I =

∫
Wp+1

dp+1σ
√
−γ P . (1.39)

For the neutral brane, the Lagrangian (i.e. pressure for fixed k and T ) takes the form

P = λ0(k, T ) (using Eqs. (1.27), (1.28), (1.36)),

P = λ0(k, T ) = −
Ω(n+1)

16πG

(
n

4π

k

T

)n
. (1.40)

The fact that the stationary extrinsic equation (1.38) derives from the action (1.39) can

also be explicitly checked by varying the pressure P wrt. the embedding, using the explicit

form of the local temperature (1.36) and employing the local thermodynamics (see App.

A).

5Since the notion of energy, and therefore temperature, suffers local redshifts, the relation (1.36) is

exactly expected for a fluid in thermal equilibrium. Note that, in general, the redshift factor k con-

tains contributions from both a relativistic redshift (due to a non-zero spatial velocity of uµ) and from a

gravitational redshift from the background.
6By convention, we henceforth define the blackfold action to be minus the effective action (1.19), so

that the Lagrangian is −λ0 = P . This in turn implies that the effective stress tensor is computed as

Tab = 2/
√
−γ δI/δγab.
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1.3.4 Elastic corrections

Here we briefly discuss elastic corrections to the blackfold stress tensor. Firstly, let us say

a few words about elastic stability. By considering small perturbations of the extrinsic

embedding one can easily study the elastic properties of the effective fluid on Wp+1 (we

refer to Ref. [57] for the analysis). In general the system is found to be stable under elastic

perturbations i.e. small long-wavelength transverse time-dependent fluctuations (this also

holds true for the charged blackfold configurations considered in Sec. 1.5). In analogy

with the intrinsic sector, it is also possible to go beyond the leading order description

of the extrinsic sector. These ideas have been developed in the series of papers [31; 40–

43]. In general, the SO(n + 2) symmetry of the transverse sphere can be broken in two

ways; by “bending” the brane and by introducing transverse spin (i.e. on the Sn+1) on

the worldvolume. This introduces stresses in the transverse directions to the brane and is

effectively captured by the quasi-local stress tensor computed using the (to next-to-leading

order) unbroken transverse Sn (as opposed to the leading order Sn+1). Equivalently, this

can be seen as a finite thickness effect, since we consider effects from the small (compared

to R), yet finite horizon radius r0. Finite thickness effects are captured by a multipole

expansion of the stress tensor [79],

T̂µν(x) =

∫
Wp+1

dp+1σ
√
−γ

((
Bµν δD

(
x−X

)
√
−g

)
−∇ρ

(
Bµνρ δD

(
x−X

)
√
−g

))
+ . . . (1.41)

Here Bµν is the usual monopole stress tensor (notice that the expansion can be shown to

be diffeomorphism invariant). In principle higher multipole corrections can be included by

considering higher order δ-function derivatives. The dipole correction Bµνρ to the stress

tensor is considered small compared to Bµν and represents fine structure bending (here

ignoring spin) corrections to the stress tensor. The elastic corrections are similar in spirit

to the corrections reviewed in Sec. 1.3.2, however, note that they are in general non-

dissipative in nature (the brane acts like a solid, not a fluid, it its transverse directions).

In particular the corrections are computed from a gravity computation using a matched

asymptotic expansion (MAE). In the MAE procedure one (crucially) employs the wide

separation of scales r0 � R. Although technically quite involved, the idea is simple: the

Einstein equations are solved in a near horizon coordinate patch, r � R, (dubbed the

near zone) in a 1/R expansion and in a coordinate patch far from the horizon r0 � r

(the far zone), where the weak field approximation applies. The solution in the far zone

then provides the boundary conditions for the near zone solution in the “overlap region”

r0 � r � R which is, as the name suggests, the overlap between the near and far zones

(such an overlap exactly exists due to the wide separation of scales r0 � R). In this

way, the MAE procedure in principle takes back-reaction into account order by order in

the small expansion parameter r0/R. In the context of blackfolds, these ideas were first

employed for the D-dimensional stationary black ring [31] (later generalized to the black

ring in AdS [32]) and later generalized to the neutral stationary black brane [44] (to next-

to-leading order in the expansion). These works also proved that the perturbed event

horizon remains regular. The fine structure dipole corrections can then be read off from
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the corrected solution. This beautifully allows one to associate a new elastic response

coefficient (the Young modulus) to the black string/brane [40; 44].

1.4 The blackfold construction and conserved quantities

In this section we discuss how the effective blackfold theory is used to construct new

(approximate) black hole solutions. In particular, we mention that the blackfold approach

correctly reproduces the results, i.e. metric and thermodynamics to leading order, for

known exact black solutions in the ultra-spinning limit, discussed in the introduction.

Ref. [56] showed that the ultra-spinning “pancaking” limit of the Myers-Perry black hole

is reproduced by a certain even-ball blackfold solution with r0 varying over Bp and with

r0 → 0 on ∂Bp (for a detailed analysis of blackfolds with boundaries, we refer to [57]).

Similarly, the ultra-spinning limit of (A)dS rotating Kerr black holes is recovered [32; 33]

(in the limit where the length scale associated with the cosmological constant is large

compared to r0). Finally the very thin and long limit, r0 � R, of the exact D = 5 black

ring solution of [60] is reproduced to leading order in the blackfold parameter r0/R � 1

[31]. These limits, along with the effective description of the GL instability, serve to

provide non-trivial “experimental” tests of the correctness of the blackfold approach.

1.4.1 The blackfold construction

In essence, the blackfold equations (1.18) explain how to consistently glue pieces of flat

black branes (with horizon topology Rp×Sn+1) together, to leading order in the effective

description. We emphasize that these pieces of (almost) flat brane are small compared to

the extrinsic scale R and large compared to the intrinsic scale r0 � R. Instead of searching

for general solutions to (1.18), we follow here a bottom-up approach and provide the space

Bp on which we wrap the black brane and then search for solutions to (1.18) for the

specified geometry. In this way, assuming that solutions exist, the horizon topology of the

resulting (approximate) black brane solution becomes7

Horizon topology ' Topology(Bp) o Sn+1 . (1.42)

In principle Bp can be dynamical, however, for most applications, we assume stationarity.

As explained in the previous section, stationarity requires a high degree of symmetry of

the wrapping space Bp. In the following ξa denotes the generator of time translations on

Wp+1 and χa(i) denotes the complete set of Cartan generators of rotations of Wp+1 with

closed orbits of periodicity 2π. In this way, the Killing vector describing the stationary

fluid flow can be decomposed according to

ka = ξa +
∑
i

Ωiχ
a
(i) . (1.43)

Stationary solutions to the blackfold equations are then obtained by evaluating the action

(1.39) on the specified geometry Bp and requiring the variation to vanish δI = 0 while

7Note that if r0 is non-zero everywhere (i.e. Bp compact, ∂Bp = ∅), the transverse sphere Sn+1 is

trivially fibered on Bp and the horizon topology is just Topology(Bp)× Sn+1.
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keeping the angular velocities Ωi fixed (see also Eq. (1.48) below). We now explain

how to compute the global thermodynamics of a given blackfold solution using standard

techniques.

1.4.2 Integrated quantities and thermodynamics

As in Sec. 1.3.3, we assume that the Killing directions of the worldvolume Wp+1 extend

to the background i.e. Eq. (1.37) with kµ|Wp+1 = ka∂aX
µ. Now, for any Killing vector

kµ, the contraction between kµ and the spacetime stress tensor (1.14), jµk = T̂µνkν , is con-

served. This follows directly from the conservation equation (1.16) and Killing’s equation.

The corresponding conserved spacetime charge Q[k] is obtained by integrating jk over a

spacelike slice (typically x0 = t = const.). In this way, we associate a mass, M , and a set

of angular momenta, Ji, to the blackfold solution. Inserting the conserved current jµk for

respectively, k = ξ, k = χ(i), and using the explicit form of the stress tensor (1.14), we

can do the integration over the δ-function to reduce the spacetime integral to an integral

over Bp. All in all,

M =

∫
Bp

dV(p)T
abnaξb , Ji = −

∫
Bp

dV(p)T
abnaχ

(i)
b , (1.44)

where we have assumed that the Killing vector ξ is hypersurface orthogonal to Bp and

introduced the unit time-like normal to Bp by nµ = ξµ|Wp+1/R0 (we refer to App. A for

the definition of the local geometric quantities R0, Ri and Vi). Similarly, we associate a

global entropy to the configuration by integrating the entropy density s (1.24) over Bp.
More properly, we define the (perfect fluid) entropy current jaS = sua, and define the global

entropy S as

S = −
∫
Bp

dV(p) j
a
Sna =

∫
Bp

dV(p)
R0

k
s(σ) . (1.45)

We emphasize that the global temperature T (cf. Eq. (1.36)), the mass and angular mo-

menta (1.44) and the entropy (1.45) represent the (leading order) global thermodynamics

of a genuine black brane solution with horizon topology (1.42). Following the arguments

presented in Ref. [57], it is possible to argue that the global temperature T and the en-

tropy S are related to the surface gravity κ of the near-horizon geometry and the total

horizon area AH in the expected manner, i.e. as T = κ/2π and S = AH/4π, respectively.

Moreover the usual ADM definitions of the conserved charges for the black hole solution

only depend on the asymptotic data which is exactly provided by the (fluid) stress tensor

Tab.

The expressions (1.44) and (1.45) are valid for any fluid brane and thus for any effective

stationary blackfold configuration with stress tensor Tab. Here we record the expressions

for the neutral black brane (1.27), (1.28). The mass and angular momenta evaluate to

M =
Ω(n+1)

16πG

( n

4πT

)n ∫
Bp

dV(p)R
n+1
0

(
1− V 2

)n−2
2
(
n+ 1− V 2

)
,

Ji =
Ω(n+1)

16πG

( n

4πT

)n
nΩi

∫
Bp

dV(p)R
n−1
0

(
1− V 2

)n−2
2 R2

i ,

(1.46)
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while the entropy is given by

S =
Ω(n+1)

4G

( n

4πT

)n+1
∫
Bp

dV(p)R
n+1
0

(
1− V 2

)n
2 (1.47)

These formulae are only valid for the neutral black brane and receive corrections when the

black brane carries charge on its worldvolume. Also, in the charged case, we emphasize

that the formulae only apply to backgrounds with no external background fluxes.

Since the quantities M , Ji, Ωi, S, and T represent the thermodynamics of a black hole

solution, they should satisfy the usual first law of black hole mechanics. Indeed, using the

general expression (1.44) and (1.45), one can show that [36]

IE = βG, with G = M −
∑
i

ΩiJi − TS , IE = −β
∫
Bp

dV(p)R0P . (1.48)

Here iI → −IE is the Euclidean blackfold action, obtained by Wick rotating the action

(1.39) t → −itE , and integrating over the thermal circle of periodicity ∆tE = 1/T ≡ β,

while G is the global (Gibbs) free energy of the configuration. Notice that the relation

(1.48) holds true for any, in general, off-shell (stationary) configuration. Also notice that,

Ji = −
(
∂G

∂Ωi

)
X,T

, S = −
(
∂G

∂T

)
X,Ωi

, (1.49)

which can be showed using the general expressions (1.44), (1.45), the action (1.39) along

with the form of the Killing vector (1.43). The thermodynamic derivatives (1.49), consis-

tently, justifies G as the Gibbs free energy with the natural variables being the embedding

Xµ and the intensive variables Ωi and T . We can now consider variations in the embed-

ding Xµ → Xµ + δXµ while keeping the angular velocities Ωi and global temperature T

fixed. It follows that

δXIE = β

(
δXM −

∑
i

ΩiδXJi − TδXS

)
. (1.50)

The variation δXIE vanishes for any on-shell configuration, and it follows that among

stationary solutions,

δXIE = 0 ⇔ δXM = TδXS +
∑
i

ΩiδXJi . (1.51)

We therefore conclude that the equilibrium blackfold equations are equivalent to the first

law of (black hole) thermodynamics for the configuration.8 To make further connection

to the thermodynamic nature of the action (1.39), instead of considering variations where

the angular velocities are kept fixed, we can consider variations for which we keep the

angular momenta Ji fixed. To this end we introduce the Helmholtz free energy F , which is

8The first law of black hole mechanics is usually written for variations of the on-shell (in the sense of

Einstein equations) extensive thermodynamic variables. Using standard thermodynamic arguments, along

with the established relations (1.49), it is easy to show that (1.51) implies δM = TδS +
∑
i ΩiδJi for

on-shell (in the sense of blackfold equations) variations.
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obtained by a simple Legendre transform of G, F = M−TS. It follows that the stationary

blackfold equations are equivalent to (δF/δX)Ji,T = 0, i.e., the vanishing of the variation

of the Helmholtz free energy for fixed angular momenta Ji and global temperature T .

In the thermal probe approach, considered in Chap. 2, this is in many ways the most

natural way to write the stationary EOM, since we usually work in an ensemble with fixed

temperature (assuming thermal equilibrium with the background) and fixed Ji (by virtue

of the gravitational EOMs). Along similar lines, we expect the configuration to obey a

Smarr-like relation. Again it is relatively straightforward to show that this is indeed the

case. One can show that the following identity holds for the neutral black brane

(D − 3)M = (D − 2)

(∑
i

ΩiJi + TS

)
+ Ttot . (1.52)

Here Ttot and is the total tension is given by the worldvolume integral over the local tension

T = (γab + nanb)T
ab,

Ttot = −
∫
Bp

dV(p)R0 (γab + nanb)T
ab . (1.53)

For the neutral black brane the total tension explicitly evaluates to

Ttot =
Ω(n+1)

16πG

( n

4πT

)n ∫
Bp

dV(p)R
n+1
0 (1− V 2)

n−2
2
(
p− (n+ p)V 2

)
. (1.54)

The relation (1.52) is interpreted as the blackfold generalization of the Smarr relation. In

asymptotically flat backgrounds the usual black hole Smarr relation must be satisfied [80],

and the tension necessarily vanishes Ttot = 0, however, this does not hold true in more

general backgrounds [33]. Also note that, as with the thermodynamics and action, the

Smarr relation (1.52) also receives contributions when the blackfold carries charge (see

Sec. 1.5).

As a final remark, we here discuss how to make connection to the ultra-spinning limits

discussed in the introduction. To this end we assume that the length scales along Bp are of

the same order Ri ∼ R. Moreover we assume that the redshifts are moderate throughout

the worldvolume so that k is parametrically of order 1. Using the thermodynamics of the

effective fluid of the neutral brane (1.27), (1.28), it is now straightforward to show that

the two length scales `M and `J (introduced in Eq. (1.1)) are given by

`M ∼ (rn0R
p)

1
D−3 , `J ∼ R . (1.55)

It follows that the expansion parameter of the effective theory r0/R� 1 is related to `M
and `J as (r0

R

)n
∼
(
`M
`J

)D−3

. (1.56)

In this way, neutral blackfolds are always in the ultra-spinning regime.
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1.4.3 Odd-sphere blackfolds

Here we discuss the simplest p-blackfold solution consisting of a product of l rotating round

odd-spheres, where each sphere rotates with equal angular velocity in all angles. We take

Bp =
l∏

i=1

Spi with
l∑

i=1

pi = p , (1.57)

where pi = 2ki− 1, i = 1, . . . , l.9 We note that, since the number of transverse dimensions

is given by n + 2 and each odd-sphere must have at least one direction orthogonal to

Bp, the number of odd-spheres are limited by l ≤ n + 2. A particularly simple solution

is obtained by taking the embedding so that each pi-sphere is geometrically round (with

corresponding radius Ri) and Bp is embedded in a flat background (for a similar treatment

in AdS, see [33]). This requires that the ki angular velocities Ω
(i)
j , j = 1, . . . , ki, on each

separate odd-sphere Spi are equal, Ω
(i)
1 = . . . = Ω

(i)
ki
≡ Ω(i), i = 1, . . . , k (which can be

verified a posteriori). We note that Bp does not break any of the commuting isometries of

the background. In this highly symmetrical case it follows that the velocities introduced in

Eq. (A.24) are all independent of the worldvolume coordinates and V 2 =
∑l

i=1(RiΩ
(i))2,

R0 = 1. Now using the action (1.48), and imposing stationary (i.e. Eq. (1.36)) on the

local thermodynamics (1.27), (1.28), one finds

IE [Ri] =
Ω(n+1)β

n+1

16πG

( n
4π

)n l∏
j=1

Ω(pj)R
pj
j

(
1−

l∑
i=1

(
RiΩ

(i)
)2
)n

2

. (1.58)

Varying the action wrt. the radii Ri, we find the following l equilibrium conditions on the

configuration

Ω(i)Ri =

√
pi

n+ p
(no sum over i) . (1.59)

Obtaining the global thermodynamics of the solution (1.59) is now straightforward using

Eqs. (1.46) and (1.47).

1.5 Blackfolds in supergravity

In this section we develop the effective gravitational theory for branes carrying various

types of charges. The effective blackfold theory for branes carrying charge was originally

written down in Refs. [36; 37], and we refer to these references for many of the details

omitted below.

In addition to the metric, charged branes also source one or more gauge potentials,

depending on the specific brane configuration and theory in question. Charged branes

arise naturally in various supergravity schemes and low energy effective descriptions of

9Even-sphere solutions (and products of even-spheres) are not allowed as blackfold solutions since even-

spheres always have fixed point for any rotation i.e. there will always be a direction in which gravitational

tension cannot be countered by rotation.
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string theory (see e.g. [81]), with the quintessential example being that of the usual Dp-

branes of supergravity. In the extremal supersymmetric limit, these branes are associated

with the supergravity fields of a (large stack of) Dp-branes, which are charged under

the Ramond-Ramond field strength F(p+2) [10]. In the supergravity regime the (stack

of) Dp-branes therefore naturally source a Ramond-Ramond field strength F(p+2). In the

effective theory, we shall therefore use the terminology that the blackfold, constructed from

the supergravity p-brane, carries p-brane charge. In general, the effective worldvolume

dynamics of extremal Dp-branes is captured by the DBI action. The effective dynamics of

the fundamental string (F1), the NS5 brane of type II string theory as well as the M2 and

M5 branes of M-theory is captured by similar effective worldvolume actions [82; 83]. As

mentioned above, the gravitational (closed string sector) is appropriate for descriping a

large stack of Dp-branes. The gravitational (probe blackfold) effective worldvolume theory

is therefore appropriate for capturing the effective dynamics of a large stack of perturbed

Dp-branes (however, not so large that the branes back-react of the surrounding geometry).

Along similar lines, the effective blackfold theory for the gravitational realizations of the

above extended objects can be seen as the strong coupling versions of the relevant weakly

coupled DBI-like actions. These ideas will be made more clear and employed in Chap. 2.

In addition to p-brane charge, branes can also carry lower form currents on their

worldvolume; i.e., the brane sources a (q+ 1)-form gauge potential A(q+1) with 0 ≤ q < p.

The simplest example of such a solution is the singly charged Maxwell charged black

brane of Einstein-Maxwell theory (or more generally EMD theory) considered in Chap.

3. Such solutions also arise naturally in the context of string theory where p-branes can

carry string charges, or more generally, other types of brane charges “dissolved” on their

worldvolume. Some of the most important examples include the F1-Dp, D0-Dp, D(p− 1)-

D(p + 1) bound states which are all related through various dualities [84; 85]. These

two-charge solutions carry both p-brane and q-brane charge on their worldvolume, but

also more complex bounds states exist e.g. the D5-D3-D1 system. We also mention the

M2-M5 bound state of eleven dimensional supergravity as an important example [86]. All

of these types of multi-charged branes are naturally included in the effective theory, where

the effective fluid, living on the blackfold worldvolume, now also carries q-brane charge.

Finally the above described branes can naturally be blackened in the usual way, and

thus be taken away from extremality. Again, much like the AdS/CFT correspondence,

the effective gravitational dynamics is appropriate for capturing thermal aspects of the

strongly coupled regime of the relevant worldvolume theory. When writing down the

blackfold theory for charged branes, we will therefore do it for non-extremal black branes,

bearing in mind that the extremal limit of these solutions is well-defined [87], and captured

by the blackfold approach.

1.5.1 The blackfold expansion

Before considering stationary solutions to the supergravity blackfold EOMs, we will say a

few words about regimes of validity. For any brane, we naturally associate a length scale
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with the energy (density),

r% = (G%)
1
n . (1.60)

In the case of the neutral brane, we then simply have r% ∼ r0 ∼ 1/T , and the blackfold

derivative expansion makes sense when r% ∼ r0 � R, where R denotes the characteristic

length scale associated with the fluctuations of the collective variables Φ. This, however,

changes when we introduce charge (Qp) on the worldvolume. The presence of p-charge

introduces a new length scale to the problem,

rQ = (GQp)
1
n , (1.61)

which is manifestly independent of the temperature. For the branch connected to the

extremal solution, the two length scales r% and r% are parametrically of the same order

(with r% = rQ at extremality, see next section) and the small parameter governing the

blackfold expansion is thus taken to be

rQ
R
∼ r%
R
� 1 . (1.62)

With these considerations, the blackfold expansion goes as explained in Sec. 1.2.

In addition to the usual effective stress tensor T̂µν (Eq. (1.14)), the p-brane charged

blackfold now also carries an effective (p+ 1)-form current Ĵ(p+1) sourcing the associated

F(p+2) gauge field. In analogy to (1.14), in the monopole approximation, we write

Ĵµ0...µp(x) =

∫
Wp+1

dp+1σ
√
−γ

(
Jµ0...µp δ

(D) (x−X(σ))
√
−g

)
, (1.63)

In the monopole probe approximation, Jµ0...µp is supplemented by the tangentiality con-

dition 0 =⊥µµ0 Jµ0...µp , and it follows that

Jµ0...µp = ∂a0X
µ0 . . . ∂apX

µpJa0...ap , J(p+1) = ?(p+1)Qp . (1.64)

Here the last equation is understood as a form equation on the worldvolume Wp+1, and

Qp = −
∫
? Ĵ , (1.65)

denotes the p-brane charge on the worldvolume. Notice, is with the quasi-local stress tensor

(1.12), that the charge Qp (i.e. the integral (1.65)) is computed in the region r0 � r � R

(as with the stress tensor, going to next order in the blackfold expansion introduces dipole

corrections to the effective current [46; 47]).

1.5.2 Action principles

The charge Qp is defined as a local quantity in Eq. (1.65), however, it is not difficult to

see that Qp must be conserved along the worldvolume directions of the blackfold. Indeed,

gauge invariance of the gauge field sourced by the current implies that the current Ĵp+1
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must be conserved, d?Ĵ = 0 (see also Sec. 1.6). This in turn implies that the worldvolume

current Ja0...ap is conserved on the worldvolume (see App. A),

d ?(p+1) J(p+1) = 0 , so dQp+1 = 0 . (1.66)

Therefore ∂aQp = 0, and we conclude that Qp is conserved and cannot vary along the

worldvolume. Notice that the spacetime conservation equation d ? Ĵ = 0 is purely tan-

gential to Wp+1 and has no “extrisic” equation associated to it. The parameter Qp is

therefore intrinsic to the blackfold and has no fluid dynamic DOFs associated to it. Also

notice that, since the charge parameter Qp, from a microscopic point of view, is basically

the number of p-branes of the solution, the conservation of Qp is quite natural. Although

the charge Qp is not dynamical, it still plays an important role in the formulation of the

blackfold thermodynamics. Since the presence of p-brane charge introduces no hydro-

dynamic DOFs, the effective stationary action (1.19) can only be modified according to

λ0(k, T ) → λ0(k, T,Qp). The effective stress tensor therefore still takes the form of a

perfect fluid (1.23), where the charge Qp now enters as a parameter in the equation of

state. Especially, the action is of the form

I =

∫
Wp+1

dp+1σ
√
−γ P (k, T,Qp) . (1.67)

We also note that Qp does not appear explicitly in (1.29), in accordance with that Qp is

not a fluid dynamical variable. In order to probe the space of solutions, it will be useful

to introduce a local potential Φ along with a global potential Φp conjugate to Qp,

Φ =
∂%(s,Qp)

∂Qp
, Φp =

∫
Bp

dV(p)R0 Φ . (1.68)

Then, instead of considering P as a function of Qp, we can shift ensemble and consider

it as a function of Φp. This is done by a simple Legendre transform of the pressure by

introducing the local Gibbs free energy G(k, T,Qp) = −(P + QpΦp). It follows that the

stationary extrinsic equation can now be obtained from the action

I = −
∫
Wp+1

dp+1σ
√
−γ G , (1.69)

for variations in the embedding where we keep the temperature, angular velocities, and

global potential Φp fixed (these should be seen as variations in solution space and not

physical variations where Qp is fixed).

1.5.3 The effective fluid stress tensor from supergravity

Here we write down the boosted (black) p-brane solutions relevant to string and M-theory.

Furthermore we compute the effective blackfold fluid of the solutions. In general, p-branes

are charged under a (p+ 1)-form potential. Moreover the branes also source a dilaton. In

the following, we consider p-brane solutions to the quite general action in D dimensions

[88]

I =
1

16πGD

∫ [
? R− 1

2
dφ ∧ ?dφ− 1

2

∑
i∈I

eaiφF(i+2) ∧ ?F(i+2)

]
. (1.70)
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Here F(i+2) = dC(i+1) is the field strength associated to the gauge potentials C(i+1) (notice

that some of the forms can be of the same rank, with nevertheless a different coupling to the

dilaton ai, which distinguishes them) and I denotes the collective set of gauge potentials in

the theory. The action (1.70) captures (the bosonic part of) the supergravity descriptions

of IIA, IIB (written in the Einstein frame) and M-theory relevant for describing D/NS-

branes and M-branes:10 The action (1.70) corresponds to IIA (IIB) SUGRA for D = 10,

IRR = {0, 2} (IRR = {1, 3}) and INS = {1} [89] and eleven-dimensional SUGRA for

D = 11 and IM = {2} [90]. As is well-known, branes can both be electrically and

magnetically charged under the above potentials. We can unify the description in the

standard way by writing the field strengths in the electric ansätze, where now the index

i in (1.70) runs over the (allowed) spatial dimension p of the brane. Given a dilaton

coupling a, it will be convenient to define an additional parameter N to further unify the

description,

a2 =
4

N
− 2(i+ 1)(D − i− 3)

D − 2
. (1.71)

The real parameter N (usually an integer for string/M-theory corresponding to the number

of different types of branes in an intersection [91]) is preserved under dimensional reduction

[36]. For the D/NS/M-branes of II string theory and M-theory N = 1 and aDp = (3−p)/2
for the p-branes while a2 = 1 for the F1 (aF1 = −1) and NS5 brane (aNS5 = 1). Also

notice that the dilaton coupling (1.71) vanishes for D = 11, i = 2, 5, consistent with the

fact that M-theory has no dilaton.

The metric of the boosted black p-brane solution to the generic action (1.70) is given

by [9]

ds2 = H−
Nn
D−2 (∆ab − fuaub) dσadσb +H

N(p+1)
D−2

(
f−1dr2 + r2dΩ2

(n+1)

)
, (1.72)

Here f ≡ f(r) and H ≡ H(r) are two harmonic functions given by

f(r) = 1−
(r0

r

)n
, H(r) = 1 +

(r0

r

)n
sinh2 α , (1.73)

where r0 is the usual horizon radius and the parameter α parameterizes the charge. The

dilaton φ and the (p+ 1)-form gauge potential C(p+1) read

e2φ = HapN , C(p+1) =
√
N cothα

(
H−1 − 1

)
dt ∧ dx1 ∧ . . . ∧ dxp . (1.74)

Obtaining the effective stress tensor and current from the asymptotic form of the above

solution is straightforward. The stress tensor and current take the expected perfect fluid

form,

Tab = %uaub + P∆ab , J(p+1) = ?(p+1)Q . (1.75)

The energy density % and pressure P are found to be

% =
Ω(n+1)

16πG
rn0
(
n+ 1 + nN sinh2 α

)
, P = −

Ω(n+1)

16πG
rn0
(
1 + nN sinh2 α

)
. (1.76)

10In general the actions also have a Chern-Simons-like term, however, this term does not play a role for

obtaining the flat p-brane solutions [81].
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Notice that the pressure remains negative for all values of α. The charge Qp is

Qp =
1

16πG

∫
Sn+1

eapφ ? dC(p+1) =
Ω(n+1)

16πG
n
√
N rn0 sinhα coshα . (1.77)

The remaining thermodynamics of the black p-brane is obtained using standard techniques

[72] and is found to be

T =
n

4πr0(coshα)N
, s =

Ω(n+1)

4G
rn+1

0 (coshα)N , Φ =
√
N tanhα . (1.78)

Here Φ denotes the chemical potential conjugate to the charge Qp computed as basically

the difference between C(p+1) at the horizon and spatial infinity. We note the simple

relation for the local Gibbs free energy

G = %− T s− ΦQp =
Ω(n+1)

16πG
rn0 , (1.79)

Before concluding this section we should say a few words about hydrodynamic stability

in the presence of p-brane charge vis-à-vis GL instability. As briefly discussed in Sec.

1.3.2 (which we shall return to in Chap. 3), the onset of the GL instability of the neutral

string/brane can be identified with the unstable sound mode of the effective fluid. It is

straightforward to repeat the analysis for the charged p-brane (since Qp has no hydro

DOFs associated to it the equations are just modified via the modified equation of state

(1.76)). One finds that for branes with nN > 2 a stable regime always exists, at least

close to extremality. This is in agreement with expectations (see e.g. Ref. [92] and related

works).

1.5.4 Stationary solutions

With the remarks of Sec. (1.5.1), most of the consideration of Sec. 1.4 apply directly to

p-brane charged supergravity blackfolds with the effective thermodynamics given by Eqs.

(1.76), (1.77), (1.78). We note that, as opposed to the stress tensor, the current J(p+1) is

Lorentz invariant. This Lorentz invariance manifests itself in the stress tensor. To see this

explicitly, simply note that the stress tensor can be written

Tab = T s
(
uaub −

1

n
γab

)
− ΦQpγab . (1.80)

Along similar lines, one can easily verify

(n+ 1)P = −(%+ nΦQp) , (1.81)

These two expressions show that, as expected, introducing p-charge (∼ tension) on the

brane does not break isotropy in the extremal limit T s → 0, Qp fixed (see Sec. 1.5.5).

The extrinsic equation (obtained from the action (1.67)) takes the form

(T s+ nΦQp)K
ρ = nT s ⊥ρµ u̇µ , (1.82)
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This explicitly shows how introducing charge on the worldvolume introduces non-thermal

intrinsic tension to the brane.

The global quantities, mass, angular momentum, and entropy are now computed using

the general formulae (1.44), (1.45), using the perfect fluid stress tensor with thermody-

namics (1.76), (1.77), (1.78). For fixed T and Qp it is possible to write down expressions

similar to (1.46), (1.47), however, solving for the two parameters r0 and α in terms of T

and Qp in general involves solving a polynomial of degree nN − 1 which leads to rather

cumbersome (implicit) results. We shall therefore retain the two parameters r0 and α

as a useful parameterization of the thermodynamics. It is easy to verify that the global

thermodynamics is still related to the blackfold action as in (1.39), and by a simple shift

of ensemble, we arrive at the first law

dM = TdS +
∑
i

ΩidJi + ΦpdQp , (1.83)

where we remember that dQp = 0 among physical variations. Finally, in analogy to (1.52),

one can show the relation

(D − 3)M = (D − 2)

(
TS +

∑
i

ΩiJi

)
+ nΦpQp + Ttot . (1.84)

Here Ttot is the total tension and is given in the expression (1.53). As with the neutral

black brane, the thermodynamics of the charged brane should also satisfy a Smarr relation.

When evaluated on-shell the total tension must therefore vanish.11 Finally notice that cur-

rent conservation requires the worldvolume Wp+1 to be compact. Indeed, if Wp+1 had an

open boundary Eq. (1.66) would be violated on ∂Bp. In particular, this excludes blackfold

solutions of the ball and disc type briefly discussed in Sec. 1.4. Supergravity blackfold

solutions are now obtained in the standard way. In particular, the odd-sphere product

construction of Sec. 1.4.3 straightforwardly carries on to p-brane charged blackfolds. One

obtains the following set of equilibrium conditions,

ΩiRi =

√
pi(1 + nN sinh2 α)

n+ p(1 + nN sinh2 α)
, (1.85)

which holds a valid approximation as long as (GQp)
1
n /Ri � 1. The brane solution cor-

responding to (1.85) is in general black but is also a valid solution in the extremal limit

as we briefly discuss below. It is straightforward to obtain the global thermodynamics

corresponding to (1.85), but the expressions are rather cumbersome and we refer to [37]

for explicit expressions. In Figs. 1.1 and 1.2 we have recorded the possible odd-sphere

solutions in D = 10 type IIA/B supergravity and M-theory, respectively. Notice that it

is in principle possible to distort the odd spheres from a round geometry to an ellipsoid

geometry leading to more complicated (worldvolume dependent) equilibrium conditions.

11Note that Ttot = 0 only provides one equation and is therefore, in general, not equivalent to the EOMs

but rather a consequence of them.
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Brane (IIA) Bp =
∏
i S

pi ⊥ Sn+1

F1 S1 S7

D2 T2 S6

D4 S3 × S1, T4 S4

NS5 S5, S3 × T2 S3

D6 S3 × S3, S5 × S1 S2

Brane (IIB) Bp =
∏
i S

pi ⊥ Sn+1

F1 S1 S7

D1 S1 S7

D3 S3, T3 S5

NS5 S5, S3 × T2 S3

D5 S5, S3 × T2 S3

Table 1.1: Allowed Π odd-sphere solutions in D = n+p+3 = 10 type IIA/B supergravity.

M-brane Bp =
∏
i S

pi ⊥ Sn+1

M2 T2 S7

M5 S5, S3 × T2, T5 S4

Table 1.2: Allowed Π odd-sphere solutions in D = 11 supergravity.

1.5.5 Extremal limits

Here we discuss the extremal limits of the charged blackfolds introduced above. As dis-

cussed above, the characteristic length scale for p-branes is set by the total charge Qp and

not by the temperature. This means that the blackfold approximation is valid even in the

extremal limit. The extremal limit is obtained in the standard way by letting the horizon

radius r0 → 0 while keeping the charge Qp fixed. This in turn implies that α→∞ in the

extremal limit (here assuming that Qp > 0). Near extremality T s/Qp � 1, the effective

stress tensor takes the form,

Tab ≈ T s
(
uaub +

(
N

2
− 1

n

)
γab

)
−
√
N Qpγab . (1.86)

In the extremal limit T s→ 0, the thermal component vanishes and it follows that

P = −
√
N Qp . (1.87)

Since Qp is constant on the worldvolume we see that the action (1.67) reduces to that of

a Dirac brane i.e. a brane with uniform tension on its worldvolume. The intrinsic fluid

dynamics has disappeared and the dynamics is only extrinsic. The absence of compact

minimal surfaces in Euclidean space [56] therefore suggests that there are no extremal p-

brane blackfold solutions. However, the odd sphere solution (1.85) is clearly a well defined

solution, even in the extremal limit. The apparent contradiction is easily resolved and is

found in the form of the stress tensor (1.86). Although T s → 0 in the extremal limit,

the product T suaub does not necessarily have to vanish. For the solution (1.85), k → 0

and we therefore see that T suaub → K`a`b with `a null and where K is finite. The odd-

sphere solution therefore carries a null-wave on its worldvolume in the extremal limit with

momentum density K which exactly balances out the tension on the brane (null-waves in a
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blackfold setting were first considered in Ref. [37]). We refer to Sec. 2.6.2 for a discussion

of some of the more general aspects of null-wave blackfolds.

1.5.6 Lower form charged blackfolds

In this section we consider blackfolds carrying lower (q + 1)-form currents on their world-

volume. The effective fluid (including currents) now derives from p-brane solutions coupled

to one or more lower form gauge field A(q+1), q < p. In analogy with Eq. (1.63), we write

Ĵµ0...µq(x) =

∫
Wp+1

dp+1σ
√
−γ

(
Jµ0...µq δ

(D) (x−X(σ))
√
−g

)
. (1.88)

Assuming gauge invariance of the underlying gravitational theory, it follows that the cur-

rent J(q+1) is conserved. In the following we let Qq denote the q-brane density. By virtue

of current conservation one can show that the current J(q+1) is hypersurface-forming.

These submanifolds, denoted Cq+1, foliate the worldvolume Wp+1 and correspond to the

world-sheet/volume of the q-branes carrying the charge Qq. Along these lines, we write

J(q+1) = Qq ?(q+1) 1 . (1.89)

Here ?(q+1)1 denotes, in somewhat vulgar notation, the unit volume (q+ 1)-form on Cq+1.

In this way, the density Qq is constant along Cq+1 and can only vary in the directions

transverse to Cq+1.

In addition to the usual fluid Killing vector k, stationary lower-form charged config-

urations are characterized by q spatial vectors (corresponding to the tangent vectors of

Cq+1). The general action therefore takes the form,

I[Xµ] =

∫
Wp+1

dp+1σ
√
−γ λ0(k, T ; `1, . . . , `q) . (1.90)

In analogy with (1.22), we can now compute the stress tensor. Note that, in general, a

non-zero temperature breaks Lorentz invariance of the worldvolume. Therefore, in general,

k ∂kλ0 6= `i ∂`iλ0. However, the current J(q+1) still preserves a SO(q) symmetry. This

implies that ` ∂`λ0 ≡ `1 ∂`1λ0 = . . . = `q ∂`qλ0. In the following we let hab(q) denote the

projector onto Cq+1. Now in order to rewrite the stress tensor in terms of thermodynamic

variables, we use that, besides the usual relation T abu
b = −%ua, we must have T abw

b =

P⊥w
a for any wa orthogonal to Cq+1, hab(q)wb = 0, and T abv

b = (P⊥ − ΦQqQq)va for any

(spatial) va parallel to Cq+1, hab(q)vb = va, vau
a = 0. The first condition states that in

any direction orthogonal to Cq+1 there is a tension due to the (usual) pressure P⊥ of the

fluid. The latter condition says that in the directions of Cq+1, in addition to the pressure

P⊥, there is a pressure component due to the tension −ΦQqQq (here ΦQq is the potential

conjugate to Qq) of the dissolved q-branes. We thus obtain the general form of the stress

tensor

T ab = P⊥γ
ab + T suaub − ΦQqQqhab(q) . (1.91)
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where we have assumed the underlying thermodynamic relations. The present arguments

are easily generalized to fluids carrying more than one lower form current. In the case of

a fluid carrying multiple lower from currents, the thermodynamics takes the form

%+ P⊥ = T s+
∑
q 6=p

ΦQqQq , d% = T ds+
∑
q 6=p

ΦQqdQq , (1.92)

where the sums run over the lower form q-brane currents excluding q = p. The general

stress tensor now takes the form

T ab = T suaub − Gγab −
∑
q

ΦQqQqhab(q) . (1.93)

Here we have unified the expression for the stress tensor (so that the sum runs over all

q ≤ p) and introduced hab(p) = γab along with the local Gibbs free energy density given by

(here Qp ≡ Qp and ΦQp ≡ Φ)

G = −
(
P⊥ + ΦQpQp

)
= %− T s−

∑
q

ΦQqQq =
1

n
T s . (1.94)

Where the last relation holds for all IIA/IIB/11D branes and their toriodal compaticti-

fications. Having determined the general form of the stress tensor, it follows that the

blackfold Lagrangian is given by the pressure P⊥ = −(G + ΦQp). The extrinsic equation

now takes the form

T s ⊥ρµ u̇µ = GKρ+ ⊥ρµ

[∑
q

ΦQqQqK
µ
(q)

]
(1.95)

where we have defined the mean curvature of the embedding Cq+1

Kρ
(q) = hab(q)K

ρ
ab . (1.96)

1.5.7 Stationary solutions

Here we briefly discuss some aspects of stationary solutions carrying lower form charge.

According to the above discussion, stationary solutions are obtained by extremizing the

action

I =

∫
Wp+1

dp+1σ
√
−γ P⊥ , (1.97)

where P⊥ denotes the pressure i.e. the scalar multiplying γab in (1.93). We note that

the action only depends on the orthogonal component of the pressure and thereby none

of the pressures induced by the lower form currents. However, we have not discussed

how to choose the worldvolume currents J(q+1) for stationary solutions. In general, such

an analysis requires writing down all possible hydrodynamic derivative corrections to the

effective stress tensor and currents. Such an analysis does currently not exist in the

literature, however, an analysis of charged string fluids q = 1 can be found in [36]. In Fig.

1.3 we have recorded the possible two charge q = 0, 1 bound state odd sphere solutions

[37].
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IIA IIB Bp =
∏
i S

pi ⊥ Sn

F1−D1 S1 S7

D0−D2 F1−D2 T2 S6

F1−D3 S3, T3 S5

D0−D4 F1−D4 S3 × S1, T4 S4

F1−D5 S5, S3 × T2 S3

D0−D6 F1−D6 S3 × S3, S5 × S1 S2

Table 1.3: Allowed q = 0, 1 bound state
∏

odd-sphere solutions in D = 10 type IIA/B

supergravity.

1.6 Blackfolds in background fluxes

In this section we derive the effective blackfold equations for branes in supergravity back-

grounds needed for the analysis presented in Chap. 2. The results of this section will be

presented in [58].

When writing down the effective blackfold theory, we assumed that the blackfold was

embedded in a pure gravity background (cf. Eq. (1.7)) and the effective EOMs were

simply derived from assuming the conservation of the blackfold stress tensor

∇̄µTµν = 0 . (1.98)

When the blackfold is charged, relevant to various supergravity schemes, this equation is

supplemented by a set of blackfold current (essentially intrinsic) conservation equations

that derive from the assumption that the effective theory can be consistently coupled to

the gauge potentials sourced by the blackfold.

It is now natural to ask how these equations are modified in the presence of non-trivial

background (matter) fields. Let us here focus on the p-brane solution (Eqs. (1.72)-(1.74))

relevant to the supergravity cases. In analogy with Eq. (1.7), we write

I[gµν , A(p+1), φ, . . . ; Φ] ' ISUGRA + Ieff[gµν , A(p+1), φ; Φ] , (1.99)

where the ellipsis denote the rest of the supergravity fields in the theory and Ieff is the

effective coupling between the background and the p-brane (which only involves the fields

sourced by the brane i.e. the metric, the (p + 1)-form gauge field, and the dilaton). The

effective blackfold EOM is therefore expected to be modified according to

∇̄µTµν = (Lorentz-like force + dilaton force) , (1.100)

where the force term is induced by the non-trivial background dilaton and (p + 1)-form

gauge field. Instead of deriving these force terms from the“test brane”method used in Sec.

1.2.4, i.e., from requiring energy-momentum conservation of the blackfold stress tensor +

background (for a review of this mehod applied to test particles, see e.g. [93; 94]), in this
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section we derive the force terms directly from the supergravity EOMs. The derivation

will include a review of the derivation of the extrinsic “vacuum” equation originally written

down in [44]. Having obtained the effective EOM, we explain how it can be integrated to

an action. As mentioned, the focus will be on the p-brane blackfold, however, in Sec. 1.6.4

we will briefly comment on the force terms and modified current conservation equations

for bound state supergravity blackfolds (for definiteness we focus on the type II F1-Dp

case).

1.6.1 The extrinsic equation from long-wavelength perturbations

Following Ref. [44], we here review how the extrinsic equation (1.18) emerges as a con-

straint equation of the Einstein equations to linear order in a derivative expansion in ∂X⊥.

The main ingredient of this derivation is based on the construction of a set of Fermi nor-

mal coordinates adapted to a general submanifold Wp+1 (which will play the role of the

bended black brane) of general co-dimension n+ 2 = D − p− 1 and embedded in general

flat background.

The adapted coordinates are naturally split up in a p+ 1 dimensional tangential com-

ponent σa and an n+ 2 dimensional transverse component yi defined so that the surface

Wp+1 corresponds to yi = 0. In general, the first order derivatives of the metric in the

directions parallel toWp+1 can be removed by a suitable coordinate transformation. How-

ever, the fact that the transverse coordinates are defined so that yi = 0 corresponds to

Wp+1 implies that the derivatives of the metric in the transverse directions generally can-

not be gauged to zero. These, in general non-zero, transverse derivatives K i
ab characterize

the shape of the embedding and the leading order surrounding geometry. In the described

normal coordinates, the metric takes the following form to leading order

ds2 =
(
ηab − 2K i

ab yi
)

dσadσb +
n+2∑
i=1

dy2
i +O(∂X2

⊥) . (1.101)

Clearly, K i
ab = Γiab = K i

ab , where K i
ab is the extrinsic curvature tensor of Wp+1. Note

that we use the notation ∂X⊥ ∼ 1/R ∼ K i
ab .12 The small dimensionless parameter

controlling the expansion (1.101) is therefore ∼ y/R, which in practice means discarding

all order ∂X2
⊥ ∼ 1/R2 terms. The metric (1.101) is interpreted as the zeroth order (i.e.

O((r0/r)
0), or background, metric of the bended black brane. When bending the black

brane we replace the flat geometry ηab on the brane with the modified bended geometry

ηab → ηab + 2K i
ab yi and solve for the metric correction hµν to linear order in ∂⊥X. For

example, bending the boosted neutral black brane (1.25) (as in Ref. [44]) corresponds to

perturbatively solving the full set of Einstein equations for the geometry

ds2 =
(
ηab − 2K i

ab yi +
(
1− f(r)

)
uaub

)
dσadσb

+
dr2

f(r)
+ r2dΩ2

(n+1) + hµν(yi)dxµdxν +O
(
(r/R)2

)
,

(1.102)

12Here X⊥ are used in the sense of Sec. 1.2.1, i.e. ∂X⊥ = 0 corresponds to “flat” embedding.



Chapter 1. The blackfold approach 33

where we have defined r2 ≡ yiy
i and where the metric corrections hµν depend on the

parameters r0 and ua and is first order in ∂X⊥. When considering charged black branes

we would similarly write down expressions the perturbed “bent” form of the matter fields

(plus corrections), however, in the following we shall not be interested in the near-horizon

geometry but only consider the overlap region geometry and such (theory dependent)

expressions will therefore be omitted. In general, perturbations induced by the extrinsic

curvature are coupled. However, in the linearized analysis each transverse direction decou-

ples from each other. We can therefore deal with the deformation in each normal direction

separately, and study perturbations where K i
ab is non-zero along only one distinguished

direction yî.13 Under this assumption, we introduce a directional cosine for yî,

yî = r cos θ . (1.103)

In general, the metric perturbation functions hµν are dipoles of Sn+1 and therefore de-

compose according to

hµν(r, θ) = cos θĥµν(r) . (1.104)

Similarly the extrinsic curvature deformation is of dipole type K î
ab yî = r cos θK î

ab .

We now consider the metric of the black brane in the overlap region r% � r � R.14

The asymptotic behaviour of the flat brane metric is provided by the blackfold stress

tensor Tab in the usual way and the overlap region metric, including extrinsic curvature,

thus takes the form

ds2 =

(
ηab − 2K î

ab r cos θ +
16πG

nΩ(n+1)

(
Tab −

T

D − 2
ηab

)
1

rn

)
dσadσb

+

(
1− 16πG

Ω(n+1)

1

D − 2

T

rn

)
dr2

(
dθ2 + sin2 θ dΩ2

(n)

)
+ cos θĥµν(r)dxµdxν +O(∂X2

⊥) +O(T 2
ab/r

2n) ,

(1.105)

where ĥµν is leading order in both Tab/r
n and ∂X⊥. Having determined the general form

of the overlap geometry we can now consider the Einstein equations (1.4) to linearized

order (in both r/R and Tab/r
n). In general the gravitational bulk stress tensor Tµν is

quadratic in the monopole matter fields of the brane and thus Tµν ∼ O(T 2
ab/r

2n). In

the overlap zone, the Einstein equations therefore effectively take the form of the vacuum

equations, Gµν = 0. A subset of these equations will contain constraint equations of the

system (as constraint equations are in general independent of the perturbation functions

for all r). In particular, it is possible to show that the following combination does not

involve hµν and is therefore a constraint equation

(n+ 1) csc θ Grθ − r sec θ Grr =
n+ 2

rn
8πG

Ω(n+1)
T abK î

ab = 0 . (1.106)

13An equivalent way to state this: To linear order in 1/R, we can always perform a SO(n+ 2) rotation

in the transverse directions so that K i
ab = Kabδ

i
î
. The direction î corresponds to the direction in which

Wp+1 (locally) bends.
14As explained in Sec. 1.5.1, the characteristic length scale for the p-brane is set by the charge radius

rρ rather than r0. In general the linearized approximation applies when, schematically, Tab/r
n � 1.
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We have therefore obtained the constraint equation T abK î
ab = 0 for each of the transverse

directions and have thus, as promised, arrived at the extrinsic equation (1.18) for a gen-

eral gravitating brane bend on a submanifold Wp+1. As reviewed in Sec. 1.3.2, intrinsic

perturbations are of fluid dynamic nature and of monopole type. The full set of equations

therefore split up into a monopole (intrinsic) and a dipole (extrinsic) sector, and it follows

that, to linear order in the full derivative expansion, the intrinsic and extrinsic perturba-

tions decouple. In particular, the monopole constraint equations (the intrinsic equations),

take the same form as for flat extrinsic geometry γab = ηab and correspond to covariant

conservation of the stress tensor Tab and current(s) in the worldvolume directions (see also

Chap. 3).

1.6.2 Force terms as modified constraint equations

The arguments presented in the previous section apply to any perturbed brane solution

situated in vacuum backgrounds. In this section we explain how the force terms arise as

a simple correction to the gravitational constraint equation (1.106). The correction can

be seen as a pole-dipole interaction term in the overlap region arising from a derivative

expansion of the background fluxes. We focus here on the charged black p-brane. We will

therefore analyze the force terms arising from the action (1.70). The bulk stress tensor for

the (p+ 1)-form gauge field and the dilaton reads

16πG T̂(F )
µν =

eapφ

(p+ 1)!

(
F

µ0...µp
µ Fνµ0...µp −

1

2(p+ 2)
gµνF

2
(p+2)

)
,

16πG T̂(φ)
µν = ∂µφ∂νφ−

1

2
gµν(∂φ)2 .

(1.107)

We now imagine placing the brane in a dilatonic flux background. In the following we let

φ(bg) and F
(bg)
(p+2) denote the (slowly varying) background dilaton and field strength. The

seed solution for the perturbative expansion is the dilatonic p-brane solution (1.72)-(1.74)

whose dilaton vanishes at infinity. In order to match with this solution we must therefore

ensure that the dilaton vanishes in the overlap zone. To this end we define a shifted dilaton

and rescaled field strength,

φ→ φ− φ(bg) , F(p+2) → eapφ(bg)/2 F(p+2) . (1.108)

The solution (1.72)-(1.74) (with the redefined fields) now solves the EOMs corresponding

to the action (1.70) to zeroth order in the derivatives of the intrinsic fields, embedding,

and background (gauge) fields. We now proceed as in the previous section and perturb the

embedding of the brane. As above, the dynamics in the transverse directions decouples to

leading order, and we therefore assume that the (transverse part of the) background field

strength is only non-zero in the distinguished direction y(̂i). In principle, F
(bg)
(p+2) could have

legs in two or more transverse directions, however, it is not difficult to realize that such

components will not play a role to leading order and only become important to O(∂X2
⊥).

We therefore expand the slowly varying background field strength according to

F
(bg)
(p+2) = F

(bg)

î
dyî ∧ ?(p+1)1 +O(∂X2

⊥)

= F î(bg) (cos θdr − r sin θdθ) ∧ ?(p+1)1 +O(∂X2
⊥) .

(1.109)
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Similarly we expand (the derivative of the) background dilaton as

dφ(bg) = ∂îφ (cos θdr − r sin θdθ) +O(∂X2
⊥) . (1.110)

In the overlap region, the fully corrected fields then schematically take the form,

F(p+2) = F
(M)
(p+2) (1 +O(∂X⊥)) + F

(bg)
(p+2) +O

(
T 2
ab/r

2n
)
,

dφ = dφ(M) (1 +O(∂X⊥)) + dφ(bg) +O
(
T 2
ab/r

2n
)
,

(1.111)

where F
(M)
(p+2) and dφ(M) denote the O(Tab/r

n) monopole (uncorrected) parts sourced by

the (unperturbed) brane. They read (cf. Eq. (1.74)),

F
(M)
(p+2) =

16πG

Ω(n+1)

Qp
rn+1

dr ∧ ?(p+1)1 , dφ(M) = − 16πG

Ω(n+1)

apΦQp
2rn+1

dr . (1.112)

Here Qp and Φ is the charge (1.77) and chemical potential (1.78) of the brane, respectively.

In the presence of non-trivial background (matter) fields, we therefore see that the bulk

stress tensor does not vanish in the overlap zone. However, from (1.111) we see that

the overlap stress tensor consists of a simple pole-dipole term and in particular does not

involve the metric and matter field corrections. The combination,

(n+ 1) csc θ (Grθ − 8πGTrθ)− r sec θ (Grr − 8πGTrr) = 0 , (1.113)

is therefore still a constraint equation (with Tµν = T
(F )
µν + T

(φ)
µν ) and takes the modified

form
n+ 2

rn
8πG

Ω(n+1)

(
T abK î

ab −F î
)

= 0 , (1.114)

where F î is the induced force term and is given by the pole-dipole interaction term,

F î =
Ω(n+1)

n+ 2
rn ((n+ 1)csc θTrθ − r sec θTrr) . (1.115)

The force term (1.115) is easily computed from (1.107) and covariantized. Remembering

that we redefined the background fields in Eq. (1.108), and introducing

J(p+1) = ?(p+1) Qp , Qp = eapφ/2Qp , (1.116)

we arrive at the following constraint equation

T abK ρ
ab − ⊥

ρµ apΦQp
2

∂µφ =
1

(p+ 1)!
⊥ρµ Fµµ0...µpJµ0...µp . (1.117)

Here F(p+2) and φ are the (un-shifted/scaled) background fields and we have dropped

the (bg) superscript to ease notation. We emphasize that the quantities appearing in the

constraint equation (1.117) are computed in the overlap zone.
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1.6.3 Integrating the EOM to an action

We now integrate the EOM (1.117) to an action. To this end consider the combination

T abK ρ
ab using the perfect fluid p-blackfold stress tensor (1.75). Usually we require the

variation of the charge Qp to vanish (since it is conserved among physical variations) and

relate the derivative of T to that of P and arrive at the action (1.67) (see App. A).

However, in dilatonic backgrounds Qp is not conserved since the local definition of Qp
depends on the value of the dilaton. Instead we consider variations for which we keep the

charge Qp in Eq. (1.116) fixed. It follows that

T abK ρ
ab = − ⊥ρµ ∂µP + PKρ +

apΦQp
2

⊥ρµ ∂µφ . (1.118)

Using the EOM (1.117), the dilaton terms are therefore seen to cancel out, and it follows

that (1.117) can be obtained from the action

I =

∫
Wp+1

(
? Pφ + Qp P

[
A(p+1)

] )
, (1.119)

for variations in the embedding where we keep the global temperature T and the charge

Qp fixed. Here P
[
A(p+1)

]
denotes the pullback of the (p+ 1)-form gauge potential to the

worldvolume. Moreover we used the symbol Pφ to signify that the blackfold pressure is

computed locally i.e. using the rescaled charge Qp related to Qp and the dilaton through

(1.116). The condition that Qp (rather than Qp) is taken to be constant might seem a bit

ad hoc, however, assuming that (1.117) can be derived from an action, the action (1.119)

is really the only possibility consistent with gauge invariance which in turn implies that

Qp is conserved. Ultimately, the conservation equation should follow from considering

intrinsic perturbations of the system (like the ones considered in Chap. 3) which will be

shown in [58].

Before concluding this section, it is interesting to compare the action (1.119) to the

Dp/NS/M-brane worldvolume actions. Assuming that the worldvolume field stregths are

turned off, note that these actions take the universal form in the Einstein frame

Ip = −Tp
∫
Wp+1

dp+1σ e−apφ/2
√
−γ

(E)
± Tp

∫
Wp+1

P
[
A(p+1)

]
. (1.120)

Here + stands for branes and the − stands for antibranes, γ
(E)

is the pullback of the metric

onto the worldvolume using the Einstein frame metric, and Tp is the tension of the object

in question (the dilaton of course vanishes for M -branes). We now consider the blackfold

action (1.119) in the extremal limit. In the extremal limit,

Pφ = −|Qp| = −e−apφ/2|Qp| . (1.121)

In the extremal limit, under the above assumptions, we therefore find perfect agreement

between the (supergravity) p-brane blackfold actions and the corresponding single brane

worldvolume actions under the identification15

Qp ∼ Tp . (1.122)

15The constant of proportionality is naturally identified with the (large) number of branes sourcing the

p-brane blackfold.



Chapter 1. The blackfold approach 37

We postpone a more full discussion of the relation between blackfolds and the DBI-like

actions to Chap. 2.

1.6.4 More general force terms

In this section we briefly comment on the force terms arising for more general bound state

blackfolds reviewed in Sec. 1.5.6. For definiteness we consider here the F1-Dp bound state

system and refer to [58] for a complete analysis. For the convenience of the reader, we

have recorded the F1-Dp bound state solution along with its effective blackfold fluid and

currents in App. B. This solution will play the role of the seed solution in the perturbative

expansion. Repeating the steps of the above analysis, now including a non-zero background

fields H(3) and F(p+2), we recover the expected Lorentz-like couplings. However, since the

F1-Dp system also sources a non-trivial C(p−1) gauge potential, in general there will also

be a non-trivial coupling to a non-zero background F(p) field strength. All in all, we arrive

at the following extrinsic equation (assuming here that the background dilaton vanishes),

T abK ρ
ab =⊥ρµ F

µ
(F1)+ ⊥

ρ
µ F

µ
(Dp)+ ⊥

ρ
µ F(F1-Dp) (1.123)

where F(F1) and F(Dp) are the usual Lorentz couplings

Fµ(Dp) =
1

(p+ 1)
Fµµ0...µpJµ0...µp , Fµ(F1) =

1

2!
Hµνλjνλ (1.124)

However, the coupling F(F1-Dp) is new and is given by the non-trivial cross-term

F(F1-Dp) =
1

(p− 1)!
Fµµ0...µp−2 j̃µ0...µp−2 with j̃(p−1) = ?(p+1)j(2) (1.125)

It is straightforward to include a dilaton. The dilaton force term (non-trivially) decomposes

according to

Fdilaton =
1

2
(aF1ΦF1QF1 + aDpΦDpQDp) ⊥ρµ ∂µφ , (1.126)

with aF1 = −1. Notice that in dilatonic backgrounds the cross coupling F(F1-Dp) also re-

ceives a non-trivial dilaton factor. To complete the discussion, we also need to comment on

the effective equations governing the currents, J , j, j̃. It is straightforward to write down

an effective action giving rise to the force terms (1.123) by simply coupling the currents J ,

j, j̃ to the background fields in the usual manner. By requiring that the effective worldvol-

ume action is gauge invariant under the gauge symmetries of the underlying supergravity,

we obtain a set of modified conservation equations for the currents (basically as “force

terms” in the conservation equations). The exact form of these equations depends on the

type of bound state in question and the general expressions will be presented [58] (see

also the recent paper [53] where the effective equations are written down for the M2-M5

system). Equivalently, these equations derive directly from the hydro sector where they

basically show up as modified constraint equations coming from the Chern-Simons term

of the relevant supergravity.
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1.7 The blackfold construction in fluxed backgrounds

In this section we extend the blackfold construction of Sec. 1.4 to blackfolds embedded in

flux backgrounds. Most of the considerations carry directly on to the more general case

but with some important remarks.

In general, the blackfold Killing vector ka pushes forward to a Killing vector of the

background i.e., (Ωi constant)

kµ = ξ +
∑
i

Ωiχ
µ
(i) , (1.127)

where ξ corresponds to the canonically normalized generator of time translations and the

χ1, . . . denote the set of spatial (rotational) isometries of the background (see also App.

A). However, with regard to stationarity there is an important further distinction to be

made, depending on whether:

I The vectors χ1, . . . are also worldvolume Killing vectors.

II One of the vectors χ1, . . . , say χ1 ≡ χ,16 is perpendicular to the worldvolume and

hence not a worldvolume Killing vector.

In the first case the blackfold world-volume does not break the isometries ξ, χ1, . . . of the

background. The resulting solutions are the standard stationary blackfolds considered

in Sec. 1.4. In the second case, which is the one relevant for the analysis of Chap. 2,

the blackfold worldvolume only preserves a particular combination of the isometries ξ, χ

and should therefore be viewed as a “boosted stationary” solution rotating along the U(1)

generated by χ. We will refer to this below as quasi-stationary, since we still have that,

seen from the worldvolume, the blackfold configuration is independent of time. As a result,

the conserved quantities associated to ξ and χ are of a different nature. In particular, the

conserved quantity generated by ξ should be thought of as the total energy E (so not the

rest mass of the object) and the quantity generated by χ as the transverse momentum J

corresponding to the rotational boost. Finally the conserved quantities generated by the

rest of the χi’s are the usual intrinsic worldvolume spins along the directions of Wp+1.

1.7.1 Conserved charges

We now write down the expressions for the conserved charges corresponding to the asymp-

totic generators ξ and χ for quasi-stationary blackfolds in flux backgrounds. For simplicity

we here focus on the non-dilatonic case. As we have seen, the effective gravitational dy-

namics is modified according to

∇µT̂µν =
1

(p+ 1)!
Fµµ0...µp Ĵµµ0...µp (1.128)

16For simplicity we here only consider the case where one of the χi’s is perpendicular to Wp+1, however,

there could in principle be more than one. Moreover we will also restrict ourselves to static backgrounds.

Also note that χ is necessarily Killing. Indeed, if χ was not Killing the worldvolume would be accelerating

and would therefore emit gravitational radiation and would thus not be stationary.
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It is now straightforward to obtain the modified conserved quantities from this equation,

assuming that the background field F(p+2) respects the symmetries of the background.

For any Killing vector field k of the background we have by assumption that the Lie

derivative along k of the (p + 2)-form F = F(p+2) is zero £kF = 0. Since dF = 0, we

find that 0 = dF = ιkdF + d(ιkF ) = d(ιkF ) where ι denotes the usual interior product.

Moreover, since k is a symmetry of the background and F , we can pick a gauge in which

£kA = 0. By virtue of Cartan’s identity, we therefore see that 0 = £kA = ιkF + d(ιkA),

thus ιkF = −d(ιkA). In this gauge the (p+1)-form ιkF therefore has the p-form potential

ιkA. Using this, we can now show that the current

jµk =
(
T̂µνp +

1

p!
Aνρ1···ρp Ĵ

µρ1···ρp
)
kν , (1.129)

is conserved ∇µjµk = 0. Indeed, using the EOM (1.128), we see that

p! ∇µ(T̂µνkν) =
1

p+ 1
kνFνρ1···ρp+1 Ĵ

ρ1···ρp+1 = − 1

p+ 1
∇[ρ1

(ikA)ρ2···ρp+1]Ĵ
ρ1···ρp+1

= −∇ρ1(ikA)ρ2···ρp+1 Ĵ
ρ1···ρp+1 = −∇µ(Aνρ1···ρp Ĵ

µρ1···ρpkν) . (1.130)

The current (1.129) therefore gives rise to a conserved charge. Using the form of the

monopole stress tensor (1.14) and current (1.63), we can now do the δ-function integrals

as in Sec. 1.4 to reduce to integrals over Bp and obtain the following expression for the

conserved charge17

Q[k] =

∫
Bp
dV(p)γ

−1
⊥ [Tµν + Vµν ]nµkν

∣∣∣
xi=Xi

. (1.131)

Here we have defined

Vµν ≡ 1

p!
Aνµ1···µp−1

Jµµ1···µp−1 , γ⊥ ≡
√
gtt
γττ

. (1.132)

The quantity γ⊥ is recognized as a Lorentz contraction factor which must be included since

the spatial part of the worldvolume Bp can suffer Lorentz contractions due to transverse

boosts (∼ γττ ) and/or gravitational redshifts (∼ gtt). Now, we use the result (1.131) to

write down the conserved charges corresponding to the background Killing vectors ξ and

χ,

E =

∫
Bp

dV(p)γ
−1
⊥ [Tµν + Vµν ]nµξν , J = −

∫
Bp

dV(p)γ
−1
⊥ [Tµν + Vµν ]nµχν . (1.133)

The expressions correspond to the E and angular momentum J of the quasi-stationary

blackfold moving with constant velocity in a fluxed background along an isometric direction

and generalize the standard blackfold expressions discussed in Sec. 1.4. In order to obtain

the expressions for the intrinsic spin Si, we just replace χ → χi in the expression for J

(typically Vµν vanishes in the χi direction and the expression for Si will just reduce to the

17Note that under the assumptions the metric determinants factorize according to
√
−g =√

−gtt
√
gspatial and

√
−γ dp+1σ =

√
−γττ dτdV(p).
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one recorded in (1.44)). Finally the total entropy is obtained in the usual manner and is

given by

S =

∫
Bp

dV(p)γ
−1
⊥ uµnµ . (1.134)



2 | Thermal spinning

giant gravitons

2.1 Introduction

In this chapter we apply the blackfold formalism reviewed in Chap. 1 to certain thermal

spinning probe branes in string/M-theory. More specifically, we apply the effective ap-

proach to the giant graviton configurations originally considered in [25–27]. The analysis

presented here was originally carried out in the two papers [1; 2].

The archetypal giant graviton configuration is that of a D3-brane wrapping a three-

sphere with center of mass moving along the equator of the five-sphere in the AdS5 × S5

background. The configuration corresponds to a blown up version of the usual point

particle-like Kaluza-Klein graviton (hence its name). The dynamics of the giant graviton

is captured by the DBI action coupled to the usual background (self-dual) five-form field

strength F(5). In the dual gauge theory description, in the context of the AdS/CFT

correspondance [12–15], the giant graviton moving along an S1 inside the S5 with angular

momentum J is dual to a gauge theory multi-trace operator Ogg with R-charge J and

conformal dimension ∆ = J . Similarly M-theory giant gravitons exist on AdS4 × S7 and

AdS7×S4 (with similar relevance for the respective dual CFTs) with the M2 giant graviton

wrapping a two-sphere in the S4 and the M5 giant graviton wrapping a five-sphere in the

S7, respectively. Finally all the described giant graviton configurations have a “dual”

version carrying the same quantum numbers (but with no upper bound on the angular

momentum), still rotating on the (equator of the) sphere part of AdS × S, but instead

expanded into the AdS part of the background geometry [26; 27].

As will be explained below, the blackfold approach allows us to thermalize probe brane

configurations in general backgrounds. Using these ideas, we will construct a thermal

spinning version of the giant graviton configurations relevant to IIB/M-theory which we

shall henceforth dub the thermal (spinning) giant graviton. Heating up the AdS × S

background with the IIB/M-theory giant graviton in it, then corresponds to a thermal

state that results from the ensemble of operators that are fluctuations around Ogg. Thus,

in the context of AdS/CFT, having a description of the thermal giant graviton will provide

insight into the strong coupling behaviour of the gauge theory side at finite temperature.

41
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2.1.1 Thermal probe branes à la blackfolds

When considering the bending of (locally) supersymmetric brane configurations, most of

the work has been done by considering the worldvolume theory of a single probe brane

is a given background. The physics of probe branes is conventionally examined using the

weakly coupled description in terms of the D-brane (Abelian DBI) or M-brane worldvol-

ume theories or, in the case of F-string probes, the Nambu-Goto action. However, as a

consequence of open/closed string duality,1 the weakly coupled (microscopic) worldvol-

ume picture has a complementary description on the strongly coupled (macroscopic) bulk

spacetime side. Indeed, for supersymmetric configurations one can typically find an exact

interpolation between the two sides, which has been the heart of, for example, microscopic

counting of black hole entropy [11] and the AdS/CFT correspondance. When interpolat-

ing from the weakly coupled regime to the strongly coupled regime, one therefore expects

that the corresponding brane profiles can be obtained from a supergravity perspective by

considering the back-reaction of many branes on top of each other. In order to determine

the corresponding brane profiles on the supergravity side, one would have to impose an

appropriate ansätze, incorporating the symmetries of the problem and solve, the resulting

supergravity equations of motion. A well-know example of this, relevant to the present

work, is the relation between giant gravitons and the LLM geometries due to Lin, Lunin

and Maldacena [95]. More generally, this type of open/closed duality has been shown to

extend beyond the AdS/CFT decoupling limit. For example, in Ref. [96] shapes of brane

intersections were studied from the supergravity perspective and found to be in perfect

agreement with those found from the DBI action, with the BIon solution [23; 96] being

the most simple example. In general, “bending” branes on the supergravity side, i.e., find-

ing non-trivial geometries from the supergravity EOMs, is a highly non-trivial (generally

unsolvable) task. Already for the case of the highly (super)symmetric LLM geometries,

the amount of computations going into finding the actual solutions is quite impressive.

From this point of view, perturbative methods for tackling the complexity of the highly

non-linear supergravity EOMs would be very useful. In this context, the effective blackfold

theory provides an excellent perturbative framework for addressing these problems. To

leading order, the effective theory takes the from of a worldvolume theory similar in nature

to the DBI worldvolume action (and its M/NS cousins) and the full exact supergravity

solution can then in principle be perturbatively reconstructed order by order through the

matched asymptotic expansion procedure outlined in Sec. 1.3.4 (and generalized to in-

clude matter fields). However, already at the level of the effective worldvolume (probe)

theory, a great deal of information about the physics of the system can be extracted.

In addition, in the effective gravitational theory, the brane probe under consideration

can be blackened and thus be brought into thermal equilibrium with a background of

finite temperature. The blackfold approach therefore naturally provides us with a tool

for describing the physics of thermal probe branes. In particular, the blackfold approach

naturally takes into account that the degrees of freedom living on the brane themselves get

1We use this terminology here in the loose sense to denote the duality between the worldvolume and

spacetime/bulk descriptions.
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thermalized (which is evident from the near-extremal form of the stress tensor recorded

in Eq. (1.86)). This has revealed a number of new qualitative and quantitative effects,

as compared to the conventional method for treating probe branes in finite temperature

backgrounds (see [48] for a brief review and references). These ideas were first employed

in Refs. [48; 49] where the BIon solution of [23; 96] was identified and thermalized in the

blackfold approach. In addition to thermalizing the phases available at zero temperature,

the thermal analysis also revealed the existence of new phases not visible in the extremal

limit. Although the effective worldvolume theories of the (DBI) BIon and the thermal

BIon of [48] are similar in spirit, and produce essentially equivalent results in the extremal

limit (in accordance with the discussion in previous paragraph), we emphasize that the

physics of the two systems is very different: The conventional (DBI) BIon consists of a

single D3-brane with the worldvolume gauge field turned on, while the (thermal) BIon of

[48] is described by the effective blackfold theory of a (black) D3-F1 brane bound state

geometry. Along these lines, the M-theory M2-M5 version of the BIon system was analyzed

in the blackfold approach in Refs. [50; 51], including a spinning M2-M5 ring intersection

[52].2 The ideas presented here are naturally applied to (thermal) F-string/brane probes in

context of the AdS/CFT correspondance. The first application of the blackfold formalism

in an AdS/CFT setting was carried out in [54] where the effective theory was used to

analyze the thermalized gravity dual of the rectangular Wilson loop using a black F-string

probe ending on the boundary of AdS5(×S5).

Along these lines, we here construct a thermal spinning version of the giant graviton.

Notice that the possibility of adding internal spin (i.e. in the brane directions) is a new

feature of the thermal giant graviton that is not present in the case of the standard

extremal (supersymmetric) giant gravitons. The reason is that at zero temperature the

worldvolume stress tensor of the giant graviton is locally Lorentz invariant, as can be seen

directly from the D/M-brane actions (for zero worldvolume gauge fields). This means

that the internal spin of the giant graviton is not visible in the extremal limit. However,

turning on a temperature breaks the local Lorentz invariance of the worldvolume stress

tensor and thus makes internal spin an important effect to consider. Moreover, we find

that it is possible to perform a non-trivial double scaling extremal limit, giving rise to a

novel null-wavegiant graviton with BPS spectrum.

Notation and regimes of validity: We will follow that notation and basic setup of

[26]. As explained in the introduction, we focus on the conformal cases, namely we consider

D3-branes in D = 10 IIB supergravity and M2- and M5 branes in D = 11 supergravity in

the backgrounds of the form AdSm × Sn with,

(m,n) = {(5, 5); (4, 7); (7, 4)} , (2.1)

along with the appropriate gauge potentials. Note that n and m are related by n =

(3m − 5)/(m − 3), but for ease of notation, we keep the two symbols separately below.

The geometries, along with the corresponding gauge potentials, compromise maximally

2Recently these ideas were extended to supersymmetric long-wavelength perturbations in the blackfold

framework in Ref. [53] providing new intriguing insights into the “SUGRA/DBI correspondence”.
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supersymmetric solutions to the corresponding supergravity. The four-form field strength,

corresponding to the three-form M-theory potential, is proportional to the four dimensional

component of AdSm×Sn. The IIB self-dual five-form field strength naturally splits up in

a component proportional to the volume-form on the AdS5 part and the S5 part of the

geometry, respectively. Finally, the radius of curvature for AdSm is denoted L̃ while that

for the Sn is denoted L. For the cases under consideration, they are related as

L̃ =
m− 3

2
L . (2.2)

Before ending this paragraph, we will say a few words about the validity of the blackfold

approach for our specific physical setup (we postpone the details to Sec. 2.3.2). In order

for the blackfold probe approximation to hold we require

1� ND3 � N � λND3 , 1� N2
M5 � N , 1� NM2 � N2 . (2.3)

where N is the (large positive integer) units of n-form flux through the sphere Sn and λ

is the ’t Hooft coupling (for the n = m = 5 case). We note that the last two M-theory

conditions can be rewritten as λM � 1 and λM � 1 respectively, in terms of the ’t

Hooft-like coupling λM = N2
M5/NM2 that was identified in Ref. [51] in the context of the

self-dual string soliton of the M5-brane theory. Here we use the fact that for the M5-brane

case our N is the parameter of the M2-brane theory and for the M2-brane case N is the

parameter of the M5-brane theory. Another important remark about the validity of the

analysis is related to the Hawking-Page temperature THP ∼ 1/L, above which the AdS

black hole background will become dominant over the hot AdS space-time background [97]

considered in this work. We find that for the bounds (2.3) (again we postpone the details

to Sec. 2.3.2),

THP � Tmax , (2.4)

where Tmax is the maximal temperature allowed for the blackfold giant graviton solution.

We thus see that in the regime where the probe blackfold approximation is valid, the

maximum temperature of the solution is far above the Hawking-Page temperature. As a

consequence this maximum temperature is not physical in the sense that before reaching

it one should change the background to the AdS black hole, and hence our solution is most

relevant for small temperatures.

2.2 Giant graviton on Sn revisited

In this section we review the giant graviton configuration in IIB string/M-theory on

AdSm × Sn (using the conventions explained in the introduction). For definiteness, we

focus on the case in which the giant graviton is expanded in the Sn, and correspondingly

also the construction of the (spinning) thermal giant graviton in Sec. 2.3 will be confined

to this case. The case in which the giant graviton is expanded on the AdSm and its thermal

version is considered separately in Sec. 2.7.
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The review will serve to set our notation and properly define the configurations that will

be heated up and spun using the thermal blackfold method. At the same time we highlight

that, beyond the usual 1/2 BPS solution, there is a stable branch of giant gravitons that

has not recieved much attention in the literature. Some unnoticed properties of this branch

is discussed in Sec. C.2 of App. C.

2.2.1 Setup and action

As explained in the introduction, we consider IIB string/M-theory on AdSm × Sn with

n-form flux

F(n) = (n− 1)Vol(n)/L , (2.5)

where Vol(n) is the unit volume form on the Sn and L denotes the radius of the Sn and is

related to the anti de-Sitter radius through (2.2). For the Sn, we take the parametrization

dΩ2
(n) = L2

[
dθ2 + cos2 θ dφ2 + sin2 θ dΩ2

(n−2)

]
, (2.6)

where dΩ(n−2) denotes the line element on Sn−2 (with coordinates χ1, . . . , χn−2). In these

particular coordinates, the (n− 1)-form gauge potential associated to the flux (2.5) takes

the form

A(n−1) = (L sin θ)n−1 dφ ∧Vol(n−2) = rn−1dφ ∧Vol(n−2) , (2.7)

where r ≡ L sin θ denotes the radius of the Sn−2. The giant graviton is obtained by

considering a (rotating) D/M(n−2)-brane that wraps an Sn−2 the Sn inside the AdSm×Sn.

Denoting the worldvolume coordinates on the brane probe as {σ0 ≡ τ, σ1, . . . , σn−2}, its

embedding into the background is taken to be

t = τ , φ = βnΩτ , χ1 = σ1, . . . , χn−2 = σn−2 , θ = arcsin (r/L) = const. , (2.8)

where the D/M(n − 2)-brane sits at the origin of the AdSm space (as a point). The

parameter βn is simply a sign which takes the specific values β4 = β5 = 1, β7 = −1.3

The size of the giant graviton configuration is thus r = L sin θ and it rotates with angular

velocity βnΩ on the Sn, satisfying the geometric bound Ω2(L2 − r2) ≤ 1. The resulting

induced metric on the probe brane worldvolume is easily computed,

γab dσadσb = −k2dτ2 + r2 dΩ2
(n−2) , (2.9)

where a = τ, 1, . . . , n− 2 runs over the worldvolume directions and

k ≡ |ka| =
√

1− Ω2(L2 − r2) , (2.10)

is the norm of the rotational Killing vector satishfying 0 ≤ k ≤ 1.

With this setup, the giant graviton is found by solving the EOM of the brane DBI

action IDBI in this background. We have

IDBI =

∫
dτ LDBI , LDBI =

∫
Sn−2

L = −T(n−2)

∫
Sn−2

(√
−γ −Aτσ1...σn−2

)
, (2.11)

3The choice of sign βn is introduced for convenience to simplify the formulae below, treating the D3,

M2 and M5-branes uniformly. Alternatively, one can take a plus sign for all cases, and reverse the sign of

the M5-brane charge, turning it into an anti-M5-brane.



Chapter 2. Thermal spinning giant gravitons 46

where γ is the determinant of the induced metric (2.9), Aσ0σ1...σn−2 is the pullback of the

(n−1)-form gauge potential onto the worldvolume, and T(n−2) is the (n−2)-brane tension.

Using the embedding (2.8), this gives

LDBI = −T(n−2)Ω(n−2)r
n−2 (k− rΩ) . (2.12)

The angular momentum and Hamiltonian are then computed as

J =

∫
Sn−2

∂L
∂Ω

= T(n−2)Ω(n−2)r
n−2

(
Ω(L2 − r2)

k
+ r

)
,

H = JΩ−
∫
Sn−2

L =
T(n−2)Ω(n−2)r

n−2

k
.

(2.13)

We finally note that the overall factor in all these expressions involves the product Ω(n−2)T(n−2)

which can be re-written in terms of the background variables as

Ω(n−2)T(n−2) =
N

Ln−1
, (2.14)

where L is the radius and N is the (large) integer denoting the (quantized) background

flux through Sn.

2.2.2 Solution branches and stability

Varying the Lagrangian (2.12) with respect to the radial coordinate r we obtain the EOM

n− 2− (n− 2)L2Ω2 + (n− 1)
(
rΩ−

√
1− Ω2 (L2 − r2)

)
= 0 . (2.15)

This equation has two branches of solutions4

Ω− =
1

L
, Ω+ =

n− 2√
(n− 2)2L2 − (n− 1)(n− 2)r2

, (2.16)

which we will dub the lower and upper brach, respectively. Notice that for the upper

branch we have that 1 ≤ ΩL ≤ n − 2. It is interesting to note that a maximal size giant

graviton (r = L) exists in both branches with either Ω̂− = L−1 or Ω̂+ = (n − 2)L−1.

Moreover, it is also worth noticing that both branches connect to the point-particle case,

in the limit r → 0.

To elucidate these branches and connect to a more physical parameterization, we use

(2.13) to compute the on-shell angular momentum and energy. We introduce a rescaled

(dimensionless) angular momentum and energy according to J = J/N and E = (L/N)E

along with the dimensionless ratio r̂ = r/L. We then find on the lower solution branch

J− = E− = r̂n−3 . (2.17)

while for the upper branch, we have

J+ = r̂n−3(n− 2− (n− 3)r̂2) , E+ = r̂n−3
√

(n− 2)2 − (n− 1)(n− 3)r̂2 . (2.18)
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Figure 2.1: E = (L/N)E (left) and J ≡ J/N (right) versus r̂ ≡ r/L for the lower (black)

and upper (grey) solution branches of the extremal giant graviton, respectively.

For clarity, we have depicted these results in the plot of Fig. 2.1.

One observes that the angular momentum is confined to the range 0 ≤ J ≤ 2r̂n−1
∗ ,

where

r̂∗ =

√
n− 2

n− 1
. (2.19)

We see that for each value in the (full) range of angular momentum there are two possible

solutions, with different values of r̂. Comparing the two corresponding values of the energy

for each of these two values of r̂ (given J), one finds that the one with highest r̂ minimizes

the energy. To see this more clearly, we exhibit E versus J in the left plot of Fig. 2.2.

Hence we expect that the stable branch of solutions consists of the entire lower branch

(for 0 ≤ J ≤ 1 and 0 ≤ r̂ ≤ 1) together with the part of the upper branch that has

1 ≤ J ≤ 2r̂n−1
∗ and r̂∗ ≤ r̂ ≤ 1. Conversely, the part of the upper branch spanned by

0 ≤ J ≤ 2r̂n−1
∗ and 0 ≤ r̂ ≤ r̂∗ will be for given J a local maximum of the energy. More

properly, this result on the dynamical stability can be derived by computing the off-shell

Hamiltonian from (2.13)

H = T(n−2)Ω(n−2)

√
r2(n−2) +

(J − rn+1)2

L2 − r2
(2.20)

Varying this with respect to r̂ for constant J gives, as expected, the extrema Ω = Ω̄±
found before. To see which part of the branches are stable we vary H once more with

respect to r̂ at constant J, and demand positivity, so that we are at a minimum. The

result is that the lower branch Ω = Ω̄− is stable for all values of r̂ (0 ≤ r̂ ≤ 1) and the

upper branch Ω = Ω̄+ is stable for r∗ ≤ r̂ ≤ 1. This is in accord with the arguments of the

4The limit r = 0 of these solutions describes the point-particle limit of the giant graviton, where one

should be careful in taking the limit r → 0 such as to obtain sensible conserved charges [26].
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Figure 2.2: E = (L/N)E (left) and Ω̂ (right) versus J for the two solution branches.

previous paragraph (see also App. A of [1] where the same conclusion is obtained from

a more detailed stability analysis that includes time derivatives of the radial coordinate).

Finally, we note that the point r̂ = r∗ where the upper branch becomes unstable can also

be seen as a turning point in a plot of Ω as a function of J (see right plot of Fig. 2.2).

The main motivation of the review above and the various plots that are presented is

that they will be instructive to illustrate the new features that appear when constructing

and analyzing the thermal giant gravitons in Secs. 2.4 and 2.5.

Having established which solutions are stable, we will now discuss their physical rele-

vance. First we note that they are distinguished by the angular momentum J. In terms

of r̂ they coexist when r̂∗ ≤ r̂ ≤ 1, but from (2.17), (2.18) we easily see that the energy on

the lower branch is lower than that of the upper branch, for a given r̂ in that range, except

when r̂ = 1 where they have the same energy. The lower branch is the usual 1/2 BPS

branch extensively considered in the literature, and from (2.18) we immediately recognize

the BPS condition E− = J−/L. The other stable solution which is part of the upper

branch was noted in [26] (see in particular Figs. 1 and 2 of that reference), but has oth-

erwise largely been ignored. First of all this branch is not connected to the point particle

case as a stable configuration since local stability requires r̂∗ ≤ r̂ ≤ 1. Furthermore, while

it is a local minimum of the energy it is not a global one, so it is a metastable configuration

and has E+ ≥ J+/L where the bound is saturated for r̂ = 1. This thus raises the question

whether this configuration indeed preserves 1/2 of the supersymmetries. By repeating the

steps of Sec. 3 of [26], it is possible to verify that this is indeed the case. The main point

here is that the Ω-dependent terms in this computation vanish at r̂ = 1. So we see that

at r̂ = 1 we can have either Ω̄− = 1/L or Ω̄+ = (n − 2)/L, both satisfying the same

BPS bound and both being supersymmetric. In particular, we cannot distinguish these
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configurations according to their energy.5 In the first case the center of mass is rotating

at the speed of light while in the second the center of mass is rotating at a superluminal

velocity. However this should not be an argument for discarding the latter solution since

the center of mass being a geometrical construction can be moving with superluminal ve-

locities as long as every point on the brane is subluminal. The existence of these two BPS

configurations at r̂ = 1, arising from two distinct solution branches raises the question of

what the dual CFT interpretation is of the one connected to the non-BPS branch, and we

briefly comment on this in Sec. C.2 of App. C.

2.3 Construction of finite temperature giant graviton on Sn

In this section we discuss the setup that we employ to obtain thermal spinning giant

gravitons. Beyond the setup and the resulting blackfold equation of motion, this sec-

tion presents the corresponding thermal spinning giant gravitons solutions, the regime of

validity and the extremal limit.

2.3.1 Blackfold action and equation of motion

As explained in the introduction, we aim to study giant graviton solutions of type II string

theory and M-theory as the AdSm × Sn background is heated up to finite temperature,

treating the giant gravitons as probes of these backgrounds, but heating them up to the

same (finite) temperature. This is done by going to the supergravity regime and replacing

the thermal probe branes by an effective description in terms of their stress tensor and

charge current.

The probe brane setup and internal spin

Our first input to set up the problem is the stress tensor and charge current of the black

(n − 2)-brane probes. To leading order in the blackfold approximation the stress tensor

is that of an (n − 1)-dimensional perfect fluid tensor Tab = (% + P )uaub + Pγab where

σa = τ, σ1 . . . , σn−2 label the worldvolume coordinates, ua is the (n− 1)-velocity and γab
the induced metric on the brane. Furthermore, the energy, pressure, entropy density and

local temperature are given by (reviewed in Sec. 1.5.3)

% = T s−P , P = −G
(
1 + (m− 1) sinh2 α

)
, T s = (m−1)G , T =

m− 1

4πr0 coshα
, (2.21)

where G denotes the Gibbs free energy recorded in Eq. (1.79),

G ≡
Ω(m)

16πG
rm−1

0 , (2.22)

with Ω(m) the volume of the unit transverse m-sphere. The parameters of the black

(n − 2)-brane stress tensor and thermodynamics are thus r0, α and the co-dimension of

the brane m + 1. Note that we can replace Newton’s constant G in terms of the tension

5They also satisfy the zero temperature limit of a general Smarr relation that is derived in App. C.1.
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T(n−2) = ((2π)n−2ln−1
p )−1 of the (n−2)-brane using the relation (2.14).6 The black (n−2)-

brane furthermore has the (n−1)-form charge current J(n−1) = ?(n−1)Q(n−2), where Q(n−2)

is the charge

Q(n−2) = (m− 1)G sinhα coshα = N(n−2)T(n−2) , (2.23)

and N(n−2) the number of probe black (n−2)-branes. Again note that current conservation

on the worldvolume implies that N(n−2) is constant.

In order to describe the thermal version of the giant graviton we use the same geomet-

rical setup as in Sec. 2.2. In particular, the giant graviton spatial worldvolume is spanned

by an Sn−2 and it moves around the S1 ⊂ Sn described by the coordinate φ with angular

velocity φ̇ ≡ βnΩ. The size r of the giant graviton and the distance to the equator of

the Sn is described by the θ coordinate, r ≡ L sin θ. As mentioned above, in addition

to heating up the giant graviton configuration, we seek to examine the effects of intrinsic

spin. To incorporate this, we introduce a set of directional cosines on the spatial part of

the induced metric of the worldvolume

dΩ2
(n−2) =

∑
i

dµ2
i +

∑
j

µ2
jdφ

2
j ,

∑
i

µ2
i = 1 , (2.24)

where the sum over i runs from 1 to bn/2c, while the sum over j runs from 1 to b(n−1)/2c.
We will now consider the following fluid velocity

kua∂a = ka∂a = ∂τ + ω
∑
i=1

∂φi , k2 ≡ −γabkakb , (2.25)

where ω = 0 corresponds to the fluid being at rest ua∂a ∼ ∂τ . We thus take the maximally

symmetric situation with equal angular velocities in each of the Cartan directions of the

Sn−2, and, for reasons explained below we will assume that n is odd. We then have the

norms

k2 = |kw.v.|2 −W2 , W ≡ ωr |kw.v.|2 ≡ |∂τ |2 = 1− (ΩL)2 + V2 V ≡ Ωr . (2.26)

Note that for n even the first expression above would depend on one of the direction cosines

µn/2, leading to a Killing vector with a norm that is angular dependent. In analogy with

the neutral blackfold solutions reviewed in Sec. 1.4.3, this will lead to an inconsistency in

the EOM. We can therefore only consistently switch on internal spin for the D3 and M5-

brane, where the branes wrap odd-spheres. The results below still hold for the M2-brane

provided one sets the internal angular velocity ω to zero.

Thermal giant graviton equation of motion

We will now derive the EOM for the thermal spinning giant graviton. We derive the EOM

from the worldvolume action found in Eq. (1.119). The (non-dilatonic) action takes the

form

I =

∫
R×S(n−2)

{
?P +Q(n−2)P

[
A(n−1)

]}
, (2.27)

6Note that for this one uses 16πG = (2π)m+n−3lm+n−2
p , where we recall that for the IIB string theory

case l8p = g2
s l

8
s .
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where R denotes time, P
[
A(n−1)

]
is the pull-back of the background gauge field A(n−1)

(2.7) to the worldvolume, and Q(n−2) = N(n−2)T(n−2) is the total charge of the giant

graviton (cf. (2.23)). We also remark that since the (n − 2)-brane is expanded on the

(n−2)-sphere the local temperature has a redshift as compared to the global temperature

T of the background space-time that we are probing, i.e. T = T/k (see also Sec. 1.3.3).

Using the embedding given above, and employing the SO(n − 1) symmetry of the

configuration, the action takes the form

βIE = −Ω(n−2)r
n−2

(
|kw.v.|P + rΩQ(n−2)

)
, (2.28)

where we have gone to Euclidean space and the factor β = 1/T results from the integration

over Euclidean time. The EOM is obtained by varying the action keeping fixed the global

temperature T , angular velocities Ω, ω, and the charge Q(n−2). Using the definitions in

(2.26) and the identity δr logP = −(T s/P )δr log k, we find after some algebra the EOM

in the form

(n− 2)
(
k2 +W2

)
+ V2 +

k2 +W2

k2
R1

(
W2 − V2

)
+ (n− 1)V

√
k2 +W2R2 = 0 , (2.29)

where we have introduced the two dimensionless ratios

R1 ≡
T s
P

=
1−m

1 + (m− 1) sinh2 α
, and R2 ≡

Q(n−2)

P
=

(1−m) sinhα coshα

1 + (m− 1) sinh2 α
. (2.30)

Conserved quantities

Given a solution of the EOM (2.29), the configuration has a number of conserved quan-

tities. For use below, we present the (off-shell) expressions of these conserved quantities,

which follow from the general results for blackfolds in flux backgrounds, derived in Sec.

1.7.1. Upon direct evaluation, these are found to be

E =
Ω(n−2)r

n−2

|kw.v.|k2

[
%|kw.v.|2 + P

(
|kw.v.|2 − k2

)]
, S =

1

T
(m− 1)Ω(n−2)G|kw.v.|rn−2 ,

J = EΩρ2 +Q(n−2)Ω(n−2)r
n−1 , S =

Ω(n−2)Gωrn|kw.v.|
k2

. (2.31)

Here E is the energy, S the entropy, J the angular momentum along the S1 ⊂ Sn, and

Si =
2

n− 1
S , i = 1, . . . (n− 1)/2 , (2.32)

are the intrinsic angular momenta on Sn−2. Here and in the following we have also

introduced ρ ≡
√
L2 − r2 and we remind the reader that %, P , G are defined in (2.21),

(2.22). In App. C.1 we check that the Euclidean action in (2.28) satisfies βIE = E−TS−
ΩJ − ωS along with a Smarr relation. The equation of motion is therefore equivalent to

requiring the first law of thermodynamics for the specific configuration as expected.
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2.3.2 Solution space and thermodynamics

We now describe the solution space of the EOM (2.29). We work in the ensemble with

given temperature T , fixed charge (number of (n − 2)-branes) Q(n−2) and intrinsic spin

S. We now explain how the norm of the fluid killing vector k can be used to (formally)

parameterize the solution space. For a given k,R1,R2 and W we can solve the EOM

(2.29) for V since it is a simple quadratic equation,

V±(k,W) =
1

2

(n− 1)R2

√
k2 +W2 ∓

√
D(n)
W

(R1 − 1)k2 +R1W2
k2 , (2.33)

with

D(n)
W =

(
k2 +W2

) [
4

(
n− 2 +

R1

k2
W2

)(
R1 − 1 +

R1

k2
W2

)
+ (n− 1)2R2

2

]
. (2.34)

In analogy to the DBI giant graviton, we will refer to the two solution branches as the

lower (−) and upper (+) branch respectively. At the end of this section, we show that for

zero intrinsic spin and zero temperature the lower branch reduces to the standard 1
2 -BPS

giant graviton. Similarly the upper branch reduces to the upper brach of the DBI analysis

(2.16). Using (2.26) we can now find the expression for respectively r̂ ≡ r/L, Ω̂ ≡ ΩL and

ω̂ ≡ ωL. One finds

r̂(k,W) =
V√

1 + V2 −W2 − k2
, Ω̂(k,W) =

V
r̂
, ω̂(k,W) =

W
r̂
, (2.35)

where V(k,W) is given by (2.33). Now for a given value of k we can (explicitly) work

out the values of R1 ≡ R1(k) and R2(k) and (implicitly) the value of W ≡ W(k) by the

requirement that Q(n−2), T and S are kept fixed. This will be explained in the following.

First of all, we can determine the value of R1 and R2 (see (2.30)) for a given k. To

this end, we introduce the parameter φ ≡ 1/ cosh2 α. The charge quantization condition

(2.23) can then be rewritten as

φm−2 − φm−3 +
(m− 3)m−3

(m− 2)m−2
sin2 δ = 0 , sin δ =

(
T̂

k

)m−1

, (2.36)

with

T̂ ≡ T

Tstat
, Tm−1

stat =
1

Q(n−2)G

(m− 1)mΩ(m)

4(4π)m

√
(m− 3)m−3

(m− 2)m−2
. (2.37)

The equation (2.36) is a polynomial of degree m−2 whose solution we will denote by φ(k)

(for simplicity of notation we suppress the T̂ dependence in all expressions below). For

m = 4 (M5-brane on S7), it becomes a simple quadratic equation with solution

(m,n) = (4, 7) : φ(k) = sin2

(
δ(k)

2

)
. (2.38)

In the case of m = 5 (D3-brane on S5), the equation is a cubic equation with solution

(m,n) = (5, 5) : φ(k) =
2

3

sin (δ(k))√
3 cos (δ(k)/3)− sin (δ(k)/3)

. (2.39)
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We will analyse various properties of the D3-brane finite temperature non-spinning giant

graviton in Sec. 2.5 using this equation. Finally, we note that it is not possible to write

down an analytical expression for m = 7 (M2-brane on S4), however, φ(k) can in principle

easily be obtained numerically.

The second parameter W is determined by the (fixed) intrinsic spin S. Rewriting S is

straightforward using the expression in (2.31). We have

S(k,W) = LQ(n−2)Ω(n−2)
φ(k)W

√
k2 +W2

k2
√

1− φ(k)
r̂ (k,W)n−1 , (2.40)

where we recall that r̂ is given in (2.35).This equation does not in general have an analytical

solution but it is a simple algebraic equation in one variable W and its solution is again

easy to obtain numerically. We denote the solution by W(k). The equations (2.33)-(2.37)

and (2.40) formally parameterize the solution in terms of k for given T̂ , Q(n−2) and S.

Range of k

Finally, we need to address the range of k. First of all we note that k necessarily lies in the

range T̂ ≤ k ≤ 1, where the lower bound follows from (2.37) and the upper bound from

the geometric relation r ≤ L. However, this is only a necessary condition and the form of

the solution, notably positivity of the discriminant in (2.34), leads to further restrictions.

In particular, for the non-spinning giant graviton (S = 0) this leads to the restricted range

T̃ ≡ T/Tmax ≤ k ≤ 1. Here Tmax is the maximum temperature that the solution can

have in that case (see App. C.3.1), and we note that T̂ < T̃ because Tstat > Tmax. More

generally, as soon as we turn on spin one finds that the range of possible k values becomes

more intricate but can be computed in principle for given T̂ , S.

As an illustration we give some details on the range of k in App. C.3.1, while we also

refer the reader to Sec. 2.4, where we will plot the solution branches at maximal size r = L

for a representative value of T̂ . This indicates that k goes from 1 (low spin regime) to T̂

(for which the maximum spin is obtained) and a small interval of k’s which is excluded

by the EOM. As a consequence, we see that each of the lower and upper branches, branch

up further into two branches, a low spin and high spin branch.

Physical quantities

Given a spinning giant graviton solution, we can write down the on-shell physical quantities

using the expressions in (2.31). We define a rescaled dimensionless energy, entropy, and

angular momenta by

E ≡ EL

NN(n−2)
, S ≡ STstat

NN(n−2)
, J ≡ J

NN(n−2)
, S ≡ S

NN(n−2)
, (2.41)

and use the dimensionless ratios r̂ ≡ r/L, ρ̂ ≡ ρ/L. Notice that J (respectively S) is the

ratio between orbital (respectively internal) angular momentum and the orbital angular

momentum of the maximal size giant graviton at r = L. We then record the expressions
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of E, S, J and S in terms of k, W, φ(k) and r̂(k,W)

E =
1√

(k2 +W2)(1− φ)

(
1 +

φ

k2
W2 +

φ

m− 1

)
r̂n−2 , S =

φ

T̂

√
k2 +W2

1− φ
r̂n−2 ,

J = Eρ̂
√

1−W2 − k2 + r̂n−1 , S =
φW
√

k2 +W2

k2
√

1− φ
r̂n−1 . (2.42)

The expression for S suggests that maximum intrinsic spin is attained for k = T̂ , which

is confirmed by the analysis in the next section.

Validity of the probe approximation

We now address the validity of the (leading order) blackfold approach in which the (n−2)-

brane is treated in the probe approximation. For the probe approximation to be valid for

our supergravity black (n− 2)-brane probe we must require the transverse length scale rs
of the probe to satisfy the conditions that rs is much smaller than any of the scales rint, rext

and L, where rint and rext are the length scales associated with the intrinsic and extrinsic

curvature of the embedding of the brane, respectively, and L is the length scale of the

AdSm × Sn background. A detailed analysis leads to the (sufficient) requirement (2.3).7

We now examine how these bounds relate to the Hawking-Page temperature THP ∼ 1/L,

above which the AdS black hole background will become dominant over the hot AdS space-

time background. Using the results for the maximal temperature collected in App. C.3.1

we have first of all in the case of zero intrinsic spin that

Tmax ∼ N
1

n−1 , THP ∼ N
1

m−1

(n−2) . (2.43)

Using (2.3), we thus see that in the regime where the probe blackfold approximation is

valid, the maximum temperature of the solution is far above the Hawking-Page tempera-

ture, THP � Tmax. We also remark that when the intrinsic spin is turned on the maximum

temperature decreases.

2.3.3 The extremal limit

To make contact with the standard zero-temperature giant graviton reviewed in Sec. 2.2

we consider here the extremal limit of the above solution. This is obtained by letting

φ→ 0 so R1 → 0 and R2 → −1. Since S = 0 for all W, we expect W to drop out of the

problem.8 Indeed, we should not be able to see intrinsic rotation in the extremal limit,

due to Lorentz invariance of the worldvolume stress tensor. In further detail, we obtain

from the solution (2.33) by setting R1 = 0 and R2 = −1 that

V− = |kw.v.| , V+ = (n+ 1)V− , (2.44)

7We note that the upper boundsN(n−2) � N
m−1
n−1 follow from setting r = L in the necessary requirement

N(n−2) � N
m−1
n−1 (r/L)m−1 (see also [1]).

8Another extremal limit, involving a double scaling, will be considered in Sec. 2.6.
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which are manifestly independent ofW. Using (2.35), we then obtain the lower and upper

branch, respectively

Ω̂− = 1 , Ω̂+ =
n− 2√

(n− 2)2 − (n− 1)(n− 2)r̂2
, (2.45)

which coincides with the angular velocities from the DBI analysis (2.16) (here denoted with

a bar to distinguish them from their thermal counterparts). Using the equations (2.42)

we can now compute the energy and angular momentum associated with the extremal

solution. We find

J̄− = Ē− = r̂n−3 . (2.46)

while for the upper branch, we have

J̄+ = r̂n−3(n− 2− (n− 3)r̂2) , Ē+ = r̂n−3
√

(n− 2)2 − (n− 1)(n− 3)r̂2 . (2.47)

Reintroducing the units using Eq. 2.41, we thus recover the extremal results for the

energy (2.17) and angular velocity (2.18) up to a factor N(n−2) alluding the fact that in

the blackfold analysis we consider a (large) stack of N(n−2) branes (as opposed to the DBI

analysis where we consider only a single brane).

2.4 Thermal spinning giant graviton

In this section we examine the physics of the thermal and internally spinning version of the

giant graviton configuration consisting of an (n− 2)-brane wrapped on an (n− 2)-sphere

moving on the n-sphere of AdSm × Sn. We will start by elucidating some of the main

features of the solution space obtained from the EOM (2.29).

2.4.1 Main features of solution space

As explained in the introduction, from the point of view of the dual field theory, the most

interesting giant graviton configuration is the one close to maximal size, r ' L. In this

section we examine the configuration space at r = L when turning on temperature and

intrisic spin. We mention that in principle it is possible to numerically do a similar analysis

for any r > 0, however, this is not particularly illuminating and such an analysis has thus

been omitted. We expect the general features of the results below to hold for any r.

At r = L the Killing vector k only depends onW = ω̂. Substituting the expression for

W in terms of k into (2.33), we obtain the solution for V± = Ω̂± parameterized in terms of

k = (1− ω̂2)1/2 at maximal size. In Fig. 2.3 the angular velocity Ω is plotted as a function

of k for both branches for the D3- and M5-brane, respectively. Here we describe the main

features of the solutions.

As can be seen from the plot, there is a small range of values of k which admits no

solutions to the EOM. Therefore each branch splits up into a low spin branch and a high

spin branch9. At low spin the angular velocity Ω± and thermodynamics get small quadratic

9This effect can also be deduced by looking at the behavior of the quantity DW in (2.34), see App. C.3.
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spin corrections. This is simply because the conserved quantities depend quadratically on

the spin parameterW except the intrinsic angular momentum which only depends linearly

on W to lowest order. However, these corrections will be sub-leading to the thermal

corrections from the non-zero temperature of the background (see Sec. 2.4.2 below).

In the high spin regime the situation is very different and the solution space is dom-

inated by the effects of internal spin. As already pointed out in Sec. 2.3.2, the maximal

value for the intrinsic angular momentum is attained as k → T̂ . This can also be seen

from the plots in Fig. 2.3. As k approaches T̂ , we see that the angular velocity Ω− crosses

zero and becomes negative. In order to examine the solution space near maximal spin we

expand around maximal spin k = T̂ (1 + δ2), δ � 1. It is straightforward to solve the

charge quantization equation (2.36) to leading order in δ. Notice that for k = T̂ , we have

φ
(
T̂
)

=
m− 3

m− 2
. (2.48)

It is now straightforward to compute the thermodynamics for small δ. For the D3 giant

graviton we find to leading order in T̂

E =
2

√
3 T̂ 2

(
1− 4

√
2√
3
δ +O

(
δ2
))

, S =
1

2
√

3 T̂ 2

(
1− 4

√
2√
3
δ +O

(
δ2
))

. (2.49)

Similarly we find for the M5-brane configuration

E =
1

√
2 T̂ 2

(
1− 3

√
3√
2
δ +O

(
δ2
))

, S =
1

3
√

2 T̂ 2

(
1− 3

√
3√
2
δ +O

(
δ2
))

. (2.50)

Note that to leading order T̂S is of order O(T̂ 0). To leading order, the free energy is

therefore equal to the energy. The above relations can be used to eliminate the small

0

3
Ω̂

T̂

k

Ω̂

k

T̂

5

0

Figure 2.3: The angular velocities Ω̂− (black), Ω̂+ (grey), and relative intrinsic angular

momentum S/Smax (dashed) plotted as a function of k for the D3 (left) and M5 (right)

thermal giant graviton configurations. The plots are drawn for T̂ = 0.2 and have been cut

off at k = 0.6 to enhance features.
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expansion parameter δ and write the energy in terms of the intrinsic angular momentum

in the high spin limit. For the D3 giant graviton, we find to leading order in ∆S ≡ Smax−S,

E =
1

L

(
2
√

2

3 · 31/4π2

√
N3ND3

(LT )2
− 4∆S

)
, Smax =

1

3 · 31/4
√

2 π2

√
N3ND3

(LT )2
. (2.51)

where we have re-introduced the physical units using (2.14) and (2.37). Similarly, we find

for the M5-brane

E =
1

L

(
9

8
√

2 π2

(
N4NM5

)1/3
(LT )2

− 3∆S

)
, Smax =

3

8
√

2 π2

(
N4NM5

)1/3
(LT )2

. (2.52)

As is clear from the expressions above, the maximally spinning giant graviton configura-

tions are very heavy objects compared to their non-spinning counterparts.10

2.4.2 Low temperature expansion

In this section we give an approximate solution to the giant graviton EOMs in terms

of the radial coordinate r in a low temperature expansion and without intrinsic spin.

Moreover, we briefly examine the low spin and the maximal spin case for a given r in a

low temperature expansion, respectively.

The low temperature limit with no intrinsic spin: In order to work out the low

temperature expansion we take T → 0, or equivalently φ→ 0 while keeping k finite. First,

since φ � 1, we can immediately solve the charge conservation equation (2.36). Indeed,

in this limit the φm−2 term can be dropped and the solution to (2.36) is given by

φ = Cm

(
T̂

k

)γm
, (2.53)

where

γm =
2(m− 1)

m− 3
and Cm = (m− 3)(m− 2)

2−m
m−3 . (2.54)

Notice that for the values of n and m under consideration, we have γm = γD−n = n − 1.

In the limit with no intrinsic spin, we therefore find the following solution for φ

φ = φ0 k1−n , φ0 ≡ φ|r=L = fnT̂
n−1 , (2.55)

where we have defined fn ≡ CD−n and

f4 =
4

5 · 51/4
, f5 =

2

3
√

3
, f7 =

1

4
. (2.56)

Notice that the limit φ � 1 requires that k � T̂ which is equivalent to r̂ � T̂ . We now

proceed and expand around the extremal solution (2.45). It is straightforward to expand

10We note that the energy in (2.51) is proportional to N2(ND3/N)1/2, while (2.52) is proportional to

N3/2λ
1/6
M in terms of the ’t Hooft like coupling λM defined below (2.3).
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V± with W = 0 in terms of φ. One finds11

V− = k +O(φ2) , V+ = (n− 2)(1− φ)k +O(φ2) . (2.57)

It is seen that for the physically relevant values of n and m, V− gets no first order correction

as was also seen in the D3-brane case. Now using k2 = 1− Ω̂2r̂2 and V = r̂Ω̂, we can solve

for Ω̂

Ω̂− ' Ω̂− +O(φ2), Ω̂+ ' Ω̂+

1−

(
Ω̂+r̂

n− 2

)2

φ

+O(φ2) . (2.58)

where the expressions for the angular velocites Ω̂± at extremality were recorded in Eq. (2.45).

Using Eqs. (2.42) it is now possible to compute the on-shell quantities for the lower

and upper branch, respectively. For the lower branch, we find

E− ' Ē− +
n− 2

n− 1

φ0

r̂2
, J ' J̄− +

n− 2

n− 1

(
ρ̂

r̂

)2

φ0 ,

T̂S− ' φ0 , F− ' Ē− −
(
r̂2 − n− 2

n− 1

)
φ0

r̂2
. (2.59)

where Ē− and J̄− were written down in equations (2.46) and (2.47), and F = F − T̂S is

the normalized (Helmholtz) free energy of the system. Similarly for the upper branch we

find

E+ ' Ē+ +
n− 2

n− 1

(
n− 2

Ω̂+

)n−2(
n− 1− n− 2

r̂2

)
φ0 , J+ ' J̄+ −

n− 2

n− 1

(
n− 2

Ω̂+

)n−1(
ρ̂

r̂

)2

φ0 ,

T̂S+ '

(
n− 2

Ω̂+

)n−2

φ0 , F+ ' Ē+ +
n− 2

n− 1

(
n− 2

Ω̂+

)n−2(
(n− 1)(n− 3)

n− 2
− n− 2

r̂2

)
φ0 ,

(2.60)

with Ē+ and J̄+ given in equations (2.46) and (2.47). If needed, it is easy to reintroduce

the dimensions and write the expression in terms of the physical quantities. Simply use

that

φ0NNM2

(LT )3
=

√
2 25π3

33
N

3/2
M2 ,

φ0NND3

(LT )4
= π4N2

D3 ,
φ0NNM5

(LT )6
=

27π6

36
N3

M5 . (2.61)

We now express the free energy F = E − TS on the lower branch in terms of the angular

momentum. We find

FM2 =
J

L
−
√

2 25π3

34
N

3/2
M2 L

2T 3 +O(T 6) ,

FD3 =
J

L
− π4

4
N2

D3L
3T 4 +O(T 8) ,

FM5 =
J

L
− 26π6

37
N3

M5L
5T 6 +O(T 12) .

(2.62)

11Note that the expressions and manipulations pertaining to this section only apply to the physical

values of n and m.
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We observe that, to leading order, the difference F − J/L is proportional to the free

energy of the field theories living on the giant graviton branes [98]. In this connection,

we note that it is non-trivial that the J-dependence has cancelled out in this difference.

It is straightforward to write down similar expressions for the upper branch, however, the

resulting expressions involve complicated functions of the angular momentum multiplying

the thermal corrections, so we omit them here.

Finally, we compute the ratio J/E for the lower branch. We find

JM2

EM2
= L−

√
2 26π3L

34J
N

3/2
M2 (LT )3 ,

JD3

ED3
= L− 3π4L

4J
N2

D3(LT )4 ,

JM5

EM5
= L− 5 · 26π6L

37J
N3

M5(LT )6 .

(2.63)

The first term is recognized as the usual Kaluza-Klein contribution [25] while the second

term is due to thermal effects from the thermal excitations of the (n−1)-dimensional field

theories living on the giant graviton worldvolume.

Stability issues: We now turn our attention to stability. To this aim we consider the

localized giant graviton to be in thermodynamical equilibrium with the background at

temperature T = T̂ Tstat. Moreover, since the total angular momentum J is conserved,

the relevant variables for describing the thermodynamic ensemble are the size of the giant

graviton r, the temperature T , the angular momentum J and the (conserved) total charge

Q = T(n−2)N(n−2). The stable solutions to the blackfold EOMs are then characterized

by the paths in configuration space for which the Helmholtz free energy F = E − TS is

minimized for T , J and Q held fixed. In other words, the stable solutions are determined

by the requirements

F(1) ≡
∂F

∂r

∣∣∣
T,J,Q

= 0 and F(2) ≡
∂2F

∂r2

∣∣∣
T,J,Q

> 0 (2.64)

The first of these equations is equivalent to the EOM (2.29). The formulae (2.42) for the

conserved quantities allows us to obtain the free energy of a (in general off-shell) given

thermodynamical configuration. Therefore, having described the solution space for low

temperatures essentially means that we have solved the first derivative F(1) = 0 of the

off-shell free energy F = E − TS for T̂ � 1, T̂ � r̂ to leading order in T̂ . To analyze

stability, we therefore now compute the second derivative F(2) for both branches around

the on-shell configurations. We find to leading order in φ0

F−(2) '
(n− 3)2r̂n−3

2ρ̂2

(
1−

(n− 2)
(
n2 + 4− 3n− (n− 1)(n− 3)r̂2

)
(n− 1)(n− 3)r̂n−1

φ0

)
, (2.65)

and

F+
(2) '

(n− 3)2 ˆ̄Ω+r̂
n−3

2(n− 2)ρ̂2

(
(n− 1)r2 − (n− 2)− δn(r)φ0

)
, (2.66)
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where the expression for the function δn(r) is easily worked out but is rather cumbersome

and has thus been omitted. Solving for F(2) = 0 determines where a solution goes from

stable to unstable. Since the low temperature expansion is only valid for r � T̂L, we

see that the entire part of the lower branch captured by the low temperature expansion

remains stable. However, the value of r for which the upper branch becomes unstable is

pushed up when we turn on a temperature. Indeed, solving F+
(2) = 0, we find that the

upper branch becomes unstable at

r∗ ' r̄∗

(
1 +

fn
2

√
(n− 1)n−1

n− 3
T̂n−1

)
, (2.67)

where the r̄∗ denotes the extremal radial value for onset of instability recorded in (2.19).

Note also that as a consistency check, the same value of r∗ is obtained by finding the

maximum of J+ in the low-temperature expansion, i.e. ∂J+/∂r|r=r∗ = 0 +O(T̂ 8).

The low temperature limit with low intrinsic spin: Since S ∼ φ (cf. Eqs. (2.42)),

for a given temperature T̂ , the scale set for S is given by φ0. Let us therefore define

S = s φ0. In this way the low spin regime is when s � 1. In this regime we have

W ∼ s � 1 and k ' |kw.v.|. If we further take the low temperature limit, we find to

leading order

ω̂− = s , ω̂+ =

(
Ω̂+

n− 2

)n
s . (2.68)

In the low temperature regime, the effects of internal spin are first visible to order O(φ2
0).

The expression for the conserved quantities (2.59) and (2.60) are therefore not changed to

leading order.

Low temperature and maximal spin case: For a given T̂ � 1, maximal spin is

attained for k = T̂ . Indeed, the lowest possible value for k is T̂ (cf. the discussion in

Sec. 2.3.2). In the low temperature limit, the middle term in the extrinsic equation (2.36)

dominates and therefore V ' W. We therefore conclude

ω̂ ' ±Ω̂± = 1 +O(T̂ 2) . (2.69)

In the high spin limit we therefore see that the upper and lower branch are on completely

the same footing. The upper branch is rotating in the positive direction while the lower

branch rotates in the negative direction around the S1. As the intrinsic spin is decreased,

the two angular velocities increase so that Ω̂+ goes from 1 to Ω̂+ (+ thermal corrections)

and Ω̂− goes from −1 to 1 (+ thermal corrections). This behavior can also be seen on the

plot in Fig. 2.3. It is easy to work out the maximal spin thermodynamics for any r � T̂ .

One finds the same results as in Sec. 2.4.1 scaled with suitable powers of r̂.

2.4.3 Spinning black hole configuration

Very much as in flat backgrounds, the extrinsic equation allows for stationary Ω =

0 odd-sphere solutions [37] (i.e. configurations with only intrinsic spin and (m,n) =
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{(5, 5), (4, 7)}). In order to make connection with Ref. [37] and related works (see also

Sec. 1.5.2), instead of working in the usual ensemble where we keep T , r and N(n−2) fixed

and determine the one parameter space of solutions parameterized by internal spin S, in

this section we keep the size of the giant graviton r, the temperature T and the global

dipole potential12

Φ(n−2) = Ω(n−2)r
n−2 tanhα , (2.70)

fixed. This amounts to simply taking

αΦ = arctanh

(
Φ(n−2)r

2−n

Ω(n−2)

)
. (2.71)

As we now go along the one parameter family of solutions parameterized by the internal

spin S at fixed r and T , the dipole potential Φ(n−2) will be constant but the charge

Q(n−2) = T(n−2)N(n−2) will vary. For Ω = 0, the extrinsic equation (2.29) takes the simple

form

(n− 2)
(
1− ω2

rr
2
)

= −R1(αΦ)ω2
rr

2 , (2.72)

with the solution

ωr =
1

r

√
n− 2

n− 2−R1(αΦ)
, (2.73)

for the internal angular velocity. The balancing condition (2.73) is the same as the one

obtained for flat backgrounds [37]. This was expected since the coupling to the background

n-form flux is proportional to Ω combined with the fact that the extrinsic EOM is a local

equation. We emphasize that the solution (2.73) represent a stationary bona fide three-

parameter13 black hole solution on AdSm×Sn. Using the formulas (2.31) (by substituting

k = 1 − ω2
RR

2 with α fixed), it is possible to obtain the expressions for the black hole

mass and thermodynamics in a straightforward manner. However, note that although the

balancing condition (2.73) is equivalent to the balancing equation for odd-sphere solutions

in flat backgrounds, the thermodynamics is not the same due to the non-trivial (global)

background geometry. In particular the curvature of the Sn will introduce a tension term

in the Smarr relation [1]. Also note that the angular momentum J of these configurations

is not vanishing (as it would trivially be in flat backgrounds) due to the presence of the

background flux.

If we want to determine the stationary Ω = 0 solutions for a given charge Q(n−2) (i.e.

switch back to the canonical ensemble), in addition to Eq. (2.73) we must also impose

(2.36). This gives an implicit equation for ωr which is neither captured by the high spin

regime nor the usual low temperature regime. However, it is easy to see that a solution

exists by continuity (which can also be seen on the plot in Fig. 2.3) and obtaining the

solution is straightforward numerically.

12Notice that the expression only holds for Ω = 0, see [37].
13Described by parameters (r, r0, α) or through a set of transformations (captured by Eqs. (2.21),(2.70))

the physical parameters (r, T,Φ(n−2)).
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2.5 The non-spinning giant graviton on AdS5 × S5 - Finite

temperature effects

Here we describe the details of the solution space of the non-spinning (S = 0) AdS5 × S5

thermal giant graviton expaned into the S5 following [1].

2.5.1 The solution space

As explained in Sec. 2.3.2 and App. C.3.1, in the non-spinning case k is confined to region

1 in the range

T̃ ≤ k ≤ 1 , (2.74)

with T̃ ≡ T/Tmax where the maximum temperature Tmax < Tstat is given by

Tmax =

(
8
√

5

27π2

TD3

ND3

) 1
4

, T̃ 4 =
3
√

3

2
√

5
T̂ 4 . (2.75)

The solution
(
r±(k); Ω±(k)

)
to the D3 giant graviton EOM takes the form

Ω̂±(k) =

√
8k2(1 + ∆±) + 1− 8∆±

1− 8∆±
, r̂(k) =

3k√
1− 8∆± Ω±(k)

, (2.76)

where ∆± ≡ ∆±
(
φ(k)

)
is defined in (C.23) (with ω = 0) and where φ = φ(k) is a func-

tion of k through the charge quantization equation (2.39). Using the expressions in Eqs.

(2.42) with W = 0 and k = |kw.v.|, we can compute the (off-shell) thermodynamics of the

configuration. The parameterization (2.76) now lets us compute the on-shell thermody-

namics for the non-spinning thermal giant graviton on the S5 of AdS5 × S5. In Fig. 2.4

we have depicted (r̂,F) as well as (r̂,J) for various values of T̂ (similar plot for the rest

of the thermodynamics variables and the angular velocity Ω can be made but have been

omitted here). Note that the corresponding plots for the energy in the extremal case were

given in Fig. 2.1. We now describe some of the salient features of the solution space. At

the upper bound in (2.74), we have r = L and Ω̂− ≥ 1 and Ω̂+ ≤ 3 where the equal

sign applies at extremality. Furthermore, we observe that the values of r are restricted to

0 ≤ rmin ≤ r ≤ L, and rmin approaches L as the maximum temperature is approached.

The minimal size thermal giant graviton rmin lies on the lower branch (the black curve

in Fig. 2.4), which curves back to meet the upper branch (the grey curve) in the point

corresponding the to lower bound k = T̃ .14

That the minimal size of the giant graviton is greater than zero is an important con-

sequence of the finite-temperature physics of the giant graviton. For the extremal giant

graviton the two branches meet in the singular solution r = 0 which in turn corresponds

to the graviton particle with same angular momentum. What we see at finite temperature

is that: a) there is a minimal possible size rmin of the giant graviton and b) unlike in the

extremal case, it is possible to move in the solution space from one branch to another

14Note that r−(k)→ r+(k) for k→ T̃ since φ(k)→ 4/9 so D
(
φ(k)

)
→ 0 for k→ T̃ (cf. (C.24)).
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Figure 2.4: F versus r̂ (left plot) and versus J (right plot) for the two solution branches

of thermal giant gravitons.

since the meeting point of the two branches at r̃ is not a singular solution. Note that the

fact that the thermal giant graviton attains a minimal possible size has an analogue in the

thermal BIon as well as in the thermal Wilson line cases studied in [48; 49; 54].

2.5.2 Stability

To address the stability we turn our attention to the on-shell free energy plotted in the

Fig. 2.4. Just as in the extremal case where the maximal (minimal) energy E is obtained

for maximal (minimal) angular momentum J we see that in the thermal case the maximal

(minimal) free energy F is obtained for maximal (minimal) angular momentum. This can

be seen by doing a (F, J) plot, however, the plot looks very similar to 2.2 for the entire

range of temperatures and has thus been omitted. Comparison of the free energies then

shows that the lower branch is expected to be stable for rJmin ≤ r ≤ L (with Jmin ≤ J ≤ 1)

and the upper branch for rJmax ≤ r ≤ 1 (with 1 ≤ J ≤ Jmax). This is entirely in parallel

with the stability properties of the extremal giant graviton (see Sec. 2.2.2), the difference

being that as a consequence of the finite temperature, a part of the lower branch has

become unstable and there is a minimum angular momentum. Note that it follows that

the minimum size stable thermal giant graviton is thus rJmin , which is greater than rmin

(for which the solution is unstable). We also see that the point where the branches meet

in r̃ is always in the unstable region. On the other hand, the branches also meet in r = L,

but for different values of Ω. The fact that Jmin and Jmax denote the onset of instability in

the lower and upper branch respectively is further corroborated by looking at the turning

points in a (J, Ω̂) plot, which is shown in Fig. 2.5. We see that these boundaries of stability

occur precisely at the turning points where dJ/dΩ = 0, in accord with expectations based

on the Poincaré turning point method (see e.g. [99] and references therein).
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Figure 2.5: Ω̂ versus J for the two solution branches of thermal giant gravitons.

Maximal and minimal angular momentum

We also derive the low temperature limit expression for the maximal and minimal value

of the angular momentum, found on the upper and lower branch respectively. The largest

value of J is exactly attained on the upper branch where it goes from stable to unstable.

So Jmax = J+(r∗). Using this, we find

Jmax =
9

8
−
√

3

2
T̂ 4 +O(T̂ 8) (2.77)

The minimal value of J is attained close to r = 0. This means that an analytical expression

for Jmin is not obtainable from the low temperature expansion (as it is only valid for

r̂ � T̂ ). However, we expect the following behavior for small T̂

Jmin ∼ T̂ β (2.78)

It is then possible to do a fit of the numerically obtained values for Jmin. Doing this one

finds that β ≈ 1.89.

2.6 Null-wave giant graviton

In this section we examine a specific solution of Eq. (2.33), consisting of a zero temperature

excitation of the usual extremal giant graviton obtained by taking a particular limit for

which the fluid velocity becomes null.15 Motivated by this configuration we then write

down an action for null-wave branes and show that the result obtained from varying this

action and approaching zero temperature in a non-trivial way leads to the same solution.

Finally, as an application of this action we obtain the ‘dual’ version of this configuration

expanded into AdSm.

15A similar null-wave on the M2-M5 brane intersection was considered in Ref. [52] using blackfold meth-

ods.
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2.6.1 Extremal giant graviton solution with null-wave

Here we show that the thermal giant graviton solution obtained in Secs. 2.3 and 2.4 admits

a zero-temperature limit which can be regarded as a null-wave excitation of the extremal

giant graviton presented in Sec. 2.3.3. This null-wave limit consists in approaching ex-

tremality by sending φ→ 0 such that

φk−1 = Pk , k→ 0 , (2.79)

while keeping P ≥ 0 and the charge Q(n−2) constant. Note that this zero-temperature

limit is consistent with (2.36). In this particular double scaling limit, the EOM (2.29)

takes the form

(n− 2)W2 + V2 −W2P
(
W2 − V2

)
− (n− 1)VW = 0 , (2.80)

with the corresponding solutions

V± =

(
n− 1±

∣∣n− 3− 2PW2
∣∣

2 (1 + PW2)

)
W . (2.81)

Note that the solution to (2.81) can also be obtained by taking the appropriate limit (2.79)

in the general solution (2.33). As in the extremal case of Sec. 2.3.3 , this results in two

branches of solutions

Ω̂− = ω̂ , Ω̂+ =

(
n− 1

1 + PW2
− 1

)
ω̂ . (2.82)

The off-shell “thermo”-dynamic properties associated with these configurations are ob-

tained from Eqs. (2.31) together with (2.79) and take the following form:

E =

(
1 + Pω̂2r̂2

ω̂

)
r̂n−3 , J = E ρ̂

√
1− ω̂2r̂2 + r̂n−1 , Si =

(
2Pω̂2

n− 1

)
r̂n+1 . (2.83)

Contrary to the usual 1/2-BPS case presented in Sec. 2.3.3, we see that the null-wave giant

graviton caries spin along the Cartan directions of the worldvolume, which vanishes when

the momentum density P vanishes. Also note that T̂S = 0 for the null-wave configuration.

The null-wave excitation of the extremal giant graviton therefore excites (n − 1)/2 new

quantum numbers of equal magnitude. We will now analyze the thermodynamic properties

and stability of both branches (2.82) and compare the results with the extremal giant

graviton.

Lower branch: For the branch of solutions Ω̂−, the requirement that k = 0 implies

that Ω̂− = ω̂ = 1. In fact, this means that not only the center of mass is moving at the

speed of light but also all points in the expanded brane. This was not possible for the

extremal graviton solution of Sec. 2.3.3 as there all brane points are required to move along

a timelike Killing vector field. In this case, using Eq. (2.83), the on-shell thermodynamic

quantities take the form

E = Ē− +
S
r̂2

, J = J̄− +

(
ρ̂

r̂

)2

S , (2.84)
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where Ē− = J̄− denote the energy and angular momentum of the lower branch extremal

giant graviton given in Sec. 2.3.3 and S denotes the sum of all the spins, i.e.,

S =
∑
i

Si = Pr̂n+1 . (2.85)

These relations are of particular interest as they indeed show that this configuration can be

seen as a zero-temperature excitation of the lower branch of the extremal giant graviton.

In Fig. 2.6 we have plotted E versus r̂ and the angular momentum J on the lower branch.

Furthermore, from (2.84) we obtain the relation

E = J + S . (2.86)

This relation is interesting in its own right as it shows, in the case of AdS5 × S5, that we

are dealing with a configuration that exhibits a 1/8-BPS spectrum since it satisfies the

expected BPS bound

D3: E = J + S1 + S2 . (2.87)

Similarly, in the case of AdS4 × S7 the configuration exhibits a 1/16-BPS spectrum

M5: E = J + S1 + S2 + S3 . (2.88)

Notice that if the giant graviton has maximal size, r̂ = 1, the BPS relation (2.86) simplifies

to E = J + P.

Upper branch and comparison between branches: For the upper branch solution

Ω+, one can also solve the constraint k = 0 . The resulting expression is a cubic equation

in ω whose solution can easily be obtained, but is rather complicated, and will not be

presented here. Nevertheless, in the limit in which P vanishes the constraint k = 0 yields

the value ω̂ = ˆ̄Ω+/(n−2), which when inserted into (2.83) gives rise to the thermodynamic

properties of the upper branch of the extremal giant graviton as given in Sec. 2.3.3. The

upper branch solution in (2.82) exhibits a generically non-BPS spectrum for all values of

P. This is clear when looking at Fig. 2.6. Also note that for all P the two branches meet

at r̂ = 1 and therefore the charges E and J are equal at maximum size. The plots for

the upper branch are obtained by solving the constraint k = 0 for the upper branch and

obtaining r̂ (P). The bound on r̂, i.e., 0 < r̂ ≤ 1 implies the bound 1/3 ≤ ω̂ ≤ 1 on ω̂.

These bounds in turn imply that at maximality the total spin S is equal for both branches.

In contrast with the thermal spinning case analyzed in Sec. 2.4 the spin of these null-wave

giant graviton configurations is not bounded from above and from Eqs. (2.84) neither is

the energy nor the orbital angular momentum

Stability: To study the stability of the solution branches (2.82) we employ the method

used in Sec. 2.4.2 which consists in considering the thermodynamic ensemble parametrized

by the size r, the conserved orbital angular momentum J, the conserved spins Si, and the
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Figure 2.6: The energy E versus r̂ (left) and J (right) for the upper (grey) and lower

(black) branch of the null-wave excited giant graviton on AdS5 × S5 with the respective

values of P indicated. The dashed curves correspond to the extremal giant graviton with

no null-wave, P = 0.

conserved total charge Q(n−2), and looking for the configurations that minimize the energy

E. A small off-shell perturbation along r of the angular velocity ω and the momentum

density P, with J, Si and Q(n−2) held fixed, allows us to determine the second derivative

of E with respect to r. For the lower branch this takes the simple form

E−(2) =
(n− 3− 2Pr̂2)2

2ρ̂2(1 + Pr̂2)
r̂n−3 . (2.89)

In the case P = 0 we recover the second variation of the energy for the lower branch

extremal giant graviton found in (2.65) (with φ0 = 0). Since P ≥ 0, we have that E−(2) > 0

for the entire range of r. This means that the lower branch of the null-wave giant graviton

is stable for all 0 ≤ r ≤ 1 as expected for BPS configurations. A similar analysis can be

performed for the upper branch. By expanding out the extremal (P = 0) solution one

shows that the as the null-wave spin is increased from 0, the tresshold value r∗ increases

(from r̂∗ at P = 0). Essentially, as one increases the spin, the range of stability of the

upper brach is decreased.

2.6.2 An action for null-wave branes

In this section we obtain an action for null-wave branes by taking an appropriate limit of

the action (2.27). We begin by stressing that the extremal limit of (2.27) that yields the

DBI action multiplied by a factor of N(n−2) is obtained by sending r0 → 0 and α → ∞
such that the total charge Q(n−2) is held constant. Equivalently, using the parameter φ

introduced in Sec. 2.3.2, the same limit is obtained by sending φ → 0. However, we are

interested in near-extremal situations for which φ is taken to be small but non-zero. In

these cases, the fluid pressure approaches P → −Q(n−2)(1−φ/(n−1)). Using now the low
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temperature expansion obtained in Eqs .(2.53)-(2.54) as φ→ 0, the action (2.27) reduces

to16

I = −Q(n−2)

∫
Wn−1

dn−1σ
√
−γ

1− fn
n− 1

(
T̂

k

)n−1
+

∫
Wn−1

P[A(n−1)] . (2.90)

In the case for which the temperature is taken to zero, the action (2.90) reduces to N(n−2)

times the DBI action plus the Wess-Zumino contribution. When the temperature is non-

zero, it accounts for near-extremal excitations of ground state configurations. Noting that

by definition k = | − γabkakb|
1
2 , the worldvolume stress tensor of the excited state can be

obtained from (2.90) in the usual way and takes the form (cf. Eq. (1.86))

T ab = Q(n−2)fn

(
T̂

k

)n−1(
uaub +

1

n− 1
γab
)
−Q(n−2)γ

ab . (2.91)

From the form of the worldvolume stress tensor it is clear that as T̂ → 0 we obtain the

known result for Dirac branes at zero temperature.

As noted in Sec. 1.5.5, the expression (2.91) suggests the existence of a scaling limit as

T̂ → 0 different from the usual extremal limit. This is obtained by sending T̂ → 0 while

the fluid velocity approaches the speed of light k→ 0 such that√
fn (T̂ /k)

n−1
2 ua →

√
P la , (2.92)

for constant P. Here we have introduced a null-vector la satisfying lala = 0. In this case,

the worldvolume stress tensor of the excitation is given by

T ab = K lalb −Q(n−2)γ
ab , (2.93)

where we have introduced the momentum density K via the relation K = Q(n−2)P.17 The

worldvolume stress tensor (2.93) is that of a null-wave: a zero-temperature excitation of

the Dirac brane worldvolume stress tensor carrying a conserved momentum current along

a null-vector la. When the momentum density K vanishes, one obtains the result for Dirac

branes. For the case of non-zero K, the near-extremal action (2.90) can be exchanged by

a simpler one for which the variational principle holds the momentum density K constant

instead of the temperature T ,18

I = −Q(n−2)

∫
Wn−1

dn−1σ
√
−γ

(
1 +

1

2
Pk2

)
+

∫
Wn−1

P[A(n−1)] . (2.94)

16We have written the action (2.90) adapted to the background space-time and configurations studied

here but we stress that this action is easily generalized for any other background and for the large class of

branes studied in [37].
17The worldvolume stress tensor (2.93) can also be obtained by taking the equivalent limit r0 → 0 and

k→ 0 such that (Ω(n+1)nr
n
0 )

1
2 ka = (16πGK)

1
2 k la [37].

18Note that the variational principle also holds the charge Q(n−2) constant since DaQ(n−2) = 0 and

hence P is also held constant. Further, in order to write (2.94) we have used the fact that the variation of

δφ is given by δφ = −(1/γm)φδ logk . Furthermore, the action (2.94) is general for all p-branes studied in

[37] and for any background space-time if one simply replaces n by p+ 2 .
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The worldvolume stress tensor (2.93) then follows from (2.94) by first obtaining it for

general k and afterwards taking the limit k→ 0. The EOM that follow by varying (2.94)

take the usual form

DaT
ab = 0 , T abKab

µ =
1

(n− 1)!
⊥ µ

νF
νρ1...ρn−1Jρ1...ρn−1 , (2.95)

where Tab now is the null-wave stress tensor. Note that the first equation in (2.95) is

trivially satisfied as a consequence of stationarity [42] and the only non-trivial dynamics

are encoded in the second equation of (2.95). When introducing (2.93) into (2.95) leads

to Eq. (2.80) for the particular embedding geometry of the giant graviton.

Conserved momentum current and spin

The EOM (2.95) that arise by varying the action (2.94) express conservation of the world-

volume stress tensor (2.93) along worldvolume directions and balance of mechanical forces

along transverse directions to the worldvolume. However, the first equation in (2.95) now

splits into two equations

lbDbl
a = 0 , Da (Kla) = 0 . (2.96)

The first equation above requires the null vector la to generate geodesics along the world-

volume while the second equation expresses the conservation of the momentum current.

The momentum current can be integrated in order to obtain a conserved momentum charge

associated with the near-extremal configuration. However this charge is not independent

and is related to the existence of angular momenta along worldvolume directions (spin)

of the configuration. Indeed, for the configurations presented in the previous sections, the

spin along the worldvolume Killing vector field χi can be evaluated using the expression

Si = K
∫
Bn−2

dn−2σ
√
−γ laχai , (2.97)

where Bn−2 is the spatial part of the worldvolume. If the momentum density K vanishes,

the configuration carries no spin. Using (2.97) results in the value for the spin written in

(2.83). The energy and angular momentum along transverse directions to the worldvolume

can be evaluated using the formulae given in [1] together with the worldvolume stress tensor

(2.93).

2.7 Thermal giant gravitons on AdSm

Here we obtain the ‘dual’ version of the giant graviton configuration of Sec. 2.6.1, namely

that of N(m−2) M/D(m − 2)-branes expanded into the Sm−2 sphere of the AdSm part of

AdSm × Sn (but still moving on the S1 inside the Sn). For simplicity we will consider

the non-spinning configuration and only consider intrinsic spin in the last section where

we examine the null-wave limit. We will start by briefly reviewing the corresponding DBI

solution originally considered in [26; 27]
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2.7.1 Extremal giant gravitons on AdSm

We parameterize the AdSm metric according to

ds2 = −f2 dt2 + f−2dy2 + y2dΩ2
(m−2) , f(y) =

1

L̃

√
L̃2 + y2 , (2.98)

where L̃ is related to L through (2.2) and the metric on the (m−2)-sphere is parametrized

by coordinates α1, . . . , αm−2. In these coordinates the background gauge field with support

on the S(m−2) takes the form

A(m−1) = −y
m−1

L̃
dt ∧Vol(m−2) . (2.99)

The dual giant graviton configuration now spans the surface y = r while moving on the

equator of the Sn (as a point) with constant angular velocity Ω. In detail, we use the

embedding

y = r , t = τ , φ = βnΩτ , α1 = σ1 , . . . , αm−2 = σm−2 . (2.100)

The induced metric on the worldvolume takes the same form as the in (2.9), but now with

k =
√
R2

0 − Ω2L2 , (2.101)

where the (gravitational) redshift factor R0 is given by R0 = f(r). Notice that k is

not bounded from above as was case of the giant graviton expanded in Sn. The DBI

Lagrangian now takes the form19

L = Ω(m−2)T(m−2)r
m−2

(
−k +

r

L̃

)
. (2.102)

It is now straightforward to derive the resulting EOM and conserved quantities. Just as

for the giant graviton expanded into the Sn, we find two branches of solutions for the giant

graviton on AdSm,

Ω− =
1

L
, Ω+ =

1

L

√
(m− 2)2L̃2 + (m− 1)(m− 3)r2

(m− 2)L̃
, (2.103)

using the relation (2.2) between L and L̃. We notice that the upper branch Ω+ in un-

bounded since the size of the giant graviton r is unbounded (which is not true for its Sn

counterpart). It is now possible to compute the energy E and angular momentum J . In

particular on the lower branch the configuration carries the same quantum numbers as its

Sn cousin,

Ē− = J̄− = rm−3 . (2.104)

Moreover, analysis of the stability properties of the two branches à la Sec. 2.2.2 shows

that the lower branch is stable while the now the entire upper branch is unstable. Finally

it can be shown that the lower branch is 1/2 BPS (in accordance with (2.104)) and that

the entire upper branch is not BPS.

19Notice that in accord with [26] we here consider the anti-brane i.e. the sign on the term coming from

the WZ term has been reversed.
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2.7.2 Construction of thermal giant graviton on AdSm

Here we consider the non-spinning thermal version of the giant graviton on AdSm. The

technology developed for the canonical giant graviton of Sec. 2.3 carries directly on to

the AdS giant graviton, with the only differences being the geometrical setup and the

introduction of the non-trivial redshift factor R0. The action (1.119) yields the following

Euclidean action for the configuration

βIE = −Ω(m−2)r
m−2

(
kP +

rQ(m−2)

L̃

)
, (2.105)

where we again note that Q(m−2) denotes the anti-brane charge. Notice that the thermody-

namics now is that of a black (m−2)-brane of co-dimension n−1. The thermodynamics is

therefore simply obtained by substituting m→ n in the expressions (2.21), (2.22), (2.23).

Moreover the charge quantization condition for the (m− 2)-branes can be written in the

form (2.36), again with the substitution m→ n. Varying the action (2.105) wrt. the size

of the configuration r, we obtain the following EOM

(m− 2)L̃2k2 + r2 (1−R1) + (m− 1)L̃krR2 = 0 (2.106)

We briefly examine the solution space for the thermal D3 giant graviton on AdS5 in the

next section. In Sec. 2.7.4 we compute the solution and associated thermodynamics in

the low temperature limit for general (m,n).

Using Eqs. (2.42) we can now compute the (in general off-shell) expressions for the

the energy E, angular momentum J , and entropy of the configuration. We obtain

J =
Ω Ω(m−2)r

m−2%

k
, E =

R2
0J

Ω
−

Ω(m−2)Q(m−2)r
m−1

L̃
, S =

1

T
(n−1)Ω(m−2)skr

m−2 .

(2.107)

In parallel with (2.41), we define r̂ ≡ r/L̃, Ω̂ = LΩ, and the dimensionless rescaled

variables

J =
J

N(m−2)T(m−2)L̃m−2L
, E =

E

N(m−2)T(m−2)L̃m−2
, S =

TstatS

N(m−2)T(m−2)L̃m−2
. (2.108)

In terms of these variables, the thermodynamics takes the form

J =
Ω̂

k
√

1− φ

(
1 +

φ

m− 1

)
r̂m−2 , E =

1 + r̂2

Ω̂
J− r̂m−1 , T̂S =

φk√
1− φ

r̂m−2 . (2.109)

2.7.3 Thermal giant graviton on AdS5 - finite temperature effects

Analogously to the S5 case examined in Sec. 2.5, we find from (2.106) (note that now

L = L̃)

r̂±(k) =
3k√

1− 8∆±
, (2.110)

where Ω± takes the same form as for the S5 case given by Eq. (2.76). We note that, as

opposed to the non-spinning configuration expanded on S5 whose maximal temperature
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Figure 2.7: Left: The free energy F versus r̂ ≡ r/L̃ for the lower (black) and upper (grey)

solution branches of the extremal giant graviton on AdS5, respectively. Right: The angular

velocity versus the angular momentum J for the two solution branches.

is given by Tmax, the maximal temperature of the giant graviton configuration on AdSm
is simply Tstat. Using the obtained parametrization of the solution space, we obtain the

on-shell thermodynamics of the configuration. In the left plot of Fig. 2.7 we have plotted

the rescaled free energy F as a function of r̂. As with the giant graviton on Sn, we see

that the there is a minimal size of the thermal configuration. However, as already noted,

there is no upper bound on the radius of the configuration. Moreover, in the right plot of

Fig. 2.7, we have plotted the angular velocity Ω versus the angular momentum J. We see

that the as in S5 case, the angular momentum of the thermal giant graviton on AdS5 is

bounded from below by a non-zero value. However, as with the size r, there is no upper

bound on J. In accordance with the arguments presented in 2.5, we see that when turning

on temperature, the lowermost part of the lower branch becomes unstable (at the turning

point) while the entire upper branch stay unstable at finite temperature.

2.7.4 Low temperature expansion

Here we work out the low temperature solution to the extrinsic equation on the lower

branch, which is the most interesting as the entire upper branch is unstable. In the low

temperature limit, the solution to the charge quantization equation is given by

φ = φ0k
m−1 , φ0 = fmT̂

m−1 , (2.111)

where fm is given in Eq. (2.56). As for the giant graviton on Sn, we find that the angular

velocity on the lower branch is unchanged to leading order,

Ω− = 1 +O(φ2
0) . (2.112)
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Also we see that the expansion is valid as long as T̂ � r. We can now compute the low

temperature thermodynamics. We find

E− ' Ē− +
m− 2

m− 1

(
1 + r̂2

r̂2

)
φ0 , J ' J̄− +

m− 2

m− 1

φ0

r̂2
,

T̂S− ' φ0 , F− ' Ē− +

(
m− 2− r̂2

m− 1

)
φ0

r̂2
. (2.113)

We therefore obtain the following relation between F and J on the lower branch

F = J− φ0

m− 1
. (2.114)

This is the same relation as was found on the lower branch of the giant graviton on Sn

(with the substitution m→ n). Correspondingly we find the same relations (2.62) on the

lower branch of the giant graviton on AdSm. Also the relations (2.63) are found to hold in

the AdS case. It is therefore interesting to note that the leading order thermal correction

to the free energy as a function of J and the ratio J/E takes the same form on the lower

branches of the thermal giant graviton on Sn and AdSm, respectively.

2.7.5 Null-wave giant graviton expanded into AdSm

The null-wave action (2.94) takes the simple form

βIE = Q(n−2)Ω(m−2)r
m−2

[
|kw.v.|

(
1 +

1

2
Pk2

)
− r

L̃

]
. (2.115)

Explicit variation and taking the limit k→ 0 leads to the EOM

(m− 2)W2L̃2 + r2 +W2P(1− ω2L̃2)r2 − (m− 1)WL̃r = 0 . (2.116)

This equation admits two branches of solutions as its ‘dual’ version in Sec. 2.6.1. However,

the upper branch of solutions is less interesting as it is never BPS. This is in fact the same

feature observed for the upper branch of the usual 1
2 -BPS giant graviton [1]. Our focus

will be on the lower branch of solutions which takes the simple form of

Ω̂− = 1 , ω̂ = 1 , (2.117)

where we have rescaled ω such that ω̂ = ωL̃.

Thermodynamic properties and stability: Using the formulae for thermodynamic

quantities Eq. (2.97) for the spin of the configuration we obtain the following off-shell

expressions

E =
1

ω̂
R2

0

(
1 + Pω̂2r̂2

)
r̂m−3 − r̂m−1 , T̂S = 0 , (2.118)

J =
1

ω̂

√
1 + r̂2(1− ω̂2)

(
1 + Pω̂2r̂2

)
r̂m−3 , Si =

2

n− 1
Pω̂2r̂m+1 . (2.119)
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For the specific solution (2.117) one can find the relations

E = Ē− +

(
1 + r̂2

r2

)
S , J̄ = J− +

S
r̂2

, (2.120)

implying the BPS bound E = J + S, where S is the sum over all the (n− 1)/2 spins. As

the spin is increased both the energy and angular momentum increase for fixed r̂. The

stability properties can be analyzed using the method outlined in Sec. 2.6.1. In this case

we find for the second variation of the energy on the lower branch

E−(2) =
1

2

(m− 3− 2Pr̂2)2

(1 + r̂2)(1 + Pr̂2)
r̂m−3 . (2.121)

Therefore we see that these configurations are always stable for any value of r as expected

for BPS configurations.



3 | Hydrodynamics of charged black

branes

3.1 Introduction

In this chapter we examine hydrodynamic fluctuations of asymptotically flat charged black

branes in the blackfold approach. The analysis was first presented in the paper [3] and

provides a non-trivial generalization of Ref. [38] to charged branes. In detail, we consider

long-wavelength fluctuations around the black brane solution of Einstein-Maxwell gravity

(which we shall dub the Reissner-Nordström black brane) following the ideas outlined in

Sec. 1.3.2. We solve the full set of Einstein/Maxwell equations to first order in the hydro

derivative expansion and compute the first order dissipative corrections to the effective

stress tensor and charge current. This provides the charge generalizations of the shear and

bulk viscosities along with a charge diffusion transport coefficient not present in the neutral

case. Although expected on physical grounds, the analysis proves that the hydrodynamic

effective blackfold description extends to the charged regime. In particular, we show that

the perturbed event horizon stays regular and that the solution is completely determined

once the boundary conditions (horizon regularity and asymptotic flatness) are imposed

(after a suitable gauge fixing).

As explained in Sec. 1.3.2, the Gregory-Laflamme (GL) instability [100; 101] of the

neutral black string/brane is identified with the unstable sound mode of the effective black-

fold fluid. The instability is already seen to leading order in the effective description i.e.

at the perfect fluid level [57] where leading order dispersion relation yields an imaginary

speed of sound. By computing the first order derivative corrections to the neutral black

brane solution, and subsequently extracting the first order transport coefficients of the

effective fluid, Ref. [38] was able to obtain refinement of the dispersion relation of the

GL instability which showed remarkable agreement with numerical data. In addition, the

agreement was found to be improving with the number of transverse dimensions (suggest-

ing that gravity simplifies in the D →∞ limit, see also [102; 103]). Carrying out a similar

exercise for the charged black brane is interesting for many reasons. First, charged branes

play an important role in string theory and supergravitiy and methods for studying their

stability properities (other than numerical) are interesting for obvious reasons. Secondly,

it is also interesting to investigate the relation between dynamical stability and thermo-

dynamical stability. Thermodynamic arguments show that the Reissner-Nordström black

75
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brane is expected to be unstable for all values of the charge density. Indeed, by com-

puting the specific heat and isothermal permittivity one can show that the requirement

of thermodynamical stability, i.e., that both these quantities are positive (see e.g. [104]),

puts complementary conditions on the charge density on the brane. This effect is not

visible from the leading order (perfect fluid) dynamical analysis, but can explained from

the next-to-leading order hydrodynamical expansion.

In many ways, studying intrinsic fluctuations of branes in the blackfold approach is sim-

ilar in spirit to the well-know hydrodynamical regime of AdS/CFT (the fluid/gravity corre-

spondence) [19]. We also mention that the AdS/CFT fluid/gravity computation analogous

to the one presented here (i.e. hydro fluctuations of the AdS5 Reissner-Nordström black

brane1 of co-dimension 1) was carried out in the papers [105–108]. However, we emphasize

that the computation presented here deals with asymptotically flat black branes of gen-

eral spatial dimension and co-dimension. Recently a connection between the fluid/gravity

correspondence and the blackfold approach has appeared (the so-called “AdS/Ricci-flat

correspondence”) [39; 109]. This was done by constructing a map from asymptotically

AdSd+1 solutions compactified on Td−p−1 to Ricci-flat solutions by replacing the torus

with an (n + 1)-sphere and subsequently performing an analytical continuation d → −n
(while also performing an appropriate Weyl rescaling of the involved geometries). This

allowed the authors of [39; 109] to extract the second order (blackfold) transport coeffi-

cients from the known second order AdSd+1 results [20]. Crucially, one has to know the

analytical dependence of the involved dimensions in order to perform the analytical con-

tinuation and for the map to work. In this connection, we should also mention the work

[70] where the hydrodynamics of the D3 brane was studied. This was done by studying

the hydrodynamics on a cutoff surface parallel to the brane. Placing the cutoff surface

near infinity then reproduces the blackfold approach while moving the cutoff surface near

the AdS5 × S5 throat correctly interpolates to the fluid/gravity correspondance. How-

ever, the possible connection between [70] (if any) and the AdS/Ricci-flat correspondence

is currently poorly understood. Seen in this light, this provides another motivation for

our analysis as it could potentially provide important insights as to how to generalize the

AdS/Ricci-flat correspondance to more general settings including matter fields.

Notation: We use µ, ν to label the D = p + n + 3 spacetime directions. Moreover,

we denote the p+ 1 worldvolume directions of the brane in Schwarzschild coordinates by

xa = (t, xi) and in Eddington-Finkelstein coordinates by σa = (v, σi) with a = 0 . . . p and

i = 1, . . . , p. The co-dimension of the brane is n+ 2. For simplicity of the presentation we

restrict ourselves to the cases where n > 1 due to a slightly different behavior at infinity for

the n = 1 solution. However, treating the special case of n = 1 should be straightforward

using similar considerations as for the neutral case.

1possibly with a Chern-Simons term.



Chapter 3. Hydrodynamics of charged black branes 77

3.2 Reissner-Nordström branes and effective zeroth order

fluid

In this section we review the generalized Gibbons-Maeda solution for q = 0 which was

found in [36]. The generalized Gibbons-Maeda solution describes a black p-brane with

horizon topology Rp × Sn+1 which has electric q-charge diluted on its worldvolume. The

solution was obtained from the Gibbons-Maeda solution [110] through an elaborate double

uplifting procedure. The general solution is given in terms of a metric, a dilaton and a

(q+1)-form gauge field under which (the q-charge diluted on the) black p-brane is charged.

A particularly nice property of the generalized Gibbons-Maeda solution is that the dilaton

coupling a can be treated as a free parameter. This especially means that we are free to

set a = 0. This is of course not possible for the well-known supergravity solutions such

as the D0-Dp system. Moreover, we will restrict ourselves to the q = 0 case (Maxwell

charge).

3.2.1 Reissner-Nordström black branes

As explained above, we consider branes of Einstein-Maxwell theory. The action is

S =
1

16πG

∫
dDx
√
−g

[
R− 1

4
FµνF

µν

]
, (3.1)

where Fµν is the field strength of the Maxwell gauge field Aµ, F = dA. We now present

the boosted Reissner-Nordström black brane solution. The solution is characterized by

p flat spatial directions xi, a time direction t, a radial direction r along with the usual

transverse sphere Sn+1, and finally a uniform boost ua. The metric is given by

ds2 = hB
((

∆ab − h−Nf uaub
)

dxadxb + f−1dr2 + r2dΩ2
(n+1)

)
, (3.2)

where ∆a
b ≡ δab + uaub is the usual orthogonal projector defined by the boost ua. The

two harmonic functions f ≡ f(r) and h ≡ h(r) are given by

f(r) = 1−
(r0

r

)n
, h(r) = 1 +

(r0

r

)n
γ0 . (3.3)

The two parameters r0 and γ0 are related to the thermal and electrostatic energy of the

solution (see below). The parameter B ≡ B(p, n) is given by2

B =
2

n+ p
. (3.4)

Finally the gauge field A is given by

A =

√
N

h

(r0

r

)n√
γ0(γ0 + 1) uadx

a , (3.5)

where N = B + 2 corresponds to the parameter recorded in Eq. (1.71) with a = 0 and

i = 0. Notice that here N does not take integer values. In the next section we review the

thermodynamics and effective blackfold description of this solution.

2The full generalized Gibbons-Maeda solution has an additional parameter A. However, for the non-

dilatonic Reissner-Nordström solution one has A = 2.
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3.2.2 Thermodynamics and effective blackfold fluid

The blackfold theory of branes supporting lower from q charge was reviewed in Sec. 1.5.6.

Here we consider an effective fluid carrying q = 0 charge. The general stress tensor is

given by Eq. (1.93) and it follows that the stress tensor of the system under consideration

takes the form

T ab(0) = T s
(
uaub − 1

n
γab
)

+ ΦQuaub , (3.6)

where γab is the induced metric on the blackfold and where we have used the relation

G = T s/n (which can easily be verified). For our purposes (flat extrinsic geometry), we

have γab = ηab. The above thermodynamic quantities T , s, Q, and Φ are parameterized

in terms of a charge parameter γ0 and the horizon thickness r0:

T =
n

4πr0

√
(1 + γ0)N

, s =
Ω(n+1)

4G
rn+1

0

√
(1 + γ0)N ,

Q =
Ω(n+1)

16πG
n
√
N rn0

√
γ0(1 + γ0) , Φ =

√
Nγ0

1 + γ0
.

(3.7)

Since rn0 ∼ T s, r0 gives us a measure of the thermal energy (density) of the given solution.

In a similar manner γ0 is identified with the thermodynamic ratio,

γ0 =
1

N

ΦQ
T s

, (3.8)

and γ0 therefore measures the electrostatic energy relative to the thermal energy of the

black brane. It is straightforward to indentify the energy density and pressure of the brane,

% =
Ω(n+1)

16πG
rn0
(
n+ 1 + nNγ0

)
, P = −

Ω(n+1)

16πG
rn0 , w =

nΩ(n+1)

16πG
rn0
(
1 +Nγ0

)
, (3.9)

where w = % + P denotes the local enthalpy. Finally the q = 0 current supported by the

p-brane is given by

Ja(0) = Qua . (3.10)

To leading order, the intrinsic blackfold equations take the form of the worldvolume con-

servation equations ∇aT ab(0) = 0 and ∇aJa(0) = 0. For flat extrinsic geometry γab = ηab,

they evaluate to the equations

%̇ = −wϑ, u̇a = −w−1∆ab∂bP, Q̇ = −Qϑ , (3.11)

where ϑ ≡ ∂au
a is the expansion of ua and a dot denotes the directional derivative along

ua. The (first order) equations will be important in the perturbative analysis. As expected,

they will show up as constraint equations when solving the Einstein-Maxwell system per-

turbatively.

3.3 The perturbative expansion

As explained in the introduction, we aim to solve the Einstein-Maxwell system in a deriva-

tive expansion around the solution given in Sec. 3.2. In this section we define the appro-

priate coordinates to handle this problem and explain how the perturbations are classified

according to their transformation properties under SO(p).
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3.3.1 Setting up the perturbation

Before perturbing the brane, we first need to cast the metric (3.2) into Eddington-Finkelstein-

like (EF) form. The reason is two-fold. First, it is essential for the computation that we

can ensure regularity at the horizon and since the Schwarzschild description breaks down

at the horizon, it is clearly more useful to use EF coordinates. Secondly, since a gravita-

tional disturbance moves along null-lines, in order to control the perturbation, we want

the lines of constant worldvolume coordinates to be radial null-curves i.e. grr = 0. This

is exactly the defining property of EF coordinates. For a general boost ua, we define the

EF coordinates σa by

σa = xa + uar?, r?(r) = r +

∫ ∞
r

(
f − hN/2

f

)
dr . (3.12)

Here r? is chosen such that r′? = hN/2/f and r? → r for large r. The first condition ensures

that grr = 0 while the latter is chosen such that the EF coordinates reduce to ordinary

radial Schwarzschild light cone coordinates for large r. Notice that it is possible to write

down a closed form expression for r? in terms of the hypergeometric Appell function F1

r?(r) = rF1

(
− 1

n
;−N

2
, 1; 1− 1

n
; 1− h, 1− f

)
≈ r

(
1− 1

n− 1

rn0
rn

(
1 +

Nγ0

2

))
, (3.13)

where the last equality applies for large r and is valid up to O
(

1
r2n−1

)
. It is nice to

note that the hypergeometric Appell function F1 reduces to the ordinary hypergeometric

function 2F1 in the neutral limit γ0 → 0. Indeed

lim
γ0→0

r?(r) = r?(r)
∣∣∣
γ0=0

≡ r +

∫ ∞
r

(
f − 1

f

)
dr = r 2F1

(
1;− 1

n
; 1− 1

n
; 1− f

)
, (3.14)

which is the r? used in [38]. With this definition of r? we will limit our analysis to the

case for which n ≥ 2. In EF coordinates, the metric (3.2) takes the form

ds2
(0) = hB

((
∆ab − h−Nf

)
uaub dσadσb − 2h−N/2 ua dσadr + +r2dΩ2

(n+1)

)
. (3.15)

Here the subscript indicates that the metric solves the Einstein-Maxwell equations to

zeroth order in the derivatives. Notice that in these coordinates the gauge field will acquire

a non-zero Ar component . However, we shall work in a gauge where this component is

zero. We therefore take

A(0) =

√
N

h

(r0

r

)n√
γ0(γ0 + 1) uadσ

a , and in particular A(0)
r = 0 , (3.16)

Having determined the EF form of the metric and gauge field, we are now ready to set up

the perturbative expansion.

In accordance with the general blackfold philosophy outlined in Sec. 1.2.1, we promote

the parameters ua, r0 and γ0 to slowly varying worldvolume fields:

ua → ua(σa), r0 → r0(σa), γ0 → γ0(σa) . (3.17)
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By slowly varying we mean that the derivatives of the worldvolume fields are sufficiently

small. In order to quantify this, we introduce a set of re-scaled coordinates σaε = εσa,

ε � 1, and consider the worldvolume fields to be functions of σaε . In this way each

derivative will produce a factor of ε. Moreover, two derivatives will be suppressed by a

factor of ε compared to one derivative and so on. Effectively what we are doing is to

consider arbitrary varying worldvolume fields (no restrictions on the size of derivatives)

and “stretching” them by a factor of 1/ε � 1. In this way we will only consider slowly

varying fields and the derivative expansion is controlled by the parameter ε.3 The fields

can now be expanded around a given point P

ua(σ) = ua
∣∣
P + εσb∂bu

a|P +O(ε2) , r0(σ) = r0

∣∣
P + εσa∂ar0|P +O(ε2) ,

γ0(σ) = γ0

∣∣
P + εσa∂aγ0|P +O(ε2) .

(3.18)

We now seek derivative corrections to the metric and gauge field denoted by respectively

ds2
(1) and A(1), so that

ds2 = ds2
(0) + εds2

(1) +O(ε2) and A = A(0) + εA(1) +O(ε2) , (3.19)

solves the equations of motion to order ε. By a suitable choice of coordinates, we can take

the point P to lie at the origin σa = (0,0). Moreover, we can choose coordinates so that

uv
∣∣
(0,0)

= 1, ui
∣∣
(0,0)

= 0, i = 1, ..., p (the rest frame of the boost in the origin)4. In these

particular coordinates, the 0th order metric ds2
(0) takes the form

ds2
(0) = hB

[
−2h−

N
2 dvdr −

(
f

hN

)
dv2 +

p∑
i=1

(dσi)2 + r2dΩ2
(n+1)

]

+ εhB

[
1

hN
rn0
rn

(
n

r0

(
1 +

2f

h
γ0

)
σa∂ar0 +

2f

h
σa∂aγ0

)
dv2

+
B

h

rn0
rn

(
nγ0

r0
σa∂ar0 + σa∂aγ0

)( p∑
i=1

(dσi)2 + r2dΩ2
(n+1)

)

+ 2

(
f

hN
− 1

)
σa∂aui dvdσi − 2

hN/2
σa∂aui dσidr

+
B − 2

hN/2+1

rn0
rn

(
nγ0

r0
σa∂ar0 + σa∂aγ0

)
dvdr

]
,

(3.20)

where we have denoted r0|(0,0) ≡ r0 and γ0|(0,0) ≡ γ0. Clearly the system has a large

amount of gauge freedom. Following the discussion of the definition of r?, we want the r

coordinate to maintain its geometrical interpretation. We therefore choose

g(1)
rr = 0 , (3.21)

and we moreover take

g
(1)
ΩΩ = 0 and A(1)

r = 0 . (3.22)

3In the end of the computation, we of course set ε = 1 and keep in mind that the expressions only hold

as a derivative expansion i.e. for sufficiently slowly varying configurations.
4In these coordinates uv = 1 +O(ε2).
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The background g(0) exhibits a residual SO(p) invariance. We can use this to split the

system up into sectors of SO(p). The scalar sector contains 4 scalars, A
(1)
v , g

(1)
vr , g

(1)
vv and

Trg
(1)
ij . The vector sector contains 3 vectors A

(1)
i , g

(1)
vi and g

(1)
ri . Finally, the tensor sector

contains 1 tensor g
(1)
ij ≡ g

(1)
ij −

1
p(Trg

(1)
kl )δij (the traceless part of g

(1)
ij ). We parameterize

the three SO(p) sectors according to

Scalar: A(1)
v = −

√
Nγ0(1 + γ0)

rn0
rn
h−1av, g

(1)
vr = hB−N/2fvr,

g(1)
vv = h−1fvv, Tr g

(1)
ij = hBTrfij ,

Vector: A
(1)
i = −

√
Nγ0(1 + γ0) ai, g

(1)
vi = hBfvi, g

(1)
ri = hB−N/2fri , (3.23)

Tensor: g
(1)
ij = hBf ij ,

where f ij ≡ fij − 1
p(Trfkl)δij . The parameterization is chosen in such a way that the

resulting EOMs only contain derivatives of fab and aa and will thus be directly integrable.

3.3.2 A digression: Reduction of Einstein-Maxwell theory

Here we explain how it is possible to treat general n and p by integrating out the transverse

non-fluid dynamic directions.

In order to work out the full set of solutions and find the general form of the stress

tensor and current, it is enough to consider fluid dynamic fluctuations in 1+d (2 ≤ d < p)

directions of the brane. In particular, it is enough to consider d = 2. Indeed, since the

background is SO(p) invariant, the correction ds2
(1) will consist of SO(p) invariant tensor

structures. The same holds for the effective blackfold stress tensor and current. In order

to identify these tensor structures, it is enough to consider fluctuations in only 1 + d

directions (time + d flat spatial directions) of the brane. Considering only fluctuations

in 1 + d brane dimensions, the metric is of the form (reduction of the p-brane with n+ 2

transverse dimensions)

ds2 = ds2
(f) + e2ψ(σf )dΩ2

(n+1) + e2φ(σf )
p∑

i=d+1

(dσi)2 , (3.24)

with the one-form gauge field of the form Aµ = Aa(σf ). Here the subscript f means

’fluid’ since the d + 2-dimensional base space with the metric ds2
(f) will contain the fluid

dynamical degrees of freedom in our computations. Integrating out the Sn+1 and Tp−d

(see appendix D.1), the EOMs of the system take the form

R
(f)
ab = Fab + (n+ 1) (∇aψ∇bψ +∇a∇bψ) + (p− d) (∇aφ∇bφ+∇a∇bφ) ,

�ψ + [(p− d)∇bφ+ (n+ 1)∇bψ]∇bψ = ne−2ψ + κ ,

�φ+ [(p− d)∇bφ+ (n+ 1)∇bψ]∇bφ = κ ,

∇aF ab = jb ,

(3.25)

where the tensor Fab, vector ja, and scalar κ are given by

Fab =
1

2
F acFbc − κδab, ja = F ab ((n+ 1)∇bψ + (p− d)∇bφ)) , κ =

FabF
ab

4(p+ n+ 1)
. (3.26)
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Working with these effective EOMs allows us to treat a general number of transverse and

brane dimensions.

3.4 First order equations

In order to compute the effective stress tensor and current and thereby extract the trans-

port coefficients, we need the large r asymptotics of the perturbation functions which are

decomposed and parametrized according to Eq. (3.23). We denote the first order Einstein

and Maxwell equations by

Rµν −
1

2
FµρF

ρ
ν +

1

4(n+ p+ 1)
FρσF

ρσgµν ≡ εEµν +O(ε2) = 0 ,

∇ρF ρµ ≡ εMµ +O(ε2) = 0 .

(3.27)

In this section we will find the solution to each SO(p) sector in turn and explain how the

regularity on the horizon is ensured.

3.4.1 Scalars of SO(p)

The scalar sector consists of seven independent equations which correspond to the vanish-

ing of the components: Evv, Erv, Err,TrEij , EΩΩ,Mv,Mr.
5

Constraint equations: There are two constraint equations; Erv = 0 and Mr = 0. The

two equations are solved consistently by

(n+ 1 + pBγ0) ∂vr0 = −r0(1−Bγ0)∂iu
i , (3.28)

and

(n+ 1 + pBγ0) ∂vγ0 = −2γ0(1 + γ0)∂iu
i . (3.29)

The first equation corresponds to conservation of energy while the second equation can

be interpreted as current conservation. These are equivalent to the scalar conservation

equations given by (3.11) in the rest frame.

We now proceed to solve for the first order correction to the scalar part of the metric and

gauge field under the assumption that the fluid configuration satisfy the above constraints.

Imposing the constraint equations will make Erv and Evv linear related and one is therefore

left with five equations with four unknowns.

Dynamical equations: The coupled system constituted by the dynamical equations is

quite intractable. One approach to obtaining the solution to the system is to decouple the

trace function Trfij . Once Trfij is known, it turns out, as will be presented below, all the

other functions can be obtained while ensuring that they are regular on the horizon.

It is possible to obtain a 3rd order ODE for Trfij by decoupling it through a number

of steps. One way is to use Err to eliminate f ′rv and then take linear combinations of the

5In the reduction scheme outlined in Sec. 3.3.2 we have EΩΩ = Eψ, where Eψ is the EOM for ψ given in

(3.25). Similarly, we have TrEij = TrE(f)
ij − (p− d)hBEφ, where Eφ is the EOM for φ.
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remaining equations. The resulting combinations can then be used to eliminate f ′vv and

f ′′vv such that one is left with two equations in terms of av and Trfij which can then be

decoupled by standard means. The resulting equation is schematically of the form

H
(n,p)
3 (r) [Trfij ]

′′′ (r) +H
(n,p)
2 (r) [Trfij ]

′′ (r) +H
(n,p)
1 (r) [Trfij ]

′ (r) = STr(r) , (3.30)

where H1, H2 and H3 do not depend on the sources (worldvolume derivatives) and the

source term STr only depends on the scalar ∂iu
i. The expressions for these functions are

however very long and have therefore been omitted. After some work, one finds that the

equation is solved by

Trfij(r) = c
(1)
Tr + γ0c

(2)
Tr G(r)− 2(∂iu

i)Trf
(s)
ij (r) , (3.31)

where the terms containing the two integration constants c
(1)
Tr and c

(2)
Tr correspond to the

homogeneous solution. The entire family of homogeneous solutions to Eq. (3.30) of course

has an additional one-parameter freedom which has been absorbed in the particular so-

lution Trf
(s)
ij (r) and been used to ensure horizon regularity6. The function G is given

by

G(r) = p
rn0
rn

(
2 + pB

rn0
rn
γ0

)−1

. (3.32)

The particular solution which is regular on the horizon is given by

Trf
(s)
ij (r) = −r0

n
(1 + γ0)

N
2 αγ0G(r) +

(
r? −

r0

n
(1 + γ0)

N
2 log f(r)

)
(1− βγ0G(r)) , (3.33)

with the coefficients

α = 2B

[
2(n+ 1) + pBγ0

(n+ 1 + pBγ0)2

]
and β = B

[
n+ 2 + pBγ0

n+ 1 + pBγ0

]
. (3.34)

With Trfij given, the equation Err = 0 will provide the derivative of frv,

f ′rv(r) =
r(

2(n+ 1) + pB
rn0
rnγ0

)
h(r)

B
2

d

dr

[
h(r)

N
2 [Trfij ]

′(r)
]
. (3.35)

Since the equation is a 1st order ODE, the regularity of the horizon is ensured by Trfij .

Note that it is possible to perform integration by parts and use that the derivative of r?
takes a simpler form. One can thereafter obtain an analytical expression for the resulting

integral. This expression is however rather long and does not add much to the question we

are addressing for which we are in principle only interested in the large r behavior given

by

frv(r) ≈ crv − γ0c
(2)
Tr

G(r)h(r)(
2 + pB

rn0
rnγ0

) + (∂iu
i)
∞∑
k=1

rnk0

rnk

[
α(k)
rv r + β(k)

rv r0

]
. (3.36)

The first two terms constitute the homogeneous solution and the particular solution is

given in terms of the coefficients α
(k)
rv and β

(k)
rv which depend on n, p, and γ0. The first set

of coefficients are given in appendix D.2.

6Note that Eq. (3.30) has been derived under the assumption that ∂iu
i 6= 0. This especially means

that when there are no sources the one-parameter freedom disappears in accordance with (3.31).
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Using the expression for f ′rv in terms of Trfij , the Maxwell equationMv = 0 becomes

a 2nd order ODE for the gauge field perturbation,

d

dr

[
1

rn−1
a′v(r)

]
=

nr2(
2(n+ 1) + pB

rn0
rnγ0

) d

dr

[
1

rn+1
[Trfij ]

′(r)

]
. (3.37)

This equation is solved by a double integration. The inner integral is manifestly regular

at the horizon, one can therefore work directly with the asymptotic behavior of the right-

hand side before performing the integrations. The large r behavior of the perturbation

function is thus found to be

av(r) ≈ c(1)
v rn+c(2)

v +
1

2
γ0c

(2)
Tr G(r)+(∂iu

i)

[
− n

n− 1
r +

∞∑
k=1

rnk0

rnk

[
α(k)
v r + β(k)

v r0

]]
, (3.38)

where the first three terms constitute the homogeneous solution and the particular solution

is given in terms of the coefficients α
(k)
v and β

(k)
v depending on n, p, and γ0. The first set

of coefficients are given in appendix D.2.

The last perturbation function fvv can be obtained from Evv = 0. Using the expression

for f ′rv in terms of Trfij the equation is schematically of the form

d

dr

[
rn+1f ′vv(r)

]
= G1 [Trfij(r)] +G2 [av(r)] + Sii(r) , (3.39)

where G1, G2 are non-trivial differential operators and the source Sii depends on ∂iu
i.

Again, the full expressions have been omitted and we only provide the large r behavior,

fvv(r) ≈ f (h)
vv (r) + (∂iu

i)
∞∑
k=1

rnk0

rnk

[
α(k)
vv r + β(k)

vv r0

]
, (3.40)

with the homogeneous part given by

f (h)
vv (r) = c(1)

vv +
c

(2)
vv

rn
+
rn0
rn

γ0

h(r)

[
2(1 + γ0)

rn0
rn

(c(2)
v − c(1)

v rn0 γ0)− G(r)

2

(
1 + 2γ0 −

rn0
rn
γ0

)
c

(2)
Tr

]
.

(3.41)

The solution is ensured to be regular at the horizon. The coefficients α
(k)
vv and β

(k)
vv depend

on n, p, and γ0. The first set of coefficients are listed in appendix D.2.

Finally, one must ensure that the equations coming from TrEii and the angular di-

rections (EΩΩ = 0) are satisfied. This will impose the following relations between the

integration constants,

c(1)
vv = −2crv , (3.42)

c(2)
vv = −r

n
0

4

(
(n+ p)c

(2)
Tr + 8(1 + γ0)(c(2)

v − c(1)
v rn0 γ0)

)
. (3.43)

This completes the analysis of the scalar sector. The remaining undetermined integration

constants are thus: c
(1)
Tr , c

(2)
Tr , crv, c

(1)
v , c

(2)
v for which crv and c

(1)
Tr will be fixed by requiring

the spacetime to be asymptotically flat while the rest constitute the freedom of the homo-

geneous solution. Note that the above functions reproduce the neutral case as γ0(σa)→ 0.
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3.4.2 Vectors of SO(p)

The vector sector consists of 3p independent equations which correspond to the vanishing

of the components: Eri, Evi and Mi.

Constraint equations: The constraint equations are given by the Einstein equations

Eri = 0 and are solved by

∂ir0 = r0(1 +Nγ0)∂vui , (3.44)

which are equivalent to conservation of stress-momentum. These are part of the conserva-

tion equations given by (3.11) in the rest frame. Similar to above we now proceed solving

for the first order corrections to the metric and gauge field under the assumption that the

fluid profile satisfy the above constraint (3.44).

Dynamical equations: The remaining equations consist of p pairs consisting of one

Einstein equation Evi = 0 and one Maxwell equation Mi = 0. The structure of these

equations is the same as in the scalar sector. The Einstein equation Evi = 0 is schematically

of the form,

L
(n,p)
3 (r)f ′′vi(r) + L

(n,p)
2 (r)f ′vi(r) + L

(n,p)
1 (r)a′i(r) = Svi(r) , (3.45)

while the Maxwell equation Mi = 0 is,

M
(n,p)
3 (r)a′′i (r) +M

(n,p)
2 (r)a′i(r) +M

(n,p)
1 (r)f ′vi(r) = Si(r) . (3.46)

Again the functions Lk and Mk, k = 1, . . . , 3 have been omitted.

To decouple the system we differentiate Evi once and eliminate all ai(r) terms in Mi.

Doing so, one obtains a 3rd order ODE for fvi(r) which can be written on the form,

d

dr

rn+1f(r)

hN

(
1− c1

rn0
rn

)2 d

dr

 rn+1hN+1(
1− c1

rn0
rn

)f ′vi(r)
 = Svi(r) , (3.47)

with

c1 =
N − 1

1 +Nγ0
γ0 . (3.48)

It is possible to perform the first two integrations analytically and ensure regularity at

the horizon. The first integration is straightforward while the second involves several

non-trivial functions. The large r behavior of the fvi function is found to be

fvi(r) ≈ c(1)
vi −

(
1− f(r)

h(r)N

)
c

(2)
vi − (∂vui)r +

∞∑
k=1

rnk0

rnk

[
α

(k)
vi r + β

(k)
vi r0

]
, (3.49)

where the first two terms constitute the homogeneous solution. The first set of coefficients

α
(k)
vi and β

(k)
vi are given in appendix D.2. Notice that the sum vanishes in the neutral limit.
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Once the solution of fvi is given we can use Evi to determine ai,

ai(r) ≈ c(1)
i +

rn0
rn

1

h(r)
c

(2)
vi +

∞∑
k=1

rnk0

rnk

[
α

(k)
i r + β

(k)
i r0

]
, (3.50)

where the first two terms correspond to the homogeneous solution. The first set of coeffi-

cients α
(k)
i and β

(k)
i are given in appendix D.2.

The remaining undetermined integration constants are thus: c
(1)
i , c

(1)
vi , and c

(2)
vi . The

constant c
(2)
vi corresponds to an infinitesimal shift in the boost velocities along the spatial

directions of the brane while c
(1)
i is equivalent to an infinitesimal gauge transformation.

The last constant c
(1)
vi will be determined by imposing asymptotically flatness at infinity.

3.4.3 Tensors of SO(p)

There are no constraint equations in the tensor sector and p(p + 1)/2 − 1 dynamical

equations given by

Eij −
δij
p

Tr(Eij) = 0 . (3.51)

This gives an equation for each component of the traceless symmetric perturbation func-

tions f̄ij ,
d

dr

[
rn+1f(r)f̄ ′ij(r)

]
= −σijrn

(
2(n+ 1) + pB

rn0
rn
γ0

)
h(r)

B
2 , (3.52)

where

σij = ∂(iuj) −
1

p
δij∂ku

k . (3.53)

The solution is given by,

f̄ij(r) = c̄ij − 2σij

(
r? −

r0

n
(1 + γ0)

N
2 log f(r)

)
, (3.54)

where horizon regularity has been imposed and the constant c̄ij is symmetric and traceless

and will be determined by imposing asymptotically flatness.

3.4.4 Comment on the homogeneous solution

We have now obtained the solution to the Einstein-Maxwell equations for any first order

fluid profile which fulfill the constraint equations. These have been provided in large

r expansions and are ensured to have the right behavior at the horizon for any of the

remaining integration constants. One remark that is worth mentioning is that fri did not

appear in the analysis above and corresponds to a gauge freedom. This gauge freedom does

not play a role for n ≥ 2, but is expected to play a role for n = 1 to ensure asymptotically

flatness.

We now want to provide some insight into the meaning of the remaining integration

constants. One can separate the constants into two categories; the subset that are fixed by

asymptotically flatness and the subset that corresponds to the ε-freedom of the parameters

in the zeroth order fields. The latter corresponds exactly to the remaining freedom of the

homogeneous solution. In the above the homogeneous part of the fields are given exact.
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One finds that the homogeneous part of the scalar sector corresponds to shifts in

r0 → r0 + εδr0, γ0 → γ0 + εδγ0, and the gauge freedom av → av + εδav of the zeroth

order metric given by Eq. (3.2). Indeed, performing the above shifts and redefining the r

coordinate,

r → r

(
1− εγ0

rn0
rn
nδ log r0 + δ log γ0

n+ ph(r)

)
, (3.55)

such that the angular directions does not receive first order contributions in accordance

with the gauge choice (3.22), one can relate the integration constants to the two shifts and

gauge transformation by,

c
(2)
Tr = 2B (nδ log r0 + δ log γ0) ,

c(2)
v = −nδ log r0 −

1 + 2γ0

2(1 + γ0)
δ log γ0 −

γ0√
Nγ0(1 + γ0)

δav , (3.56)

c(1)
v = − δav

rn0
√
Nγ0(1 + γ0)

.

For the vector sector one finds that the homogeneous part corresponds to the shift of

ui → ui + εδui and the gauge transformation ai → ai + εδai. The first transformation

corresponds to global shifts in the boost velocities. In the same r-coordinate, one has

c
(2)
vi = δui ,

c
(1)
i = − δai√

Nγ0(1 + γ0)
. (3.57)

This accounts for all the ε-freedom in the full solution.

3.4.5 Imposing asymptotically flatness

We now turn to imposing the boundary condition at infinity, namely requiring the solution

to be asymptotically flat. To impose this we must first change coordinates back to the

Schwarzschild-like form. Moreover, we need the fields expressed in Schwarzschild coordi-

nates for obtaining the effective stress tensor and current. In order to change coordinates,

we use the inverse transformation of the one stated in Eq. (3.12). The transformation can

be worked out iteratively order by order. To first order the transformation from EF-like

coordinates to Schwarzschild-like coordinates for a general r0(σa) and γ0(σa) is given by,

v = t+ r? + ε

[
(t+ r?) (∂r0r?∂tr0 + ∂γ0r?∂tγ0) + xi (∂r0r?∂ir0 + ∂γ0r?∂iγ0)

]
+O(ε2) ,

σi = xi + ε

[
(t+ r?)∂tu

i + σj∂ju
i

]
r? +O(ε2) .

(3.58)

It is now possible to transform all the fields to Schwarzschild coordinates and impose

asymptotically flatness. This leads to

crv = 0, c
(1)
vi = 0, c

(1)
Tr = 0, c̄ij = 0 . (3.59)

We now have the complete first order solution for the black brane metric and Maxwell

gauge field that solves the Einstein-Maxwell equations.
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3.5 Viscous stress tensor and current

In this section we will compute the effective stress tensor and current of the first order

solution obtained above. Before doing this, we shall briefly discuss the general form of the

first order derivative corrections to the stress tensor and current.

3.5.1 First order fluid dynamics

We write the stress tensor and the current as

T ab = T ab(0) + Πab
(1) +O(∂2), Ja = Ja(0) + Υa

(1) +O(∂2) , (3.60)

where the perfect fluid terms were written down for our specific fluid in Sec. 3.2.2. The

tensors Πab
(1) and Υab

(1) are the first order dissipative derivative corrections to the perfect

fluid stress tensor and current, respectively. The specific form of Πab
(1) and Υab

(1) are encoded

in the first order correcting solution obtained in the previous section. To first order in the

derivative corrections, the presence of charge introduces no new terms in the dissipative

part of the stress tensor. The most general form of Πab
(1) is therefore given by Eq. (1.31) and

is completely characterized in terms of the shear and bulk viscosities which are associated

with the scalar and tensor fluctuations, respectively. However, note that although the

overall form of Πab
(1) is the same as in the neutral case, the transport coefficients are now

expected to depend on both the temperature and the charge i.e. on both r0 and γ0. Also

note that the viscosities η and ζ are required to be positive in order to ensure entropy

creation in the fluid [111].

Using similar reasoning leading to the first order dissipative stress tensor, it is possible

to show that the most general form of Υa
(1) (in the Landau frame) is given by7

Υa
(1) = −D

(
QT
w

)2

∆ab∂b

(
Φ

T

)
. (3.61)

Here D is the charge diffusion constant which is associated with the vector fluctuations.

Indeed, it is possible to derive that with D > 0, the term (3.61) is the only term which can

be constructed from the fields and that is consistent with the 2nd law of thermodynamics

[111]. Plugging in the values of Φ and T in terms of r0 and γ0 and using the vector

constraint Eq. (3.44), we find that (in the rest frame)

Υv
(1) = 0, Υi

(1) ∼ γ0(1 + γ0)∂vu
i +

1

2
∂iγ0 . (3.62)

Since the derivatives appear in a very specific combination in this expression, this in fact

provides us with a non-trivial check of the blackfold fluid description.

7It is possible to include a parity violating term as was found in [105]. However, since we have no

Chern-Simons term in the theory such a term is not relevant.
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3.5.2 Computing the effective stress tensor and current

Having determined the (large r asymptotics) of the first order corrected black brane so-

lution, the effective stress tensor can now be extracted. This is done by computing the

quasi-local stress tensor (1.13) for the specific setup. Following the prescription outlined

in Sec. 1.2.2, we find

Ttt =
Ω(n+1)

16πG
(n+ 1 + nN(γ0 + ε(δγ0 + xa∂aγ0))) (r0 + ε(δr0 + xa∂ar0))n ,

Tij = −
Ω(n+1)

16πG

(
δij (r0 + ε(δr0 + xa∂ar0))n

+ εrn+1
0 (1 + γ0)

N
2

[
2

(
∂(iuj) −

1

p
δij∂ku

k

)
+

2

p

(n+ p+ 1)(n+ 1)

(n+ 1 + pBγ0)2 δij∂ku
k

])
,

Ttj = −
Ω(n+1)

16πG
rn0n(1 +Nγ0)ε(δuj + xa∂auj) ,

(3.63)

where the expressions are valid to order O(ε).

In a similar manner the current is obtained from large r asymptotics of the gauge fields.

Ensuring that the Lorenz gauge condition ∇µAµ = 0 is satisfied, the current is obtained

using

Ja = lim
r→∞

nΩ(n+1)

16πG
rnAa . (3.64)

One finds

Jt = −
Ω(n+1)

16πG
n
√
N (r0 + ε(δr0 + xa∂ar0))n

√
γ0(1 + γ0) + ε(δγ0 + xa∂aγ0)(1 + 2γ0) ,

Ji =
Ω(n+1)

16πG
n
√
N rn0

√
γ0(1 + γ0)

(
ε
(
δuj + xa∂auj

)
− εr0

γ0(1 + γ0)∂vui + 1
2∂iγ0

n(1 +Nγ0)γ0(1 + γ0)
B
2

+1

)
.

(3.65)

Again these expressions are valid to O(ε). It is now possible to read off the transport co-

efficients. Before doing this, we require that the Landau frame renormalization conditions

Πtt
(1) = Πti

(1) = 0 and Υt
(1) = 0 are satisfied. Equivalently we require the shifts δr0 and δγ0

of the zeroth order solution to vanish. Notice that the stress tensor and current do not

depend on the gauge transformation δaa as they should of course not do. Also recall that

the shifts were related to the integrations constants by (3.56).

Setting δr0 = δγ0 = 0, the shear and bulk viscosities are determined using the form

given by Eq. (1.31),

η =
Ω(n+1)

16πG
rn+1

0 (1 + γ0)
N
2 ,

ζ

η
=

2

p

(n+ p+ 1)(n+ 1)

(n+ 1 + pBγ0)2 . (3.66)

The second term of Ji is seen to have the right proportionality according to (3.62) and

hence using the form of Eq. (3.61) the diffusion constant can be determined,

D =
Ω(n+1)

4G

1 + γ0

nNγ0
rn+2

0 . (3.67)

Notice that all the transport coefficients are found to be positive which is expected for a

consistent effective fluid dynamic theory. We have now obtained the first order derivative

corrections to the effective stress tensor and current.
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3.5.3 Hydrodynamic bounds

We will now check the result of the shear viscosity against the expectation that the trans-

port coefficient should satisfy the well-know bound

η

s
≥ 1

4π
. (3.68)

Using Eqs. (3.7) and (3.66), the system is indeed seen to saturate the bound. This agrees

with the expectation for any two-derivative gravity theory [22; 112].

In addition, it is worth to investigate the bulk to shear viscosity ratio proposed by Ref.

[113],
ζ

η
≥ 2

(
1

p
− c2

s

)
(3.69)

where cs is the speed of sound computed below in Sec. 3.6. Although one should keep

in mind that the proposal of this bound relies heavily on holographic considerations, we

find when using the value given by Eq. (3.76) for the Reissner-Nordström brane, that the

bound is satisfied in the range

0 ≤ γ0 ≤ −
n+ 1−

√
1 + n(n+ p+ 2)

pB
, (3.70)

while for large values of γ0 the bound is found to be violated. If we instead of cs in (3.69)

use the proposed quantity [114; 115]

c2
Q ≡

(
∂P

∂%

)
Q

= − 1

1 + n

[
1 + 2γ0

1 + pB
n+1γ0

]
, (3.71)

computed for fixed charge density Q, we find that the bound will always be violated

(except for the neutral case where cQ = cs). In this regard, one might question the

validity of the stability analysis for the case of a black brane charged under a top-form

gauge field examined in Ref. [37]. Here the dispersion relations were written down using

the assumption that the ζ/η bound proposed by [113] is saturated.

3.6 Stability and dispersion relations

In Ref. [57] the Gregory-Laflamme instability was successfully identified with the unstable

sound mode of the neutral black brane. This analysis was further refined in [38] and

considered for branes charged under top-form gauge fields in [37]. In this section we address

the issue of stability and dispersion of long-wavelength perturbations of the Reissner-

Nordström black brane. Moreover, we comment on the connection to thermodynamic

(in)stability.
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3.6.1 Dispersion relations

It is straightforward to show that the first order fluid (conservation) equations take the

form

%̇ = −(w − ζϑ)ϑ− 2ησabσ
ab , u̇a = −

∆ab∂b(P − ζϑ)− 2η∆a
b∂cσ

bc

w − ζϑ
,

Q̇ = −Qϑ+ D

(
QT
w

)2 (
ϑub + u̇b + ∆ab∂a

)
∂b

(
Φ

T

)
,

(3.72)

where the transport coefficients and the factor associated to D are coefficients in the

derivative expansion and should be treated as constants. In order to find the speed of

sound and dispersion relations, we consider small long-wavelength perturbations of the

fluid

Φ→ Φ+δΦ ei(ωt+kjx
j), T → T +δT ei(ωt+kjxj), ua = (1, 0, . . . )→ (1, δui ei(ωt+kjx

j)) .

(3.73)

The charge density Q, energy density %, and pressure P are perturbed according to

Q → Q+ δQ ei(ωt+kjxj), %→ %+ δ% ei(ωt+kjx
j), P → P + δP ei(ωt+kjx

j) , (3.74)

where the amplitudes can be expressed in terms of thermodynamic derivatives that depend

on the specific equation of state. Note that δp = QδΦ+sδT as a consequence of the Gibbs-

Duhem relation. Plugging the expressions into the first order fluid equations (3.72) and

linearizing in the amplitudes, we obtain the p+ 2 equations

iω

((
∂%

∂Φ

)
T
δΦ +

(
∂%

∂T

)
Φ

δT
)

+ iwkiδu
i = 0 ,

iwωδuj + ikj (QδΦ + sδT ) + kj
(
η

(
1− 2

p

)
+ ζ

)
kiδu

i + ηk2δuj = 0 ,

iω

((
∂Q
∂Φ

)
T
δΦ +

(
∂Q
∂T

)
Φ

δT
)

+ iQkiδui + DT Q
2

w2

(
δΦ− Φ

T
δT
)
k2 = 0 .

(3.75)

We stress that the thermodynamic derivatives are not dynamical and do only depend on

the equation of state of the fluid in question. In our case they can be computed from (3.7)

and (3.9). In order to find the ω that solves this system for a given wave vector ki, we

set the determinant of the system of linear equations in the amplitudes to zero. To linear

order in ki (i.e. at the perfect fluid level) the dispersion relation gives the speed of sound

cs = ω/k. Using the equation of state (3.9) and solving the system to linear order, one

finds

c2
s =

(
∂P

∂%

)
s
Q

= − 1−Bγ0

1 +Nγ0

(
n+ 1 + pBγ0

)−1
. (3.76)

As was found with the p = q branes of supergravity [37], the speed of sound only depends

on the charge parameter γ0. For zero charge γ0 = 0 we recover the neutral result c2
s =

−1/(n+1). Since a negative speed of sound squared signifies an unstable sound mode, the

neutral brane is unstable under long-wavelength perturbations. Indeed, this instability is



Chapter 3. Hydrodynamics of charged black branes 92

0
γ̄0

1

γ0

β

α

Figure 3.1: The qualitative behavior of the sound mode ω = cs(γ0)k + a(γ0)ik2 + O(k3)

given by Eq. (3.79) as a function of γ0. The linear term (speed of sound) is parametrized

according to c2
s(γ0) = |c2

s(0)|α(γ0) while the quadratic term (sound mode attenuation) is

parametrized as a(γ0) = |a(0)|β(γ0). Note that the linear and quadratic term become

positive when the charge density passes the threshold γ̄0 indicated by the vertical dashed

line.

exactly identified with the GL instability [38]. However, as we increase γ0 the speed of

sound squared becomes less and less negative and for

γ0 > γ̄0 =
D − 3

2
, (3.77)

the q = 0 brane becomes stable under long-wavelength perturbations to leading order.

Notice that the condition (3.77) can be satisfied for any non-zero charge density if the black

brane temperature is low enough. Indeed, stability is obtained for T ∼ (GQ)−1/n (where

the exact numerical factor depends on the number of transverse and brane dimensions).

In order to check stability to next to leading order, we now work out the dispersion

relation for the fluid to quadratic order in k. We solve the system of equations to O(k2).

Solving for the longitudinal modes, we find the equation

ω − c2
s

k2

ω
− ik

2

w

(
2

(
1− 1

p

)
η + ζ

)
− ik2

w
D

(
R1

(
k

ω

)2

+
R2

w

)
+O(k3) = 0 , (3.78)

where the coefficientsR1,R2, andR (introduced below) are given in appendix D.3. Solving

for the sound mode(s), we find the dispersion relation

ω(k) = ±csk +
ik2

w

((
1− 1

p

)
η +

ζ

2

)
+ ik2RD . (3.79)



Chapter 3. Hydrodynamics of charged black branes 93

0 γ0
γ̄0

c2
s

b

Figure 3.2: The qualitative behavior of the charge diffusion mode ω = ibk2 as a function of

the charge parameter γ0, where b is given in Eq. (3.80). When b is positive c2
s is negative

and vice versa. The critical point γ̄0 is indicated by the dashed line.

For a general fluid both the first order term (cs) and the second order term must be

positive in order for it to be dynamically stable. In this case, the above equation describes

dampening of the (long-wavelength) sound waves in the fluid. Fig. 3.1 shows the general

behavior of cs and the (second order) attenuation term in (3.79). We see that above the

threshold γ̄0, the speed of sound squared and sound mode attenuation are both positive.

The sound mode is therefore stable to second order. In addition to the sound mode we

have a longitudinal diffusion mode given by

ω(k) = − iDR1

c2
sw

k2 = i
(1 + γ0)1−N

4πT (1−Bγ0)
k2 . (3.80)

We see that in general this mode is stable if and only if R1/c
2
s < 0. In our case this

amounts to the condition γ0 < γ̄0 i.e. the opposite of the condition (3.77) as shown in

Fig. 3.2. The conditions on γ0 for dynamical stability are found to be complementary;

when the sound mode is stable the charge diffusion mode is unstable and vice versa. The

Reissner-Nordström brane thus seems to suffer from a GL instability for all values of the

charge parameter γ0.

Finally, we also have a shear mode which takes the form

ω(k) =
iη

w
k2 . (3.81)

The fluctuations of the shear mode are very simple, they are transverse displacement of

effective fluid with no variations in the charge and energy densities. Notice that this mode

is always stable. It would be interesting for comparison to perform a numerical analysis
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of the long-wavelength perturbations in the current setting as was done in the case of the

neutral brane, where excellent agreement was found.

3.6.2 Thermodynamic stability

The conditions for thermodynamic stability of the Reissner-Nordström black brane are

computed in the grand canonical ensemble since charge is allowed to redistribute itself in

the directions of the brane. Using the thermodynamic quantities in Eqs. (3.7) and (3.9),

one finds the specific heat capacity C and the (inverse) isothermal permittivity c to be,

C =

(
∂%

∂T

)
Q

=

(
n+ 1 + (2− n(N − 2))γ0

(nN − 2)γ0 − 1

)
s ,

c =

(
∂Φ

∂Q

)
T

=

(
1

(γ0 + 1)(1− (nN − 2)γ0)

)
1

sT
.

(3.82)

Thermodynamical stability is obtained if the two quantities are positive. However, these

two conditions are complementary and can never be satisfied. This is also what was found

for the class of smeared Dp-branes considered in e.g. [104]. Indeed, this complementary

behavior is analogous to what was found for the dynamical analysis. However, the critical

value of γ0 where the quantities switch sign is not coinciding for the two analyses. It would

be interesting to further investigate how the instability predicted by the dynamic analysis

and the thermodynamic computation are related thus making a more precise connection

to the correlated stability conjecture in the charged case [104].



4 | Discussion

4.1 Summary

We here summarize some of the main results obtained in this thesis.

Chapter 1: In Chap. 1 we developed an effective long-wavelength theory for extended

black objects in various gravity schemes including supergravity (the blackfold approach).

The theory was naturally formulated in terms of a fluid/elastic derivative expansions in

the collective parameters parameterizing the black brane in question. The dynamics in

the directions parallel to the worldvolume was seen to take the form of a dissipative

relativistic fluid dynamics while the dynamics in the transverse directions were found to

be essentially of elastic nature. Already to leading order (i.e. at the probe level), the

blackfold equations contain a great deal of physics and it was explained how the effective

theory can be used to construct new approximate black hole solutions and to understand

the effective behaviour of black holes vis-à-vis instabilities. It was also explained how the

theory is naturally formulated in a thermodynamical language which is interpreted as the

leading order thermodynamics of the underlying bona fide black hole solution.

It was seen how the effective blackfold theory naturally can be coupled to matter

fields giving rise to additional conserved effective currents. This allowed us to treat black

branes in various supergravity schemes. We also argued that the effective theory in the

supergravity regime is not inherently “black” (due to charge) and allows for perturbing

extremal branes. In the extremal limit, the effective theory was seen basically to be a

purely elastic theory with the important exception of the null-wave configurations. In a

supergravity setting, the effective theory also naturally allows for an effective description

of various bound states modeled in terms of anisotropic fluids carrying lower dimensional

currents representing the dissolved brane charges.

Finally we considered the extension of the blackfold approach to more general flux

backgrounds including dilatonic backgrounds. This involved a more rigorous derivation

of the extrinsic equation directly from the Einstein equations (a similar analysis for the

intrinsic perturbations is presented in Chap. 3). We saw how the force terms naturally

appear as modified pole-dipole constraints in the overlap region. Additionally, for the

supergravity p-brane, we managed to write down an action for the effective equation of

motion, which was seen to have exactly the same form as its single brane counterpart

(up to a constant). We also briefly discussed more general force terms for bound state

95
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geometries. Finally, we have derived more general expressions for the conserved global

quantities in background fluxes which will be relevant for the analysis presented in the

next chapter.

Chapter 2: In Chap. 2, we constructed and analyzed the thermal spinning giant gravi-

ton configuration in both type II string theory and M-theory, using the blackfold ap-

proach for (thermal) probe branes. We found various new effects from having a non-zero

temperature which can be attributed to the thermal excitations of the strongly coupled

worldvolume theory living on the expanded brane (in the sense explained in Sec. 2.1).

In particular, we found that the thermal giant graviton has a minimal possible value for

the angular momentum and correspondingly also a minimal finite radius for the wrapping

sphere.

In addition, we saw that the non-zero solution naturally allows for turning on new quan-

tum numbers viz. intrinsic spins. Indeed, these spins are not visible in the usual extremal

analysis since the worldvolume stress tensor is Lorentz invariant at zero-temperature. In

the extremal limit internal spin along the directions of the worldvolume is therefore a

gauge degree of freedom and hence “invisible”. The results of the present work show that

by thermalizing giant gravitons (in the supergravity regime), we find interesting finite

temperature objects in supergravity, exhibiting a variety of new qualitative and quantita-

tive effects. We emphasize that the thermal spinning giant gravitons we have constructed,

consisting of the background together with the thermal probe brane placed in it, are bona

fide solutions of the supergravity equations of motion, to leading order in the blackfold

expansion. This is even true for high temperatures (i.e. also above the Hawking-Page

temperature) as long as T ≤ Tmax and provided that we are in the regime of validity in

which the black brane can be treated as a probe (see Sec. 2.3.2) . However, it would be

interesting to see what happens to our solutions when heated up beyond the Hawking-Page

temperature by repeating the analysis for the corresponding AdS black hole backgrounds.

In this respect we also remind the reader that we, by including internal spins, found a

new stationary black hole solutions with horizon topology Sm × Sn−2 in AdSm × Sn type

II/M-theory backgrounds for (m,n) = (5, 5) and (4, 7). It would be interesting to examine

these further, and perhaps construct the full solution numerically.

Finally, it was explained how the effects from intrinsic spin survive in a certain ex-

tremal limit. This was seen by considering a null-wave double scaling limit, where the

temperature is taken to zero, while the fluid velocity is taken to approach the speed of

light in a well-defined manner. In this way, the thermal excitations survive, even in the

extremal limit. We analyzed the properties of the null-wave giant gravitons and showed

that these configurations in particular exhibit a BPS spectrum. We emphasize that the

objects do not have a weakly coupled counterpart, as the non-spinning configurations do,

despite the fact that they exist at zero-temperature.
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Chapter 3: In Chap. 3, we investigated the nature of the hydrodynamic effective theory

that governs the intrinsic long wavelength fluctuations of the Reissner-Nordström black

brane. Our analysis has extended the established cases of the interrelation between gravity

and fluid dynamics. Although the analysis of Sec. 3.4 is quite technical, the problem at

hand provides the purest example of a black brane carrying charge. With the extraction

of the effective stress tensor and current, our analysis has provided the generalizations of

the known neutral shear and bulk viscosities. We find that the shear viscosity receives the

expected modification such that η/s = 1/4π. Note that the entropy has the form as given

in Eq. (3.7) for the entire family of generalized Gibbons-Maeda black branes, we therefore

expect the result for η given by (3.66) to hold in general. In particular, this includes the

case of the D3 brane. The bulk viscosity was found to be non-zero positive for all values of

the charge as expected since the effective fluid is not conformal. The ζ/η bound proposed

by Ref. [113] was found to be violated for certain values of the charge parameter, while it

was demonstrated to violate the bound proposed in [114] in the entire range of non-zero

γ0, thus providing a counter-example. Finally, we computed the charge diffusion constant

D of the Reissner-Nordström black brane. We note that, as with the shear viscosity η, the

value of D given in (3.67) only depends on N which could be an indication that the result

will hold for more general cases where e.g. the black brane is charged under higher form

gauge fields.

Finally, the speed of sound was found to be imaginary for small charge densities, but

becomes real for sufficiently large charge parameter γ0 > (D− 3)/2. For large charge den-

sity it therefore seems that the Reissner-Nordström black brane is GL stable under long

wavelength perturbations. However, including the first order corrections to the dispersion

relations, one finds that the hydrodynamic mode, associated with charge diffusion, is un-

stable above the threshold value of γ0. The Reissner-Nordström black brane is therefore

GL unstable for all charge densities, although it is worth noting that the brane is “less”

unstable above the threshold, in the sense that the instability is a next-to-leading order

effect. This complementary behavior of the instability is also reflected in the thermody-

namic stability analysis where the specific heat capacity and isothermal permittivity show

a similar behavior.

4.2 Future directions

We have already discussed some open issues and computational generalizations in the main

text. We here discuss some future directions which we hope to address in the near future.

Blackfolds

• Entropy current: There is a natural way to associate an entropy current with a

perturbed event horizon [116]. This was recently considered in a blackfold setting

in [109] (using the map briefly discussed in Sec. 3.1). It would be interesting to

consider the charged generalization of the entropy current i.e. compute the entropy

current for the perturbed solution presented in Chap. 3. Since the analytic form
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of the dissipatively corrected entropy current is predicted from fluid dynamics, this

would provide a consistency check of the transport coefficients obtained in Chap. 3.

• q-form hydrodynamics: A natural future direction of the work presented in Chap.

3 is the generalization to black branes charged under higher form gauge fields in-

cluding a non-zero dilaton. In particular this would include the p-brane solutions

of supergravity. This is work in progress and will appear in [117]. In this regard

in would also be interesting to consider more general theories containing a Chern-

Simons term which is expected to lead to non-trivial parity violating hydrodynamics

as in [105; 106]. This would include developing the hydrodynamic theory for fluids

carrying q-form currents not currently existing in the literature which might also

find applications in more pure fluid/gravity setups.

• Bending the D3-brane: Another outstanding open problem is the bending of

the D3-brane. This computation would involve performing the matched asymptotic

expansion procedure for the D3-brane now (non-trivailly) including the self-dual five-

form field strength. While interesting in its own right, this computation would allow

one to extract new elastic response coefficients including the five-form piezoelectric

moduli. Even more interestingly this could lead to new insights in AdS/CFT by

considering the near horizon limit of the bent D3-brane where the transverse sphere

would new be deformed. It is currently not clear what deforming the S5 means on

the gauge theory side and whether it is possible to give the response coefficients a

dual interpretation.

• Generalizing the AdS/Ricci-flat map: As mentioned, our results for the charged

brane presented in Chap. 3 provide a natural starting ground for generalizing the

map between the blackfold approach and the hydrodynamic regime of AdS/CFT

[39; 109] to more general settings where matter fields are included.

The DBI/SUGRA correspondance

• Couplings to lower form currents: In Sec. 1.6.3, we showed that the action gov-

erning the p-brane blackfold is essentially the same as the single brane DBI action (in

the extremal limit). As is well-known, the DBI action allows for couplings to lower

form gauge potentials through a set of WZ terms. In this context, it would be very

interesting to find out what sense these couplings map to the blackfold/supergravity

regime and how they map. As briefly discussed in Sec. 1.6.4, the effective black-

fold description naturally accommodates for such couplings through a set of dual

currents. At all fits nicely; turning on the worldvolume DBI field strength turns on

the lower form couplings. On the other hand, on the supergravity side, turning on

the worldvolume gauge field effectively corresponds to considering an F1-Dp bound

state which in turn induces couplings (force terms) on the blackfold side.

• Comparing to known SUGRA solutions: An important next step in the giant

graviton analysis presented in Chap. 2 would be to consider the case in which we
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have many giant gravitons moving along the S1 of Sn and taking the limit in which

they are smeared along this circle. This would reveal the the difference between the

smeared and non-smeared phases at finite temperature, and elucidate the connections

with for example the superstar [118], bubbling AdS solutions [95] and bubbling

AdS black holes [119]. A related outstanding question is to examine the connection

between our null-wave giant gravitons (which have SO(m− 1)×U(1) isometry with

m = 5 for D3 and m = 4 for M5) and the lower supersymmetric bubbling geometries

that have been considered in the literature (see e.g. Refs. [120–123]). In this

connection, considering thermal versions of giant gravitons with less supersymmetry

[124] is expected to be relevant as well.

• Null-wave probe branes: Related to the above, we note that the null-wave giant

gravitons do not have a counterpart in the usual weakly coupled worldvolume theory

description. It would very be interesting to reconsider this by studying the thermal

DBI (recently considered in [125]) theory and exploring an appropriate limit. This

would also be worthwhile in view of finding a precise dual description of the null-

wave giant gravitons. More generally, via the AdS/CFT correspondence our thermal

spinning giant graviton solutions are expected to correspond to a thermal state in the

dual gauge theory. It would be very interesting to find a description of this thermal

state in the gauge theory and compare its properties to those of the thermal giant

graviton, in particular the free energies found in Eq. (2.62) in the low temperature

limit and the accompanying low/high spin results.



A | Geometry of embedded world-

volumes

In this appendix we introduce the differential geometry needed for describing embedded

worldvolumes and discuss some aspects of the associated variational calculus. For the

reader interested in a more detailed account (including some derivations omitted below),

we refer to [66].

A.1 Basic definitions and relations

We consider the worldvolume Wp+1 embedded in a background with metric gµν and co-

variant derivative ∇µ (spacetime coordinates are denoted by Greek letters). The induced

geometry from the background on the worldvolume Wp+1 is given by

γab = gµν ∂aX
µ∂bX

ν . (A.1)

Here Xµ ≡ Xµ(σ) denotes the embedding of Wp+1 and σa denotes worldvolume coordi-

nates (worldvolume indices are denotes by Latin letters). The first fundamental form of

Wp+1 is defined by

hµν = γab ∂aX
µ∂bX

ν . (A.2)

The tensor hµν acts as a projector onto Wp+1 i.e. ∂aX
νhµν = ∂aX

µ, hµνhνρ = hµρ.

Similarly we define the orthogonal projector,

⊥µν= δµν − hµν . (A.3)

Using the embedding functions Xµ, worldvolume tensors are converted into spacetime

tensors and vice versa in the usual way

A b1b2...
a1a2... = ∂a1X

µ1∂a2X
µ2 · · · ∂b1Xν1∂

b2Xν2 · · · A ν1ν2...
µ1µ2... , (A.4)

where ∂aXν ≡ γabhνρ∂bX
ρ. The map (A.4) defines a bijection between worldvolume

tensors and spacetime tensors tangential to Wp+1. Non-tangential tensors have extra

structure in the transverse directions and are usually related to finite thickness effects

of the worldvolume, not relevant for this work (with the extrinsic curvature tensor K ρ
µν ,

introduced below, being an important exception).
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In general, a spacetime tensor Â localized to Wp+1 can be written

Â ν1ν2...
µ1µ2... (x) =

∫
Wp+1

dp+1σ
√
−γ

(
A ν1ν2...
µ1µ2... (σ) δ(D)(x−X(σ))

√
−g

)
. (A.5)

Here A ν1ν2...
µ1µ2... (σ) is a worldvolume scalar carrying spacetime indices. Covariant dif-

ferentiation of tensors on Wp+1 is only defined along the directions parallel to Wp+1, we

therefore define the tangential projection of ∇µ onto Wp+1,

∇̄µ = h ν
µ ∇ν . (A.6)

Assuming that A ν1ν2...
µ1µ2... is tangential, it therefore holds (ignoring boundary terms)

∇µÂ ν1ν2...
µ1µ2... =

∫
Wp+1

dp+1σ
√
−γ

(
(∇̄µA ν1ν2...

µ1µ2... ) δ(D)(x−X(σ))
√
−g

)
, (A.7)

Note that the parallel projection of ∇̄µA ν1ν2...
µ1µ2... is related to DaA

b1b2...
a1a2... as in

(A.4), where Da denotes the covariant derivative induced by γab. In particular, we have

the following relation between the divergences

hν1
µ1
· · · ∇̄ρAρµ1... = ∂a1X

ν1 · · · DcAca1... . (A.8)

It is important to note that even if the tensor A ν1ν2...
µ1µ2... is parallel, the derivative

∇̄µA ν1ν2...
µ1µ2... in general has an orthogonal component. To tackle this, we introduce the

extrinsic curvature tensor. Using the tangential derivative ∇̄µ, we define the extrinsic

curvature of the embedding as

K ρ
µν ≡ h σ

µ ∇̄νh ρ
σ = −h σ

µ ∇̄ν ⊥ ρ
σ . (A.9)

By definition, the extrinsic curvature is tangential in its two lower indices and orthogonal

in its upper index. Moreover, it can be shown that K ρ
µν is symmetric in its tangential

indices,

K ρ
[µν] = 0 . (A.10)

The extrinsic curvature tensor K ρ
µν is the generalization of the usual second fundamental

form Θµν of hypersurfaces to submanifolds of co-dimension k ≤ 1. It is not difficult to

show that

K ρ
µν = Θ(i)

µν n
ρ
(i) , (A.11)

where n(i), i = 1, . . . , k are normal toWp+1 and Θ
(i)
µν denotes the usual second fundamental

form computed in the usual way with the ith normal, i.e. Θ
(i)
µν = 1

2£n(i)
⊥µν . Since K ρ

µν is

tangential in its lower indices we will usually convert it into a mixed tensor K ρ
ab carrying

both worldvolume indices and a (orthogonal) spacetime index,

K ρ
ab = ∂aX

µ∂bX
ν K ρ

µν = −∂aXµ∂bX
ν ∇µ⊥ ρ

ν . (A.12)

Notice that K ρ
µν = ∂aXµ∂

bXνK
ρ

ab by virtue of the tangentially properties of K ρ
µν . The

extrinsic curvature tensor can be seen as the generalization of the usual acceleration of a
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worldline to a worldvolume of general co-dimension. This can also be seen explicitly from

the expression

K ρ
ab = Da∂bX

ρ + Γρµν ∂aX
µ∂bX

ν , (A.13)

which can be shown after some work. The expression (A.13) provides a useful formula for

computing the extrinsic curvature given an embedding Xµ. For a worldline parameterized

by τ , then K ρ
ττ = aρ = uµ∇µ(dXρ/dτ). In analogy to the extrinsic curvature scalar of

hypersurfaces, we define the extrinsic curvature vector for general embedded submanifolds

by

Kρ = hµνK ρ
µν = γabK ρ

ab , (A.14)

which is normal to Wp+1, i.e. for any tangent tµ to Wp+1, tρK
ρ = 0. Finally it can be

shown that for any two tangents sµ, tµ, the relation

sµtνK ρ
µν =⊥ρµ sσ∇σtµ =⊥ρµ tσ∇σsµ , (A.15)

holds as an identity. Especially for sµ = tµ, we then have

tµtµK ρ
µν =⊥ρµ ṫµ , (A.16)

with ṫµ ≡ tν∇νtµ.

Having defined the extrinsic curvature and established some of its properties, we now

look at divergences of tangential tensors. Assuming that Aµµ1... is tangential, we see this

implies (using (A.9)),

∇̄µAµµ1... = ∇̄µ (Aµν...h µ1
ν ) = Aµν...∇̄µh µ1

ν + h µ1
ν ∇̄µAµν...

= Aµν...h σ
ν ∇̄µh µ1

σ + h µ1
ν ∇̄µAµν...

= Aµν...K µ1
µν + h µ1

ν ∇̄µAµν...
(A.17)

This implies for the stress tensor (using (A.8))

∇̄µTµρ = TµνK ρ
µν + ∂bX

ρDaT
ab . (A.18)

If instead J is an n-form, we find (by virtue of the symmetry properties of K ρ
µν),

hµ1
ν1
hµ2

ν2
· · · ∇̄µJµν1ν2... = ∂a1X

µ1∂a2X
µ2 · · ·DaJ

aa1a2... (A.19)

This means that Ĵµµ1... is a conserved current, ∇µĴµµ1... = 0 if and only if Jaa1... is

conserved on the worldvolume DaJ
aa1... = 0. In particular, as opposed to the stress

tensor, current conservation ∇µĴµµ1... = 0 has no “extrinsic” equation associated to it.

Finally we will briefly discuss some aspects of variational calculus for embedded sub-

manifolds. We refer to App. A of [57] for a more detailed account. We consider a quite

general action of the type

I =

∫
Wp+1

dp+1σ
√
−γ f(σa) , (A.20)

where f is some worldvolume function. The action is therefore a simple generalization

of the usual Dirac action for minimal surfaces. We now seek to determine the equation
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of motion corresponding to (A.20). We therefore consider a variation in the embedding

Xµ → Xµ+δXµ. Under such a variation the action changes with a Lie derivative according

to

δXI = £δX(
√
−γ f) =

√
−γ (−Kρf+ ⊥ρµ ∂µf) δXρ . (A.21)

Requiring the variation of the action to vanish δI = 0, we therefore obtain the following

equation of motion (since δXµ is arbitrary),

Kρ =⊥ρµ ∂µ log f . (A.22)

An equation of the type (A.22) can be obtained from the action (A.20).

A.1.1 Redshift factors

In order for a solution to be stationary the fluid velocity ua must lie along an isometric

direction of Wp+1 (see Sec. 1.3.3). Since the geometry on Wp+1 is induced by the back-

ground, this implies that ua pushes forward to a Killing vector kµ of the background. Let

ξ denote the generator of asymptotic time translations of the background and let ξi denote

a set of spatial Killing vectors. We can then write

kµ = ξµ +
∑
i

Ωiχ
µ
(i) . (A.23)

A few comments are in order. If i corresponds to a compact direction of Wp+1, the vector

χi necessarily corresponds to a Cartan generator of rotations of the background. In the

following we assume that all the vectors χi correspond to Cartan generators with orbits

of periodicity 2π since we can obtain the usual generators of translations by taking the

corresponding blackfold radius→∞. Also note that kµ could contain a component orthog-

onal to Wp+1 coming from the embedding (which is relevant for blackfolds in background

fluxes). We refer to Sec. 1.7 for a discussion of this special case.

With these considerations, we introduce

R0 ≡
√
−ξ2

∣∣∣
Wp+1

, Ri ≡
√
χ2

(i)

∣∣∣
Wp+1

, V(i) ≡
Ω(i)R(i)

R0
. (A.24)

Here R0 is a redshift factor between Wp+1 and infinity, Ri are the proper radii of the

orbits generated by ξ(i) and vi is the ith velocity component as measured from infinity.

Note that in general R0 and Ri depend on the worldvolume coordinates σ. With these

definitions we then have

k = R0

√
1− V 2 , V 2 =

∑
i

V 2
(i) . (A.25)

A.2 The blackfold action from the embedding

We now explain how to derive the extrinsic equation (1.38) from an action principle. Using

w = %+ P = T s, the extrinsic equation takes the form

− PKρ =⊥ρµ sT u̇µ . (A.26)
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The fact that the local temperature is dictated by the Killing vector ka in (1.36) and

that ka extends to a background Killing vector kµ means that the local (worldvolume)

thermodynamic fields extend to the entire background, at least in a neighborhood of the

actual solution, for constant global temperature T and charge Qp. We then have

sT u̇µ = −s∂µT = −∂µP , (A.27)

among stationary solutions. This means that the extrinsic equation for stationary solutions

can be written (remember that P is in general negative)

Kµ =⊥µν ∂ν log(−P ) . (A.28)

This equation can be obtained by extremizing the following action (cf. Eq. (A.22))

I =

∫
Wp+1

dp+1σ
√
−γ P , (A.29)

for variations of the blackfold embedding among stationary fluid configurations on the

worldvolume with fixed (global) temperature T and charge Qp. Instead of considering the

ensemble where we keep the charge Qp constant, we can consider the ensemble where we

keep the global potential Φp constant (cf. (1.68)). To this end, we note that we can rewrite

the extrinsic equation (A.26) in terms of the Gibbs free energy G as

(G + ΦQp)K
ρ =⊥ρµ (∂µG +Qp∂µΦ) . (A.30)

We now consider variations for which the global potential Φp is kept fixed. According to

Eq. A.21, among such variations, it holds

ΦKρ =⊥ρµ ∂µΦ . (A.31)

In this way, the extrinsic equation takes the form

GKρ =⊥ρµ ∂µG . (A.32)

This equation can now be obtained by extremizing the action

I = −
∫
Wp+1

dp+1σ
√
−γ G . (A.33)



B | The F1-Dp bound state

The F1-Dp blackfold is described by a Dp-brane charged fluid carrying a F-sting current

on its worldvolume. The F1-Dp bound state geometry is given by [84; 126] (here written

in the string frame)

ds2 = D−1/2H−1/2
(
−fdt2 + dx2

1

)
+D1/2H−1/2

p∑
i=2

dx2
i

+D−1/2H1/2
(
f−1dr2 + r2dΩ2

(n+1)

)
,

(B.1)

with n = 7− p and with corresponding NSNS and RR gauge potentials

B01 = sin θ
(
H−1 − 1

)
cothα , A2...p = tan θ

(
H−1D − 1

)
,

A0...p = cos θ
(
H−1 − 1

)
cothα ,

(B.2)

and dilaton

e2φ = D
p−5

2 H
3−p

2 (B.3)

The functions f and H are the usual blackening and charge functions recorded in Eqs.

(1.73), while the function D is given by

D−1 = cos2 θ + sin2 θH−1 . (B.4)

The effective blackfold fluid was computed in [37]. The local energy density %, temperature

T and entropy s given by

% =
Ω(n+1)

16πG
rn0
(
1 + cosh2 α

)
, T =

n

4πr0 coshα
, s =

Ω(n+1)

4G
rn+1

0 coshα . (B.5)

The charge densities and associated chemical potentials read

QDp =
Ω(n+1)

16πG
nrn0 cos θ coshα sinhα , ΦDp = cos θ tanhα ,

QF1 =
Ω(n+1)

16πG
nrn0 sin θ coshα sinhα , ΦF1 = sin θ tanhα

(B.6)

It is straightforward to perform a SO(1, p) rotation to the solution (B.1)-(B.3). In partic-

ular the NSNS and RR potentials read

B(2) = sin θ
(
H−1 − 1

)
cothαV̂(2) , A(p−1) = tan θ

(
H−1D − 1

)
?(p+1) V̂(2) ,

A(p+1) = cos θ
(
H−1 − 1

)
cothα ?(p+1) 1 ,

(B.7)
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Here V̂(2) denotes the volume-form on the worldsheets spanned by the F1, C(2), and can

be decomposed according to

V̂(2) = u ∧ v , (B.8)

for two vectors u2 = −1, v2 = 1, u · v = 0.1 The projector onto C(2) is then given by

hab(2) = −uaub + vavb . (B.9)

The effective currents now take the form recorded in the expressions (1.75), (1.89) while

the effective stress tensor is given by (1.93).

1denoted ?(2)1 in Sec. 1.5.6.



C | Thermal giant gravitons

C.1 Thermodynamic blackfold action and Smarr relation

In this appendix we show that the action (2.28) is equivalent to the thermodynamic action.

To this end we first rewrite (2.28)

I = ∆t

∫
Bp
dV(p)

[
L(bf) + L(em)

]
(C.1)

where from now on the subscripts ”bf” and ”em” refer to the blackfold and external field

respectively. For simplicity we will in the following we assume that ω = 0. In (C.1) we

have factored out the integration over the (Killing) time t. This produces a redshift factor

which must be included in the Lagrangian densities, e.g. L(bf) = γ−1
⊥ R0P where γ⊥ is

defined in (1.132). From the conserved quantities derived in (1.133) we also introduce the

Hamiltonian and angular momentum densities

H = H(bf) +H(em) = γ−1
⊥

(
Tµν(bf) + Vµν(em)

)
nµξν ,

J = J(bf) + J(em) = γ−1
⊥

(
Tµν(bf) + Vµν(em)

)
nµχν

(C.2)

where Tµν(bf) is the blackfold stress tensor which encapsulates the gravitational and electro-

magnetic self-energy/momentum and Vµν(em) (see (1.132)) is associated with the coupling of

the charge current to the external electromagnetic field. Notice that the electromagnetic

contributions only depend on the embedding degrees of freedom of the blackfold and not

on the effective blackfold fluid degrees of freedom.

Now, for the blackfold degrees of freedom we have the relation (cf. [37])

H(bf) + γ−1
⊥ uµnµTs = ΩJ(bf) − L(bf) (C.3)

This is the blackfold generalization of the usual relation H = θ̇J − L in Hamiltonian

mechanics between Hamiltonian and Lagrangian, but now with an extra term contributing

to the energy due to the fact that the blackfold has internal thermal degrees of freedom

living on it. However, since the external electromagnetic field does not couple to the

thermal degrees of freedom living on the blackfold, one has for the electromagnetic part

that

H(em) = ΩJ(em) − L(em) (C.4)
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We now use (C.3), (C.4) in (C.1) along with the expression (1.45) for the total entropy

S of the blackfold. If we also rotate to Euclidean time so that ∆t → ∆τ = β = 1/T , we

then find that the Euclidean action is given by

IE = E − ΩJ − TS (C.5)

Smarr relation

Finally, we derive the Smarr formula for blackfolds in external fields. We use the perfect

fluid stress tensor Tµν = (% + P )uµuν + Phµν and the local thermodynamic relations for

charged p-branes in D = n+ p+ 3 dimensions

%+ P = T s , % = −(n+ 1)P − nΦpQp (C.6)

First, we note that the Smarr relation found previously for blackfolds based on charged p-

branes (with zero external field) is easily generalized to the case where ξµ is not orthogonal

to the world-volume Bp. One finds

(D − 3)E(bf) − (D − 2)
(
ΩJ(bf) + TS

)
− nΦHQp = T (tot)

(bf) (C.7)

where

ΦH =

∫
Bp
dV(p)γ

−1
⊥ R0Φp (C.8)

T (tot)
(bf) = −

∫
Bp
dV(p)

(
γ−1
⊥ R0 T + γ−1

⊥ Tµν(bf)ξµnν

)
, T ≡ γabT ab (C.9)

We then add to both sides of (C.7) the term (D − 3)E(em) − (D − 2)ΩJ(em), yielding the

generalized Smarr relation

(D − 3)E − (D − 2) (ΩJ + TS)− nΦHQp = Ttot (C.10)

where

Ttot = −
∫
Bp
dV(p)

(
γ−1
⊥ R0 T + γ−1

⊥

(
Tµν(bf) + Vµν(em)

)
ξµnν + (D − 2)L(em)

)
(C.11)

Note that, as expected, the total tension gets modified by the presence of the external

field.

C.2 The upper branch, CFT dual and correlation functions

The CFT dual operator of a single point-like graviton is a chiral primary of the form

O = TrZJ (C.12)

with J the angular momentum on the S5 and Z a complex scalar field. Standard compu-

tations have shown that their two- and three point functions match exactly on both gauge

and string theory sides provided J is small.
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If J � N/
√
λ the correct description is in terms of a giant graviton. The dual gauge

theory operator Ogg of the giant graviton is no longer given by (C.12) and arguments

based on symmetry (which only really apply close to r = L, see [127]) imply that it must

be replaced by a Schur polynomial operator of the form

Ogg ∼ χR(Z) =
1

J !

∑
σ∈SJ

χRJ (σ)Z
iσ(1)
i1

...Z
iσ(J)
iJ

(C.13)

where Z is a complex matrix, Rn denotes an irreducible representation of U(N) described

in terms of a Young tableau with J boxes.

As explained above, there is another (upper) branch of giant gravitons which is 1/2

BPS at r = L in the large J limit with the same quantum numbers as the lower branch.

We speculate that there exists another 1/2 BPS Schur polynomial operator in the CFT

at J = N that is distinct from the Schur polynomial relevant to the usual (lower) BPS

branch and which is dual to the upper branch of giant gravitons at r = L. We present

indications of this below.

Two-point correlation functions

As an explicit check of the statement above, we now compute the two-point function

for the CFT operator dual to the r = L point on the upper branch, showing that it

has the same properties as the r = L solution of the lower branch. It is easiest to do

the computation simultaneously for both branches. Our method is based on the general

prescription, reviewed in [128], for computing two-point correlation functions for massive

(or light) particles moving in a background spacetime.

The giant graviton is a brane, not a particle, however as seen from the AdS5 part it is

a point-particle with a certain mass [129]. This can be seen by introducing motion in the

AdS5 part, i.e. introducing the dependence xµ(τ), µ = 0 . . . 4 on the coordinates of AdS5

with metric Gµν . Following [129] one can then show that the DBI action can equivalently

be written as

IDBI =
1

2

∫
dτ

(
Gµν ẋ

µẋν

e
+

Ω2(L2 − r2)

e
−m2e+m2rΩ

)
(C.14)

where we have defined m = Nr3/L4 and e is an einbein which acts as a Lagrangian

multiplier. Using (2.13) we can eliminate Ω in favor of J and arrive at the action

I =
1

2

∫
dτ

(
Gµν ẋ

µẋν

e
+ eM2

)
(C.15)

where we have defined

M =

√
J2 − L2m2

L2 − r2
(C.16)

However, to arrive at the interpretation that from the AdS5 perspective the giant graviton

is a massive point particle moving along a timeline geodesic, one should take into account

that J must be conserved along any path. Hence, one should consider the Routhian R
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which is obtained by doing a Legendre transformation in the cyclic coordinates. In this

case it coincides with the Hamiltonian, and hence we find

R = H = ΩJ − L = −1

2

(
Gµν ẋ

µẋν

e
− eE2

)
(C.17)

where E is the on-shell energy (2.17), (2.18) for each of the branches. So we find that

from the AdS5 perspective the giant graviton is a point particle with mass E. Following

[128], wee can now compute the two-point function using the Routhian

G(0, ε;x, ε) = e−R ∼
(
|x|
ε

)−2E±

(C.18)

showing for both branches equality of the anomalous dimension and the energy. We thus

conclude that the anomalous dimension of the operator is equal to the energy for both

branches, thus giving strong indication of being in both cases a Schur polynomial at the

r = L point.

It is important to note that the correct result is reproduced here using the Routhian,

and not the action, as was also advocated in [130]. Indeed, evaluating the quantity M in

(C.16) for each of the solution branches found in subsection 2.2.2 one finds1

M− = NL3r̂2 = E− , M+ = NL3r̂2
√

9− 4r̂2 6= E+ (C.19)

as compared to the energies given in Eqs. (2.17), (2.18).

Three-point correlation functions

To gain further insight into the nature of the new state at r = L one may consider the

three-point correlation function between one point particle and two giant gravitons. For

the lower branch this analysis was performed in [131]. The procedure consists in analyzing

the supergravity modes which describe fluctuations in the Euclidean D-brane action of the

metric and 4-form potential, which are dual to chiral primary operators with R-charges

in the N = 4 SYM theory. The resulting three-point function structure constant for the

maximal size 1/2-BPS giant graviton was found to be zero in agreement with the gauge

theory side. Following the same steps for the upper branch r = L state gives zero as

well, since one can check that in that case the result is independent of Ω. This provides

further confirmation that the gauge theory description of the upper branch r = L state

is a Schur polynomial. It would be very interesting to calculate this three-point function

more generally for the entire (non-BPS) upper branch, but this is beyond the scope of

the present work. A naive application of the ideas mentioned above does not give sensible

results, so perhaps one should use the Routhian rather than the action and/or introduce

an appropriate cutoff to regularize the divergent integrals.

1In Ref. [131] the action was used to compute the two-point function, but since this computation was

for the lower (1/2-BPS) branch, for which the terms conspire to give M− = E−, this still gives the correct

result.
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C.3 Details on solution space

In this appendix we give further details on the solution space presented in Secs. 2.3-2.4

and establish the relation between the results presented in this thesis and those obtained

in [1].

C.3.1 Alternative parameterization of solution space

Here we reparameterize the equations of motion and solution space of Sec. 2.3 such that

the connection with the solution space of the non-spinning thermal giant graviton found

in [1] is more apparent. To this aim, we define a new parameter ω such that

ω =
ω2r2

k2 . (C.20)

Using this newly defined parameter, the equation of motion (2.29) can be rewritten as

(n− 2 +R1ω) |kw.v.|2 + Ω2r2 (1−R1(ω + 1)) + (n− 1)Ωr|kw.v.|R2 = 0 , (C.21)

where R1 ≡ R1(φ) and R2 ≡ R2(φ) are given by Eq. (2.30). For clarity of presentation

we focus on the case n = 5. In this situation Eq. (C.21) admits the following family of

solutions

Ω± =
|3 + ωR1|√

(3 + ωR1)2L2 − 8(1 + ∆±(φ,ω))r2
, (C.22)

where we have defined

∆±(φ,ω) = −1

8

(
3R1 + 8R2

2 ± 4R2

√
D(φ,ω) + ωR1(R1 − 4)

)
+

1

2
, (C.23)

with

D(φ,ω) = −3(1−R1) + 4R2
2 + ωR1(2 +R1(ω + 1)) . (C.24)

Indeed, setting ω = 0 in Eq. (C.22) yields the form of Ω± obtained in [1] for thermal giant

gravitons expanded into the S5 part of AdS5 × S5. A necessary condition for the solution

(C.22) to exist is D(φ,ω) ≥ 0. In Fig. C.1 we exhibit the dependence of D(φ,ω) ≥ 0 on

α within the range 0 ≤ ω ≤ 1.

From Fig. C.1 we see that there are two regions of possible spinning giant graviton con-

figurations (here and below we parameterize the charge in terms of α = arccosh(1/
√
φ )).

The black dashed line depicts the case ω = 0 obtained in [1] for which there is only one

region of possible solutions. As the spin is increased the solution space is composed of a

blue region (Region 1) and of a red region (Region 2). It is possible to determine analyt-

ically the ranges of α defining both regions by solving D(α,ω) = 0 . This leads to the

ranges

Region 1:

(
9

4
+ ω

)
≤ cosh2 α <∞ , ω ≥ 0

Region 2: 1 ≤ cosh2 α ≤
(

1

4
+ ω

)
, ω >

3

4
.

(C.25)
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Figure C.1: D(φ,ω) as a function of α = arccosh(1/
√
φ ) for 0 ≤ ω ≤ 1 and n = 5 .

The dashed black line represents the case ω = 0. The vertical axis was restricted to the

interval 0 ≤ D(φ,ω) ≤ 2 while the horizontal axis was restricted to 0 ≤ α ≤ 3.

From (C.25) we see that Region 1 exists for all values of ω while Region 2 only appears

after the spin parameter ω is increased beyond the value ω = 3/4. At the lower bound

of Region 1 and at the upper bound of Region 2 the two branches of solutions Ω± meet

each other. Note that Region 2 can be decomposed into a thermodynamically stable and

unstable part. The unstable part lies within the range 1 ≤ cosh2 α ≤ 3/2 as it has negative

heat capacity [48]. For generic (m,n) we obtain similar bounds as in (C.25), in particular

for the non-spinning case, these are 5/3 ≤ cosh2 α < ∞ for the M5-giant graviton and

10/3 ≤ cosh2 α <∞ for the M2-giant graviton.

Range of k

The ranges (C.25) together with charge conservation (2.23) allow to determine the bounds

on k mentioned in Sec. 2.3.2. Focusing on n = 5 and on the lower bound of Region 1 we

obtain the bound for k

Region 1: T̂
(9 + 4ω)

3
8

2
1
4 (3
√

3 )
1
4 (5 + 4ω)

1
8

≤ k ≤ 1 . (C.26)

In the case ω = 0 this agrees with the result found for non-spinning giant gravitons

in [1]. For Region 2, the upper bound in (C.25) allows us to write the bound on the

thermodynamically stable part as

Region 2 stable: T̂ ≤ k ≤ T̂ (1 + 4ω)
3
8

2
1
4 (3
√

3 )
1
4 (4ω − 3)

1
8

, (C.27)

while for the unstable part it is instead allowed in the entire interval

Region 2 unstable: T̂ ≤ k ≤ 1 . (C.28)

For the bounds on k for the stable part of both regions we observe that there is a gap in

the allowed values of k for which there does not exist a giant graviton configuration. This

is the gap observed in Sec. 2.4 for the maximal size giant graviton. The same features are

observed for the other values of (m,n).
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Maximum temperature

The solution space does not admit configurations at any temperature T . As already seen

for the non-spinning giant graviton in [1] there exists a maximum temperature beyond

which giant graviton configurations cease to exist. This bound is obtained from the charge

conservation equation (2.23) which can be recast into the form

km−1 =
Q(n−2)G

Ω(m)

4(4π)mR1(α)coshm−1α

(m− 1)mR2(α)
Tm−1 , (C.29)

where the ratios R1 and R2 are defined in (2.30). The maximum temperature that the

giant graviton can attain in the thermodynamically stable region is obtained from (C.29)

when cosh α̃ takes the value that gives rise to the lower bound of Region 1 in (C.25).

Generically, we can define the maximum temperature as

Tm−1
max =

[
Q(n−2)G

Ω(m)

4(4π)mR1(α)coshm−1α

(m− 1)mR2(α)

]−1

|α=α̃ . (C.30)

For the case of the spinning giant graviton on AdS5 × S5 this results in

Tmax = Tstatic

(
6
√

3
√

5 + 4ω

(9 + 4ω)
3
2

) 1
4

. (C.31)

From the above expression we see that as the spin parameter ω increases, the maximum

temperature that the giant graviton can attain decreases. This is again a generic feature

for any (m,n).

C.3.2 The special case Ω = ω

Here we analyze the case for which Ω = ω. This is a peculiar case as it corresponds to a

branch of solutions for which there is no continuous limit that connects it with the thermal

non-spinning giant graviton of [1] but it still admits a limit in which it connects to the

usual 1
2 -BPS giant graviton. In this situation the spin orbit interaction term in (2.29)

vanishes and the equation of motion can be written as

(n− 2)
(
1− Ω2(L2 − r2)

)
+ Ω2r2 + (n− 1)Ωr

√
1− Ω2(L2 − r2)R2 = 0 . (C.32)

For clarity of presentation we focus on the case n = 5 but we note that the above equation

admits a solution for any n. For n = 5 the solution takes the form

Ω± =
3√

9L2 − 8(1 + ∆±(α)) r2
, (C.33)

where

∆±(α) = −1

2

(
2R2

2(α)±R2(α)
√
D(α)

)
+

1

2
, D(α) = 4R2

2(α)− 3 . (C.34)

We see that (C.33) allows for two branches of solutions. However, one must remember that

the condition k2 = 1−Ω2
±L

2 ≥ 0 must be imposed, implying Ω± ≤ L−1. A straightforward
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check tells us that the upper branch solution always violates this requirement (except in

the strict limit α→∞). Hence we conclude that for the case Ω = ω only the lower branch

of solutions exists. Imposing the same requirement on the fluid velocity k for the lower

branch leads to the allowed range for α in solution space

9

8
≤ cosh2 α <∞ . (C.35)

This range implies that there is a thermodynamically stable region and an unstable region

which ranges from 9/8 ≤ cosh2 α ≤ 3/2. This furthermore means that this branch of

solutions does not admit a neutral limit (as one cannot approach α = 1), i.e., they must

be always charged and supported by the background gauge field. Moreover, the range

(C.35) implies that in both stable and unstable regions, the fluid velocity must satisfy

the bound T̂ ≤ k ≤ 1. Another interesting feature of this branch of solutions is that

both ends of the interval (C.35) correspond to zero-temperature limits. The limit α→∞
corresponds to either the usual extremal limit of Sec. 2.3.3 or the null-wave limit of Sec 2.6.

The limit α→ 9/8, using the fact that ∆−(9/8) = −1, implies Ω− = L−1 and hence that

k → 0. Therefore, by charge conservation (C.29) we see that for the charge Q(n−2) to

remain constant we must have T → 0. This is another type of null-wave giant graviton

configuration but not a regular one since in this limit the thickness r0 remains finite and

hence all thermodynamic quantities presented in Sec. 2.3 diverge except for the product

TS which remains finite. Further, in this limit the configuration satisfies the relation

F = E− T̂S = J + S , which is the BPS relation found in Sec. 2.6.



D | Details for Chapter 3

D.1 Reduction

In the first part of this appendix we will show how the equation of motions for the general

case of a reduction of an Einstein-Maxwell theory on an Einstein manifold can be obtained.

In the second part we will provide the example of applying the procedure for d = 2 on the

zeroth order solution.

D.1.1 Reduction of Einstein-Maxwell theory on an Einstein manifold

We consider Einstein-Maxwell theory on a D-dimensional space of the form

ds2 = gµνdxµdxν = ds2
(b) + e2ψ(xb)ds2

(E) . (D.1)

Here ds2
(b) denotes the metric of the base manifold M(b), x

i
(b) denotes the coordinates on

M(b), ψ is a function on M(b) and ds2
(E) is the metric of an Einstein manifold M(E) with

coordinates xA(E). Since M(E) is an Einstein manifold, we have

dE R
(E) = RE g

(E) , (D.2)

where dE , g(E), R(E) and RE are respectively the dimension, the metric, the Ricci tensor

and (constant) curvature scalar of M(E). Moreover we consider a gauge field (minimally

coupled to gravity) Aµ which only depends on xi(b) and only takes values along the base

manifold M(b). Schematically

Aµ(x) = Ai(xb) . (D.3)

The action S of the system is given by

S = Sg + SEM, Sg =

∫
dDx

√
|g|R, SEM =

∫
dDx

√
|g|
[
−1

4
FµνF

µν

]
, (D.4)

where R denotes the Ricci scalar of the full metric gµν . We can now perform a reduction

and integrate out M(E), one finds

Sg ∼
∫
Mb

ddbxb
√
|gb| edEψ(xb)

{
Rb +REe

−2ψ(x) − dE(dE − 1)(∇ψ)2
}
,

SEM ∼ −
∫
Mb

ddbxb
√
|gb| edEψ(xb)FijF

ij .

(D.5)
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Having worked out the reduced action, it is easy to work out the equations of motion. As

usual, the resulting system is EM theory onMb coupled to a dynamical scalar field and a

current. The EOMs are

R
(b)
ij =

1

4

(
2F k

i Fjk −
1

D − 2
g

(b)
ij FmnF

mn

)
+ dE (∇aψ∇bψ +∇a∇bψ) ,

�ψ + dE (∇ψ)2 − FmnF
mn

4(D − 2)
=
REe

−2ψ

dE
,

∇iF ij = dEF
kl∇lψ .

(D.6)

D.1.2 Reduction of the zeroth order solution

In this section we demonstrate how the reduction works for the 0th order solution with

(fluid) dynamics in two spatial directions (in other words, an ordinary boost in the (σ1, σ2)

direction). Now the base space is composed of the three fluid brane directions (one time

σ0 and two spatial directions, (σ1, σ2) along with the radial direction r). The metric has

the form

ds2 = hB

[(
ηab +

(
1− f

hN

)
uaub

)
dσadσb +

dr2

f
+ r2dΩ2

(n+1) +

p∑
i=3

(
dxi‖

)2
]
, (D.7)

with a, b = 0, 1, 2 and where xi‖, i = 3, ..., p are the p− 2 static brane directions. We now

integrate out the transverse sphere and the p− 2 brane directions. The functions ψ and φ

are given by

φ(r) = ψ(r) + 2 log r = B log h(r) . (D.8)

It is now straightforward to compute κ, jµ and Fµν . Here xµ denotes coordinates of the

four dimensional base space xµ = (σ0, σ1, σ2, r). One finds

κ = −Bn
2

2

(r0

r

)2n γ0 (1 + γ0)

r2hN (r)
,

jµ∂µ =
n2

2B

(r0

r

)2n
√
Nγ0(1 + γ0)

hN−1(r)

(
1 +

2

B
+
p

n
h(r) + 2

(r0

r

)n
γ0

)
ua∂σa ,

Fµν∂µ ⊗ dxν =
Nκ

B

(
uaub +

(
1− 2

N
δab

))
∂σa ⊗ dσb − 2κ

B
∂r ⊗ dr .

(D.9)

It is now possible to show that, as expected, the reduced system obeys the EOMs with

these effective sources. The above sources get derivative corrections in the perturbative

expansion.

D.2 Coefficients of the large r expansions

In this section, we list the first set of large r expansion coefficients of the metric and gauge

field given in section 3.4.
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Scalar sector

Below is listed the first set of coefficients for the large r expansions of frv,

α(1)
rv = −n((n+ p)2 + (n+ p)(2(p+ 1) + n(p+ 2))γ0 + 2p(p+ 2)γ2

0)

(n− 1)(n+ p)2((n+ 1) + pBγ0)
. (D.10)

Below is listed the first set of coefficients for the large r expansions of av,

α(1)
v =

n((2n+ 1)(n+ p)2 + (n+ p)(1 + n(2n+ 3)(p+ 1))γ0 + 2p(1− p+ 2n(p+ 1)γ2
0)

(n− 1)(2n− 1)(n+ p)2((n+ 1) + pBγ0)
,

β(1)
v =

(1 + γ0)
N
2

n

[
1− pγ0B

[
2(n+ 1) + pBγ0

((n+ 1) + pBγ0)2

]]
.

(D.11)

Below is listed the first set of coefficients for the large r expansions of fvv,

α(1)
vv =

1

(n− 1)

(
n(1 + 2γ0) +

4γ0(n+ p(1 + γ0))

(n+ p)2((n+ 1) + pBγ0))

)
,

β(1)
vv = −(1 + γ0)

N
2

2(n+ 1)

n(n+ 1 + pBγ0)2
.

(D.12)

Vector sector

Below is listed the first set of coefficients for the large r expansions of fvi,

α
(1)
vi = (∂vβi)γ0

[
−(n+ p+ 1)(p+ n(n+ p+ 1)(1 + 2γ0)

(n− 1)(n+ p)2

]
+ (∂iγ0)

[
− n+ p+ 1

(n− 1)(n+ p)

]
,

α
(2)
vi =

n+ p+ 1

2(n− 1)(2n− 1)(n+ p)3

[
(

2(n+ p)(n(n+ p) + (4n2 + n− 1− 2p+ 4np)γ0)

)
(∂iγ0)(

γ0(4n(n+ p)2 + (n+ p)(−1− 2p+ n(−3 + 2p+ 4n(4 + 3n+ 3p)))γ0

+ 4n(1 + n+ p)(−1 + n+ 4n2 − 2p+ 4np)γ2
0

)
(∂vβi)

]
,

β
(1)
vi = 0 ,

β
(2)
vi = −N

4n

(
2γ0(1 + γ0)(∂vui) + (∂iγ0)

(1 + γ0)
B
2 (1 +Nγ0)

)
.

(D.13)

Below is listed the first set of coefficients for the large r expansions of bi,

α
(1)
i =

1

2(n− 1)

[(
2(n+ p+ 2n(n+ p+ 1)γ0)

n+ p

)
(∂vβi) +

(
1 + 2γ0

γ0(1 + γ0)

)
(∂iγ0)

]
.

β
(1)
i = β

(2)
vi

[
n+ p

(n+ p+ 1)γ0(1 + γ0)

] (D.14)
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D.3 Thermodynamic coefficients

In this appendix we list a number of thermodynamic coefficients related to the analysis of

section 3.6. The two coefficients R1 and R2 are given by

R1 = Q2

[(
∂Q
∂T

)
Φ

(
∂%

∂Φ

)
T
−
(
∂Q
∂Φ

)
T

(
∂%

∂T

)
Φ

]−1

,

R2 = −R1

[
T
(
∂%

∂T

)
Φ

+ Φ

(
∂%

∂Φ

)
T

]
.

(D.15)

Writing out the speed of sound given in equation (3.76) it takes the form

c2
s =

R1

Q2w

[
w

(
Q
(
∂Q
∂T

)
Φ

− s
(
∂Q
∂Φ

)
T

)
−Q

(
Q
(
∂%

∂T

)
Φ

− s
(
∂%

∂Φ

)
T

)]
. (D.16)

Finally the coefficient associated to the dispersion relation of the sound mode is given by

R = −1

2

R2
1

Q2w3c2
s

(
Q
(
∂%

∂T

)
Φ

− s
(
∂%

∂Φ

)
T

)(
QR2

R1
+ w

((
∂Q
∂Φ

)
Φ

Φ +

(
∂Q
∂T

)
Φ

T
))

.

(D.17)

For the Reissner-Nordström solution we have

R1

T
=

Nγ0

n+ 1 + pBγ0
,
R2

sT Φ
=

1−Nγ0(1 + 2γ0) + n(1 +Nγ0)2

1 + 2γ0 + n(1−Bγ0)
,

R w2

sT 2
= − 2N2γ2

0(1 + γ0)2

(1−Bγ0)(n+ 1 + pBγ0)
.

(D.18)
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