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Introduction

Jet production in the deep inelastic scattering (DIS) of a electron (or a positron)

and a proton provides an excellent testing ground for the properties of the nuclear-

strong interactions. Quantum chromodynamics (QCD), the quantum field theory

that describes the dynamics of the strong interactions in terms of quarks and gluons,

has proved in the last 36 years to be a very succesful theoretical framework capable

of describing adequately the data obtained in a large variety of experiments in

many different physical contexts. In this sense, HERA has set a milestone. Its

characteristics have allowed physicists to closely examine QCD and its properties.

A large quantity of very stringent tests of the validity of QCD as the theory of the

strong interactions have been performed at HERA and QCD has so far resisted.

This document presents two recent analyses of jet production in neutral current

(NC) DIS carried out in the context of the ZEUS Collaboration, both of which

examine the extent up to which QCD correctly describes the internal strucure of

jets that have a large transverse energy. The fundamental assumption contained

in both analyses is that the energy flow that ultimately constitutes the internal

structure of the jets mimics the underlying dynamics of parton radiation, which is

expected to be described by QCD in its perturbative regime, pQCD. The analyses

presented here study the substructure of jets by means of subjets, which are jet-like

structures reconstructed within jets at a given resolution scale. The first analysis

focuses on those jets in which two subjets are reconstructed. Measurements of

normalised differential cross sections with respect to subjet variables sensitive to

the pattern of parton radiation are presented. As well, the evolution of these cross

sections with the energy scale is studied. The measurements are compared with

the predictions of pQCD and it is examined whether an adequate description of the

main features of parton radiation is achieved. In the second analysis, those jets with

three subjets at a given resolution scale are examined also by measuring normalised

differential cross sections with respect to subjet variables. The production of jets

with three subjets provides a testing ground for the underlying color dynamics of

QCD since the cross sections as functions of the subjet variables are sensitive to the

color factors of the gauge group. This is studied by comparing the measured cross

sections to theoretical predictions based on different gauge symmetry groups.

In chapter 1 the main aspects of the theoretical framework underlying the work

presented are introduced, with some supporting experimental verification. A de-

scription of the DIS regime as well as its role as the motivating physical context

that gave rise to QCD is given. A brief description of quantum field theory, quan-

tum chromodynamics and some of its features, such as assymptotic freedom, the

phenomenon of confinement and the dynamics of partons in ep scattering is also



presented.

In chapter 2 jets are introduced and the related physics is covered. The definition

of a jet in terms of reconstruction algorithms is first presented. The physics of jets

as described by pQCD follows and in the last part of the chapter subjets are defined;

several theoretical notions of subjet physics, such as subjet multiplicity, and previous

subjet studies by the ZEUS collaboration are presented.

In chapter 3 a description of the analyses and the motivation behind them is

given. The subjet variables are defined and the proposed measurements are pre-

sented. The kinematic ranges in which jets are reconstructed and the resolution

scales at which subjets are investigated are also introduced. In the last section of

the chapter, the studies of the underlying gauge symmetry of the strong interac-

tions performed at LEP as well as those at HERA are mentioned, which sets the

motivation for the related study presented in this work.

Chapter 4 covers the description of HERA and of the ZEUS detector. HERA is an

electron proton synchrotron collider with a center-of-mass energy of
√
s = 320 GeV,

giving way to momentum transfers bewteen the electron and the constituents of

the proton well within the predictive capabilities of pQCD. ZEUS is a multipurpose

detector at one of the interaction points at HERA. It consists of a number of dif-

ferent detectors layered around the collision vertex, whose aim is to record as much

information as possible about the collisions. Thus, ZEUS is a powerful tool for the

study of QCD.

In chapter 5, the fixed-order pQCD calculations performed in order to compare

data and theory are presented. It is explained how these calculations are done and

which programs are used to perform them. The predictions of pQCD of the nor-

malised differential cross sections as functions of the subjet variables are presented

for both analyses. In the last part of the chapter the different sources that contribute

to the theoretical uncertainties are discussed.

Monte Carlo (MC) event generators are introduced in chapter 6. The MC sim-

ulations are used to understand and correct jet and subjet measurements for de-

tector effects. They also contain a phemenological model to describe the process of

hadronization, which permits the correction of the pQCD calculations for parton-to-

hadron effects and enables the comparison of the data and theoretical expectations

at the same level.

In chapter 7 a detailed description of how the data samples were selected is given.

A comparison of several distributions of interest between the MC simulations and

data is presented as well. The comparisons legitimize the use of the MC simulations

for estimating the systematic uncertainties in the measurements and obtaining the

necessary corrections to the subjet cross sections. All these correction factors as well



the sources of systematic uncertainty in the measurements are shown in chapter 8.

Due to the large amount of plots that correspond to this chapter, some of them have

been moved to the Appendix to avoid a cumbersome reading.

In chapter 9 the results are presented. The normalised differential cross sections

with respect to the subjet variables are shown for both analyses together with the

theoretical expectations as dictated by pQCD. For the two-subjet analysis, the evo-

lution of the subjet cross sections with the energy scale is also presented. For the

three-subjet analsysis, special attention is given to the sensitivity of the subjet cross

sections to the underlying symmetry structure.

Finally, a brief summary of the most relevant aspects and most important con-

clusions of the presented work is given.
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Poland, 2009.
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• ZEUS Collaboration, S. Chekanov et al., Multi-jet cross sections in charged

current e±p scattering at HERA, Physical Review D78 (2008), 032004.

• ZEUS Collaboration, S. Chekanov et al., Jet substructure in neutral-current
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International Conference on High Energy Physics, Philadelphia, USA, 2008.
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Introducción

La producción de chorros de hadrones (jets) en el régimen de dispersión pro-

fundamente inelástica (DIS) de electrones (o positrones) y protones constituye un

excelente campo de pruebas para testar las propiedades de la interacción nuclear

fuerte. La cromodinámica cuántica, la teoŕıa cuántica de campos que describe la

dinámica de la interacción fuerte en términos de quarks y gluones, ha demostrado ser

durante los últimos 36 años un marco teórico capaz de describir los datos obtenidos

en una gran variedad de experimentos en diferentes contextos f́ısicos. En este sen-

tido, HERA marca un antes y un después. Dadas sus caracteŕısticas, ha permitido

comprobar la validez de QCD en situaciones muy exigentes y hasta la fecha QCD

ha resistido el embite.

Este documento presenta dos análisis recientes acerca de producción de jets en

corrientes neutras (NC) DIS en el contexto de la colaboración ZEUS. Ambos análisis

examinan en qué medida QCD es capaz de describir la estructura interna de jets

con un valor alto de enerǵıa transversa. La hipótesis fundamental sobre la que

descansa este trabajo es que el flujo de enerǵıa que en última instancia constituye

los jets está determinado por la dinámica de radiación partónica subyacente, la cual

se espera que sea describible por QCD en su régimen perturbativo (pQCD). Los

análisis aqúı presentados estudian la estructura interna de los jets en términos de

subjets, que son estructuras análogas a los jets reconstruidas dentro de los mismos.

El primer análisis presentado examina la estructura interna de aquellos jets en los

cuales exactamente dos subjets son reconstruidos a un determinado valor de la escala

de resolución ycut. Se obtienen medidas de la sección eficaz diferencial normalizada

como función de variables de subjet, las cuales son sensibles a los detalles de la

radiacion partónica. Además, se estudia la evolución de estas secciones eficaces con

la escala de enerǵıa. Estas medidas son comparadas con las predicciones de pQCD y

se examina en qué medida pQCD es capaz de proporcionar una descripción adecuada

de los aspectos más importantes de la radiación partónica. En el segundo análisis

se estudian aquellos jets en los cuales tres subjets son reconstruidos a un valor

determinado de la escala de resolución. Se miden secciones eficaces diferenciales

normalizadas como función de variables de los subjets. Estas secciones eficaces son

sensibles a los factores de color del grupo de simetŕıa gauge subyacente, por lo que

este análisis permite estudiar la estructura gauge de las interacciones fuertes.

En el caṕıtulo 1 se presentan los aspectos fundamentales del andamiaje teórico

que subyace a los estudios presentados en este trabajo. Se describe el régimen

DIS aśı como su rol como el contexto f́ısico que dio lugar a QCD. Se proporciona

también una breve descripción de teoŕıa cuántica de campos, QCD y alguno de sus

aspectos más relevantes, como la libertad asintótica, el fenómeno de confinamiento



y la dinámica de los partones en procesos de dispersión ep.

En el segundo caṕıtulo se introduce el concepto de jet. Se presenta su definición

en términos de algoritmos de reconstrucción aśı como la f́ısica relacionada con la

producción de jets en el contexto de QCD perturbativa. En la última parte de este

caṕıtulo se presenta el concepto de subjet y se muestran algunos aspectos teóricos

relacionados como la multiplicidad de jets, aśı como estudios de f́ısica de subjets

realizados previamente por la colaboración ZEUS.

En el caṕıtulo 3 se da una descripción de los análisis presentados en este trabajo

y de su motivación. Se presentan los rangos cinemáticos en los que los jets son

reconstruidos aśı como la escala de resolución a la cual se reconstruyen los subjets.

En la última parte del caṕıtulo se mencionan estudios previos realizados por LEP y

ZEUS acerca de la simetŕıa gauge subyacente en la interacción fuerte.

En el cuarto caṕıtulo se describe HERA y el detector ZEUS. HERA es un sin-

crotrón electrón-protón con una enerǵıa del centro de masas de
√
s = 320 GeV, lo

cual permite transferencias de momento entre el electrón y los constituyentes del

protón en un rango dentro del dominio descriptivo de pQCD. ZEUS es un detec-

tor multipropósito en uno de los puntos de interacción de HERA. Consiste de un

número de detectores organizados alrededor del punto de colisión, y cuyo objetivo

es obtener la mayor información posible acerca las colisiones. Por tanto, ZEUS es

una herramienta extremadamente eficaz para el estudio de QCD.

En el caṕıtulo 5 se presentan los cálculos de pQCD a orden fijo que permiten

comparar las medidas con las predicciones teóricas de QCD. Se menciona cómo

se llevan a cabo estos cálculos y también cuáles son los programas con los que

se realizan. Se presentan las predicciones para las secciones eficaces diferenciales

normalizadas como función de las variables de subjets para los dos análisis. En la

última parte del caṕıtulo se presentan las diferentes fuentes que contribuyen a la

incertidumbre asociada a las predicciones teóricas.

En el sexto caṕıtulo se presentan los generadores de eventos Monte Carlo (MC).

Las simulaciones MC se usan para entender y corregir los efectos que introduce el de-

tector en las medidas de producción de jets y subjets. Aśı mismo, estas simulaciones

incluyen modelos fenomenológicos para describir el fenómeno de la hadronización,

lo cual permite una comparación de los datos y las expectativas teóricas al mismo

nivel.

El caṕıtulo 7 cubre los criterios de selección de la muestra sobre la que se realizan

los análisis, tanto los rangos cinemáticos como los cortes de limpieza y eliminación de

background. Se muestran comparaciones entre las simulaciones Monte Carlo y datos,

las cuales legitimizan el posterior uso de las simulaciones para corregir los datos por

los efectos del detector y la obtención de incertidumbres sistemáticas. Todos los



correspondientes factores de corrección se muestran el el caṕıtulo 8. Debido a que

la cantidad de figuras de esta sección es grande, la mayoŕıa de ellos se muestran en

el apéndice con el objetivo de facilitar la lectura.

En el caṕıtulo 9 se presentan los resultados. Se muestran las secciones eficaces

diferenciales con respecto a las variables de subjet para los dos análisis junto con las

predicciones teóricas de pQCD. Para el análisis de dos subjets, también se muestra

la evolución de las secciones eficaces con la escala de enerǵıa. Para el análisis de tres

subjets, se incluyen los estudios acerca de la sensibilidad de las secciones eficaces al

grupo de simetŕıa gauge subyacente.

Finalmente, se da un breve resumen de los aspectos más relevantes y las conclu-

siones más importantes del trabajo presentado.

El trabajo presentado en esta tesis ha dado lugar a las siguientes publicaciones:

• ZEUS Collaboration, S. Chekanov et al., Subjet distributions in deep inelastic

scattering at HERA, The European Physical Journal C63 (2009), 527.

• ZEUS Collaboration, S. Chekanov et al., Three-subjet distributions in neutral

current deep inelastic scattering, ZEUS-prel-09-007, art́ıculo de contribución

a International Europhysics Conference on High Energy Physics, Cracovia,

Polonia, 2009.

El autor también ha contribuido a las siguientes publicaciones:

• ZEUS Collaboration, S. Chekanov et al., Multi-jet cross sections in charged

current e±p scattering at HERA, Physical Review D78 (2008), 032004.

• ZEUS Collaboration, S. Chekanov et al., Jet substructure in neutral-current

deep inelastic ep scattering at high Q2 with HERA II, art́ıculo de contribución

a International Conference on High Energy Physics, Filadelfia, EEUU, 2008.

Este trabajo ha sido llevado a cabo en el contexto de la colaboración ZEUS dentro

del grupo experimental de f́ısica de altas enerǵıas de la Universidad Autónoma de
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Chapter 1

Theoretical background

In this chapter, the most relevant aspects of the theoretical framework underlying

the work presented here are reviewed. There are three main concepts which are espe-

cially relevant for these analyses. The first one is deep inelastic ep scattering (DIS),

which is the regime in which the studies were performed. The second is Quantum

Field Theory (QFT) and most specifically Quantum Chromodynamics (QCD), the

theoretical framework that best describes the physics of the nuclear-strong interac-

tions. QCD allows for a perturbative approach (pQCD) which adequately describes

the behaviour of strong-interacting particles in a wide variety of situations. The last

pillar of this work is the concept of a jet. In this work, the internal structure of jets

of hadrons is studied, which provides an excellent testing ground for the validity of

pQCD in a very demanding physical context.

1.1 Deep inelastic scattering and the parton model

In an interacting quantum field theory, the interactions take place through the ex-

change of particles. In ep collisions, where the initial lepton interacts with one of

the constituents of the proton, the interaction can either be electromagnetic, when

a photon is exchanged, or nuclear-weak, in which case a W boson or a Z boson

is exchanged. The exchanging of an electrically neutral particle (either the photon

or the Z) is commonly referred to as a neutral-current interaction (NC), while the

exchange of a W would be a charged-current (CC) interaction. Both processes take

place at HERA and have been extensively studied.

Deep inelastic scattering is the regime where the exchanged boson has a momen-

tum q such that Q2 ≡ −q2 is large compared with the energy scale at which partons

are bound into hadrons, ΛQCD. If the exchanged boson is a photon, this regime is

the one in which the photon has a large virtuality.



2 Theoretical background

k
k′

P

p

q = k − k′

Figure 1.1: A Deep Inelastic ep Scattering process involving an electron with 4-momentum

k and a proton with 4-momentum P .

The first experiments to test the nuclear-strong force turned out to be a box

full of surprises. One should expect a strongly bounded state of whatever particles

are inside of it. The first proton-proton collisions, at a energy of around 10 GeV

produced a large number of pions. The measured spatial distribution of the produced

pions was completely unexpected. A strongly-bounded state of pions should allow

for internal particles to have large transverse momenta which would induce large

transverse-momentum pions. However, the pions were produced almost entirely

along the collision axis. It looked as if the particles inside the hadrons had momenta

collinear with that of the hadrons. That is, as if they were esentially loose inside of

them, a very contradicting assumption.

In the late 1960s the SLAC experiments began, and there it was seen that the

total cross section of scattering of electrons from protons was comparable to what

would have been if the proton was an elementary particle and the scattering pro-

ceeded according to the QED expectations, alhough very rarely did a whole proton

emerge from the scattering process.

So in one hand, there was plenty of evidence of electromagnetic hard scattering

but no evidence of strong-interaction hard scattering taking place. Bjorken and

Feynman proposed then the parton model, where the proton is a loosely-bounded

compound of a few constituents, which they called partons. It was postulated that

partons do not exchange large momenta through interactions and that some of them

have the electromagnetic interactions of elementary fermions.

This rather naive picture already imposes strong constraints on the cross section
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p
p′

k′k

Figure 1.2: Mandelstam variables of the electron-parton interaction.

for deep inelastic scattering. To see this, let’s imagine the hard scattering of an

electron and one of the partons, as shown in Fig. 1.1 and recall that the square of

the invariant matrix element in the massless limit is:

1

4

∑

spins

|M2| =
8e4Q2

i

t̂2

(

ŝ2 + û2

4

)

,

where t̂, ŝ and û are the Mandelstam variables:

ŝ = (p+ k)2 = (p′ + k′)2,

t̂ = (k − k′)2 = (p− p′)2,

û = (p′ − k)2 = (p− k′)2,

where the four momenta are depicted in Fig. 1.2.

Trying to relate the Mandelstam variables to measurable quantities one finds

that t̂ is equal to −Q2, where Q2 is defined as:

Q2 ≡ −q2.

It is also found that ŝ is:

ŝ = (p+ k)2 = 2p · k = 2ξP · k = ξs, (1.1)

where s is the square of the electron-proton center-of-mass energy. The quantity

ξ can also be determined from measurements assuming that the electron-parton

scattering is elastic. Then, neglecting the mass of the scattered parton and taking

ξ to represent the fraction of the proton’s momentum carried by the parton, one

obtains:

m2
parton ≈ 0 ≈ (p + q)2 = 2p · q + q2 = 2ξP · q −Q2

and therefore,
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ξ = x (1.2)

where x is the Bjorken variable defined as:

x ≡ Q2

2P · q . (1.3)

Both Q2 and x are measurable quantities in each interaction, so the double-

differential cross section with respect to these variables is a measurable quantity.

The prediction of the parton model reads:

d2σ

dxdQ2
=
∑

i

fi(x)Q2
i ·

2πα2

Q4

[

1 +

(

1 − Q2

xs

)2
]

, (1.4)

where the functions fi(ξ) are the parton distribution functions in the proton and

they express the probability of finding a parton within the proton with a fraction ξ

of its momentum. These are not calculable functions from first principles in QCD, as

we shall see they involve non-perturbative effects. Nonetheless they can be obtained

from experimental fits and their evolution with Q2 can be calculated.

The constraint induced by this model on the cross section is now manifest; by

removing the kinematic factor

1

Q4

[

1 +

(

1 − Q2

xs

)2
]

one obtains a quantity that depends only on x and is independent of Q2, a behaviour

known as Bjorken scaling. It means that the structure of the proton is the same

regardless on how hard the electromagnetic interaction is. This was the behaviour

exhibited by the data taken at SLAC.

Before hadrons were identified as bound states of fermions, an explanation of the

hadron spectrum was searched for. Gell-Mann and Zweig had proposed in 1963 a

model where three species of elementary particles existed, which they called quarks.

The three kinds were the quarks up, down and strange. Mesons were thought to

be bound states of quarks and antiquarks, while baryons were bound states of three

quarks, such as the proton, which was thought to be a bound state of quarks uud.

This model had a great success predicting the existence of hadrons that had not

been discovered at that time, but it also presented some problems. In the first

place, since the proton is a bound state of three quarks, they must have fractional

charges, which imply that a combination like uuu would have a fractional charge

too, but no particles with fractional charges were found. As well, the spectrum

of baryons required that the wavefunction of the three quarks should be totally
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symmetric under the interchange of the quark spin and flavor quantum numbers,

which would imply a totally symmetric wave function for fermions.

An additional quantum number was then proposed, called color. It was postu-

lated that the wavefunction of baryons and mesons should be antisymmetric under

the interchange of the color quantum numbers. This was achieved with the combi-

nations:

q̄iqi, (1.5)

ǫijkqiqjqk (1.6)

ǫijkq̄iq̄j q̄k (1.7)

where the sum runs over 3 different colors, called red, blue and green, and ǫijk is

the antisymmetric matrix in 3 dimensions. Baryons and mesons are then invariant

under a new internal SU(3) global symmetry, of which color is the conserved charge.

The previous combinations yield invariant quantities under SU(3) transformations.

This set of assumptions worked really well but it raised many questions, perhaps the

most obvious of which is: by which mechanism is the color invariance realised? The

key to these concerns came from DIS experiments and the subsequent development

of Quantum Chromodynamics, a quantum field theory based on the gauge invariance

under the action of the non-Abelian group SU(3).

1.2 Quantum Field Theory

Local field theory is a useful idealization. The only known framework in which the

quantum mechanical interactions of a finite number of types of particles in ordinary

space-time are described is a local quantum field theory characterized by a local

Lagrangian density, where the interactions are described by products of fields at the

same space-time point.

Interactions amongst fields arise as a consequence of the so-called gauge invariace.

The statement of gauge invariance simply asserts that any event, that is, the value

of a given field at any space-time point, possesses a space of internal properties

the value of which are independently chosen from its neighbours. This is more

commonly rephrased as the freedom to change the phase of the fields by an arbitrary

quantity that depends on the space-time point. Mathematically, this induces the

existence of a field, the gauge field, which in turn possesses the right properties

under phase transformations so that the dynamics is left unchanged. In a field such

as the quark field, the continous set of values of its phase which are mathematically

related by the action of the group SU(3) × SU(2) × U(1) yield the same dynamics
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and, therefore, this implies the interaction with three different gauge fields, gluons,

W -Z bosons and photons, which means that quarks are sensitive to the strong, weak

and electromagnetic interactions.

1.2.1 Renormalized perturbation theory

Quantum field theory does not account for the physics at arbitrarily small distances;

it is commonly regarded as an effective low-energy approximation. This fact usually

presents itself as infinities in the results of calculations, which brings up the necessity

for the mathematical tools known as regularization and renormalization. When this

is done, the physics at small distances is modified in some way to make the theory

well-defined. The dependence on the short-distance physics which we do not know

about is then incorporated into a set of parameters that can be related to physical

quantities at measurable distances. Renormalizable theories are those in which a

finite number of parameters are required to absorb all the dependence on short-

distance physics. This usually means to re-express the parameters that appear in

a Lagrangian, the so-called bare parameters, in terms of measurable quantities, the

so-called physical parameters.

In renormalized perturbation theory, the goal is to absorb the divergences into

the unobservable parameters of the theory, the bare parameters. To accomplish

this, the perturbative expansion is conveniently modified so that these unobservable

quantities do not appear explicitly in the Feynman rules. The absorption of the

infinite shifts between bare and physical parameters are included in the so-called

counterterms, extra terms in the Lagrangian giving rise to extra Feynman diagrams.

There is no unique way of performing these operations and, therefore, theories are

only well defined when it is manifestly stated the conditions by which they are

renormalized. Generally, the set of conditions that are needed to properly define

the theory are imposed at a certain energy scale M . One then speaks of M as the

renormalization scale, which is regarded as the energy scale at which the theory is

defined.

1.2.2 The Callan-Symanzik Equation

The relation between changes in the renormalization of the scale M and the corre-

sponding shifts in the coupling constant and field strength are described in terms of

the Callan-Symanzik equation.

Let G(n) be the connected n−point function computed in renormalized pertur-

bation theory:

G(n)(x1, · · ·, xn) = 〈Ω | Tφ(x1)φ(x2) · ·· | Ω〉connected
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and now let’s assume a shift in the renormalization scaleM . There is a corresponding

shift in the coupling constant α and the field strength such that the Green’s functions

remain fixed:

M →M + δM,

α→ α + δα

φ→ (1 + δη)φ

Defining the dimensionless parameters:

β ≡ M

δM
δα; γ ≡ − M

δM
δη, (1.8)

one obtains the Callan-Symanzik equation:

[

M
∂

∂M
+ β(α)

∂

∂α
+ nγ(α)

]

G(n)({xi};M,α) = 0 (1.9)

This equation shows that there are two universal functions β(α) (the so-called

β function) and γ(α) (known as the anomalous dimension), related to the shifts

in the coupling constant and field strength, that compensate for the shift in the

renormalization scale M . The precise meanings of γ and β can be obtained by

writing their definitions in a more suitable manner, by re-expressing them in terms

of the bare parameters of the perturbation theory: the strength field rescaling factor

Z, the bare coupling α0 and the cut-off Λ. In doing so, one obtains:

γ(α) =
1

2

M

Z

∂

∂M
Z. (1.10)

So one sees that the dimensionless parameter γ(α) is related to the field strength

rescaling. One also obtains:

β(α) = M
∂

∂M
α |α0,Λ . (1.11)

Thus the β function is the rate of change of the renormalized coupling at the

scale M corresponding to a fixed bare coupling.

The easiest way to compute the β function from the Callan-Symanzik equation is

to begin with explicit perturbative expressions for some conveniently chosen Green’s

functions and impose that the Callan-Symanzik equation is satisfied. The depen-

dence on the scale M in the Green’s functions comes from the counterterms that are

needed to cancel the logarithmic divergences, and because of this the β function is

related to these counterterms. To lowest order, the Callan-Symanzik equation can be

written in terms of the counterterms needed to cancel the logarithmic divergences:
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β(α) = αM
∂

∂M
(−δ1 + δ2 +

1

2
δ3). (1.12)

This expression is useful to calculate the β function for a non-Abelian theory such

as QCD, as we shall see in the next sections.

1.3 The renormalization group equation

Solving the Callan-Symanzik for the two-point Green’s function at momentum p

and coupling constant λ gives:

G(2)(p, λ) = G(λ̄(p;λ))exp



−
p′=p
∫

p′=M

dlog(p′/M) · 2[1 − γ(λ̄(p′;λ))]



 , (1.13)

where G is a function to be determined and λ̄(p;λ) is a quantity that solves the

following equation:

d

dlog(p/M)
λ̄(p;λ) = β(λ̄). (1.14)

This differential equation describes the rate of change of a modified coupling

constant λ̄(p;λ) as a function of momentum. The rate of change is precisely the β

function, which is reminiscent of equation (1.11). λ̄(p) is known as the running cou-

pling constant and equation (1.14) is the so-called renormalization group equation.

The ordinary Feynman perturbation series for a Green’s function depends both

on the coupling constant λ and on the dimensionless parameter log(−p2/M2). Thus,

even if the coupling constant was small, the perturbative expansion could be badly

behaved if the ratio p2/M2 was large. The Callan-Symanzik equation applied to the

Green’s functions, like in equation (1.13), reorganizes these dependences into two

factors. The first one involves the function G. The determination of this function

must be done by matching the perturbation series in λ of G(2)(p). The result (1.13)

instructs us to take the ordinary perturbative expansion for the Green’s function

but with the coupling constant replaced by the effective coupling constant λ̄(p).

Therefore, the running coupling constant is the effective coupling constant that

arises as a consequence of the renormalization of the theory. This is the quantity

that is measurable in experiments and, as we see, its precise value depends on the

energy scale at which they are performed. The sign of the β function will also play a

crucial role in the dynamics of QCD; a positive β function corresponds to an effective

coupling constant which increases as the momentum increases, whereas for β(λ) < 0
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the opposite behaviour arises. An effective coupling that gets weaker as the energy

of the interaction increases is precisely what asymptotic freedom is about.

The second factor in equation 1.13 corresponds to the accumulated field strength

rescaling of the correlation function from the reference point M to the actual mo-

mentum of the process p.

1.4 Non-abelian Gauge Theory

Non-abelian theories are described in terms of the Yang-Mills Lagrangian:

L = −1

4
(F a

µν)2 + ψ̄(i 6 D −m)ψ, (1.15)

where the index a runs over the generators of the non-abelian group G, and the

fermion multiplet ψ belongs to an irreducible representation r of G. The field

strength F a
µν is:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.16)

where fabc are the structure constants of G. For a non-Abelian theory fabc 6= 0

and, thus, the term (F a
µν)2 contains terms proportional to A3 and A4. That is, there

are products of the boson fields at the same space-time point which means that the

bosons interact with each other. This is the fundamental fact that gives rise to the

negative value of the β function.

The Feynman rules for this Lagrangian are derived from a functional integral

over the fields ψ, ψ̄ and Aa
µ. To define the functional integral, the Faddeev-Popov

method constrains the overcounting of gauge degrees of freedom by inserting into

the functional integral the identity:

1 =

∫

Dα(x)δ(G(Aα))det

(

δG(Aα)

δα

)

, (1.17)

which implements the gauge-fixing condition G(A) ≡ ∂µA
µ = 0. The first non-

Abelian feature appears here. The determinant in equation 1.17 is not independent

of A, unlike in an Abelian theory. The Faddeev-Popov method represents this

determinant as a functional integral over a set of anticommuting fields belonging to

the adjoint representation of the group:

det

(

δG(Aα)

δα

)

=

∫

DcDc̄ exp

[

i

∫

d4xc̄(−∂µDµ)c

]

. (1.18)

The fields c are the so-called ghosts. They must be treated as additional particles

in the computation of Feynman diagrams. The ghost Lagrangian is:
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L = c̄a(−∂2δac − g∂µfabcAb
µ)cc. (1.19)

Thus, the full non-Abelian Lagrangian, including the non-trival effects of this

gauge-fixing method, is:

L = −1

4
(F a

µν)2 − 1

2ξ
(∂µAa

µ)2 + ψ̄(i 6 D −m)ψ + c̄a(−∂µDac
µ )cc. (1.20)

1.4.1 The β function in a non-Abelian theory

Given the Lagrangian, one is now able to calculate the contributions to the fermion-

boson vertex, the fermion self-energy and the boson self-energy. These contributions

are needed to evaluate the counterterms which are needed to regularize the one-loop

divergences that one encounters, which give the lowest-order contribution to the β

function as shown in equation 1.12. This gives:

β(α) = − α3

(4π)2

[

11

3
C2(G) − 4

3
nfC(r)

]

, (1.21)

where nf is the number of flavors, C(r) is the Casimir operator in the r representa-

tion of the fermions and C2(G) is defined in terms of the structure constants:

facdf bcd = C2(G)δab.

Of special notice is the negative sign of equation 1.21. For small values of nf ,

the β function of a non-Abelian gauge theory exhibits the asymptotic freedom that

is required for a correct description of the strong interactions.

1.5 Quantum Chromodynamics

When Bjorken scaling was first discovered, no asymptotically free field theories in

four dimensions were known. In the early 1970s such theories were discovered and

they were based on non-Abelian gauge invariance. Within this new theoretical

framework, the quarks were assumed to be bound together by vector bosons, called

gluons.

However, these new gauge theories predicted that, although asymptotic freedom

was a present feature, the running coupling would never be zero, as the experimental

Bjorken scaling seemed to suggest. Therefore, if these theories were to correctly

describe the strong interactions, small deviations from the scaling behaviour should

be detected. In the 1970s this picture was indeed revealed, variations of the parton

distribution functions over a logarithmic scale in Q2 were observed.
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Before non-Abelian gauge theories came into play, the color quantum number

had already been proposed, as previously discussed. Then, as soon it was realised

that a gauge symmetry was needed, it was natural to assign it to the existing color

SU(3) global symmetry, promoting it to a local, or gauge, symmetry.

Unlike photons and the electromagnetic interaction, the gluons carry the charge

of the strong interaction, thus coupling to themselves. This is the fundamental

feature of non-Abelian gauge theories that explains why only color-invariant combi-

nations of quarks are observed. It is found that the cost of separating a color-singlet

state into colored components grows proportionally to the separation. However, a

force of this kind can be weak at short distances, providing a mechanism for asymp-

totic freedom at high energies while bounding quarks inside hadrons.

1.5.1 Color SU(3)

We previously stated that hadrons are built out of spin-1
2

quarks and integer-spin

gluons, and that the quarks possess a degree of freedom called color:

q =







qred

qgreen

qblue






(1.22)

Quantum Chromodynamics is the context in which this emerges as a consequence

of the underlying SU(3) symmetry. Fermions are objects that transform in the

fundamental representation under the action of the group, which for SU(N) is a

N -dimensional representation. In addition, QCD has eight bosonic fields Aa
µ which

transform according to the adjoint representation of SU(3) under the action of the

group. They are called gluons or gauge bosons of the strong interaction. The groups

SU(N) have N2 − 1 generators in their fundamental and adjoint representations,

and thus the number of gluons in SU(3) is eight.

The dynamics of a gauge theory such as QCD are completely defined by the

commutation relations between its group generators T i:

[T i, T j] = i
∑

k

f ijkT k (1.23)

where f ijk are the structure constants. In perturbative calculations, the average

(sum) over all possible color configurations in the initial (final) states leads to the

appearance of combinatoric factors CF , CA and TF , which are defined by the rela-

tions:
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∑

k,η

T k
αηT

k
ηβ = δαβCF (1.24)

∑

j,k

f jkmf jkn = δmnCA (1.25)

∑

αβ

Tm
αβT

n
βα = δmnTF (1.26)

These color factors CF , CA, and TF represent the fundamental strengths of the

gluon radiation from quarks, the triple-gluon vertex, and the gluon splitting into a

quark-antiquark pair respectively, as depicted in Fig. 1.3.

Figure 1.3: The relative squared amplitudes of the vertices of the theory are dictated by

the underlying symmetry group through the color factors.

For SU(N), the predicted values of the color factors are:

CA = N CF =
N2 − 1

2N
and TF =

1

2
(1.27)

where N is the number of color charges.

1.5.2 The running of αs

The expression for the β function in equation 1.21 gives, for N = 3:

β(α) = − b0α
3

(4π2)
, (1.28)

with b0 = 11 − 2
3
nf and nf the number of quark flavors. The renormalization

group equation 1.14 gives the expression for the effective coupling constant, which

is usually called αs(Q):

αs(Q) =
αs

1 + ( b0αs

2π
)log

(

Q
M

) , (1.29)

where αs ≡ α2/4π is the coupling constant at Q = M .
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It is usual to remove the explicit dependence on the renormalization scale M in

favour of a mass scale Λ which satisfies:

1 = α2 b0
8π2

log

(

M

Λ

)

. (1.30)

With this definition, the running strong coupling constant is now:

αs(Q) =
2π

b0log
Q
Λ

(1.31)

In Fig. 1.4 the running of αs(Q) is depicted.

There are several things worth noticing. In the first place, equation 1.31 shows

very clearly the fact that, as Q2 increases, αs(Q
2) decreases as log(Q2)−1. QCD

therefore exhibits the property that it is needed for any theory to describe the

strong interactions, asymptotic freedom. It is also worth mentioning the dimensional

transmutation that has taken place. The quantum theory is not characterized by

a dimensionless parameter, but by a dimensional parameter Λ. It is the scale at

which αs(Q) becomes strong as Q2 decreases. This means that one should expect

that hadrons typically have a size determined by the length ∼ 1/Λ, which is the

length at which the interaction between them would become strong. Experimental

measurements of Λ yield a value of Λ ≈ 200 MeV, which corresponds to the size of

the light hadrons.

Experimental determinations of the running of the strong coupling constant are

now abundant and it has been well established that the running as predicted by

QCD reproduces the experimental data. Figure 1.5 shows how HERA has been

very powerful in determining the value of αs(MZ) through many different physics

processes.

1.5.3 The confinement of quarks

One of the pieces of the puzzle that was presented at the beginning of section 1.1

is solved with the advent of the non-Abelian quantum field theory QCD. As we

just saw, the effective coupling of this theory is consistent with the phenomena of

asymptotic freedom. The other piece of the puzzle is: what keeps quarks confined

inside hadrons? Intuitively, a coupling constant that grows strong as the energy

of the interaction decreases seems to be the required behaviour for confinement to

arise, but no analytic proof exists yet that QCD is a confining theory. Confinement

is, in a way, the responsible feature that makes quarks and gluons impossible to

detect in isolation. However, it is more accurate to state that it is the fact that

light quarks are much lighter than Λ what actually makes QCD complicated. If,
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Figure 1.4: Perturbative QCD prediction for the scale dependence of αs(µ) for the value

of αs(MZ) = 0.1189 ± 0.001, corresponding to the current world average.

for example, the ratio of the light quarks’ mass and Λ were such that the effective

coupling constant at the mass of the proton were:

αs(mp) = αem,

where αem is the electromagnetic coupling constant, then some interesting features

would appear. In the first place, since the chromodynamic forces would be as weak

as the electromagnetic ones, the proton mass would be roughly three times the quark

mass (assuming mu = md in this scenario). Thus, the quark mass would be:

mq ≈ mp/3 ≈ 300 MeV.

The proton radius would simply be the Bohr radius (αsmq)
−1 ≈ 10−11cm, which

is roughly 100 times bigger than in our world. Interestingly, this is still significantly

smaller than the size of the atom so the chemistry of this scenario would not be

significantly changed.

However, in this hypothetical world, the distance at which the strong coupling

constant would become strong would now be:

1

Λ
= exp

(

2π

b0αs(mp)

)

1

mp

≈ 1020cm,
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0.1 0.12 0.14
αs(MZ)

Figure 1.5: A compilation of determinations of αs(MZ) made at HERA.

which means that, if particle collisions were made by some creatures living in that

universe, the effects of confinement, although present, would be the last thing in

their minds as they would be really hard to measure.

1.6 QCD and Deep Inelastic Scattering

Once the theoretical framework of quantum field theory was established to describe

the strong interactions, the machinery of Feynman diagrams and the perturbative

approach was ready to be used in the study of deep inelastic scattering of electrons

and protons.

Consider a process like the one shown in Fig. 1.6. If the squared invariant

momentum transfer Q2 is large, the quark is ejected from the proton in a manner

that cannot be balanced by subsequent soft processes. However, these processes

create gluons and other quark-antiquark pairs that eventually neutralize the color

and cause the struck quark to materialize as a jet of hadrons. When the total

invariant mass of the hadronic final-state system is large, the process is referred to

as deep inelastic scattering.

To derive a first approximation to the cross section, consider this reaction in the
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e−(k′)

γ(q)

e−(k)

q(p)

q(p + q)

P (P )

Figure 1.6: Kinematics of a DIS process at lowest order.

electron-proton center-of-mass frame. Let’s assume that the center-of-mass energy is

large enough to ignore the mass of the proton. In this frame, the proton constituents

are then almost collinear with the momentum of the proton. This is because a

constituent of the proton can acquire transverse momentum with respect to the

proton’s momentum only by the exchange of a hard transverse gluon, a process

which is supressed by a factor αs. This means that, at lowest order in pQCD, the

momentum of the constituents is related to that of the proton by:

p = ξP. (1.32)

The cross section for e−p scattering is then given, at lowest order in αs, by

the cross section for electron-quark scattering at a given fraction of the proton’s

momentum ξ (depicted in Fig. 1.6) multiplied by the probability that the proton

contains a quark at that value ξ and integrated over all possible values of ξ. The

cross section is then given by:

σ(e−(k)p(P ) → e−(k′) +X) =

1
∫

0

dξ
∑

f

ff(ξ)σ(e−(k)qf (ξP ) → e−(k′) + qf (p′)).

(1.33)

That is, the expression that was obtained in section 1.1 for the cross section in the

parton model is recovered by QCD at lowest order in αs. It was argued then that in

the parton model the parton distribution functions depend only in the quantity ξ,

a behaviour known as Bjorken scaling. Now it is easy to guess that the deviations

from the scaling behaviour will arise as a consequence of the higher-order terms in
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the perturbative expansion.

It is often convenient to represent the cross section in equation 1.4 in terms

of dimensionless combinations of kinematic variables. The variable x is already

dimensionless, the other choice is:

y ≡ 2P · q
2P · k =

2P · q
s

. (1.34)

It is worth noting that, in the frame where the proton is at rest:

y =
q0

k0
. (1.35)

The variable y is thus the fraction of the incident electron’s energy that is trans-

ferred to the hadronic system and, thus, 0 ≤ y ≤ 1.

If follows that

Q2 = xys,

so that the following change of variables can be made:

dξ dQ2 = dx dQ2 = x s dx dy,

and the differential cross section becomes:

d2σ

dxdy
(e−p→ e−X) =

(

∑

f

xff (x)Q2
f

)

2πα2s

Q4

[

1 + (1 − y)2
]

. (1.36)

The dependence on y in the factor [1 + (1 − y)2] reflects the helicity of the inter-

acting particles and it is specific to the scattering of electrons from massless fermions,

which gave evidence that the partons involved in deep inelastic scattering processes

were fermions at a time when it was not yet clear.

The range of x, Q2 and y available in an experiment depends on its characteris-

tics. At HERA, the kinematic range is quite wide in both x and Q2, ranging from

values of x as low as x ∼ 10−6 in the case of ZEUS. Likewise, interactions with a Q2

between 10−1 GeV2 and larger than 104 GeV2 are available at HERA. A schematic

representation of the kinematic plane x-Q2 can be seen in Fig. 1.7.

The convolution of the parton distribution functions with the cross section of

electron and quark scattering is known as factorisation. The philosophy behind

factorisation is simply to write the hard interaction of high-energy processes as a

perturbative expansion in αs. These processes are not sensitive to the details of the

long-distance physics involved such as the description of the incoming hadron and
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Figure 1.7: The regions of the kinematic plane covered by the ZEUS and H1 experiments at

HERA. The regions covered by fixed-target experiments are also depicted for comparison.

thus they factorise out of the hadron physics description. The energy scale which

separates what is called the hard interaction from the rest of the process is known

as the factorisation scale, usually denoted by µF . A parton that is emitted with

a transverse momentum smaller than µF is considered to be a part of the hadron

structure and therefore absorbed into the parton distribution function. The cross

section for lepton-hadron scattering is then expressable as:

σ(Pl, Ph) =
∑

i

∫

dξfi(ξ, µ
2
F )σ̄(Pl, ξPh, αs(µR), µR, µF ), (1.37)

where Pl (Ph) are the incoming lepton’s (hadron’s) momentum.

The parton distribution functions (PDFs) in the proton are not calculable from

first principles in QCD and have to be extracted from experimental results. This

can be done because of the universality of the factorisation procedure. The obtained

PDFs in one experiment can be used in another to make predictions. However, the

evolution of the PDFs with the scale Q2 can be predicted within QCD when the
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scale is large. The evolution of the PDFs with the scale is slow in this case and the

perturbative approach can be used.

The ZEUS collaboration has performed several extractions of the proton PDFs [1,

2]. In these analyses, a reference value Q0 is chosen and the PDFs are parametrized

at that value. The parameterization used has the form:

xf(x) = p1x
p2(1 − x)p3(1 + p4x),

where pi are the parameters to be extracted. The distributions are then subjected to

the evolution with the scale as predicted by the DGLAP [3–7] equations (see next

section) so that values of the structure functions as well as predictions for other

observables are obtained.

In the analyses presented, the ZEUS-S PDFs were used [1], which included HERA

data as well as fixed-target data to constrain the fits at high x and provide infor-

mation on the valence distributions and the flavor composition of the sea. The

kinematic range covered by the data input to the fits is 6.3 × 10−5 ≤ x ≤ 0.65 and

2.5 ≤ Q2 ≤ 30000 GeV2.

In Fig. 1.8(a) the ZEUS-S PDFs as functions of x at Q2 = 10 GeV2 are shown.

In Fig. 1.8(b), a comparison with the PDFs as extracted by the MRST [8] and

CTEQ [9] collaborations is shown.
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Figure 1.8: (a) The gluon, sea, and u and d valence distributions extracted from the

standard ZEUS-S NLO QCD fit at Q2 = 10 GeV2. (b) Comparison with the extractions

performed by the MRST and CTEQ collaborations.
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1.6.1 Parton Evolution

Moving into the next order in αs inmediately hits the problem of the zero-mass

singularities. Unlike the case of e+e− annihilation, mass singularities and soft-gluon

singularities do not cancel out because of the presence of initial-state partons. This

is the fact that induces logarithmic violations of the Bjorken scaling. In QCD, the

emission of a collinear gluon costs a factor:

αs(Q
2)log

Q2

Λ2
, (1.38)

which is a quantity O(1). Therefore, out of the roughly (n!)2 Feynman diagrams in-

volved in a process with n participating particles, the ones corresponding to collinear

emissions are the maximally enhanced ones since:

(αslogQ
2)n = O(1).

The procedure by which these enhanced contributions are selected out of all the

contributing diagrams is known as the leading-log approximation (LLA) [10, 11].

These diagrams correspond to the emission of n succesive gluons with increasing

virtuality. Figure 1.9 shows one of the contributing diagrams that are logarithmi-

cally enhanced. A quark, initially with a momentum fraction x0, emits n gluons as

it moves into more virtual square masses and lower momentum fractions. This has

an interesting physical interpretation. Since the intermediate quarks are increas-

ingly more virtual as the diagram moves towards the scattering, it seems natural

to intepret them as components of the physical quark when the particle is analyzed

at succesively smaller distances. That is, a quark scattered at one resolution can

be resolved at a finer scale as an even more virtual quark and a number of gluons

and other quarks. Thus, it seems logical to include these logarithmics enhancements

due to collinear emission inside of the parton distribution functions. By doing this,

the PDFs acquire the momentum dependence just discussed, the partons looks dif-

ferently depending on the scale at which they are observed and, therefore, scaling

violations arise. However, since the scale dependence is logarithmic, an approximate

Bjorken scaling is still observed.

A fundamental ingredient in the ability to take into account the dominant con-

tributions at all orders is the strong ordering of the succesive emissions |k0|2 <<
|k1|2 << ... << |kn|2. Physically, this is justified by the fact that quark-gluon multi-

plication processes happen at larger space-time distances than the hard interaction.

With this separation it is possible to describe quark and gluon cascades in terms of

independent splitting processes.

This resummation of enhanced logarithmic terms leads to a set of equations
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Figure 1.9: Succesive gluon emissions from a quark before it undergoes a deep inelastic

process.

that describe the evolution of the parton distribution functions in the energy range

where perturbation theory can be applied. The set of equations are known as the

DGLAP equations. The equations essentially state that the parton distribution

functions evolve pertubatively with the scale Q according to the convolution of two

ingredients. The first one is the present configuration of the PDFs at that scale,

in which the resummation of collinear emission previously discussed is present, and

the second one is the parton emission which can proceed through the three different

vertices (at leading order in αs) shown in Fig. 1.10 (four vertices are shown, but

two of them are identical). The differential probability of a parton p1 emitting a

parton p2 with a fraction z of its momentum is described in terms of the splitting

functions P p2
p1 (z). In QCD there are four different possibilities, all of them also shown

in Fig. 1.10. With these ingredients, one can write the set of differential equations

that govern the evolution of the parton distribution functions:

d

dlogQ
fg(x,Q) =

αs(Q
2)

π

1
∫

x

dz

z

{

CFP
g
q (z)

∑

f

[ff (
x

z
,Q) + ff̄(

x

z
,Q)] + CAP

g
g (z)fg(

x

z
,Q)

}

,

(1.39)

d

dlogQ
ff (x,Q) =

αs(Q
2)

π

1
∫

x

dz

z

{

CFP
q
q (z)ff (

x

z
,Q) + TFP

q
g (z)fg(

x

z
,Q)

}

, (1.40)

d

dlogQ
ff̄(x,Q) =

αs(Q
2)

π

1
∫

x

dz

z

{

CFP
q
q (z)ff̄ (

x

z
,Q) + TFP

q
g (z)fg(

x

z
,Q)

}

. (1.41)

Here ff (ξ) and fg(ξ) represent the quark and gluon distribution functions inside a

proton.

In chapter 6 a Monte Carlo event generator which simulates the resummation of

the enhanced logarithmic terms by a succession of parton branchings is discussed. It



1.6. QCD and Deep Inelastic Scattering 23

Figure 1.10: Parton splitting functions.

uses a numerical approach to the evolution equations based on the so-called Sudakov

form factor:

∆i(t) = exp



−
t
∫

t0

dt′

t′

∑

j

∫

dz
αs

2π
P j

i (z)



 , (1.42)

where P j
i represents the splitting functions.

One can then write the set of differential equations for the evolution of the fi as

t
∂

∂t

(

fi

∆i

)

=
1

∆i

∑

j

∫

dz

z

αs

2π
P i

j (z)fj(x/z, t). (1.43)

The Sudakov form factor expresses the probability that parton i does not branch

between the scales t0 and t and it sums enhanced virtual and real contributions to

all orders.

In the formulation of the DGLAP equations, ff(ξ) and fg(ξ) represented the

quark and gluon distribution functions inside a proton. However, certain combina-

tions of PDFs are preferred in terms of which the cross sections are usually expressed.

To obtain this expression, let’s consider a process like the one shown in Fig. 1.1. The

leptonic contribution to the process can be calculated using the standard Feynman

rules.
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Lµν
e =

1

2
Tr(( 6 k′ +m)γµ( 6 k +m)γν) (1.44)

On the other hand, since the cross section has to be Lorentz-invariant, the general

expression will have to be of the form:

dσ ∼ Le
µνW

µν , (1.45)

where W µν represents the Lorentz structure of the target, which is a priori unknown,

but can be constrained with the aid of Lorentz invariance and current conservation.

In the first place, it must be a combination of the independent inputs to the physical

process, the momenta p and q. With this requirement, the most general expression

containing two free Lorentz indices is:

W µν = −W1g
µν +

W2

M2
pµpν + iW3ǫ

µνρσpρqσ +
W4

M2
qµqν +

W5

M2
(pµqν + qµpν), (1.46)

where M is the mass of the proton. The Ward Identity comes into role now following

the conservation law:

∂µW
µν = 0

from which the Ward Identity asserts that qµ can be dotted into W µν :

qµW
µν = 0

so that the expression is further constrained. Thus, only three of the five initial

inelastic structure functions of equation 1.46 are independent. It is common to

write:

F1(x,Q
2) = MW1(x,Q2), (1.47)

F2(x,Q2) =
Q2

2Mx
W2(x,Q

2) (1.48)

and

xF3(x,Q2) =
Q2

2M
W3(x,Q2). (1.49)

The functions Fi are the combinations of PDFs we were after; they are admixtures

of the ff and fg. The function F3 is a parity-violating contribution and it is only

present when a Wor Z boson is the exchanged particle and thus the contribution

from this term is important only at high values of Q2.
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Thus, in the limit where the parton masses can be ignored, the general NC DIS

cross section can be written as:

d2σ

dxdQ2
(e±p) =

4πα2

xQ4
[xy2F1 + (1 − y)F2 ∓ y(1 − 1

2
y)xF3] (1.50)

In Fig. 1.11, measurements of the structure function F2 at HERA by the exper-

iments ZEUS and H1 are shown. It can be seen that there is indeed a dependence

of F2 with the scale Q2, which is especially important at low x.
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Figure 1.11: Summary of measurements of F2 at HERA.



Chapter 2

Jet physics

In section 1.5.3 the phenomenon of confinement was discussed. As it was argued,

the fact that QCD is a non-Abelian theory and that the mass of the quarks is signif-

icantly smaller than Λ, makes it impossible to observe a completely isolated colored

object. When the distance between two color-connected objects is larger than the

fundamental scale 1/Λ it is energetically favorable to create a quark-antiquark pair

so that the initial partons evolve into a system of hadrons. These are the jets.

Thus, ultimately what the experimentalist observes is a jet of hadrons. Therefore,

the ability to relate the observations to the underlying hard interaction has to be

done in terms of the elements that are observed in the detection process, like the

energy of the hadrons or their spatial distribution. That is, the concept of jet has to

be defined precisely in an unambiguous manner so that a theory of hard interactions

can be compared to the data obtained in an experiment. As we shall see in the next

section, a jet is defined as the end-product of an interative process that runs over

a set of input objects (final-state particles, energy deposits in a calorimeter, etc),

known as a jet reconstruction algorithm.

2.1 Jet algorithms

The precise details of an optimal jet algorithm are subject to specifics of the exper-

iment where it is going to be used. However, there is a set of attributes that any jet

algorithm should have. In order to perform comparisons of the predictions of QCD

with the data, the end-products of the theoretical calculations are also fed into the

jet algorithm, which reconstructs jets of partons (see chapter 7). On the other hand,

it is necessary for certain Feynman diagrams to give the same jet configurations in

order to make collinear and infrared divergences go away. Thus, for any theoretical

calculation of jet production that aims to make sensible predictions, this type of can-

cellations should take place after the application of the jet reconstruction algorithm
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to the final partons of the pQCD calculations. If this is the case, the algorithm is

said to be collinear and infrared safe.

It is also desirable that it has little sensitivity to hadronization corrections, since

the smaller they are, the better the correspondence between the measurements of

the jets of hadrons and the underlying dynamics of the partons.

It also should exhibit certain invariances. In hadron-induced reactions, the quan-

tities involved in the definition of distances have to be invariant under longitudinal

boosts along the collision axis. This is especially important in an experiment like

HERA, where the center-of-mass energy of the hard interaction depends on the frac-

tion of the momentum of the proton that the struck quark carries, which varies in

an event-by-event basis.

The algorithm that was used for the studies presented in this work was the kT -

cluster algorithm [12] in its longitudinally-invariant inclusive mode [13]. A schematic

representation of how the algorithm works can be found in Fig. 2.1. It is infrared

and collinear safe, and it makes use of the longitudinally-invariant quantities ET , ∆η

and φ. It is also an algorithm that has several advantages over other common recon-

struction algorithms such as the cone algorithm [14]. It yields smaller hadronization

factors and it is also less influenced by soft particles than the cone algorithm.

It proceeds according to the following steps:

• For every pair of objects i and j (e.g. final-state partons, final-state hadrons

or energy deposits in the calorimeter), the distance dij between them is found

according to:

dij = min{E2
T,i, E

2
T,j}

[

(ηi − ηj)
2 + (φi − φj)

2
]

,

where ET,i, ηi and φi are the transverse energy, pseudorapidity and azimuthal

angle of the i−th object.

• For collisions involving incoming hadron beams, one also has to define a close-

ness measure to the beam direction to ensure that the resulting cross sections

obey the factorization theorem. For every object i, the closeness to the beam

direction is defined according to

di = E2
T,i ·R2,

where R is commonly known as the radius of the jet. In this work, it is set

to unity. Recent analyses by ZEUS have studied the radius-dependence of the

inclusive jet production in NC DIS [15, 16].



2.1. Jet algorithms 29

• The smallest value of all {dij, di} is considered. If this is one of the dij the two

objects are merged into a new one following the recombination scheme:

ET,k = ET,i+ET,j ; ηk =
1

ET,k
(ηiET,i + ηjET,j) ; φk =

1

ET,k
(φiET,i + φjET,j) .

This recombination scheme is known as the Snowmass convention [17]. If,

however, the minimum is one of the di, then that object is considered as a

protojet and it is no longer considered in the iteration process.

• This process is repeated until no object remains, that is until it is satisfied

that:

di < dij

for all i and j. All the objects have been clustered into protojets at this point.

• Jets are selected from the sample of protojets by imposing a cut on the trans-

verse energy of the protojets to disentangle the end-products of the hard in-

teraction.

One also has to specify the system of reference where jets are reconstructed.

In the analyses presented here, this was the laboratory frame. In jet physics at

HERA, jets are commonly reconstructed in the Breit frame [18, 19]. However, a

reconstruction in the Breit frame would not allow for studies of jet substructure at

next-to-leading order in the three-subjet analysis, as will be explained in section 5.1.
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Figure 2.1: A schematic representation of the kT cluster algorithm in its longitudinally-

invariant mode.

2.2 Perturbative jet physics

Jets of hadrons, which ultimately are what hit the detectors, arise as a consequence

of the non-perturbative phenomenon of color confinement. For this reason alone, the

applicability of pQCD even to hard processes is far from obvious. However, the data

obtained in many years of experiments with QCD jets clearly show that the broad

features of hadronic jet systems, calculated at the parton level, agree surprisingly

well with the measured ones. This demonstrates the dominant role of the pertur-

bative phase of jet evolution and supports the hypothesis of Local Parton-Hadron

Duality (LHPD) [20, 21]. The fundamental assumption is that the conversion of

partons into hadrons occurs at a low virtuality scale, which is independent of the

scale of the primary hard process, and involves only low-momentum transfers.



2.2. Perturbative jet physics 31

The analytical perturbative approach (APA), which combines pQCD with the

LHPD hypothesis, attempts to describe the structure of multi-hadronic final states

with the minimal reference to the dynamics of fragmentation. In this framework, the

dominant source of multihadron production in hard processes is gluon bremsstrahlung.

The produced hadrons bear information about the underlying dynamics at small dis-

tances, so that the distributions of the color-singlet hadrons in the final state are

governed by the dynamics of the parton-shower system and, in particular, by the

flow of color numbers.

Gluon brehmstrahlung off a quark, which plays the key role in QCD jets, has a

differential spectrum given by:

dωq→q+g =
αs(k⊥)

4π
2CF

[

1 +

(

1 − k

p

)2
]

dk

k

dk2
⊥

k2
⊥

, (2.1)

where k is the gluon four-momentum.

At a large emission angle, which contributes to the multijet topology, and large

energy E one would have:

k⊥ ∼ k ∼ E → w ∼ αs

π
<< 1.

That is, a small probability to emit a gluon-jet. At the same time, quasi-collinear

emissions and soft partons, which constitute the bulk of radiation, will not lead

to additional jets but will instead populate the original jet with secondary par-

tons influencing the particle multiplicity and other jet characteristics such as its

substructure:

k⊥ << k << E → w ∼ αslog
2E ∼ 1

Therefore, it is of tantamount importance to take into account the effects of these

soft-emissions. The physics involved in this regime were discussed in section 1.6.1

in the context of parton distribution functions.

2.2.1 Coherent branching

Coherence phenomena are an intrinsic property of any gauge theory. In QCD, color

coherence can be separated into two regions: intrajet and interjet coherence [10,

11]. Intrajet coherence deals with coherent efects in partonic cascades, resulting on

average in the angular ordering of the sequential parton branching inside jets.

In addition to the logarithmic enhancements that come from collinear parton

emission, there are also enhancements which arise from soft gluon emission. The

enhancement factor appears in the external lines of Feynman diagrams, which means
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Figure 2.2: Due to the coherence effects, the final-state gluon is emitted with θgq̄ < θqq̄.

that when the coherent sum is taken to calculate the cross section, there will be a

term which is a sum over all pairs of lines {i, j}:

dσn+1 = dσn
dω

ω

dΩ

2π

αs

2π

∑

i,j

CijWij, (2.2)

where dΩ is the element of solid angle for the emitted gluon, Cij is a color factor to

be computed and the radiation function Wij is given by:

Wij =
ω2pi · pj

pi · q pj · q
=

1 − vivjcosθij

(1 − vicosθiq)(1 − vjcosθjq)
(2.3)

where q is the gluon’s momentum.

The quantity Wij can be separated into two terms:

Wij = W
[i]
ij +W

[j]
ij ,

where

W
[i]
ij =

1

2

(

Wij +
1

1 − cosθiq
− 1

1 − cosθjq

)

.

The funtion W
[i]
ij possesses the property of angular ordering, by which the angular

integration in equation 2.2 gives:

2π
∫

0

dφiq

2π
W

[i]
ij =

1

1 − cosθiq

if θiq < θij

= 0 otherwise

(2.4)
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Figure 2.3: Color-coherence effects between initial and final states in DIS ep scattering.

Due to these effects, the soft radiation is restricted to the region between the jet and the

color-connected proton remnant, depicted as the dark-grey area.

That is, this term yields a contribution to soft-gluon emission from the external legs

{i, j} which is confined in a cone centered along the direction of i and delimited by

the direction of j (θiq < θij). Of course, the same argument works for W
[j]
ij . Thus,

succesive soft-gluon emissions from external lines exhibit the phenomenon of angular

ordering (AO), depicted in Fig. 2.2.

A color-coherence phenomenon that will be studied in the work presented here

is the coherence between initial and final states. In this case, the effects manifest

themselves by esentially restricting the region where soft partons are emitted to the

one between the two color-connected partners in the event, which in this case are

the proton remnant and the jet. A schematic representation is given in Fig. 2.3,

where the dark-grey area represents the region where the soft emissions are to be

expected.

2.3 Subjets

Subjets are jet-like structures resolved within jets [22–25]. The clustering algorithm

is re-applied to the objects that have been clustered together in a jet with a dimen-

sionless resolution parameter ycut.

Having selected a particular jet, the kT -cluster algorithm was re-applied to all

the particles belonging to it until it is satisfied that

dij > ycut

(

Ejet
T

)2
; (2.5)
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Figure 2.4: The resolution parameter ycut determines how many subjets are resolved within

a given jet.

the remaining particles after this condition is satisfied for all {i, j} are called subjets.

The parameter ycut determines how many subjets are resolved within a given jet (see

Fig. 2.4. When ycut increases there are less pairs of clusters that satisfy equation 2.5

and, thus, the multiplicity of subjets decreases with increasing ycut. In the limit of

ycut = 1 one obtains only one subjet which is the jet itself, since the requeriment

dij >
(

Ejet
T

)2
was satisfied for the algorithm to reconstruct the given jet. For very

small values of ycut one would be able to resolve the individual hadrons if the detector

had enough resolution.

The most interesting region is the intermediate region where the resolution scale

is large enough for perturbation theory to be valid but small enough for accessing

non-trivial values of multiplicity of subjets.

2.3.1 Subjet multiplicity

The mean subjet multiplicity in a QCD calculation at a fixed order depends on the

number of partons that constitute the jet and the resolution scale ycut. All partons

inside the jet may be clustered together as well in a single subjet if the resolution

scale ycut is large, or all of them may be resolved into different subjets if ycut is small

enough. The mean subjet multiplicity is defined to be

〈nsbj〉 =
Njets(sbj = 1) + 2Njets(sbj = 2) + ...

Njets
= 1 + A1αs + A2α

2
s + ... (2.6)

At O(αs) one has two partons in the final state that may be clustered together

by the jet definition. The non-trivial contribution to the subjet mutiplicity occurs
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when the two partons are resolved into different subjets upon the re-application of

the algorithm with the resolution parameter ycut.

Given the recombination scheme used, the jet variables are given in terms of the

subjet variables as

Ejet
T = Esbjet1

T + Esbjet2
T (2.7)

φjet =
Esbjet1

T φsbjet1 + Esbjet2
T φsbjet2

Ejet
T

(2.8)

ηjet =
Esbjet1

T ηsbjet1 + Esbjet2
T ηsbjet2

Ejet
T

. (2.9)

The two-body phase space {(Esbjet1
T , ηsbjet1, φsbjet1), (Esbjet2

T , ηsbjet2, φsbjet2)} can

be parametrized in terms of the jet variables {Ejet
T , ηjet, φjet}, the energy fraction

z = Esbjet2
T / (Esbjet1

T + Esbjet2
T ), the rescaled transverse momentum

y = k2
⊥
/(Ejet

T )2 = z2
[

(ηsbjet1 − ηsbjet2)2 + (φsbjet1 − φsbjet2)2
]

and ψ, an angle defined in the η − φ plane [23]. The quantity k⊥ is the transverse

momentum of subjet 2 relative to subjet 1 and it is assumed that Esbjet1
T > Esbjet2

T .

This quantity must be greater that
√
ycutE

jet
T for the two subjets to be resolvable.

With these definitions, the following relations hold:

Esbjet1
T = (1 − z)Ejet

T , (2.10)

φsbjet1 = φjet +
√
ysinψ (2.11)

ηsbjet1 = ηjet +
√
ycosψ (2.12)

Esbjet2
T = zEjet

T , (2.13)

φsbjet2 = φjet −√
ysinψ

1 − z

z
, (2.14)

ηsbjet2 = ηjet −√
ycosψ

1 − z

z
. (2.15)

The kinematic limits that the resolvability of the two subjets imposes are

0 < ψ < 2π (2.16)

ycut < y < 1/4 (2.17)
√
y < z < 1/2 (2.18)

Using the above parameterizations and kinematic limits, one is able to perform

theoretical calculations on the number of subjets produced. For example, the two-
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subjet fraction Njets(sbj = 2)/Njets = R2 is the ratio of the cross section of two-

parton production in the particular case that the two final-state partons are resolved

into two subjets at a given ycut over the cross section of inclusive jet production:

R2 =
dσ2subjets

dσjet

This can be calculated numerically with the two-body phase-space parameteri-

zation given above.

In general, one finds that the probability of finding a n-subjet event goes like

Pn ∼ αn−1
s . At small ycut the leading term at the order αm

s , where m ≥ n − 1, is

ln2mycut. These leading logarithmic terms must be summed to all orders in αs for the

perturbative approach to make sense. The next-to-leading logarithms (ln2m−1ycut)

must also be taken into account to have a result which is of leading-order accuracy,

since each extra power of αs contributes with two logarithms. These extra next-to-

leading logarithms contain essential contributions from soft gluons that are radiated

off the incoming partons, as shown in studies performed in the context of hadron

collisions [25]. However, due to the lack of resummed calculations for the processes

considered here, the studies have been limited to sufficiently large ycut values so that

a fixed-order calculation is precise enough.

Studies of subjet mutiplicity have already been performed by ZEUS [26, 27].

It was found that next-to-leading order QCD calulations were able to adequately

describe the data and an extraction of αs was made. Two of the main results are

shown in Fig. 2.5, which depicts on one hand the number of jets that have a certain

amount of subjets at different values of ycut and on the other hand, the mean subjet

multiplicity as a function of ycut for inclusive jet production; for comparison, NLO

QCD calculations are also shown. The data sample of these studies consists of jets

reconstructed in the laboratory frame with Ejet
T > 15 GeV and −1 < ηjet < 2 in a

NC DIS sample with Q2 > 125 GeV2.

In the analyses presented here, distributions in the subjet variables are inves-

tigated and the topology of subjets is studied by means of normalised differential

cross sections as functions of these subjet variables. The next chapter presents an

outline of the measurements performed.
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Figure 2.5: Left: Distribution of the number of subjets within a jet at different values

of ycut for an inclusive jet sample. Right: a) The mean subjet multiplicity corrected to

the hadron level 〈nsbj〉, as a function of ycut for inclusive jet production in NC DIS with

Q2 > 125 GeV2, −1 < ηjet < 2 and Ejet
T > 15 GeV (dots). The NLO QCD calculations,

corrected for hadronization effects and using µR = µF = Q, are shown for several sets of

proton PDFs (solid lines). The LO QCD calculations are also shown (dashed line). b)

The parton-to-hadron correction, Chad, used to correct the QCD predictions (ARIADNE,

solid line; LEPTO-MEPS, dashed line). c) The relative uncertainty on the NLO QCD

calculation due to the variation of the renormalisation scale.
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Chapter 3

Description of the analyses

In this section, a short introduction to the analyses is presented. In both of them the

topology of jets is studied by means of subjets, which were introduced in section 2.3.

In the past, subjet physics has allowed the performance of several stringent tests of

the validity of pQCD.

In the previous chapter, the basics of jet physics were covered. In particular,

it was stated that jet studies constitute a testing ground for the predictions of

pQCD since many of the characteristics of jets are derived from the details of parton

physics. Measurements of jet production, determinations of αs as well studies of the

jet substructure have been performed confirming the predictive power of pQCD in

a variety of contexts at HERA [16, 26, 28–46].

In the work presented here, the validity of pQCD to adequately describe the

physics of jets is further put into test by studing the topology of high-ET jets by

means of subjets. This work goes beyond previous studies [26, 27], which focused

on the average subjet multiplicity, by studying normalised differential cross sections

with respect to subjet variables. In the first analysis presented here, jets with exacly

two subjets are considered [47] and in the second one, those that have three subjets

constitute the sample [48]. The aim is to investigate the extent up to which the

substructure of jets is dictated by the pattern of parton radiation and whether

specific features that characterise pQCD such as the color flow manifest themselves

through correlations in the energy flow within a jet. For that purpose, subjets are

considered and regions of phase space identified in which the subjets are closely

related to the underlying emitted partons.

In both analyses, it is required that Q2 > 125 GeV2. Jets are reconstructed in

the laboratory frame with the kT -cluster algorithm. The jets are then required to

satisfy Ejet
T > 14 GeV and −1 < ηjet < 2.5.
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Figure 3.1: Feynman diagrams contributing to the production of jets with two subjets

O(αs) (left) and O(α2
s) (right).

3.1 Two-subjet analysis

In this first analysis, the jets are required to have exactly two subjets at a value

of ycut = 0.05. A schematic representation of two of the contributing diagrams is

shown in figure 3.1. There is no ’a priori’ reason to choose this specific value of

ycut. The chosen value of ycut is a compromise between several effects that go in

opposite directions concerning their dependence with ycut. Statistics and resolution

increase as ycut decreases, since one is able to resolve more subjets. However, when

a jet is examined at very low ycut values, the transition from the partonic state

to the hadronic one may undergo significant changes which would yield sizeable

hadronization corrections and would difficult the comparison of the corrected pQCD

calculations with the data. After all, the hadronization correction is validated by

the fact that the distributions look similar at both partonic and hadronic levels.

The variables used in this analysis are listed below:

• The fraction of the transverse energy of the jet carried by each subjet, Esbj
T /Ejet

T .

• The difference between the pseudorapidity of each subjet and that of the jet,

ηsbj − ηjet.

• The difference between the azimuthal angle of each subjet and that of the jet,

|φsbj − φjet|.

• αsbj is an angular variable defined in the η − φ plane as follows. It is the

angle between the highest-ET subjet and the proton beam direction, which is

represented as a line of constant φ in the η − φ plane, as seen from the jet

center’s point of view. This is depicted in figure 3.2. This variable allows

to test whether the phenomenon of color-coherence between initial and final

states is present.

The variation of the subjet distributions with respect to the transverse energy

of the jet, the jet’s pseudorapidity, Q2 and Bjorken x is also studied. One expects a
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Figure 3.2: Schematic representation of αsbj , the angle in the η − φ plane between the

highest-ET subjet and the proton beam direction as seen from the jet center.

small dependence with the energy scale since the splitting functions, which govern

the evolution of the parton radiation, depend logarithmically on it.

The normalised differential cross sections are compared to the predictions of

pQCD at next-to-leading order calculated with the program DISENT [49].

3.2 Three-subjet analysis

Jets with exactly three subjets are required for this second analysis. The value of ycut

chosen for this analysis is ycut = 0.01. In order to resolve three subjets with sufficient

statistics the value of ycut had to be lowered to gain the necessary resolution. In this

analysis, the four variables previously presented are also used and three more have

been designed to study the pattern of QCD radiation. The entire set of variables

considered is listed below:

• The fraction of the transverse energy of the jet carried by each subjet, Esbj
T /Ejet

T .

• The difference between the pseudorapidity of each subjet and that of the jet,

ηsbj − ηjet.
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Figure 3.3: Schematic representation of the variables βsbj , α23 and γsbj .

• The difference between the azimuthal angle of each subjet and that of the jet,

|φsbj − φjet|.

• βsbj is the angle in the η−φ plane between the lowest-ET subjet and the proton

beam direction as seen from the jet center (see figure 3.3).

• α23 is the angle in the η − φ plane between the two lowest-ET subjets (see

figure 3.3).

• γsbj is the angle in the η − φ plane between the highest-ET subjet and the

vector difference of the lowest-ET subjets (see figure 3.3).

• The difference between the pseudorapidity of the lowest-ET subjet and that of

the jet, ηsbj
low − ηjet.

It should be noted that all the variables considered are invariant under longitu-

dinal boosts along the beam axis.

The normalised differential cross sections are also compared to the predictions

of pQCD at NLO, which have been performed in this case with the program NLO-

JET++ [50].
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3.3 Color factors: LEP and HERA

In QCD, the color factors CF , CA and TF (see section 1.5) represent the relative

strengths of the processes q → qg, g → gg and g → qq̄ and are a physical manifes-

tation of the underlying group structure. The non-abelian character of the group

SU(3) induces the self-coupling of the gluons leading, in particular, to the appear-

ance of the triple-gluon vertex (TGV).

Investigations of the color factors have been carried out at LEP (see, for exam-

ple [51–61]) using angular correlations in four-jet events from Z◦ hadronic decays.

Examples of Feynman diagrams contributing to four-jet production in Z◦ decays are

shown in Fig. 3.4. The contributions of the diagrams shown in that figure are pro-

portional to (a) CFCA, (b) CFCF and (c) CFTF , respectively, independently of the

underlying gauge symmetry making the four-jet cross section sensitive to the color

factors. The best way to extract experimental information on the color factors is to

study the angular correlations dictated by the helicity structure of the vertexes. The

results of a direct extraction of the color factors at LEP [62] are shown in figure 3.5

and found to be consistent with the predictions of SU(3).

At HERA, the effects of the different color configurations arising from the un-

derlying gauge structure have been studied in three-jet production in NC DIS and

photoproduction [15, 37]. These measurements provide complementary information

to that already obtained in e+e− annihilation since they probe the gauge structure

in a different environment, a hadron-induced reaction, and are sensitive to new color

configurations. The results show that the data are best described by the admixture

of color configurations predicted by SU(3). The measured normalised differential

cross sections as functions of several angular variables for three-jet production in the

Breit frame of NC DIS are shown in figure 3.6 and are compared with lowest-order

calculations based on different gauge-symmetry groups.

Z0

q

q̄

g

g
Z0

q

q̄

g

g

Z0

q̄

q

q̄′

q′

Figure 3.4: Examples of Feynman diagrams contributing to four-jet production in Z◦

decays.

The cross section for the production of jets with three subjets in NC DIS is also
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sensitive to the color factors CF , CA and TF . Therefore, angular correlations between

the subjets are expected to be sensitive to the different color configurations. The

cross section for the production of jets with three subjets at O(α2
s) can be written

as follows

σep→3 subjets = CFCF · σA + CFCA · σB + CFTF · σC + TFCA · σD, (3.1)

where σA, ..., σD are the partonic cross sections for the different color configurations.

Examples of Feynman diagrams contributing to the four color configurations are

shown in figure 3.7: (A) double-gluon bremsstrahlung from a quark line, (B) the

splitting of a virtual gluon into a pair of final-state gluons, (C) the production of

a qq̄ pair through the exchange of a virtual gluon emitted by an incoming quark,

and (D) the production of a qq̄ pair through the exchange of a virtual gluon arising

from the splitting of an incoming gluon. Other possible diagrams and interferences

correspond to one of the four configurations. It is worth noticing that both σB

and σD contain contributions from the triple-gluon vertex, characteristic of QCD. It

should also be noted that the TFCA contribution, which arises from gluon-induced

processes, is not present in e+e− annihilation.

In the program DISENT (see chapter 5), it is possible to calculate the predic-

tions for each color configuration (σA, ..., σD) separately, so that predictions based

on different groups can be obtained. The normalised differential cross sections as

functions of the subjet variables for each color configuration also provide valuable

information: different color configurations leading to significant differences in shape

for the differential cross sections ensures good sensitivity to the color flow and that

the choice of jet algorithm does not impose a significant bias.
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Figure 3.5: Combined result for the direct determination of the underlying symmetry of

the strong interactions in e+e− annihilation at LEP using angular correlations in four-jet

final states.
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Figure 3.6: Measured normalized differential cross sections for three-jet production in

NC DIS ep scattering at ZEUS (dots) integrated over Ejet1
T,B GeV, Ejet2,3

T,B > 5 GeV and

−2 < ηjet
B < 1.5 in the kinematic region given by Q2 > 125 GeV2 and | cos γh| < 0.65

as functions of ΘH , cos α23, cos βksw and ηjet
max. The data points are plotted at the bin

centers. For comparison, the O(α2
s) calculations are shown for different symmetry groups.

The lower part of the figures displays the relative difference to the calculations based on

SU(3).
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Chapter 4

The HERA collider and the ZEUS

detector

4.1 The Hadron Electron Ring Accelerator

Figure 4.1: Aerial view of DESY.

The HERA (Hadron Elektron Ring Anlage) collider is located at DESY in Ham-
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Figure 4.2: The HERA accelerator complex. Four experiments are located in the ex-

perimental halls: South (ZEUS), West (HERA-B), North (H1), and East (HERMES).

burg, Germany. It offers unique opportunities to explore the structure of the proton

as it is the first ep collider in the world. Figure 4.1 shows an aerial view of DESY and

the surrounding area including the location of the two largest accelerators HERA

and PETRA.

HERA was approved in 1984 and first collisions were observed in 1991. Opera-

tions for physics started in 1992 and ended in 2007. HERA consists of one storage

ring for protons and one for electrons. The design energy was 30 GeV for electrons

and 820 GeV for protons. Each storage ring consists of four 90◦ arcs connected

by 360 m long straight sections and is located (10–25) m below ground. Super-

conducting magnets are used for the proton storage ring. Four experimental halls

(North, South, East, West) are situated in the middle of the straight sections. The

two collider experiments, H1 and ZEUS, are located in the northern and southern

experimental halls, respectively. In both interaction regions electrons and protons

collided head-on at zero crossing angle. Two fixed-target experiments, HERMES
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and HERA-B, have been installed in the eastern and western experimental halls,

respectively. They made use of only the HERA electron (HERMES) and proton

(HERA-B) beams, respectively. HERMES [63] is investigating the spin structure

of the nucleon and HERA-B [64] aimed to study the CP-violation in the B0B0-

system. Figure 4.2 shows the layout of the HERA collider, the four experimental

halls and the system of pre-accelerators used at DESY. In a first step, electrons

and protons were accelerated using linear accelerators. A small storage ring PIA

(Positron-Intensity-Accumulator) was used in between the linear accelerator and

DESY II to accumulate electrons until sufficient intensity was reached. In a next

step, the particles were injected into DESY II (electrons) and DESY III (protons).

After injection into PETRA and further acceleration, electrons and protons were

injected into HERA. From 1995 to 1997 positrons were used instead of electrons

because severe lifetime problems of the electron beam were observed. The reason

was most likely the capturing of positively-charged dust which originated from ion

getter pumps from the HERA electron vacuum system by the electron beam [65].

With the installation of new pumps in the winter shutdown 1997/1998 the problem

was significantly reduced and HERA switched back to electrons in 1998.

The data used in the analysis of jets with two subjets presented here were col-

lected during the running period 1998-2000, when HERA operated with protons of

energy Ep = 920 GeV and electrons or positrons of energy Ee = 27.5 GeV, and corre-

spond to an integrated luminosity of 81.7±1.9 pb−1, of which 16.7 pb−1 (65.0 pb−1)

was for e−p (e+p) collisions. In Fig 4.3 the integrated luminosity delivered by HERA

and that collected by ZEUS as a function of time can be seen.

4.1.1 HERA II

Between 2000 and 2002, HERA underwent a luminosity upgrade, which was primar-

ily achieved by installing focusing magnets which diminished the interaction area of

the two beams in order to increase the luminosity. The periods before and after the

upgrade are commonly referred to as HERA I and HERA II, respectively.

Since the upgrade, HERA was able to provide longitudinally-polarized elec-

tron/positron beams to the ep collision process. Polarisation at HERA is measured

by two independent detectors, the Longitudinal Polarimeter (LPOL) and the Trans-

verse Polarimeter (TPOL). The polarisation of the beam is basically obtained by

measuring the asymmetry in the cross sections of a Compton scattering process

between the lepton beam and a photon beam. This asymmetry is found to be pro-

portional to the transverse polarisation PY and longitudinal polarisation PZ of the

lepton beam.

The lepton beam in the HERA storage ring can be transversely polarised though
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Figure 4.3: Integrated luminosity delivered by HERA in the different running periods (left

plot) and the one taken with the ZEUS detector (right plot). The latter is used for physics

analysis.

the Sokolov-Ternov effect: the leptons spins are naturally polarised transversely

to the direction of motion due to the magnetic field that makes the leptons bend.

Furthermore, the probabilities of spin flipping from up to down and from down to up

are not equal, the probability of flipping from up to down is higher and, therefore,

transverse polarisation grows with time until it reaches its maximum value. The spin

rotators can change the lepton beam’s spin from transverse to longitudinal and the

longitudinal polarised lepton beam then collides with a proton beam at the ZEUS

and H1 detectors (see Fig. 4.4). The polarisation of the lepton beam increases in

time gradually according to the following formula:

P (t) = Pmax(1 − e−t/τ ), (4.1)

where Pmax is the asymptotic polarisation, τ is the build-up time and P (0) is as-

sumed to be 0. If the magnetic field is uniform in the storage ring, the asymptotic

polarisation is:

Pmax = PST = 92.4%, (4.2)

where PST stands for Sokolov-Ternov polarisation.
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Figure 4.4: HERA Ring and polarisation instrumentation.
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Parameter [Unit] Electrons Protons

Beam Energy [GeV] 27.5 920 (460)

Particles per bunch [1010] ≤ 3.68 ≤ 8.75

Number of bunches 184 180

Horiz./vert. Emittance[nm] 20/3 3.8/3.8

Bunch length [cm] 0.9 12

Vert./Hor. β at IP[cm] 26/62 18/245(36/490)

Beam Lifetime in collision 10-15 200

Longitudinal Polarisation [%] 30-45 -

Peak Luminosity 5(1.5) · 1031 cm−2 s−1

Average Luminosity 1(0.25) · pb−1d−1

Table 4.1: HERA parameters in 2007.

However, this value can never be achieved due to some depolarisation effects, like

magnet misalignments or non-uniform magnetic field. If these depolarisation effects

are depicted as a constant τD, the asymptotic polarisation Pmax deviates from Pmax

according to the expression:

Pmax = PST
τD

τST + τD
, (4.3)

where τST is the Sokolo-Ternov build-up time needed to achieve Pmax.

In addition, the build-up time τ can be written as:

τ = τST
τD

τST + τD
, (4.4)

At HERA, τST is 37 minutes for the 27.5 GeV lepton beam.

The data used in the analysis of jets with three subjets presented here were

collected during the HERA II running period and correspond to an integrated lu-

minosity of 299.2 ± 7.8 pb−1.

The HERA parameters from the 2007 runing period are given in Table 4.1.

4.2 The ZEUS Detector

The ZEUS detector [66, 67] is a general purpose magnetic detector designed to

study various aspects of electron-proton scattering. It has been in operation since

1992 until 2007 and consists of various sub-components to measure the hadrons and

leptons in the final-state and, therefore, to characterize the final-state in terms of

energy, direction, and type of the produced particles.
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Figure 4.5: View of the ZEUS detector along the beam direction.

The coordinate system of the ZEUS detector is a Cartesian right-handed coordi-

nate system. The origin ((X, Y, Z) = (0, 0, 0)) is located at the nominal interaction

point. The Z-axis points in the proton beam direction, the Y-axis upwards, and

the X-axis horizontally towards the center of HERA. The polar (azimuthal) angle θ

(φ) is determined relative to the positive Z-axis (X-axis). With this definition the

polar angle of the incoming electron beam is 180◦ and that of the incoming proton

beam is 0◦. The +Z-direction is referred as the forward, and the –Z-direction as the

backward direction.

The ZEUS detector consists of the main detector located around the nominal

interaction point and several small detectors positioned along the beam line in both

positive and negative Z-directions. The main detector is shown in Figs. 4.5 and 4.6

along and perpendicular to the beam direction, respectively. The design is asymmet-

ric with respect to the Z-axis because of the large forward-backward asymmetry of

the final-state system. The difference in the energy of the electron beam (27.5 GeV)

and proton beam (920 GeV) results in a center-of-mass system which is moving in

the direction of the proton beam relative to the laboratory frame.

The inner part of the main detector consists of the tracking system enclosed

by a superconducting solenoid which produces an axial magnetic field of 1.43 T.

The CTD, a cylindrical drift chamber, surrounds the beam pipe at the interaction
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Figure 4.6: View of the ZEUS detector perpendicular to the beam direction. See text for

a description of the components.

point. In order to provide additional means of track reconstruction in the forward

(backward) direction, the CTD was supplemented by the FTD (RTD). The FTD

consists of three sets of planar drift chambers with transition radiation detectors

(TRD) in between. The RTD is one planar drift chamber with three layers. The

vertex detector VXD measures the event vertex and possibly secondary vertices and

improves the momentum and angular resolution of charged particles as determined

with the CTD alone. In 1994 high voltage problems and damage due to synchrotron

radiation caused part of the VXD to be off and it was removed. In 2001 a silicon

microvertex detector (MVD) [68] was installed between the beampipe and the inner

radius of the CTD. The MVD is organised into a barrel with three cylindrical layers

and a forward section with four planar layers perpendicular to the HERA beam

direction. The barrel contains 600 single-sided silicon strip sensors each having 512

strips of width 120 µm; the forward section contains 112 sensors each of which has

480 strips of width 120 µm.

The high resolution uranium calorimeter (UCAL) encloses the tracking detectors.

It is subdivided into the forward (FCAL), barrel (BCAL), and rear (RCAL) parts.
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The UCAL in turn is surrounded by an iron yoke made of 7.3 cm thick iron

plates. The yoke serves two purposes: it provides a return path for the solenoid

magnetic field flux and, in addition, is instrumented with proportional chambers.

The latter design feature makes it possible to measure energy leakage out of the

UCAL. The yoke is therefore referred to as the backing calorimeter (BAC). As

the yoke is magnetized to 1.6 T by copper coils, it is used to deflect muons. In

order to detect and measure the momentum of muons, limited streamer tubes are

mounted surrounding the iron yoke in the barrel (BMUI, BMUO) and the rear

(RMUI, RMUO) regions. As the particle density and the muon momentum in the

forward direction is higher than in the barrel and rear directions due to the energy

difference of the electron and proton beams, the muon chambers in the forward

direction are designed differently. Limited streamer tubes mounted on the inside

of the iron yoke (FMUI) and drift chambers and limited streamer tubes mounted

outside the iron yoke (FMUO) are used for this purpose. Two iron toroids provide

a toroidal magnetic field of 1.7 T. In the backward direction at Z = −7.3 m, a veto

wall outside the detector composed of iron and scintillation counters is used to reject

background events dominated by proton-beam-gas reactions.

4.2.1 The Central Tracking Detector

The tracking system of the ZEUS detector consists of the forward, central and rear

tracking devices, which operate under a high magnetic field of 1.43 T to achieve a

high resolution for high momentum tracks. All the tracking quantities used in this

analysis are provided by the Central-Tracking Detector (CTD) [69–71]. The CTD

is a cylindrical drift chamber which provides a high-precision measurement of the

direction and transverse momentum of charged particles and of the event vertex.

The position resolution in r − φ is about 230µm and the transverse momentum

resolution is

σ(pt)

pt
= 0.0058 · pt(GeV) ⊕ 0.0065 ⊕ 0.0014

pt
, (4.5)

where the first term corresponds to the resolution of the hit positions, the second

term to smearing from multiple scattering within the CTD and the last term to

multiple scattering before the CTD. The position of the interaction point in X and

Y is measured with a resolution of 0.1 cm and in Z with a resolution of 0.4 cm.

The CTD is filled with a mixture of argon, CO2 and ethane. Particle identifica-

tion is possible by measurements of the mean energy loss dE/dx of charged particles

within the tracking detector. The CTD covers a polar angle of 15◦ < θ < 164◦ and

the full range of the azimuthal angle φ. Its active volume has a length of 205 cm, an

inner radius of 18.2 cm, and an outer radius of 79.4 cm.
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Figure 4.7: Layout of a CTD octant. Each octant has nine superlayers with the even

numbered ones declined with respect to the beam axis (‘Stereo angle’).

The CTD is designed as a multi-cell superlayer chamber and subdivided into eight

sections and nine superlayers. One octant is shown in Fig. 4.7. The CTD consists

of 576 cells with each cell being equipped with eight sense wires. The number of

cells increases from 32 in the innermost superlayer to 96 cells for the outermost

superlayer. Every other superlayer has its sense wires rotated by a certain angle

with respect to the beam axis. The angles for each superlayer are given in Fig. 4.7.

With this configuration, the Z position of a track can be reconstructed with an

accuracy of aproximately 2 mm.

4.2.2 The Uranium-Scintillator Calorimeter (UCAL)

Calorimeters in particle physics measure the energy of particles by their absorption

in a medium that becomes ionized or excited through shower processes. The ZEUS

calorimeter (UCAL) has been designed as a sampling calorimeter, where absorber

layers alternate with scintillator layers, which are the optical readout. The calorime-

ter is required to be hermetic with a nearly full solid-angle coverage and to have a

good hadronic energy resolution by achieving an equal response to electromagnetic

and hadronic particles.

The UCAL is divided into three parts, which cover different polar angles [72–75].

All parts of the calorimeter, FCAL (2.2◦ < θ < 39.9◦), BCAL (36.7◦ < θ < 128.1◦),

and RCAL (128.1◦ < θ < 176.5◦) are built of alternating layers of 3.3 mm thick

depleted uranium and 2.6 mm thick plastic scintillator plates (SCSN38). The natural
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Figure 4.8: Layout of a FCAL module. The UCAL modules are subdivided into one

electromagnetic (EMC) and two hadronic (HAC1, HAC2) sections, which in turn are

divided into cells. A cell is read out on two opposite sides by one wavelength shifter each.

radioactivity of 238U is used as a reference signal to calibrate the readout channels

to a precision of < 0.2%.

Uranium is an advantageous absorber for hadron calorimetry, since it provides a

high yield of spallation neutrons which impart the energy to the hydrogen nuclei of

the scintillator. Together with an additional contribution of photons from neutron

capture of the uranium, this helps to compensate the signal loss of hadrons arising

from the loss of binding energy, nuclear fission fragments and from undetected decay

products. Electrons and photons do not suffer such losses as they interact predom-

inantly with the atomic electrons and not with the nuclei. The ratio between the

pulse heights of electrons and hadrons, e/h, which has been achieved is

e/h = 1.00 ± 0.03 (4.6)

The three calorimeter parts are subdivided into modules. The modules are
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transversally separated into towers, and the towers in turn longitudinally into elec-

tromagnetic (EMC) and hadronic sections (HAC). The design of an FCAL module is

shown in Fig. 4.8. The FCAL and RCAL modules are planar and perpendicular with

respect to the beam axis (see Fig. 4.5), while the BCAL modules are wedge-shaped

and projective in the polar angle. The calorimeter modules are further segmented

into cells. The cell dimensions are 20cm×20cm for hadronic cells and 5cm×20cm

(10cm×20cm) for electromagnetic cells in the FCAL and BCAL (RCAL). The design

of the three calorimeter parts takes into account the different particle densities and

energies due to the asymmetric electron and proton beam energies. Each EMC sec-

tion is segmented transversally into four cells (two in RCAL), while a HAC tower is

not divided transversally. They are instead longitudinally subdivided into two (one

in RCAL) hadronic cells (HAC1, HAC2). Each cell is read out on two opposite sides.

This is done on each side by a wavelength shifter coupled to one photomultiplier

tube. The information of both photomultiplier tubes is used to provide a limited

reconstruction of the position of the measured particle and to check the uniformity

of the readout.

The single particle energy resolution for electrons and hadrons was determined

in test-beam experiments to be σE/E = 0.18/
√
E and σE/E = 0.35/

√
E

respectively, where E is measured in GeV.

4.3 The luminosity measurement

The luminosity, L ≡ N/σ, relates the number of events N with the cross section σ. A

precise determination of the luminosity is essential for any cross section measurement

in a high-energy physics experiment. The luminosity of ep-collisions at HERA is

measured by observing the rate of hard bremsstrahlung photons from the Bethe-

Heitler process ep → eγp [76]. As the theoretical cross section is known to an

accuracy of 0.5% from QED calculations, a precise measurement of the photon rate

permits a precise determination of the ep-luminosity at HERA.

Figure 4.9 shows the layout of the HERA magnet system and the ZEUS lumi-

nosity detectors in the backward (–Z)-direction. In the case of ZEUS, this is done

by two lead/scintillator electromagnetic calorimeters at Z = −34 m (LUMIE) and

Z = −107 m (LUMIG). Photons with θγ < 0.5 mrad originating from the Bethe-

Heitler process ep→ eγp are detected by the LUMIG detector [77–79]. The energy

resolution of the LUMIG detector was measured under test-beam conditions to be

18%/
√
E. It was also determined that the carbon/lead filter placed in front of the de-

tector to shield it against synchrotron radiation degrades the resolution to 23%/
√
E.

The impact position of incoming photons can be determined with a resolution of
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Figure 4.9: Location of ZEUS detectors in negative Z-direction. Shown are the gamma

(LUMIG) and electron detectors (LUMIE) used for the luminosity measurement.

0.2 cm in X and Y , because at a depth of 7X0 1 cm wide scintillator strips are in-

stalled within the LUMIG detector. The LUMIG detector is also used to determine

the electron-beam tilt and to measure photons from initial-state radiation.

The LUMIE calorimeter [77–79] at Z = −35 m detects electrons in the limited

energy range from 7 to 20 GeV which are produced under polar angles of less than

5 mrad with respect to the electron-beam direction. These electrons are deflected by

the HERA magnet system and leave the beam pipe at Z = −27 m through an exit

window similar to the one in front of the LUMIG detector. The LUMIE detector

has an energy resolution of 18%/
√
E under test-beam conditions. It was initially

designed to measure the electrons of the Bethe-Heitler process ep→ eγp at the same

time as the photons of this process are measured in the LUMIG detector. It was

found that this was not necessary to have a precise measurement of the luminosity.

The system described above was modified by the addition of active filters in

order to suppress the increased synchrotron radiation background of the upgraded

HERA collider. Furthermore, a second system was added: a magnetic spectrometer

arrangement [80]. A small fraction (∼ 9%) of the small-angle energetic photons

from the Bethe-Heitler process convert in the exit window of the vacuum chamber.

Electron-positron pairs from the converted photons were bent vertically by a dipole

magnet and detected in tungsten-scintillator calorimeters located above and below

the photon beam at Z = −104 m. The advantage of the spectrometer system is

that it does not suffer from pile-up (multiple interactions at high luminosity) and

is not sensitive to direct synchrotron radiation, whereas the calorimeter system has

higher acceptance. Figure 4.10 shows the integrated luminosity delivered by HERA

(left) and collected by ZEUS (right) as a function of time for the HERA II period.
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Figure 4.10: Integrated luminosity delivered by HERA in the different running periods

(left plot) after the upgrade and the one taken with the ZEUS detector (right plot). The

latter is used for physics analysis.

4.4 The ZEUS trigger and data acquisition systems

The short bunch crossing time at HERA of 96 ns, equivalent to a rate of about 107

crossings per second, is a technical challenge and puts stringent requirements on

the ZEUS trigger and data acquisition systems. The total interaction rate, which

is dominated by background from upstream interactions of the proton beam with

residual gas in the beampipe, is of the order 10 - 100 kilo-events per second (10 -

100 kHz) while the rate of ep physics events in the ZEUS detector is of the order of

a few Hz [81, 82]. Other background sources are electron-beam gas collisions, beam

halo and cosmic events.

ZEUS employs a sophisticated three-level trigger system [67, 83] in order to

select ep physics events efficiently while reducing the rate to a few Hz. A schematic

diagram of the ZEUS trigger system is shown in Fig. 4.11.

The First Level trigger (FLT) is a hardware trigger, designed to reduce the

input rate below 1 kHz. Each detector component has its own FLT, which stores

the data in a pipeline, and makes a trigger decision within 2 µs after the bunch

crossing. The decision from the local FLTs are passed to the Global First Level

Trigger (GFLT), which decides whether to accept or reject the event, and returns this
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decision readout within 4.4 µs. The typical information available at FLT are CAL

activity (total transverse energy, missing transverse momentum,...), CTD tracks

(number of tracks,...), hits in the muon chambers, etc.

If the event is accepted, the data is fully digitalized and transferred to the Second

Level Trigger (SLT). The trigger signals at the SLT have a better resolution than

those at the FLT. Moreover, some information is first available at the SLT like CAL

timings, which are useful in rejecting non-ep background events. The SLT is designed

to reduce the rates to the order of 50-100Hz. Each detector component has its own

SLT, which passes a trigger decision to the Global Second trigger (GSLT) [84].

If the event is accepted by the GSLT, all detector components send their data

to the Event Builder (EVB), which combines all the data of an event into a single

record of ADAMO [85] database tables. This is the data structure on which the

Third Level Trigger (TLT) code runs. The TLT is software based and runs part of

the offline reconstruction code. It is designed to reduce the rate to a few Hz.

4.5 Event reconstruction and analysis

The scheme of the ZEUS offline and Monte Carlo (MC) simulation programs is shown

in Fig. 4.12. Events from the real detector or simulated events are reconstructed by

the program ZEPHYR, where the signals of the different components are calibrated

and highly complex tasks, like tracking reconstruction, are performed. After pro-

cessing the raw data, the user has access to the raw and reconstructed quantities

via the program EAZE. In the framework of EAZE, the user writes his own analysis

program in either Fortran or C. It is used to reconstruct relevant quantities and

perform selection cuts. Subsets of the data or MC simulated events can be saved

for further analysis. The program LAZE is an event-display program which allows

graphical viewing of various aspects of an event including the tracks of charged

particles in the CTD, energy depositions in the CAL, and other component-related

quantities. To allow fast access to specific types of events during reconstruction, it

is checked whether each event meets one of the conditions designed by the ZEUS

analysis groups. If a specific condition is met, a flag called a DSTBIT is set. Before

analyzing detailed component information in the user’s EAZE program, the events

can be preselected by requiring certain DSTBITS. This allows a faster loop over the

whole data sets since only those events are processed further.

Simulated MC events are generated using the program AMADEUS (named ZDIS

in previous versions) which contains a shell environment to steer a number of MC

generator programs. The output data is stored in the same (ADAMO) format as the

data from the real detector and passed to the ZEUS detector simulation program
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Figure 4.11: Schematic diagram of the ZEUS trigger and data acquisition systems.
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Figure 4.12: Interrelationship of the ZEUS offline and Monte Carlo (MC) simulation

programs.
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MOZART, based on the CERN GEANT program [86]. A simulation of the ZEUS

trigger chain is done by the program ZGANA. Interfaces between the programs

used for MC generation and the programs EAZE and LAZE provide specific MC

information such as generated kinematic quantities, vertices and particles to the

user. An overview of the physics analysis environment of the ZEUS experiment can

be found in [87].

4.6 Event and detector simulation

In order to correct the data for trigger and detector effects, a full Monte Carlo

simulation is required. This can be split in two pieces. First, an event generator,

which calculates the scattering processes at hadron level from given matrix elements.

Using hadronisation models, the final-state particles are obtained as a list of 4-

vectors. This is what we mean by generator-level. In the second step, these particles

are passed to a full simulation of the trigger and detector, yielding output in the

form of ADAMO tables, which can be treated in the same way as the data. This is

called detector-level.

Events from the event generator are processed by the MOZART package. This is

a GEANT-based program which simulates the response of each detector component,

based on the current knowledge of the ZEUS detector from both physics studies

and test-beam results. Each particle interaction with dead material and detector

component is simulated, including effects of digitization of the signals and known

sources of noise. The ZGANA package simulates the trigger response to the event,

based on the component signals, and the ZEus PHYsics Reconstruction (ZEPHYR)

package performs the full offline reconstruction using all calibration constants. The

Monte Carlo events simulated are then written in an identical format as the data

taken with the ZEUS detector.



Chapter 5

Fixed-order pQCD calculations

5.1 Introduction

Theoretical predictions of QCD in its perturbative regime are compared with the

measurements presented. The order in the expansion at which complete calcula-

tions are available is O(α3
s) for subjet analyses in ep scattering. For the two-subjet

analysis, a calculation at O(αs), where one can have up to two partons in the final

state, corresponds to the leading-order contribution to the process. The next order

in the perturbative expansion, O(α2
s), includes virtual and real corrections to the

two-parton final state and thus constitutes the next-to-leading order (NLO) contri-

bution to the two-subjet analysis. All the diagrams involved in such calculations

are available in the program DISENT [49].

For the three-subjet analysis, however, three partons in the final state such that

they are reconstructed in a single jet with three subjets, can only occur at O(α2
s)

and higher orders. Therefore, O(α2
s) constitutes the leading-order contribution to

three-subjet production. The virtual and real corrections (i.e. up to four partons in

a jet) to the LO process are available in the program NLOJET++ [50] and, thus, it

was used to evaluate the pQCD calculations at NLO for the three-subjet analysis.

A schematic representation of the preceeding discussion is shown in figure 5.1.

It is worth noting that, as indicated in section 2.1, the laboratory frame is the

frame where one can have up to four partons in the same jet at order O(α3
s) . In

the Breit frame, one always has at least two jets back-to-back, which means that it

cannot happen that in a four-parton final state all four partons are in the same jet,

hence making it impossible to obtain predictions for the jet substructure at NLO in

a three-parton final state.

The calculation of subjet cross sections involves the convolution of the partonic

cross section and the proton PDFs, separated from one another by the factorization
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Figure 5.1: A schematic representation of the diagrams involved in the fixed-order pQCD

calculations and the programs needed for each contribution. Diagrams with the same

number of final-state partons are shown in the same row. Diagrams belonging to the same

order in the perturbative expansion are drawn in the same column.

scale µF . The matrix elements are evaluated at the renormalization and factorization

scales, µR and µF , which have to be set by hand by the user, who also has to provide

the set of PDFs. In the present case the ZEUS-S PDFs [1] set was used. The

choices of these inputs are not completely free, they carry an uncertainty due to the

particular choices made.

The final stage of a fixed-order QCD jet-production calculation is a set of partons

in the final state. Unlike non-strong-interacting particles, partons are expected

to undergo a process of parton radiation and hadronization before they reach the

detector and the modelling of this process is of tantamount importance to eventually

perform a comparison between the data and the predictions, since this may give rise

to a large correction to the topology of the event. This is accomplished by first

complementing the fixed-order calculations with a simulation of the higher-orders
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contribution to the jet production, leading to the ’parton cascade’ picture mentioned

in section 1.6.1. In these analyses, two different parton-cascade models have been

used, the Color Dipole Model [88–91], as implemented in ARIADNE 4.08 [92, 93],

and the matrix elements plus parton shower model of LEPTO 6.5 [94]. After the

parton cascade is completed, the hadronization of the partons must be simulated.

This is the process by which colored partons are transformed into colorless hadrons.

The difficulty of this process lies on the non-perturbative effects involved, which

are not fully understood. Only phenomenological models are available to generate

the hadronic final state from the final-state partons. The hadronization does not

change significantly the overall properties of the jet, such as the energy or the angular

direction, since it is a process that happens at a soft energy of ∼ 300 MeV, whereas

in these analyses the transverse energy of the jets is at least 14000 MeV. The Lund

String Model [95] and the Cluster Model [96] are the most important hadronization

models available.

Understanding the effects and biases that arise as a consequence of the interaction

with the detection device is also a key point to provide reliable measurements of

physical quantities. A simulation of the detector has been developed for this purpose

and it is interfaced with the event generators in such a way that the output of the

simulation undergoes the same processing as the data. This is presented in chapter 6.

5.2 Theoretical predictions in pQCD

A program like DISENT does not solve equation 1.37 exactly. Instead, it generates

pseudorandom events in the phase space and calculates various terms in the pertur-

bative expansion, each with a specific weight. After convoluting each configuration

with the PDFs, the total contribution to the cross section is obtained:

σ ∼ 1

N

N
∑

event j

∑

parton i

fi(ξj, µFj) · σ̂(ξj, Q
2
j , αs(µRj), µRj , µFj), (5.1)

which approximates the exact solution in the limit N → ∞. With DISENT, 5 · 1010

events were enough to obtain a satisfactory statistical accuracy, while with NLO-

JET++, 1012 events were generated in order to get the same level of accuracy.

The kT -cluster algorithm was applied to the partons in the final state in the same

way as in the data and simulated events, and calculations for subjet observables were

obtained.

The calculation of the matrix elements for each configuration is made internally

in DISENT. The user, on the other hand, has to provide:

• The choice of factorization scale; for the analyses presented here, it was chosen
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to be µF =
√

Q2.

• The choice of renormalization scale; it was also chosen to be µR =
√

Q2.

• The number of active flavors, which was set to five.

• The PDF set; the ZEUS-S parameterizations of the proton PDFs were used as

default.

• The strong coupling constant, calculated at two loops, was set equal to that

assumed in the determination of the proton PDFs, namely, αs(MZ) = 0.118.

5.3 Two-subjet analysis

In Fig. 5.2 the next-to-leading order (O(α2
s)) calculations of the normalised differen-

tial cross sections as functions of the variables described in section 3.1 are shown for

the two-subjet analysis. These are the partonic predictions and cannot be directly

compared with the data. As already mentioned, the jets in the calculations are

jets of partons. Figure 5.3 shows the prediction for quark-induced (eq → eqg) and

gluon-induced (eg → eqq̄) subprocesses separately. It is observed that the shapes

of the distributions for quark- and gluon-induced subprocesses are different, which

means that the distributions are sensitive to the details of the pattern of parton

radiation.

5.4 Three-subjet analysis

In Figs. 5.4 and 5.5 the corresponding distributions are shown for the three-subjet

analysis. In section 3.3 it was shown that the cross section for the production

of jets with three subjets can be expressed, at leading order, as a combination of

four color configurations (see equation 3.1). In figures 5.6 and 5.7 the normalised

differential cross section for each of these configurations is shown. The fact that

different color contributions exhibit significantly different shapes shows that there is

a good sensitivity to the underlying color dynamics and hence to the specific details

of the parton radiation. This is indeed observed in the aforementioned figures. For

example, in Fig. 5.6(a), the distribution of the color configuration B grows very

signficantly from the first bin to the second, while that of D exhibits a monotonic

decrease. In figure 5.6(d) the shapes of the distributions for the configurations B

and D are very different. One of the most dramatic examples is shown in Fig. 5.7(c),

in which the distribution of configuration B peaks at ηsbj
low − ηjet ≈ −0.7 while that

for D peaks at ηsbj
low − ηjet ≈ 0.5.
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Figure 5.2: Predictions at NLO (O(α2
s)) of the normalised differential cross sections for

the inclusive production of jets with exactly two subjets at ycut = 0.05 (histograms) as

functions of a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj.
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Figure 5.3: Predictions at NLO (O(α2
s)) of the normalised differential cross sections sep-

arately for quark- and gluon-induced processes for the inclusive production of jets with

exactly two subjets at ycut = 0.05 (histograms) as functions of a) Esbj
T /Ejet

T , b) ηsbj −ηjet,

c) |φsbj − φjet|, and d) αsbj .
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5.5 Estimation of the theoretical uncertainties

It was previously stated that the particular choices of certain quantities in the cal-

culation imply an associated uncertainty. The scales µR and µF are arbitrary, in

the sense that their values are not fixed by any theoretical principle and their effect

should disappear if all the orders in the expansion were included. Naturally, the

uncertainties in experimentally-determined quantities like αs and the proton PDFs,

which play a role in the calculations, also constitute additional sources of theo-

retical uncertainty. Here is a list of the sources that contribute to the theoretical

uncertainty of the calculations.

Contribution from higher orders

Since the perturbative expansion is truncated at some order (the second for the two-

subjet analysis, the third for the three-subjet one), an uncertainty arises from the

absence of the rest of the terms. The contribution from these terms can be estimated

by studying the dependence of the predictions on the renormalization scale. The

argument behind this is that, since the full calculation should not depend on µR,

the terms not present on the calculation must compensate for any change induced

when changing µR. The standard procedure is to change the value of µR by factors

2 and 1/2 and to take the differences with respect to the default calculation as the

estimated uncertainty. As shown in figure 5.8 (and figure 11.16, which is shown in

the appendix), this source of uncertainty is rather small for the two-subjet analysis.

That is also the case for the three-subjet analysis, as shown in figures 5.9 and 5.10.

It should be noted that the smallness of this sources of uncertainty comes from the

fact that the differential cross sections are normalised.

The effects of uncalculated higher-order terms that contribute to the evolution

of the proton PDFs is estimated by varying the factorization scale µF by factors

2 and 1/2 and taking the differences with respect to the default calculation. This

source of uncertainty is also found to be relatively small.

Uncertainties in the proton PDFs

The parton densities are obtained from fits to experimental data, which means that

there is some experimental uncertainty associated to them. However, to propagate

these uncertainties directly to the results is not trivial. The way the estimation is

actually done is by performing calculations with additional parameterizations of the

PDFs which account for the experimental uncertainties. The additional parameter-

izations are obtained by means of the Hessian method [97]. The calculations are

repeated using these additional sets of PDFs which account for the variation of the
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parameters used to fit the proton PDFs. The uncertainty of an observable V is

taken to be:

(δV )2 =
1

4

n
∑

i=1

[V (a+
i ) − V (a−i )]2, (5.2)

where the sum runs over the additional sets of PDFs. V (a+
i ) and V (a−i ) correspond

to the value of the observable V evaluated using sets of PDFs with positive and

negative variations of the i-th parameter, respectively. Given that the differential

cross sections are normalised and restricted to large values of Q2, the effect of this

type of uncertainty is very small.

Uncertainties in Hadronization corrections

Since this correction is estimated by using a phenomenological model, its uncertainty

is estimated by using an alternative model and taking the observed difference as an

estimation of the uncertainty. This source turns out to be by far the dominant

source of theoretical uncertainty, as it is shown in figures 5.8 to 5.10.

Uncertainty in αs(MZ)

The value of the strong coupling constant is an experimentally-determined quantity

and, therefore, it carries an associated uncertainty. The world average for αs(MZ)

has an uncertainty of ∼ 1% [98]. To estimate the effect of this uncertainty, cal-

culations were performed using additional sets of proton PDFs for which different

values of αs(MZ) were assumed in the fits. First, calculations are repeated with two

additional sets of PDFs in which αs(MZ) = 0.117 and αs(MZ) = 0.119, respectively,

were assumed in the fits. Then, the difference in the cross section due to a variation

of 1% on the value of αs(MZ) is linearly interpolated from the differences obtained

by using the two aforementioned values of αs(MZ). The resulting uncertainty turns

out to be very small.
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Figure 5.8: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of (a) Esbj
T /Ejet

T , (b) ηsbj − ηjet, (c) |φsbj − φjet| and (d) αsbj .
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Figure 5.9: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly three subjets at ycut = 0.01

as functions of (a) Esbj
T /Ejet

T , (b) ηsbj − ηjet, (c) |φsbj − φjet| and (d) βsbj.
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Figure 5.10: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly three subjets at ycut = 0.01

as functions of (a) α23, (b) γsbj and c) ηsbj
low − ηjet.
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Chapter 6

Monte Carlo event generators

There are several steps intrinsic to the method of measuring that need to be modelled

in order to be able to compare the measured data with the predictions of any theory.

These steps are very different in nature and yet they are combined together in a

single tool, the Monte Carlo event generator. The two basic phenomena that require

modelling are the detector effects and the transmutation of partons into jets of

colorless hadrons.

In this chapter, a description of the most important aspects of Monte Carlo event

generation is presented, in particular for the models and generators which were used

in the analyses. In the context of these analyses, the uses of event generators are

listed below:

• Studies of the reconstruction and resolution of the jet observables, by which

it is possible to quantify the effects that the detector induce in the quality of

reconstruction and resolution of the jet variables to be used.

• Studies of purity and efficiency (the definitions are presented in chapter 8).

• To obtain correction factors to be applied to the raw measurement in order to

compare the data with theory.

• To obtain correction factors to be applied to the pQCD calculations in order

to compare data and theory at the same level.

• To estimate the systematic uncertainties in the measurements (see chapter 8).

The basic elements of a MC event generator are outlined below and graphically

represented in Fig 6.1.

• Hard subprocess: The starting point of the simulation is the generation of

an event according to the partonic distributions for the variables and processes
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Figure 6.1: Schematic representation of a Monte Carlo event generator. The matrix ele-

ments are supplemented by an initial- and final-state parton-shower before hadronization.

The final-state particles can then be interfaced with a detector simulation.

of interest. This is done through a pQCD calculation at O(αs), which proceeds

via the processes Quark-parton model, Boson-gluon (BGF) fusion and QCD-

Compton (QCDC), a schematic representation of which is shown in Fig. 6.2.

• Initial- and final-state radiation: The scattered colored partons branch

into more partons. As discussed in section 1.6.1, the logarithmic enhance-

ments due to collinear parton-emission can be summed at all orders in αs.

This is simulated by generating an arbitrary number of branchings which fol-

low the DGLAP evolution equations. QED processes are also included in the

simulation and can have interesting effects in the final state. The state of the

simulation at the end of the parton cascade is known as ’MC at parton level’.

• Hadronization: The colored partons are transformed into colorless hadrons

via a non-perturbative process. Only phenomenological models are available

to generate the hadronic final state starting from the partons. The state of the

simulation after the hadronization process is known as ’Monte Carlo at hadron

level’.

• Proton remnant: A DIS event contains a ’proton remnant’ in the forward

region composed of the ’spectator partons’ that have not taken part in the

hard interaction. The color connection between the scattered parton and the

remnant has to be simulated as well and can have a detectable effect on the
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Figure 6.2: Examples of the Feynman diagrams contributing to the processes Quark-parton

model, QCD-Compton and Boson-gluon fusion, respectively.

hadronic final state.

• Detector simulation: Once the hadron level is reached, the final-state par-

ticles are subjected to simulations of the detector; a simulation of the trigger

set-up is also performed. This process provides events in the same output for-

mat as the data and, therefore, data and MC can be directly compared. This

stage is known as ’Monte Carlo at calorimeter or detector level’.

6.1 Multipartonic production

A description of the hadronic final state in high-energy processes must incorporate

a simulation of the logarithmic enhancements due to collinear emission at higher

orders. Two of the models available for the implementation of this multipartonic

production are discussed below.

6.1.1 The Matrix Element plus Parton Shower (MEPS) approach

The parton shower mimics the dynamics of the evolution of the PDFs with the fun-

damental difference that each branching parton moves towards decreasing virtuality

when the branching is initiated by a final-state parton. Analogously, a parton in

the initial state can initiate a branching process in which partons are emitted with

increasing virtuality until one of them scatters off the initial electron, as shown in

Fig. 1.9 in section 1.6.1. The general behaviour of initial- and final-state showers

are similar since they are both based on the DGLAP evolution equations. In sec-

tion 1.6.1 the Sudakov form factor was introduced, which is more convenient for

Monte Carlo simulation techniques. It expresses the probability that a parton does

not branch between some initial maximum virtuality and some minimum virtuality,
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and from this one can find the mass of the decaying parton, the energy fraction in

the branching and the flavour of the daugther partons. The process is iterated with

decreasing virtuality until all parton virtualities are below some cut-off m2
0 which is

around 1 GeV2. The angular ordering prescription (see section 2.2.1) is also included

to account for soft-gluon coherence.

One of the limitations of the parton shower approach is that the emission of

partons at large angles is not well simulated. To improve the simulation of multijet

events, an approach was developed in which the first emission is generated according

to the matrix elements and then additional softer emissions are added by using

the parton shower. This approach, known as matrix elements plus parton shower

(MEPS), is available in LEPTO [94] and is one of the two models that has been

utilized for the generation of the Monte Carlo samples used in the analyses presented

here.

6.1.2 The Color Dipole Model

In the color-dipole model (CDM) [88–91], as implemented in the ARIADNE 4.08 [92,

93] program, the cascade is not separated into initial- and final-state emissions. The

outgoing quark is viewed as part of a color dipole system together with the proton

remnant. The emission of a gluon can then be treated as radiation from this color

dipole and to a good approximation the emission of a second, softer gluon can be

treated as radiation from two independent dipoles, one between the quark and the

gluon and the other between the gluon and the proton remnant. This approach

can be generalised and the emission of a third gluon is given by three independent

dipoles. In this model, the subsequent gluon emissions are strongly ordered in

transverse momentum, which induces the angular ordering of the emitted gluons

and thus reproduces the effects of soft-gluon coherence.

In CDM there is no division between initial- and final-state radiation. It is

assumed that radiation can be described by the color dipole formed between the

struck quark and the proton remnant. The model was originally implemented for

e+e−, where there are two point-like antennae formed by the two outgoing quarks.

In DIS, the proton remnant is treated as an extended object with a transverse size,

so that, due to the destructive interference in the remnant, only a fraction

a = (µ/pT )α

of it takes part in the emission of a gluon with transverse momentum pT , where µ

describes the size and α the dimension of the proton remnant.

When implementing this procedure in the ARIADNE program there is the ques-

tion of how to treat the recoils. Since only a part of the remnant takes part in the
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radiation, only that part should take the recoil. This would mean an extra ’kink’

on the string which in the Lund string picture is equivalent to an extra gluon. In

ARIADNE, the remnant is therefore divided into a collinear gluon which takes part

in the radiation and receives a recoil.

Although gluon emission in the CDM is close to the form of the exact matrix

element, the processes initiated by gluons, the so-called Boson-Gluon Fusion, are not

included at all in the model. This is corrected by introducing a matching procedure

for the first emission in a DIS event. The initial dipole between the struck quark and

the proton remnant can emit an anti-quark (the anti-partner of the struck quark),

in which case the process is matched to the BGF matrix element.

6.2 Hadronization models

Once the parton shower is finished, the non-perturbative physics of hadronization

comes into play. We are forced to rely on phenomenological models to complete the

hadronization of the final-state partons. The general approach to hadronization is

based on the hypothesis of local parton-hadron duality (see section 2.2), in which it

is assumed that the flow of momentum and quantum numbers at the hadron level

is already established at the parton level, so that the effect of hadronization is to

smear the energy configuration of the parton level.

The are several phenomenological models to simulate this process, of which the

Lund string model is discussed.

6.2.1 The Lund String Model

It has been suggested that the confined color field behaves like a vortex line, similar

to the magnetic field in a type II super conductor. The field of such a vortex line

is the same as the field of a chain of dipoles lined up along the vortex line. Given

this picture, the color dipole approximation of the QCD cascade seems a natural

formulation.

The Lund string model [95] is based on the observation that when a gluon is emit-

ted from, for example, a qq̄ pair produced in e+e− annihilation, it can be described

as radiation from the color dipole between the two quarks and that subsequent emis-

sion of a softer gluon can be described as radiation from two independent dipoles;

one stretched from the quark to the gluon and one from the gluon to the anti-quark.

Thus, the color interaction between two partons at the end of the parton shower is

represented as a one-dimensional massless relativistic string, so that when a q and

a q̄ move apart, the string acts as a confinement potential which is roughly linear

with its length. As the q and q̄ move away from each other the potential increases



88 Monte Carlo event generators

and the string may be broken by the production of another pair q′q̄′. This leads

to two color singlet sistems, qq̄′ and q′q̄, each of them with a string evolving in an

independent way, so that further breakings may occur. The string is fragmented

iteratively according to:

f(z) ∼ 1

z
(1 − z)aexp(−bm

2
T

z
), (6.1)

where z is the fraction of the quantity E + pL of the parent string taken by the

daugther and mT =
√

p2
T +m2, where pT and pL refer to the transverse and lon-

gitudinal momentum relative to the string axis. The transverse momentum to the

string axis, pT , follows a Gaussian spectrum. The string break-up processes contin-

ues until only on-shell hadrons remain, each hadron corresponding to a small piece

of the string.

Gluons act as transverse excitations (kinks) on the string-like field. The breaking

of a dipole into two dipoles corresponds to one more kink on the string.

6.3 Detector Simulation

As previously discussed, a model of the effects and biases that the detector in-

duces is very important. The final state of the MC-generated events is processed

through a simulation of the ZEUS detector which is based on GEANT 3.13 [86].

This simulation program includes, amongst other things, the response of the detec-

tor components as well as the interaction of the particles with dead material. Once

the effects are simulated, the generated events undergo a simulation of the same

trigger requirements as the data and are processed by the same reconstruction and

offline programs. The final state of the MC-generated events is in the same format

as the ZEUS data.

6.4 Event generators for NC DIS

In the analyses presented, the LEPTO program was used using two different ap-

proaches for the parton shower.

6.4.1 The LEPTO Monte Carlo generator

The first step of the simulation is the hard-scattering process. LEPTO [94] is based

on the leading-order electroweak cross section of the underlying parton-lepton scat-

tering and also includes QCD corrections using exact first-order matrix elements.

The PDFs are provided using the standard library PDFLIB [99], which contains the
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information for most parametrizations of the proton’s parton distributions. For the

samples used in the analyses presented here, the CTEQ5D [100] proton PDFs were

used.

LEPTO does not provide radiative corrections, this is done by HERACLES

4.6.1 [101, 102], which is then interfaced with LEPTO via a program called DJAN-

GOH 1.1 [103, 104].

After the hard-scattering process has been calculated, the parton shower starts.

In section 6.1, two different approaches were discussed. With LEPTO, one can

select either the MEPS or the CDM approach. The comparison between the correc-

tions obtained with CDM and MEPS is usually used to make an estimation of the

systematic uncertainty arising from the modelling of the parton shower.

Once the parton radiation is completed, the hadronization is performed with the

Lund string model, as implemented in JETSET [105–108]. After the fragmentation

process, the final-state hadrons are provided and the event is fed to the simulation

of the detector.

In the next two chapters, after the data sample selection is explained, a compari-

son of data and the Monte Carlo event generators is shown for several distributions,

so that the quality of the detector simulation as well as the corrections applied to

the data can be quantified.
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Chapter 7

Event selection and variable

reconstruction

7.1 Introduction

In this chapter, a description of the selection and variable reconstruction of the NC

data samples is given. The analyses presented were performed with data taken by

the ZEUS detector in the 1998-2000 running period for the two-subjet analysis and

in the 2004-2007 running period for the three-subjet one.

Since the aim is to make measurements for neutral current events, there are

three main features that have to be looked for when selecting the sample in which

to perform the analysis:

• The presence of a scattered electron.

• The presence of at least one high-energy jet.

• Balanced transverse momentum.

The main ZEUS detector component used in the analyses is the UCAL. The

jet-finding algorithm was applied on the four-momenta of the energy deposits in the

UCAL as initial input to reconstruct jets. SINISTRA [109, 110], the electron-finder

neural network, also uses the information in the UCAL to reconstruct the scattered

electron candidate. The CTD also plays an important role since some of the cleaning

cuts involve tracks and an interaction vertex needs to be reconstructed.

Cleaning cuts are applied on the data and Monte Carlo samples to remove the

different backgrounds. There are multiple sources of background such as photo-

production events (PHP), which is the process with highest cross section at HERA,

charged-current events (CC) as well as non-physics events such as beam-gas inter-

actions or cosmic rays.



92 Event selection and variable reconstruction

In order to perform a proper jet reconstruction, one needs to pay attention to

several points:

• The detector resolution of the jet variables Ejet
T , ηjet and φjet has to be known.

Any alteration of these variables arising from detector effects needs to be cor-

rected and indeed the transverse energy of the jets was corrected in both anal-

yses.

• The absolute energy scale of the jets has to be known and needs to be well

simulated in the MC.

• The regions of the UCAL where the reconstruction of the jets is not sufficiently

good have to be identified and excluded in the selection.

All these points need the use of MC simulations. The legitimacy of using the

MC simulations rests on their ability to properly reproduce the distributions in the

data for all the observables used in the analyses. The MC samples are generated

with minimal bias and then subjected to exactly the same selection criteria as the

data. The ’control plots’ for the distributions in the data and MC, as well as their

comparison, are presented at the end of this chapter.

7.2 Data samples for the two-subjet analysis

The data sample selected for this analysis consists of:

• NC DIS events with Q2 > 125 GeV2 and at least one jet with Ejet
T > 14 GeV

and −1 < ηjet < 2.5 in the laboratory frame. An integrated luminosity of

81.7 ± 1.9 pb−1 was used.

There were 128986 events in the sample that satisfy these criteria plus the cleaning

cuts described later. The final sample contained 132818 jets, of which 21162 had

exactly two subjets at ycut = 0.05.

7.3 Data samples for the three-subjet analysis

The data sample selected for this analysis consists of:

• NC DIS events with Q2 > 125 GeV2 and at least one jet with Ejet
T > 14 GeV

and −1 < ηjet < 2.5 in the laboratory frame. An integrated luminosity of

299.2 ± 7.8 pb−1 was used.

The final sample contained 429133 jets, of which, 80002 had exactly three

subjets at ycut = 0.01.
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For some of the subjet variables, the ordering in transverse energy of the subjets

is relevant and, thus, further requirements are introduced to ensure a correct recon-

struction. In the case of βsbj and ηsbj
low − ηjet, where one needs to know which is the

lowest-ET subjet, it was required that:

Emid
T

Ejet
T

− Elow
T

Ejet
T

> 0.2,

where Emid
T corresponds to the subjet with the next-to-lowest transverse energy and

Elow
T is the lowest-ET subjet. This requirement ensures that the lowest-ET subjet

is well separated in tranverse energy from the other two so that migrations due

to detector effects or other fluctuations are mimized. With this extra requirement

10939 jets are found and normalised cross sections as functions of βsbj and ηsbj
low−ηjet

are obtained.

Likewise, in the case of α23 one needs to be sure which are the lowest- and

next-to-lowest ET subjets, though the order is irrelevant. This is thus equivalent to

knowing which is the highest-ET subjet and, therefore, the following requirement is

applied:

Ehigh
T

Ejet
T

− Emid
T

Ejet
T

> 0.2,

where Ehigh
T corresponds to the subjet with the highest transverse energy. In the

case of γsbj the same reasoning applies: the important issue is to distinguish the

highest-ET subjet from the other two and thus the same cut is applied. Given this

requirement, 27606 jets are found, and normalised cross sections as functions of α23

and γsbj are obtained.

Studies of the underlying color dynamics using the variables βsbj, α23, ηsbj
low − ηjet

and γsbj are performed with these additional requirements included.

7.4 Event selection

In the beginning of the chapter it was stated that the main properties of a NC DIS

event are: balanced transverse momentum, the presence of a scattered electron and

the presence of jets in the final state. These properties are looked for in the process

of data taking via the use of the trigger chains. The following sections contain an

outline of the specific trigger chain and the selection cuts used in the analyses. These

criteria are divided into two categories:

• Online selection: these are the triggers used during the online data taking.

It consists of a three-level trigger chain which aims to minimize CPU time
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during data taking. They implement reasonably-inclusive cuts to prevent the

loss of interesting physics data.

• Offline selection: this selection includes full jet and scattered electron recon-

struction as well as all the cleaning cuts for background removal.

7.4.1 Online selection

As previously stated, the online selection proceeds through a three-level trigger

chain. The computations involved in the selection become more refined and CPU-

demanding as one goes up in the trigger chain. In what follows, the criteria used

during the 1998-2000 running period are described. The criteria used during the

2004-2007 running period are very similar.

First Level Trigger

At the FLT level, minimum overall UCAL energy deposits were required. The

conditions imposed were:

• EFLT
EMC > 10 GeV or

• EFLT > 15 GeV or

• EFLT
BEMC > 3.4 GeV or

• EFLT
REMC > 2.0 GeV or

• EFLT
T > 11.6 GeV

Additionally, it was demanded that the event has at least one CTD track associated

with the nominal vertex.

Second Level Trigger

At the SLT, the following conditions were imposed:

• A reconstructed vertex with −60 cm < zvtx < 60 cm. This cut removed events

which occurred far from the interaction region, since the detector response

could be very different for such events. This cut also removed beam-gas related

events.

• E − pZ > 8.0 GeV, where E and pZ are the energy and the longitudinal

momentum of the event, determined from energy deposits in the UCAL. For a

NC interaction of massless particles, E − pZ = Ee + Ep − pZ,e − pZ,p = 2Ee =
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2×27.5 GeV, so that events with E−pZ << 55 GeV are associated with PHP

or CC interactions.

• Econe
T > 8.0 GeV, where Econe

T is the sum of transverse energy of all UCAL

cells outside a cone of 10◦ around the proton beam direction.

• E − pZ > 12 GeV or pZ/E < 0.95 to further reduce the contamination from

beam-gas interactions.

Third Level Trigger

The following conditions were imposed at the TLT:

• The number of ‘bad tracks’ had to be smaller than 6. A ‘bad track’ was defined

as a track which is long enough for a good reconstruction (i.e. it has more than

5 hits in axial superlayers and more than 5 hits in stereo superlayers, and more

than 20 hits in total) and points to a very backward vertex (zvtx < −75cm).

The cut on the number of ‘bad tracks’ suppressed proton beam-gas background

events, which usually contain forward-going tracks coming from the backward

region.

• A reconstructed vertex with −60 cm < zvtx < 60 cm.

• E − pZ < 75 GeV.

An event was required to fulfill at least one of the following conditions at the

TLT:

• Econe
T > 25 GeV.

• The time available at the TLT level permitted the application of a jet-finding

algorithm. Events with at least one jet of Ejet
T > 10 GeV and ηjet < 2.5

were retained. The jet algorithm was applied over all the cells in the UCAL,

including those that would be associated with the electron candidate, so that

the electron candidate was usually identified as a jet at this point.

• pZ/E < 1.0 and two or more jets with Ejet
T > 6 GeV and ηjet < 2.5.

As described in the experimental setup, during the offline reconstruction of the

events some additional requirements were imposed and stored in a bit structure

(DST bits). However, no further requirements were applied at this level for the jet

analyses.
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7.4.2 Offline selection

At this stage, the samples contain events from several sources and here is where

selection criteria and further requirements come into play.

Identification of the scattered electron. The SINISTRA electron finder.

A neural network approach was developed based on the showering properties of the

electron in the segmented UCAL. This neural network estimates the probability

that a given energy deposit in the UCAL corresponds to an electron, therefore

distinguishing from the single hadrons or jets of particles for which the pattern

of energy deposits in the UCAL can look quite similar at low energies. Electrons

and background populate different regions in a multidimensional configuration space

parametrized by the variables that characterize the shower. The neural network was

trained using Monte Carlo samples for both electrons and hadrons. A high efficiency

was found for electron identification.

The electron-identification algorithm used in these analysis is called SINISTRA [109,

110]. The algorithm proceeds by merging together groups of cells according to pre-

defined criteria. Each cell is merged with the adjacent cell of highest energy. This

clustering procedure associates cells which most likely come from a single particle

shower. A cluster is defined to be composed of no more than 3×3 cells. A candidate

cluster for an electron is called an island. The input variables are the energies reg-

istered in the corresponding island and the neural network projects the information

into one output variable P , which is interpreted as the probability that the island

originates from the scattered electron (P ∼ 1) or has a hadronic origin (P ∼ 0).

It is possible to define the electron four-momentum using the constituent cells

and weighting their respective positions with their energies. Using the energy and

position of the constituent cells, the four-momentum of the island is reconstructed.

Each island was associated a probability. The one with the largest probability was

taken as the scattered electron.

Efficiency and purity studies of the electron candidates have shown that an op-

timal selection required an associated probability of at least P > 0.9 and that the

probability given by SINISTRA was reliable if the island had an energy larger than

10 GeV. These were the requirements imposed on the identified scattered electron

for the events in the NC DIS samples.

To further improve the purity and efficiency of the electron candidate, additional

requirements were imposed:

• ye < 0.95 , where ye = 1 − E ′

e(1 − cos θe)/(2Ee) and E ′

e and θe are the energy

and polar angle of the electron candidate. With this condition, fake electron
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candidates in the FCAL were removed.

• the total energy not associated with the electron candidate within a cone of

radius 0.7 units in the (η − φ) plane around the electron direction should be

less than 10% of the electron energy. This condition removed photoproduction

and DIS events in which part of a jet was falsely identified as the scattered

electron.

• for 20◦ < θe < 140◦, the fraction of the electron energy within a cone of radius

0.3 units in the η−φ plane around the electron direction should be larger than

0.9; for θe < 20◦, the cut was raised to 0.98. This condition removed events in

which a jet was falsely identified as the scattered electron.

7.4.3 Signal selection

The cuts previously explained are not enough to select a clean sample of NC DIS

events. There are sources of background which can give substantial contributions

and therefore contaminate the data sample. The sources are several: photons, jets

or isolated particles can potentially be mis-identified as the scattered electron. One

of the backgrounds is photoproduction, defined as the NC process with low values

of the transferred momentum, Q2 ≤ 1 GeV2. Another known background is the

so-called ’beam-gas events’, which comes from molecules leaking into the vacuum

and colliding with the proton beam upstream of the interaction point. This kind

of collisions leaves a large number of ’bad tracks’ in the CTD which do not come

from the primary vertex. Charged-current events are a source of background as

well. Their characteristic signal is the presence of missing transverse momentum

arising from the final-state neutrino escaping undetected. The cleaning cuts applied

to remove the background coming from these sources are:

• Using the definition of a bad track already given, the number of bad tracks is

required to be less than 5. The presence of many bad tracks in the detector is

typical of an event produced by a beam-gas interaction.

• 38 < (E − pZ) < 65 GeV, where E is the total energy as measured in the

UCAL, E =
∑

iEi and pZ is the z-component of the vector ~p =
∑

iEi~ri. In

both cases the sum runs over all UCAL cells, Ei is the energy of the UCAL

cell i and ~ri is a unit vector along the line joining the reconstructed vertex and

the geometric centre of cell i. This cut removed events with large initial-state

radiation and further reduced the background from photoproduction.

• pT/
√
ET < 3 GeV1/2, where pT is the total transverse momentum as measured

with the UCAL (pT ≡
√

p2
X + p2

Y ) and ET is the total transverse energy in
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the UCAL. This cut removed charged-current DIS events, cosmic rays and

beam-related background.

• A cut in −34 cm < zvtx < 34 cm (35 cm) for the two-subjet (three-subjet)

analysis. This cut removed events whose vertex is far from the nominal in-

teraction region. These events were removed because the detector response to

events far from the nominal interaction region can be significantly different.

• There can be background from elastic Compton processes (ep→ epγ), since the

photon or the electron could be falsely identified as a jet. In these events two

electromagnetic clusters are expected in the UCAL and, thus, two SINISTRA

electron candidates were requested. Cuts on energy and isolation were applied

as for the first candidate. If there was a second candidate that passes these

cuts and the energy on the whole UCAL excluding that belonging to the two

candidates was found to be less than 4 GeV, the event was rejected.

Phase-space region and jet selection

The phase-space of the analyses was defined in terms of Q2. The double-angle

method [111] was used to reconstruct Q2:

Q2
DA = 4 · E2

e

sin γh(1 + cos θe)

sin γh + sin θe − sin (θe + γh)
, (7.1)

where γh is defined by the relation

cos γh =
(1 − y)xEp − yEe

(1 − y)xEp + yEe

, (7.2)

and corresponds to the scattering angle of the struck quark in quark-parton-model

events. This angle is reconstructed using the UCAL according to

cosγh =
(
∑

h pxh)2 + (
∑

h pyh)2 − (
∑

h(E − pZ)h)2

(
∑

h pxh)2 + (
∑

h pyh)2 + (
∑

h(E − pZ)h)2
, (7.3)

where the sums run over all the UCAL cells not associated to the scattered electron

candidate.

This method does not involve the final-state electron or jet energies, which have

a poorer detection resolution than angles; therefore, this method exhibits better

reconstruction properties than others in the kinematic region considered here.

A cut of Q2 > 125 GeV2 was used to select a region that is well into the DIS

regime. Additional selection cuts designed to improve the reconstruction of the jets

were applied:
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• Only jets with transverse energies larger than 14 GeV have been included.

• Only jets within the pseudorapidity range −1 < ηjet < 2.5 have been consid-

ered.

7.5 Jet reconstruction using the UCAL

The UCAL is the main component used to perform the reconstruction of jets. In

this analysis, jets are reconstructed using the kT clustering algorithm in the labo-

ratory frame using the UCAL cells four-momenta as the initial set of objects. The

jet algorithm was applied after excluding those cells associated with the scattered

electron candidate. A four-momentum, pµ, was associated to each cell, where p0

corresponds to the energy deposit in the cell and ~p was determined by treating the

cell as a massless particle and its position to be at the center of the cell.

It is important to quantify the effect of the resolution of the detector in the jet

variables and any bias that the dead material in front of the UCAL may introduce

in their measurement. It is also necessary that the energy scale of the jets be the

same in the data and MC samples. To ensure that this is the case, studies of the

energy-scale in the UCAL for the data and MC simulations were carried out for each

of the analyses. This section describes both of these studies.

7.5.1 Jet energy scale corrections

The energy scale uncertainty of the UCAL coupled with differences in the hadronic

final state between the data and MC simulations has traditionally been the dominant

systematic uncertainty in jet measurements. Energy-scale uncertainties of ±(3−5)%

lead to uncertainties of ∼ ±(10 − 20)% in the cross-section measurements.

QPM-type of events, in which the final state consists of the scattered electron

and one jet were used to calibrate the UCAL. Since the total PT should be ≈ 0

the electron’s ET , which is estimated using the double-angle methond (pT,DA) must

compensate the jet’s ET . The key idea is that the ratio R =
Ejet

T

pT,DA
should be the

same in the MC and in the data, which should indeed be the case if the usage

of MC for acceptance corrections is to be legitimate. Therefore, the double ratio

R′ = RDATA

RMC was used as an energy-scale correction factor to match the energy scale

in the data and MC The values of the double ratio R′ are expected to be different

in different regions of the detector and thus the correction factors were obtained1 as

1The corrections were obtained using the inclusive sample of jets before the requirements on the number

of subjets were applied.
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ηjet region Energy-scale corrections

[-1.0,-0.25] 0.999

[-0.25,0.75] 1.006

[ 0.75,1.25] 1.013

[ 1.25,1.75] 0.987

[ 1.75,2.5] 0.982

Table 7.1: Energy-scale correction factors applied to the Ejet
T of the jets in the data for

the two-subjet analysis.

ηjet region I II III IV V VI VII VIII IX X

[-1.0,-0.25] 0.990 0.974 0.987 0.979 0.981 0.974 0.980 0.990 0.997 0.976

[-0.25,0.75] 0.994 0.995 0.991 0.987 0.979 0.988 0.987 0.984 0.985 0.982

[ 0.75,1.25] 1.013 1.013 1.019 1.011 1.015 1.009 1.010 1.008 1.012 1.010

[ 1.25,1.75] 0.995 1.001 1.003 0.996 0.994 0.995 0.995 0.997 0.995 0.990

[ 1.75,2.5] 0.991 0.994 0.994 0.990 0.990 0.987 0.989 0.988 0.990 0.992

Table 7.2: Energy-scale correction factors applied to the Ejet
T of the jets in the data for

the three-subjet analysis. Each column corresponds to a different data-taking period.

a function of ηjet. Table 7.1 shows the 1
R′

factors applied to correct the Ejet
T of the

jets in the data for the two-subjet analysis.

For the three-subjet analysis, the corrections were calculated separately for each

data-taking period corresponding to a change in polarization and/or lepton beam

(e+/e−). Thus, different corrections are applied depending on the data-taking pe-

riod. The results can be seen in table 7.2.

7.5.2 Detector bias and resolution

To study the effects and bias that the detector could introduce in the measurements,

comparisons of the hadronic system before and after the simulation were made. The

correlations between the hadron level and detector level were studied for the variables

Ejet
T , ηjet and φjet. Jets at hadron level were matched to jets at detector level by

requiring the distance between them in the η − φ plane to be smaller than unity.

It should be noted that the studies have been done with the inclusive jet samples

without any requirement on the number of subjets.

The correlation between the hadron- and detector-level jets of the MC simulation

is a measure of the resolution and bias on the jet variables introduced by the detector.

Any bias that may have been present was identified as a deviation from a perfect
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correlation. On the other hand, the spread of the correlation reflects the detector

resolution. Figure 7.1 shows the correlation between the hadron and detector levels

for the jet variables Ejet
T , ηjet and φjet as obtained with ARIADNE in the two-

subjet analysis; figure 7.2 shows the corresponding distributions for the three-subjet

analysis. The distributions of (Ejet
T (CAL) − Ejet

T (HAD))/Ejet
T (HAD), ηjet(CAL) −

ηjet(HAD), and φjet(CAL) − φjet(HAD) for the two-subjet (three-subjet) analysis

are shown in Fig. 7.3 (7.4).

As can be seen in these figures, the detector does not alter the angular direction

of the jets but the jets lose energy as they go through the dead material in front of

the UCAL. This loss of energy can be quantified by means of a gaussian fit to the

relative difference between the hadronic level and the detector level. The correction

factors are obtained as follows:

• The standard cuts were applied at the hadron level to select the jets in the MC

sample. At the detector level, the cuts in the transverse energy are relaxed

since the uncorrected energy is usually smaller than the corrected one.

• For each event, the jets at hadron and detector level were matched. The

distance in the η − φ plane between the jets at hadron and detector level is

calculated:

∆[hd] =
√

(ηjet(CAL) − ηjet(HAD))2 + (φjet(CAL) − φjet(HAD))2. (7.4)

If the smallest distance found between two jets is smaller than unity, the jets

are matched. This procedure is repeated until all the jets were matched or no

pair of jets is left for which the distance is less than unity.

• The mean value < Ejet
T (CAL) > as a function of Ejet

T (HAD) was parametrized

by a straight line or set of straight lines if necessary. The fitted function has

the form

Ejet
T (CAL) = m · Ejet

T (HAD) + n. (7.5)

For a given jet at detector level the corrected energy is then obtained by in-

verting this function:

Ejet
T (COR) =

Ejet
T (CAL) − n

m
. (7.6)

• The energy loss is not the same in all the detector regions, yielding a depen-

dence in the jet pseudorapidity. Thus, the jet parameterization was done in

fourteen different ηjet regions. For the three-subjet analsysis Fig. 7.5 shows the

correlation between hadron level and detector level Ejet
T before any correction

was applied. The improvements due to the corrections can be seen in figure 7.6.
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Figure 7.1: Correlations between detector and hadron levels for the jet variables Ejet
T , ηjet

and φjet for the inclusive-jet sample of the two-subjet analysis using the CDM MC.
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Figure 7.2: Correlations between detector and hadron levels for the jet variables Ejet
T , ηjet

and φjet for the inclusive-jet sample of the three-subjet analysis using the CDM MC.
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Figure 7.3: Differences between detector and hadron levels for the jet variables Ejet
T , ηjet

and φjet for the inclusive-jet sample of the two-subjet analysis using the CDM MC.
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Figure 7.4: Differences between detector and hadron levels for the jet variables Ejet
T , ηjet

and φjet for the inclusive-jet sample of the three-subjet analysis using the CDM MC.
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Figure 7.5: < Ejet
T (CAL) > as a function of Ejet

T (HAD) in each region of ηjet using the

MC simulations based on CDM for the three-subjet analysis.
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as a function of Ejet
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on CDM for the three-subjet analysis.
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7.6 Data and Monte Carlo distributions

The legitimacy of using the MC simulations to perform corrections and reconstruc-

tion studies relies on the fact that these simulations describe the distributions in the

data sample for all the variables used. This section includes all the comparisons of

the data distributions to those of the MC simulation. It should be noted that the

studies have been done with the inclusive jet samples without any requirement on

the number of subjets.

7.6.1 Comparisons of data and MC for the two-subjet analysis

In figs. 7.7 to 7.10 the comparisons between data and the Monte Carlo simulations

based on MEPS and CDM are shown. Fig. 7.7 shows a comparison of the total

energy in the calorimeter, as well as the total energy in the forward, barrel and real

regions of the calorimeter. In the RCAL distribution, the peak due to the scattered

electron is clearly visible.

Fig. 7.8 shows the comparisons of the distributions for the total transverse energy,

the vertex position along the beam direction, Q2
DA and log10(xDA), where xDA is

reconstructed using the double-angle method:

xDA =
Ee

Ep

· sin γh + sin θe + sin (θe + γh)

sin γh + sin θe − sin (θe + γh)
. (7.7)

Fig. 7.9 shows the comparison for the scattered electron energy, its polar angle,

the pT of the hadronic system and the number of good2 tracks. It can be seen that

the electron energy peaks at the value of the electron beam energy, 27.5 GeV, and

that the electron tends to be at large angles with respect to the proton direction, as

expected.

Finally, fig. 7.10 shows the distributions of the number of bad tracks, pT/
√
ET ,

the transverse energy of the jets and their pseudorapidity. Both MC simulations are

able to describe well the distribution of the jet variables, which validates their use

to provide corrections.

2Tracks which are associated to the vertex and fulfill the conditions 15◦ < θ < 164◦, 0.2 < pT < 150

GeV and the number of degrees of freedom larger than 9.
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Figure 7.7: Comparison between data and the Monte Carlo simulations based on CDM and

MEPS for the total energy in the calorimeter, energy in the FCAL, energy in the BCAL

and energy in the RCAL. The MC distributions are normalised to the total number of

events in the data.
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Figure 7.8: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for the total transverse energy, the z-vertex, Q2
DA and log10(xDA). The MC

distributions are normalised to the total number of events in the data.
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Figure 7.9: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for the electron’s energy, its polar angle, pHAD
T and the number of good tracks.

The MC distributions are normalised to the total number of events in the data.
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Figure 7.10: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for the number of bad tracks, pT /
√

ET , Ejet
T and ηjet. The MC distributions

are normalised to the total number of events (for the distributions in the number of bad

tracks and pT /
√

ET ) or to the total number of jets (for the distributions in Ejet
T and ηjet)

in the data.
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7.6.2 Data and Monte Carlo distributions for the three-subjet analysis

Comparisons between data and MC distributions for the same variables shown in the

previous section but for the three-subjet analysis are shown in figures 7.11 to 7.14.
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Figure 7.11: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for the total energy in the calorimeter, energy in the FCAL, energy in the BCAL

and energy in the RCAL. The MC distributions are normalised to the total number of

events in the data.
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Figure 7.12: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for the total transverse energy, the z-vertex, Q2
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distributions are normalised to the total number of events in the data.
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Figure 7.13: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for the electron’s energy, its polar angle, pHAD
T and the number of good tracks.

The MC distributions are normalised to the total number of events in the data.
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Figure 7.14: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for the number of bad tracks, pT /
√

ET , Ejet
T and ηjet. The MC distributions

are normalised to the total number of events (for the distributions in the number of bad

tracks and pT /
√

ET ) or to the total number of jets (for the distributions in Ejet
T and ηjet)

in the data.
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7.6.3 Comparisons between data and MC for subjet distributions in the

two-subjet analysis
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Figure 7.15: Comparison between data and the Monte Carlo simulations based on CDM

and MEPS for (a) Esbj
T /Ejet

T , (b) ηsbj − ηjet, (c) |φsbj − φjet| and (d) αsbj . The MC

distributions are normalised to the total number of subjets in the data.

In this section, a comparison between the data and MC is shown for the variables

used to study the substructure of jets. This comparison can be seen in figure 7.15,

where it can be appreciated that both MC models describe the data reasonably well

although it is found that the description provided by MEPS is somewhat poorer.

The fact that both MC models provide a good description of the data at detector

level is a fundamental feature since it shows that the effects and biases introduced

by the detector are well understood and therefore validates the usage of the models

to correct the data for those effects. Both models describe adequately the data
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and therefore an average will be used to estimate these corrections. The difference

between them will then be taken as the systematic uncertainty associated to the

modelling of the parton shower, as will be explained in chapter 9.

7.6.4 Comparisons between data and MC for subjet distributions in the

three-subjet analysis

The correlations between the hadron and detector levels for the subjet variables are

shown in figures 7.16 and 7.17. In figures 7.18 and 7.19 the comparison for the vari-

ables used in the three-subjet analysis can be seen. The Monte Carlo distributions

are normalised to the data and a good description is achieved. The distribution of

ηsbj
low − ηjet is the one that exhibits some discrepancies; the lowest-transverse-energy

subjet in the data populates the region of ηsbj
low − ηjet < 0 with a slightly larger

frequency than what the models account for.
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Figure 7.16: Correlations between the hadron and detector levels for the subjet variables

(a) Esbj
T /Ejet

T , (b) ηsbj − ηjet, (c) φsbj − φjet and (d) βsbj using the MEPS MC.
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Figure 7.17: Correlations between the hadron and detector levels for the subjet variables

(a) α23, (b) γsbj and (c) ηsbj
low − ηjet using the MEPS MC.
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Figure 7.18: Comparisons between data and the Monte Carlo simulations based on CDM

and MEPS for (a) Esbj
T /Ejet

T , (b) ηsbj − ηjet, (c) |φsbj − φjet| and (d) βsbj. The MC

distributions are normalised to the total number of subjets in the data.
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Figure 7.19: Comparisons between data and the Monte Carlo simulations based on CDM

and MEPS for (a) α23, (b) γsbj and (c) ηsbj
low − ηjet. The MC distributions are normalised

to the total number of subjets in the data.



Chapter 8

Correction factors and systematic

uncertainties

8.1 Correction factors

As already mentioned in the previous chapter, the legitimacy of using the Monte

Carlo simulations to obtain corrections rests on how well the simulations describe

the distributions that are to be corrected. We have now seen how this is indeed the

case for both Monte Carlo models. In this chapter, the correction factors as well as

the sources of systematic uncertainties are presented.

The data distributions were corrected for detector effects to compute the mea-

sured differential cross sections. These corrections took into account the efficiency of

the trigger, the selection criteria and the purity and efficiency of the jet and subjet

reconstruction. The correction factors were applied using the bin-by-bin method

and were obtained from the simulations after the Ejet
T corrections were applied to

the jets.

The conventional approach of quantifying possible systematic uncertainties is

to vary the assumptions by reasonable amounts, such as their known or estimated

uncertainty, and calculate the impact of such variations on the final results by taking

the difference induced by these variations as an estimation of the uncertainty. Ideally,

the analysis should have little sensitivity to small variations in quantities the exact

values of which are not fully known, such as the background subtraction cuts, the

choice of a certain parton-cascade model or the energy scale of the jets. The analysis

is carried through with independent variations and the induced changes in the final

results are added in quadrature and taken as the overall systematic uncertainty.
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8.1.1 Acceptance correction factors for the two-subjets analysis

The subjet distributions were corrected for detector effects using the bin-by-bin

method. Since both MC simulations were able to describe adequately the data, an

average of the acceptance correction factors evaluated with each of the two models

was used. The difference between the average and either CDM or MEPS was then

taken as the systematic uncertainty due to the modelling of the parton cascade.

The acceptance correction factors (CACC) are defined as CACC = purity
efficiency

, where

efficiency is the fraction of generated events in a given bin that are reconstructed

in that same bin, whereas purity is defined as the fraction of reconstructed events

in a given bin that are generated in that same bin, where ’generated’ refers to the

hadronic level and ’reconstructed’ to the detector level. Thus, the correction factor

is given by:

CACC =
P

E
=

(NHAD

⋂

NDET )/NDET

(NHAD

⋂

NDET )/NHAD

=
NHAD

NDET

. (8.1)

Thus, if NDAT
i is the number of jets (or subjets) reconstructed in a given bin xi,

with a width of ∆xi, the corrected differential cross section is given by

dσcorr
i

dx
=

NDAT
i

(∆xi)L
·
NMC

HAD,i

NMC
DET,i

, (8.2)

where L is the integrated luminosity and NMC
HAD,i (NMC

DET,i) is the number of jets or

subjets in the MC at hadron (detector) level in the given bin i.

Since the differential cross sections are normalised, the only effect the corrections

have is to change the shape of the data distributions. In order to visualize the change

in shape induced by the corrections, figure 8.1 shows the ratio of the normalised

distributions at hadron level over those at detector level. It is shown that the effect

of the corrections is to modify the shape of the data distributions by typically less

than 20%.

The corresponding figures for the evolution of the distributions with Ejet
T , ηjet,

Q2 and Bjorken’s x, are shown in the appendix.



8.1. Correction factors 125

0

0.5

1

1.5

2

2.5

3

(1
/σ

)d
σ/

d(
E

sb
j

T
 /E

je
t

T
  )

ca
l

0.5

0.75

1

1.25

1.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
sbj

T/E
jet

T

 (
H

A
D

)/
(C

A
L

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(1
/σ

)d
σ/

d(
ηsb

j  -
 η

je
t  )

ca
l

0.5

0.75

1

1.25

1.5

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

ηsbj - ηjet

 (
H

A
D

)/
(C

A
L

)

0

0.5

1

1.5

2

2.5

3

3.5

(1
/σ

)d
σ/

d(
|φ

sb
j  -

 φ
je

t |) ca
l

0.5

0.75

1

1.25

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|φsbj - φjet| (rad)

 (
H

A
D

)/
(C

A
L

)

0

0.1

0.2

0.3

0.4

0.5

(1
/σ

)d
σ/

d 
αsb

j ca
l

0.5

0.75

1

1.25

1.5

0 0.5 1 1.5 2 2.5 3

 αsbj (rad)

 (
H

A
D

)/
(C

A
L

)

(a) (b)

(c) (d)

Figure 8.1: The normalised distributions in the Monte Carlo at detector level for the two-

subjet analysis (dots) as functions of a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj − φjet| and d)

αsbj . The lower plots show the ratio of the normalised distributions at hadron level over

those at detector level. The horizontal dot-dashed lines represent changes of 20%.
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8.1.2 Acceptance correction factors for the three-subjets analysis

In this case, although both Monte Carlo models were able to adequately reproduce

the data at detector level, it was observed that MEPS was generally able to give a

better description of the data than CDM. The data were therefore corrected with

MEPS as default and the correction with CDM was taken as an alternative to

estimate the systematic uncertainty due to the modelling of the parton shower.

Figures 8.2 and 8.3 show the normalised distributions at detector level together with

the ratios of the normalised distributions at hadronic level over those at detector

level, which quantify the change in shape induced by the corrections. The vertical

lines in the plot show the regions where there is sizeable statistics in the data. The

horizontal dot-dashed lines in the lower plots indicate modifications of ±20%. As

can be seen in these figures, it is generally the case that the corrections applied do

not modify the shape by more than 20%.
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Figure 8.2: The normalised distributions in the Monte Carlo at detector level for the

three-subjet analysis (dots) as functions of a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj −φjet| and

d) βsbj. The lower plots show the ratio of the normalised distributions at hadron level

over those at detector level. The horizontal dot-dashed lines represent changes of 20%.
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Figure 8.3: The normalised distributions in the Monte Carlo at detector level for the

three-subjet analysis (dots) as functions of a) α23, b) γsbj and c) ηsbj
low − ηjet. The lower

plots show the ratio of the normalised distributions at hadron level over those at detector

level. The horizontal dot-dashed lines represent changes of 20%.
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8.1.3 Parton-to-hadron corrections. Two-subjet analysis

The final state in a fixed-order pQCD calculation is a set of partons. To compare

the data and theory at the same level, parton-to-hadron correction factors were

obtained and applied to the DISENT predictions. In an analogous manner as in the

data, the correction factors CPH are defined to be:

CPH,i =
NMC

HAD,i

NMC
PAR,i

, (8.3)

where NMC
PAR,i stands for the number of jets or subjets of partons in the Monte

Carlo. As previously stated, the description of the fixed-order calculation by the

partonic level of the Monte Carlo was improved by performing a reweighting of the

contributing processes at parton level. The reweighting is then also applied to the

hadronic level for correction purposes only. Fig. 8.4 shows a comparison between

the predictions of pQCD at NLO with the distributions in the MC after they have

been reweighted.

As for the acceptance correction factors, the effect that these corrections induce

on the pQCD calculations is to modify the shape of the distributions. Figure 8.5

shows the ratios of the normalised distributions at hadron level over those at parton

level, which quantify the changes in shape. It is shown that the changes in shape

induced by the hadronization corrections are generally below 20%.
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Figure 8.4: The predictions for the normalised differential cross sections at NLO in the

two-subjet analysis (dots) compared with the distributions at the parton level in the Monte

Carlo simulations based on CDM (black lines) and MEPS (red lines). The distributions

shown are: a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj. The lower plots show

the relative differences of the distributions in the MC with respect to the NLO predictions.



8.1. Correction factors 131

0

0.5

1

1.5

2

2.5

3

(1
/σ

)d
σ/

d(
E

sb
j

T
 /E

je
t

T
  )

pa
r

0.5

0.75

1

1.25

1.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
sbj

T/E
jet

T

 (
H

A
D

)/
(P

A
R

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(1
/σ

)d
σ/

d(
ηsb

j  -
 η

je
t  )

pa
r

0.5

0.75

1

1.25

1.5

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

ηsbj - ηjet

 (
H

A
D

)/
(P

A
R

)

0

0.5

1

1.5

2

2.5

3

3.5

(1
/σ

)d
σ/

d(
|φ

sb
j  -

 φ
je

t |) pa
r

0.5

0.75

1

1.25

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|φsbj - φjet| (rad)

 (
H

A
D

)/
(P

A
R

)

0

0.1

0.2

0.3

0.4

0.5

(1
/σ

)d
σ/

d 
αsb

j pa
r

0.5

0.75

1

1.25

1.5

0 0.5 1 1.5 2 2.5 3

 αsbj (rad)

 (
H

A
D

)/
(P

A
R

)

(a) (b)

(c) (d)

Figure 8.5: The normalised distributions in the Monte Carlo at parton level for the two-

subjet analysis (dots) as functions of a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj − φjet| and d)

αsbj . The lower plots show the ratio of the normalised distributions at hadron level over

those at parton level. The horizontal dot-dashed lines represent changes of 20%.
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8.1.4 Parton-to-hadron corrections. Three-subjet analysis

Let’s now turn to the corresponding correction factors for the three-subjet analysis.

In this case, a reweighting of the parton level was not needed since both Monte

Carlo models were able to provide a good description of the calculations at both

LO (O(α2
s)) and NLO (O(α3

s)). Fig. 8.6 and 8.7 show the comparison between

the NLO calculations and the partonic-level distributions in the MC models. It is

also observed that MEPS generally provides a slightly better description of the fixed-

order calculations and, thus, the corrections are obtained with MEPS. The correction

with CDM was taken as an alternative to estimate the theoretical uncertainty due

to the modelling of the parton shower.

Figures 8.8 and 8.9 show the ratios of the normalised distributions at hadron level

over those at parton level, which accounts for the changes in shape induced in the

fixed-order calculations by the corrections. The conclusion drawn in the previous

section also holds; the corrections change the shape of the fixed-order calculations

by a factor which is typically smaller than 20%.
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Figure 8.6: The predictions for the normalised differential cross sections at NLO in the

three-subjet analysis (dots) compared with the distributions at the parton level in the

Monte Carlo simulations based on CDM (black lines) and MEPS (red lines). The distri-

butions shown are: a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj − φjet| and d) βsbj. The vertical

lines represent the region of the distribution where there are sizeable statistics. The lower

plots show the relative differences of the distributions in the MC with respect to the NLO

predictions.
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Figure 8.7: The predictions for the normalised differential cross sections at NLO in the

three-subjet analysis (dots) compared with the distributions at the parton level in the

Monte Carlo simulations based on CDM (black lines) and MEPS (red lines). The distri-

butions shown are: a) α23, b) γsbj and c) ηsbj
low−ηjet. The vertical lines represent the region

of the distribution where there are sizeable statistics. The lower plots show the relative

differences of the distributions in the MC with respect to the NLO predictions.
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Figure 8.8: The normalised distributions in the Monte Carlo at parton level for the three-

subjet analysis (dots) as functions of a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj − φjet| and d)

βsbj . The vertical lines represent the region of the distribution where there are sizeable

statistics in the data. The lower plots show the ratio of the normalised distributions at

hadron level over those at parton level. The horizontal dot-dashed lines represent changes

of 20%.
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Figure 8.9: a)The normalised distributions in the Monte Carlo at parton level for the

three-subjet analysis (dots) as functions of a) α23, b) γsbj and c) ηsbj
low − ηjet. The vertical

lines represent the region of the distribution where there are sizeable statistics. The lower

plots show the ratio of the normalised distributions at hadron level over those at parton

level. The horizontal dot-dashed lines represent changes of 20%.
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8.2 Statistical and systematic uncertainties

Statistical uncertainties

As in most experiments where event counting is involved, the underlying probability

distribution for the generation of events is taken to be a Poisson distribution. This is

particularly useful since the variance is the number of events and thus the standard

deviation is identified with the square root of the number of events. However, one

has to keep in mind that ’events’ in our context means events that contain jets,

Nev. More specifically, in our case Nev is the number of events such that at least

one jet satisfies all the requirements imposed. This is the quantity that follows a

Poissonian distribution. However, since the events that contain several jets such that

more than one jet satisfies the requirements on the number of subjets are rare, the

number of events that contain jets is very similar to the total number of jets in the

sample, Njets ∼ Nev. Thus, the uncertainty on the number of jets is to a very good

approximation given by
√

Njets. Therefore, for those distributions in which there

is one entry per jet, the total number of entries in each bin k also approximately

follows a Poissonian distribution and the uncertainty is taken to be σk =
√
Nk. If

the number of entries per jet is more than one, then the total number of entries

no longer follows a Poisson distribution, since the entries are correlated and this

needs to be taken into account to obtain an accurate estimation of the statistical

uncertainty.

This is done by weigthing the contribution of a given jet to the statistical uncer-

tainty in a given bin with the number of entries that the jet has in that given bin.

That is:

σk =

√

∑

j

N2
k,j, (8.4)

where the sum runs over the number of jets and Nk,j corresponds to the number

of entries that the jet j provides to the bin k of a given distribution. In the case

where there is one entry per jet, equation 8.4 reduces to σk =
√
Nk.

The distribution of the two-subjet analysis in which the correlation amongst

entries has to be taken into account is that in |φsbj − φjet|. The differential cross

sections as functions of Esbj
T /Ejet

T and ηsbj − ηjet also have two entries per jet, but

it is always the case that the entries fall into different bins. In the first case the

fractions of tranverse energy of the subjets (f1,2) satisfy that f1 > 0.5 > f2 and in

the second, it is always the case that (ηsbj1 − ηjet) · (ηsbj2 − ηjet) < 0, and thus every

jet contributes to ηsbj − ηjet > 0 and ηsbj − ηjet < 0, that is, always in different bins.

For the three-subjet analysis, these restrictions are not present and the correla-

tions have to be taken into account according to equation 8.4 for Esbj
T /Ejet

T , ηsbj−ηjet
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and |φsbj − φjet|.

8.2.1 Systematic uncertainties: two-subjet analysis

The following sources of systematic uncertainty were considered in this analysis:

• The deviations in the results obtained by using either CDM or MEPS to correct

the data with respect to their average were taken to represent the systematic

uncertainties due to the modelling of the parton cascade.

• Variations on the simulation of the CAL response to low-energy particles. From

a study of the CAL response to low-energy pions it was observed that the

EMC response in the data is different for positive and negative pions by 10-

15% (being higher for positive pions). These differences are not reproduced by

the Monte Carlo simulation whereas the CAL-response to π◦ and π+ particles

is well described. This comparison showed that the simulated CAL-response

to π− particles is overestimated by 10-15%. The effect of this discrepancy on

the measurements has been studied and included as an additional systematic

uncertainty. The response of the EMC cells in the simulation was modified in

the following way: for EMC cells with energy below 200 MeV the energy was

reduced by1 5%; for EMC cells with energy between 200 MeV and 1 GeV the

energy was reduced by a linear function with the energy such that the reduction

factor is 5% at 200 MeV and 0% at 1 GeV; for EMC cells with energy above

1 GeV no reduction factor is applied.

• The uncertainty in the absolute energy scale of the jets was estimated to be

±1% [28, 29, 112]. The variation of the distributions induced by the change of

±1% in the jet energy scale was taken to be the corresponding uncertainty.

• The uncertainty in the absolute energy scale of the electron candidate was

estimated to be ±1% [113]. The variation of the distributions induced by the

change of ±1% in the scattered-electron-candidate energy was taken to be the

corresponding uncertainty.

• The uncertainty in the simulation of the trigger was studied and was found to

be negligible.

The systematic uncertainties were added in quadrature to yield the total system-

atic uncertainty. The latter was added in quadrature with the statistical uncertainty

to provide the total uncertainty, shown as error bars in the figures (see chapter 9).

1As a first approximation it is expected to have the same fraction of π◦, π+ and π− within a jet. For

the sake of simplicity it was decided to apply a global 5% reduction factor.
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Figure 8.10 shows the systematic uncertainties as well as the statistical uncertain-

ties of the normalised differential cross sections. It can be seen that the uncertainty

due to the modelling of the parton shower represents the dominant source of uncer-

tainty and that it is comparable to the statistical uncertainty for all distributions.

The uncertainty due to the modelling of the response to low-energy particles is also

significant, while the uncertainties in the electron and jet energy scales are almost

negligible. In the appendix the corresponding figures for the distributions in different

regions of Ejet
T , ηjet, Q2 and Bjorken’s x are shown.
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Figure 8.10: Relative systematic and statistical uncertainties of the normalised differential

cross sections for the two-subjet analysis as functions of a) Esbj
T /Ejet

T b) ηsbj − ηjet, c)

|φsbj − φjet| and d) αsbj .
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8.2.2 Systematic uncertainties: three-subjet analysis

In this analysis, the sources of systematic uncertainties considered were:

• The deviation in the results obtained by using CDM to correct the data was

taken to represent the systematic uncertainty due to the modelling of the

parton shower.

• Variations in the simulation of the CAL response to low-energy particles.

• The uncertainty in the absolute energy scale of the jets was estimated to be

±3%. The variation of the distributions induced by the change of ±3% in the

jet energy was taken to be the corresponding uncertainty.

• The uncertainty in the absolute energy scale of the electron candidate was es-

timated to be ±3%. The variation of the distributions induced by the change

of ±3% in the scattered-electron-candidate energy was taken to be the corre-

sponding uncertainty.

• The uncertainty due to the heavy quark content in the MC simulations was

estimated by varying the contribution of the heavy quarks to the jet sample

by factors 2 and 1/2, which very likely constitutes an overestimation of this

uncertainty.

• The uncertainty in the simulation of the trigger was found to be negligible.

Figures 8.11 and 8.12 show the relative systematic uncertainties as well as the

statistical uncertainties in the data of the normalised differential cross sections con-

sidered. As in the case of the two-subjet analysis, the modelling of the parton shower

gives the dominant contribution, which is comparable with the data statistics. The

uncertainties on the response to low-energy particles and the heavy-quark content

contribute as well.
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Figure 8.11: Relative systematic and statistical uncertainties of the normalised differential

cross sections for the three-subjet analysis as functions of a) Esbj
T /Ejet

T , b) ηsbj − ηjet, c)

|φsbj − φjet| and d) βsbj.
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Figure 8.12: Relative systematic and statistical uncertainties of the normalised differential

cross sections for the three-subjet analysis as functions of a) α23, b) γsbj and c) ηsbj
low−ηjet.
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Chapter 9

Results: subjet distributions in

NC DIS

9.1 Introduction

In this chapter, the results of the two- and three-subjet analysis are presented.

Normalised differential cross sections for the subjet variables are presented for jets

with Ejet
T > 14 GeV, −1 < ηjet < 2.5 and such that they have exactly two (three)

subjets at ycut = 0.05 (ycut = 0.01). Fixed-order pQCD calculations are compared

to the data.

9.2 Two-subjet analysis

The results presented are:

• Normalised differential cross sections as functions of Esbj
T /Ejet

T , ηsbj − ηjet,

|φsbj − φjet| and αsbj, as well as comparisons with the predictions of fixed-order

pQCD calculations.

• Normalised differential cross sections as functions of ηsbj
high−ηjet and ηsbj

low −ηjet,

where ηsbj
high (ηsbj

low) is the pseudorapidity of the subjet with the highest (lowest)

ET , Esbj
T,high (Esbj

T,low), for jets in which Esbj
T,low/E

jet
T < 0.4, as well as comparisons

with the predictions of pQCD calculations.

• Measurements of the evolution of the normalised differential cross sections

with Ejet
T , ηjet, Q2 and Bjorken’s x, compared to the predictions of pQCD

calculations.
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9.2.1 Normalised differential cross sections

The distribution of the fraction of the jet transverse energy carried by each subjet is

presented in Fig. 9.1(a). It contains two entries per jet. Let f1 and f2 be the fractions

for the subjets in a given jet. Then they are related by f2 = 1 − f1, so they can be

written as f1 = f ′ + 0.5 and f2 = −f ′ + 0.5, respectively, with f ′ = f1 − 0.5. It is

evident that the distribution is symmetric around Esbj
T /Ejet

T = 0.5 by construction.

As already noted in section 8.2, this guarantees that the number of entries in each

bin are not correlated and a Poissonian treatment of the statistical uncertainties is

suitable.

It is observed that the cross section grows as the fractions get comparable, demon-

strating that the two subjets tend to have similar transverse energies. The range

of values that are allowed for Esbj
T /Ejet

T are 0.22 < Esbj
T /Ejet

T < 0.78. These limits

depend on the value of ycut. Given that the algorithm requires that the last two

clusters, in order to be resolvable into two subjets, satisfy

min(Ei
T , E

j
T )2Dηφ ≥ ycut(E

jet
T )2,

where Dηφ is the distance in the η−φ plane, it is immediate to see that the minimum

allowed fraction happens for Dηφ = 1, which gives:

Esbj
T,low

Ejet
T

≥ √
ycut

and, thus, the maximum fraction, with two subjets, is

Esbj
T,high

Ejet
T

≤ 1 −√
ycut.

For ycut = 0.05 one then obtains Esbj
T,low > 0.22 and Esbj

T,high < 0.78.

The distribution of ηsbj−ηjet is show in Fig. 9.1(b). It also has two entries per jet.

A two-peak structure can be seen, with a dip around ηsbj − ηjet ∼ 0. The position

of the center of the jet is determined as the transverse-energy-weighted position of

the two subjets and since both subjets tend to have similar transverse energies, the

two subjets tend to be at similar distances from the jet center in the η − φ plane;

this means that ηsbj,1 − ηjet ∼ −(ηsbj,2 − ηjet) and φsbj,1 − φjet ∼ −(φsbj,2 − φjet).

Therefore, if ηsbj − ηjet is close to zero, it is needed that |φsbj,1 − φsbj,2| is close to

unity for the algorithm not to cluster them together, which happens in few events

and hence the dip in the distribution.

It can also be seen that the two peaks are asymmetric, the one occurring at

negative values of ηsbj − ηjet being clearly more pronounced. As previously said,
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the jet center is reconstructed as the transverse-energy-weighted average of the two

subjets and, therefore, the highest-ET subjet will always be closer to the jet center

than the other. If the highest-ET subjet were populating the region of negative

ηsbj − ηjet more frequently than the region of positive values, the asymmetry of the

peaks could be explained; we shall see that this is indeed the case. In Fig. 9.2 the

distributions of ηsbj
high − ηjet and ηsbj

low − ηjet for Esbj
T,low/E

jet
T < 0.4 are shown. The

preference of the highest-ET subjet to be in the rear part of the jet is here manifest

and explains the asymmetry observed before. The reason for this behaviour is

discussed later on. Apart from these features, the distribution in Fig. 9.1(b) shows

that the cross section grows as |ηsbj − ηjet| decreases, which means that the two

subjets also tend to be close to each other, until they are so close that they stop

being resolvable.

In Fig. 9.1(c) the distribution of |φsbj − φjet| is shown. The reason behind the

dip in the middle for the previous distribution is also valid for this distribution; a

dip can indeed be seen at |φsbj − φjet| ∼ 0. The distribution shows that the subjets

also tend to have similar values of φsbj until they are so close in φ that only subjets

with |ηsbj,1 − ηsbj,2| ∼ 1 are still resolvable.

In Fig. 9.1(d) the distribution of αsbj is shown. It is observed that the cross

section grows as αsbj grows, meaning that the highest-ET subjet tends to be away

from the proton beam direction as seen from the jet’s center point of view. This is

compatible with the distributions in Figs. 9.1(b) and 9.2. The fact that the highest-

ET subjet tends to be in the rear part of the jet is understood as a manifestation

of color-coherence effects between the initial and final states. As mentioned in

section 2.2.1, the color-connected partners in the event, the jet and the proton

remnant, define a region where soft emissions are enhanced. This region is the

one between the two partners and, thus, soft emissions, which will constitute the

lowest-ET subjet, tend to be predominantly towards the proton beam direction, as

observed in the measured distribution.

9.2.2 Comparison with NLO pQCD calculations

In the figures just discussed the NLO QCD predictions are also shown, where the

hatched area represents the theoretical uncertainty. These calculations have been

corrected to the hadron level with the aid of the Monte Carlo models. Since the

calculations are normalized to unity, the uncertainties are correlated among the

points; this correlation gives rise to the pulsating pattern exhibited by the theoretical

uncertainties.

The QCD predictions give an adequate description of the data. In some distribu-

tions, however, it can be seen that the data points are situated at the upper (lower)



148 Results: subjet distributions in NC DIS

edge of the theoretical uncertainty, as it happens for Esbj
T /Ejet

T ∼ 0.5, |φsbj−φjet| ∼ 0,

αsbj ∼ 0 or at the peaks in the ηsbj−ηjet distribution (Esbj
T /Ejet

T ∼ 0.25, |φsbj−φjet| >
0.3 and |ηsbj − ηjet| > 0.5).

The calculation of the cross section as a function of Esbj
T /Ejet

T exhibits a peak

at 0.4 < Esbj
T /Ejet

T < 0.6, as seen in the data. The calculations for the ηsbj − ηjet

and αsbj distributions predict that the subjet with higher transverse energy tends

to be in the rear direction, in agreement with the data. It should be noted that the

shapes of the distributions are very similar for the LO and NLO calculations. In

the LO calculations two subprocesses contribute to the production of jets with two

subjets: the quark-induced subprocess eq → eqg and the gluon induced subprocess

eg → eqq̄. In the former a jet consists of a quark-gluon pair while in the latter it

consists of a quark-antiquark pair. The agreement between data and calculations

shows that the mechanism driving the subjet topology in the data is the eq → eqg

and eg → eqq̄ subprocesses as implemented in the pQCD calculations.

To gain further insight into the pattern of parton radiation, the predictions for

quark- and gluon-induced processes are compared separately with the data in fig-

ure 9.3. The NLO calculations predict that the two-subjet rate is dominated by

quark-induced subprocesses; the relative contribution of quark-(gluon-)induced sub-

processes is 81% (19%). The shape of the predictions for these two type of sub-

processes are different; in quark-induced subprocesses, the two subjets have more

similar transverse energies and are closer to each other than in gluon-induced sub-

processes (see figure 9.3). The comparison with the measurements shows that the

data are better described by the calculations for jets arising from a quark-gluon pair

than those coming from a quark-antiquark pair, in agreement with the predicted

dominance of quark-induced subprocesses.

9.2.3 Evolution of the pattern of parton radiation with Ejet
T , Q2, ηjet and

Bjorken’s x

Figure 9.4 shows the normalised differential cross sections as functions of all the

subjet variables in different regions of Ejet
T . Despite the fact that the mean subjet

multiplicity decreases with increasing Ejet
T , the measured cross sections have very

similar shapes across all regions in Ejet
T . This is better illustrated in Fig. 9.5, where

the data for all Ejet
T regions have been plotted together. In particular, it is observed

that the maximum of each measured normalised cross sections in every region of

Ejet
T occurs in the same bin of the distribution. To quantify this dependence more

precisely, the value of the cross section at a given bin in all regions of Ejet
T is plotted

in Fig. 9.6, where the bin chosen has been the one that contains the maximum of the

distribution in order to minimize the statistical error. The spread of the measured
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maximum values is ±(4−6)%. For each of the four observables, the scaling behaviour

of the subjet cross section is observed and in agreement with the expectation that

the splitting functions evolve slowly (logarithmically) with the energy scale. The

NLO QCD calculations are in agreement with the data and support this observation.

Figure 9.7 shows the normalised differential subjet cross sections in different

regions of ηjet. The most relevant feature than can be learnt from these distributions

is that the preference of the highest-ET subjet to be in the rear part of the jet persists

in the regions of negative pseudorapidity, as expected if color-coherence effects are

indeed present. If they were not, the highest-ET subjet would then be most of

the time the one with the angle closest to 90◦, which in the region of negative

pseudorapidity is the one in the forward part of the jet. Figure 9.8 shows the data

for all ηjet regions plotted together and in Fig. 9.9 the evolution of the maximum

value of the distribution with ηjet can be seen.

Figure 9.10 shows the normalised differential subjet cross sections in different

regions of Q2. In this case, it is observed that the Esbj
T /Ejet

T distribution does not

change significantly with Q2, but the other observables do show some variation. For

instance, in Fig. 9.11 it can be seen that the dip in the ηsbj − ηjet distribution is

shallower for the region 125 < Q2 < 250 GeV2 than at higher Q2 and that the

shape of the αsbj distribution for that same region has a different shape than for the

other regions. These features of the data are reasonably reproduced by the NLO

calculations and understood as a combination of two effects: the fraction of gluon-

induced events is predicted to be 32% for the region 125 < Q2 < 250GeV 2 and below

14% for higher Q2; the shape of the normalised cross section as functions of ηsbj−ηjet

and αsbj changes from the region 125 < Q2 < 250 GeV2 to 250 < Q2 < 500 GeV2

for quark- and gluon-induced processes (see figure 9.12.)

Figure 9.13 shows the subjet cross sections at the bin that contains the maximum

for each observable as a function of Q2 together with the NLO predictions. It is

observed that the maximum value of each measured normalised cross section in every

region of Q2 occurs in the same bin of the distribution, except for |φsbj −φjet| in the

highest-Q2 region1. The spread of the measured maximum values in the Esbj
T /Ejet

T

and |φsbj − φjet| distributions is ±(3 − 4)%. On the other hand, the measured and

predicted values as functions of ηsbj − ηjet and αsbj exhibits a step-like behaviour

between the lowest-Q2 region and the rest.

Figure 9.14 shows the normalised differential subjet cross sections in different

regions of x. Figure 9.15 shows the data for all x regions plotted together. It

is observed that the maximum of each measured normalised cross section in ev-

ery region of x occurs in the same bin of the distribution, except for |φsbj − φjet|

1For the |φsbj − φjet| distribution, the same bin has been used for consistency.
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in the highest x region. Figure 9.16 shows the maximum1 value of the measured

normalised cross section for each observable as a function of x. The shape of the

Esbj
T /Ejet

T measured distribution does not change significantly with x, whereas some

dependence is expected (see Fig. 9.16a). The dependence of the ηsbj − ηjet and αsbj

distributions with x exhibits features similar to those observed in the study of the Q2

dependence; in particular, the maximum values (see Figs. 9.16b and 9.16d) exhibit

a monotonic increase as x increases, which is reasonably reproduced by the calcu-

lations. As discussed previously, these features are understood as a combination of

two effects: a decrease of the predicted fraction of gluon-induced events from 44%

for 0.004 < x < 0.009 to 6% for x > 0.093 and the change in shape of the normalised

cross sections for quark- and gluon-induced processes as x increases (see Fig. 9.17.)

To investigate the origin of the change in shape of the normalised differential

cross sections between the lowest and higher Q2 and x regions, LO and NLO calcu-

lations were compared. The most dramatic change is observed when restricting the

kinematic region to 125 < Q2 < 250 GeV2 or 0.004 < x < 0.009 (see Fig 9.18); the

LO calculation of the ηsbj − ηjet distribution does not exhibit a two-peak structure

as seen in the NLO prediction and in the data. In addition, the LO calculation of

the αsbj distribution peaks at αsbj ∼ π/2 in contrast with the NLO prediction and

the data. This proves that the NLO QCD radiative corrections are responsible for

these variations in shape and necessary for describing the data.

In summary, while the shapes of the normalised differential cross sections show

only a weak dependence of Ejet
T , their dependence on Q2 and x have some prominent

features at low Q2 or x. The weak dependence on Ejet
T is consistent with the expected

scaling behaviour of the splitting functions; however, the restriction to low Q2 or x

values demonstrates that the NLO QCD radiative corrections are important there.

The NLO QCD calculations, which include the two competing processes eq → eqg

and eg → eqq̄ and radiative corrections, adequately reproduce the measurements.
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Figure 9.1: Measured normalised differential cross sections (dots) as functions of a)

Esbj
T /Ejet

T , b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj . The inner error bars represent the

statistical uncertainty and the outer ones represent the statistical and systematic uncer-

tainties added in quadrature. The NLO pQCD predictions are shown as solid histograms

with the hatched area representing the theoretical uncertainty.
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Figure 9.2: Measured normalised differential cross sections as functions of ηsbj − ηjet

separately for the higher (dots) and lower (open circles) ET subjets with Esbj
T,low/Ejet

T < 0.4.

Other details are as in the caption to figure 9.1.
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Figure 9.3: Measured normalised differential cross sections for the subjet variables (dots)

compared to the NLO predictions for quark- (solid line) and gluon-induced (dot-dashed

line) processes separately.
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Figure 9.4: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj in different regions of Ejet
T . Details concerning

the error bars are as in the caption to Fig. 9.1.
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Figure 9.5: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj in different regions of Ejet
T . Details concerning

the error bars are as in the caption to Fig. 9.1.
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Figure 9.6: Maximum of the measured differential subjet cross sections in a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj as a function of Ejet
T . For comparison, the NLO

predictions for quark- (dotted histograms) and gluon-induced (dot-dashed histograms)

processes are also shown.
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Figure 9.7: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj in different regions of the pseudorapidity of the

jet. Other details are as in the caption to Fig. 9.1.
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Figure 9.8: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj in different regions of ηjet. Details concerning

the error bars are as in the caption to Fig. 9.1.
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Figure 9.9: Maximum of the measured differential subjet cross sections in a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj as a function of ηjet. For comparison, the NLO

predictions for quark- (dotted histograms) and gluon-induced (dot-dashed histograms)

processes are also shown.
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Figure 9.10: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj in different regions of Q2. Other details are as

in the caption to figure 9.1.
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Figure 9.11: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj −φjet| and d) αsbj in different regions of Q2. Details concerning the

error bars are as in the caption to Fig. 9.1.
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Figure 9.12: Predicted normalised differential subjet cross sections at NLO as functions of

(a,c) ηsbj − ηjet and (b,d) αsbj in different regions of Q2. The NLO predictions for quark-

(dotted histograms) and gluon-induced (dot-dashed histograms) processes separately are

also shown.
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Figure 9.13: Maximum of the measured differential subjet cross sections in a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj as a function of Q2. For comparison, the NLO

predictions for quark- (dotted histograms) and gluon-induced (dot-dashed histograms)

processes are also shown.
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Figure 9.14: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj in different regions of x. Other details are as in

the caption to figure 9.1.
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Figure 9.15: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj in different regions of x. Details concerning the

error bars are as in the caption to Fig. 9.1.
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Figure 9.16: Maximum of the measured differential subjet cross sections in a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) αsbj as functions of x. For comparison, the NLO

predictions for quark- (dotted histograms) and gluon-induced (dot-dashed histograms)

processes are also shown.
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Figure 9.17: Predicted normalised differential subjet cross sections at NLO as functions of

(a,c) ηsbj − ηjet and (b,d) αsbj in different regions of x. The NLO predictions for quark-

(dotted histograms) and gluon-induced (dot-dashed histograms) processes separately are

also shown.
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Figure 9.18: Measured normalised differential cross sections (dots) in restricted Q2 and x

regions as functions of (a,c) ηsbj − ηjet and (b,d) αsbj. The NLO (solid histograms) and

LO (dashed histograms) calculations are also shown. The hatched bands represent the

NLO theoretical uncertainty.
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9.3 Three-subjet analysis

9.3.1 Normalised differential cross sections

In this section, subjet distributions for those jets that have exactly three subjets at

a value of ycut = 0.01 are presented. As mentioned before, the presence of the extra

subjet allows for new variables to be constructed. The results presented are:

• Normalised differential cross sections as functions of Esbj
T /Ejet

T , ηsbj − ηjet,

|φsbj − φjet|, βsbj, α23, γsbj and ηsbj
low − ηjet as well as comparisons with the

predictions of fixed-order pQCD calculations.

• Comparison of the predictions of the normalised differential cross sections at

leading order separately for each color configuration.

• Comparison of the measured normalised differential cross sections with the LO

predictions based on the groups SU(3) and U(1)3 as well a scenario in which

CF = 0.

In figure 9.19(a) the distribution of Esbj
T /Ejet

T is shown. It contains three entries

per jet and it is thus no longer symmetric around 0.5 by construction. The minimum

fraction of ET that the subjets can have is Esbj
T /Ejet

T =
√
ycut = 0.1 and, therefore,

the maximum fraction possible happens in the case that the lowest- and next-to-

lowest-ET subjets both have Esbj
T /Ejet

T = 0.1 which implies that Esbj
T,high/E

jet
T = 0.8.

It is observed that the distribution peaks at values of Esbj
T /Ejet

T ∼ 1/3 showing that

the three subjets tend to have similar transverse energy.

In Fig. 9.19(b) the distribution for ηsbj − ηjet is shown. It also contains three

entries per jet. The asymmetric two-peak structure observed in the two-subjet

analysis is no longer present. In this case, it is allowed for one of the subjets to have

values of ηsbj − ηjet very close to zero since this does not imply that the others will

be so close to it that they will not be resolvable. The structure of this distribution

suggests that subjets tend to be close to each other in η.

Fig. 9.19(c) shows the normalised differential cross section as a function of |φsbj−
φjet|. The dip in the middle that was observed in the two-subjet analysis is not

present and it is also a consequence that values of |φsbj −φjet| ∼ 0 do not imply that

subjets are too close to each other. This distribution, together with the previous

one, suggests that subjets tend to be near in the η − φ plane.

The distribution of βsbj is shown in Fig. 9.19(d). It peaks at βsbj ∼ 0 and has a

steeper fall-off than that of αsbj in the two-subjet analysis. As previously mentioned,

it is required that the fractions of ET of the lowest- and next-to-lowest-ET subjets
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are such that f2 − f3 > 0.2, to ensure a better reconstruction of this variable. The

observed distribution is compatible with the presence of color-coherence effects.

In Fig. 9.20(a) the normalised differential cross section as a function of α23 is

shown. This is the angle between the two lowest-ET subjets in the η − φ plane.

Therefore, in order to ensure a good reconstruction of this variable, it is important

to know which subjet is the highest-ET one, and thus the cut f1 − f2 > 0.2 was

applied. It can be seen that the distribution peaks at around α23 ∼ π/2 and that it

is more often the case that the two lowest-ET subjets are at angles bigger than π/2

than the opposite.

The distribution for γsbj is shown in Fig. 9.20(b). It peaks at γsbj ∼ π/2 and is

not symmetric around the peak; the region of γsbj > π/2 is more populated than

that of γsbj < π/2.

The normalised differential cross section as a function of ηsbj
low − ηjet is shown

in Fig. 9.20(c). It shows very clearly that most of the time, the lowest-ET subjet

tends to be in the forward part of the jet, as expected from color-coherence effects.

As in the two-subjet analysis, it has been studied whether this behaviour persists

in different regions of ηjet. The corresponding plots can be seen in Fig. 9.21; it is

observed that indeed the tendency for the lowest-ET subjet to be in the forward

part of the jet is mantained across all ηjet regions.

9.3.2 Comparison with LO and NLO QCD calculations

The comparison with the predictions of pQCD at both leading (O(α2
s)) and next-

to-leading (O(α3
s)) order are also shown for each distribution together with the

theoretical uncertainties in figures 9.19 and 9.20. The calculations provide a good

description of the data for most of the distributions. The calculation of the cross

section as a function of Esbj
T /Ejet

T exhibits a peak at 0.2 < Esbj
T /Ejet

T < 0.4, as seen

in the data. The calculations for the ηsbj
low − ηjet and βsbj distributions predict that

the subjet with lowest Esbj
T tends to be in the forward direction, in agreement with

the data. The calculations for the α23 and γsbj distributions peak at π/2 and are

asymmetric, as observed in the data. In figure 9.19(c) the largest discrepancy is

observed: the subjets are somewhat closer to each other in φ in the data than in the

fixed-order calculations. The distribution of α23 also shows a slight discrepancy: the

peak at α23 ∼ π/2 is higher in the data than in the calculations. It should be noted

that the shapes of the distributions are very similar for the LO and NLO calculations.

In the LO calculations three subprocesses contribute to the production of jets with

three subjets: eq → eqgg, eq → eqqq̄ and eg → eqq̄g. The agreement between data

and calculations shows that the mechanism driving the subjet topology in the data

is the eq → eqgg, eq → eqqq̄ and eg → eqq̄g subprocesses as implemented in the
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pQCD calculations.

9.3.3 Color dynamics through subjet correlations

The LO (O(α2
s)) cross-section predictions for the production of jets with three sub-

jets receive contributions from four different colour configurations:

σep→3 subjets = CFCF · σA + CFCA · σB + CFTF · σC + TFCA · σD (9.1)

Therefore, three subjet production provides a testing ground for the underlying

colour dynamics.

Normalised differential three-subjet cross sections at LO of the individual colour

configurations, σA, ..., σD, were calculated and are shown in figures 9.22 and 9.23.

The four color configurations exhibit different behaviour in the distributions of the

variables considered. In particular, the component which contains the contribution

from the triple-gluon vertex in quark-induced processes (eq → eq(g → gg)), σB,

has a very distinct shape with respect to the other components for all the variables

considered: (a) the distribution is rather constant as a function of βsbj; (b) the

distribution in ηsbj
low − ηjet has two peaks and a preference for the lowest-Esbj

T subjet

to be emitted backwards; (c) the distribution in α23 shows a preference for angles

smaller than π/2; and (d) the distribution in γsbj shows a preference for large angles.

Thus, it is demonstrated that correlations among the subjets show sensitivity to the

different colour configurations.

The SU(3)-based predictions for the relative contribution of each colour compo-

nent are: (A): 0.54-0.57, (B): 0.14-0.15, (C): 0.21-0.23 and (D): 0.08-0.09, depending

on the requirements on the subjets. Therefore, the overall contribution from the di-

agrams that involve the triple-gluon vertex, configurations B and D, amounts to

22-23% in SU(3). For the predictions based on U(1)3 the relative contributions are:

(A): 0.22-0.26 and (C): 0.74-0.78 whereas B and D do not contribute. In the scenario

with CF = 0, only σD survives.

The measured normalised differential three-subjet cross sections are compared

to the LO predictions based on different symmetry groups in figures 9.24 and 9.25.

In all distributions studied, the data disfavour the predictions based on CF = 0.

Some differences are observed between the data and the predictions of U(1)3 in the

distribution as a function of βsbj. The measurements are best described by the

calculations which include the admixture of colour configurations as predicted by

SU(3).
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Figure 9.19: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) βsbj. The inner error bar represent the statistical

uncertainties of the data and the outer error bars show the statistical and systematic

uncertainties added in quadrature. The data (dots) are compared to the predictions

of pQCD calculations at leading order (O(α2
s), dashed lines) and next-to-leading order

(O(α3
s), solid lines). The hatched bands represent the theoretical uncertainties of the

NLO calculations.



9.3. Three-subjet analysis 173

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3

(E
T,high

sbj - E
T,mid

sbj   )/ ET
jet > 0.2

 α23(rad)

(1
/σ

)d
σ/

d 
α 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3

(E
T,high

sbj - E
T,mid

sbj   )/ ET
jet > 0.2

 γsbj (rad)

(1
/σ

)d
σ/

d 
γsb

j

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

ZEUS (prel.) 299 pb-1

NLO O(αS
3)     hadrNLO O(αS
3)     hadr

   LO O(αS
2)     hadr

⊗
⊗

(E
T,mid

sbj - E
T,low

sbj )/ ET
jet > 0.2

η
sbj

low - ηjet

(1
/σ

)d
σ/

d(
ηsb

j lo
w

 -
 η

je
t  )

 ZEUS 
(a) (b)

(c)

Figure 9.20: Measured normalised differential cross sections as functions of a) α23, b) γsbj

and c) ηsbj
low − ηjet. Other details are as in the caption to Fig. 9.19.
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Figure 9.21: Measured normalised differential cross sections as functions of ηsbj
low − ηjet in

various regions of ηjet: a) −1 < ηjet < 2.5, b) −1 < ηjet < 0, c) 0 < ηjet < 1 and d)

1 < ηjet < 2.5. Other details are as in the caption to Fig. 9.19.
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Figure 9.22: Predictions at LO (O(α2
s)) of the normalised differential cross sections for the

inclusive production of jets with exactly three subjets at ycut = 0.01 separately for each

color configuration (histograms) as functions of a) Esbj
T /Ejet

T , b) ηsbj −ηjet, c) |φsbj −φjet|
and d) βsbj .
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Figure 9.23: Predictions at LO (O(α2
s)) of the normalised differential cross sections for the

inclusive production of jets with exactly three subjets at ycut = 0.01 separately for each

color configuration (histograms) as functions of a) α23, b) γsbj and c) ηsbj
low − ηjet.
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Figure 9.24: Measured normalised differential cross sections as functions of a) Esbj
T /Ejet

T ,

b) ηsbj − ηjet, c) |φsbj − φjet| and d) βsbj. The data are compared to the LO predictions

based on SU(3) (solid line), U(1)3 (dot-dashed line) and a scenario in which CF = 0

(dotted line). Other details are as in the caption to Fig. 9.19.
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Figure 9.25: Measured normalised differential cross sections as functions of a) α23, b) γsbj

and c) ηsbj
low − ηjet. The data are compared to the LO predictions based on SU(3) (solid

line), U(1)3 (dot-dashed line) and a scenario in which CF = 0 (dotted line). Other details

are as in the caption to Fig. 9.19.



Chapter 10

Summary and conclusions

In this chapter a brief summary of the results presented in this document is given.

Both analysis correspond to samples of inclusive-jet production in NC DIS with

Q2 > 125 GeV2 in ep collisions at HERA collected by the ZEUS detector. The jet

samples consist of those jets with a transverse energy Ejet
T > 14 GeV and pseudo-

rapidity −1 < ηjet < 2.5 and were reconstructed in the laboratory frame with the

kT -cluster algorithm in its longitudinally-invariant inclusive mode. Subjets were

reconstructed as the jet-like structures arising upon the re-application of the jet

algorithm on those objects already belonging to a jet with given values of the reso-

lution parameter ycut.

10.1 Two-subjet analysis

In this analysis, those jets with two subjets at the resolution scale ycut = 0.05 were

considered. The data sample corresponds to 81.7±1.9 pb−1 of integrated luminosity

collected by the ZEUS detector during 1998-2000.

Normalised differential cross sections with respect to the subjet variables Esbj
T /Ejet

T ,

ηsbj − ηjet, |φsbj −φjet| and αsbj were measured. Several features of parton radiation

were observed: the subjets tend to have similar transverse energies and that the

jet with the highest transverse energy tends to be in the rear part of the jet as a

consequence of color-coherence effects, which induce the soft parton radiation to be

emitted predominantly towards the proton beam direction. It was also observed

that the subjets tend to be close to each other in the η − φ plane.

An adequate description of these features is given by NLO QCD calculations,

which were performed with the program DISENT. This means that the pattern of

parton radiation as predicted by QCD reproduces the subjet topology in the data.

Furthermore, it was observed that the subjet distributions in the data are better
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described by the calculations for jets arising from a quark-gluon pair (q → qg) than

by a quark-antiquark pair (g → qq̄), which is consistent with the NLO expectation

that 82% of the jets arise from a quark-gluon pair.

The evolution of the normalised differential cross sections with the energy scale

was also studied. A weak dependence with the Ejet
T was observed, which is consistent

with the expectation that the dynamics of parton evolution depends logarithmically

with the energy scale.

The normalised differential cross sections were studied in different regions of ηjet

in order to confirm the prediction of color coherence by which the lowest transverse

energy subjet would be predominantly emitted towards the proton beam even in the

regions of negative ηjet, as was indeed observed.

The evolution of the subjet cross sections with Q2 was also studied. It is ob-

served that the distribution of Esbj
T /Ejet

T does not change significantly, but some

dependence can be seen in the other observables. These dependencies are reason-

ably reproduced by the NLO QCD calculations and understood as the combination

of two effects: the fraction of gluon- and quark-induced events changes significantly

from the lowest-Q2 region to the higher-Q2 regions. The second effect is that the

shape of gluon- and quark-induced events also changes. Similar effects are seen

in the evolution of the cross sections with x. To investigate further the changes

in shape observed, LO and NLO calculations were compared. It is observed that

there are significant differences between the two calculations, demonstrating that

the NLO QCD radiative corrections are responsible for these variations in shape

and necessary for describing the data.

10.2 Three-subjet analysis

In this analysis, those jets with three subjets at the resolution scale ycut = 0.01

were selected from 299.2 ± 7.8 pb−1 of integrated luminosity collected by ZEUS in

the period 2004-2007. The subjet variables defined for this analysis were Esbj
T /Ejet

T ,

ηsbj − ηjet, |φsbj − φjet|, βsbj, α23, γsbj and ηsbj
low − ηjet.

Normalised differential cross sections as functions of these variables were mea-

sured. The data show that the three subjets tend to have similar transverse energies

and that the subjet with lowest transverse energy tends to be in forward direction.

This is consistent with the effects of color coherence between the initial and final

states. To further check this prediction, measurements of normalised differential

cross sections as functions of ηsbj
low −ηjet were performed in different regions of ηjet in

order to check that the lowest transverse energy subjet tends to be in the forward

part of jet also in regions where ηjet < 0. It is observed that the subjets tend to be
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close to each other in the η− φ plane. An adequate description of the data is given

by the O(α3
s) pQCD calculations.

The sensitivity of the cross sections to different color configurations was studied

by comparing the measured distributions to the predictions at LO (O(α2
s)) based

on the underlying gauge symmetries SU(3) and U(1)3 as well as a scenario in which

CF = 0. The data disfavor the scenario with CF = 0. Some differences are observed

between the data and the predictions of U(1)3 in the distribution of βsbj. The

measurements are best described by the calculations which include the admixture

of the color configurations as predicted by SU(3).

10.3 Final remarks

The results presented in this thesis demonstrate that perturbative QCD calculations

at next-to-leading order are able to describe the internal structure of jets. They also

highlight that the pattern of parton radiation in general and the colour flow in

particular are observable in certain regions of phase space. Thus, the measurements

of subjet topology presented here demonstrate the feasibility of investigating the

internal structure of jets using subjets with experimental data and pave the way

for the use of subjets in hadron-hadron collisions, such as those that will be soon

available at the LHC, as a new means to search for new heavier particles decaying

into (sub)jets.
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Resumen y conclusiones

En este caṕıtulo se presenta un resumen de los resultados y conclusiones más

relevantes del trabajo presentado.

Los dos análisis presentados corresponden a muestras de producción inclusiva

de jets en el régimen de corrientes neutras en DIS en las cuales Q2 > 125 GeV2

en colisiones ep en HERA medidas por ZEUS. Las muestras de jets consisten en

aquellos jets cuya enerǵıa transversa cumple que Ejet
T > 14 GeV y pseudorapidez

−1 < ηjet < 2.5 y fueron reconstruidos en el sistema de referencia del laboratorio

con el algoritmo kT -cluster en su modo inclusivo y longitudinalmente invariante.

Los subjets fueron reconstruidos como las estructuras análogas a jets que resultan

de la re-aplicación del algoritmo de reconstrucción sobre los objetos previamente

asociados a un jet habiendo modificado el parámetro de resolución ycut.

10.4 Análisis de dos subjets

En este análisis, se consideraron aquellos jets con exactamente dos jets a la escala de

resolución ycut = 0.05 en una muestra de 81.7 ± 1.9 pb−1 de luminosidad integrada

correspondiente al peŕıodo 1998-2000.

Se midieron secciones eficaces diferenciales normalizadas como funciones de las

variables de subjet Esbj
T /Ejet

T , ηsbj−ηjet, |φsbj−φjet| y αsbj, que son sensibles al patrón

de radiación partónica. Los datos mostraron, por una parte, que los subjets tienden

a tener enerǵıas transversas similares y que el subjet con la enerǵıa transversa más

alta tiende a estar en la parte trasera del jet, lo cual es compatible con los efectos

de coherencia de color, por los cuales la radiación partónica suave tiende a emitirse

principalmente hacia el haz de protones desde el punto de vista del jet. Además, se

observó que los subjets tienden a estar cerca uno del otro en el plano η − φ.

Los cálculos de pQCD NLO, realizados con el programa DISENT, fueron capaces

de reproducir correctamente estos aspectos de la radiación partónica, mostrando que

pQCD es capaz de describir la topoloǵıa de los subjets observada en los datos.

Además, se observó que las distribuciones de subjets están mejor descritas por

cálculos para jets provenientes de una pareja quark-gluon (q → qg) que para aque-

llos provenientes de una pareja quark-antiquark (g → q̄q), lo cual es compatible

con la predicción NLO según la cual el 82% de los jets provienen de una pareja

quark-gluon.

Se estudió también la evolución de las secciones eficaces diferenciales normal-

izadas con la escala de la enerǵıa. Se observó poca dependencia con la enerǵıa

transversa de los jets, lo cual es compatible con el hecho de que la dependencia con

la escala de la enerǵıa es logaŕıtmica.
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Las secciones eficaces normalizadas fueron estudiadas en diferentes regiones de

ηjet para confirmar la predicción de que si los efectos de coherencia de color están

presentes, el subjet de menos ET seŕıa principalmente emitido hacia la zona del haz

del protón incluso en la región donde ηjet < 0.

La evolución con Q2 muestra que la distribución en Esbj
T /Ejet

T apenas vaŕıa, pero

śı se observa alguna dependencia en el resto de variables. Estas dependencias están

correctamente descritas por los cálculos NLO y se entienden como una combinación

de dos efectos: la fracción de jets inducidos por gluones y quarks cambia con Q2, y

además la forma de las distribuciones para jets inducidos por quarks y por gluones

también cambia. Efectos similares se pueden observar en la evolución de las secciones

eficaces con x.

Con el objetivo de investigar más profundamente los cambios observados en la

forma de las distribuciones, se realizaron comparaciones de cálculos LO y NLO. Las

diferencias entre los cálculos demuestran que las correcciones radiativas de NLO

QCD son responsables de estas variaciones en la forma y por tanto necesarias para

describir los datos.

10.5 Análisis de tres subjets

En este análisis, aquellos jets con tres subjets a la escala de resolución ycut = 0.01

fueron seleccionados de 299.2 ± 7.8 pb−1 de luminosidad integrada obtenida por

ZEUS durante 2004-2007. Las variables definidas para este análisis son Esbj
T /Ejet

T ,

ηsbj − ηjet, |φsbj − φjet|, βsbj, α23, γsbj y ηsbj
low − ηjet.

Se obtuvieron secciones eficaces diferenciales normalizadas como función de estas

variables. Los datos muestran que los subjets tienden a tener enerǵıas transversas

similares y que los subjets con la enerǵıa transversa más baja tienden a estar en la

parte delantera del jet. Esto es consistente con la presencia de efectos de coheren-

cia de color entre los estados inicial y final. Para comprobar esta predicción más

profundamente, se estudió la distribución en ηsbj
low − ηjet como función de ηjet, y se

comprobó que efectivamente el subjet de menos ET apunta hacia el haz de protones

incluso en el caso en el que ηjet < 0. También se observó que los subjets tienden a

estar cerca en el plano η−φ. Los cálculos NLO (O(α3
s)), realizados con el programa

NLOJET++, describen satisfactoriamente la topoloǵıa de los subjets observada en

los datos.

La sensibilidad de las secciones eficaces a distintas configuraciones de color fue

estudiada mediante comparaciones de las distribuciones medidas con predicciones

LO (O(α2
s)) basadas en los grupos de simetŕıa gauge SU(3) y U(1)3, aśı como en

un escenario en el cual el factor de color CF vale cero. Los datos desfavorecen
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el escenario en el cual CF = 0. Se observan algunas diferencias entre los datos

y las predicciones de U(1)3 en la distribución de βsbj. En general, las medidas

están mejor descritas por los cálculos en los cuales las configuraciones de color están

implementadas de acuerdo con las predicciones SU(3).

10.6 Conclusiones finales

Los resultados presentados en esta tesis doctoral demuestran que los cálculos de

QCD perturbativa al siguiente orden son capaces de describir la estructura interna

de jets. Aśı mismo, se enfatiza que el patrón de radiación partónica en general y el

flujo de color en particular son observables en ciertas regiones del espacio de fases.

Por lo tanto, las medidas de topoloǵıa de subjets presentadas aqúı demuestran la

factibilidad de investigar la estructura interna de jets mediante subjets con datos

experimentales, y sirven de gúıa para el uso de subjets como un nuevo medio de

búsqueda de part́ıculas masivas en colisiones hadrón hadrón, como las que pronto

tendrán lugar en el LHC.



Chapter 11

Appendix

11.1 Theoretical uncertainties for the two-subjet analysis

In this section, the remaining plots from section 5.5, in which the theoretical uncer-

tainties are discussed, are shown.
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Figure 11.1: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of Esbj
T /Ejet

T in regions of Ejet
T .
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Figure 11.2: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of Esbj
T /Ejet

T in regions of ηjet.
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Figure 11.3: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of Esbj
T /Ejet

T in regions of Q2.
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Figure 11.4: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of Esbj
T /Ejet

T in regions of x.
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Figure 11.5: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of ηsbj − ηjet in regions of Ejet
T .
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Figure 11.6: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of ηsbj − ηjet in regions of ηjet.
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Figure 11.7: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of ηsbj − ηjet in regions of Q2.
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Figure 11.8: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of ηsbj − ηjet in regions of x.
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Figure 11.9: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of |φsbj − φjet| in regions of Ejet
T .
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Figure 11.10: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of |φsbj − φjet| in regions of ηjet.
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Figure 11.11: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of |φsbj − φjet| in regions of Q2.
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Figure 11.12: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of |φsbj − φjet| in regions of x.
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Figure 11.13: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of αsbj in regions of Ejet
T .
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Figure 11.14: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of αsbj in regions of ηjet.
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Figure 11.15: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of αsbj in regions of Q2.
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Figure 11.16: Relative theoretical uncertainties of the normalised differential cross-section

calculations for the inclusive production of jets with exactly two subjets at ycut = 0.05 as

functions of αsbj in regions of x.
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11.2 Evolution of the acceptance correction factors. Two-

subjet analysis

In this section, the remaining plots from section 8.1.1 are shown. In figures 11.17

to 11.20 the ratio of the normalised distributions at hadron level over those at

detector level is shown in different regions of Ejet
T , ηjet, Q2 and x. As can be

observed, the corrections generally modify the shape by less than 20% except for

ηsbj − ηjet (see Fig. 11.18), for which the correction factors are bigger for some bins;

however, it should be noted that in those bins the data statistics is low.
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Figure 11.17: The ratio of the normalised distributions for Esbj
T /Ejet

T at hadron level over

those at detector level in regions of a) Ejet
T , b) ηjet, c) Q2 and d) x. The horizontal

dot-dashed lines represent changes of 20%.
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Figure 11.18: The ratio of the normalised distributions at hadron level over those at

detector level as a function of ηsbj −ηjet in regions of a) Ejet
T , b) ηjet, c) Q2 and d) x. The

red dashed lines represent a deviation from unity of 20%.
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Figure 11.19: The ratio of the normalised distributions at hadron level over those at

detector level as a function of |φsbj − φjet| in regions of a) Ejet
T , b) ηjet, c) Q2 and d) x.

The red dashed lines represent a deviation from unity of 20%.
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Figure 11.20: The ratio of the normalised distributions at hadron level over those at

detector level as a function of αsbj in regions of a) Ejet
T , b) ηjet, c) Q2 and d) x. The red

dashed lines represent a deviation from unity of 20%.
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11.3 Parton-to-hadron corrections. Two-subjet analysis

Figures 11.21 to 11.24 show the remaning plots that were omitted in section 8.1.3.

These illustrate the parton-to-hadron correction factors in regions of Ejet
T , ηjet, Q2

and x.
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Figure 11.21: The ratio of the normalised distributions at hadron level over those at parton

level as a function of Esbj
T /Ejet

T in different regions of a) Ejet
T , b) ηjet, c) Q2 and d) x. The

red dashed lines represent a deviation from unity of 20%.
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Figure 11.22: The ratio of the normalised distributions at hadron level over those at parton

level as a function of ηsbj − ηjet in regions of a) Ejet
T , b) ηjet, c) Q2 and d) x. The red

dashed lines represent a deviation from unity of 20%.
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Figure 11.23: The ratio of the normalised distributions at hadron level over those at parton

level as a function of |φsbj − φjet| in regions of a) Ejet
T , b) ηjet, c) Q2 and d) x. The red

dashed lines represent a deviation from unity of 20%.



11.3. Parton-to-hadron corrections. Two-subjet analysis 211

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

14 < ET
jet < 17 GeV

0.5

0.75

1

1.25

1.5

0 1 2 3

17 < ET
jet < 21 GeV

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

21 < ET
jet < 25 GeV

0.5

0.75

1

1.25

1.5

0 1 2 3

25 < ET
jet < 29 GeV

0.5

0.75

1

1.25

1.5

0 1 2 3

 αsbj (rad)

 (
H

A
D

)/
(P

A
R

)

29 < ET
jet < 35 GeV

0.5

0.75

1

1.25

1.5

0 1 2 3

 αsbj (rad)

35 < ET
jet < 80 GeV

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

-1.0 < ηjet < 0.0

0.5

0.75

1

1.25

1.5

0 1 2 3

0.0 < ηjet < 0.5

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

0.5 < ηjet < 1.0

0.5

0.75

1

1.25

1.5

0 1 2 3

1.0 < ηjet < 1.5

0.5

0.75

1

1.25

1.5

0 1 2 3

 αsbj (rad)

 (
H

A
D

)/
(P

A
R

)

1.5 < ηjet < 2.0

0.5

0.75

1

1.25

1.5

0 1 2 3

 αsbj (rad)

2.0 < ηjet < 2.5

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

125 < Q2 < 250 GeV2

0.5

0.75

1

1.25

1.5

0 1 2 3

250 < Q2 < 500 GeV2

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

500 < Q2 < 1000 GeV2

0.5

0.75

1

1.25

1.5

0 1 2 3

1000 < Q2 < 5000 GeV2

0.5

0.75

1

1.25

1.5

0 1 2 3

 αsbj (rad)

 (
H

A
D

)/
(P

A
R

)

5000 < Q2 < 10000 GeV2

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

-2.39 < log10 (x) < -2.05

0.5

0.75

1

1.25

1.5

0 1 2 3

-2.05 < log10 (x) < -1.71

0.5

0.75

1

1.25

1.5

0 1 2 3

 (
H

A
D

)/
(P

A
R

)

-1.71 < log10 (x) < -1.37

0.5

0.75

1

1.25

1.5

0 1 2 3

-1.37 < log10 (x) < -1.03

0.5

0.75

1

1.25

1.5

0 1 2 3

 αsbj (rad)

 (
H

A
D

)/
(P

A
R

)

-1.03 < log10 (x) < -0.35

(a) (b)

(c) (d)

Figure 11.24: The ratio of the normalised distributions at hadron level over those at parton

level as a function of αsbj in regions of a) Ejet
T , b) ηjet, c) Q2 and d) x. The red dashed

lines represent a deviation from unity of 20%.
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11.4 Systematic uncertainties. Two-subjet analysis

Figures 11.25 to 11.56 show the relative systematic and statistical uncertainties of

the normalised differential cross sections in regions of Ejet
T , ηjet, Q2 and x for all the

subjet variables.
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Figure 11.25: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of Ejet
T .
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Figure 11.26: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of Ejet
T .
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Figure 11.27: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of ηjet.
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Figure 11.28: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of ηjet.
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Figure 11.29: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of Q2.
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Figure 11.30: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of Q2.
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Figure 11.31: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of x.
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Figure 11.32: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of Esbj
T /Ejet

T in different regions of x.
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Figure 11.33: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of Ejet
T .
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Figure 11.34: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of Ejet
T .
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Figure 11.35: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of ηjet.
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Figure 11.36: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of ηjet.
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Figure 11.37: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of Q2.
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Figure 11.38: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of Q2.
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Figure 11.39: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of x.
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Figure 11.40: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of ηsbj − ηjet in different regions of x.
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Figure 11.41: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of Ejet
T .
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Figure 11.42: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of Ejet
T .
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Figure 11.43: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of ηjet.
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Figure 11.44: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of ηjet.
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Figure 11.45: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of Q2.
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Figure 11.46: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of Q2.
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Figure 11.47: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of x.
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Figure 11.48: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of |φsbj − φjet| in different regions of x.
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Figure 11.49: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of Ejet
T .
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Figure 11.50: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of Ejet
T .
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Figure 11.51: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of ηjet.
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Figure 11.52: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of ηjet.
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Figure 11.53: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of Q2.
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Figure 11.54: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of Q2.
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Figure 11.55: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of x.
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Figure 11.56: Relative systematic and statistical uncertainties of the normalised differential

cross sections as functions of αsbj in different regions of x.
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nombrar a la gente a pesar de la cual el trabajo ha salido adelante. En este caso

tambien hay algún ganador. Marcos, cansino de las personas, se lleva el primer

premio. Voy al despacho, ah́ı esta el pesao, voy al gimasio, y oh sorpresa, ah́ı

sigue el cansino. Salgo por ah́ı y veeenga, otra vez el Marcos dando la lata, y aśı
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