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Abstract In this article, we are proposing a model of
anisotropic compact star possessing density profile of pseudo-
isothermal dark matter satisfying a linear equation of state
(EoS). The stellar system supported by this density profile
is physically possible and in equilibrium fulfilling all the
energy conditions including the TOV-equation. The solu-
tion also satisfies the causality condition, static stability cri-
terion, Abreu’s stability and Bondi’s criteria. The fulfill-
ment of Rhoades–Ruffini criterion makes our solution more
physically viable as well. The M–R curve is plotted for
b = 12.55 km and Bg = 60 MeV/fm3.

1 Introduction

Since the detection of invisible matter known as “Dark Mat-
ter (DM)” from the rotational curve of spiral galaxies [1–3],
many researchers are attracted towards the nature of DM
theoretically and experimentally. Bertone et al. [4] presented
a piece of promising evidence that the dominating matter
in the Universe is also DM. Many suggestions have been
made by several authors that the constituent particles of DM
and WIMPs may be the beyond-the-standard model of parti-
cles such as supersymmetric particle neutralinos [5,6]. It is
always possible that DM from galactic halo can be accreted
onto compact stars like neutron stars (NS) [7,8] and white
dwarfs [9,10]. The accretion of DM influence the late cool-
ing rate of NS longer than 107 years [7,12]. The structure of
NS was first discussed by Oppenheimer and Volkoff [11] by
assuming an equation of state of the cold degenerate neutrons
and determined the maximum mass of about 0.75 M�, how-
ever, the exact composition is yet to determine. Although, a
variety of composition in NS have been made by Lattimer
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and Prakash [13]. Nowadays, it is well known in the literature
that there are several compositions of NS like super-fluid neu-
trons, super-conducting protons, condensation of pions and
kaons, skermions, hyperons, quark-gluon plasma etc. Witten
[14] proposed that strange quark matter (SQM) such as u, d
and s quarks is the ground state of hadronic matters. The
mechanism of transformation from NS to SQM is possible
via leptonic weak interaction [15–17]. Another mechanism
was also suggested by Perez-Garcia et al. [18] where WIMPs
may trigger a conversion of hadronic NS matter to SQM
through an external seeding mechanism. Narain et al. [19]
construct a compact star model composed of fermionic DM
(FDM). They have shown that the maximum mass of com-
pact star made of FDM strongly depends on the interaction
parameter. On the other hand, Bertolami and Paramos [20]
considered a generalized Chaplygin gas (GCG) equation of
state and predicted the condition for formation to Chaplygin
dark star. It is found that the formation is possible if the sound
velocity doesn’t exceed the expansion velocity.

Lopes et al. [21] have enumerated the profiles of mass-
to-radius for dark matter admixed strange quark stars in
the Starobinsky model of modified gravity. The structures
of NSs, which are influenced by the spin polarized self-
interacting DM have investigated by using the polytropic
equation of state, the equation of state of spin polarized
self-interacting DM and the equation of state from the rota-
tional curves of galaxies [22,23]. The gravitational effects
of condensed DM on compact stellar objects have studied
in [24,25]. Ciarcelluti et al. [26] have focused on the exis-
tence of DM core within the NSs and very recent it is shown
that the DM core of NS effects on its maximum mass, mass-
radius relation and tidal deformability parameter [27]. A gen-
eral class of exact interior solutions describing mixed rela-
tivistic stars containing both ordinary and dark energy (DE)
in different proportions are derived by using the phantom
scalar description of DE [28]. The equilibrium structure of
the stellar compact objects with DM cores and formed by the
admixture of generated DM and the normal nuclear matter
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has studied in [29,30], respectively. Hadjimichef et al. [31]
have studied a DM compact star in the framework of the
pseudo-complex general relativity.

In relativistic astrophysics, the presence of a mixture of
fluids, rotational motion, superfluid, superconductor, mag-
netic field, phase transition are the causes of anisotropic
nature of the fluid configuration. Herrera and Santos [32]
studied the physical consequences in celestial configuration
due to anisotropy in details. Itoh [33] suggested the possi-
ble existence of stable quarks stars due to the high density of
compact stars. Moreover, Bodmer [34] shown that the quarks
matter with u, d and s quarks is more stable than the nuclear
matter. In the literature, there is a renowned MIT Bag Model,
where quarks can be considered as free particles trapped
inside the impenetrable hadronic sphere according to the
quantum chromodynamics. The MIT Bag Model commands
a simple linear equation of state pr (r) = 1

3 {ρ(r) − 4Bg},
where Bg is known as the bag constant. The physical prop-
erties of compact stars have been studied by using the MIT
Bag model equation of state in [35–38].

In this article, we have considered a generalized form of
the pseudo-isothermal density profile of DM and MIT-bag
model type linear equation of state (EoS) to study the struc-
tural characteristics of anisotropic fluid configurations, the
anisotropy nature is widely accepted in the research commu-
nity because of its more realistic nature. We are presenting
theoretical investigations about astrophysical stellar systems
namely, neutron stars or quark stars. The presented solution is
compatible with the observed masses and radii of actual com-
pact stars such as EXO 1785-248, Vela X-1, Cen X-3, LMC
X-4 and 4U 1538-52. Very recently, after the observation of
the event horizon, black hole / singularity is also one of the
hot spots for researchers. As a part of our paper, the solution
can also represent regular singularity for the certain value of
γ . This is, in fact, a very interesting solution because solu-
tions representing both singularity and non-singular compact
star solution are very rare / few.

The content of the article has been designed as follows:
we have set up the Einstein field equations for the spherically
symmetric matter distribution in Sect. 2. In Sect. 3, we have
determined the exact expressions of mass m(r), compact-
ness parameter u(r), redial pressure pr (r), transverse pres-
sure pt (r), anisotropic factor �(r) and surface red-shift zs
with the help of a generalized form of the pseudo-isothermal
density profile and linear equation of state(EoS). The Sect. 4
contains the central values of the physical parameters and
restriction of an assumed constant β. We have estimated the
values of assumed constants and bag constant using bound-
ary conditions in Sect. 5. The energy and equilibrium con-
ditions are analyzed in Sects. 6 and 7, respectively. The sta-
bility analysis is made in Sect. 8 via three subsections: (8.1)
Velocity of sound along with Causality and Stability condi-
tions, (8.2) Stability condition with respect to the adiabatic

index and (8.3) Static stability condition with the help of
Harrison–Zeldovich–Novikov criterion. The Sect. 9 is about
the moment of inertia and equation of state. Finally, the
discussion and conclusion of our work have been made in
Sect. 10 into two subsections: (10.1) Graphical aspect and
(10.2) Numerical aspect.

2 Einstein’s field equations

We consider the line element to describe the interior of
a static and spherically symmetric stellar configuration in
Schwarzschild coordinate system as:

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1)

where eν(r), eλ(r) are called metric coefficients, functions of
the radial coordinate r only.

In gravitational unit (G = c = 1), the Einstein field equa-
tions can be written as:

Tμν = 1

8π

{
Rμν − 1

2
R gμν

}
, (2)

where Rμν, gμν, Tμν and R are the Ricci tensor, metric
tensor, stress energy tensor and Ricci scalar, respectively.

For an anisotropic DM matter distribution the energy
momentum tensor can be written as:

Tμν = (ρ + pt )UμUν − pt gμν + (pr − pt )χμχν, (3)

where ρ = ρ(r), pr = pr (r) and pt = pt (r) are stand
for the energy density, radial pressure and transverse pres-
sure of fluid sphere, respectively and UμUμ = −χμχμ =
1, Uμχμ = 0.

For the metric (1) and energy momentum tensor (3), the
Einstein field Eq. (2) takes the following form:

ρ(r) = 1

8π

{
1 − e−λ

r2 + e−λλ′

r

}
, (4)

pr (r) = 1

8π

{
e−λ − 1

r2 + e−λν′

r

}
, (5)

pt (r) = e−λ

8π

{
ν′′

2
+ ν′2

4
− ν′λ′

4
+ ν′ − λ′

2r

}
. (6)

The anisotropic factor is defined as �(r) = pt (r) − pr (r).
The radial and transverse equation of parameters are defined
as ωr (r) = pr (r)/ρ(r) and ωt (r) = pt (r)/ρ(r), these
two are most important tools in the study of anisotropic
matter configuration and they satisfy the condition 0 <

ωr (r), ωt (r) < 1 for physical matter distribution [39].
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The scalar curvature (or the Ricci scalar) for the line ele-
ment(1) is given by

R = 2

r2 − e−λ(r)

2r2

[
4 + 4rν′(r) + r2(ν′(r))2 + 2r2ν′′(r)

−rλ′(r)(4 + rν
′
(r))

]
. (7)

3 Anisotropic solutions with pseudo-isothermal density
profile

We consider a couple of generalized form of the pseudo-
isothermal density profile of dark matter (DM) and linear
equation of state (EoS) to study the physical properties of
anisotropic compact stars formed by physical DM:

ρ(r) = a

[
1 +

( r
b

)2
]−γ

, (8)

pr (r) = αρ(r) − β, (9)

where a (km−2), b (km), α, β (km−2) and γ are non-zero
positive constants.

In the year 1986, Kent [40] proposed the density profile
(8) for γ = 1 and later Spano et al. [41] used this density
profile for γ = 1.5. In our study, we shall consider γ as a
generalized parameter along with the values corresponding
to the Kent density profiles. The similar form of Eq. (9) to
the MIT bag model equation of state (EoS) yields the bag
constant for our model is Bg = 3

4β.

Motivation The anisotropic compact stars are highly dense
objects, which have huge curiosity to know the exact details
of its internal compositions including its density profile.
Therefore, we were motivated to investigate the properties of
compact stars with the density profile of pseudo-isothermal
DM and seek for new results. The density profile (8) is finite
and monotonically decreasing in nature for positive values
of γ within the stellar interior.

Now, the mass of stellar configuration can be obtained as:

m(r) = 4π

∫ r

0
r ′2ρ(r ′)dr ′ = 4

3
πar3H(r), (10)

where H(r) = 2F1

[
3
2 , γ, 5

2 ,− ( r
b

)2
]

and 2F1 is the usual

hypergeometric function, defined as

2F1( j, k; l; w) =
∞∑
i=0

( j)i (k)i
(l)i

wi

i ! , (11)

Here (x)n is the Pochhammer symbol, which is defined as

(x)i =
{

1 for i = 0
x(x + 1) . . . (x + i − 1) for i > 0.

(12)

Fig. 1 eν(r) and e−λ(r) are plotted with respect to the radial coordinate r
for the compact star EXO 1785-248 corresponding to values of constants
given in Table 2

Therefore, the compactness parameter is obtained as

u(r) = 2m(r)

r
= 8

3
πar2H(r). (13)

In the Schwarzschild coordinate, we can define a metric
coefficient function

e−λ(r) = 1 − 2m(r)

r
= 1 − 8

3
πar2H(r), (14)

On using Eqs. (8)–(9), we get the expression of radial
pressure

pr (r) = aα

[
1 +

( r
b

)2
]−γ

− β. (15)

On imposing Eqs. (14)–(15) in Eq. (5) we get

ν′(r) =
8πr

[
3aα

(
1 + r2

b2

)−γ − 3β + aH(r)

]

3 − 8aπr2H(r)
. (16)

One can see that the above expression for ν′(r) is very com-
plicated due to the presence of a hypergeometric function
H(r) and therefore, finding the exact solution is impractical.
For this reason, we have solved Eq. (16) numerically and
provide a graphical representation for eν(r) in Fig. 1. From
Fig. 1, we can see that eν and e−λ meet at the surface showing
the boundary is matched.

The expressions for transverse pressure and anisotropic
factor are obtained in the following forms:

pt (r) =
(

1 + r2

b2

)−2γ [
3aχ1 − 3β(r2 + b2)

× (2πβr2 − 1) − 2aπr2H(r)χ2 − 6πχ3

]

×
[
(r2 + b2)(8πar2H(r) − 3)

]−1

, (17)

�(r) =
(

1 + r2

b2

)−2γ [
3aχ1 − 3β(r2 + b2)
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Fig. 2 The energy density is plotted with respect to the radial coordi-
nate r for the compact star EXO 1785-248 corresponding to values of
constants given in Table 2

Fig. 3 The radial and transverse pressures are plotted with respect to
the radial coordinate r for the compact star EXO 1785-248 correspond-
ing to values of constants given in Table 2

× (2πβr2 − 1) − 2aπr2H(r)χ2 − 6πχ3

]

×
[
(r2 + b2)(8πar2H(r) − 3)

]−1

+ β

− aα

[
1 +

( r
b

)2
]−γ

, (18)

whereas

χ1 =
(

1 + r2

b2

)γ

[(r2 + b2){2πβr2(1 + 2α) − α}
+αγ r2],

χ2 =
(

1 + r2

b2

)γ [
4aαγ r2 + a(1 − 3α)(r2 + b2)

+3β(r2 + b2)

(
1 + r2

b2

)γ ]
,

χ3 = α(1 + α)a2r2(r2 + b2). (19)

The exact behaviors of density, radial and transverse pres-
sures, equation of state parameters and anisotropy are shown
in Figs. 2, 3, 4, 5, 6 corresponding to γ =1, 1.1, 1.2, 1.3, 1.4
respectively. We have used these values of γ for all graphi-
cal representations of our solutions. The density is positive,

Fig. 4 The equation of state parameters are plotted with respect to the
radial coordinate r for the compact star EXO 1785-248 corresponding
to values of constants given in Table 2

Fig. 5 The anisotropic factor is plotted with respect to the radial coor-
dinate r for the compact star EXO 1785-248 corresponding to values
of constants given in Table 2

maximum at the centre and decreasing towards the surface
of the fluid sphere (see Fig. 2). The radial pressure and trans-
verse pressure both are positive and maximum at the center.
Moreover, the radial pressure is decreasing towards the sur-
face of compact star and vanishes at the surface, clear from
Fig. 3. Figure 5 indicates that the anisotropic factor is positive
for our solutions. Both the equations of state parameters are
within the required region 0 < ωr (r), ωt r < 1, Fig. 4. Also,
the behaviors of mass function and compactness parame-
ter are shown in Fig. 6. The parameter η(r) = pr (r)

pt (r)
is an

important parameter and with respect to η(r) we can ana-
lyzed the effects of the presence of anisotropy in equilibrium
configurations as similar of Newtonian treatment. we have
shown the variation of η(r) in Fig. 7, which represents that
the anisotropic force is positive throughout the fluid sphere
i.e. outward directed as similar to the result in Fig. 5. The
graphical representation of scalar curvature for our solution
is shown in Fig. 8 and it shows that the scalar curvature as
required is positive and monotonically decreasing in nature
against the radial coordinate r . We, therefore, can say that all
the physical parameters involved in our solutions are physi-
cally well-behaved.
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Fig. 6 The mass and compactness parameter are plotted with respect
to the radial coordinate r for the compact star EXO 1785-248 corre-
sponding to values of constants given in Table 2

Fig. 7 The parameter η(r) is plotted with respect to the radial coordi-
nate r for the compact star EXO 1785-248 corresponding to values of
constants given in Table 2

Fig. 8 The scalar curvature is plotted with respect to the radial coor-
dinate r for the compact star EXO 1785-248 corresponding to values
of constants given in Table 2

The expression for surface red-shift is given as

zs = e
λ(R)

2 − 1 =
{

1 − 8

3
πaR2H(R)

}− 1
2 − 1. (20)

The numerical value of surface red-shift is given in Table 3,
which is constant for each considered compact star i.e. inde-
pendent of γ .

4 Values of physical parameters at the center

The central values of energy density and pressures must be
positively finite for ensuring the physical acceptability of the
solutions. For our solutions, the central values of density and
pressures are obtained as:

ρc = a > 0, (21)

prc = ptc = aα − β > 0. (22)

For satisfying the Zeldovich’s criterion by any physical
fluid [42], we can get prc/ρc ≤ 1, which implies

β ≥ a(α − 1), (23)

Therefore, Eqs. (22) and (23) simultaneously yield a
boundary representing constraint on β in the following form:

a(α − 1) ≤ β < aα. (24)

5 Determination of constants using boundary conditions

For obtain the values of important assumed constants, we
match our interior solutions with the exterior Schwarzschild
solutions at the surface r = R of the fluid sphere. The exterior
Schwarzschild solutions given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (25)

where the surface radius R must be greater than 2M to avoid-
ing the singularity.

Therefore, the continuous behavior of metric coefficient
at the surface r = R of fluid sphere yields the following
equation:

e−λ(R) =
(

1 − 2M

R

)
, (26)

Further, the radial pressure vanishes at the surface, which
implies

aα

[
1 +

(
R

b

)2
]−γ

− β = 0, (27)

On using the boundary conditions (26)–(27), we get the
values of a and α in terms of β, b, γ and the radius R and
mass M of compact star as:

a = 3M

4πR3H(R)
, (28)

α = β

a

(
1 + R2

b2

)γ

(29)
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and we know that β = 4Bg/3. To design a realistic EoS, we
chose the widely acceptable value of Bg as 60 MeV/fm3 and
b as per physical validity.

6 Energy conditions

The physical mass distribution must satisfy all the energy
conditions within its interior accordingly. The energy condi-
tions are (i) Null energy condition (NEC), (ii) Weak energy
condition (WEC) and (iii) Strong energy condition (SEC).
All these energy conditions can be presented by following
inequalities [43,44]:

NECr :ρ(r) − pr (r) ≥ 0,

NECt :ρ(r) − pt (r) ≥ 0,

WECr :ρ(r) ≥ 0, ρ(r) − pr (r) ≥ 0,

WECt :ρ(r) ≥ 0, ρ(r) − pt (r) ≥ 0,

SEC:ρ(r) − pr (r) − 2pt (r) ≥ 0. (30)

The graphical representations of L.H.Ss of all the above
inequalities are shown in Fig. 9. From Fig. 9 along with Fig. 2
we can see that our solutions satisfy all the mentioned energy
conditions within the stellar interior. Consequently, our solu-
tions represent the DM configuration, which is also physical
in nature.

7 Equilibrium analysis

Here, we are going to verify the equilibrium condition of
the matter configuration represented by our solutions. Any
anisotropic celestial fluid distribution is in equilibrium posi-
tion under the action of three different forces, which are grav-
itational force, hydrostatics force and anisotropic force. The
equilibrium position of any fluid configuration can be ana-
lyzed by satisfying the generalized Tolman–Oppenheimer–
Volkoff (TOV) equation. The generalized TOV equation is
of the following form:

−Mg(r)(ρ + pr )

r
e{ν(r)−λ(r)}/2 − dpr

dr
+ 2

r
(pt − pr ) = 0,

(31)

where Mg(r) stands for the gravitational mass of the fluid
sphere of radius r . The exact form of Mg(r) can be derived
with the help of the Tolman-Whittaker formula and the
Einstein field equations and it is defined as

Mg(r) = 4π

∫ r

0
r2e

ν+λ
2

(
T t
t − T r

r − T θ
θ − T φ

φ

)
dr, (32)

Fig. 9 The energy conditions are plotted with respect to the radial coor-
dinate r for the compact star EXO 1785-248 corresponding to values
of constants given in Table 2

On using Eqs. (4)–(6), the expression for gravitational
mass Mg(r) becomes in the following form:

Mg(r) = 1

2
re(λ−ν)/2 ν′. (33)

Plugging the value of Mg(r) in Eq. (31), the TOV equation
reduces as

−ν′

2
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr ) = 0. (34)

The above equation can be written as

Fg(r) + Fh(r) + Fa(r) = 0, (35)

where

Fg(r) = −ν′

2
(ρ + pr ), is called gravitational force,

Fh(r) = −dpr
dr

, is called hydrostatics force,

Fa(r) = 2�

r
, is called anisotropic force.

For our solutions, the closed forms of these three forces
are obtained as:

Fg(r) = 4πr

(
1 + r2

b2

)−2γ

(a + aα − β)

[
3aα

+
(

1 + r2

b2

)γ

(aH(r) − 3β)

]

× [
8πar2H(r) − 3

]−1
,

Fh(r) = 2aαγ r

b2

(
1 + r2

b2

)−1−γ

, (36)

Fa(r) = 2r

(
1 + r2

b2

)−2γ [
6πa2α(1 + α)(r2 + b2)

+6πF1 − 3aF2 + 2H(r)F3

]
(37)
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Fig. 10 The acting forces are plotted with respect to the radial coordi-
nate r for the compact star EXO 1785-248 corresponding to values of
constants given in Table 2

×
[
(r2 + b2)(3 − 8πar2H(r))

]−1
. (38)

whereas

F1 = β2(r2 + b2)

(
1 + r2

b2

)2γ

,

F2 =
(

1 + r2

b2

)γ

{2π(1 + 2α)β(r2 + b2) + αγ },

F3 = aπ

(
1 + r2

b2

)γ [
a(1 + α)(r2 + b2) + 4aαγ r2

−β(r2 + b2)

(
1 + r2

b2

) ]
. (39)

Figure 10 shows that the mass distribution represented by
our solutions is in equilibrium state by satisfying the TOV
equation.

8 Stability analysis

Here we shall focus on the stability analysis for our model
via stability factor, adiabatic index and Harrison–Zeldovich–
Novikov’s static stability condition.

8.1 Velocity of sound

• The causality condition: The causality condition states
that whenever sound passes through within a physical com-
pact star then its radial and transverse velocities must be less
than the velocity of light, the maximum velocity in GTR. Oth-
erwise, matter configuration will not be physical. The square
of radial velocity {vr (r)}2 and transverse velocity {vt (r)}2 of
sound can be determined by using the following formulae:

v2
r = dpr (r)

dρ(r)
= α, v2

t = dpt (r)

dρ(r)
. (40)

Fig. 11 The sound speeds are plotted with respect to the radial coor-
dinate r for the compact star EXO 1785-248 corresponding to values
of constants given in Table 2

Fig. 12 The stability factor is plotted with respect to the radial coor-
dinate r for the compact star EXO 1785-248 corresponding to values
of constants given in Table 2

Therefore, the causality condition can be describe as 0 ≤
vr (r) =

√
dpr (r)
dρ(r) < 1 and 0 ≤ vt (r) =

√
dpt (r)
dρ(r) < 1 for

physical matter distribution.
Our solutions satisfy the causality condition (see Fig. 11)

i.e. our model is of physical matter distribution.
• The stability condition: To study the stability of an
anisotropic stellar fluid L. Herrera [45] proposed proposed
the crackingmethod under the radial perturbations and using
the cracking concept Abreu et al. [46] provided the conditions
with respect to the stability factor [{vt (r)}2 − {vr (r)}2] for
an anisotropic fluid model. The stability condition described
in the following manner:

The region is potentially stable if −1 < {vt (r)}2 −
{vr (r)}2 < 0 and the region is potentially unstable if 0 <

{vt (r)}2 − {vr (r)}2 < 1. The bounded region of mass dis-
tribution represented by our solutions is potentially stable,
clear from Fig. 12.

8.2 Adiabatic index

The relativistic adiabatic indices are defined as the ratio of
two specific heats. The adiabatic indices are also important
parameters that affect the stability of any stellar object. The
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Fig. 13 The adiabatic indexes are plotted with respect to the radial
coordinate r for the compact star EXO 1785-248 corresponding to val-
ues of constants given in Table 2

relativistic adiabatic indices are defined as [47]:

�r (r) = ρ(r) + pr (r)

pr (r)

dpr (r)

dρ(r)
, (41)

�t (r) = ρ(r) + pt (r)

pt (r)

dpt (r)

dρ(r)
. (42)

For a stable Newtonian sphere �r (r) > 4/3 and �r (r) = 4/3
is the condition for a neutral equilibrium proposed by Bondi
[48]. This condition changes for a relativistic isotropic sphere
due to the regenerative effect of pressure, which renders the
sphere more unstable.

The value of adiabatic index �r (r) is more than 4/3 for
our solutions, shown in Fig. 13 and hence stable.

8.3 Harrison–Zeldovich–Novikov’s static stability
condition

Harrison et al. [49] and Zeldovich–Novikov [42] proposed
that any fluid configuration is stable if the mass and surface
radius of star are increasing with respect to the central den-
sity i.e. ∂M(ρc)

∂ρc
> 0 and ∂R(ρc)

∂ρc
> 0, whereas the mass and

surface radius of star are decreasing with respect to the cen-
tral density i.e. ∂M(ρc)

∂ρc
< 0 and ∂R(ρc)

∂ρc
< 0 for unstable fluid

configuration.
For our model, the mass and surface radius are obtained

as the function of central density in following forms

M(ρc) = 4

3
πρc R

3H(R), (43)

R(ρc) = b

[(
αρc

β

) 1
γ − 1

] 1
2

, (44)

Therefore

∂M(ρc)

∂ρc
= 4

3
πR3H(R) > 0, (45)

Fig. 14 The mass function is plotted with respect to the central den-
sity ρc for the compact star EXO 1785-248 corresponding to values of
constants given in Table 2

Fig. 15 The surface radius is plotted with respect to the central den-
sity ρc for the compact star EXO 1785-248 corresponding to values of
constants given in Table 2

∂R(ρc)

∂ρc
= b

2γρc

(
αρc

β

) 1
γ

[(
αρc

β

) 1
γ − 1

]− 1
2

> 0. (46)

The mass M(ρc) and radius R(ρc) are increasing with
respect to the central density ρc (see Figs. 14, 15) i.e.
∂M(ρc)

∂ρc
> 0 and ∂R(ρc)

∂ρc
> 0, which ensure that our pre-

sented stellar configuration is stable under the static stability
criterion.

9 Moment of inertia and equation of state

For a uniformly rotating star with angular velocity �, the
moment of inertia is given by Lattimer and Prakash [13]

I = 8π

3

∫ R

0
r4(ρ + pr )e

(λ−ν)/2 ω̄

�
dr (47)

where, the rotational drag ω̄ satisfy the Hartle’s equation [50]

d

dr

(
r4 j

dω̄

dr

)
= −4r3ω̄

d j

dr
. (48)
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Fig. 16 The moment of inertia is plotted with respect to the mass M for
b = 12.55 km and Bg = 60 MeV/fm3. The red dot represents

(
M, Imax

)
and black dot

(
Mmax , I

)

with j = e−(λ+ν)/2 which has boundary value j (R) = 1.
The approximate solution of moment of inertia I up to the
maximum mass Mmax was given by Bejger and Haensel [51]
as

I = 2

5

(
1 + x

)
MR2, (49)

where parameter x = (M/R) ·km/M�. For the solutions we
have plotted mass vs I in Fig. 16, that shows as γ increases,
the mass also increase and the moment of inertia increases till
up to certain value of mass and then decreases. Comparing
Figs. 16 and 17, the mass corresponding to Imax is not equal
to Mmax from M–R diagram. In fact the mass correspond-
ing to Imax is lower by few percent from the Mmax . This
happens to the EoSs without any strong high-density soft-
ening due to hyperonization or phase transition to an exotic
state [52]. Using this graph we can estimate the maximum
moment of inertia for a particular compact star or by match-
ing the observed I with the Imax we can determine the validity
of a model.

A rotating compact star can hold higher Mmax than non-
rotating one. The mass relationship between static and rotat-
ing is given by (in the unit G = C = 1) [53]

Mrot = Mstat + 1

2
I�2. (50)

Due to centrifugal force, the radius at the equator increases
as some factor as compare to the static one. Cheng and Harko
[54] find out the approximate radius formulas for static and
rotating stars as Rrot/Rstat ≈ 1.626. Assuming the compact
star is rotating in Kepler frequency�K = (GMstat/R3

stat )
1/2

and on using the Cheng-Harko formula we have plotted the
M–R for rotating and non-rotating (Fig. 18).

Fig. 17 The mass is potted with respect to the surface radius R for the
compact star EXO 1785-248 corresponding to values of constants given
in Table 2

Fig. 18 The static mass and rotating mass are plotted with respect to
the surface radius R for the compact star EXO 1785-248 corresponding
to b = 12.55 km and Bg = 60 MeV/fm3

10 Discussions and conclusion

In this article, we have presented a unique anisotropic dark
matter (DM) compact stars model. The interior solutions are
determined by solving Einstein’s field equations using the
general form of the pseudo-isothermal density profile of DM
and linear equation of state (EoS). To analyze our obtained
solutions with respect to graphical representations we have
considered the compact star EXO 1785-248 and through-
out the paper, all the plots are drawn for that compact star.
Moreover, we have demonstrated the numerical values of
constants and all the physical parameters for the compact
star EXO 1785-248 as well as other four well-know compact
stars, namely Vela X-1, Cen X-3, LMC X-4 and 4U 1538-52
in tabular forms to compact our solutions.

Some of the key features of our solutions regarding the
anisotropic stellar configuration formed by DM are as fol-
lows:
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Table 1 Numerical values of
masses M , radii R and average
density ρav for five well-known
compact stars

Compact stars R (km) M (M�) Ref. M (km) ρav = 3M
4πR3 (g/cm3)

EXO 1785-248 8.80 1.30 Özel et al. (2009) 1.91958 6.134 ×1014

Vela X-1 9.56 1.77 Rawls et al. (2011) 2.61358 6.515 ×1014

Cen X-3 9.17 1.49 Rawls et al. (2011) 2.20013 6.214 ×1014

LMC X-4 8.30 1.04 Rawls et al. (2011) 1.53566 5.849 ×1014

4U 1538-52 7.87 0.87 Rawls et al. (2011) 1.28464 5.740 ×1014

Table 2 Numerical values of arbitrary assumed constants corresponding to the masses and radii of five well-known compact stars given in Table 1
with Bg = 60 MeV/fm3 and γ = 1, 1.1, 1.2, 1.3, 1.4 respectively

Compact stars γ = 1 γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4
β(10−5) b a(10−4) α a(10−4) α a(10−4) α a(10−4) α a(10−4) α

(km−2) (km) (km−2) (km−2) (km−2) (km−2) (km−2)

EXO 1785-248 7.9404 12.55 8.6185 0.1374 8.8298 0.1396 9.0453 0.1418 9.2651 0.1442 9.4891 0.1465

Vela X-1 7.9404 12.55 9.4987 0.1321 9.7660 0.1345 10.0395 0.1370 10.3191 0.1395 10.6051 0.1421

Cen X-3 7.9404 12.55 8.8879 0.1370 9.1213 0.1394 9.3598 0.1418 9.6033 0.1442 9.8518 0.1467

LMC X-4 7.9404 12.55 8.0250 0.1422 8.2032 0.1443 8.3845 0.1464 8.5691 0.1485 8.7570 0.1507

4U 1538-52 7.9404 12.55 7.7203 0.1433 7.8767 0.1452 8.0356 0.1471 8.1972 0.1491 8.3613 0.1511

10.1 Graphical aspect

• The energy density is positively finite within the star,
monotonically decreasing in nature and free from the sin-
gularity, shown in Fig. 2. The value of scalar curvature is
finite i.e. the solution is non-singular and as expected it
is monotonic decreasing in nature (Fig. 8).

• From the profiles of radial and transverse pressures in
Fig. 3 we have found that the pressures are positive, finite
within the star. The radial pressure is decreasing in nature
against the radial coordinate r and vanishes at the sur-
face. Moreover, pr (r) = pt (r) at the centre of the stellar
object whereas pt (r)− pr (r) > 0 i.e. the anisotropic fac-
tor is positive and increasing in 0 < r ≤ R (see Fig. 5)
and hence the force 2�(r)

r due to anisotropy is pointing
outward (see Fig. 10) i.e. able to construct more com-
pact object. Also, the Fig. 4 indicates that the equation of
state parameters are in 0 ≤ ωr (r), ωt (r) ≤ 1, which sug-
gests that our solutions representing matter distribution
is physical.

• The profiles of mass function (Fig. 6) suggest that it is
regular, positive and monotonically increasing in nature.
The compactness parameter is positive and increasing in
nature (see Fig. 6). Also, the compactness parameter for
our presented solutions satisfied the Buchdahl condition,
(See Table 2).

• All the energy conditions are satisfied by our solutions
(see Fig. 9) i.e. our solutions represent the physically
possible matter configuration.

• The final state of any anisotropic compact star always is
in equilibrium state by satisfying the general Tolman–

Oppenheimer–Volkoff (TOV) equation. The obtained
solutions satisfied the TOV equation, clear from Fig. 10
where hydrostatic, anisotropic forces act in outward
direction and gravitational force acts in inward direction.
Therefore, our solutions represent equilibrium matter dis-
tribution.

• We have analyzed the stability situation through the sta-
bility factor, adiabatic index and Harrison–Zeldovich–
Novikov’s static stability condition : (a) For our model,
we have −1 < {vt (r)}2 − {vr (r)}2 < 0 (see Fig. 12) i.e.
the model is potentially stable also the causality condition
hold good(see Fig. 11) (b) The obtained adiabatic index
�r (r) > 4

3 (see Fig. 13), which indicates the stable con-
figuration. (c) The mass and surface radius of the stellar
object increases with increase of the central density and
hence the static stability condition hold good and also the
mass of stelar configuration is proportional to its central
density, obvious from Figs. 14 and 15.

• The maximum masses resulting from the solutions with
respect to the parameter γ are also demonstrated in
Fig. 17 showing that the maximum mass increases with
decrease in the value of γ . For γ = 1, one can’t determine
the maximum mass and maximum moment of inertia as
there is no saturation in mass.

• The comparative M–R graph for static and rotating con-
figuration (see Fig. 18) signifies that the Mrot is slightly
higher than Mstat , however, both the maximum mass lie
within 3.2M� i.e. Rhoades–Ruffini limit [55].
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Table 3 Numerical values of
central density ρc, surface
density ρs , cental pressure pc,
surface redshift zs and surface
compactness parameter us for
five well-known compact stars
corresponding to
Bg = 60 MeV/fm3 and
γ = 1, 1.1, 1.2, 1.3 and 1.4,
respectively (From above to
below)

γ = 1

Compact stars ρc (1015) ρs (1014) pc (1034) zs us = 2M
R Buchdahl limit

(g/cm3) (g/cm3) (g cm2)

EXO 1785-248 1.161 7.783 4.7264 0.3319 0.4363 < 8
9

Vela X-1 1.280 8.0968 5.5781 0.4854 0.5468 < 8
9

Cen X-3 1.197 7.805 5.1323 0.3866 0.4798 < 8
9

LMC X-4 1.081 7.5206 4.2046 0.2599 0.3700 < 8
9

4U 1538-52 1.039 7.464 3.7802 0.2185 0.3265 < 8
9

γ = 1.1

Compact stars ρc (1015) ρs (1014) pc (1034) zs us = 2M
R Buchdahl limit

(g/cm3) (dyne/cm2) (g cm2)

EXO 1785-248 1.189 7.661 5.3115 0.3319 0.4363 < 8
9

Vela X-1 1.316 7.952 6.2894 0.4854 0.5468 < 8
9

Cen X-3 1.229 7.675 5.7767 0.3866 0.4798 < 8
9

LMC X-4 1.105 7.414 4.7152 0.2599 0.3700 < 8
9

4U 1538-52 1.061 7.367 4.2318 0.2185 0.3265 < 8
9

γ = 1.2

Compact stars ρc (1015) ρs (1014) pc (1034) zs us = 2M
R Buchdahl limit

(g/cm3) (dyne/cm2) (g cm2)

EXO 1785-248 1.218 7.540 5.9204 0.3319 0.4363 < 8
9

Vela X-1 1.352 7.809 7.0340 0.4854 0.5468 < 8
9

Cen X-3 1.261 7.546 6.4494 0.3866 0.4798 < 8
9

LMC X-4 1.294 7.307 5.2445 0.2599 0.3700 < 8
9

4U 1538-52 1.082 7.271 4.6986 0.2185 0.3265 < 8
9

γ = 1.3

Compact stars ρc (1015) ρs (1014) pc (1034) zs us = 2M
R Buchdahl limit

(g/cm3) (g/cm3) (g cm2)

EXO 1785-248 1.248 7.421 6.5542 0.3319 0.4363 < 8
9

Vela X-1 1.390 7.668 7.8134 0.4854 0.5468 < 8
9

Cen X-3 1.294 7.418 7.1515 0.3866 0.4798 < 8
9

LMC X-4 1.154 7.202 5.7935 0.2599 0.3700 < 8
9

4U 1538-52 1.104 7.175 5.1813 0.2185 0.3265 < 8
9

γ = 1.4

Compact stars ρc (1015) ρs (1014) pc (1034) zs us = 2M
R Buchdahl limit

(g/cm3) (g/cm3) (g cm2)

EXO 1785-248 1.278 7.302 7.2138 0.3319 0.4363 < 8
9

Vela X-1 1.428 7.528 8.6294 0.4854 0.5468 < 8
9

Cen X-3 1.327 7.291 7.8842 0.3866 0.4798 < 8
9

LMC X-4 1.180 7.100 6.3628 0.2599 0.3700 < 8
9

4U 1538-52 1.126 7.080 5.6801 0.2185 0.3265 < 8
9
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10.2 Numerical aspect

We have also calculated the numerical values of central den-
sity, surface density, central pressure, compactness parameter
and surface redshift in Table 3 corresponding to the numer-
ical values of constants in Table 2 for the five well-known
compact stars given in Table 1. Table 3 shows that the cen-
tral and surface densities both are of order 1014 g/cm3 for
all five compact stars. Also, these values are well-fitted with
the average density given in Table 1. The numerical values
of central pressure are of order 1034 dyne/cm2 for all five
compact stars corresponding to γ =1, 1.1, 1.2, 1.4 and 1.4
(see Table 3). The values of surface redshift zs = z(r = R)

is independent of γ = as it depends only on M and R. Fur-
ther, all the values of zs are within the range suggested by
the Ref. [56]. The surface values of compactness parameter
us = u(r = R) = 2M

R are also not dependent on γ for each
fluid configuration. Moreover, all the values of us < 8

9 , the
Buchdahl limit [57], follows from Table 3. For γ = 1 the
M–I behavior has no saturation points and therefore can’t
determine the Imax .

Finally, all these results prevail that our proposed model
can be used to describe the interior of anisotropic stellar fluid
sphere.
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