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ABSTRACT -. 

A two-loop QED effect, uncovered by Scha.rnhorst, causes the phase and group 

velocities of an electromagnetic wave with w << m, to slightly exceed c, when the 

wave is travelling in vacua between, and perpendicular to, two parallel conducting 

plates. Using causal rather than Feynma.n graphs, we show that the wavefront still 

travels at exactly c. The two-loop effect thus poses no threat to causality in QED. 
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1. Introduction 

It has recently been claimed[“21 that a two-loop effect in QED gives rise to the 

propagation of some electromagnetic signals at a speed exceeding c, in a vacuum 

between two parallel, perfectly conducting plates. Scharnhorst[l] finds that at low 

frequencies (w << m,), electromagnetic waves travelling at right angle to the plates 

have a phase velocity exceeding c (the speed of light in vacua). Since dispersion is 

negligible for that range of frequencies, he correctly states that the group velocity 

also exceeds c in this situation. However, the implication (made explicit in ref. 

2) that signals can therefore be sent at speeds greater than c, is incorrect, as we 

demonstrate in this note. Thus the two-loop effect of ref.1 does not affect causality 

in QED. 

Our approach shall be two-pronged: we first explain (section 2) how high- 

frequency effects render the low-w results of ref.1 irrelevant for signal propagation. 

We then outline in sections 3-4 the proof that, at least in two-loop perturbation 

theory, the wavefronts of electromagnetic signals between the plates must travel at 

exactly the speed c. This is done using a m.anifestly causal diagrammatic expansion 

for the photon-photon commutator. Since causality is formally manifest in this 

approach, the task of proving it consists merely of verifying gauge invariance, and 

then using it to show that the plates do not modify the leading light-cone singularity 

of the photon-photon commutator. These techniques most likely follow through to 

all orders in perturbation theory, a.nd in a.ny renormalizable field theory subject to 

any (non-gravitational!) external fields or boundary conditions. 

We note in passing that the plate boundary conditions are highly idealized, and 

are perhaps unrealistic even for the purpose of studying causal propagation far from 

the plates; but causality is safe even with the idealized boundary conditions. 

Before embarking on our detailed a.rguments, it is worthwhile to point out that 

there is no obstacle to effects of the plates on truly low-energy physics, for example 

Zhe effective mass and magnetic moment of the electron’3’41 . 
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2. High Fkequency Effects 

We begin by reviewing the results of ref. 1. Let the plates be the infinite planes 

X3 = 0 and x3 = L, where L >> m-l, m = m, being the electron mass. We work 

in natural units, c = h = l*. 

The plates are assumed perfectly conducting, so their only effect on the photon 

fields between them is to impose the boundary conditions 

El = E2 = I?3 = 0 at x3 = 0, L, (1) 

with E,B the electric and magnetic fields, respectively. No boundary conditions 

- are imposed on the electron field $,, since its propagator is short-range relative to 

. _ L, and we are only interested in the propagation of signals which are emitted and 

detected many compton wavelengths away from either plate. By analyzing the 

low-frequency quantum effective a.ction in the photon sector, it is found that the 

dispersion relation in the regime i << w << m, is[1][2] 

W2 M kf + k; + lk;, 
6 

n1-c 1, (2) 

where it is assumed that the wave propa,ga.tion is studied at a position x3 satisfying 

mx3 >> 1, m(L - x3) >> I+. 

The expression for nl is [l] 

e4 
nl=l-(;(mL)4 (3) 

where ( is a pure number and e the electron charge. The Feynman diagrams 

contributing to this effect are shown in fig. 1. 

* We employ the metric qPv = (+, -, -, -), and d enote spatial vectors by boldface letters. 
We also denote: 8; = d/&o’, (a2)x = d;dxp, and V2 = @ai. 

t The corrections to eq.(2) depend on 23, so this dispersion relation should be understood 
in the WKB sense. 
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Now, in order to exploit eq.(2) f or sending faster-than-c signals, we assemble 

a wave packet travelling, on the average, along the 3 axis. Since we do not wish 

the neglected dispersive terms in eq.(2) to rear their ugly head, the wavefront of 

the packet cannot be a step function - it must be smeared on the scale of the 

compton wavelength l/m. Thus, to violate causality, the wavefront must, at some 

time after its formation, move beyond the light cone by a distance SJ: larger than 

l/m. Hence, if a measurement of E or B is performed a time t after the creation 

of the packet, we inquire whether in 

- it is possible to satisfy the rightmost inequahty. But on the other hand, t must not 
. _ exceed L, or else the original and reflected waves will permeate the entire region 

b_etween the plates’. So we must restrict to t < L, which is inconsistent with 

eq.(4), as L >> m -’ by assumption. Therefore, in order to observe faster-than-c -. 
propagation of the wavefront, it is necessary to sharpen the falloff of the fields at 

the wavefront to a length scale less than l/m. This feat requires the inclusion in 

the packet of waves with w > m, for which eq.(3) is a bad approximation. Thus, 

high-frequency dispersion invalidates the application of the Scharnhorst effect to 

sending signals faster than c. 

..- 

._ _ .~ $ this is true if the packet is a plane wave, localized only in the 3 direction. In the more 
realistic case that it is also localized in the 1,2 directions, then at t > L, due to reflections, 
its wavefront is travelling on the average in directions parallel to the plates, and thus no 
violations of causality are expected from eq.(2). 
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3. Commutator Functions. 

At the level of quantum fields, the question of causality is properly investigated 

through commutators of fields. Let us quantize QED between the plates in the 

Coulomb gauge, subject to eq.(l). W  e urn on a weak external current JCL(y), lo- t 

calized in space and time, and then measure the expectation values (E(z)), (B(z)) 

in the vacuum state between the plates. The response functions’ 

(5) 

are essentially the vacuum expectation values of commutators of E(s), B(z) with 

the fields at y. These response functions (referred to hereafter as commutatorfunc- 

Cons) contain the information on photon ca.usal propagation. Wavefronts cannot 

exceed c if, and only if, these functions vanish identically outside the light cone 

((z-Y)~ < 0). F or simplicity, we concentrate on the magnetic commutator function 

which for a free electromagnetic field between the plates, is 

-&(“j”)(x)) = q&G$‘)(z, y). (6) 
3 

Here the 0 superscript denotes a free field, and G$‘) is the free massless scalar 

retarded Green’s function, subject to the plate boundary conditions: 

(~2)“G~o)(s, y) =d4)(x - y), 

G$‘)(z y) =0 if x3 7 = 0, L or y3 = 0, L. 

5 All variations w.r.t. J are evaluated at J = 0. 

(7) 

- 
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Denote by &$“( x - y) the same object in infinite space, 

&O’(x) = - J 
d4k 1 -ik.x - 

(27r)4 k2 + ickoe = -&-$(xo)qxo - 1x1). (8) 

Then by the method of images, 

G?(x,y) = 2 (ti!“‘(x, - yp,x3 - y3 + 27~~) 
n=--00 

-g")(X - Yp, x3 + 93 + 2nL)) 

=&yxp- y) + 7-e f lections 1 

(9) 

- ,, (0) with p ranging over 0,1,2. Since G, is causal, then clearly so are the reflection 
. . 

terms in eq.(9)‘. 

Since we intend to treat the commutator functions perturbatively, it is insuf- 

ficient to show that, order by order, these functions vanish outside the light cone. 

One must show that their leading singularity structure OR. the light cone (namely 

eq.(8)) is unaffected by the plates. In the free-field case, this follows at once from 

eq.(9), since the reflection terms va,nish on the light cone (assuming x and y are 

not on the plates). Had it not been for the dispersive corrections to es.(a), the 

light cone would be ‘tilted’ because of the l/f21 factor and, to order e4, the com- 

mutator function would have received a correction in which 6(x0 - 1x1) is replaced 

by a derivative of a delta function. but we shall see that the plates cannot, in 

fact, affect the leading light-cone singularity structure*, and thus the wavefront of 

a localized disturbance moves at precisely the speed c. 

.- _ -; .a The more familiar expression for G, (‘I as a sum over cavity modes, is related to eq.(9) via 
a Poisson resummation. 

* Note, however, that perturbative corrections (not related specifically to the boundaries) do 
modify the free light-cone singularity logarithmically. 

6 



- 4. Causal Graphs. 
. 

. . 
We wish to find the perturbative QED corrections to eq.(6). The most natural 

way to accomplish this is by iteratively solving the field equations for the Heisen- 

berg field operators, in the presence of the conserved external source Ji (Jo=O). 

This is essentially the approach used by Yang and Feldman[” . The equations are** 

$qx) = $(o)(x) + (-i T - mKxO)(x - Y’ +NYMY) 7 , (10) 

$3(x) = T$(‘)(x) + $(yy(y)(-i py - m)&!‘)(y - 2; m), (11) 

Ao(x) = - ( $)xye: i%hdWf (12) 

- Ai = A!“(X) + G$"(x, y)(Sij - $$),,(e$(z)y&(z) + Jo) (13) 
. 

where: zero superscripts refer to free fields between the plates, summation over 

repeated indices is implied, and spacetime labels are treated as indices. &!“(x; m) 

is defined as in eq.(S), but with a mass m, 

(14) $‘(x; m) = - J 4 

&+ 
-ik.x -- 1 

k2 - m2 + ieko’ 

whereas 6:” is the corresponding advanced Green’s function: 

&~“‘(x;m) = - 
J 

d4k -ik.x 1 
(2K)4e k2-rn2-ieko’ (15) 

The two electron Green’s functions appearing in eqs.(lO)-(11) are thus, in momen- 

** A comment concerning the operator ordering in eqs. (lo)-(13). Any operator ordering 
for the field bilinears would give the same physical results, except that the free vacuum 
expectation of &“lc, should be subtracted from the charge density operator (this is what 
we mean by the normal-ordering notation in eq.(12).). A change of ordering in the product 
h$ merely adds a divergent counterterm to the electron’s mass. But this insensitivity to 
ordering is a result of the equal-time canonical commutation relations of the interacting 
fields. In a Lorentz invariant vacuum, the CCR imply full causality. In the presence of 
the plates, however, the CCR are a weaker assumption than causality. Thus, completeness 
wpuld require verifying causality for all possible (consistent) orderings. We shall stick with 
the ordering - indicated in eqs.(lO)-(13). F ormally, of course, the interacting CCR are 
guaranteed, since the interactions change the fields by a canonical transformation. 
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turn space, (F + m)/(lc2 - m2 f i&o), with the (+, -) signs corresponding to 

retarded and advanced functions, respectively. (-; j9 - rn)&p) appears because 

it is the positron’s retarded Green’s function. We make use of the residual gauge 

freedom to choose the boundary conditions A, = 0 at the plates, which defines 

l/V? 

- 

We may now use eqs. (lo)-(13) t o evaluate the commutator functions. As in 

section 3, we concentrate for concreteness on &M4)* It consists of a series 

of causal graphs. These are like Feynman graphs, except that each Feynman graph 

(in this case, for the photon propagator) is replaced by a sum of several causal 

graphs. This proliferation comes a.bout beca.use there are several kinds of electron 

(or photon) p ro a a p g t ors appearing in the new expansion. The electron propagators 

appearing are retarded, advanced or ‘on shell’ - the latter is 

- -i(&“‘(y)$‘o’(x)) = J g (F + m)2niB( -ko)S( k2 - n22),-~+~) (16) 

and is really not a propagator, but rather a polarization sum over all the on-shell 

electron states. By abuse of language, we shall refer to it as an on-shell propagator. 

Thus there are three types of electron propa.ga.tors in causal graphs. The photon 

has three as well: the retarded G$‘)(x, y)(6;j-&8i/V2), the Coulomb (-1/V2) and 

the on-shell i(A!“‘(x)A’f’(y)) I 3 - S ome one- and two-loop causal graphs contributing 

to the commutator function are shown in Fig.S***. 

Had this expansion been carried out in a non-gauge field theory, the free propa- 

gators which appear explicitly in eqs.( lo)-( 13) would be both retarded and causal. 

Any causal graph contributing to a commutator function of the points x and y 

**t The two one-loop graphs 2a, 26 are related by charge conjugation and are thus identical in 
value. Note that charge conjugation always exchanges the ‘a’ and ‘P’ labels, and reverses 
the arrows in electron propagators (see caption for Figs.2). Of the photon propagators, 
only the on-shell variety is affected, its arrow being reversed. That these are the effects 
of charge conjugation is not immedittely evident, but can be proven from eqs.(lO)-(13), 
by a. reversing the o_rder of $ and $ in eqs.(12)-(13) (which costs a minus sign) and b. 
interchanging 11, and $ everywhere using the usual charge-conjugation operation. 

8 



would then contain at least one unbroken chain of causal Green’s functions, run- 

ning forward in time from the source point y to the measurement point 2. The 

other propagators, which may be either retarded, advanced or on-shell, result from 

contractions of the sourceless, interacting fields with one another when the expec- 

tation value is taken. 

In Coulomb-gauge QED, h owever, the ubiquitous l/V2 is noncausal. But in 

Feynman graphs, it is known that their contributions to any scattering process 

cancel161 . For causal graphs, the cancellation follows through using the same 

techniques, based on the Ward identity. The only new ingredient here is that on- 

shell propa.gators qualify as a pair of external electrons, one incoming and the other 

outgoing. 

. 
Thus gauge invariance allows us to unify G$‘l(&j - &8j/V2) and ( -1/V2) 

(0) into a retarded, causal, Feynman-gauge Green’s function, -G, qP,,. The on-shell 

photon propagator retains the inverse laplacian, and is 

(17) 
The presence of & here is not a problem, since on-shell propagators are in any 

case noncausal and are not required to complete the causal chain, as the graphs in 

fig.2 exemplify. Nevertheless, by again utilizing gauge invariance, eq.(17) may be 

replaced by the covariant Feynman-gauge expression 

-lpu (27r)4 J d4iF2?riO(ko)6(E;‘)e”.(“-Y) + reflections. (18) 

To all orders in the causal expansion, one has for the magnetic commutator 

function: 

where C is a sum of one-particle- irreducible causal graphs. A similar equation 

holds for the electric commutator function. 
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Let us now consider the two-loop causal diagrams for CPV(z, y), where x,y are 

many compton wavelengths from either boundary (the condition following es.(a)). 

We also assume I(CC - Y)~/ << r7zM2, since we are interested in the light-cone 

singularities of C. The one-loop graphs (Figs.2a, 2b) do not contribute any plate- 

dependent terms. At the two-loop level, there are 11 causal graphs for C****. Figs. 

2c, 2d depend on the boundaries only via the spatial range of the two internal 

vertex positions *****. This is because the only plate-dependent internal line is the 

photon retarded propagator, and there is not sufficient time for this photon to be 

causally reflected from a boundary in these two graphs. But spatial-range effects 

cannot affect the leading light-cone singularity of C, which comes from vertices 

near the light-cones of x and y. 

- We next turn our attention to the nine remaining two-loop graphs, shown 

in Figs. 3 and 4. Here, the reflection terms in the internal photon propagator 

do contribute. The plate-dependent piece of C has the following form (we again 

neglect spatial-range effects): -. 

where i = 1, 2 correspond to Figs. 3 and 4, respectively. Here f(l) is the reflection 

piece of the on-shell photon propagator (eq.(18)), whereas f12) is the reflection 

piece of the retarded free photon propagator (i.e. -qPV times the reflection piece 

in es.(g)). 

The two functions II(“) are separately gauge invariant. By this we mean that 

and that C(P) is independent of the gauge of the photon propagators fti). Each 

**** And their charge conjugates. The charge conjugate of a causal diagram may or may not an 
identical diagram, but it always has the same value. Thus some of the 11 diagrams will be 
weighted by 2. 

***** When discussing C, the external photon lines in these two figures are understood to be 
amputated. 
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- 
n(i) is a sum of one-loop graphs with four external photons. These graphs are 

akin to light-by-light Scattering graphs, except that the pole structure of the elec- 

tron propagators is not Feynman. As in the case of the Feynman graphs, gauge 

invariance ensures the finiteness of II(“) away from the light-cone. 

- 

The singularity of C(P) as (X - Y)~ t 0 is milder than that of the corresponding 

plate-independent C, since f(‘) (z, W) are regular at (w - z)~ = 0, whereas the 

plate-independent photon propagators are singular. It is, in fact, straightforward 

to verify that C(Pl( x, y) cannot modify the delta-function in the free commutator 

function (eqs. (6),(8)) by d a erivative of a delta function. This is done using the 

position-space free propagators, especially their light-cone singularitiesi7] . Thus, 

as explained in section 3, wavefronts still move at speed c, even when the two-loop 

corrections to the commutator functions are taken into account. 
. 
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FIGURE CAPTIONS 

Fig. 1 - The two loop vacuum-polarization Feynman graphs. 

Fig. 2 - Some one- and two-loop causal graphs for the photon 

commutator functions. An electron or photon propagator 

- 

denoted by ‘r’ is retarded, with the arrow pointing to 

the future. Likewise, ‘a’ denote an advanced electron 

propagator, with the arrow pointing into the past. A 

solid arrowhead denotes an on-shell propagator with the 

arrow pointing from y to z in eqs. (16),(17) (see text). 

-- Fig. 3 - Th e six causal graphs with on-shell internal photon 

line. The external photon propagators are amputated. 

Fig. 4 - The three causal graphs with retarded internal photon 

line. 

13 



( > a (b) 6676Al 

Fig. 1 

( > a (b) 

7-90 ( ) C w 6676A2 

Fig. 2 



-- 

r 

( > a - 

. 

r 

( > C 

r 

( > e (0 6676A3 

) 
(b) 

r 

Fig. 3 



- 

r 

( ) a- (b) 

a 

7-90 ( ) C 6676A4 

Fig. 4 


