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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider at CERN [1] marked a
new era for particle physics, fitting the last missing piece of the Standard Model (SM).
The Higgs particle fits into the theoretical framework of Electroweak (EW) interactions, the
theory describing the unification of the electromagnetic and weak forces, and is the first
fundamental scalar particle ever observed in Nature. It is the latter fact which makes its
discovery of particular significance for cosmology too. In fact, scalar particles have been
often hypothesised in cosmology to explain observations associated with the physics of the
early or the late-time universe, and particularly in the physics of inflation, the speculated
rapid expansion of the universe shortly after the Big Bang.

Higgs inflation [2, 3] is the theory which assumes that the SM Higgs particle is respon-
sible for the dynamics of the primordial inflationary period. The idea is attractive for more
than one reasons. First of all, because it does not invoke any new, hypothetical particle into
the theory, but builds up on the known field content of the SM. What is more, it provides
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with the opportunity of placing constraints on the parameters of the SM at high energies,
much higher than the energies current particle accelerators can reach, through the observa-
tions of the Cosmic Microwave Background (CMB) radiation. In particular, the parameters
of the Higgs potential, such as the quartic Higgs coupling λ measured at the EW scale, have
to be extrapolated up to inflationary scales using the appropriate Renormalisation Group
(RG) equations.

Together with the Starobinsky model, Higgs inflation is one of the most successful mod-
els according to the recent Planck-satellite data [4]. Both models achieve inflation through a
modification of the standard curvature sector of General Relativity (GR), and in fact, they
are related through a conformal redefinition of the metric field, with the respective Einstein-
frame potentials exhibiting striking similarities [5, 6]. However, this correspondence concerns
the classical dynamics of the theories, and the quantum equivalence is more delicate and in-
volved. For examples of an off-shell quantum inequivalence between the two frames we refer
to refs. [7, 8].

The quantum, scalar and tensor fluctuations of the Higgs coupled to gravity during
inflation provide tight constraints on the model’s parameters at inflationary scales. In par-
ticular, the amplitude of the yet unobserved tensor fluctuations are of the order of the scalar
potential, ∼ U(φ)/M4

p0 , which for large field values is controlled by the quartic coupling,
i.e U(φ) ∼ λφ4. Extrapolating the SM RG equations up to inflationary scales, the value
of λ (∼ 10−1 − 10−2) cannot provide the necessary suppression, predicting a tensor spec-
trum incompatibly large with CMB observations. This problem is circumvented with the
addition of a non-minimal coupling between the Higgs and curvature in the action, through
a term of the form ξφ2R, with ξ a dimensionless coupling controlling the strength of the
interaction. This modification changes the amplitude of the inflationary effective potential
to U(φ)/M4

p0 ∼ λ/ξ2, and assuming that ξ is sufficiently large, agreement with observations
can be established. In particular, it turns out that in principle ξ ∼ 103 − 104, but lower
values might be possible in very special cases like the possibility of inflation happening at
the critical point [9].

The non-minimal coupling ξ is the only free coupling in the theory to be fixed by
cosmological observations, since the value of the quartic coupling λ is predicted by the SM
equations, modulo uncertainties in the value of the top-quark mass. At the energy scale where
Higgs inflation occurs the effect of quantum-gravitational dynamics cannot be in principle
neglected, however during inflation the expectation is that they are sufficiently small. The
simple argument behind this assumption is that the large value of ξ is expected to provide
a sufficiently high suppression of the quantum corrections due to Higgs and graviton loops
during inflation, since the respective propagators receive a suppression by factors of 1/ξ,
remembering that the two fields are kinetically mixed in the Jordan-frame action.

The aim of the current work is to explicitly study what the Wilsonian functional RG
predicts for the quantum corrections of the Higgs non-minimally coupled to gravity at the
inflationary regime and beyond, including the effect of gravitons. The formalism employs
the Wilsonian idea of calculating quantum corrections, based on an infrared RG scale k.
As we will see, provided the RG scale is consistently chosen, quantum corrections during
inflation can be sufficiently suppressed. Since the framework extends in principle to the
non-perturbative regime, we will finally briefly discuss the potential embedding of the model
within the Asymptotic Safety (AS) scenario for quantum gravity.

We structure the paper as follows: in section 2 we very briefly review previous results in
the literature and motivate our analysis, while section 3 lays down the equations governing
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the classical inflationary dynamics for the theory appropriately adopted to our setup. In
section 4 we calculate the RG flow equation and beta functions describing the renormalisation
of Newton’s constant, as well as the Higgs’ quartic and non-minimal coupling, including
quantum gravitational corrections up to leading order using the framework of the Wilsonian
functional RG. In section 6 we use the previously derived equations to analyse the quantum
dynamics during inflation, while sections 6 and 7 investigate the regime beyond inflation in
this context, and the possible connection with the scenario of Asymptotic Safety respectively.
Some issues related to the dependence on the choice of gauge and regulator are discussed
in section 8. We conclude in section 9, while explicit intermediate calculations are kept for
the appendix.

2 A very brief review of quantum effects during Higgs inflation

The value of the essential couplings of a theory is dictated by experiment at a particular
physical scale. As discussed in the Introduction, for a successful Higgs inflation, the non-
minimal coupling has to be set to a quite large value, ξ ∼ 103− 104. The important question
which arises is how stable the couplings’ values are under quantum corrections; in particular,
within inflation the latter could in principle spoil the flatness of the effective potential.

Within an effective field theory approach the term ξφ2R makes perfect sense as part of
a leading-order operator expansion, while operators of mass dimension higher than four are
usually related to the violation of tree-level unitarity. The scale at which this is expected to
occur has been calculated in ref. [3], where after expanding the action around a flat spacetime,
and identifying the potentially dangerous operators, it was found to be Λ ∼

√
ξφ̄. In ref. [3]

it is argued that its particular value poses no danger for the model.
Quantum corrections for the system of a scalar (non-minimally) coupled to gravity have

been studied in various settings in [10–16], while the particular case of Higgs inflation has
been studied in refs. [17–19] employing semi-classical, effective-action methods at 1-loop,
as well as in refs. [20–25] in a standard perturbative context. Ref. [26] studied the Higgs-
inflationary action within the approach of the Vilkovisky effective action, including the effect
of gravitons, however the running and dynamics of the couplings was not considered there.1

Gravity is well known to be perturbatively non-renormalisable, however, it is a well-
working quantum effective theory for energies below the Planck scale. Although strong
quantum-gravity effects are usually assumed to manifest themselves at the Planck scale, their
effect can potentially be important at energies as low as the GUT scale. For Higgs inflation
it is expected that for ξ � 1, the large effective Planck mass will provide an 1/ξ-suppression
to graviton and quantum loops, as it is argued in [10, 17–20].

Within the Wilsonian implementation of the functional RG we will employ here, the
effect of gravitons will be explicitly accounted for, while the regularisation scheme used,
based on an infrared sliding RG scale k, is able to capture all types of divergences (power
law and logarithmic ones) in the effective action. In this context, for energies below the
Planck scale, the usual concepts of effective field theories apply, however, the assumption of
Asymptotic Safety allows the extension to the deep UV where the relevance/irrelevance of
different operators becomes a prediction of the theory.

1For a recent alternative scenario for Higgs-type inflation embedded within a quantum gravitational setup
see ref. [27].
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3 The Higgs as the inflaton

In this section we will review the classical dynamics of the model adopted to our context,
and introduce the relevant characteristic energy scales involved. Considering an excitation φ
of the SM Higgs field around its classical, vacuum expectation value (v.e.v) and rotating to
the unitary gauge the corresponding lagrangian can be written as the sum of the following
three pieces,

LEW = −1
2(∂µφ)(∂µφ)− V (φ) + LW,Z + Lferm. + LYukawa. (3.1)

The first two terms describe the Higgs sector, while the third one is the gauge part describing
the field strengths for the U(1)Y and SU(2) sectors, associated with the photon (Aµ) and
the three vector bosons W± and Z respectively. The fermionic part describes the kinetic
terms for the fermionic degrees of freedom, while the Yukawa term describes the interactions
between the Higgs and the other Standard Model (SM) fields through the usual Yukawa
couplings. The Higgs potential is defined as

V (φ) = vk + 1
2m

2
kφ

2 + 1
4λkφ

4, (3.2)

and for m2 > 0 (m2 < 0) we are in the symmetric (broken) phase, while v represents the
vacuum energy. The index k implies that the corresponding quantity is scale dependent,
running under the Renormalisation Group (RG) scale k. We will make this notion more
precise in section 4.

The coupling of the sclar φ to gravity will be described by the following action

S =
ˆ √

−g f(φ)
2 R− 1

2(∂µφ)(∂µφ)− V (φ), (3.3)

with V (φ) given in (3.2), while for Higgs inflation the function f is defined through

f(φ) ≡M2
pk

+ ξkφ
2. (3.4)

Notice that the Planck mass is allowed to run with energy, and is related to Newton’s coupling
through M2

pk
≡ m2

pk
/(8π) = 1/(8πGk).

For a usual slow-roll inflationary phase to take place, the Higgs potential is required to
be sufficiently flat, in which case the field starts from an unstable vacuum phase, and after
a period of slow roll, it evolves towards its true minimum. It is instructive to transform
to the Einstein frame, where the fields’ kinetic terms diagonalise, defining the conformal
transformation to a new metric g̃αβ as

g̃αβ = f(φ)
M2
p0

gαβ, (3.5)

with M2
p0 ≡ m

2
p0/(8π) = 1/(8πG0), the Planck mass as measured at solar-system scales. The

following field redefinition will yield a canonically normalised scalar χ,(
dχ

dφ

)2
=
M2
p0

f(φ) + 3
2M

2
p0

(
f ′(φ)
f(φ)

)2
= x

1 + ξkxφ̂2
+ 6ξ2

kx
2φ̂2(

1 + ξkxφ̂2
)2 , (3.6)
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where in the last step we used (3.4) to substitute for f , and defined the following useful
quantities

φ̂ ≡ φ/Mp0 , x ≡ x(k) ≡
M2
p0

M2
pk

≡ Gk
G0

. (3.7)

The quantity x ≡ x(k) modifies most of the standard inflationary relations and has to be
evaluated for the value of the coupling G(k) during inflation, i.e G(k = kinflation). For
x(k) = 1, one recovers the standard results. It turns out from the analysis of section 5
that during the inflationary regime it will be x(k) ' 1 (Gk ' G0 = constant) to very good
accuracy. The Einstein-frame action reads as

S̃ =
ˆ √

−g̃
M2
p0

2 R̃− 1
2(∂µχ)(∂µχ)− U(χ), (3.8)

with U defined as
U [φ(χ)] ≡M4

p0 ·
V [φ(χ)]

(M2
pk

+ ξkφ(χ)2)2 . (3.9)

The potential U depends implicitly on the Einstein-frame scalar χ, a choice which is con-
venient for the calculation of inflationary observables. Inflation will occur at sufficiently
high energies, where 8πGkξkφ2 ≡ xξkφ̂

2 � 1, and V (φ) ' (λk/4)φ4. In this regime, (3.6)
can be integrated to give χ(φ) '

√
3
2Mp0 · log(1 + ξkφ̂

2x), leading to the following explicit
form of U(χ)

U(χ) = M4
p0 ·

λk
4ξ2
k

·
(

1− e−
√

2/3· χ
Mp0

)2
. (3.10)

For χ/Mp0 � 1 the potential approaches a constant value U(χ) 'M2
p0 ·

λk
4ξ2
k

corresponding to
the slow-roll regime.

Varying the action with respect to the metric, and evaluating on a flat, Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime, in the slow-roll regime the Friedman equa-
tion becomes

H2 ' x(k) · U(φ)
3M2

p0

, (3.11)

with the Hubble parameter H defined as H(t) ≡ ȧ(t)/a(t), a(t) being the scale factor, t the
cosmic time in the Einstein frame and x(k) defined in (3.7). The slow-parameter ε is defined
in the standard way as

ε ≡ − Ḣ

H2 '
M2
p0

2

(
U,χ
U

)2
=
M2
p0

2

(
V,φ
V

1
χ,φ

)2

= 4
3 ·

1
x2 ·

1
ξ2φ̂4

, (3.12)

with ,≡ ∂/∂φ, while the number of e-foldings N between φi → φf is given by

N =
ˆ φi

φf

1
M2
p0

V

V,φ
(χ,φ)2 = 3

4ξ · x ·
(
φ̂2
i − φ̂2

f

)
+ 3

4 log
(

1 + ξ · x · φ̂2
f

1 + ξ · x · φ̂2
i

)
. (3.13)

For slow-roll inflation it is ε � 1, which implies that inflation starts for field values around
φ &Mp0/

√
ξ, where for simplicity we set x(k) = 1. To find the starting value of the field φi,

we evaluate expression (3.13) at the required number of e-foldings N = N0, before the end
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of inflation, while the condition ε ' 1 in (3.12) will yield the value of φ = φf at the end of
inflation respectively. We find that,

φi
Mp0

' 1√
x
· 1√

ξ
·
(4

3N0 + 2√
3

)1/2
, (3.14)

φf
Mp0

'
(4

3

)1/4
· 1√

x
· 1√

ξ
. (3.15)

For x(k) = 1, N0 = 55, one finds φi ' 8.631Mp0/
√
ξ and φf ' 1.075Mp0/

√
ξ respectively.2

The vacuum fluctuations of the inflaton produce a spectrum of scalar and tensor per-
turbations, which’ amplitudes evaluated at horizon crossing at the pivot scale kpivot =
0.002 Mpc−1 read as [28]

PS = 1
24π2

1
M4
p0

U [φ(χ)]
ε

' 1
128π2 · x

2 · λ · φ̂4, PT = 128
3
U [φ(χ)]
M4
p0

, (3.16)

with the field value in the last relation assumed to be φ = φi. With the aid of (3.14), and
assuming the observed value for the amplitude of the scalar fluctuations evaluated at horison
crossing, PS = PS(obs.) as required from CMB observations, we can work out the relation
between the couplings λ and ξ during inflation as3

ξinflation '
1√

128π
· 1√

PS(obs.)
·
(
4N0 + 2

√
3
)
·
√
λ. (3.17)

The coupling ξ in (3.17) depends on the cosmological parameters such as the number of
e-foldings and the amplitude of scalar fluctuations, but also on SM parameters such as the
top quark/Higgs mass at the EW scale which enter implicitly through the coupling λ, so that
we can write

ξinflation ≡ ξ[N0, PS(obs.); λ(EW),Mt(EW), · · · ], (3.18)
with the index (EW) standing for the value at the EW scale. A typical value for the coupling
λ at inflationary scales is ∼ 10−2 yielding ξ ∼ 103 (see appendix C for a realistic evaluation).

In overall, the classical dynamics of the model define two characteristic scales, the
typical value of the (Jordan-frame) scalar field at the end of inflation, φf ∼Mp0/

√
ξ, and the

Hubble scale during inflation, H ∼ Mp0/ξ. These in turn define three characteristic energy
regimes. In the particular setup of this work, there is yet one more scale, the sliding RG
cut-off k, representing the typical energy (coarse-graining) scale of the system. Its value and
connection with the standard scales during inflation will be discussed in section 5.

4 Quantum gravitational corrections and running during inflation

4.1 The setup
Our final aim is to understand what the Wilsonian functional RG predicts for the quantum
(gravitational) corrections for the model, under certain assumption which we describe below.
We will first introduce the basic concepts and tools needed for the subsequent analysis, and
also remind that explicit calculations and formulae are presented in the appendix.

2Notice that these are the field values in the Jordan frame. The corresponding ones in the Einstein frame
have to be translated through χ = χ(φ) given a little before (3.10).

3Unless otherwise stated, we will be assuming N0 = 55.
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Let us start with some theory and its bare action S[ϕA] which depends on a set of
fields {ϕA}, with A,B generalised field/spacetime indices. Formally, the construction of the
associated effective action starts with the generating functional of the connected Green’s
functions,

W [J ] ≡ logZ[J ] = log
ˆ
DϕA exp

[
S[ϕA] +

ˆ
JB(x) · ϕB(x)

]
, (4.1)

with JB(x) standing for the sources. From the functional W [J ] one can define the expectation
value of the fields as ΦB(x) ≡ 〈ϕB〉 = δW [JA]/δJB. The effective action Γ4 is then introduced
through a change of field variables by means of a Legendre transform, where the sources in
W [J ] are traded for the fields ΦA as

Γ[Φ] =
ˆ
x

ΦB · JB[Φ]−W
[
JA[Φ]

]
. (4.2)

It is well known that the 1-loop corrections of the theory are intimately connected to the
(Eucledian) effective action Γ through the following relation

Γ1-loop = 1
2Tr logS(2). (4.3)

The quantity S(2) stands for the inverse bare propagator defined as S(2) ≡ δ2S/δΦAδΦB, and
possible index structure is understood, while “Tr” stands for summation over spacetime,
internal indices and momenta. The trace over momenta of the kinetic operators leads to an in
principle divergent result which requires some sort of regularisation. There are different types
of regularisation schemes, each with its own advantages and disadvantages, two of the most
popular being dimensional regularisation and a physical cut-off respectively. The Wilsonian
approach suggests a continuous integrating out of momenta, shell-by-shell in momentum
space. The functional RG we will employ here, implements this idea by invoking an IR
regulator, denoted as Rk, in turn built out of an infrared, dimensionfull cut-off k. Its generic
form is constrained by certain conditions, see [31–34] for a discussion. Above ideas lead to
the concept of the Wilsonian, or average effective action Γk[ΦA] defined as

Γk[ΦA] = Γ[ΦA]−∆Sk[ΦA], (4.4)

with ∆Sk[ΦA] ≡ 1
2
´

ΦA ·RkAB · ΦB. By construction, the regulator Rk employs an infrared
regularisation, suppressing fluctuations with momenta p2 < k2, while integrating out those
with p2 > k2. We will get back to the particular choice of the regulator Rk later. In view
of (4.4), the suppression term ∆Sk amounts to the modification of the full inverse propagators
Γ(2) according to Γ(2) → Γ(2) + Rk, and it is understood that Rk should carry the same
tensor structure with Γ(2). The cut-off scale k is interpreted as the typical energy scale, or
equivalently, 1/k defines the typical physical lengthscale of the system one is interested in.

It can be then shown that the average effective action (4.4) satisfies an Exact Renor-
malisation Group Equation (ERGE) [35, 36]

∂tΓk = 1
2Tr

(
Γ(2) +Rk

)−1
· ∂tRk, (4.5)

with ∂t ≡ k∂k ≡ k∂/∂k. This last equation will play an important role for our quantum
analysis. For Γ(2) → S(2) equation (4.5) connects with the standard 1-loop result (4.3),

4For a rigorous discussion on reconstructing the microscopic bare action from the Wilsonian effective action
within the functional RG and Asymptotic Safety see [29, 30].
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its applicability though extends beyond the perturbative regime. Exact solutions within
a gravitational context are almost impossible, and some sort of approximation has to be
invoked. Notice also that, equation (4.5) is an in principle off-shell equation, which makes
any results derived from it dependent on the gauge, while the use of approximations like
truncated actions leads to a dependence on the regularisation scheme. In the context of
scalar-tensor theories another subtlety arises regarding the choice of the conformal frame,
with off-shell corrections not in principle expected to match in different frames, as explicitly
shown in refs. [7, 8].

Let us summarise the basic assumptions for the quantum analysis as follows:

1. We will assume that the effective action takes the form suggested by (3.3), ignoring
higher-order operators, while the calculation will be performed in the Jordan frame.
Notice that below, we might sometimes drop the index “k” for the running couplings
for simplicity.

2. The usual background field method for the decomposition of the fields into a background
and fluctuating part in a Euclidean signature will be employed. For the background-
value of φ we will assume that ∂µφ̄ = 0, while the background spacetime will be a
Euclidean de Sitter. The trace over momenta in (4.5) will be performed with the use
of a heat kernel expansion.

3. We will consider the quantisation of the gravity-scalar sector only, hence Yukawa and
gauge interactions will not be accounted for in the calculation. We will also assume
that the quartic coupling λ retains a positive value, since the possible instability of the
Higgs potential poses an important problem which deserves its own study. We briefly
discuss this issue in appendix C numerically solving the 1-loop SM RG equations.

4. We will perform the calculation in the popular choice of the de Donder gauge which
significantly simplifies the technical analysis. We comment on the gauge and regulator
choice in section 8.

4.2 The calculation
We can now start with the calculation within the ERGE. Our goal is to evaluate (4.5) for
the action ansatz of (3.3) and under the assumptions described earlier.5 The gravity sector
has the usual diffeomorphism gauge symmetry, which we will fix through the introduction of
a gauge-fixing term. The Wick-rotated and gauge-fixed effective action ansatz then reads as

Γ[gµν , φ, Cµ, C̄ν ] = −
ˆ √

−ḡ
(
fk(φ)R− 1

2g
µν(∂µφ)(∂νφ)− Vk(φ)

)
+ Sghost + SGF . (4.6)

The terms SGF and Sghost stand for the gauge-fixing and ghost sector respectively, while
Cµ, C̄ν denote appropriate ghost and anti-ghost fields. We define them explicitly below. The
indices k remind us that the quantities stand for the renormalised ones, running under the
RG scale k. The gauge-fixing term is defined as follows

SGF = 1
2α

ˆ
√
g f(φ)ḡµνχµχν , with χµ = ∇νhµν −

β + 1
4 ḡµν∇νh, (4.7)

5Notice that similar calculations within scalar-tensor theories have been performed in [12–14] using different
field decomposition and evaluating the flow equations in Landau gauge and optimised cut-off respectively, as
well as in [15] around a flat background including fermions, and more recently, in [16] within a semi-classical
setting.
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which depends on the two real parameters α and β. Two of the most popular choices in the
literature correspond to α = β = 1 (de Donder gauge), and α → 0 (Landau-type gauge)
respectively. For our analysis, we will choose the first with α = β = 1, which simplifies
the calculation. Now, the introduction of the gauge-fixing term requires the introduction
of appropriate ghost and anti-ghost fields which can be calculated by replacing the gauge
vectors uµ in the gauge transformation of the combined metric Lu(gµν) = Lu(ḡµν + hµν) =
uρ∂ρgµν+∂(µu

ρgν)ρ, by the ghost Cµ. Then, following the standard Fadeev-Poppov procedure
the ghost term can then be shown to take the form

Sghost = −
ˆ
d4x
√
gC̄µ (δµν(−�)−Rµν)Cν , (4.8)

with Cµ, C̄µ denoting the ghost and anti-ghost fields respectively, and � ≡ ḡµν∇̄µ∇̄ν .
Expanding the effective action (4.6) up to second order in the field’s fluctuations un-

der (4.9) we calculate the Hessians Γ(2)
k , which’ inversion yields the different propagator

entries appearing in (4.5) (or (4.3)). The explicit expressions are given in appendix A. To
this end, we employ the background field method by considering the following split between
a background piece (denoted by an overbar) and a fluctuating part as6

gµν = ḡµν + hµν , hµν = ĥµν + 1
4 ḡµνh, φ = φ̄+ δφ, (4.9)

with ḡµν describing the background spacetime metric and the trace-free (denoted with a
hat) and trace components of the metric fluctuation satisfying ḡµν ĥµν = 0, h ≡ ḡµνhµν .
Derivatives will be constructed with the background metric field, and we shall drop the
overbar from them for notational convenience. We notice that the fluctuating fields hµν
and δφ are assumed to be the corresponding average fields, i.e hµν(x) ≡ 〈hµν(x)〉 , δφ(x) ≡
〈δφ(x)〉. Ideally, one would like to keep the background field variables unspecified, however
this can be technically unpractical and lead to results of very high complexity; we refer
to [38–40] for recent discussions within a functional RG context. In this work, we will assume
the family of constant backgrounds of a four-dimensional Eucledian de Sitter (S4) with

R̄, φ̄ = constant. (4.10)

In the quadratic part of the expanded action, the different interaction vertices appearing
are the effective graviton and Higgs self interactions, as well as the momentum-dependent
cross-vertex between the scalar and the metric, due to the non-minimal coupling (see ap-
pendix A). On S4, the kinetic part of it consists of a minimal operator which is regularised
with the introduction of the one-parameter regulator Rk ≡ Rk(−�; r), through the modifi-
cation [41]

Γ(2)
k (−�)→ Γ(2)

k (−�) +Rk(−�; r). (4.11)

This way, the eigenvalues of −� less than k2 are suppressed, while integrated out oth-
erwise. As the cut-off is continuously moved, the integrating out of modes is performed
shell-by-shell in momenta [31–34]. As regards the particular choice of regulator function, we
choose an 1-parameter version of the optimised regulator [42] Rk (−�) ≡

(
r · k2 − (−�)

)
·

Θ
(
r · k2 − (−�)

)
, which will allow for an explicit computation of the the momentum inte-

grals. The real and positive parameter r defines a family of regulator functions, with the
6We should notice here that different parametrisations have been employed in the literature, such as the

exponential one, see e.g ref. [37].
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standard, “optimal” case corresponding to r = 1. It will serve as a book-keeping parameter
which we will use as a test of the regulator-dependence of the main results.

The sum over the eigenvalues of the operators appearing in the 1-loop-type trace on
the right-hand side of the ERGE is traced by means of an asymptotic heat kernel expansion.
Assume an operator ∆ = −�δAB + UAB, with � ≡ ḡµν∇̄µ∇̄ν , δAB the identity matrix in
field space, and UAB a potential-type term depending on the background value of the fields
and their derivatives. Then, in four dimensions the heat-kernel expansion of ∆ reads

Tre−s∆ =
( 1

4πs

)2 ˆ
d4x

√
ḡ
(
tra0 + tra2s+ tra4s

2 + . . .
)
, (4.12)

where the parameter s is assumed to be sufficiently small, and tr sums over internal indices.
The coefficients ai depend on the background geometry, with each term in the expansion
capturing different types of divergences, in particular quartic (a0), quadratic (a2) and loga-
rithmic (a4) divergences respectively [41, 43–45]. Formally the expansion (4.12) is valid as
long as R̄/k2 < 1, i.e capturing fluctuations with wavelengths smaller than the radius of
curvature.

Evaluating the trace in the ERGE (4.5), the flow equation for Γk turns out to organise
in the following form

k4V · ∂tΓk = F0 + F1 ·
∂tf

f
+ F2 ·

∂tf
′

f ′
, (4.13)

with primes here denoting derivatives with respect to φ̃ ≡ φ/k, ∂t ≡ k∂k and V is the
volume of S4. The dimensionless quantities F depend non-trivially on the fields, couplings,
and regulator parameter F = F [R,φ; f, V ; r], with their form explicitly given in (A.15) of
the appendix. As can be seen from their explicit expressions, the functionals F depend up
to second order derivatives of f and V with respect to φ, as expected. The flow described
by (4.13) is particularly involved, however, its 1-loop expression simplifies considerably, and
is also explicitly presented in appendix A.2. From (4.13), expanding around R̄/k2 = 0,
φ̄/k = φ̃∗, and projecting out on the different operators in the effective action one gets the
flow of the two scalar potentials as,

∂tf(φ) = Ff [φ̃∗; gj , ∂tgj ; r], ∂tV (φ) = FV [φ̃∗; gj , ∂tgj ; r], (4.14)

with Ff and FV corresponding to the projection of F on the curvature and scalar potential
operators respectively. In turn, projecting out on the individual operators in f and V one
can extract the running of the individual coupling constants. Notice that the evaluation of
the ERGE generates higher-order terms in curvature/scalar field which we neglect in view of
our original action ansatz.

4.3 The structure of the beta functions
During slow-roll inflation, the scalar field acquires a large vacuum energy, φ = φ∗ &Mp0/

√
ξ,

and we therefore consider an expansion of V around this v.e.v as

Vk(φ) = vk + λk(φ2 − φ∗2k)2, (4.15)

with vk representing a cosmological constant-type term. The function f will have the form
of (3.3). At this stage it is convenient to introduce dimensionless fields and couplings, mea-
sured in units of the cut-off k,

φ̃∗k ≡ φ∗(k)/k, g̃i ≡ gi(k)/kn, (4.16)
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where n is the coupling’s canonical dimension. Under the ansatz (4.15), from the flow equa-
tion (4.14) one can extract an autonomous system of (non-perturbative) beta functions

k∂kg̃i = βg̃i(g̃j) ≡ (−n+ ηgi(gj)) · g̃i, (4.17)

with η the anomalous dimension of the coupling. Due to the appearance of RG-derivatives
on both sides of the equation (A.12), the resulting expressions are very involved, but they
simplify significantly in the 1-loop approximation where the RG-derivatives on the r.h.s.
of (A.12) are switched off. The explicit expressions in the 1-loop approximation are presented
in the (B.1)–(B.6) of the appendix, while the beta functionals for G̃ and ξ are also explicitly
given in the limit φ̃∗, ṽ → 0 without any further approximation assumed.

The general structure of the equations in the 1-loop approximation reads7

βi ≡ β(0)
i + β

(grav.)
i = β

(0)
i + Ω−mi ·

∑
n≥1
B(n)(φ̃∗, ξ) · (G̃φ̃2

∗)n, (4.18)

where the coefficients B(n) and exponents mi can be read off from (B.1)–(B.6), together with
the definitions

Ω ≡
(
16πµξG̃φ̃2

∗ + 8π(9ξ + 1)ξG̃φ̃2
∗ + 2µ+ 1

)
, µ ≡ λφ̃2

∗. (4.19)

The way we split the contributions in the beta functions (4.18) is such that the terms β(0)
i

reduce to the standard perturbative results in the limit φ̃∗ → 0, while β(grav.)
i conventionally

denote the gravitational corrections to them. This is only conventional, since during inflation
the v.e.v φ̃∗ is in fact related to the non-minimal coupling to gravity ξ. The quantity Ω
appears as a result of the kinetic mixing between the graviton and scalar in the action, and
becomes Ω = 1 for φ̃∗ → 0, but for sufficiently large φ̃∗ and ξ it provides a sufficiently high
suppression to the different terms in (4.18). The origin of the non-standard terms ∼ G̃φ̃∗ξ
is also similar; these terms appear after expanding the non-trivial propagator entries in the
ERGE around the v.e.v of the scalar under the particular ansatz for f and V ((3.3) and (4.15)
respectively), and obviously, they vanish for φ̃∗ → 0. These terms are an immediate result
of the scalar’s non-zero v.e.v., introducing appropriate threshold effects; it is

φ̃∗ ≡ φ∗/k � 1, (4.20)

for v.e.v values much larger than the cut-off scale k, and opposite otherwise. The first
case is expected to occur during inflation. The actual estimate of the value of φ̃∗ ≡ φ∗/k
depends on the estimate of the cut-off k for the energy regime of interest. This will be
discussed explicitly in sections 5 and 6. In general, for G̃, φ̃∗ → 0 one recovers the standard,
perturbative expressions for the beta functions.

7To form a simple basis for our discussion we will choose the “optimised” cut-off parameter r = 1. We
briefly comment on the gauge and regulator dependence in section 8. We also neglect the contribution of vk
in the beta functions other than its own one.
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The beta functions for a non-zero v.e.v φ̃∗ 6= 0, according to (4.18) (see also (B.1)–(B.6)
of the appendix), read as

β
G̃

= 2G̃+ 1
24π ·

14ξ + 240µ2 + 230µ− 55
(1 + 8πξG̃φ̃2

∗)2 · Ω2
· G̃2 +O

(
G̃3

(1 + 8πξG̃φ̃2
∗)2Ω2

)
, (4.21)

βξ = 1
64π2 ·

λ (28ξ + 10µ+ 5)
Ω3 + β

(grav)
ξ , (4.22)

βλ = 21
16π2 ·

λ2

(1 + 8πξG̃φ̃2
∗) · Ω3

+ β
(grav.)
λ , (4.23)

with Ω and µ defined in (4.19). From βξ and βλ we can also derive an expression for the
fractional running of the amplitude of scalar fluctuations ∼ λ/ξ2. Keeping only the β

(0)
i

terms, we find

∂t

(
λ

ξ2

)
' λ

ξ2 ·

β(0)
λ

λ
−

2β(0)
ξ

ξ

 ' 1
16π2 ·

λ2

ξ2Ω3

(
21

1 + 8πG̃φ̃2
∗
− 28ξ + 10µ

2ξ

)
. (4.24)

The RG equations for φ∗ and v in (4.15) can be found in (B.5) and (B.6) of the appendix.
For φ̃∗, G̃→ 0, the terms ∝ λ, ξ ·λ on the r.h.s. of the beta function for ξ, equation (4.22),

are in qualitative agreement with those found in the context of the conformal anomaly [46],
and they tend to increase ξ with the cut-off scale, with ξ admitting the usual logarithmic
running. In a similar way, the beta function for λ, equation (4.23), consists of the standard
λ2-term leading to logarithmic running and an irrelevant Landau pole at very high energies.

Let us briefly comment on the renormalisation of Newton’s coupling. For the purpose
of this discussion we re-write (4.21) as

∂tG̃ = (2 + ηG) G̃, (4.25)

with ηG ≡ −Z−1
G ∂tZG, Z−1

G ≡ 16πG(k). A negative anomalous dimension ηG will tend to
reduce G̃ and eventually lead it to a UV fixed point as k →∞, where ηG = −2. This lies in
the heart of Asymptotic Safety which we discuss in section 7. On the other hand, ηG > 0 will
have the opposite effect leading the coupling to increasingly large values with increasing k.
This is an unwanted behaviour if the theory is to posses a well-behaved high-energy regime.

5 Quantum dynamics during inflation

In the RG equations (4.21)–(4.24) the threshold effects due to the v.e.v of φ appear through
φ̃∗ ≡ φ∗/k. Depending on its value, we distinguish the large- and small- field regime where
φ̃∗ � 1 and φ̃∗ � 1 respectively. The first case is expected to occur during inflation,
remembering that the scalar acquires a large v.e.v with

φ∗ &Mp0/
√
ξ. (5.1)

To estimate the value of φ̃∗, one needs an estimate of the infrared cut-off k during
inflation. An important point to make is that the prescription for the interpretation of
the infrared cut-off k in this context depends on the particular physical setup. In general,
k represents the coarse-graining scale, or the typical energy scale of the physical system
(see [47–66]). Quantum fluctuations during inflation are of the order of the cosmic horizon
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H−1, suggesting the coarse-graining scale to be of the same order, i.e k ∼ H. This is the
choice employed in [47, 48, 61]. The covariant form of this identification, k2 ∼ R, has been
also a popular choice employed in studying the RG-improvement of gravitational actions
in a cosmological context in [57, 62, 66, 67]. Let us remind ourselves that the asymptotic
expansion (4.12) applies for sufficiently small curvature scales with R̄/k2 < 1. This fact,
together with the slow-roll estimate R̄/M2

p0 ∼ λ/ξ
2 suggests the bound

k2

M2
p0

∣∣∣∣∣
inflation

&
λ

ξ2 . (5.2)

This in turn places a bound on the value of φ̃∗ assuming φ∗ ∼Mp0/
√
ξ,

φ̃∗inflation ≡
φ∗
k

∣∣∣∣
inflation

.

√
ξ

λ
. (5.3)

Given the above estimates, for the dimensionless product Gφ2
∗ which appears in the beta

functions at non-zero v.e.v, it follows that

Gφ2
∗ = G̃φ̃2

∗

∣∣∣
inflation

∼ 1
ξ
, (5.4)

where we assumed that G 'M2
p0 at energies well below the Planck mass.

We can now get an estimate of the different terms in the equations (4.21)–(4.23). We
remind that the explicit expressions are given in (B.1)–(B.3) of the appendix. As an overall
remark, notice the appearance of powers of ξφ̃∗ in the respective numerators, which can
in principle acquire large values. Let us start with the quantity Ω which appears in the
denominators and is defined in (4.19). In the regime φ̃∗, ξ � 1 it can be approximated as

Ω ' 72πξ2Gφ2
∗ ∼ 72πξ, (5.5)

where we used (5.4). We now look at the beta function for G̃. Evaluating its denominator
using (5.5), it turns out it is of the order ∼ 104ξ2. Its numerator consists of three different
terms apart from the canonical one, a quadratic, cubic and quartic term in G̃ respectively.
In view of (5.5) one finds for the overall coefficient of each of them in orders of magnitude
that, ∼ 10−7 · G̃2, ∼ 10−6 · G̃3 and ∼ 10−3 · G̃4 respectively. Since G̃� 1, the beta function
will be dominated by the canonical term = −2G̃ leading to

G̃
∣∣∣
inflation

' k2

M2
p0

&
λ

ξ2 � 1, (5.6)

where we eliminated the arbitrary renormalisation scale k0 by using the measured value
G = 1/M2

p0 , and also used (5.2). Therefore, G becomes constant and equal to its classical
value. In section 3, most of the standard inflationary relations in the Einstein frame where
modified by the quantity x(k) ≡ G(k)/G0. Above result implies that x(k) ' 1, recovering
the standard classical inflationary equations.

The RG equations for ξ and λ (B.2)–(B.3) also assume a non-trivial form. From above
considerations, the denominator of βξ is of the order ∼ 1010ξ3, while the linear term in G̃ in its
numerator picks up a very large coefficient of the order ∼ 104 · ξ4G̃, however, when the latter
is combined with the denominator it yields the overall estimate of ∼ 10−6 · ξG̃ ∼ 10−6λ/ξ,
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using (5.6). In a similar way of thinking, for the second-order term in G̃ one can estimate
∼ 10−4 · ξ2G̃2φ̃2

∗, which in view of (5.4) and (5.6) makes it of the order ∼ 10−4λ/ξ, while
for the cubic term in G̃ it turns out that it is of similar order, ∼ 10−3λ/ξ. In βλ, the
second and higher-order terms in G̃ in its numerator appear coupled to large powers of ξ, e.g
∼ ξ5G̃2 (5.6). When the suppression coming from the denominator is taken into account, the
quadratic term yields ∼ 10−5ξ2G̃2 ∼ 10−5λ2/ξ2, and similar estimates result for the rest of
the corresponding G̃-terms in βλ. As regards the running of the amplitude λ/ξ2, using (4.24),
one can see that it will also receive a suppression which will be at least of the order ∼ λ2/ξ4.

To summarise, the RG equations for a non-trivial v.e.v acquire a very involved, non-
trivial form. The threshold effects from a sufficiently large v.e.v of the scalar in combination
with the sufficiently low value of the cut-off k, act so as the terms from the gravitational
sector in the RG equations receive a suppression in the sense discussed above. Above analysis
also indicated a lower bound for the infrared, sliding RG scale k, presented in (5.2). A more
precise estimate would require a detailed study of the field’s dynamics and structure of the
effective potential, which we will not pursue here. In the next section we will discuss the RG
dynamics for the other limiting case, where φ̃∗ � 1.

6 The post-inflationary regime

We are now interested in the regime where φ̃∗ is sufficiently small,

φ̃∗ � 1. (6.1)

This occurs whenever the scalar has rolled down to a lower v.e.v φ∗ with respect to some
fixed energy scale (e.g after inflation), or as the cut-off scale k increases while φ∗ remains
sufficiently small. In the limit φ∗, v → 0 the exact beta function for G acquires a simple
form. From the flow equation (A.12) it follows,

β
G̃

= (2 + ηG) · G̃, ηG = 14ξ − 55
2
(
12π − G̃

) · G̃. (6.2)

Notice that for G̃ . 1, ξ � 1, the anomalous dimension ηG acquires a large and positive
value, signalling a potentially singular behaviour in the running of G, however this is harmless
for sufficiently low cut-off scales. If we expand ηG for G̃� 1 to linear order, we arrive at the
previously found 1-loop equation but with φ̃∗ → 0,

β
G̃

∣∣∣
1-loop

= 2G̃+ c · G̃2 +O(G̃3), c ≡ 1
24π (14ξ − 55) . (6.3)

It exhibits two fixed points for G̃, the trivial (Gaussian) one with G̃ = 0, and a non-trivial
fixed point at

G̃fp = 48π
55− 14ξ , (6.4)

which becomes negative for ξ > 55/14, and it is always attractive.
For the rest of the equations (4.22)–(4.23), when evaluated in the limit φ̃∗ → 0, all the

non-standard terms ∼ φ̃2
∗G̃ vanish. The exact equation for ξ in this limit is given in (B.7).
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Since we are below the Planck mass, it is enough for our purpose to present the respective
equations under the 1-loop approximation

βξ|1-loop = λ(28ξ + 5)
64π2 + ξ2(48ξ + 31)

8π · G̃, (6.5)

βλ|1-loop = 21λ2

16π2 + λ

π

(
36ξ2 + 14ξ + 5

)
· G̃. (6.6)

Note that the gravitational corrections enter with a positive sign. In view of (5.6), the terms
∼ ξ3G̃ and ∼ λξ2G̃ in above equations are of order λξ and λ2 at the scale given by (5.2). As
the cut-off is decreased though, they tend to decrease sufficiently fast as G̃≪ 1. We can
derive approximate, analytic solutions for equations (6.3)–(6.6) in the regime where ξ � 1,
and assuming that initially G̃ is sufficiently small, so that the equations are dominated by
the standard terms. This allows us to set G̃ = 0 in (6.5) and (6.6). Under these assumptions,
and for ξ � 1, (6.5) and (6.6) yield the familiar solutions8

λ(k) ' λ0

1− 21λ0
16π2 log(k/k0)

, ξ(k) ' ξ0(
1− 21λ0

16π2 log(k/k0)
)1/3 , (6.7)

with λ0 = λ(k = k0) and ξ0 = ξ(k = k0), and k0 an arbitrary energy scale.
Now, looking at equation (6.3) one can see that for ξ � 1, the coefficient of the leading-

order correction in G̃ is c ' 7ξ/(12π) > 0. If we neglect the logarithmic running of ξ and
assume that ξ ' ξ0 ≡ constant in (6.3), then for c ' 7ξ0/(12π) we can solve (6.3) for G̃(k),

G̃(k) '
(k2/M2

p0)
1− (7/24π) · ξ0 · (k2/M2

p0) . (6.8)

We have traded the arbitrary constants in the solution for the renormalised values G̃R =
G̃(k = kR) with kR/k0 � 1. For k2/Mp0 � 1 the solution (6.8) decreases quadratically,
entering deep into the classical regime with G = 1/M2

p0 . Solution (6.8) suggests that as we
raise the cut-off from smaller to higher values, its denominator becomes zero at

k =
√

24π
7 · Mp0√

ξ0
. (6.9)

Of course, by the moment G̃ ' 1, the approximate solutions (6.7), (6.8) are not valid anymore.
The above diverging behaviour is unphysical and cannot exist in reality, as it would suggest
that gravity becomes strongly coupled at a scale below the Planck mass. Most importantly,
the scale defined through (6.9) is beyond the lower bound on the inflationary cut-off scale,
given in (5.2), which implies that by that moment the scalar should have acquired a suffi-
ciently large v.e.v, preventing the coupling to hit the pole. Notice that the scale (6.9) coincides
with the lower value of φ∗ during inflation, implying that at the scale (6.9) φ∗/k ∼ O(1);
beyond this scale, φ̃ could become sufficiently small, turning off the suppression of gravita-
tional effects as described earlier. In this sense, (5.2) also provides an extreme upper bound
for the infrared RG scale at inflation k ∼ kinflation.

8Notice that the exponent of the denominator in the solution for ξ depends on the regularisation scheme
used.
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7 Asymptotic Safety

It is interesting to briefly discuss the possible embedding of the Higgs inflationary ac-
tion within the scenario of Asymptotic Safety (AS). Within AS [68],9 the UV com-
pletion of a theory is achieved under the existence of a UV fixed point under the
RG. For gravity, there are growing indications that this is the case in different setups
ranging from Einstein-Hilbert [41, 74–83] and higher-derivative gravity [45, 84–100], to
scalar-tensor [13, 101, 102] and unimodular gravity as examples [103–106]. The cosmo-
logical consequences and phenomenology of the scenario have been studied in various
works [47, 48, 53, 58, 60, 62, 67, 73, 107–109].

Within the context of Higgs inflation, AS could provide a fundamental framework to-
wards a UV completion, and more solid ground for the behaviour of quantum gravitational
corrections at very high energies. To calculate the fixed-point structure of the action (3.3)
one needs the full, non-perturbative set of beta functions, which correspond to the solutions
of the flow equation (4.14) with the potentials f and V given by (3.4) and (7.1) below. In
this section we will set r = 1 for the regulator parameter, and will work in the deep UV
regime where k →∞, φ∗/k → 0. In this regime, we expand around φ∗ = 0 as

V (φ) = u+m2φ2 + λφ4. (7.1)

Notice that the couplings in (7.1) are related to the ones in (4.15) through u = v+ (1/4)λφ4
∗,

m2 = −λφ2
∗. The zeros of the full system of beta functions extracted from (A.12) suggest

the theory possesses one UV fixed point (UVFP), where all scalar-field interactions become
trivial, while Newton’s constant and vacuum energy, G̃ and ṽ, are interacting,

G̃fp = 0.527, ũfp = 0.019, ξfp = 0, m̃2
fp = 0, λfp = 0. (7.2)

This is the well-known Gaussian-matter fixed point (GMFP), due to the vanishing of the
matter interactions, and has been previously studied in a similar setup [13, 101]. The at-
tractivity properties in the vicinity of the UV fixed point reveal the relevance/irrelevance of
the couplings in the UV. To find out, we calculate the linearised RG flow around (7.2) from
which we can straightforwardly extract the associated eigenvalues. In particular, it turns
out that

λ
ũ,G̃

= −0.243± 4.024i, λξ,m̃2 = −2.43± 4.024i, λλ = 4.462. (7.3)

The eigenvalues associated with the vacuum energy and Newton’s coupling form a complex
conjugate pair, with a negative (attractive) real part, and a similar situation occurs for ξ and
m2. Notice that the non-minimal coupling ξ is relevant, while the quartic one, λ (marginal
in power counting), becomes irrelevant. The connection with AS would require that the
initial conditions along the RG flow set at the end of inflation reach the UV fixed point when
evolved under the RG flow. Sufficiently close to the fixed point, for the stability of Newton’s
coupling, according to the discussion around 4.25 and from equation (6.2) respectively, we
see that a necessary condition is10

ξ <
55
14 ' 3.93. (7.4)

9For reviews see refs. [31, 32, 34, 69–73].
10Notice however that the exact value of the coefficient depends on the regulator choice. More details

around this are discussed in section 8.
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Figure 1. The figure illustrates the variation of the non-trivial fixed-point values in (7.2) with the
regulator parameter r (see also section 4) with respect to its optimal value, i.e ũfp(r)/ũfp(r = 1)
(Blue, dashed) and G̃fp(r)/G̃fp(r = 1) (Red, continuous).

Of course, the pole (6.9) should be also avoided in evolving from sufficiently low scales,
but this is what one would expect to happen taking into account the running of the v.e.v
φ∗, remembering that (6.9) corresponds to the vacuum case. A study of this issue would
require a detailed numerical study of the complete set of beta functions, which we leave for
a future work.

8 A comment on the gauge and regulator dependence

The use of a truncated theory space in combination with working off-shell introduces a
dependence on the regulator and gauge choice respectively.11 The explicit dependence on
the regulator parameter r significantly increases the complexity of the equations, so we only
explicitly discuss its influence on the renormalisation of G at leading order and on the UV
fixed-point values respectively, for the vacuum case. The same is true for the gauge parameter,
and below we will briefly discuss the case of the Landau gauge.

The leading order correction in the equation for the renormalisation of G, equation (6.3),
has been crucial for the earlier analysis. With an unspecified regulator parameter (r) it reads

β
G̃
' 2G̃+ c · G̃2 +O(G̃3), c = 1

24π

(
−28 + 45

r
− 72
r2 + 14ξ

r2

)
. (8.1)

The ξ-independent terms in c give a negative contribution for all r > 0, while for ξ � 1, r
would also have to be also very large to make the contribution of ξ unnoticeable. One is here
reminded that, r = 1 corresponds to the “optimal” value of the regulator function [42] (see
section 4), and one should not expect large deviations from it. It is also interesting to notice
that the UV fixed point exists as long as r ∼ O(1), in particular 0.33 . r . 3.6 (see also
figure 1).

The beta functions presented here have been also calculated in [101] using a different
field decomposition and in the Landau gauge (α = 0). Let us write here the results found

11For issues regarding gauge and regulator dependence within the functional RG see for exam-
ple [74, 110–113].
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there for G at 1-loop,
β
G̃
' 2G̃+ 1

24π (24ξ − 77) · G̃2, (8.2)

and we have performed a similar check for the beta functions for ξ and λ. Notice that
the order of magnitude and signs of the coefficients in (8.2) are in agreement with the ones
presented here.

9 Summary

We employed the functional RG to study quantum corrections for the Higgs inflationary
action during inflation and beyond, including the effect of gravitons. The formalism employs
the Wilsonian approach to the RG, which provides an effective description of the physical
system from small to large scales, as the infrared RG scale is moved in a continuous way.
What is more, its extension to the non-perturbative realm allows for a connection with the
Asymptotic Safety scenario for quantum gravity. Within this framework, we evaluated the
exact RG flow for the Higgs-gravity effective action, and explicitly studied the resulting RG
equations including the leading-order gravitational corrections at 1-loop, under the particular
assumptions described in section 4.1 (see appendices A.1 and B for explicit expressions). In
particular, the calculation was performed in the Jordan frame and for the background of a
Euclidean de Sitter.

During inflation, the corrections coming from the gravitational sector acquired a non-
trivial form, with the new terms generated under the RG due to the scalar’s non-zero v.e.v
φ∗ ∼ Mp0/

√
ξ, introducing appropriate threshold effects which allowed for a suppression to

the running of the couplings such as the quartic interaction λ, non-minimal coupling ξ and
Newton’s coupling, in the sense explained in section 5. In particular, in this regime, Newton’s
G presented a negligible running, reducing to its constant, classical value. The sliding RG
scale k within this framework is interpreted as the typical energy or coarse-graining scale
of the system. The consistency of the approach placed a lower bound on its value during
inflation, suggesting it to be of the order ∼

√
λMp0/ξ (see the discussion in section 5), which

lies a few orders of magnitude below the Planck scale. As long as the v.e.v of the scalar
dropped to sufficiently low values after inflation, with gravity entering the deep classical
regime at lower cut-off scales, the RG equations acquired their standard perturbative form,
allowing for a connection with the low-energy regime. What is more, as discussed in section 7,
at arbitrarily high energies, the theory possesses the well known Gaussian-matter UV fixed
point, which could provide a connection of the model with the scenario of Asymptotic Safety.
In particular, the RG dynamics would be expected to drive the large initial value for ξ to
smaller values at higher energies, eventually reaching its fixed-point at ξ = 0.

To conclude, Higgs inflation could provide with a promising framework for the early
universe and a natural extension of the standard model of particle physics. The investigation
of its connection with the physics of higher energies and a potential UV completion, including
gravity, are natural questions to ask. The issue of the possible instability of the Higgs
potential due to the influence of gauge/Yukawa couplings has not been considered in this
work, and its study poses a challenging issue within this context. What is more, in view of
our original action ansatz, the higher-order operators generated under the RG procedure were
neglected, and their study could provide further insights about the model, such as the issue
of unitarity violation. An analysis of the structure of the RG dynamics beyond 1-loop and
the connection with Asymptotic Safety is yet another challenging task. From the discussion
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of sections 6 and 7 it turns out that in this direction, a consistent study of the full system
of RG equations taking into account the running of the scalar’s v.e.v is required. We hope
that this work will motivate further studies of the model within the functional RG and/or
Asymptotic Safety.

A Evaluation of the ERGE

Here we present more explicit steps for the calculation of section 4. Our starting point is the
action

Γ[gµν , φ] =
ˆ
√
g

[
−f(φ)R+ 1

2g
µν∂µφ∂νφ+ V (φ)

]
. (A.1)

Under the field expansion of the metric and scalar field around a constant background (ḡµν , φ̄),
as gµν = ḡµν + hµν , φ = φ̄+ δφ we expand up to second-order as

δ(2)Γ ≡
ˆ
√
gΦA · ΓAB · ΦB = 1

2

ˆ
√
gf(φ)

[
− hρνhρσRνσ + hhρσRρσ

+ 1
2hρσh

ρσR− 1
4h

2R+Rρ
µν
σhµνh

ρσ

− 1
2hρσ�h

ρσ + 1
2h�h−∇

κhκµ∇λhλµ +∇κhµκ∇µh+ V (φ)(1
2h

2 − hαβhαβ)
]

− 2f ′(φ)
[1

2Rh · δφ+ δφ · (−hαβRαβ −�h+∇α∇βhαβ)
]

+ V ′(φ)hδφ

+ δφ
[
V ′′(φ)− f ′′(φ)R+ (−�)

]
δφ. (A.2)

Notice that derivatives and curvature tensors in (A.2) are built out of ḡµν . From (A.2) it
is a straightforward excercise to extract the individual entries of ΓAB, corresponding to the
different vertices. They read as

Γαβγδhµν ·hµν = f(φ)
2 ·

[
1
2
(
gγ(αgβ)δ + gα(γgδ)β − gαβgγδ

)
(−�)

+ 1
2
(
gγ(βδα)

κ δ
δ
λ + gβ(γδ

δ)
λ δ

α
κ − 2gαβδ(γ

κ δ
δ)
λ

)
∇κ∇λ

+ 1
2
(
gαβgγδ−gγ(αgβ)δ−gα(γgδ)β

)
V (φ)+2Rγαβδ−

(
gγ(αRβ)δ+gα(γRδ)β−2gαβRβγ

)
+
(
gγ(αgβ)δ + gα(γgδ)β − 1

2g
αβgγδ

)
R

]
, (A.3)

Γαβhµν ·φ = f ′(φ) ·
[(
δ(α
µ δ

β)
ν + gαβgµν

)
∇µ∇ν − (Rαβ − 1

2g
αβR)− gαβ V

′(φ)
2f ′(φ)

]
, (A.4)

Γαβφ·φ = − (−�) + f ′′(φ)R− V ′′(φ). (A.5)

Similarly as before, for the gauge-fixing and ghost operators respectively we have

SαβγδGF = −f(φ)
2α

[1
2
(
gδ(αδβ)

κ δ
γ
λ + gβ(γδ

δ)
λ δ

α
κ − 2gγδδ(α

κ δ
β)
λ

)
∇κ∇λ − 1

4g
αβgγδ(−�)

]
, (A.6)

Sghost
µ
ν = −

(
−�− 1

4R
)
δµν . (A.7)
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Under the trace expansion (4.9) and the background choice of a Euclidean sphere where
Rαβγδ = (R/12) · (gαγgβδ − gβγgαδ), the different inverse propagator entries take a simpler
form which schematically reads as

ΓΦA·ΦB = ZΦAΦB (φ,R; r) · (−�) + UΦAΦB (φ,R; r). (A.8)

The regulators which will serve as to cut-off the eigenvalues of the Laplacian which’ value is
less than the infrared cut-off k are appropriately defined as Rk ΦAΦB ≡ ZΦAΦB · Rk (−�; r) .
Under the modification of the Hessians, Γk ΦAΦB (−�)→ Γk ΦAΦB (−�) +Rk ΦAΦB (−�), the
regulators Rk will combine with the associated laplacian operators, which corresponds to the
choice of a Type 1a cut-off. With above relations and definitions, the calculation of the trace
integral in the ERGE (4.5) reduces to the evaluation of the trace over momenta

1
2Tr

[
(ΓΦAΦB +RΦAΦB )−1 · ∂tRΦAΦB

]
, (A.9)

where it is understood that the first term stands for a matrix inverse, and the dot corresponds
to a matrix multiplication respectively. Defining Pk(−�) ≡ −�+Rk(−�), the trace can be
evaluated as [41, 80, 114]

Tr
[

g(−�)
Pk(−�) + U(R̄)

]
= 1

(4π)2

∞∑
i

∞∑
l=0

Q2−i

(
g(−�)

P l+1
k (−�)

)
· (−1)l

ˆ
d4x
√
g tr(U)l a2i(−�),

(A.10)

with the definition of the functionals Q2−i

Q2−i

(
g(z)

P l+1
k (z)

)
=
ˆ ∞

0
dse−zsg̃(z), (A.11)

ands z ≡ −�. The function g denotes either g ≡ Rk or g ≡ k∂kRk, while g̃ stands for
the anti-Laplace transform of g. a2i(−�) correspond to the heat kernel coefficients of the
Laplacian. For more explicit details we refer to refs. [32, 41, 44, 76, 80, 114].

A.1 The flow of the effective action
The flow of the effective action according to the ERGE organises itself in the following way,

∂tΓk = F0 + F1 ·
∂tf

f
+ F2 ·

∂tf
′

f ′
, (A.12)

with primes here denoting derivatives with respect to φ̃ ≡ φ/k and ∂t ≡ k∂k. It is convenient
to work with the dimensionless quantities measured in units of the cut-off k,

f̃ ≡ f̃(φ̃) ≡ f/k2, Ṽ ≡ Ṽ (φ̃) ≡ V/k4, R̃ ≡ R/k2. (A.13)

Introducing the convenient quantities σ ≡ Ṽ /f̃ and ω ≡ (3 + R̃)f̃ ′+ Ṽ ′, the individual terms
appearing in the flow equation (A.12) are defined as follows,

F0 ≡−
1

4π2

(
1 + 7

12R̃
)

+ 1
16π2 ·

9(3 + R̃)
D0

+ 1
8π2 ·

f̃ ′ω(3 + R̃)
D2

+ 1
192π2 ·

f̃

D1

[
2
(
14 + 5R̃

)
(σ − 1)− 8(3 + R̃)

(
1− R̃f̃ ′′ + Ṽ ′′

) ]
,

F1 ≡
(2 + R̃)f̃

64π2 ·
[

9
D0
− 2

3 ·
1− R̃f̃ ′′ − Ṽ ′′

D1

]
, F2 ≡

1
32π2 ·

(2 + R̃)f̃ ′ω
D1

, (A.14)
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D0 ≡ f̃
(
3 + 2R̃− 3σ

)
, D1 ≡ f̃

[
−ω2/f̃ + 2 (σ − 1)

(
1−Rf̃ ′′ + Ṽ ′′

)]
,

D2 ≡ f̃
[
2(1− σ) + ω2/f̃ + 2 (1− σ)

(
Ṽ ′′ − R̃f̃ ′′

)]
, (A.15)

Equation (A.12) describes the change of Γk under an infinitesimal change of the RG scale
k. As expected, the flow of the effective action depends only up to second derivatives with
respect to the scalar φ, and up to first-order derivatives with respect to the RG scale k.
Notice the RG derivatives on the right-hand side which reflect the RG-improvement beyond
the 1-loop level. A similar flow equation has been previously derived in [101] using a different
field decomposition and evaluated in the Landau gauge.

A.2 Flow of the scalar potentials V and f at 1-loop

It is instructive to evaluate the 1-loop approximation of the flow equation, which corresponds
to switching off the RG derivatives on the right-hand side of (A.12), see also (4.3). In what
follows, primes will denote derivatives with respect to φ̃. Then, the flow of each potential is
described by the following equations

∂tṼ = (−4 + ηV ) Ṽ , ∂tf̃ = (−2 + ηf ) f̃ , (A.16)

with the anomalous dimensions of the potentials f and V respectively taking the follow-
ing form

ηf ≡
∂tf

f
= (Af̃ · cf̃ )T · df̃ , ηV ≡

∂tV

V
= (AṼ · cṼ )T · dṼ . (A.17)

Above matrices are defined as

A
f̃
≡ 1

386π2 ·
1
D2 ·


−55 2 −19
14 −28 14
−115 14 −43
−60 12 −24

 , c
f̃
≡

 1
σ
σ2

 , d
f̃
≡


1
f̃ ′′

σf̃ · (Ṽ ′′/Ṽ )
σ2f̃2 · (Ṽ ′′/Ṽ )2

 ,

(A.18)

AṼ ≡
1

192π2 ·
1
D
·



86 −(41+11σ) −34
378 108 0
432 −216 0
120 96 0
72 −24 −48


, cṼ =

 1
σ
σ2

 , dṼ ≡


1

f̃ ′2/f̃

σf̃ ′ · (Ṽ ′/Ṽ )
σ2 · (Ṽ ′/Ṽ )2

σf̃ · (Ṽ ′′/Ṽ )

 ,

(A.19)

together with the definition of the quantity D

D ≡ f̃2 · (1− σ)

2 (1− σ)
(
1 + Ṽ ′′

)
+

(
3f̃ ′ − 2Ṽ ′

)2

f̃

 . (A.20)
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B Explicit relations for the running couplings

Here we provide the 1-loop expressions used in the text at non-zero v.e.v for φ, and fixing the
regulator parameter r = 1 for simplicity. They are extracted from (A.12), first expanding the
potential as in (4.15) (neglecting vk), and then projecting out the corresponding operators
appearing on each side of the equation. Defining ZG ≡ 1/(16πG), we have

−
(
∂tZG

ZG

)∣∣∣∣
1-loop

= (16πG̃) ·
[
14ξ − 5

(
48µ2+46µ+11

)
+ 8πG̃φ̃2

∗ξ ·
(
− 480µ2−2088µξ−460µ+108ξ2

− 1055ξ−110
)

+
(
8πG̃φ̃2

∗ξ
)2 ·

(
− 240µ2−2088µξ−230µξ−5076ξ2−1069ξ−55

)]
·
(

384π2
(

1 + 8πξG̃φ̃2
∗

)2
· Ω2

)−1
, (B.1)

−1
2 ∂tξ|1-loop =

{
− 3λ (10µ+ 28ξ + 5)− 8πξG̃ ·

[
3ξ
(
24µ2 − 77µ+ 31

)
−
(
192µ3 + 334µ2 + 119µ

)
+ 144ξ2 (3µ+ 1)

]
+ 64π2ξ2G̃2φ̃2

∗ ·
[
3ξ
(
1056µ2+528µ−31

)
+ µ

(
384µ2 + 758µ+ 283

)
+ 9ξ2 (276µ− 85)− 972ξ3

]
+ 512π3µξ3G̃3φ̃4

∗ ·
[
192µ2 + 27ξ (120µ+ 47) + 394µ+ 972ξ2 + 149

]}
·
(
384π2Ω3)−1

,

(B.2)

1
4 ∂tλ|1-loop =

{
63λ2 + 16πλG̃ ·

[
72µ3 + 104µ2 + 27ξ2 (3µ+ 4)− 42ξ (µ− 1) + 64µ+ 15

]
+ 96π2ξG̃2 ·

[
ξ2 (−468µ2 + 588µ+ 6

)
+ ξµ

(
1296µ2 + 1658µ+ 631

)
+ 4µ

(
72µ3 + 104µ2 + 64µ+ 15

)
+ 54ξ3 (6µ+ 1)

]
+ 768π3ξ2G̃3φ̃2

∗ ·
[
ξ2 (9144µ2 + 4953µ+ 6

)
+ 2ξµ

(
1296µ2 + 1826µ+ 547

)
+ 4µ

(
72µ3 + 104µ2 + 64µ+ 15

)
+ 54ξ3 (6µ+ 1)

]
+ 2048π4µξ3G̃4φ̃4

∗ ·
[
9ξ
(
432µ2 + 632µ+ 173

)
+ 4

(
72µ3 + 104µ2 + 64µ+ 15

)
+ 81ξ2 (360µ+ 167) + 39366ξ3

]}
·
(

192π2
(

1 + 8πξG̃φ̃2
∗

)
· Ω3

)−1
, (B.3)

along with

Ω ≡ 16πµξG̃φ̃2
∗ + 8π(9ξ + 1)ξG̃φ̃2

∗ + 2µ+ 1, µ ≡ λφ̃2
∗. (B.4)

For completeness, here we present the equations for φ̃∗ and ṽ. To avoid presenting too
many lengthy expressions it will be enough to present the corresponding expressions without
gravitational corrections. They read as

βφ̃2
∗

∣∣∣
G̃=0

= −2φ̃2
∗ + 7

32π2 ·
1− 4µ

(1 + 2µ)3 , (B.5)

βṽ|G̃=0 = −4ṽ + 1
192π2 ·

43 + 223µ+ 481µ2 + 288µ3

(1 + 2µ)3 . (B.6)
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The expression for the running of the coupling ξ in the limit ũ, φ̃∗ → 0, and without
invoking the 1-loop approximation assumes a relatively simple form and reads as,

∂tξ

ξ
=

4πλ(252ξ+45)+
(

13824π2ξ3+8928π2ξ2−84λξ−15λ
)

· G̃−8π
(

126ξ4−204ξ3−(997/2)ξ2+55ξ
)

· G̃2

2304π3ξ + 384π2 (18ξ2 + 15ξ − 1) · ξG̃− 16π (36ξ2 + 30ξ − 1) · ξG̃2
.

(B.7)

C Initial conditions at the electroweak scale

For completeness, here we report the 1-loop SM equations of ref. [20] used to calculate the
initial conditions for the SM couplings at the inflationary scale. The couplings of interest
are {λ, yt, gs, gEW , gEM}, corresponding to the quartic Higgs, the top-Yukawa, the strong,
SU(2)L and U(1)Y gauge couplings respectively. The initial conditions we use at the top-
quark mass scale are given by the following relations [115]

λ = 0.12604, yt = 0.9369, gs = 1.1666, gEW = 0.64779, gEM = 0.35830,

at k = Mt = 173.34 GeV. (C.1)

Neglecting the contributions of the lighter quarks in the MS scheme, the expressions pre-
sented in ref. [20] read

β
(SM)
λ = 1

16π2 ·
(

21λ2 + λ · (12y2
t − 3g2

EM − 9g2
EW)− 6y4

t + 9
8g

4
EW + 3

8g
4
EM + 3

4g
2
EM · g2

EW

)
,

β(SM)
yt = yt

16π2 ·
(9

2y
2
t − 8g2

s −
17
12g

2
EM −

9
4g

2
EW

)
,

β(SM)
gEM = 1

16π2 ·
41
6 g

3
EM, β(SM)

gEW = − 1
16π2 ·

19
6 g

3
EW, β(SM)

gs = − 7
16π2 g

3
s . (C.2)

We have modified the coefficient of the λ2 term in β
(SM)
λ so that it matches the one derived

here. To get the initial conditions at inflationary scales, we solve equations (C.2) for the
initial conditions (C.1) at k = Mt up to the inflationary cut-off scale, following the spirit
of [20, 21, 116]. In doing so, we will neglect any gravitational corrections. Using the measured
values (C.1) as initial conditions in the equations (C.2), and integrating them numerically
up to k = k(inflation) ∼ 10−4Mp0 (see section 5) we find

λ = 6.461 · 10−3, yt = 0.6292, gs = 0.7429, gEW = 0.5903, gEM = 0.3852. (C.3)

Notice that for above initial conditions λ crosses zero around the scale ∼ 10−3Mp0 . The actual
significance and implications for the (meta-) stability of the potential is a very delicate issue,
also strongly depending on the initial conditions at the EW scale. This poses an important
issue of study on its own, which we will not pursue here. In this work, it is enough for our
purposes to assume that λ remains positive at the inflationary scale, and we refer to [117–124]
for discussions.
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