
national accelerator laboratory 
THY-16 

i97/ 

TRIPLE REGGE COUPLING 
AND DIFFRACTIVE SPIN DEPENDENCE 

Shau-Jin Chang*, David Gordon, F. E. Low** 
and 

S. B. Treiman*** 
National Accelerator Laboratory 

Batavia, Illinois 60510 

ABSTRACT 

From qualitative arguments based on Regge behavior 

of three to three scattering amplitudes, taken together with 

the assumption that the vacuum trajectory function passes 

through unity and has a finite slope there, we argue that: 

11 the vertex function coupling three vacuum trajectories 

vanishes linearly at zero momentum transfer: and 2) a certain 

constraint equation equivalent to the vanishing of a single 

crossed channel helicity amplitude, connects the j + 1 indepen- 

dent helicity amplitudes for forward diffractive scattering 

of a boson of spin j>l. The appearance of certain spurious 

poles in the 3 + 3 amplitude plays an important role in the 

discussion. We check our arguments in a simple Feynman 

diagram model. 
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I. Introduction 

Much interest in the Regge properties of three-to-three 

scattering amplitudes has been evident in the recent literature. 

This arises from Mueller's(') discovery of a relation between 

a certain discontinuity of the forward amplitude and the 

cross section for a corresponding inclusive cross section. 

Using a generalized form of unitarity, Mueller showed 

that 

(1.1) 

where F is the connected amplitude for the forward three 

body process shown in Fig. 1. The squared center of mass 

energy is 

s = - (f, + + y ; (1.2) 

the invariant momentum transfer to the measured particle 

is 

t = - ((yfhJ= ; 

and M is the "missing mass" defined by 

MZ=- (y +T, - yd-. 

(1.3) 

(1.4) 
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The symbol discM2 denotes discontinuity with respect to 

M'; and 3 do/di2 is the differential cross section for the 

inclusive reaction 

fl, f/p --3 fJz -f- x * (1.5) 

Regge arguments (2) suggest that, in the limit M'+m, 

s/M'+m,disc M2F behaves like 

(1.6) 

where d, is the vacuum trajectory function evaluated 

at zero momentum transfer and @..(t) is the leading Regge 

trajectory function in the t channel. The coefficient which 

couples the trajectories is B (t). 

Poles in the t variable at integer values of d(t) 

are explicitly displayed via the factor (sin rr~u(t))-'. 

In the remaining coefficients, zeroes may occur in the signature 

factor or in the coupling coefficient B (t). One particular 

(3) zero, it is well known, must occur: if total cross sections 

approach constant values at large energies (d, = 1). if 

d, has a finite slope at zero momentum transfer, and if 

the t channel trajectory is itself the vacuum trajectory, SO 
that at t = 0, o( (t) = s', = 1,then 13 -+ 0 as t + 0. 
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How this zero comes about dynamically is not fully 

understood. One only knows that it must be present if 

dv = 1 is to be consistent solution of the dynamical 

equations, whatever they may be. 

In contemplating this and other related questions, it 

is useful to interrogate the Veneziano model for the six point 

function.(4) One can explicitly compute there not only the 

discontinuity function A(s, M', t) but the full six point 

amplitude F(s, M*, t] itself. Several interesting features 

emerge from analysis of the Veneziano model as we shall now 

discuss. 

Spurious t variable singularities in the full amplitude 

F: From Eq. (1.6) we see that F must have the form 

F _ I*) j ,,~~$~pv 

z df -3Jlt-) 

53.dv-‘+f J 

-P 

_ .^,. __. c__-_-.-. -- 

+ f ’ 

$ L, l-j- (zd(t)-iu: ) s-,Lm= irdkt ) (1. 7) 

where F' has no asymptotic discontinuity in M2. Zeroes of 

the sine functions in the denominator appear to produce un- 

expected poles in F at t values for which 2 d(t) - d is V 
an integer. The Veneziano model in fact produces an amplitude 

which conforms with Eq. (1.71, with its apparent poles. These 

poles must, of course, be spurious since there are no particle 

states with mass fi corresponding to 2d(tl - d, = integer. 

We can imagine, in advance, that the spurious poles are canceled 

in either of two ways. Namely, either B(t) has zeroes at 

these points or else $ cancels the poles in the first term 
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of Eq. (1. 7). 

We learn from the Veneziano model that both methods of cancellation 

occur there. The spurious poles at 2a(t)-cu y= 1, 2,. . . are cancelled 

by zeroes of P(t), i. e. , the absorptive amplitude A has zeroeS at these 

points. On the other hand, the poles at 2 a(t)wy.= 0, -1, -2,. . . are 

I . 
explicitlycancelled by the “subtraction” function F , i. e., F- has the 

form 

F:’ 
/ 

s”/y 
-v --~ ..,.. ~~.~~,, 

2.4i-f )-dJ 

where the coefficient functions f 1’ f2,. . . are such that the spurious 

poles at 2@(t)-olv= 0. -1. -2,. . . are exactlycancelled. If this latter 

mechanism were also operative with respect to the spurious poles at 
. 

2a(t)-Luv =1, 2,. . . we would need terms F which behave like 

S “v+1/~2, s cy y+21M4,. . . . This would represent not only a highly non- 

Regge structure for the full three particle amplitude, but a rather sick 

asymptotic expansion. (5) We do not expect cancelling terms like 

s 2a t /M2, s ‘@t /M4 ,..., because the general Regge behavior for 

fixed s /M2 is supposed to be (M2)@‘v G(S/M2, t). That is, as has 

been called to our attention by Professor M. L. Goldberger, we are 

assuming this form for the full 3-3 amplitude as well as for its absorptive - 

part; and moreover, we are assuming that G(s /M2, t) is free of spurious 

poles as S/M2+ m .We are therefore inclined to believe that the occurrence 

of zeroes in@(t) at 20(t)-ay=l, 2.. . . is a very general phenomenon that 

goes beyond the Veneziano model. 
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Related directly to this phenomenon of the zeroes of !3 (t) is the 

vanishing of the leading power of the inclusive cross section at t = 0 

for the case where all three trajectories joined by the triple Regge 

vertex pass through a=1 at zero momentum transfer. 
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On the other hand, the elimination of the spurious 

poles at 2d(t)-dv = 0, -1, -2,... must occur, in our 

view, by the subtraction mechanism, since otherwise B(t) 

would vanish in the physical region (t<O) and we would 

be confronted by negative cross sections (barring the 

appearance of double zeroes). It appears, then, that the 

Veneziano model deals with the spurious poles in the most 

reasonable of ways. 

Nothing in the above discussion, nor in the details 

of the Veneziano model, gives any hint of the mechanism 

whereby a more general model (e.g., the real world) will 

produce the expected vanishing of the triple Regge vertex 

function S(t) at 2&(t)-dv = 1, 2,... and the pole cancelling 

subtraction effect at 2d(t)-dv = 0, -1, -2,.... Since 

the 3 -+ 3 amplitude is compounded of 2 -+ 2 amplitudes as well 

as the 3-3 parts, it could be that the success of the sub- 

traction mechanism implies precise relations between multi- 

Regge coefficients and 2 + 2 amplitude parameters (e.g. 

coupling constants). In order to study this question, we have 

performed a simple model calculation based on a single type of 

multi-ladder Feynman diagram, shown in Fig. 2. (‘3) The dis- 

continuity function A(s, M', t) is computed in the next 

section. The results are consistent with our hypothesis: 

B(t) = 0 for 2d(t)-d V = 1, 2,.... On the other hand, the 

spurious singularities at 2d(t)- dv = 0, -1, -2,;.. are 

canceled by naturally occuring subtraction terms in F', without 
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any need to call upon other diagrams and hence without any 

implication of coupling constant or other parametric identies. 

Going beyond the specifics of our model, we consider in 

the last section the implications of the presumed vanishing 

of the triple Regge function B(t) in the time-like region 

(t>O) at the points 2 d(t)-dv = 1, 2,..., in particular, 

with d, = 1, at the boson particle points d(t) = 1, 2,.... 

At such points, we are in effect considering the forward 

elastic scattering on a spinless target of a particle of 

mass fi and spin j = o( (t) = 1, 2,.... Let fz be the forward 

amplitude for s-channel helicity m (which is of course conserved). 

We learn for the vacuum trajectory contribution to the fi that 

3 z C-1 )” -+. -,___~.‘,_ ..-,.. _..- lll..l-,.“. Jt (+n)l, (,.Ayl, I, 4; =iY, 
M1=-5 (1.9) 

That is, at zero momentum transfer, the combination of s-channel 

helicity amplitudes indicated above decouples from the vacuum 

trajectory. For the special case of vector particles (j = 1) 

this result implies that the amplitudes are independent of 

helicity in the high energy limit where the vacuum trajectory 

dominates. For particles of higher spin (j > 1) helicity 

independence is not necessarily required by Eq. (1.9) but is 

consistent with it, (5) as we see from the identity 

I -- 
z 

(-I)” - ; (>I( iTL?l! r 0 
tr,-L.z- 
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It may also be remarked that Eq. (1.9) is equivalent, via 

well known crossing relations, (7) to vanishing in the crossed 

(pp) channel of the amplitude corresponding to maximum 

helicity difference (A-5; = *2jl.(8' This result in fact also 

follows directly from the interpretation of Eq. (1.6) in 

terms of helicity poles. (9) 
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II. The Model 

Our model is based on the diagram of Fig. 2, where 

the boxes describe off mass shell 2 + 2 amplitudes for which 

we adopt the Regge properties corresponding to ladder graphs. 

The Regge trajectory function associated with momentum transfer 

t is d (t) and the unsignatured amplitude associated with the 

corresponding two boxes is 

R, = - il( k- P.ffy+ (k” 
J 
(k+p\-T f t ) 

2.) . 
su, T d(t) 

The trajectory function associated with momentum transfer zero 

is CJ and the amplitude associated with the corresponding 

box is 

t 
V 

--__ “___ .l__“._l.- 
. 

(2.2) 

For the moment we are regarding dv and O((t) as adjustable, 

so, e.g., 3(v has not yet been set equal to unity. But we 

are already anticipating, for M*+m, s/M'--, that Rt and Rv 

can be approximated by their high energy forms. In Eqs.(2.1) 

and (2.2) we have suppressed the factorized dependence on external 

masses. 
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The forward 3 + 3 amplitude is given by 

d'k R;& ' I __.~ ._.,..., - .__.-,.. --- , --.--,.I...--.,,,.) 
--&. [(k+p,-p&/u;-] kLt/$ . 

(2.3) 

In order to carry out the k-integration, it is convenient 

to use a spectral representation for the integrand based on 

the identity 
c-0 

- (-sy I AsI s-’ 4 
_._. .,~,..,. .,..,.. ” 
r:<, TT d 

“y- I 
__._,I_._. - -l<s(<o. * s ‘-” s-:&s ’ 

(2.4) 

For tiv and 2d (t) in the interval -1 to 0 we therefore have 

e; f/-, -..!.. ,_,_ ~,_ .,___,...., _I.^ .,?...... ~.z. ’ I ___,~_ ..r .,.,...I,.; .I.,.‘F = 

p+p,- P-F-p: ] k’+/d” 

sIMindirt) / - 
6xTrdlf) 

The double spectral function p(ul', n , t) absorbs the 

free propagator functions and provides for off mass shell 
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behavior of the residue functions 5, and Bv. We may 

note here that any fall off of these functions for large 

values of the off shell mass variables will reflect itself 

in superconvergence for the spectral function p. This is 

central to our main result, and we shall return to it at the 

appropriate time. Concerning the representation of Eq. (2.4), 

we emphasize that it holds only for -l<e(<O. Later on, we will 

want to consider the situation for 4' >O, which we reach by analytic 

continuation after the k space integration has been carried out. 

On the other hand, continuation to dv or 2x(t)<-1 is not 

allowed, since in this regime the amplitude is no longer 

controlled by the high energy properties of the Reqqe boxes. 

With integrand given by Eq. (2.5), the k space integration 

of Eq. (2.3) is standard. It is equivalent to the integration 

associated with the square box diagram of Fig. 3. It will 

be convenient to work in the totally space-like region where 

PI', PZ', P' and 

(2.6) 

are all positive. We later continue to the appropriate 

physical region. The amplitude F(s, M', tl is given by 
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F = _ Wt r ‘glt) 
(izsy)? 

x (*n:y+(M; ) dv 
1 

7; d x; 23.. 5kw)) 
i=, -3 D 

(2.7) 

where 

+ r,Q, %u’J + p: A, f3 -+& tiq + 
‘L. +fw+, fm, Kz t/n, 1. fJ +-fir xy . 

(2. 8) 
Carrying out the integrations over ml2 and m2' we find 

F- = - 3_ C~.O f n;l’(f , ~.~~;’ ..-.,. r‘(d&) r-(l~d~f!-+,) rjr-~%/,-z4t)) 

x J’ $i: fp’f&y p-%‘) z.) 1 px; 1 S(i-p;) 8 
-I-‘LdH) -I--dV 

x ^ _,_ 5 .,.?I, ,,, ~. 5 .._--w_l~.-.- 
3 I- 2y’(f)--v 

3 

(2.9) 
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where 

+ pr L $3 -t.p=&J ’ 
(2.10) 

Let us now compute the M2 discontinuity : 

A=&- F(d+r't. )- F-(14'4) 
3. (2.11) 

The discontinuity of D-' is given by 

dkcMz j- -+i = /?;;;!$-f’ ;, (z. 12) 

where the integral symbol here includes all the numerator 

complications of Eq. (2.9) and y = 1-2 ti:(t)-tiv. When 

y > 1 Eq. (2.12) implies an integral to within E of the 

point where D vanishes, plus a semi circular contour of 

radius E which cancels the singularity as E + 0. The analytic 
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continuation to y < 1 omits the semi circular contribution. 

We now suppose that 2 d(t) + d, has been continued to 

positive values, so that Eq. (2.12) has no contribution from 

the tiny semi circle. Let us next study the denominator 

function of Eq. (2.10) with 6i2 replaced by -I+'. Introduce 

the new variables u and z, defined by 

g,= ux ) ~,=4+-~) 

and observe that 

Then 

-D = c--SE +uzIL~~.r 
I 

(2.13) 

(2.14) 

(2.15) 

where 

c z /I&Y, u - (t;c, L(~ J- ++ Y-;,,,~L* +p2xe) (2.16) 

lL xq 
(2.17) 

With respect to the variable z, -D has roots z+ and z- 

given by 
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tl, = 
B 
-... _,__ II_ _._il .,-,.. ",.,",-.~., -.I... ,~, ~.. ,, 

2 -pz= LL.I 
) (2.18) 

so we write 

-D = &yt-~t+ ) (+-~%,“) ) (2.19) 

We take p2 2 to be positive and not too large (ptqP1 2/?~), later 
2 

continuing in p It can 2 
to its (negative) physical value. 

then be established that Z+>l and O<Z-~1, so that the z 

integration runs over the interval 0 < z<z . For the discontinuity 

function A we now find 

d= G.+) 
I 

'I'd" 
hr,= "',,c- pc$-,r", TV) &d-t xq d%=t 42, zl 

i 

x u- '-zdf*) 5 (~"'x,*x,-I) 

(2.20) 

where 
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and t- 

-$-- I- l?.d(CI 

Let us now pass to the first of our limits, s/M2+m 

The 8 function in Eq. (2.28) insures that pz u'(z+-z) 

is well approximated by s x u and z With 2 by C/xzu s. 

these approximation the z integration is easily carried 

out, and we find 
rid(t) -, 

I --A c Lk”;; rk2dik)jr(2dtr)+sc,,j ..,. i. ’ _.,~ . .._...... “_.~,.,_._“.. _--.. 
c /“d, l-h;) ’ (2.23) 

Finally, using the identity 

r-m r (I-G. J = 

we find 

A --3 
d, CS) 

*'d(f) 

-__e___. w-‘--.A 

“/ML -+ w ) &Tj2. sin= rrd(f 

3c,, t 2, d(f 
x 

T’ e-_;__, _.,.._ 
SLLT-CL / 

r 

L 

d IA,z- h/L’ L p I 

1 

j-1 
fY 

-’ I f s(v 

X 

j 

d u- &1. -+- ,f ?, ,f 7( ,( - I ) e; cc. ) c 
(2.24) 

where, as before 



-16- 

THY -16 

?‘ yq 11~ - +,2 g,, -' /id &-,,$- u > Q / 

(2.25) 

We next want to pass to the large M2 limit. With 

respect to the x2 integration, it appears that the contribu- 

tions from small x2, namely x2u#1/M2, produce an M2 depen- 

dence expressed by 2 d (M ) v -2o(lt)* The contributions from x2 

of order unity produce a dependence (u M') cdv -1 and since we 

have continued to NV>0 this term will be convergent for u + 0. 

Notice however that the coefficient of the CM*) d, -1 term is 

independent of the variables 1~-1' and 1-1' and, upon integration 

over ~1 ' and n2 the term would vanish if the following super- 

convergence relation obtains: 

i 
(2.26) 

In the absence of this superconvergence , we would be 

confronted with a crossover phenomenon at 2 d (t) = 1, the 

asymptotic M2 dependence being (M') % -2 n( (t) for 2 o( (t)<l, 
H as expected, and CM') v -' for 2 o( (t)>l, an unexpected result. 

Indeed, in continuing to still larger values of 3((t) we would 

encounter further crossover phenomena at 2 o( (t) = 2, 3,..., 

unless the superconvergence relations keep pace, e.g., for t 

such that 2 ti (t) = 2, unless 

,i 
f /A? +A~ cay: “z t, i 2 d(i) = 2. 

i 

,p p (x GJ )$I’ &J $ ft. r 0 ; 
/ 

(2.27) 
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and so on. 

The presumed absence of crossovers suggests that the super- 

convergence relations do indeed keep pace. One can try to justify this 

assumption ‘by appealing to dynamical models of Regge behavior. At 

issue is the behavior of the residue functions pt and P, of Eqs. (2.1) 

and (2. 2) in their dependence on off shell mass variables. For any 

such residue functions, call it r. let k12 and k2 2 be the off shell 

masses, and let (Y be the trajectory function. In the ladder approximation 

to $3 theory, for example, one finds for large masses that 
(10) 

-...,._.. - 
u(?4 ;” ) d,” .-.J ‘~ ; ) I 

‘\<A>, +t 

\ ;t; ] 
“I~‘.‘. /./ 

(2.28) 

where k2 max is the larger of the two masses. Since in other 

respects our model is essentially based on the $3 theory, we shall 

adopt this off mass shell behavior, although it is in fact stronger 

than we need. We are then led to the following superconvergence 

relations. 

1. Let n be an integer satisfying 

f-6 <m “\ ? “.+& 13 (2.29) 
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Then 

J d/*“pt,C,/““,t> C,dv= o , (2.30) 

2. Let m be an integer satisfyinq 

fvft ( zd(t)t2. - (2.31) 

Then 

Jr,= p (,C,,~‘,t)(,d 
+--a 

= o . \ 1 
(2.32) 

Returning to Eq. (2.24) we now see that the large M2 behavior is 

determined, thanks to the superconvergence by the behavior of the 

integrand for small x2. Hence in the delta function we can set x2 = 0 and 

similarly in Eq. (2. 25) we set x2 = 0 except in the term M2x2u. The upper 

limit on the x2 integration can now be extended to infinity and the x2 

integration becomes elementary. We find 

A----+ 
S/Mr -> 00 1aTT a siKqTO(* r-(1+ d, --w) 

x 5 $J: dpL p cp:,y:-t ) J du- xq AQ ;WXr(-’ J 
d”--2dft-) II Zdff)-1 A u. t xq u *yL xbl +/+-j , 

(2.33) 
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we see a remaining hint of the crossover danger in the factor 

r(1 - 2 $( (t)) . However, at 2 & (t) = 1 the integrand is in- 

dependent of vz and ~1' and superconvergence kills the 

pole; similarly the poles in r(l-2 d (t)) at 2 C%(t) = 2, 3, . . . 

are killed by superconvergence. 

Equation (2.33) shows the promised zeroes at 2 o( (t) -dv=l,2,...; 

these arise from the denominator factor r(l + NV -2 d(" )). To be 

sure, at 2d(t 1-d" = 1, 2,... the u integration diverges as 

u -f 0 and this would appear to cancel the above zeroes. But 

at u + 0 superconvergence with respect to ~1 causes the integral 

to vanish and the zeroes are reinstated. 

We conclude this section with a few comments. 

The triple Regge vertex function B(t) has zeroes, as 

we have seen, at the points 2 !x (t) - dv = 1, 2,... In 

particular, if d, = 1 there is a zero at M(~t) = 1 i.e., the 

triple vacuum trajectory coupling vanishes at zero momentum 

transfer. It is of course well known, for d, = 1, that 

such a vanishing is required for consistency with the constancy 

of asymptotic total cross sections. However our model has not 

in any obvious way taken this consistency requirement into 

account. Moreover, the consistency condition can be satisfied 

by a zero of any order, whereas in the model we have found that 

the zero is a simple one in d (t). The same feature arises in 

the Veneziano model, where the results closely resemble what 

has been found here. On the other hand the vanishing of the 

triple vacuum trajectory coupling (with dv = 1) does not - 
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seem to emerge from an AFS type of model if one computes the 

discontinuity function A(s, M', t) directly, in the manner 

indicated in Fig. 4, where the cut is along the wavy line. (11) 

We believe that this situation resembles the one that arises 

in connection with the AFS (121 "s . Mandelstam(13) Regge cut 

controversy. The diagram in Fig. 4, if it is treated as a Feynman 

diagram, has many M2 discontinuity contributions other than the 

one symbolized by the wavy line. Consistency seems to require 

that these be taken into account since, with d, = 1, the zero 

must occur. We leave it to the reader to deal with this con- 

fusion as best he can. 
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III. Coupling of Particles to the Vacuum Trajectory 

The vanishing of the triple Regge vertex function at 

2 cl (t) - d" = 1, 2,... has interesting implications for 

the coupling of the vacuum trajectory to physical particles 

with integer spin greater than zero, i.e., for the particle- 

particle-Pomeranchukon vertex at zero momentum transfer. (5) 

We are assuming, of course, that the vacuum trajectory passes 

through unity at zero momentum transfer. To see how this goes, 

let us continue our discontinuity function A(s, M',t) to 

positive values of t, a continuation which we have already 

anticipated and discussed in the previous section. In this 

region, we are describing forward scattering on a spinless 

target of momentum p of a diparticle (pl, ~21 whose invariant 

mass is 9% . The s channel energy variable is now MS, and we 

are in the region where M2 is large. Leteand y be the polar 

and azimuthal angles which describe the orientation of the 

vector pl- p2 in the rest frame of the diparticle, with z axis 

along the vector p in that frame. The amplitude can be written 
N 

in the form 

/qmr : z ‘ri, by) y:bi y) f i’i “;YI:!,My 
A$‘, j”,,w a m d” MY-WV (3.1) 

We now continue in t to the particle pole corresponding to 

04 It) = j. We observe that the asymptotic variable s/M2 

is linear in s = UQe. Thus, at the pole, and for z + m, 

we find 
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/-lwp -.+ c i 1 l-“-’ ..~ __ _ ,,., f h’? 2 ” ’ 
ti (j-m)! (itw\i, m+h ' 

The factor (-l)m 

for large 2. In 

factors. At the 

(3.2) 

arises from the fact that sin'&-2 
2 

the above expression C' absorbs m-independent 

pole, we are describing forward elastic 

scattering of a particle of spin j on a spinless target. In 

the direct channel (s channel) fi+m is the helicity amplitude 

for helicity m. We have argued, however, that the amplitude 

vanishes for 2 O(t - d, = 1, 2,..., SO with d, = 1, 

& (t) = j,we argue that the amplitude vanishes for spin j 

integral and larger than zero. Thus, for j>/l we have 

'1 

&z 

WY 
? 

l.l_.~ ._1. ;I,.,...,..,. _I ,..,- _._"* f -3 0 , dh 

', (j-w‘,! 
rrr"4,3+q (3.3) 

ml= - 
I 

This is the result which was announced in the Introduction 

and discussed in some detail there. 
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Figure Captions 

Forward three particle scattering process. Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Model Feynman diagram. 

Equivalent square box diagram, see text. 

Wavy line symbolizes one of the contributions 

to the M2 discontinuity. 
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Note added in proof: 

It has been pointed out to us by A. H. Mueller and 

T. L. Trueman, and also by M. A. Virasoro, that our general 

conclusion on the vanishing of the triple pomeron vertex at t = 0 

ceases to be valid for non-planar diagrams (analogous to third 

double spectral function effects in two-body processes). In this 

case, spurious singularities at wrong (triple Regge) signature points 

can be present in right or left hand M2 cuts separately, and are - 

cancelled when the two cuts are added. This has been verified in 

a model by A.H. Mueller and T. L. Trueman, and independently 

by one of us (D. G. ). 


