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Abstract In this paper, we have studied the accretion of phantom energy on a
(2 + 1)-dimensional stationary Banados–Teitelboim–Zanelli (BTZ) black hole. It
has already been shown by Babichev et al. that for the accretion of phantom energy
onto a Schwarzschild black hole, the mass of black hole would decrease and the
rate of change of mass would be dependent on the mass of the black hole. How-
ever, in the case of (2 + 1)-dimensional BTZ black hole, the mass evolution due
to phantom accretion is independent of the mass of the black hole and is depen-
dent only on the pressure and density of the phantom energy. We also study the
generalized second law of thermodynamics at the event horizon and construct a
condition that puts an lower bound on the pressure of the phantom energy.

Keywords BTZ black hole, Accretion, Dark energy, Generalized second law
of thermodynamics

1 Introduction

It has been found by various astronomical and cosmological observations [1; 2; 3;
4; 5] that our universe is currently in the phase of accelerated expansion. In the
framework of Einstein’s gravity, this accelerated expansion has been explained by
the presence of a ‘cosmological constant’ bearing negative pressure which results
in the stretching of the spacetime [6; 7; 8; 9]. Many other theoretical models have
been presented to explain the present accelerated expansion of the universe includ-
ing based on homogeneous and time dependent scalar field like the quintessence
[10; 11; 12; 13; 14], Chaplygin gas [15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26]
and phantom energy [27; 28; 29; 30; 31; 32; 33], to name a few. The phantom
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energy is characterized by the equation of state p = ωρ , with ω < −1. It pos-
sesses some weird properties: the cosmological parameters like energy density
and scale factor become infinite in a finite time; all gravitationally bound objects
lose mass with the accretion of phantom energy; the fabric of spacetime is torn
apart at the big rip; and that it violates the standard relativistic energy conditions.
The astrophysical data coming from the microwave background radiation categor-
ically favors the phantom energy [34]. Motivated from the dark energy models,
we model phantom energy by an ideal fluid with negative pressure.

The accretion of dark energy onto a black hole has been studied by many
authors [35; 36; 37; 38; 39; 40] after the seminal work of Babichev et al. [41; 42]
who have shown that the mass of the black hole will decrease with time when we
consider the accretion of phantom energy. In the Einstein theory of gravity, the
accretion of the phantom energy onto Schwarzschild black hole and evaporation
of primordial black hole has been discussed [41; 42; 43]. It will be interesting
to investigate the accretion dynamics in low and higher dimensional gravities. It
is also important to investigate accretion dynamics in the extended theories of
gravity.

In this paper we investigate the accretion of exotic phantom energy onto a
static uncharged 3-dimensional BTZ black hole. We will show that the expression
of the evolution of BTZ black hole mass is independent of its mass and dependents
only on the energy density and pressure of the phantom energy. It is well-known
that the horizon area of the black hole decreases with the accretion of phantom
energy, hence it is essential to study the generalized second law of thermody-
namics (GSL) in this case [44; 45; 46]. We show that the validity of GSL in the
present model yields an lower bound on the phantom energy pressure. We also
demonstrate that the first law of thermodynamics holds in the present construc-
tion.

The plan of the paper is as follows: In second section we model the accretion
of phantom energy onto three dimensional BTZ black hole. In third section, we
study the GSL for BTZ black hole. Finally we conclude our results.

2 Model of accretion

Consider the field equations for a (2 + 1)-dimensional spacetime with a negative
cosmological constant Λ

Gab +Λgab = πTab, (a,b = 0,1,2) (1)

where Gab is the Einstein tensor in (2 + 1)-dimension while Tab is the stress energy
tensor of the matter field. The units are chosen such that c = 1 and G3 = 1/8.
Considering the stress-energy tensor to be vacuum, one can obtain the following
spherically symmetric metric, a (2+1)-dimensional BTZ black hole [47; 48]

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2 dφ

2, (2)

where f (r) =−M +r2/l2,M is the dimensionless mass of the black hole and l2 =
−1/Λ , is a positive constant. The coefficient g00 is termed as the lapse function.



Generalized second law of thermodynamics for a phantom energy 3

The event horizon of the BTZ black hole is obtained by setting f (r) = 0, which
turns out, re = l

√
M. Also we have

√
|g| = r, where g is the determinant of the

metric. To analyze the accretion of phantom energy onto the BTZ black hole, we
here employ the formalism from the work by Babichev et al. [41; 42]. The stress
energy momentum tensor representing the phantom energy is the perfect fluid

T ab = (ρ + p)uaub + pgab, (3)

Here ρ and p are the energy density and pressure of the phantom energy while
ua = (u0,u1,0) is the velocity three vector of the fluid flow. Also u1 = u is the
radial velocity of the flow while the third component u2 is zero due to spherical
symmetry of the BTZ black hole. There are two important equations of motion in
our model: one which controls the conservation of mass flux is Ja

;a = 0, where Ja is
the current density and the other that controls the energy flux T a

0;a = 0, across the
horizon. Since the black hole is stationary, the only component of stress energy
tensor of interest is T 01. Thus the equation of energy conservation T 0a

;a = 0 is

ur(ρ + p)
√

f (r)+u2 = C1, (4)

where C1 is an integration constant. Since the flow is inwards the black hole there-
fore u < 0. Also the projection of the energy momentum conservation along the
velocity three vector uaT ab

;b = 0 (the energy flux equation) is

ur exp

 ρh∫
ρ∞

dρ

ρ + p

 =−A1. (5)

Here A1 is a constant and the associated minus sign is taken for convenience. Also
ρh and ρ∞ are the energy densities of phantom energy at the BTZ horizon and at
infinity respectively. From Eqs. (4) and (5), we obtain

(ρ + p)
√

f (r)+u2 exp

− ρh∫
ρ∞

dρ

ρ + p

 = C2, (6)

where C2 =−C1/A1 = ρ∞ + p(ρ∞). The rate of change in the mass of black hole
Ṁ =−2πrT 1

0 , is given by

dM = 2πA1(ρ∞ + p∞)dt. (7)

Note that ρ∞ + p∞ < 0 (violation of null energy condition) leads to decrease in
the mass of the black hole. Moreover, the above expression is also independent of
mass contrary to the Schwarzschild black hole and the Reissner–Nordström black
hole [35; 36; 37; 38; 39; 40]. Further, the last equation is valid for any general ρ

and p violating the null energy condition, thus we can write

dM = 2πA1(ρ + p)dt. (8)
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3 Critical accretion

We are interested only in those solutions that pass through the critical point as
these correspond to the material falling into the black hole with monotonically
increasing speed. The falling fluid can exhibit variety of behaviors near the critical
point of accretion, close to the compact object. The equation of mass flux or the
continuity equation Ja

;a = 0 is

ρur = k1. (9)

Here k1 is integration constant. From Eqs. (4) and (9), we have(
ρ + p

ρ

)2 (
f (r)+u2) =

(
C1

k1

)2

= C3. (10)

Taking differentials of (9) and (10) and after simplification, we obtain

du
u

[
−V 2 +

u2

f (r)+u2

]
+

dr
r

[
−V 2 +

r2

l2 ( f (r)+u2)

]
= 0. (11)

Here

V 2 ≡ dln(ρ + p)
dlnρ

−1, (12)

From (11) if one or the other bracket factor is zero, one gets a turnaround point cor-
responding double-valued solution in either r or u. The only solution that passes
through a critical point is feasible. The feasible solution will correspond to mate-
rial falling into the object with monotonically increasing velocity. The critical
point is obtained by taking the both bracketed factors in Eq. (11) to be zero. This
will give us the critical points of accretion. We obtain

V 2
c =

r2
c

( f (rc)+u2
c)l2 , (13)

V 2
c =

u2
c

f (rc)+u2
c
. (14)

Above the subscript c refers to the critical quantity. On comparing Eqs. (13) and
(14), we get

u2
c =

r2
c

l2 , V 2
c =

u2
c

−M +2u2
c
. (15)

Here uc is the critical speed of flow at the critical points which we determine
below. For physically acceptable solution, we require V 2

c > 0, hence we get the
following restrictions on speeds and the location of the critical points

u2
c >

M
2

, r2
c >

r2
+

2
. (16)
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4 Generalized second law of thermodynamics and BTZ black hole

In this section we will discuss the thermodynamic of phantom energy accretion
that crosses the event horizon of BTZ black hole. Let us first write the BTZ metric
in the form

ds2 = hmn dxm dxn + r2 dφ
2, m,n = 0,1 (17)

where hmn = diag(− f (r),1/ f (r)), is a 2-dimensional metric. From the condition
of normalized velocities uaua =−1, one can obtain the relations

u0 = f (r)−1
√

f (r)+u2, u0 =−
√

f (r)+u2. (18)

The components of stress energy tensor are T 00 = f (r)−1[(ρ + p)( f (r)+u2

f (r) )− p],
and T 11 = (ρ + p)u2 + f (r)p. These two components help us in calculating the
work density which is defined by W =− 1

2 T mnhmn [49]. In our case it comes out

W =
1
2
(ρ − p). (19)

The energy supply vector is defined by

Ψn = T m
n ∂mr +W∂nr. (20)

The components of the energy supply vector areΨ0 = T 1
0 =−u(ρ + p)

√
f (r)+u2,

and Ψ1 = T 1
1 +W = (ρ + p)( 1

2 + u2

f (r) ). The change of energy across the apparent
horizon is determined through −dE ≡−AΨ , where Ψ =Ψ0dt +Ψ1dr. The energy
crossing the event horizon of the BTZ black hole is given by

dE = 4πreu2(ρ + p)dt. (21)

Assuming E = M and comparing Eqs. (8) and (21), we can determine the value of
constant A1 = 2u2l

√
M.

The entropy of BTZ black hole is

Sh = 4πre. (22)

It can be shown easily that the thermal quantities, change of phantom energy dE,
horizon entropy Sh and horizon temperature Th satisfy the first law dE = ThdSh, of
thermodynamics. After differentiation of last equation w.r.t. t, and using Eq. (8),
we have

Ṡh = 8π
2l2u2(ρ + p). (23)

Since all the parameters are positive in the above Eq. (23) except that ρ + p < 0,
it shows that the second law of thermodynamics is violated i.e. Ṡh < 0, as a result
of accretion of phantom energy on a BTZ black hole.

Now we proceed to the generalized second law of thermodynamics (GSL). It
is defined by

Ṡtot = Ṡh + Ṡph ≥ 0. (24)
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In other words, the sum of the rate of change of entropies of black hole horizon
and phantom energy must be positive. We consider event horizon of the BTZ black
hole as a boundary of thermal system and the total matter energy within the event
horizon is the mass of the BTZ black hole. We also assume that the horizon tem-
perature is in equilibrium with the temperature of the matter-energy enclosed by
the event horizon, i.e. Th = Tph = T , where Tph is the temperature of the phantom
energy. Similar assumptions for the temperatures Th and Tph has been studied in
[50; 51; 52; 53; 54]. We know that the Einstein field equations satisfy first law
of thermodynamics ThdSh = pdA + dE, at the event horizon [55; 56]. We also
assume that the matter-energy enclosed by the event horizon of BTZ black hole
also satisfy the first law of thermodynamics given by

Tph dSph = pdA+dE. (25)

Here the horizon temperature is given by

Th =
f ′(r)
4π

∣∣∣∣
r=re

=
√

M
2πl

. (26)

In this paper, we are assuming that Th = Tph = T . Therefore Eq. (24) gives

T Ṡtot = T (Ṡh + Ṡph) = 4πl2u(ρ + p)(2
√

M +πl p). (27)

From the above equation, note that u < 0 and ρ + p < 0 the GSL holds provided
2
√

M +πl p > 0 which implies

p ≥−2
√

M
πl

. (28)

Since the pressure of the phantom energy is negative (p < 0), therefore the GSL
gives us the lower bound on the pressure of the phantom energy.

− 2
√

M
πl

≤ p < 0. (29)

The GSL in the phantom energy accretion holds within the inequality (29). Oth-
erwise GSL does not hold which forbid evaporation of BTZ black hole by the
phantom accretion [57; 58]. In addition, it is not clear whether the GSL should be
valid in presence of the phantom fluid not respecting the dominant energy condi-
tion [57; 58].

5 Conclusion

In this paper, we have investigated the accretion of exotic phantom energy onto a
BTZ black hole. The motivation behind this work is to study the accretion dynam-
ics in low dimensional gravity. Our analysis has shown that evolution of mass of
a BTZ black hole would be independent of its mass and will be dependent only
on the energy density and pressure of the phantom energy in its vicinity. Due to
spherical symmetry, the accretion process is simple since the phantom energy falls
radially on the black hole. The accretion would be much more interesting when
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additional parameters like charge and angular momentum are also incorporated in
the BTZ spacetime. Similarly, it would be of much interest to perform the above
analysis in higher (n+1) dimensional black hole spacetimes.

We also discussed GSL in the BTZ black hole spacetime. We assumed that the
event horizon of BTZ black hole acts as a boundary of the thermal system and
the phantom energy crossing the event horizon will change the mass of the black
hole. We assumed that the horizon temperature is in local equilibrium with the
temperature of the matter energy at the event horizon. Under these constraints it is
shown that the GSL holds provided the pressure of the phantom energy p has an
lower bound p ≥− 2

√
M

πl , on the black hole parameters (M and l).
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