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Becchi, Rouet, Stora and Tyutin (BRST) method is one of the most powerful tech-
niques of quantization for the system with constraints. BRST quantization is based on
the BRST transformations which are symmetry of the theory. BRST transformations
are characterized by an infinitesimal, anti-commuting, global parameter. Such transfor-
mations are nilpotent in nature. Because of these properties, the BRST transformation
is extremely useful in studying unitarity, renormalizability and other aspects of different
effective theories in particle physics. Other nilpotent transformations also play important
roles in studying different gauge theories. These transformations are obtained from BRST
transformations by interchanging the ghost and anti-ghost fields and known as anti-BRST
transformations.

There are several methods to construct BRST transformation. One of these methods
is field/anti-field formalism also called Batalin-Vilkovisky (BV) formalism or Lagrangian
BRST formalism. This method is more general than usual Faddeev-Popov method and
used for wider class of gauge theories (gauge theories with reducible/irreducible gauge
algebra). Another method for constructing BRST transformation is Hamiltonian BRST
formalism also called Batalin-Fradkin-Vilkovisky (BFV) formalism. This method is used
to construct BRST transformation of constrained systems.

Recently, the concept of finite field dependent BRST (FFBRST) transformations have
been introduced by generalizing usual BRST transformations. The parameters in such
transformations are finite field dependent and anti-commuting. The FFBRST transfor-
mations are also symmetry of the effective theory and nilpotent. However, the Jacobians
of such transformations are not unity because it involves finite parameter. Therefore the
path integral measure is not invariant. This non-trivial Jacobian leads to several new
results.

FFBRST transformations have many applications in gauge field theories. A correct
prescription for the poles in the gauge field propagators in non-covariant gauges have
been derived by connecting effective theories in covariant gauges to the theories in non-
covariant gauges by using FFBRST transformation. The divergent energy integrals in
Coulomb gauge are regularized by modifying time like propagator using FFBRST trans-
formation.

My thesis work, is primarily focused on BRST and FFBRST of various field theoretic
models.

The entire thesis has been divided into seven chapters as given below:

In Chapter I we will provide basic information and general introduction of the re-
search work. First we will talk about how BRST transformations came into picture. Then
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we will discuss their importance in the physical theories. Further we will give introductory
idea of our research work done during this period.

The main objective of the chapter II is to provide the basic mathematical tools and
techniques related to BRST transformation to prepare the necessary background relevant
to this thesis. First we will discuss BRST Transformations in Lagrangian formalism where
we will discuss BRST quantization of non-Abelian Yang-Mills theory. Later we will dis-
cuss field-antifield formalism or Batalin-Vilkovisky (BV) formalism. Then we will discuss
Hamiltonian formalism or Batalin-Fradkin-Vilkovisky (BFV) formalism, Dirac Constraint
analysis and Batalin-Fradkin-Fradkina-Tyutin (BFFT) technique. Atlast we will discuss
FFBRST Transformations.

In Chapter III, we apply a generalized Becchi-Rouet-Stora-Tyutin (BRST) formu-
lation to establish a connection between the gauge-fixed SU(2)YangMills (YM) theories
formulated in the Lorenz gauge and in the Maximal Abelian (MA) gauge. It is shown that
the generating functional corresponding to the FaddeevPopov (FP) effective action in the
MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate
finite and field-dependent BRST (FFBRST) transformation. In this procedure, the FP
effective action in the MA gauge is found from that in the Lorenz gauge by incorporating
the contribution of non-trivial Jacobian due to the FFBRST transformation of the path
integral measure. The present FFBRST formulation might be useful to see how Abelian
dominance in the MA gauge is realized in the Lorenz gauge.

In Chapter IV, we investigate all possible nilpotent symmetries for a particle on
torus. We explicitly construct four independent nilpotent BRST symmetries for such sys-
tems and derive the algebra between the generators of such symmetries. We show that
such a system has rich mathematical properties and behaves as double Hodge theory.
We further construct the finite field dependent BRST transformation for such systems by
integrating the infinitesimal BRST transformation systematically. Such a finite transfor-
mation is useful in realizing the various theories with toric geometry.

Further we develop BRST symmetry for the first time for a particle on the surface of
a torus knot by analyzing the constraints of the system. The theory contains 2nd-class
constraints and has been extended by introducing the Wess-Zumino term to convert it
into a theory with first-class constraints. BFV analysis of the extended theory is per-
formed to construct BRST/anti-BRST symmetries for the particle on a torus knot. The
nilpotent BRST/anti-BRST charges which generate such symmetries are constructed ex-
plicitly. The states annihilated by these nilpotent charges consist of the physical Hilbert
space. We indicate how various effective theories on the surface of the torus knot are
related through the generalized version of the BRST transformation with finite field de-
pendent parameters.

2



In Chapter V, we show how Weyl degree of freedom can be introduced in the Nambu-
Goto string in the path-integral formulation using the re-parametrization invariant mea-
sure. We first identify Weyl degrees in conformal gauge using BFV formulation. Further
we change the Nambu-Goto string action to the Polyakov action. The generating func-
tional in light-cone gauge is then obtained from the generating functional corresponding
to the Polyakov action in conformal gauge by using suitably constructed finite field de-
pendent BRST transformation.

In Chapter VI, we consider Polyakov theory of Bosonic strings in conformal gauge
which exhibits conformal and ghost number anomaly. We show how these anomalies can
be removed by connecting this theory to that of in background covariant harmonic gauge
by using suitably constructed finite field dependent BRST transformation.

In Chapter VII, we will present a brief summary of our entire research work carried
out during this research period.
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Chapter 1

Introduction

In development of modern physics, symmetry principles have been proved

to be the most invaluable tools. Gauge field theories which are based on

the local gauge invariance of the Lagrangian density of the theories have

found enormous importance in describing all the fundamental interactions

of nature and play the key role in understanding the particle physics phe-

nomenon. The standard model of particle physics which describes strong,

weak and electromagnetic interactions in the unified manner is regarded

as the most successful theory because of its ability to explain the vari-

eties of experimental results. The standard model is a non-Abelian gauge

theory which serves as a paradigm example of quantum field theory. It

illustrates wide range of physics such as spontaneous symmetry breaking,

study of anomalies, non-perturbative behavior etc. Recently it has found

applications in many other fields such as nuclear physics, astrophysics,

cosmology etc.

In 1954, C.N. Yang and R. Mills [1] proposed a theory of the strong

interactions between protons and neutrons, which is based on the SU(3)

algebra known as non-Abelian gauge theory. Non-Abelian theories are

fundamental building blocks for the construction of physical theories.

However, one faces various problems to develop the quantum version of

such theories with local gauge invariance consistently. In path-integral

quantization of these theories the vacuum-vacuum transition amplitude

or generating functional is ill defined for such theories. This problem

arises due to over counting of physically equivalent gauge configurations

grouped together in different gauge orbits. To solve this problem the
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method of gauge-fixing was used. This helped in removing infinite fac-

tor in path integral measure by choosing one gauge field from each orbit.

The gauge-fixing was achieved by adding an extra term consisting of arbi-

trary function of gauge field and arbitrary parameter in the action. The

addition of gauge fixing term solved the problem of over counting but

introduced other problems like, the physical theory became dependent

on arbitrary function of gauge field and/or an arbitrary parameter which

is not desirable. To tackle these problems Faddeev-Popov (FP) [2] pro-

posed an effective action by introducing ghost fields. Ghost fields are

scalars in nature but behaves like Grassmanians and hence do not follow

spin-statistics theorem. These unphysical fields compensate for the ef-

fect of arbitrary gauge-fixing function hence preserve the unitarity of the

theory. But the total action is no longer gauge invariant which leads to

various difficulties in the theory. For example the choice of counter terms

in renormalization of the theory is no more restricted to gauge invariant

terms as the gauge invariance is broken for the theory itself. This leads

to the difficulties in renormalization program.

Four physicists C. Becchi, A. Rout, R. Stora and I. V. Tyutin (inde-

pendently) [3, 4, 5, 6] found a very interesting symmetry transformation

of FP effective action known as BRST Transformation. The analytical

form of the BRST transformation and its relevance to renormalization

and anomaly cancellation were described by Becchi, Rouet and Stora in

a series of papers culminating in the 1976, “Renormalization of gauge the-

ories” [3, 4, 5]. The equivalent transformation and many of its properties

were independently discovered by Tyutin [6]. Its significance for rigor-

ous canonical quantization of a Yang-Mills (YM) theory and its correct

application to the Fock space of instantaneous field configurations were

elucidated by T. Kugo and I. Ojima [7]. These symmetry transformations

have following characteristics. They are (i) infinitesimal (ii) global (i.e.

independent of space and time) (iii) anti-commuting (iv) nilpotent. Some-

times the nilpotency is proved using equation of motion of one or more

fields then it is referred as on-shell nilpotent. However, BRST transfor-
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mation can be made off-shell nilpotent by introducing Nakanishi-Lautrup

(NL) type auxiliary fields to the theory. These transformations are ex-

tremely useful in characterizing various field theoretic models and renor-

malization of gauge theories are known to be greatly facilitated by the use

of BRST transformations. These transformations enables one to formu-

late Slanov-Taylor (ST) [8] identities in a compact and mathematically

convenient form. There is another symmetry of gauge fixed action known

as anti-BRST symmetry. In this symmetry the role of ghost field changes

with anti-ghost field [9, 10]. The anti-BRST symmetry does not add any-

thing substantial to BRST quantization procedure but is important in the

geometrical description of the superspace formulation of gauge theories

[11, 12]. The foundation of this thesis is based on solid platform of BRST

formulation.

It has been found that the usual FP procedure which yields

quadratic ghost action is not applicable to some supergravity models

where quadratic ghosts are needed to preserve unitarity [13] and nilpo-

tency of the BRST operator is ensured only by using the equation of

motion for certain fields in the gauge fixed action. Such theories are said

to have open algebra. In some theories the ghost action itself has addi-

tional gauge symmetry which needs further gauge fixing. These theories

are called reducible gauge theories. For such theories, the field spec-

trum is enlarged by introducing further ghost of ghosts. FP procedure

doesn’t work for general reducible theories or when the gauge algebra is

not closed. In order to cover a wider class of gauge theories, a powerful

technique of BRST quantization was proposed by I. A. Batalin and G. A.

Vilkovisky known as field/anti-field (or BV) formalism [14, 15]. In this

technique the effective action is extended by introducing anti-fields which

satisfy more general and rich mathematical relation known as quantum

master equation (QME). The interconnection between BRST formulation

and field/anti-field formalism is a very exciting topic of recent research

[16]. Field/anti-field formalism is based on the BRST symmetry with

an infinitesimal, global and anti-commuting parameter. Field/anti-field
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formalism is studied in path integral quantization method which uses

Lagrangian formalism. This formalism has been reviewed in [17].

Another powerful technique of BRST quantization in the Hamilto-

nian approach is BFV formalism developed by I. A. Batalin, E. S. Fradkin

and G. A. Vilkovisky [18, 19, 20]. This method is used to construct BRST

transformation of constrained systems [21]. It is not only applicable to

the systems with first class constraints but also applicable to the sys-

tems with second class constraints [22]. This technique relies on BRST

transformations which are independent of the specific gauge condition. In

this technique, the BRST charge is constructed from the set of first class

constraints of the theory by introducing a pair of ghost field and corre-

sponding momenta for each set of constraints. For the system of second

class constraints, the BRST charge is constructed after converting the

second class constraints to first class constraints via various techniques.

This method uses the enlarged phase space where Lagrange multipliers

and their corresponding momenta are treated as a dynamical variables

[23]. The main features of BFV approach are as follows: (i) it does not

require closure (off-shell) of the gauge algebra and therefore does not

need an auxiliary field, (ii) this formalism relies on BRST transformation

which is independent of gauge-fixing condition and (iii) it is also appli-

cable to the first order Lagrangian. Hence it is more general than the

strict Lagrangian approach [24]. There are various ways to study BRST

formulation such as BV-BRST and BFV-BRST formalism as described

above. We mainly consider different generalizations of BRST symmetry

in the context of BV-BRST and BFV-BRST formalisms.

To convert second class constraints to first class constraints we use

a general method known as BFFT (Batalin-Fradkin-Fradkina-Tyutin)

method developed by four physicists I. A. Batalin, E. S. Fradkin, T. E.

Fradkina and I. V. Tyutin [25, 26, 27]. This is an iterative technique to

change the second class constraint to first class constraint. This method

has been used to study many of the mathematical models in recent years

[28, 29, 30, 31, 32, 33, 34, 35].
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BRST symmetry has been generalized in many ways. In 1993,

Lavelle and Macmullan [36] found a generalized BRST symmetry adjoint

to usual BRST symmetry in case of QED. This generalized BRST is non-

local and non-covariant. The motivation behind the emergence of this

symmetry was to refine the characterization of physical states given by

the BRST charge. Since locality has been considered to be the main cause

of infinities in the usual quantum field theory, people have been turning

to non-local quantum field theory [37, 38]. Non-local gauge symmetry

plays an important role in non-local quantum field theories. Later, Tang

and Finkelstein [39] found another generalized BRST symmetry which is

non-local but covariant. Such a BRST is not necessarily nilpotent but

can be made nilpotent under certain condition in auxiliary field formula-

tion. This symmetry imposes a constraint on the physical states, which

determines the physicality more strongly than previous BRST symme-

tries. Later two physicists, Yang and Lee [40] also presented a local and

non-covariant BRST symmetry in the case of Abelian gauge theories.

S. D. Joglekar and B. P. Mandal [41] further generalized the BRST

transformation by allowing the parameter to be finite and field dependent.

Such generalized BRST transformations are also symmetry of the effective

theory and they are nilpotent. However, the path integral measure is

not invariant and give rise to a non-trivial Jacobian. The Jacobian is

shown to produce exponential term of local fields which changes effective

action to give rise to another new effective action. Such generalized BRST

transformations have found many applications [42, 43, 44, 45, 46, 46, 48]

namely, to find correct prescriptions for the poles in the axial gauge field

propagator [42, 43], to regularize the energy in the Coulomb gauge [44]

etc. Recently a new technique of finite BRST transformation has been

developed by some some Russian physicists in a series of papers [49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59]. Also some important results about BRST

for various physical systems have been developed recently [60, 61, 62].

In usual BRST transformation, variation of the kinetic part of the

effective action independently vanishes whereas the variation of gauge
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fixing part cancels with the variation of ghost part of the effective ac-

tion. One of the important generalizations of the BRST symmetry as

local and covariant BRST symmetry is known as dual-BRST symmetry

[63]. Under dual-BRST symmetry, the variation of gauge fixing part inde-

pendently vanishes whereas the variation of the kinetic part cancels with

the variation of ghost part of the action. So far in the literature, dual-

BRST symmetry has been treated as an independent symmetry because

of its analogy to the co-exterior derivative in the language of differen-

tial geometry. Therefore sometimes it is referred as co-BRST symmetry.

The usual BRST symmetry is analogous to the exterior derivative. The

anti-commutators of exterior derivative and co-exterior derivative gives a

Laplacian operator analogous to the bosonic symmetry [40, 63, 64, 65, 66].

Another generalization of the BRST transformations can also be

made for YM theory in which the anti-commuting parameter is space-

time dependent [67]. These are not exact symmetries of the theory, how-

ever they do lead to a non-trivial Ward-Takahashi (WT) identity. This

non-trivial WT identity could lead to new consequences which are not

contained in the usual WT identity. Such generalized BRST transforma-

tions are realized as the broken orthosymplectic symmetry found in the

superspace formulation of YM theory [68].

BRST and anti-BRST symmetries are treated as an independent

symmetry only if they absolutely anti-commute amongst themselves.

Similarly, dual BRST and anti-dual BRST symmetries are independent

symmetries only if they absolute anti-commute. In order to make them

absolutely anti-commutative, a restriction is invoked. Such restrictions

are known as Curci-Ferrari (CF) restrictions [9]. Although, it is necessary

to invoke these restrictions but reason behind imposing such restrictions

are not clear in the Lagrangian framework. It is also not known, what

kind of constraints they are in the language of Dirac’s prescription of

constraint analysis.

The consequences of BRST symmetry, formulated as Slanov-Taylor

(ST) identities, are central to the discussion of renormalizability, unitar-
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ity, gauge independence of the theory. Any attempt that sheds light on,

offer a reformulation of, understanding of BRST symmetry and YM the-

ory is, therefore of significance to particle physics. This motivates us to

construct various generalizations of BRST symmetry and their applica-

tions in quantum field theory.

This thesis is mainly based on the construction of three important

aspects of BRST symmetry. BRST symmetry, dual-BRST symmetry and

generalized BRST symmetry with a finite field dependent parameter. The

BFV Hamiltonian formalism has been explored in the context of BRST

symmetries. This formalism has been applied to mathematical models

like particle on a torus, particle on torus knot etc. The FFBRST formal-

ism has also been explored in context of various field and string theory

models like Maximal Abelian (MA) gauge in YM theory, Nambu-Goto

string in light-cone gauge and bosonic string in harmonic gauge etc. In

first chapter we will introduce the important results related to BRST

transformation. In II chapter we will discuss about various mathematical

techniques required to solve problems related to BRST transformations.

In the III chapter we will discuss about maximal Abelian gauge and its

use in addressing the confinement problem. Then using the FFBRST

transformation we will try to study the confinement problem in more

general Lorenz gauges. In IV chapter we will discuss about various nilpo-

tent symmetries related to particle on torus. In the same chapter we will

develop BRST and anti-BRST symmetries for particle on torus knot for

the first time. In V chapter we will discuss about Weyl degrees of freedom

in Nambu-Goto string in light-cone gauge using finite field BRST trans-

formation. In VI chapter we will address the problem of ghost number

anomaly in conformal gauge in bosonic string by connecting it to action

in harmonic gauge using FFBRST transformation. In The VII chapter

we will summarize the total work done. This thesis is divided into the

following seven chapters. The detailed content of these chapters are given

below.

Chapter I is dedicated to the general introduction of BRST sym-
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metries and related topics like generalized BRST symmetries, basic tech-

niques like field/anti-field formalism in Lagrangian approach and BFV

formalism in Hamiltonian approach. Brief discussion about various chap-

ters is also presented.

In chapter II, we will discuss mathematical techniques related to

BRST formalism in detail, both in Lagrangian as well as Hamiltonian

approach. At first we will discuss field/anti-field formalism or BV for-

malism in detail. There we will discuss about classical/quantum mas-

ter equations and generation of BRST transformations. Then we will

talk about Hamiltonian BRST formalism in which we will discuss about

Dirac’s constraints analysis where we will discuss about first and second

class constraints. Then we will discuss about (BFFT) formalism of con-

version of second class constraints to first class constraints. Then we will

discuss about BFV formalism. At last we will discuss about FFBRST

transformation.

In Chapter III, we will apply a generalized (BRST) formulation

to establish a connection between the gauge-fixed SU(2) YM theory for-

mulated in the Lorenz gauge and in MA gauge. It is shown that the

generating functional corresponding to the FaddeevPopov (FP) effective

action in the MA gauge can be obtained from that in the Lorenz gauge

by carrying out an appropriate FFBRST transformation. The present

FFBRST formulation might be useful to see how quark confinement is

realized in the Lorenz gauge.

In Chapter IV, we will investigate all possible nilpotent symme-

tries for a particle on torus. We explicitly construct four independent

nilpotent BRST symmetries for such systems and derive the algebra be-

tween the generators of such symmetries. We show that such a system

have rich mathematical properties and behaves as double Hodge theory.

We further construct the FFBRST transformation for such systems by in-

tegrating the infinitesimal BRST transformation systematically. Further

we develop BRST symmetry for a particle on the surface of a torus knot

by analyzing the constraints of the system. The theory contains second



9

class constraint and has been extended by introducing the Wess-Zumino

term to convert it into a theory with first class constraints. BFV anal-

ysis of the extended theory is performed to construct BRST/anti-BRST

symmetries for the particle on a torus knot. We will show how various

effective theories on the surface of the torus knot are related through the

generalized version of the BRST transformation with finite field depen-

dent parameter. In last section BRST/anti-BRST charge for particle on

torus knot will be constructed using the technique used in ref. [148].

In Chapter V we will show how Weyl degrees of freedom can be

introduced in the Nambu-Goto (NG) string in the path-integral formu-

lation using the re-parametrization invariance of path integral measure.

We first identify Weyl degrees of freedom in conformal gauge using BFV

formulation. Further we change the NG string action to the Polyakov

action. The generating functional in light-cone gauge is then obtained

from the generating functional corresponding to the Polyakov action in

conformal gauge by using suitably constructed FFBRST transformation.

In Chapter VI we consider Polyakov theory of Bosonic strings in

conformal gauge which is used to study conformal anomaly. However

it exhibits ghost number anomaly. We show how this anomaly can be

avoided by connecting this theory to that of in background covariant har-

monic gauge which is known to be free from conformal and ghost number

current anomaly, by using suitably constructed FFBRST transformation.

Chapter VII has an overall conclusion of the thesis.



Chapter 2

The Mathematical

Preliminaries

Renormalization of YM theories revolutionized field of quantum field the-

ory. Even after symmetry breaking it was considered as most complete

theory describing particle interactions. But the quantization rules in ear-

lier quantum field theory (QFT) frameworks resembled prescriptions or

heuristics more than proofs, especially in non-Abelian QFT, where the use

of ghost fields with superficially bizarre properties is almost unavoidable

for technical reasons related to renormalization and anomaly cancella-

tion. To avoid these problems a new kind of symmetry transformation

also called as BRST transformation was introduced [3, 4, 5, 6].

The main objective of this chapter is to provide the basic mathemat-

ical tools and techniques related to BRST transformation to prepare the

necessary background relevant to this thesis. First we will discuss BRST

transformations in Lagrangian formalism also known as field/anti-field

formalism or BV formalism. There we will discuss BRST quantization of

non-Abelian YM theory. Then we will discuss Hamiltonian formalism or

BFV formalism, Dirac constraint analysis and BFFT technique. At last

we will discuss the technique of FFBRST transformations.

10
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2.1 Batalin-Vilkovisky (BV) formalism

The BV formalism (also known as field/anti-field formalism) [14] which is

based on Lagrangian framework is a powerful technique to quantize more

general gauge theories based on BRST symmetry [15, 16, 17, 23]. This

method is applicable to gauge theories with both reducible or open as

well as irreducible or closed algebra. This method is also used to analyze

the possible symmetry violations in the action due to quantum effects.

The main idea of this approach is to construct an extended action

WΨ[φ, φ?] by introducing an anti-field (φ?) of opposite statistics corre-

sponding to each field (φ) in the theory. The sum of ghost numbers

associated to field and its anti-field is equal to -1. The extended action

can be expressed as sum of the original gauge invariant action S0 and the

coupling term of anti-field with the BRST transformed field (δbφ)

W [φ, φ?] = S0 + (δbφ)φ? (2.1)

Here W [φ, φ?] satisfies following condition

0 =
δrW

δφ?
δlW

δφ
(2.2)

This expression is called master equation where l and r are left and right

derivatives.

The generating functional in field/anti-field formulation is written

as

Z =

∫
DφeiWΨ[φ] (2.3)

where

WΨ[φ] = W
[
φ, φ? =

∂ψ

∂φ

]
(2.4)

Here ψ is gauge-fixing fermion and has Grassman parity 1 and ghost

number -1.
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The action function WΨ[φ] satisfies a rich mathematical relation

which is known as quantum master equation (QME) [15] and written as:

(WΨ,WΨ)− 2i∆WΨ = 0, (2.5)

where the anti-bracket is defined by

(X, Y ) ≡ δrX

δφ

δlY

δφ?
− δrX

δφ?
δlY

δφ
, (2.6)

and the operator ∆ is defined as

∆ ≡ δr
δφ?

δl
δφ
. (2.7)

The quantum master equation in the zeroth order of ant-fields gives the

condition of gauge invariance. On the other hand it reflects the nilpotency

of BRST transformation in the first order of anti-fields.

The classical master equation has following form

(WΨ,WΨ) = 0. (2.8)

The expectation value of operators which are invariant under the

BRST transformations are given by

δbφ =
δrW

δφ?
= −(W,φ);

δbφ
? =

δrW

δφ
= −(W,φ?) (2.9)

They are independent of change in gauge-fixing fermion ψ. Now we

will introduce YM action in this formalism.
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The BV action for YM theory is written as [71],

WΨ(φ, φ?) =

∫
d4x[−1

4
FαµνFα

µν + Aµα
?

Dαβ
µ cβ + cα

? g

2
fαβγcβcγ

+ Bαc̄α
?

] (2.10)

which is also written as

W [φ, φ?] = S0(φ) + δbΨ (2.11)

Here Ψ is the gauge-fixed fermion and can be written in this case

as

Ψ =

∫
d4xc̄α

[λ
2
Bα − ∂.Aα

]
(2.12)

In the next section we will discuss canonical BRST quantization of

gauge theories based on Hamiltonian formalism.

2.2 Hamiltonian BRST Formalism

In this section, we will discuss Hamiltonian formalism for the quanti-

zation of gauge theories. This technique consist of mainly three parts.

First, we will perform the constraint analysis of classical systems using

Dirac technique. This technique will provide us two different class of

constraints, first and second class. First class constraints are generators

of gauge transformations. To change the second class constraints to first

class, we will use BFFT technique. Therefore in second subsection we

will discuss BFFT formalism [25, 26, 27]. At last, we will discuss BFV

formalism [18, 19, 20]. These three methods will set the stage for the

path integral quantization of gauge theories in Hamiltonian formulation.
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2.2.1 Dirac Constraints Analysis

In this subsection, we will discuss briefly a very useful technique of quan-

tization of the systems with first and second class constraints developed

by Dirac [22]. In various field theory models, the dynamical phase space

variables are not all independent. They satisfy some constraints emerg-

ing from the structure of models. In such situations usual procedure for

obtaining Hamiltonian from Lagrangian doesn’t work. For such models

Dirac’s technique is used to systematically develop Hamiltonian from La-

grangian of the theory. To illustrate Dirac technique we will consider

a classical dynamical system described by a Lagrangian L[qn(t), q̇n(t)].

Here q̇n is the time derivative of qn. We use the notation of a system

with discrete set of degrees of freedom, although n may represent a pos-

sibly continuous set of indices as done in classical field theory. Momenta

canonically conjugate to coordinate for a given Lagrangian is written as

pn(q, q̇) =
δL

δq̇n
n = 1, ......, N (2.13)

If the relation in Eq.(2.13) is invertible, then velocities can be expressed

in terms of coordinates and momenta.

(qn, q̇n)→ (qn, p
n) (2.14)

In other words, if for a system

det
δ2L

δq̇nδq̇n′
6= 0 (2.15)

then the Lagrangian is called regular. For such systems, one can obtain

Hamiltonian from this Lagrangian using Legendre transformation

H(p, q) = q̇n(p, q)pn − L[q, q̇(p, q)] (2.16)
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On the other hand, if the system described by a Lagrangian satisfies

det
δ2L

δq̇nδq̇n′
= 0 (2.17)

then the Eq.(2.13) is non-invertible. In such systems, not all the conjugate

momenta are independent variables. So, there exist relation between

various dynamical variables known as constraints. Such systems are called

constrained systems. For these systems, usual Poisson brackets may not

represent the true brackets as they need not satisfy the constraints of

the theory. To obtain Hamiltonian description systematically for such

systems we use Dirac method briefly discussed below.

The primary constraints are defined using the independent relation

between the canonical variables as

φm(q, p) = 0 m = 1, .....,M (2.18)

The Hamiltonian corresponding to these constraints is written as

Hp = H + λmφ
m (2.19)

The time evolution of any dynamical variable F (q, p) in the phase space

is written as

Ḟ = {F,Hp} (2.20)

A basic consistency requirement for primary constraints is that they

should be preserved in time. If we consider F in Eq.(2.20) as one of

the primary constraints φm and calculate the time evolution, we obtain

a number of secondary constraints expressed as

φk = 0, k = M + 1, .....,M + k (2.21)

where K is the total number of secondary constraints. We can write all
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the primary and secondary constraints using a single equation as

φj = 0, j = 1, .....,M + k(= J) (2.22)

The constraints F (q, p) can further be classified in two categories

called as first and second class constraints. F is said to be first class, if

its Poisson bracket with every other constraint vanishes weakly.

{F, φj} ≈ 0,⇔ {F, φj} =
∑
i

cij(p, q)φi (2.23)

A constraint is said is said to be second class, if there exists at

least one other constraint which doesn’t have a weakly vanishing Poisson

bracket with it. If the second class constraints are absent or eliminated,

the set of first class constraints are written as φα and

{φα, φβ} ≈ 0,⇔ {φα, φβ} = cγα,βφγ (2.24)

Here cγα,β are called first order structure constants. According to Dirac’s

theory, first class constraints are generators of gauge symmetries. For

theories with second class constraints, Poisson brackets are replaced by

Dirac brackets. In this thesis we will deal with first class constraints

only. If H0 is a first class Hamiltonian, its Poisson bracket with first class

constraints is written as

[H0, φα] ≈ 0,⇔ [H0, φα] = V β
α (p, q)φβ (2.25)

With the set of first class constraints and the Hamiltonian of Eq.(2.25),

action can be constructed as

S =

∫
dt
[
q̇np

n −H0 −
∑
α

λα(t)φα
]

(2.26)

Here, λα(t) is a Lagrange multiplier for the system. This action is invari-

ant under the gauge transformation. The transformation for an arbitrary
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phase space function F is generated by the constraints:

δεF (p, q) =
[
F, εα(t)φα

]
(2.27)

where εα are the parameters of gauge transformation.

These were the main features of Dirac’s constraint analysis, the first

step towards Hamiltonian quantization of gauge systems. The second step

in this direction is BFFT formalism. In the next section we will discuss

important features of this technique.

2.2.2 Batalin-Fradkin-Fradkina-Tyutin (BFFT)

Formalism

BFFT formalism [25, 26, 27] is a technique used to convert second class

constraints to first class constraints. The important feature of this tech-

nique has been discussed here.

Consider the original phase space variables as (qi, pi) where a con-

strained system has two second class constraints, Ωk(x), k = 1, 2, obeying

the algebra

{Ωk(x),Ωk′(y)} = ∆kk′(x, y) (2.28)

Where ∆kk′ is a matrix with non-vanishing determinant. To systemati-

cally convert these constraints into first class one, two Stuckelberg fields

Φi will be introduced corresponding to the second class constraints Ωi

with the Poisson brackets

{Φk(x),Φk′(y)} = ωkk
′
(x, y), (2.29)

where ωij can be taken as

ωkk
′
(x, y) = εkk

′
δ(x− y) (2.30)

The first class constraints Ω̃i are then constructed as a power series of
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the Stuckelberg fields

Ω̃i =
∞∑
n=0

Ωi
(n), Ωi

(0) = Ωi (2.31)

where Ωk
(n) are polynomials in the Stuckelberg fields Φi of degree n. They

can be determined by the requirement that the first class constraints Ω̃i

satisfy the closed algebra as follows

{Ω̃k(x), Ω̃k′(y)} = 0 (2.32)

We obtain recursive equations which determine the correction terms Ωi
(n).

A basic equation in lowest order can be written as

∆kk′ +Xkαω
αβXβk′ = 0 (2.33)

and the first order correction term is written as

Ωk
(1) = Xkk′(qi, pi)Φ

k′ (2.34)

The matrices ωkk′ and Xkk′ in Eq.(2.29) and Eq.(2.33), which are the

inherent arbitrariness of BFFT formalism, can be chosen with the aim of

obtaining algebraic simplifications in the determination of the correction

terms Ωk
(n).

In the similar way, the gauge invariant Hamiltonian is obtained by

the expansion

H̃ =
∞∑
n=0

H(n), H(0) = H (2.35)

From the Abelian first class algebra

{H̃, Ω̃k} = 0 (2.36)

we have recursive equations which determine the correction terms H(n)

and, consequently, the gauge invariant Hamiltonian.
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2.2.3 Batalin-Fradkin-Vilkovisky (BFV) Formalism

We will briefly discuss the BFV formalism [18, 19, 20] which is applicable

for the theories with first-class constraints. This method uses an extended

phase space where the Lagrange multiplier and the ghosts are treated as

dynamical variables. The main features of this approach are as follows:

i) it does not require off-shell closure of the gauge algebra and there-

fore does not require an auxiliary field ii) It heavily depends on BRST

transformation which is independent of the gauge condition and iii) it is

even applicable to Lagrangian which are not quadratic in velocities and

hence is more general than the Lagrangian BRST formalism. First of

all, consider a phase space of canonical variables (qi, pi)(i = 1, 2...., n) in

terms of which the canonical Hamiltonian H0(qi, pi) and the constraints

(Ωa ≈ 0)(a = 1, 2, ...,m) are given. These constraints satisfy following

algebra

{Ωa,Ωb} = iΩcU
c
ab

{H0,Ωa} = iΩbV
b
a (2.37)

where the structure coefficients U c
ab and V b

a are generally functions

of the canonical variables. We also assume that the constraints are irre-

ducible. In order to single out the physical variables, we introduce the

additional conditions Φa(qi, pi) ≈ 0. Here the Φa play the role of gauge-

fixing function. The action, in terms of canonical Hamiltonian densityH0,

first class constraints, Ωa and gauge-fixing function Φa can be written in

this formalism as

S =

∫
d4x(piq̇i −H0 − λaΩa + πaΦ

a), (2.38)

where (qi, p
i) are the canonical variables. Lagrange multiplier fields λa

and πa are canonically conjugate variables.

In order to make the theory in extended phase space to be consistent

with the initial theory, two sets of canonically conjugate anti-commuting
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ghost coordinate and momenta (Ca, P̄a) and (P a, C̄a) are introduced for

each constraint. These canonically conjugate ghost and momenta satisfy

the following anti-commutation relation:

[Ca, P̄b] = [P a, C̄b] = iδab (2.39)

where Cα and Pα have ghost number 1 and −1, respectively. The gener-

ating functional for this extended theory is then defined as

ZΨ =

∫
[Dφ]eiSeff [φ], (2.40)

where [Dφ] is the path integral measure and the effective action Seff is

Seff =

∫
dt(piq̇

i + πaλ̇
a + P̄aĊa + C̄aṖ a −Hm + i{Q,Ψ}). (2.41)

Here Hm is the BRST invariant Hamiltonian which one calls the minimal

Hamiltonian,

Hm = H0 + P̄aV
a
b C

b (2.42)

where Ψ is the gauge-fixing fermion and Qb is the nilpotent BRST charge.

They have following general form:

Qb = CaΩa −
1

2
CbCcUa

cbP̄a + P aπa,

Ψ = C̄aχ
a + P̄aλ

a (2.43)

Here χa are gauge-fixing functions that neither depends on the

ghosts, anti-ghosts nor on the momenta of both Ca and C̄a. This con-

cludes our brief outline of BFV technique based on Hamiltonian formalism

for gauge theories with constraints.
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2.3 Finite Field BRST Transformation

The usual BRST transformation for the generic fields φ of an effective

theory is defined compactly as

δbφ = sbφΛ, (2.44)

where sbφ is the BRST variation of the fields with infinitesimal, anti-

commuting and global parameter Λ. Such transformations are on-shell

nilpotent, i.e. s2
b = 0, with the use of some equations of motion for fields

and leaves the Fadeev-Popov (FP) effective action invariant. Joglekar

and Mandal [41] observed that Λ needs neither to be infinitesimal, nor

to be field-independent to maintain the symmetry of the FP effective

action of the theory as long as it is anti-commuting and does not depend

explicitly on space and time. This observation enabled them to propose

finite field-dependent BRST transformation which can be written as

δbφ = sbφΘb[φ], (2.45)

where Θb[φ] is an x-independent functional of fields φ. These transfor-

mations are also symmetry of FP effective action. Even though FFBRST

transformations are symmetry of the effective action, the path integral

measure and hence the generating functional are not invariant under such

finite transformations. We briefly mention the important steps to con-

struct FFBRST transformation. We start with the field, φ(x, κ), which

is made to depend on some parameter, κ : 0 ≤ κ ≤ 1, in such a manner

that φ(x, κ = 0) = φ(x) is the initial field and φ(x, κ = 1) = φ′(x) is the

transformed field. The infinitesimal parameter Λ in the BRST transfor-

mation is made field dependent and hence the BRST transformation can

be written as

d

dκ
φ(x, κ) = sbφ(x, κ)Θ′b[φ(x, κ)], (2.46)
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where Θ′b is an infinitesimal field dependent parameter. By integrating

these equations from κ = 0 to κ = 1, it has been shown [41] that the

φ′(x) are related to φ(x) by the FFBRST transformation as

φ′(x) = φ(x) + sbφ(x)Θb[φ(x)], (2.47)

where Θb[φ(x)] is obtained from Θ′b[φ(x)] through the relation [41]

Θb[φ(x, κ)] = Θ′b[φ(x, 0)]
exp f [φ(x, 0)]− 1

f [φ(x, 0)]
, (2.48)

where f [φ] is written as

f [φ] =
∑
i

δΘ′b(x)

δφi(x)
sbφi(x) (2.49)

This transformation is nilpotent and symmetry of the effective action.

The Jacobian for finite BRST transformations can be evaluated for

some specific value of Θ′[φ] using the fact that the Jacobian can be written

as a succession of infinitesimal transformations of Eq.(2.47).

Now, the path integral measure is defined as

Dφ = J(κ)Dφ(κ) = J(κ+ dκ)Dφ(κ+ dκ) (2.50)

Since the transformation φ(κ) to φ(κ + dκ) is an infinitesimal one, then

the equation reduces to

J(κ)

J(κ+ dκ)
=

∫
d4x

∑
φ

±δφ(x, κ+ dκ)

δφ(x, κ)
, (2.51)

where
∑

φ sums over all fields in the measure and ± refers to whether φ

is bosonic or fermionic field. Using the Taylor’s expansion in the above

equation, the expression for infinitesimal change in Jacobian is obtained
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as follows:

1

J(κ)

dJ(κ)

dκ
= −

∫
d4x

∑
φ

[
±sbφ

δΘ′b[φ(x, κ)]

δφ(x, κ)

]
(2.52)

The nontrivial Jacobian is the source of new results in the FFBRST

formulation.

The generating functional is defined as

Z =

∫
[Dφ]eiSeff (2.53)

It is not invariant under such FFBRST transformation as the Jacobian

is not invariant under this transformation as in Eq.(2.50). It has been

shown [41] that under certain condition this nontrivial Jacobian can be

replaced (within the functional integral) as

J [φ(κ)]→ eiS1[φ(κ)], (2.54)

where S1[φ(κ)] is some local functional of φ(x). The condition for exis-

tence of S1 is∫
[Dφ]

[
1

J

dJ

dκ
− idS1

dκ

]
exp i[Seff + S1] = 0. (2.55)

Thus,

Z

(
=

∫
[Dφ]eiSeff

)
FFBRST

−−−− −→ Z ′
(

=

∫
[Dφ]ei[Seff (φ)+S1(φ)]

)
. (2.56)

S1[φ] depends on the finite field dependent parameter. Therefore, the

generating functional corresponding to the two different effective theo-

ries can be connected through FFBRST transformation with appropriate

choices of finite field dependent parameters. The FFBRST transforma-

tion has also been used to solve many of the long outstanding problems

in quantum field theory. For example, the gauge field propagators in non-

covariant gauges contain singularities on the real momentum axis. Proper
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prescriptions for these singularities in gauge field propagators have been

found by using FFBRST transformation [42, 43]. These transformations

have been used to establish relation between first class constraint theories

to second class constraint theories [69]. These symmetries has been ex-

plicitly constructed for pure gauge theories [70]. These symmetries have

been studied in both Lagrangian and Hamiltonian formalisms [71, 79].

These symmetry transformations have found applications in many other

theories like Chern-Simons theory, BLG theory, ABJM theory, QCD, gen-

eralized QED etc. [72, 73, 74, 75, 76, 77, 78, 194, 195].

2.3.1 Conclusion

In this chapter we have provided the basic mathematical techniques which

are relevant to the later part of the thesis. First we have discussed La-

grangian formulation also called field/anti-field formalism or BV formal-

ism. After that we have discussed Hamiltonian formulation in which we

have discussed about Dirac’s constraints analysis and then BFFT formu-

lation for conversion of second class constraints to first class constraints.

Further we have discussed about BFV formulation or Hamiltonian for-

mulation for construction of BRST transformation. At last, we have

discussed FFBRST transformation.

In the next chapter we will discuss about our first work “Maximal

Abelian Gauge and Generalised BRST transformation” [111] in which we

will talk about Lorenz and MA gauge. Then we will establish a connection

between them. We will also discuss how FFBRST transformation will

help us study quark confinement in Lorenz gauge.



Chapter 3

Abelian Projection in Lorenz

Gauge and FFBRST

transformations

3.1 Introduction

In the previous two chapters we have discussed the introduction and ba-

sic mathematical preliminaries. Now we are in position to present the

research work carried out in this thesis. The first problem we will dis-

cuss about is Maximal Abelian (MA) gauge in Yang-Mills theory and

its connection with Lorenz gauge through generalized BRST transforma-

tion. It is shown that the generating functional corresponding to the

Faddeev-Popov (FP) effective action in the MA gauge can be obtained

from that in the Lorenz gauge by carrying out an appropriate finite and

field-dependent BRST (FFBRST) transformation. The present FFBRST

formulation might be useful to see how Abelian dominance in the MA

gauge is realized in the Lorenz gauge.

3.1.1 Maximal Abelian Gauge

In SU(N) YM theory, the MA gauge has been exploited to investigate its

non-perturbative features, such as quark confinement [95]. The MA gauge

is a nonlinear gauge for a partial gauge fixing, imposed to maintain only

25
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the maximal Abelian gauge symmetry specified by U(1)N−1. This gauge

enables us to extract Abelian degrees of freedom latent in SU(N) YM

theory. In fact, in the MA gauge, Abelian dominance [89, 96, 97, 98, 99]

and the emergence of magnetic monopoles [82, 83, 84, 90] are realized

as remarkable phenomena in the non-perturbative infrared region. The

quark confinement is well explicated in SU(N) YM theory formulated in

the MA gauge.

The MA gauge condition is a nonlinear gauge condition and is de-

fined as [82]

∇µAiµ ≡ ∂µAiµ + gεijAµ3Ajµ = 0 (3.1)

This condition partially breaks the SU(2) gauge invariance of the YM

action so as to maintain its gauge invariance under the U(1) gauge trans-

formation as given below

δ3A
i
µ = −gεijAjµλ3

δ3A
3
µ = ∂µλ

3 (3.2)

The MA gauge condition (3.1) can be incorporated into the following

gauge-fixing and FP ghost term in a BRST and anti-BRST invariant

manner [91, 93, 94]

SMA =

∫
d4x
[
− ss̄(1

2
AiµA

µi +
β

2
cic̄i)

]
(3.3)

where β is a gauge fixing parameter. The generalized MA gauge condition

can be written as

∇µAiµ − βBi − βgεij c̄jc3 = 0 (3.4)

where c, c̄ are ghost and anti-ghost fields and B is an auxiliary field. β = 0

gives the original MA gauge condition. The U(1) gauge transformation

rules for the fields Bi, ci and c̄i are written as
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δ3B
i = −gεijBjλ3

δ3c
i = −gεijcjλ3

δ3c̄
i = −gεij c̄jλ3 (3.5)

3.1.2 Lorenz Gauge

The Lorenz gauge condition ∂µAaµ = 0 [106] can be used to completely

break the SU(2) gauge invariance of the YM action. This gauge condition

can be incorporated into the following gauge-fixing and FP ghost term in

a BRST and anti-BRST invariant manner [12, 107, 108]

SL =

∫
d4x
[
− ss̄(1

2
AaµA

µa +
α

2
cac̄a)

]
(3.6)

where α is a gauge fixing parameter. The generalized Lorenz gauge con-

dition can be written as

∇µAaµ − αBa − α

2
gεabccbc̄c = 0 (3.7)

When α = 0, the gauge condition (3.7) reduces to the (original) Lorenz

gauge condition.

3.1.3 BRST Symmetry

The total action is defined as

ST =

∫
d2x(L0 + Lgf + Lgh) (3.8)

where L0 is the kinetic part of the total Lagrangian density.
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The total action is invariant under following BRST transformation

[5, 6]

sBA
a
µ = −δΛDµc

a

sBc
a = −1

2
δΛgεabccbcc

sB c̄
a = δΛBa

sBB
a = 0 (3.9)

Corresponding anti-BRST transformation under which the total ac-

tion is invariant is written as

s̄BA
a
µ = −δΛDµc̄

a

s̄Bc
a = δΛ(−Ba − gεabccbc̄c)

s̄B c̄
a = −1

2
δΛgεabcc̄bc̄c

s̄BB
a = δΛgεabcBbc̄c (3.10)

3.1.4 Connecting Generating Functionals in MA

Gauge to Lorenz Gauge

In this section, we construct the FFBRST transformation with an appro-

priate finite parameter to obtain the generating functional corresponding

to SMA from that corresponding to SL.

We calculate the Jacobian corresponding to such a FFBRST trans-

formation following the method outlined in chapter 2 and show that it

is a local functional of fields and accounts for the difference of the two

FP effective actions. The generating functional corresponding to the FP

effective action SL is written as

ZL =

∫
Dφ exp(iSL[φ]) (3.11)

The finite field dependent parameter corresponding to the Lorenz gauge is



3.1. Introduction 29

obtained from the infinitesimal but field dependent parameter, Θ′[φ(k)];

through
∫ κ

0
Θ′[φ(κ)]dκ. We construct Θ′[φ(κ)] as,

Θ′[φ(k)] = i

∫
d4x[γ1c̄

iBi + γ2c̄
3B3 + γ3{c̄as(∂µAaµ)− c̄is(∇µAiµ)}

+γ4gε
abcc̄ac̄bcc + γ5ε

ij c̄ic̄jc3] (3.12)

Here, γp(p = 1, 2, 3, 4, 5) are arbitrary constant parameters and all the

fields depend on the parameter k. The infinitesimal change in the Jaco-

bian corresponding to this FFBRST transformation is calculated using

Eq.(2.52) as,

1

J

dJ

dk
= −i

∫
d4x[−γ1B

iBi − γ2B
3B3 + γ3{c̄as(∂µAaµ)barcis(∇µAiµ)}

−γ3B
a∂µAaµ + γ3B

i∇µAiµ + γ4{−2gεabcBac̄bcc +
1

2
gεabcεadec̄bc̄ccdce}

+γ5{−2εijBic̄jc3 +
1

2
εijεklc̄ic̄jckcl}] (3.13)

To express the Jacobian contribution in terms of a local functional of

fields, we make an ansatz for S1 by considering all possible terms that

could arise from such a transformation as

S1[φ(k), k] =

∫
d4x[ξ1Ba∂

µAaµ + ξ2B
i∇µAiµ + ξ3B

aBa + ξ4B
iBi

+ξ5c̄
is(∇µAiµ) + ξ6c̄

as(∂µAaµ) + ξ7gε
abcBacbc̄c

+ξ8g
2εabcεadec̄bc̄ccdce + ξ9gε

ijBic̄jc3

+ξ10g
2εijεklc̄ic̄jckcl] (3.14)

where all the fields are considered to be k dependent and we have intro-

duced arbitrary k dependent parameters ξn = ξn(k)(n = 1, 2, ....., 10). It

is straight to calculate
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dS1

dk
=

∫
d4x{ξ′1Ba∂

µAaµ + ξ′2B
i∇µAiµ + ξ′3B

a2 + ξ′4B
i2 + ξ′5c̄

is(∇µAiµ)

+ξ′6c̄
as(∂µAaµ) + ξ′7gε

abcBacbc̄c + ξ′8g
2εabcεadec̄bc̄ccdce + ξ′9gε

ijBic̄jc3

+ξ′10g
2εijεklc̄icjckcl + {ξ1Bas(∂

µAaµ) + ξ2B
is(∇µAiµ) + ξ5B

is(∇µAiµ)

+ξ6B
as(∂µAaµ)− ξ7gε

abcBaεbdecdcec̄c + 2ξ8g
2εabcεadeBbc̄ccdce

+ξ9
g2

2
εijBic̄jεklckcl + 2ξ10g

2εijεklBic̄jckcl}Θ′} (3.15)

where ξ′ = dξ
dk

. Now using the condition of Eq.(2.55), we can write

∫
Dφ(k) exp [i(SL([φ(k)] + S1[φ(k), k)]

∫
d4x[(−γ1 + ξ′3 + ξ′4)BiBi

+(−γ2 + ξ′3)B3B3 + (γ3 + ξ′6)c̄as(∂µAaµ) + (−γ3 + ξ′5)c̄is(∇µAiµ)

+(−γ3 + ξ′1)Ba∂µAaµ + (γ3 + ξ′2)Bi∇µAiµ + (−2γ4 + ξ′7)g(εijBicj c̄3

+εijB3cic̄j) + (−2γ4 − 2γ5 + ξ′7 + ξ′9)gεijBic̄jc3 +
1

2
(γ4 + γ5

+2ξ′8 + 2ξ′10)εijεklc̄ic̄jckcl + 2(γ4 + 2ξ′8)g2εijεlkc̄j c̄3ckc3

+Θ′{(ξ1 + ξ6)Bas∂
µAaµ + (ξ2 + ξ5)Bis∇µAiµ −

1

2
(ξ7 + 4gξ8

+ξ9 + 4ξ10)εabcBaεbdecdcec̄c + (ξ7 + 4ξ8)g2(εijεikBj c̄3ckc3

−εijεikB3c̄jckc3}] = 0 (3.16)

The terms proportional to Θ′ which are regarded as nonlocal, vanishes

independently. These equations will give relations between ξ. Making

remaining local terms in Eq.(3.16) vanish will give relations between ξ

and γ. Solving these Eqs.(A.7,A.8,A.9), we will get following results.

The differential equations for ξn(k) can indeed be solved with the
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initial conditions ξn(0) = 0, to obtain the solutions

ξ = γ3k, ξ2 = −γ3k, ξ3 = γ2k,

ξ4 = (γ1 − γ2)k, ξ5 = γ3k, ξ6 = −γ3k

ξ7 = 2γ4k, ξ8 = −1

2
γ4k, ξ9 = 2γ5k

ξ10 = −1

2
γ5k (3.17)

Since γp(p = 1, 2, 3, 4, 5) are arbitrary constant parameters, we can

choose them as follows

γ1 =
1

2
(β − α), γ2 = −α

2
, γ3 = 1

γ4 = −α
4
, γ5 =

β

2
(3.18)

Substituting the solutions found in Eq.(3.17) into Eq.(3.14) and consid-

ering the specific values of the parameters in Eq.(3.18), we obtain

S1 =

∫
d4x
[
Ba∂

µAaµ −Bi∇µAiµ −
α

2
Ba2 +

β

2
Bi2 + c̄iδ(∇µAiµ)

−c̄aδ(∂µAaµ)− α

2
gεabcBacbc̄c +

α

8
g2εabcεadec̄bc̄ccdce + βgεijBic̄jc3

−β
4
g2εijεklc̄ic̄jckcl] (3.19)

Now the new generating functional is written as in Eq.(2.56)

ZL =

∫
Dφ exp(iSL[φ])→

∫
Dφ′ exp{i(SL[φ′] + S1[φ′, 1])}

=

∫
Dφ exp{i(SL[φ] + S1[φ, 1])}

=

∫
Dφ exp(iSMA[φ]) = ZMA (3.20)

In this way, the suitably constructed FFBRST transformation maps

SU(2) YM theory in the Lorenz gauge to that in the MA gauge.
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3.1.5 Conclusion

We have applied the FFBRST formulation discussed in chapter 2 to clar-

ify the connection between the gauge fixed SU(2) YM theory formulated

in the Lorenz and MA gauges. We have explicitly shown that the gen-

erating functional corresponding to the FP effective action in the MA

gauge can be obtained from that in the Lorenz gauge by carrying out a

suitably constructed FFBRST transformation. In this procedure, the FP

effective action in the MA gauge is found from that in the Lorenz gauge

by taking into account the non-trivial Jacobian arising from the FFBRST

transformation in the path integral measure.

In the next chapter we will discuss about various nilpotent sym-

metries for particle on torus [137]. We will show that these symmetries

follow the Hodge algebra and the system follows double Hodge theory.

We will also show connection between various gauge conditions for torus

system using FFBRST transformation. Then we will discuss BRST and

anti-BRST symmetries for particle on a torus knot [147]. We will also

show connection between various gauges for torus knot system through

FFBRST transformation. At last we will construct BRST and anti-BRST

symmetries for particle on torus knot [149] using the technique discussed

in ref. [148].



Chapter 4

Torus and Torus Knot:

Various Nilpotent Symmetries

In the previous chapter we have observed that YM action in MA gauge

can be connected to that in Lorenz gauge through FFBRST transfor-

mation. Now in this chapter we are going to extend BRST symmetry

and formulate FFBRST symmetry for torus and torus knot system. We

investigate all possible nilpotent symmetries for a particle on torus. We

explicitly construct four independent nilpotent BRST symmetries for such

systems and derive the algebra between the generators of such symme-

tries. We develop BRST symmetry for the first time for a particle on

the surface of a torus knot by analyzing the constraints of the system.

The theory contains second class constraints and has been extended by

introducing the Wess-Zumino term to convert it into a theory with first-

class constraints. BFV analysis of the extended theory is performed to

construct BRST/anti-BRST symmetries for the particle on a torus knot.

We further construct the FFBRST transformation for such systems by

integrating the infinitesimal BRST transformation systematically.

4.1 Double Hodge Theory for a Particle

on Torus

Toric geometry which is generalization of the projective identification that

defines CP n corresponding to the most general linear sigma model pro-

33
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vides a scheme for constructing Calabi-Yau manifolds and their mirrors

[113]. Recently, on the basis of boundary string field theory [114], the

brane-antibrane system was exploited [115] in the toroidal background

to investigate its thermodynamic properties associated with the Hage-

dorn temperature [116, 117]. The Nahm transform and moduli spaces

of CP n models were also studied on the toric geometry [118]. In a

four-dimensional, toroidally compactified heterotic string, the electrically

charged BPS-saturated states were shown to become massless along the

hyper surfaces of enhanced gauge symmetry of a two-torus moduli sub-

space [119].

In the present work we investigate various possible nilpotent sym-

metries for a particle on torus. Usual BRST symmetry for a particle

on torus has already been constructed [120]. In this work we construct

four different nilpotent symmetries associated with this system, namely,

BRST symmetry, anti-BRST symmetry, dual BRST (also known as co-

BRST) symmetry and anti-dual BRST (also known as anti-co-BRST)

symmetry [36, 39]. We further construct two different bosonic symme-

tries using these nilpotent BRST symmetries. Some discrete symmetries

associated with ghost number are also written for such systems. Com-

plete algebra satisfied by charges, which generate these symmetries, is

derived. Deep mathematical connections of such system with Hodge the-

ory [121, 122, 123, 124] has been established in this work. We found

that the system of particle on a torus is realized as Hodge theory with

respect to two different sets of operators. The generators for BRST, dual

BRST symmetries, and generator for corresponding bosonic symmetries

constructed out of BRST and dual BRST symmetries are analogous to

exterior derivative, coexterior derivative, and Laplace operator in Hodge

theory [64, 125, 126, 127, 128, 129, 130, 131, 132]. On the other hand the

charges corresponding to anti-BRST symmetry, anti-dual BRST symme-

try and bosonic symmetry constructed out of these two BRST symmetries

also form set of de-Rham cohomological operators.
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4.1.1 Free Particle on Surface of Torus

A particle moving freely on the surface of a torus is described by La-

grangian [120]:

L0 =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
m(b+ r sin θ)2φ̇2 (4.1)

where (r, θ, φ) are toroidal coordinates related to Cartesian coordinates

as

x = (b+ r sin θ) cosφ, y = (b+ r sin θ) sinφ, z = r cos θ (4.2)

Here we have considered a torus with axial circle in the x − y plane

centered at the origin, of radius b, having a circular cross section of radius

r. The angle θ ranges from −π to π and the angle φ from 0 to 2π. Since

the particle moves on the surface of torus of radius r, it is constrained to

satisfy

Ω1 = r − a ≈ 0 (4.3)

The canonical Hamiltonian corresponding to the Lagrangian in Eq.(4.1)

with the above constraint is then written as

H0 =
p2
r

2m
+

p2
θ

2mr2
+

p2
φ

2m(b+ r sin θ)2
+ λ(r − a) (4.4)

where pr, pθ and pφ are the canonical momenta conjugate to the coordi-

nate r, θ and φ, respectively, given by

pr = mṙ, pθ = mr2θ̇, pφ = m(b+ r sin θ)2φ̇ (4.5)

From Eq.(2.20), the time evolution of the constraint Ω1 yields the sec-

ondary constraint as

Ω2 = pr ≈ 0 (4.6)
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4.1.2 Wess-Zumino term and Hamiltonian

formation

To construct a gauge invariant theory corresponding to the gauge non-

invariant model in Eq.(4.4), we introduce the Wess-Zumino (WZ) term

[132] in the Lagrangian density L. For this purpose we enlarge the Hilbert

space of the theory by introducing a new quantum field η, called as WZ

field, through the redefinition of fields r and λ in the original Lagrangian

density L as follows

r → r − η; λ→ λ+ η̇ (4.7)

With this redefinition of the fields, the modified Lagrangian density be-

comes

LI =
1

2
m(ṙ − η̇)2 +

1

2
m(r − η)2θ̇2 +

1

2
m(b+ (r − η) sin θ)2φ̇2

− (λ+ η̇)(r − a− η) (4.8)

Canonical momenta corresponding to this modified Lagrangian density

are then given by

pr = m(ṙ − η̇), pη = −(m(ṙ − η̇) + (r − a− η)), pλ = 0

pθ = m(r − η)2θ̇, pφ = m(b+ (r − η) sin θ)2φ̇ (4.9)

The primary constraints for this extended theory is

ψ1 ≡ pλ ≈ 0 (4.10)

The Hamiltonian density corresponding to LI is written as,

HI = prṙ + pηη̇ + pθθ̇ + pφφ̇+ pλλ̇− LI (4.11)

The total Hamiltonian density after the introduction of a Lagrange mul-

tiplier field u corresponding to the primary constraint ψ1 is then obtained



4.1. Double Hodge Theory for a Particle on Torus 37

as

HI
T =

p2
r

2m
+

p2
θ

2m(r − η)2
+

p2
φ

2m(b+ (r − η) sin θ)2
+λ(pr+pη)+upλ (4.12)

Following the Dirac’s method of constraint analysis [22], we obtain sec-

ondary constraint as in Eq.(2.20),

ψ2 ≡ (pη + pr) ≈ 0 (4.13)

4.1.3 BFV Formulation for free Particle on the

Surface of Torus

To discuss all possible nilpotent symmetries we further extend the theory

using BFV formalism [18, 19, 20, 79, 134, 135]. In the BFV formulation

associated with this system, we introduce a pair of canonically conjugate

ghost fields (c,p) with ghost number 1 and -1 respectively, for the primary

constraint pλ ≈ 0 and another pair of ghost fields (c̄, p̄) with ghost number

-1 and 1 respectively, for the secondary constraint, (pη + pr) ≈ 0. The

effective action for a particle on the surface of torus in extended phase

space is then written as in Eq.(2.41)

Seff =

∫
d4x
[
prṙ + pηη̇ + pθθ̇ + pφφ̇− pλλ̇−

p2
r

2m
− p2

θ

2m(r − η)2

−
p2
φ

2m(b+ (r − η) sin θ)2
+ ċp+ ˙̄cp̄− {Qb, ψ}

]
(4.14)

where Qb is the BRST charge and ψ is the gauge-fixed fermion. This

effective action is invariant under BRST transformation generated by Qb

which is constructed using constraints in the theory as in Eq.(2.43),

Qb = ic(pr + pη)− ip̄pλ (4.15)
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The canonical brackets for all dynamical variables are written as

[r, pr] = [θ, pθ] = [φ, pφ] = [η, pη] = [λ, pλ] = {c̄, ċ} = i, {c, ˙̄c} = −i(4.16)

Rest of the brackets are zero. Now, the nilpotent BRST transformation,

using the relation sbφ = [φ,Qb]± (± sign represents the fermionic and

bosonic nature of the fields φ), are explicitly written as

sbr = −c, sbλ = p̄, sbp̄ = 0, sbθ = −c

sbpφ = 0, sbpθ = 0, sbp = (pr + pη)

sbc̄ = pλ, sbpλ = 0, sbc = 0 (4.17)

In BFV formulation the generating functional is independent of gauge-

fixed fermion [18, 19, 20, 79, 134, 135], hence we have liberty to choose it

in the convenient form as in Eq.(2.43)

ψ = pλ+ c̄(r + η +
pλ
2

) (4.18)

Putting the value of ψ in Eq.(4.14) and using Eq.(4.15) and Eq.(4.16),

we obtain

Seff =

∫
d4x
[
prṙ + pηη̇ + pθθ̇ + pφφ̇− pλλ̇−

p2
r

2m
− p2

θ

2m(r − η)2

−
p2
φ

2m(b+ (r − η) sin θ)2
+ ċp+ ˙̄cp̄+ λ(pr + pη) + 2cc̄ − p̄p

+pλ(r + η +
pλ
2

)
]

(4.19)

and the generating functional for this effective theory is represented as

Zψ =

∫
Dφ exp

[
iSeff

]
(4.20)
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Now integrating this generating functional over p, p̄ and pλ, we get

Zψ =

∫
Dφ′′ exp

[
i

∫
d4x
[
prṙ + pηη̇ + pθθ̇ + pφφ̇−

p2
r

2m

− p2
θ

2m(r − η)2
−

p2
φ

2m(b+ (r − η) sin θ)2
+ ˙̄cċ+ λ(pr + pη)

−2c̄c− (λ̇− r − η)2

2

]]
(4.21)

where Dφ′′ is the path integral measure corresponding to all the dynam-

ical variables involved in the effective action. The BRST transformation

for this effective theory is written as

sbr = −c, sbλ = ċ, sbη = −c

sbpr = 0, sbpη = 0

sbc̄ = −(λ̇− η − r), sbc = 0 (4.22)

These transformations are on shell nilpotent.

4.1.4 Nilpotent Symmetries

In this section we will study various other nilpotent symmetries of this

model [136]. For this purpose it is convenient to work using Nakanishi-

Lautrup type auxiliary field B which linearizes the gauge-fixing part of

the effective action in Eq.(4.21). The first order effective action is then

given by

Seff =

∫
d4x
[
prṙ + pηη̇ + pθθ̇ + pφφ̇−

p2
r

2m
− p2

θ

2m(r − η)2

−
p2
φ

2m(b+ (r − η) sin θ)2
+ ˙̄cċ+ λ(pr + pη)− 2c̄c

− B(λ̇− r − η) +
B2

2

]
(4.23)
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We can easily show that this action is invariant under the following off-

shell nilpotent BRST transformation

sbr = −c, sbλ = ċ, sbη = −c

sbpr = 0, sbpη = 0, sbθ = 0

sbc̄ = B, sbc̄ = 0, sbpφ = 0

sbφ = 0, sbpθ = 0 (4.24)

Corresponding anti-BRST transformation for this theory is then written

by interchanging the role of ghost and anti-ghost field as

sabr = −c̄, sabλ = ˙̄c, sabη = −c̄

sabpr = 0, sabpη = 0, sabpφ = 0

sabc = −B, sabc̄ = 0, sabθ = 0

sabφ = 0, sabpθ = 0 (4.25)

The conserved BRST and anti-BRST charges Qb and Qab which generate

above BRST and anti-BRST transformations are written for this effective

theory as

Qb = ic(pr + pη)− ipλċ (4.26)

and

Qab = ic̄(pr + pη)− ipλ ˙̄c (4.27)

Further by using following equation of motion

B + ṗr = 0, B + ṗη = 0 ṙ − pr + λ = 0

Ḃ = pr + pη, ˙̄c+ 2c̄ = 0,

ċ+ 2c = 0, B + λ̇− r − η = 0 (4.28)
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it is shown that these charges are constants of motion i.e. Q̇b = 0, Q̇ab = 0,

and satisfy following relations,

QbQab +QabQb = 0 (4.29)

To arrive on these relations, the canonical brackets [Eq.(4.16)] of the fields

and the definition of canonical momenta have been used

pλ = B, pc̄ = ċ, pc = − ˙̄c (4.30)

The physical states of theory are annihilated by the BRST and anti-BRST

charges, leading to

(pr + pη)|phys〉 = 0 (4.31)

and

pλ|phys〉 = 0 (4.32)

This implies that the operator form of the first class constraint pλ ≈ 0

and (pr + pη) ≈ 0 annihilates the physical state of the theory. Thus the

physicality criteria is consistent with Dirac’s method of quantization.

4.1.5 Co-BRST and anti co-BRST symmetries

In this section, we investigate two other nilpotent transformations,

namely co-BRST and anti co-BRST transformation which are also the

symmetry of the effective action in Eq.(4.23). Further these transforma-

tions leave the gauge-fixing term of the action invariant independently and

the kinetic term (which remains invariant under BRST and anti-BRST

transformations) transforms under it to compensate for the transforma-

tion of the ghost terms. These transformations are also called as dual

and anti dual-BRST transformations [36, 39].

The nilpotent co-BRST (s2
d = 0) and anti co-BRST transformations
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(s2
ad = 0) which leave the effective action [in Eq.(4.23)] for a particle on

torus, invariant, are given by

sdr = −1

2
˙̄c, sdλ = −c̄, sdη = −1

2
˙̄c

sdpr = 0, , sdpη = 0, sdc̄ = 0

sdc =
1

2
(pr + pη), sdB = 0, (4.33)

and

sadr = −1

2
ċ, sadλ = −c, sadη = −1

2
ċ

sadpr = 0, sadpη = 0, sadc̄ = 0

sadc = −1

2
(pr + pη), sadB = 0 (4.34)

These transformations are absolutely anti-commuting as {Sd, Sad} = 0.

The conserved charges for above symmetries are found using Noether’s

theorem and are written as

Qd = i
1

2
(pr + pη) ˙̄c+ ipλc̄ (4.35)

and

Qad = i
1

2
(pr + pη)ċ+ ipλc (4.36)

which generate the symmetry transformations in Eq.(4.33) and Eq.(4.34)

respectively. It is easy to verify the following relations

sdQd = −{Qd, Qd} = 0

sadQad = −{Qad, Qad} = 0

sdQad = −{Qad, Qd} = 0

sadQd = −{Qd, Qad} = 0 (4.37)

which reflect the nilpotency and anti-commutativity property of sd and

sad (i.e. s2
d = 0,s2

ad = 0 and sdsad + sadsd = 0).
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4.1.6 Other Symmetries

In this section, we construct other symmetries related to this system. Two

different bosonic symmetries are constructed out of four nilpotent sym-

metries. Discrete symmetry related to ghost number is also constructed.

4.1.7 Bosonic Symmetry

In this part we construct the bosonic symmetry out of these nilpotent

BRST symmetries of the theory using ref. [134, 135]. The BRST (sb),

anti-BRST (sab), co-BRST (sd), and anti co-BRST(sad) symmetry oper-

ators satisfy the following algebra

{sd, sad} = 0, {sb, sab} = 0

{sb, sad} = 0, {sd, sab} = 0 (4.38)

and we define bosonic symmetries, sw and sw̄ as,

sw ≡ {sb, sd}, sw̄ ≡ {sab, sad} (4.39)

The fields variables transform under bosonic symmetry sw as,

swr = −1

2
(Ḃ + pr + pη), swλ = −1

2
(2B − ṗr − ṗη)

swη = −1

2
(Ḃ + pr + pη), swpr = 0, swpη = 0

swc = 0, swB = 0, swc̄ = 0 (4.40)

On the other hand transformation generated by sw̄ are,

sw̄r = −1

2
(Ḃ + pr + pη), sw̄λ =

1

2
(2B − ṗr − ṗη)

sw̄η = −1

2
(Ḃ + pr + pη), sw̄pr = 0, sw̄pη = 0

sw̄c = 0, sw̄B = 0, sw̄c̄ = 0 (4.41)
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However the transformation generated by sw and sw̄ are not independent

as it is easy to see from Eq.(4.40) and Eq.(4.41) that the operators sw

and sw̄ satisfy the relation sw +sw̄ = 0. This implies from Eq.(4.39), that

{sb, sd} = sw = −{sab, sad} (4.42)

It is clear from above algebra that the operator sw is analogous of the

Laplacian operator in the language of differential geometry and the con-

served charge for the above symmetry transformation is calculated as

Qw = −i[B2 +
1

2
(pr + pη)

2] (4.43)

which generates the transformation in Eq.(4.40).

Using equation of motion, it can readily be checked that

dQw

dt
= −i

∫
dx[2BḂ + (pr + pη)(ṗr + ṗη)] = 0 (4.44)

Hence Qw is the constant of motion for this theory.

4.1.8 Ghost Symmetry and Discrete Symmetry

Now we consider yet another kind of symmetry of this system called ghost

symmetry discussed in ref. [134]. The ghost numbers of the ghost and

anti-ghost fields are 1 and -1 respectively. Rest of the variables in the

action of this theory have ghost number zero. Keeping this fact in mind

we can introduce a scale transformation of the ghost field, under which

the effective action is invariant, as

c → eΛc

c̄ → e−Λc̄

χ → χ (4.45)
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where χ = {r, η, θ, φ, u, λ, pr, pη, pθ, pφ, pu, B} and Λ is a global scale pa-

rameter. The infinitesimal version of the ghost scale transformation can

be written as

sgχ = 0

sgc = c

sg c̄ = −c̄ (4.46)

The Noether’s conserved charge for above symmetry transformation is

calculated as

Qg = i[ ˙̄cc+ ċc̄] (4.47)

In addition to above continuous symmetry transformation, the ghost sec-

tor respects the following discrete symmetry transformations.

c→ ±ic̄, c̄→ ±ic (4.48)

4.1.9 Geometric Cohomology and Double Hodge

Theory

In this section we study the de-Rham cohomological operators [122, 123,

124] and their realization in terms of conserved charges which generate the

nilpotent symmetries for the theory of a particle on the surface of torus.

In particular we point out the similarities between the algebra obeyed by

de-Rham co-homological operators and that by different BRST conserved

charges.

Before we proceed to discuss the analogy, we briefly review the

essential features of Hodge theory [134, 135]. The de-Rham cohomological
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operators in differential geometry obey the following algebra

d2 = δ2 = 0, ∆ = (d+ δ)2 = dδ + δd ≡ {d, δ}

[∆, δ] = 0, [∆, d] = 0 (4.49)

Where d, δ and ∆ are exterior, co-exterior and Laplace-Beltrami oper-

ators respectively. The operator d and δ are adjoint or dual to each

other and ∆ is self-adjoint operator. It is well known that the exterior

derivative raises the degree of form by one when it operates on the form

(i.e.dfn ∼ fn+1), whereas the dual-exterior derivative lowers the degree of

a form by one when it operates on the form (i.e.δfn ∼ fn−1). However

∆ does not change the degree of form (i.e.∆fn ∼ fn). fn denotes an

arbitrary n-form object.

The Hodge-de-Rham decomposition theorem can be stated as fol-

lows.

A regular differential form of degree n(α) may be uniquely decom-

posed into a sum of the harmonic form (α)H , exact form (αd) and co-exact

form (αδ) i.e.

α = αH + αd + αδ (4.50)

where α ∈ Hn, αs ∈ Λn
δ and αd ∈ Λn

d

The generators of all the nilpotent symmetry transformations satisfy

the following algebra [134, 135]

Q2
b = 0, Q2

ab = 0, Q2
d = 0, Q2

ad = 0

{Qb, Qab} = 0, {Qd, Qad} = 0, {Qb, Qad} = 0

{Qd, Qab} = 0, [Qg, Qb] = Qb, [Qg, Qad] = Qad

[Qg, Qd] = −Qd, [Qg, Qab] = −Qab, [Qw, Qr] = 0

{Qb, Qd} = −{Qad, Qab} = Qw (4.51)

Here the relations between the conserved charges Qb and Qad as well as
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Qab and Qd can be found using equation of motions only. This algebra

is similar to the algebra satisfied by de-Rham co-homological operators

of differential geometry given in Eq.(4.49). Comparing Eq.(4.49) and

Eq.(4.51) we obtain following analogies

(Qb, Qad)→ d, (Qd, Qab)→ δ, Qw → ∆ (4.52)

Let n be the ghost number associated with a given state |ψ〉n defined

in the total Hilbert space of states, i.e.

iQg|ψ〉n = n|ψ〉n (4.53)

Then it is easy to verify the following relations

QgQb|ψ〉n = (n+ 1)Qb|ψ〉n
QgQad|ψ〉n = (n+ 1)Qad|ψ〉n
QgQd|ψ〉n = (n− 1)Qb|ψ〉n
QgQab|ψ〉n = (n− 1)Qad|ψ〉n
QgQw|ψ〉n = nQw|ψ〉n (4.54)

which imply that the ghost numbers of the states Qb|ψ〉n, Qd|ψ〉n and

Qw|ψ〉n are (n+1), (n-1) and n respectively. The states Qab|ψ〉n and

Qad|ψ〉n have ghost numbers (n-1) and (n+1) respectively. The properties

of set (Qb, Qad) and (Qd, Qab) are same as of operators d and δ. It is

evident from Eq.(4.54) that the set (Qb, Qad) raises the ghost number of

a state by one and the set (Qd, Qab) lowers the ghost number of the same

state by one. Keeping the analogy between charges of different nilpotent

symmetries and Hodge-de-Rham differential operators, we express any

arbitrary state |ψ〉n in terms of the sets (Qb, Qd, Qw) and (Qad, Qab, Qw̄)

as

|ψ〉n = |w〉n +Qb|χ〉(n−1) +Qd|φ〉(n+1)

|ψ〉n = |w〉n +Qad|χ〉(n−1) +Qab|φ〉(n+1) (4.55)



4.1. Double Hodge Theory for a Particle on Torus 48

where the most symmetric state is the harmonic state |w〉n that satisfies

Qw|w〉n = 0, Qb|w〉n = 0, Qd|w〉n = 0

Qab|w〉n = 0, Qad|w〉n = 0 (4.56)

analogous to the Eq.(4.49). Therefore the BRST charges for a particle

on a torus forms two separate set of de-Rham co-homological operators,

namely {Qb, Qab, Qw} and {Qd, Qad, Qw̄}. Thus we call the theory of a

particle on torus as double Hodge theory. Fermionic charges Qb, Qab, Qd

and Qad follow physicality criteria given below,

Qb|phys〉 = 0, Qab|phys〉 = 0

Qd|phys〉 = 0, Qad|phys〉 = 0 (4.57)

which lead to

pλ|phys〉 = 0

(Pr + Pη)|phys〉 = 0 (4.58)

This is the operator form of the first class constraint which annihilates

the physical state as a consequence of physicality criteria, which further

is consistent with the Dirac’s method of quantization of a system with

first class constraints.

4.1.10 FFBRST for free particle on surface of torus

The effective action for the free particle on surface of torus using BFV

formulation is written in Eq.(4.19) and its BRST transformation is given

by Eq.(4.22). In BRST transformation given by Eq.(4.22), δΛ is global,

infinitesimal and anti-commuting parameter. FFBRST transformation
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corresponding to this BRST transformation is written as

sbr = cΘ, sbλ = −ċΘ, sbη = cΘ

sbpr = 0, sbpη = 0, sbc = 0

sbc̄ = (λ̇− η − r)Θ (4.59)

where Θ is finite field dependent, global and anti-commuting parameter.

Under this transformation too, effective action is invariant.

Generating functional for this effective theory can be written as

Zψ =

∫
DΦ exp[i

∫
d4x
[
prṙ + pηη̇ + pθθ̇ + pφφ̇− pλλ̇−

p2
r

2m

− p2
θ

2m(r − η)2
−

p2
φ

2m(b+ (r − η) sin θ)2
+ ċp+ ˙̄cp̄+ λ(pr + pη)

+2cc̄− p̄p+ pλ(r + η +
pλ
2

)
]
] (4.60)

where,

DΦ = drdprdθdpθdφdpφdηdpηdλdpλdpdp̄dcdc̄ (4.61)

where DΦ is the path integral measure integrated over total phase space.

The finite BRST transformation given above leaves the effective action

invariant but path integral measure in generating functional is not invari-

ant under this transformation. It gives rise to a Jacobian in the extended

phase space which can be calculated as,

DΦ = drdprdθdpθdφdpφdηdpηdλdpλdpdp̄dcdc̄

= J(k)dr(k)dpr(k)dθ(k)dpθ(k)dφ(k)dpφ(k)dη(k)dpη(k)dλ(k)dpλ(k)

dp(k)dp̄(k)dc(k)dc̄(k)

= J(k + dk)dr(k + dk)dpr(k + dk)dθ(k + dk)dpθ(k + dk)

dφ(k + dk)dpφ(k + dk)dη(k + dk)dpη(k + dk)dλ(k + dk)

dpλ(k + dk)dp(k + dk)dp̄(k + dk)dc(k + dk)dc̄(k + dk) (4.62)
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Writing it in compact form from chapter 2,

=

∫
d4x

∑
ψ

[δΨ(x, k + dk)

δΨ(x, k)

]
(4.63)

Where Ψ = (r, pr, θ, pθ, φ, pφ, η, pη, λ, pλ, p, p̄, c, c̄). Which can be written

as

= 1 + dk

∫ [
c
δΘ′(x, k + dk)

δr(x, k)
− ċ δΘ(x, k + dk)

δλ(x, k)
+ c

δΘ(x, k + dk)

δη(x, k)

+(λ̇− η − r)δΘ(x, k + dk)

δc̄(x, k)

]
=

J(k)

J(k + dk)

= 1− 1

J(k)

dJ(k)

dk
dk (4.64)

Now we consider an example to illustrate the FFBRST formulation. For

that purpose we construct finite BRST parameter Θ obtained from,

Θ′ = iγ

∫
d4yc̄(y, k)pλ(y, k) (4.65)

through

Θ =

∫
Θ′(k)dk (4.66)

The Jacobian change is calculated using Eq.(2.52) as,

1

J(k)

dJ(k)

dk
= iγ

∫
d4ypλ

2 (4.67)

We make an ansatz for S1 as,

S1 = i

∫
d4xξ1(k)pλ

2 (4.68)
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Where ξ1(k) is a k dependent arbitrary parameter. Now,

dS1

dk
= i

∫
d4xξ′1(k)pλ

2 (4.69)

Using condition in Eq.(2.55), we will get ξ1(k) = γk. Now the modified

generating functional can be written as in Eq.(2.56),

Z =

∫
Dχ′(k)ei(S1+Seff )

=

∫
Dφ′ exp

[
i

∫
d4x
[
prṙ + pηη̇ + pθθ̇ + pφφ̇− pλλ̇−

p2
r

2m

− p2
θ

2m(r − η)2
−

p2
φ

2m(b+ (r − η) sin θ)2
+ ċp+˙̄cp̄+ λ(pr + pη)

+2cc̄− p̄p+ pλ(r + η) + (
λ′

2
+ γk)pλ

2
]]

(4.70)

Here generating functional at k = 0 is the theory for a free particle on the

surface of torus with a gauge parameter λ′ and at k = 1, the generating

functional for same theory with a different gauge parameter λ′′ = λ′ +

2γ. These two effective theories with two different gauge parameters on

the surface of a torus are related through the FFBRST transformation

with finite parameter given in Eq.(4.66). FFBRST transformation is thus

helpful in showing the gauge independence of physical quantities.

4.1.11 Conclusion

We have constructed nilpotent BRST, dual-BRST, anti-BRST and anti-

dual BRST transformations for this system. Dual-BRST transformations

are also the symmetry of effective action and leaves gauge-fixing part of

the effective action invariant. Interchanging the role of ghost and anti-

ghost fields the anti-BRST and anti-dual BRST symmetry transforma-

tions are constructed. We have shown that the nilpotent BRST and anti

dual-BRST charges are analogous to the exterior derivative operators as

the ghost number of the state |ψ〉n on the total Hilbert space is increased

by one when these charges operate on this state and algebra followed
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by these operators is same as the algebra obeyed by the de-Rham co-

homological operators. Similarly the dual-BRST and anti-BRST charges

are analogous to co-exterior derivative. The anti-commutators of BRST

and dual-BRST and anti-BRST and anti dual-BRST charges lead to

bosonic symmetry. The corresponding charges are analogous to Lapla-

cian operator. Further, this theory has another nilpotent symmetry called

ghost symmetry under which the ghost term of the effective action is in-

variant. We further have shown that this theory behaves as double Hodge

theory as the charges for BRST (Qb), dual BRST (Qd) and the charges

for the bosonic symmetry generated out of these two symmetries (Qw)

form the algebra for Hodge theory. On the other hand charges for anti-

BRST (Qab), anti-dual BRST (Qad) and Qw̄, charge for bosonic symmetry

generalized out of these nilpotent symmetries also satisfy the Hodge al-

gebra. Thus particle on the surface of torus has very rich mathematical

structure.

We further constructed the FFBRST transformation for this sys-

tem. By constructing appropriate field dependent parameter we have ex-

plicitly shown that such generalized BRST transformations are capable of

connecting different theories on torus. It will be interesting to construct

finite version of dual BRST transformation and study its consequences

on the system with constraints.

4.2 BRST Symmetry for a Torus Knot

Knot [138, 139] theory, based on mathematical concepts has found im-

mense applications in various branches of frontier physics. Knot invari-

ants in physical systems were introduced long ago and have got consid-

erable impact during last one and half decades [138, 139, 140, 141, 142,

143, 144, 145, 146], especially when interpreted as Wilson loop observable

in Chern-Simons(CS) theory [144]. The discussion on topological string

approach to the torus knot invariants are presented in ref. [144]. In the

context of gauge theory, knot invariant theories relate 3d symmetry on
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the CS sub-manifold and 3d SUSY gauge theory. It also plays important

role in various other problems like, inequivalent quantization problem

[141], in the role of topology in defining vacuum state in gauge theories

[142], in understanding band theory of solids [143]. We will discuss here

the BRST symmetry for particle on a torus knot. We will also discuss

FFBRST symmetry for this system.

4.2.1 Particle on a Torus Knot

In knot theory, a torus knot is a special kind of knot that lies on the

surface of un-knotted torus in R3. It is specified by a set of co-prime

integers p and q. A torus knot of type (p, q) winds p times around the

rotational symmetry axis of the torus and q times around a circle in the

interior of the torus. The toroidal co-ordinate system is a suitable choice

to study this system. Toroidal co-ordinates are related to Cartesian co-

ordinates (x1, x2, x3) in following ways,

x1 =
a sinh η cosφ

cosh η − cos θ
, x2 =

a sinh η sinφ

cosh η − cos θ
, x3 =

a sin θ

cosh η − cos θ
(4.71)

where, 0 ≤ η ≤ ∞, −π ≤ θ ≤ π and 0 ≤ φ ≤ 2π. A toroidal surface is

represented by some specific value of η (say η0). Parameters a and η0 are

written as a2 = R2 − d2 and cosh η0 = R
D

, where R and D are major and

minor radius of torus respectively.

Similarly, toroidal coordinates can be represented in the form of

Cartesian co-ordinates as,

η = ln
d1

d2

, cos θ =
r2 − a2

((r2 − a2)2 + 4a2x3
2)

1
2

, φ = tan−1 x2

x1

(4.72)

where

d2
1 = (

√
x2

1 + x2
2 + a)2 + x2

3, d2
2 = (

√
x2

1 + x2
2 − a)2 + x2

3

r2 = x2
1 + x2

2 (4.73)
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r is cylindrical radius.

Lagrangian for a particle residing on the surface of torus knot is

given by [140, 146]

L =
1

2
ma2 η̇

2 + θ̇2 + sinh η2φ̇2

(cosh η − cos θ)2
− λ(pθ + qφ) (4.74)

where (η, θ, φ) are the toroidal coordinates for toric geometry.

Constraint that forces the particle to move in knot is imposed as

Ω1 = (pθ + qφ) ≈ 0 (4.75)

The Hamiltonian corresponding to this Lagrangian is then written as,‘

H =
(cosh η − cos θ)2

ma2
[p2
η + p2

θ +
p2
φ

sinh2 η
] + λ(pθ + qφ) (4.76)

Here pη, pθ and pφ are canonical momenta corresponding to the co-

ordinates η, θ and φ.

Using Eq.(2.20), the time evolution of the constraint Ω1 gives addi-

tional secondary constraint

Ω2 =
(cosh η − cos θ)2

ma2
[ppθ +

qpφ

sinh2 η
] ≈ 0 (4.77)

Constraints Ω1 and Ω2 form second-class constraint algebra [22]

∆kk′(x, y) = {Ωk(x),Ωk′(y)}

= εkk
′ (cosh η − cos θ)2

ma2
[p2 +

q2

sinh2 η
]δ(x− y) (4.78)

with ε12 = −ε21 = 1. In the next section we will convert this gauge variant

theory to the gauge invariant theory in an extended Hilbert space.
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4.2.2 Wess-Zumino term and Hamiltonian

Formation

To construct a gauge invariant theory corresponding to a gauge non-

invariant model of particle on a torus knot, we introduce Wess-Zumino

(WZ) term in Lagrangian in Eq.(4.74). For this purpose we enlarge the

Hilbert space of the theory by introducing a new co-ordinate α, called

as WZ term, through the redefinition of co-ordinates θ, φ and λ in the

Lagrangian L as follows

θ → θ − α

2p
, φ→ φ− α

2q
, λ→ λ+ α̇ (4.79)

With this redefinition of co-ordinates, modified Lagrangian is writ-

ten as

LI =
1

2

ma2

(cosh η − cos(θ − α
2p

))2
[η̇2 + θ̇2 + sinh2 ηφ̇2 +

α̇2

4
(

1

p2
+

sinh2 η

q2
)

−α̇(
θ̇

p
+ sinh2 η

φ̇

q
)]− (λ+ α̇)(pθ + qφ− α) (4.80)

which is invariant under following time-dependent gauge transformations

δλ = ḟ(t), δθ = −f(t)

2p
, δφ = −f(t)

2q
, δα = −f(t)

δpη = δpθ = δpφ = 0, δb = δΠα = δη = δΠλ = 0 (4.81)

where f(t) is an arbitrary function of time. To construct the Hamilto-

nian for this gauge invariant theory we construct the canonical momenta
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corresponding to this modified Lagrangian as

pη =
ma2

(cosh η − cos(θ − α
2p

))2
η̇, Πλ = 0,

pθ =
ma2

(cosh η − cos(θ − α
2p

))2
(θ̇ − α̇

2p
),

pφ =
ma2 sinh2 η

(cosh η − cos(θ − α
2p

))2
(φ̇− α̇

2q
),

Πα =
ma2

2(cosh η − cos(θ − α
2p

))2
{ α̇

2
(

1

p2
+

sinh2 η

q2
) + (

θ̇

p
+ sinh2 η

φ̇

q
)}

−(pθ + qφ− α) (4.82)

The only primary constraint for this extended theory is

Ψ1 ≡ Πλ ≈ 0 (4.83)

The Hamiltonian corresponding to Lagrangian LI is written as

HI = pηη̇ + pθθ̇ + pφφ̇+ Παα̇− LI (4.84)

The total Hamiltonian after using Lagrange multiplier β corresponding

to the primary constraint Πλ is obtained as

HI
T =

(cosh η − cos(θ − α
2p

))2

2ma2
[p2
η + p2

θ +
p2
φ

sinh2 η
]

− λ(Πα +
pθ
2p

+
pφ
2q

) + βΠλ (4.85)

Using Dirac’s method of constraint analysis [22], we obtain secondary

constraint

Ψ2 ≡ (Πα +
pθ
2p

+
pφ
2q

) ≈ 0 (4.86)

There is no tertiary constraint corresponding to this total Hamiltonian
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as

Ψ3 = Ψ̇2 = [HI
T , (Πα +

pθ
2p

+
pφ
2q

)] = 0 (4.87)

This extended theory thus has only first class constraints.

4.2.3 BFV Formalism for Torus Knot

To discuss all possible nilpotent symmetries we further extend the theory

using BFV formalism [18, 19, 20, 79]. In the BFV formulation associated

with this system, we introduce a pair of canonically conjugate ghost fields

(c,p) with ghost number 1 and -1 respectively, for the primary constraint

Πλ ≈ 0 and another pair of ghost fields (c̄, p̄) with ghost number -1 and

1 respectively, for the secondary constraint, (Πα + pθ
2p

+
pφ
2q

) ≈ 0. Then

using Eq.(2.41), effective action for particle on the surface of torus knot

in extended phase space is written as

Seff =

∫
dt
[
pηη̇ + pθθ̇ + pφφ̇+ Παα̇− Πλλ̇−

(cosh η − cos(θ − α
2p

))2

2ma2
{p2

η

+p2
θ +

p2
φ

sinh2 η
}+ ċP + ˙̄cP̄ − {Qb, ψ}

]
(4.88)

where Qb is BRST charge and has been constructed using the con-

straints of the system as in Eq.(2.43)

Qb = ic(Πα +
pθ
2p

+
pφ
2q

)− iP̄Πλ (4.89)

The canonical brackets for all dynamical variables are written as

[η, pη] = [θ, pθ] = [φ, pφ] = [α,Πα] = [λ,Πλ] = {c̄, ċ} = i,

{c, ˙̄c} = −i (4.90)

Nilpotent BRST transformation corresponding to this action is con-

structed using the relation sbΦ = −[Qb,Φ]±, which is related to infinites-
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imal BRST transformation as δbΦ = sbΦδΛ. Here δΛ is infinitesimal

BRST parameter. Here -ve sign is for bosonic and +ve is for fermionic

variable. The BRST transformation for the particle on a torus knot is

then written as

sbλ = P̄ , sbθ = − c

2p
, sbφ = − c

2q
, sbα = −c

sbpη = sbpθ = sbpφ = 0, sbP = (Πα +
pθ
2p

+
pφ
2q

)

sbc̄ = Πλ = b, sbc = sbb = sbΠα = sbη = sbΠλ = 0 (4.91)

One can check that these transformations are nilpotent. In BFV formu-

lation the generating functional is independent of gauge-fixing fermion

[18, 19, 20], hence we have liberty to choose it in the convenient form as

in Eq.(2.43)

Ψ = pλ+ c̄(pθ + qφ+ α +
Πλ

2
) (4.92)

Using the expressions for Qb and Ψ, effective action (4.88) is written as

Seff =

∫
dt
[
pηη̇ + pθθ̇ + pφφ̇+ Παα̇− Πλλ̇−

(cosh η − cos(θ − α
2p

))2

2ma2
{p2

η

+p2
θ +

p2
φ

sinh2 η
}+ ċP + ˙̄cP̄ − P̄P + λ(Πα +

pθ
2p

+
pφ
2q

) + 2cc̄

+Πλ(pθ + qφ+ α +
Πλ

2
)
]

(4.93)

and the generating functional for this effective theory is represented as

Zψ =

∫
Dφ exp

[
iSeff

]
(4.94)

The measure Dφ =
∏

i dξi , where ξi are all dynamical variables of the
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theory. Now integrating this generating functional over P and P̄ , we get

Zψ =

∫
Dφ′ exp

[
i

∫
dt
[
pηη̇ + pθθ̇ + pφφ̇+ Παα̇− Πλλ̇

−
(cosh η − cos(θ − α

2p
))2

2ma2
{p2

η + p2
θ +

p2
φ

sinh2 η
}+ ˙̄cċ+ λ(Πα +

pθ
2p

+
pφ
2q

)

−2c̄c+ Πλ(pθ + qφ+ α +
Πλ

2
)
]]

(4.95)

where Dφ′ is the path integral measure for effective theory when integra-

tions over fields P and P̄ are carried out. Further integrating over Πλ we

obtain an effective generating functional as

Zψ =

∫
Dφ′′ exp

[
i

∫
dt
[
pηη̇ + pθθ̇ + pφφ̇+ Παα̇

−
(cosh η − cos(θ − α

2p
))2

2ma2
{p2

η + p2
θ +

p2
φ

sinh2 η
}+ ˙̄cċ+ λ(Πα +

pθ
2p

+
pφ
2q

)

−2c̄c− {λ̇− (pθ + qφ+ α)}2

2

]]
(4.96)

where DΦ′′ is the path integral measure corresponding to all the dy-

namical variables involved in the effective action. The BRST symmetry

transformation for this effective theory is written as

sbθ = − c

2p
, sbφ = − c

2q
, sbα = −c

sbpη = sbpθ = sbpφ = 0, sbc̄ = −{λ̇− (pθ + qφ+ α)}

sbλ = ċ, sbc = sbb = sbΠα = sbη = sbΠλ = 0 (4.97)

4.2.4 BRST and Anti-BRST charge

In this section we show that physical subspace of the system is consistent

with the constraints of the system. Nilpotent charge for BRST symmetry

in Eq.(4.97) is constructed as

Qb = ic(Πα +
pθ
2p

+
pφ
2q

)− iċΠλ (4.98)
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This BRST charge generates BRST transformations in Eq.(4.97) through

the following commutation and anti-commutation relations

sbθ = −[Qb, θ] = − c

2p

sbφ = −[Qb, φ] = − c

2q

sbα = −[Qb, α] = −c

sbλ = −[Qb, λ] = ċ

sbc̄ = − {Qb, c̄} = −Πλ (4.99)

The physical states are annihilated by the BRST charge in Eq.(4.98)

as

Qb|ψ〉 = 0 = {ic(Πα +
pθ
2p

+
pφ
2q

)− iċΠλ}|ψ〉

= ic(Πα +
pθ
2p

+
pφ
2q

)|ψ〉 − iċΠλ}|ψ〉 (4.100)

This implies that

(Πα +
pθ
2p

+
pφ
2q

)|ψ〉 = 0, Πλ|ψ〉 = 0 (4.101)

The Hamiltonian (4.85) is also invariant under anti-BRST transformation

in which role of c and −c̄ are interchanged. Anti-BRST transformations

for this theory are written as

s̄abθ =
c̄

2p
, s̄abφ =

c̄

2q
, s̄abα = c̄

s̄abpη = s̄abpθ = s̄abpφ = 0, s̄abc = {λ̇− (pθ + qφ+ α)}

s̄abλ = − ˙̄c, s̄abc̄ = s̄abb = s̄abΠα = s̄abη = s̄abΠλ = 0 (4.102)

The nilpotent charge for the anti-BRST symmetry in Eq.(4.102) is con-

structed as

Qab = −ic̄(Πα +
pθ
2p

+
pφ
2q

) + i ˙̄cΠλ (4.103)
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Like BRST charge, anti-BRST charge Qab also generates the anti-BRST

transformations in (4.102) through the following commutation and anti-

commutation relations

sabθ = −[Qab, θ] =
c̄

2p

sabφ = −[Qab, φ] =
c̄

2q

sabα = −[Qab, α] = c̄

sabλ = −[Qab, λ] = − ˙̄c

sabc = − {Qab,c} = −Πλ (4.104)

Anti-BRST charge too annihilates the states of physical Hilbert space.

Qab|ψ〉 = 0

−ic̄(Πα +
pθ
2p

+
pφ
2q

) + i ˙̄cΠλ|ψ〉 = 0 (4.105)

or

(Πα +
pθ
2p

+
pφ
2q

)|ψ〉 = 0, Πλ|ψ〉 = 0 (4.106)

Anti-BRST charge too project on the physical subspace of total Hilbert

space. Thus anti-BRST charge plays exactly same role as BRST charge.

It is straight forward to check that these charges are nilpotent i.e. Q2
b =

0 = Q2
ab and satisfy

{Qb, Qab} = 0 (4.107)
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4.2.5 FFBRST for Torus Knot

The finite version of the BRST for torus knot is written as

δbλ = P̄Θ, δbθ = − c

2p
Θ, δbφ = − c

2q
Θ, δbα = −cΘ

δbpη = δbpθ = δbpφ = 0, δbP = (Πα +
pθ
2p

+
pφ
2q

)Θ

δbc̄ = ΠλΘ = bΘ, δbc = δbb = δbΠα = δbη = δΠλ = 0 (4.108)

where Θ is finite field dependent, global and anti-commuting parameter.

It is straight forward to check that under this transformation too, effective

action in Eq.(4.93) is invariant. Generating functional for this effective

theory is then written as

Zψ =

∫
DΦ exp[i

∫
dt
[
pηη̇ + pθθ̇ + pφφ̇+ Παα̇− Πλλ̇

−
(cosh η − cos(θ − α

2p
))2

2ma2
{p2

η + p2
θ +

p2
φ

sinh2 η
}+ ċP + ˙̄cP̄ − P̄P

+λ(Πα +
pθ
2p

+
pφ
2q

)− 2c̄c+ Πλ(pθ + qφ+ α +
Πλ

2
)
]]

] (4.109)

where,

DΦ =
∏

dηdpηdθdpθdφdpφdλdΠλdPdP̄dcdc̄ (4.110)

is the path integral measure in the total phase space. This path integral

measure is not invariant under such FFBRST transformation as already

mentioned. It gives rise to a Jacobian in the extended phase space which

is calculated using Eqs.(2.51, 2.52). Using the condition in Eq.(2.55), one

can calculate the extra part in the action S1 for some specific choices of

the finite parameter Θ.

Now we consider a simple example of FFBRST transformation to

show the connection between two effective theories explicitly. For that
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we choose finite BRST parameter Θ =
∫
dkΘ′(k), where Θ′ is given as

Θ′ = iγ

∫
dt′c̄(y, k)Πλ(y, k) (4.111)

Using Eq.(2.52), the change in Jacobian is calculated for this particular

parameter as,

1

J(k)

dJ(k)

dk
= −iγ

∫
dt′Π2

λ(y, k) (4.112)

We make an ansatz for S1 as,

S1 = i

∫
dtξ1(k)Π2

λ (4.113)

Where ξ1(k) is a k dependent arbitrary parameter. Now,

dS1

dk
= i

∫
dtξ′1(k)Π2

λ (4.114)

By satisfying the condition in Eq.(2.55), we find ξ1 = −γk. The FFBRST

transformation with finite parameter Θ as given in Eq.(4.111) changes this

generating functional as in Eq.(2.56),

Z =

∫
Dφ(k)ei(S1+Seff )

=

∫
DΦ exp[i

∫
dt
[
pηη̇ + pθθ̇ + pφφ̇+ Παα̇− Πλλ̇

−
(cosh η − cos(θ − α

2p
))2

2ma2
{p2

η + p2
θ +

p2
φ

sinh2 η
}+ ċP + ˙̄cP̄

−P̄P + λ(Πα +
pθ
2p

+
pφ
2q

)− 2c̄c+ Πλ(pθ + qφ+ α)

+(
λ′

2
− γk)

Π2
λ

2
)
]]

(4.115)

Here generating functional at k = 0 will give pure theory for a free particle

on the surface of torus knot with a gauge parameter λ′ and at k = 1, the

generating functional for same theory with a different gauge parameter

λ′′ = λ′ − 2γ. Even though we have considered a very simple example,
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our formulation is valid to connect any two generating functionals corre-

sponding to different effective actions on the surface of torus knot using

FFBRST transformation with suitable parameter.

4.2.6 Conclusion

Mathematical concept of knot theory is very useful in describing various

physical systems and it has been extensively used to study many differ-

ent phenomena in physics. However there was no BRST formulation for

particle on the surface of torus knot. In this work we systematically de-

veloped the BRST/anti-BRST formulation for the first time for a particle

moving on a torus knot. Using Dirac’s constraint analysis we found all

the constraints of this system. Further we have extended this theory to

include WZ term to recast this theory as gauge theory. Using BFV formu-

lation BRST/anti-BRST invariant effective action for a particle moving

on a torus knot has been developed. Nilpotent charges which generate

these symmetries have been calculated explicitly. The physical states

which are annihilated by these nilpotent charges are consistent with the

constraints of the system. Our formulation is independent of particular

choice of a torus knot. We further have extended the BRST formulation

by considering the transformation parameter finite and field dependent.

We indicate how different effective theories on the surface of torus knot

are related through such a finite transformation through the non-trivial

Jacobian factor. In support of our result we explicitly relate the gen-

erating functionals of two effective theories with different gauge-fixing

parameters. Using FFBRST with suitable finite parameter the connec-

tion between any two effective theories can be made in a straight forward

manner following the prescriptions outlined in this work.
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4.3 BRST Qantization on Torus Knot

4.3.1 Particle on a Torus Knot

Particle on surface of torus knot is given by [140, 146]. This model is

analogous to the rigid rotor model discussed in ref. [148].

To quantize the system and realize the physics, we have to diago-

nalize the system in presence of the constraints Φ = (pθ + qφ) ≈ 0. To

execute this, we will discard the [148] terms proportional to p2
θ and p2

φ as

they don’t commute with the constraint equation. The effective Hamilto-

nian for this system keeping the essential physical content of the theory

intact is then written as

Hc =
(cosh η − cos θ)2

ma2
p2
η + λ(pθ + qφ) (4.116)

4.3.2 Particle on torus knot as gauge theory

The constraint which doesn’t commute with unphysical operators is to

be identified with the generator of gauge transformations. In this case

the gauge transformation is an unitary operator of the form [148]

Uf = e−if(t)Φ (4.117)

where f(t) is an arbitrary c number and function of t. Under this trans-

formation only pθ and pφ transform non-trivially. First order Lagrangian

for torus knot is written as

Lc = pηη̇ + pθθ̇ + pφφ̇−
(cosh η − cos θ)2

ma2
p2
η − λ(pθ + qφ) (4.118)

Here we have enlarged the dynamical degrees of freedom to include the

Lagrange multiplier λ and its canonically conjugate momentum pλ. This

Lagrangian is invariant under following time dependent gauge transfor-
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mation [148]

δλ = ḟ(t), δpθ = pf(t), δpφ = qf(t)

δpη = δη = δθ = δφ = δpλ = 0 (4.119)

as under this gauge transformation the Lagrangian corresponding to

canonical Hamiltonian Hc changes only by a total time derivative,
d
dt

[f(t)(pθ + qφ)]. Hence the action is invariant under gauge transfor-

mation in Eq.(4.119).

4.3.3 Gauge fixing and BRST transformation

To construct the BRST and anti-BRST symmetry for the particle on the

surface of a torus knot we consider the gauge invariant Lagrangian of the

torus knot obtained in last section and replace the gauge transformation

in Eq.(4.119) by introducing new anti-commuting variables c and c̄ and

a commuting variable b such that the BRST transformations

δλ = −ċ, δpθ = pc, δpφ = qc, δc̄ = −pλ = b

δpη = δη = δθ = δφ = δpλ = δc = δb = 0 (4.120)

are nilpotent in nature. The gauge fixed effective Lagrangian which is

invariant under this kind of BRST transformation is then constructed as

Leff = pηη̇ + pθθ̇ + pφφ̇−
(cosh η − cos θ)2

ma2
p2
η − λ(pθ + qφ)

− b(λ̇− pθ
2p
− pφ

2q
)− b2

2
+ ˙̄cċ− c̄c (4.121)

The BRST charge which generates the transformation in (4.120) is

written as

Qb = −ic(pθ + qφ)− iċpλ. (4.122)
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The Lagrangian (4.121) is also invariant under anti-BRST transfor-

mation in which role of c and −c̄ are interchanged.

The nilpotent charge for the anti-BRST symmetry is written as

Qab = ic̄(pθ + qφ) + i ˙̄cpλ (4.123)

It is straight forward to check that these charges are nilpotent i.e.

Q2
b = 0 = Q2

ab and satisfy

{Qb, Qab} = 0 (4.124)

4.3.4 Conclusion

We for the first time constructed BRST/anti-BRST transformations for

particle moving on torus knot. The nilpotent BRST/anti-BRST charges

are constructed which produce such nilpotent transformations. Our for-

mulation will be helpful in characterizing various field theoretic models

defined on torus knot manifold.

In the next chapter we will discuss about “Weyl Degree of freedom

in Nambu-Goto string through field Transformation” [163]. We will show

how Weyl degrees of freedom can be introduced in the Nambu-Goto string

in the path-integral formulation using the re-parametrization invariant

measure. First, we will identify Weyl degrees of freedom in conformal

gauge using BFV formulation. Further we will change the NG string

action to the Polyakov action. The generating functional in light-cone

gauge will then be obtained from the generating functional corresponding

to the Polyakov action in conformal gauge by using suitably constructed

FFBRST transformation.



Chapter 5

Nambu-Goto String and Weyl

Symmetry

5.1 Weyl Degree of Freedom in

Nambu-Goto String through Field

Transformaion

In this chapter we will study, how Weyl degree of freedom can be incor-

porated in Nambu-Goto (NG) string in light-cone gauge. Bosonic strings

are formulated using two alternative actions namely the NG action [150]

and the Polyakov action [151]. In the Polyakov formulation, one uses

the metric of the string world-sheet, gαβ, to manifest the Weyl and re-

parametrization symmetries at the classical level. These symmetries are

useful to eliminate the degrees of freedom of gαβ. On the other hand,

in the NG string only string coordinates Xµ(µ = 0, ..., D − 1) are used

as dynamical variables and hence no Weyl freedom is present from the

beginning. We consider the NG string theory in BFV formulation at

the sub-critical dimensions, where the BF fields appear as the conformal

degrees of freedom [155, 156]. Using FFBRST transformations we will

connect the action in conformal gauge to light cone gauge. In this way

we will be able to incorporate Weyl degrees of freedom in NG string.

68
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5.1.1 BRST for Nambu-Goto action

NG action for the string coordinates Xµ, µ = 0, 1, ....D − 1 on a two-

dimensional world-sheet, parametrized by xα = (τ, σ), α = 0, 1 is written

as [150]

S0 =

∫
d2x(− detGαβ)

1
2 (5.1)

where

Gαβ = ∂αX
µ∂βXµ (5.2)

The momentum conjugate to Xµ for this theory is then written as

Pµ =
√
−G∂αXµG

α0 (5.3)

where G = detGαβ. The Hamiltonian corresponding to this system van-

ishes. This system has two primary constraints which generate two re-

parameterizations of string world-sheet and are written as,

φ± =
1

4
(P 2

µ + (∂σX
µ)2)± 1

2
∂σX

µPµ (5.4)

These constraints are first class at the classical level but appears as second

class at quantum level due to conformal anomaly. To convert them into

first class constraints, we will introduce the new field θ and its momentum

conjugate Πθ in the action. The new effective constraints then take the

form

φ̃± = φ± +
k√
2

(∂σΠθ ± (∂2
σθ)) +

1

4
(Πθ ± ∂σθ)2 (5.5)

where k is a constant which is fixed as [159]

k =
(25−D)

24π
(5.6)

We further extend the phase space by introducing following pair of fields

(C±, P̄±), (P±, C̄±), (N±, B±) (5.7)
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Now, the action is written in the extended phase space as

S =

∫
d2σ[ẊµPµ + θ̇Πθ + ĊaP̄a + {ψ,Q}] (5.8)

where BRST charge Q is given as

Q =

∫
dσ[C±(φ̃± + P̄±∂σC

±) +B±P±] (5.9)

One can easily find out that Q2 is nilpotent in nature and gauge-fixing

functional takes the form

Ψ =

∫
dσ(iC̄aχ

a + P̄aN
a) (5.10)

where Xa does not depend on ghost, anti-ghost, B and N fields.

After eliminating all the non-dynamical variables, BRST transfor-

mation for the dynamical variables is written as [155, 159]

δXµ = −1

2
(Ca∂aX

µ)

δθ = −1

2
(Ca∂aθ) +

k

2
√

2
(∂+C

+ − ∂−C−)

δC± = −1

4
C±∂±C

±

δC̄± = −1

4
∂±X

µ∂±Xµ ± C̄±∂±C± ±
1

2
∂±C̄±C

± − 1

4
∂±θ∂±θ

∓ k

2
√

2
∂±∂±θ (5.11)

which leaves action in Eq.(5.8) invariant.

Now, total Lagrangian density has the form

L = Lx + Lgf + Lgh (5.12)

where Lx denote the string part of the Lagrangian density and
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gauge-fixing and ghost terms are defined as

λ(Lgf + Lgh) = −iδ(C̄aχa) (5.13)

where λ is infinitesimal Grassmann parameter. In the next section we are

going to discuss BRST symmetric Polyakov action in conformal as well

as in light-cone gauges.

5.1.2 Polyakov Action

Following the technique in ref. [158] we convert NG action to a Polyakov

action as

Lx = −1

2
g̃ab∂aX

µ∂bXµ −
1

2
g̃ab∂aθ∂bθ (5.14)

Here θ dependent term in the above Lagrangian density brings extra de-

grees of freedom in the system. We need a re-parametrization invariant

measure in the path integral formulation to construct the BRST symme-

try of this theory. Using the methods described in [160, 161] we construct

the BRST transformation as

δXµ = −(Ca∂aX
µ)

δθ = −(Ca∂aθ) +
k√
2

(∂aC
a)

δCa = −Cb∂bC
a

δC̄a = iBa

δg̃ab = ∂cC
ag̃cb + ∂cC

bg̃ac − ∂c(Ccg̃ab) + 2∂cC
cθg̃ab (5.15)

We define the generating functional in path-integral formulation as

Z =

∫
Dφ exp

(
i

∫
d2x(Lx + Lgf + Lgh)

)
(5.16)

where Lagrangian density is given by Eqs.(5.14, 5.13) and Dφ is the
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generic notation for path integral measure. Transformation in Eq.(5.15)

leaves the effective action invariant. Now we fix the gauge more specifi-

cally and discuss BRST invariant effective theories in conformal as well

as light cone gauges.

5.1.3 Conformal Gauge

Conformal gauge has been used extensively in the discussion of various

problems. It has been used to study strings, gravity etc in path-integral

and covariant operator formalism. This gauge is very useful to remove

conformal anomaly, to introduce Weyl symmetry and in renormalizing

the theory [157, 159, 160].

The conformal gauge condition is expressed as g̃ab = ηab [156, 160]

and is incorporated into the following gauge-fixing and FP ghost term in

a BRST invariant manner,

Lcf = λ(Lgf + Lgh) = −iδB(C̄0g̃++ + C̄1g̃−−) (5.17)

Here C̄0 and C̄1 are anti-ghost fields.

5.1.4 Light-cone Gauge

On the other hand, light cone gauge is used to eliminate unphysical de-

grees of freedom and also in decoupling of ghost fields. Light-cone gauge

has also been used in Kaku-Kikkawa string field theory, in showing the

ultraviolet finiteness of N = 4 supersymmetric YM theory, in dimensional

regularization, in gravity, supergravity, string and superstrings theories

[162].

The light-cone gauge condition, (X+ = f(σ), g̃++ = 0) [156, 161] is

incorporated into the following gauge-fixing and ghost term in a BRST
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invariant manner,

Llc = λ(Lgf + Lgh) = −iδB(C̄0g̃++ + C̄1(X+ − f(σ))). (5.18)

Here f(σ) is an arbitrary function of σ0 and σ1.

Now we proceed to use FFBRST to address the Weyl degree of

freedom in NG string formulation.

5.1.5 Connection between generating functionals

in conformal and light-cone gauges

In this subsection, we construct the FFBRST transformation with an

appropriate finite parameter to obtain the generating functional corre-

sponding to Lcf from that of corresponding to Llc. We calculate the

Jacobian corresponding to such a FFBRST transformation following the

method outlined in chapter 2 and show that it is a local functional of

fields and accounts for the difference of the two FP effective actions.

The generating functional corresponding to the FP effective action

Scf is written as

Zcf =

∫
Dφ exp(iScf [φ]) (5.19)

where Scf is given by

Scf =

∫
d2x(Lx + Lcf ) (5.20)

Now, to obtain the generating functional corresponding to Slc, we ap-

ply the FFBRST transformation with a finite parameter Θ[φ], which is

obtained from the infinitesimal but field dependent parameter, Θ′[φ(k)];

through
∫ κ

0
Θ′[φ(κ)]dκ. We construct Θ′[φ(κ)] as,

Θ′[φ] = i

∫
d2x[γC̄1{(X+ − f(σ))− g̃−−}] (5.21)
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Here γ is arbitrary constant parameter and all the fields depend on the

parameter k. The infinitesimal change in the Jacobian corresponding to

this FFBRST transformation is calculated using Eq.(2.52)

1

J(k)

dJ(k)

dk
= −i

∫
d2xγ[−iB1{(X+ − f(σ))− g̃−−} − (Ca∂aX

+)C̄1

−δg̃−−C̄1] (5.22)

To express the Jacobian contribution in terms of a local functional of

fields, we make an ansatz for S1 by considering all possible terms that

could arise from such a transformation as

S1[φ(k), k] =

∫
d2x[ξ1iB

1(X+ − f(σ)) + ξ2iB
1g̃−− + ξ3(Ca∂aX

+)C̄1

+ξ4δg̃
−−C̄1 + ξ5iB

0g̃++ + ξ6C̄
0δg̃++] (5.23)

where all the fields are considered to be k dependent and we have intro-

duced arbitrary k dependent parameters ξn = ξn(k)(n = 1, 2, .., 6) with

initial condition ξn(k = 0) = 0. It is straight forward to calculate

dS1

dk
=

∫
d2x[ξ′1iB

1(X+ − f(σ)) + ξ′2iB
1g̃−− + ξ′3(Ca∂aX

+)C̄1

+ξ′4δg̃
−−C̄1 + ξ′5iB

0g̃++ + ξ′6C̄
0δg̃++ + Θ′{−ξ1C

a∂aX
+iB1

+ξ2δg̃
−−iB1 + ξ3(iB1)Ca∂aX

+ + ξ3(Cb∂bC
a)∂aX

+C̄1

+ξ3C
a∂a(−Cb∂bX

+)C̄1 − ξ4iB
1δg̃−− + ξ5δg̃

++iB0

−ξ6iB
0δg̃++}] (5.24)

where ξ′n = dξn
dk

. Now we will use the condition of Eq.(2.55).∫
Dφ exp[i(Scf [φ(k)] + S1[φ(k), k])]

∫
d2x[(−γ + ξ′1)iB1(X+ − f(σ))

+(γ + ξ′2)iB1g̃−− + (−γ + ξ′3)(Ca∂aX
+)C̄1 + (−γ + ξ′4)δg̃−−C̄1

+ξ′5iB
0g̃++ + ξ′6C̄

0δg̃++ + Θ′{(−ξ1 + ξ3)Ca∂aX
+iB1

+(ξ2 + ξ4)δg̃−−iB1 + (ξ5 − ξ6)δg̃++iB0}] = 0 (5.25)
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The terms proportional to Θ′ which are regarded as nonlocal, van-

ishes independently. These will give relations between ξ. Making remain-

ing local terms in Eq.(5.25) vanish will give relations between ξ and γ.

Solving these Eqs.(A.18, A.19), we will get following results.

The differential equations for ξn(k) can be solved with the initial

conditions ξn(0) = 0, to obtain the solutions

ξ1 = γk, ξ2 = −γk, ξ3 = γk, ξ4 = γk, ξ5 = ξ6 = 0 (5.26)

Putting values of these parameters in expression of S1, and choosing

arbitrary parameter γ = −1, we obtain,

S1[φ(1), 1] =

∫
d2x[−iB1(X+ − f(σ)) + iB1g̃−− − (Ca∂aX

+)C̄1

−δg̃−−C̄1] (5.27)

Thus the FFBRST transformation with the finite parameter Θ that is

defined by Eq.(5.21) changes the generating functional Zcf as in Eq.(2.56)

Zcf =

∫
Dφ exp(iScf [φ])

=

∫
Dφ′ exp[i(Scf [φ

′] + S1[φ′, 1])]

=

∫
Dφ exp[i(Scf [φ] + S1[φ, 1])]

=

∫
Dφ exp(iSlc[φ]) ≡ Zlc (5.28)

Here Slc is defined as

Slc =

∫
d2x(Lx + Llc) (5.29)

In this way FFBRST transformation with the finite field dependent pa-

rameter in Eq.(5.21) connects generating functional for the Polyakov ac-

tion in conformal gauge to that of in the light-cone gauge.
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5.1.6 Conclusion

In this present work we have demonstrated how Weyl degrees of freedom

are incorporated in the formulation of NG string through certain field

transformation. Weyl degrees of freedom are first identified in conformal

gauge using BFV formulation. Then we have established the connection

between conformal gauge to light-cone in Polyakov type action for NG

string using the technique of FFBRST transformation, which connects

various theories through the non-trivial Jacobian of path integral mea-

sure. The non-local BRST transformation by Igarashi etal in [158] is

nothing but a particular type of FFBRST transformation. The parame-

ter λ in the non-local transformation in [158] is identified with FFBRST

parameter Θ′.

In the next chapter we will discuss about issue of ghost number cur-

rent anomaly in bosonic string in conformal gauge and its removal using

FFBRST transformation [196]. We consider Polyakov theory of Bosonic

strings in conformal gauge which are used to study conformal anomaly.

However it exhibits ghost number anomaly. We show how this anomaly

can be avoided by connecting this theory to that of in background co-

variant harmonic gauge which is known to be free from conformal and

ghost number current anomaly, by using suitably constructed finite field

dependent BRST transformation.



Chapter 6

Harmonic Gauge in Bosonic

String and FFBRST

Transformation

6.1 Background Covariant Harmonic

Gauge and Finite Field Dependent

BRST Transformation

Bosonic string in path integral formulation [151, 164, 165] has been stud-

ied in many gauges. The simplest choice of gauge is conformal gauge

[151, 157, 160, 165]. Renormalizing effective action in this gauge gives

conformal anomaly [166]. The effective action is defined as whole by one

loop Feynman diagram. Besides the conformal anomaly, there is another

important anomaly associated with conformal gauge is the ghost number

current anomaly on curved world-sheet [157]. Bosonic string has been

investigated in harmonic gauge [167] (a choice similar to Lorentz gauge

in QED). In harmonic gauge standard (D − 26) answer [151] has been

produced. It has been also found that ghost number current anomaly

in curved world-sheet is absent in background covariant harmonic gauge

[168] but the absence of a ghost number anomaly is achieved at the ex-

pense of a new anomaly in the sector involving the Nakanishi-Lautrup

field [169]. The BRST analysis of the bosonic string in this perspective
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have been discussed in [170].

6.1.1 Bosonic String Action

In the path integral formalism bosonic string action is written as [151]

S0 =

∫
d2x

1

2

√
−ggab∂aXµ∂bXµ (6.1)

where Xµ, µ = 0, 1, 2....D− 1 is string co-ordinate and gab, (a, b = 0, 1) is

world-sheet metric. This action is invariant under both diffeomorphisms

and Weyl transformations in following ways

gab → g′ab = gab +∇aξb +∇bξa, gab → g′ab = (1 + 2σ)gab (6.2)

To factor out the infinite factors in the functional integral associated with

these transformations, usually we choose the conformal gauge condition

and introduce the Jacobian for the change of the gauge condition under

the infinitesimal diffeomorphisms (ξa) and Weyl transformations (σ).

6.1.2 Conformal Gauge

Conformal gauge has been used extensively in the discussion of various

problems. It has been used to study strings, gravity etc in path-integral

and covariant operator formalism. This gauge is very useful to remove

conformal anomaly, to introduce Weyl symmetry and in re-normalizing

the theory [151, 157, 160, 165].

The conformal gauge condition is expressed as hab(≡ gab − ĝab = 0)

and is incorporated into the following gauge-fixing and FP ghost term in

a BRST invariant manner [160],

Lcf = λ(Lgf + Lgh) = −iδB[C̄a(
1

2
hab)] = −iδB[C̄a(

1

2
Aa)] (6.3)
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Total Lagrangian density in conformal gauge in extended form is written

as

Ltcf =
1

2

√
−ggab∂aXµ∂bXµ −

1

2

√
−ĝbahab −

1

2

√
−ĝδB(Aa)C̄a(6.4)

6.1.3 Harmonic Gauge

The harmonic gauge condition for bosonic string action is written as

[167, 168, 169]

∇̂a(
√
−ggab) = 0 (6.5)

where the Christoffel connection in ∇̂ is calculated for an arbitrary back-

ground metric gab.

In order to calculate gauge-fixing and ghost part of the action we

split the metric gab into a classical background field ĝab and a (quantum)

metric perturbation hab :

gab = ĝab + hab (6.6)

We need to fix the gauge invariance only for the quantum field hab

δhab = ∇̂aξb + ∇̂bξa + hbc∇̂aξ
c + hac∇̂bξ

c + ξc∇̂chab

δhab = 2σ(ĝab + hab) (6.7)

Here the classical field ĝab is invariant under general coordinate invariance

together with standard tensor transformation rules for the other fields.

The linearized form of gauge-fixing condition in harmonic gauge is

1

2
∇̂ah− ∇̂bhab = 0 (6.8)

where h = ĝabhab. The gauge condition in Eq.(6.8) as well as in Eq.(6.5)

are not quantum Weyl covariant. To make them Weyl covariant we need
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a special gauge fixing condition. The gauge-fixing condition is given by

ĝabhab = 0 (6.9)

Now the gauge-fixing and ghost part of the action can be written

in BRST invariant manner as,

Lgf + Lfp = δB[C̄a(
1

2
∇̂ah− ∇̂bhab) + τ̄ ĝabhab] (6.10)

This action can be further simplified using the technique in ref. [168]. The

simplified gauge-fixing and ghost term can be written in BRST invariant

manner as

Lhm = λ(Lgf + Lfp) = −iδB[C̄a(
1

2
∇̂ah− ∇̂bhab)] (6.11)

Total Lagrangian density in background covariant harmonic gauge is writ-

ten in extended form as

Lthm =
1

2

√
−ggab∂aXµ∂bXµ −

√
−ĝba∇̂bhab − i

√
−ĝ[∇̂bC̄a∇̂bC̄a

−C̄aR̂abC
b + (∇̂bC̄a + ∇̂aC̄b − ĝab∇.C̄)hbc∇̂aC

c + ∇̂bC̄aCc∇̂chab

−hab∇̂aC̄b(∇̂.C̄ + hij∇̂iCj)] (6.12)

6.1.4 BRST Symmetry

The total action is defined as

St0 =

∫
d2x(L0 + Lgf + Lgh) (6.13)

where L0 is the kinetic part of the total Lagrangian density.

This total action is invariant under following BRST transformation
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[168],

δBhab = iλ[∇̂aCb + ∇̂bCa + hbc∇̂aC
c + hac∇̂bC

c + Cc∇̂chab

−(∇̂.C + hij∇̂Cj)(hab + ĝab)], δBX
µ = iλCa∂aX

µ,

δBC
a = iλCb∇̂bC

a, δBC̄
a = λba, δBb

a = 0 (6.14)

where λ is infinitesimal, anti-commuting BRST parameter.

6.1.5 Connection between generating functionals

in Background Covariant Harmonic and

Conformal gauges

In this section, we construct the FFBRST transformation with an appro-

priate finite parameter to obtain the generating functional corresponding

to Lthm from that of corresponding to Ltcf . We calculate the Jacobian

corresponding to such a FFBRST transformation following the method

outlined in chapter 2 and show that it is a local functional of fields and

accounts for the difference of the two FP effective actions.

The generating functional corresponding to the FP effective action

Stcf is written as

Zt
cf =

∫
Dφ exp(iStcf [φ]) (6.15)

where Stcf is given by

Stcf =

∫
d2x[L0 + Lcf ] (6.16)

Now, to obtain the generating functional corresponding Sthm, we apply the

FFBRST transformation with a finite parameter Θ[φ] which is obtained

from the infinitesimal but field dependent parameter, Θ′[φ(k)] through
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∫ κ
0

Θ′[φ(κ)]dκ. We construct Θ′[φ(κ)] as,

Θ′[C, h] = i

∫
d2x[γC̄a{1

2
Aa − (

1

2
∇̂ah− ∇̂bhab)}] (6.17)

Here γ is arbitrary constant parameter and all the fields depend on

the parameter k. The infinitesimal change in the Jacobian corresponding

to this FFBRST transformation is calculated using Eq.(2.52) as

1

J(k)

dJ(k)

dk
= −i

∫
d2xγ[δ(C̄a){1

2
Aa − (

1

2
∇̂ah− ∇̂bhab)}+

1

2
δ(Aa)C̄

a

−1

2
∇̂aδhC̄a + ∇̂bδ(hab)C̄

a] (6.18)

To express the Jacobian contribution in terms of a local functional of

fields, we make an ansatz for S1 by considering all possible terms that

could arise from such a transformation as

S1[φ(k), k] =

∫
d2x[

ξ1

2
δ(C̄a)Aa +

ξ2

2
δ(C̄a)∇̂ah+ ξ3δ(C̄

a)∇̂bhab

+
ξ4

2
δ(Aa)C̄

a +
ξ5

2
∇̂aδh(C̄a) + ξ6∇̂bδ(hab)C̄

a] (6.19)

where all the fields are considered to be k dependent and we have

introduced arbitrary k dependent parameters ξn = ξn(k)(n = 1, 2, .., 6)

with initial condition ξn(k = 0) = 0. It is straight forward to calculate

dS1

dk
=

∫
d2x[

ξ′1
2
δ(C̄a)Aa +

ξ′2
2
δ(C̄a)∇̂ah+ ξ′3δ(C̄

a)∇̂bhab + ξ′4
1

2
δ(Aa)C̄

a

+
ξ′5
2
∇̂aδh(C̄a)− ξ′6∇̂bδ(hab)C̄

a + Θ′{ξ1

2
δ(Aa)δ(C̄

a) +
ξ2

2
∇̂aδhδ(C̄

a)

+ξ3∇̂bδhabδ(C̄
a) +

ξ4

2
δ(C̄a)δ(Aa) +

ξ5

2
δ(C̄a)∇̂aδh

+ξ6δ(C̄
a)∇̂bδ(hab)}] (6.20)
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where ξ′n = dξn
dk

. Now we will use the condition of Eq.(2.55).∫
Dφ exp[i(SCF [φ(k)] + S1[φ(k), k])]

∫
d2x[

(γ + ξ′1)

2
δ(C̄a)Aa

+
(−γ + ξ′2)

2
δ(C̄a)∇̂ah+ (γ + ξ′3)δ(C̄a)∇̂bhab +

(γ + ξ′4)

2
δ(Aa)c̄

a

+
(−γ + ξ′5)

2
∇̂aδh(C̄a) + (γ + ξ′6)∇̂bδ(hab)c̄

a

+Θ′{(ξ1 − ξ4)

2
δ(Aa)δ(C̄

a) +
(ξ2 − ξ5)

2
∇̂aδhδ(C̄

a)

+(ξ3 − ξ6)∇̂bδhabδ(C̄
a)}] = 0 (6.21)

The terms proportional to Θ′ which are regarded as nonlocal, van-

ishes independently. These will give relations between ξ. Making remain-

ing local terms in Eq.(6.21) vanish will give relations between ξ and γ.

Solving these Eqs.(A.27, A.28), we will get following results.

The differential equations for ξn(k) can be solved with the initial

conditions ξn(0) = 0, to obtain the solutions

ξ1 = −γk, ξ2 = γk, ξ3 = −γk, ξ4 = −γk, ξ5 = γk,

ξ6 = −γk (6.22)

Putting values of these parameters in expression of S1, and choosing

arbitrary parameter γ = −1, we obtain,

S1[φ(1), 1] =

∫
d2x[−1

2
δ(C̄a)Aa +

1

2
δ(C̄a)∇̂ah− δ(C̄a)∇̂bhab

−1

2
δ(Aa)C̄

a +
1

2
∇̂aδh(C̄a)− ∇̂bδ(hab)C̄

a] (6.23)

Thus the FFBRST transformation with the finite parameter Θ that is de-
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fined by Eq.(6.17) changes the generating functional ZCF as in Eq.(2.56).

Zt
cf =

∫
Dφ exp(iStcf [φ])

=

∫
Dφ′ exp[i(Stcf [φ

′] + S1[φ′, 1])]

=

∫
Dφ exp[i(Stcf [φ] + S1[φ, 1])]

=

∫
Dφ exp(iSthm[φ]) ≡ Zt

hm (6.24)

Here Sthm is defined as

Sthm =

∫
d2x(Lx + Lhm) (6.25)

In this way FFBRST transformation with the finite field dependent pa-

rameter in Eq.(6.17) connects generating functional for the Polyakov ac-

tion in the conformal gauge to that of in background covariant harmonic

gauge.

6.1.6 Conclusion

In this chapter we have shown how ghost number current anomaly can be

removed in conformal gauge in curved world-sheet. Ghost number current

anomaly is absent in bosonic string in background covariant harmonic

gauge. Using the finite field dependent BRST transformation we have

obtained action in background covariant harmonic gauge from action in

conformal gauge. In this way we have avoided ghost number current

anomaly in conformal gauge.

In the next chapter we will present overall summary of this thesis.



Chapter 7

Concluding Remarks

This thesis is based on the construction of various generalizations of

BRST transformations and their applications in different type of gauge

field theories and string theories. We have started with the techniques of

BRST quantization in both Lagrangian and Hamiltonian formalism. In

Lagrangian formulation we have discussed field/anti-field formalism ap-

plicable to gauge theories with irreducible/reducible or closed/open gauge

algebra. In Hamiltonian formalism first we have discussed Dirac’s con-

straints analysis. Then we have discussed the (BFFT) formalism, which is

used to convert second class constraints to first class constraints. Finally

we have discussed (BFV) formalism, to construct BRST transformation.

In this thesis, BRST symmetry has been generalized in various ways and

some applications of such generalizations have been discussed. The usual

BRST transformation under which the FP effective action remains in-

variant, is characterized by an infinitesimal, global and anti-commuting

parameter. One of the important generalizations of BRST transforma-

tions is FFBRST transformation in which infinitesimal BRST parame-

ter is generalized to be finite field dependent. Various implications of

FFBRST transformations have been discussed. Under the generalized

BRST transformation with a finite field dependent parameter, the effec-

tive action remains invariant but the path integral measure gives rise to

a nontrivial Jacobian which under certain condition can be written as

exponential of some local functional of fields. In the usual BRST trans-

formation, the variation of kinetic part independently vanishes whereas

the variation of gauge fixing part cancels with the variation of ghost part
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of the effective action. Another important generalization of BRST trans-

formation which is local and covariant is dual-BRST transformation. It

has been discussed in the context of particle on a torus. Under dual-

BRST transformations, the variation of gauge fixing part independently

vanishes whereas the variation of kinetic part cancels with the variation

of ghost part of the effective action. In the Lagrangian framework, dual

BRST symmetry is generally considered to be an independent symme-

try because of its analogy with co-exterior derivative in the language

of differential geometry. The absolute anti-commutativity of BRST and

anti-BRST symmetry as well as dual-BRST and anti-dual BRST sym-

metry is essential for these symmetries to be independent. Independency

of these symmetries can be insured through application of Curci-Ferrari

condition. In the Lagrangian framework of BRST formalism, it is not

clear why it is important to impose CF condition. It also doesn’t answer

the question “What kind of constraint CF condition is” in the Dirac’s

classification of constraints.

In the chapter I, we have discussed about introductory idea of BRST

quantization in the gauge theory. BRST transformation is a very powerful

technique since its origin in non-Abelian gauge theories. We have also

given various methods of BRST quantization. We have also discussed

various types of BRST transformations. Later we have given introductory

idea of our work.

In the II chapter we have discussed various techniques of BRST

quantization. First we have discussed Lagrangian formalism also called

field/anti-field formalism or BV formalism. Then we have discussed

Hamiltonian formalism also called BFV formalism. This formalism is

mainly based on Dirac’s method of constraints analysis. Then we have

discussed about BFFT formalism which is a technique of converting sec-

ond class constraints to first class constraints. At last we have discussed

generalized BRST transformation also called FFBRST transformation.

In the III chapter we have discussed about MA gauge and gener-

alized BRST transformation [111]. The main idea of this chapter is to
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show how quark confinement can be realized in Lorenz gauge. In SU(N)

YM theory, the MA gauge has been used to study its non-perturbative

features, such as quark confinement. The MA gauge is a nonlinear partial

gauge. It partially fixes the the system to maintain only the MA gauge

symmetry specified by U(1)N−1. This gauge helps us to extract Abelian

degrees of freedom latent in SU(N) YM theory. In MA gauge, Abelian

dominance and the emergence of magnetic monopoles are realized as re-

markable phenomena in the non-perturbative infrared region. We have

applied the FFBRST formulation discussed in chapter 2, to connect the

action in the gauge-fixed SU(2) YM theories formulated in the Lorenz

and MA gauges. We have clearly shown, how the generating functional

corresponding to the FP effective action in the MA gauge can be obtained

from that in the Lorenz gauge by carrying out a suitably constructed FF-

BRST transformation.

In the IV chapter we have discussed about various nilpotent sym-

metries for a particle on torus [137]. We have also discussed about BRST

and anti-BRST symmetries for a particle on torus knot. For particle on

torus, we have used BFV technique to study all the symmetries. We

have constructed nilpotent BRST, dual BRST, anti-BRST, and anti-dual

BRST transformations for this system. Dual BRST transformations are

also the symmetry of effective action and leave gauge fixing part of the

effective action invariant. Interchanging the role of ghost and anti-ghost

fields the anti-BRST and anti-dual BRST symmetry transformations are

constructed. We have shown that the nilpotent BRST and anti-dual

BRST charges are analogous to the exterior derivative operators as the

ghost number of the state |ψ〉 on the total Hilbert space is increased by

one when these charges operate on these states and algebra followed by

these operators is the same as the algebra obeyed by the de-Rham coho-

mological operators. Similarly the dual BRST and anti-BRST charges are

analogous to coexterior derivative. The anti-commutators of BRST and

dual BRST and anti-BRST and anti-dual BRST charges lead to bosonic

symmetry. The corresponding charges are analogous to Laplacian oper-
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ator. Further, this theory has another nilpotent symmetry called ghost

symmetry under which the ghost term of the effective action is invariant.

We further have shown that this theory behaves as double Hodge theory

as the charges for BRST Qb and dual BRST Qd and the charges for the

bosonic symmetry Qw generated out of these two symmetries, form the

algebra for Hodge theory. On the other hand charges for anti-BRST,

Qab anti-dual BRST Qad, and Qw̄, charge for bosonic symmetry gener-

ated out of these nilpotent symmetries, also satisfy the Hodge algebra.

Thus a particle on the surface of the torus has very rich mathematical

structure. We further constructed the FFBRST transformation for this

system. By constructing appropriate field dependent parameter we have

explicitly shown that such generalized BRST transformations are capable

of connecting different theories on torus.

For a particle on the surface of torus knot we have systematically

developed the BRST/anti-BRST formulation for the first time [147]. Us-

ing Diracs constraint analysis we found all the constraints of this sys-

tem. Further, we have extended this theory to include the Wess-Zumino

term to recast this theory as gauge theory. Using BFV formulation, the

BRST/anti-BRST invariant effective action for a particle moving on a

torus knot has been developed. Nilpotent charges which generate these

symmetries have been calculated explicitly. The physical states which

are annihilated by these nilpotent charges are consistent with the con-

straints of the system. Our formulation is independent of a particular

choice of a torus knot. We have further extended the BRST formulation

by considering the transformation parameter finite and field dependent.

We indicate how different effective theories on the surface of the torus

knot are related through such a finite transformation through the non-

trivial Jacobian factor. In support of our result we explicitly relate the

generating functionals of two effective theories with different gauge fixing

parameters. Using FFBRST with a suitable finite parameter the connec-

tion between any two effective theories can be made in a straightforward

manner following the prescriptions outlined in this work.
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We have also developed BRST and anti-BRST symmetries for a

particle on torus knot [149] using the technique used in ref. [148].

In chapter V we have discussed Weyl degree of freedom in NG string

in light-cone gauge through field transformation [163]. In this work we

have demonstrated how Weyl degrees of freedom are incorporated in the

formulation of NG string through a certain field transformation. Weyl

degrees of freedom are first identified in conformal gauge using BFV for-

mulation. Then we have established the connection between conformal

gauge to light-cone gauge in a Polyakov-type action for NG string using

the technique of FFBRST transformation, which connects various theo-

ries through the nontrivial Jacobian of the path-integral measure. The

nonlocal BRST transformation by Igarashi et al. in [158] is nothing but a

particular type of FFBRST transformation. The parameter λ in the non-

local transformation in [158] is identified with the FFBRST parameter

Θ′.

In the chapter VI we have discussed connection between confor-

mal and harmonic gauges for Bosonic Strings [196]. In this present work

we have shown how ghost number current anomaly present in conformal

gauge in curved world-sheet is avoided using field transformation. By con-

structing appropriate FFBRST transformation we obtain the generating

functional in harmonic gauge from that of conformal gauge. This provides

a convenient way to go from a theory with ghost number anomaly to the

theory where there is no ghost number current anomaly. Further har-

monic gauge which is a complicated gauge is directly connected through

the suitably constructed field transformation to conformal gauge theory

which is simpler to use.

In the chapter VII we have presented conclusion of the whole thesis.

We have specifically discussed about work done in each chapter.

In future we will try to work on more mathematical models similar

to torus and knot, which have some implications on physical phenomena.

It will be interesting to generalize the FFBRST formulation for other
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theories like superstring, supergravity etc. It will also be interesting to

construct finite version of dual BRST transformation and study its impact

on the system with constraints.
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Appendix A

Appendix

A.1 FFBRST in MA Gauge

The finite field dependent paramter corresponding to the Lorenz gauge is

obtained from the infinitesimal but field dependent parameter, Θ′[φ(k)];

through
∫ κ

0
Θ′[φ(κ)]dκ. We construct Θ′[φ(κ)] as,

Θ′[φ(k)] = i

∫
d4x[γ1c̄

iBi + γ2c̄
3B3 + γ3{c̄as(∂µAaµ)− c̄is(∇µAiµ)}

+γ4gε
abcc̄ac̄bcc + γ5ε

ij c̄ic̄jc3] (A.1)

Here, γp(p = 1, 2, 3, 4, 5) are arbitrary constant parameters and all

the fields depend on the parameter k. The infinitesimal change in the Ja-

cobian corresponding to this FFBRST transformation is calculated using

Eq.(2.52) and obtained as,

1

J

dJ

dk
= −i

∫
d4x[−γ1B

iBi − γ2B
3B3 + γ3{c̄as(∂µAaµ)c̄is(∇µAiµ)}

−γ3B
a∂µAaµ + γ3B

i∇µAiµ + γ4{−2gεabcBac̄bcc

+
1

2
gεabcεadec̄bc̄ccdce}+ γ5{−2εijBic̄jc3

+
1

2
εijεklc̄ic̄jckcl}] (A.2)

To express the Jacobian contribution in terms of a local functional of

fields, we make an ansatz for S1 by considering all possible terms that
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could arise from such a transformation as

S1[φ(k), k] =

∫
d4x[ξ1Ba∂

µAaµ + ξ2B
i∇µAiµ + ξ3B

aBa + ξ4B
iBi

+ξ5c̄
is(∇µAiµ) + ξ6c̄

as(∂µAaµ) + ξ7gε
abcBacbc̄c

+ξ8g
2εabcεadec̄bc̄ccdce + ξ9gε

ijBic̄jc3

+ξ10g
2εijεklc̄ic̄jckcl] (A.3)

where all the fields are considered to be k dependent and we have intro-

duced arbitrary k dependent parameters ξn = ξn(k)(n = 1, 2, ....., 10). It

is straight to calculate

dS1

dk
=

∫
d4x{ξ′1Ba∂

µAaµ + ξ′2B
i∇µAiµ + ξ′3B

a2 + ξ′4B
i2 + ξ′5c̄

is(∇µAiµ)

+ξ′6c̄
as(∂µAaµ) + ξ′7gε

abcBacbc̄c + ξ′8g
2εabcεadec̄bc̄ccdce + ξ′9gε

ijBic̄jc3

+ξ′10g
2εijεklc̄icjckcl + {ξ1Bas(∂

µAaµ) + ξ2B
is(∇µAiµ) + ξ5B

is(∇µAiµ)

+ξ6B
as(∂µAaµ)− ξ7gε

abcBaεbdecdcec̄c + 2ξ8g
2εabcεadeBbc̄ccdce

+ξ9
g2

2
εijBic̄jεklckcl + 2ξ10g

2εijεklBic̄jckcl}Θ′} (A.4)

where ξ′ = dξ
dk

. Now using the condition of Eq.(2.55), we can write∫
Dφ(k) exp [i(SL([φ(k)] + S1[φ(k), k)]

∫
d4x[−γ1B

i2 − γ2B
32

+γ3{c̄as(∂µAaµ)− c̄is(∇µAiµ)} − γ3B
a∂µAaµ + γ3B

i∇µAiµ

+γ4g{−2εabcBac̄bcc +
1

2
εabcc̄ac̄bεcdecdce}+ γ5g{−2εijBic̄jc3

+
1

2
εij c̄ic̄jεlkclck} − {ξ′1Ba∂

µAaµ + ξ′2B
i∇µAiµ + ξ′3B

a2 + ξ′4B
i2

+ξ′5c̄
is∇µAiµ + ξ′6c̄

as(∂µAaµ) + ξ′7gε
abcBacbc̄c + ξ′8g

2εabcεadec̄bc̄ccdce

+ξ′9gε
ijBic̄jc3 + ξ′10g

2εijεklc̄ic̄jckcl + {ξ1Bas∂
µAaµ + ξ2B

is∇µAiµ

+ξ5c̄
is∇µAiµ + ξ6B

as∂µAaµ − ξ7gε
abcBaεbdecdcec̄c

+2ξ8g
2εabcεadeBbc̄ccdce + ξ9

g2

2
εijBic̄jεklckcl

+2ξ10g
2εijεklBic̄jckcl}Θ′}] = 0 (A.5)
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which can be written as

∫
Dφ(k) exp [i(SL([φ(k)] + S1[φ(k), k)]

∫
d4x[(−γ1 + ξ′3 + ξ′4)BiBi

+(−γ2 + ξ′3)B3B3 + (γ3 + ξ′6)c̄as(∂µAaµ) + (−γ3 + ξ′5)c̄is(∇µAiµ)

+(−γ3 + ξ′1)Ba∂µAaµ + (γ3 + ξ′2)Bi∇µAiµ + (−2γ4 + ξ′7)g(εijBicj c̄3

+εijB3cic̄j) + (−2γ4 − 2γ5 + ξ′7 + ξ′9)gεijBic̄jc3 +
1

2
(γ4 + γ5

+2ξ′8 + 2ξ′10)εijεklc̄ic̄jckcl + 2(γ4 + 2ξ′8)g2εijεlkc̄j c̄3ckc3 + Θ′{(ξ1

+ξ6)Bas∂
µAaµ + (ξ2 + ξ5)Bis∇µAiµ −

1

2
(ξ7 + 4gξ8

+ξ9 + 4ξ10)εabcBaεbdecdcec̄c + (ξ7 + 4ξ8)g2(εijεikBj c̄3ckc3

−εijεikB3c̄jckc3}] = 0 (A.6)

The terms proportional to Θ′ which are regarded as nonlocal, van-

ishes independently if,

ξ1 + ξ6 = 0, ξ2 + ξ5 = 0, ξ7 + 4ξ8 = 0

ξ7 + 4ξ8 + ξ9 + 4ξ10 = 0 (A.7)

To make the remaining local terms in Eq.(A.6) vanish, we need the

following conditions:

ξ′1 − γ3 = 0, ξ′2 + γ3 = 0, ξ′3 − γ2 = 0

ξ′3 + ξ′4 − γ1 = 0, ξ′5 − γ3 = 0, ξ′6 + γ3 = 0

ξ′7 − 2γ4 = 0, ξ′7 + ξ′9 − 2(γ4 + γ5) = 0

ξ′8 −
1

2
γ4 = 0, ξ′8 + ξ′10 +

1

2
(γ4 + γ5) = 0 (A.8)

from which we also have

ξ′4 − γ1 + γ2 = 0, ξ′9 − 2γ5 = 0, ξ′10 +
1

2
γ5 = 0 (A.9)
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The differential equations for ξn(k) can indeed be solved with the

initial conditions ξn(0) = 0, to obtain the solutions

ξ = γ3k, ξ2 = −γ3k, ξ3 = γ2k,

ξ4 = (γ1 − γ2)k, ξ5 = γ3k, ξ6 = −γ3k

ξ7 = 2γ4k, ξ8 = −1

2
γ4k, ξ9 = 2γ5k

ξ10 = −1

2
γ5k (A.10)

Since γp(p = 1, 2, 3, 4, 5) are arbitrary constant parameters, we can

choose them as follows

γ1 =
1

2
(β − α), γ2 = −α

2
, γ3 = 1

γ4 = −α
4
, γ5 =

β

2
(A.11)

Substituting the solutions obtained in Eq.(A.10) into Eq.(A.3) and con-

sidering the specific values of the parameters in Eq.(A.11), we obtain

S1 =

∫
d4x
[
Ba∂

µAaµ −Bi∇µAiµ −
α

2
Ba2 +

β

2
Bi2 + c̄iδ(∇µAiµ)

−c̄aδ(∂µAaµ)− α

2
gεabcBacbc̄c +

α

8
g2εabcεadec̄bc̄ccdce + βgεijBic̄jc3

−β
4
g2εijεklc̄ic̄jckcl] (A.12)

A.2 FFBRST in Light-cone Gauge

The finite field dependent paramter corresponding to the Light-cone

gauge is obtained from the infinitesimal but field dependent parameter,

Θ′[φ(k)]; through
∫ κ

0
Θ′[φ(κ)]dκ. We construct Θ′[φ(κ)] as,

Θ′[φ] = i

∫
d2x[γC̄1{(X+ − f(σ))− g̃−−}] (A.13)
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Here γ is arbitrary constant parameter and all the fields depend on the

parameter k. The infinitesimal change in the Jacobian corresponding to

this FFBRST transformation is calculated using Eq.(2.52)

1

J(k)

dJ(k)

dk
= −i

∫
d2xγ[−iB1{(X+ − f(σ))− g̃−−} − (Ca∂aX

+)C̄1

−δg̃−−C̄1] (A.14)

To express the Jacobian contribution in terms of a local functional of

fields, we make an ansatz for S1 by considering all possible terms that

could arise from such a transformation as

S1[φ(k), k] =

∫
d2x[ξ1iB

1(X+ − f(σ)) + ξ2iB
1g̃−− + ξ3(Ca∂aX

+)C̄1

+ξ4δg̃
−−C̄1 + ξ5iB

0g̃++ + ξ6C̄
0δg̃++] (A.15)

here all the fields are considered to be k dependent and we have

introduced arbitrary k dependent parameters ξn = ξn(k)(n = 1, 2, .., 6)

with initial condition ξn(k = 0) = 0. It is straight forward to calculate

dS1

dk
=

∫
d2x[ξ′1iB

1(X+ − f(σ)) + ξ′2iB
1g̃−− + ξ′3(Ca∂aX

+)C̄1

+ξ′4δg̃
−−C̄1 + ξ′5iB

0g̃++ + ξ′6C̄
0δg̃++ + Θ′{−ξ1C

a∂aX
+iB1

+ξ2δg̃
−−iB1 + ξ3(iB1)Ca∂aX

+ + ξ3(Cb∂bC
a)∂aX

+C̄1

+ξ3C
a∂a(−Cb∂bX

+)C̄1 − ξ4iB
1δg̃−− + ξ5δg̃

++iB0

−ξ6iB
0δg̃++}] (A.16)

where ξ′n = dξn
dk

. Now we will use the condition of Eq.(2.55).∫
Dφ exp[i(Scf [φ(k)] + S1[φ(k), k])]

∫
d2x[(−γ + ξ′1)iB1(X+ − f(σ))

+(γ + ξ′2)iB1g̃−− + (−γ + ξ′3)(Ca∂aX
+)C̄1 + (−γ + ξ′4)δg̃−−C̄1

+ξ′5iB
0g̃++ + ξ′6C̄

0δg̃++ + Θ′{(−ξ1 + ξ3)Ca∂aX
+iB1

+(ξ2 + ξ4)δg̃−−iB1 + (ξ5 − ξ6)δg̃++iB0}] = 0 (A.17)
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The terms proportional to Θ′, which are nonlocal due to Θ′, vanish

independently if

−ξ1 + ξ3 = 0, ξ2 + ξ4 = 0, ξ5 − ξ6 = 0 (A.18)

To make the remaining local terms in Eq.(A.17) vanish, we need the

following conditions:

−γ + ξ′1 = 0 γ + ξ′2 = 0 ξ′5 = 0

−γ + ξ′3 = 0 − γ + ξ′4 = 0, ξ′6 = 0 (A.19)

The differential equations for ξn(k) can be solved with the initial condi-

tions ξn(0) = 0, to obtain the solutions

ξ1 = γk, ξ2 = −γk, ξ3 = γk, ξ4 = γk, ξ5 = ξ6 = 0 (A.20)

Putting values of these parameters in expression of S1, and choosing

arbitrary parameter γ = −1, we obtain,

S1[φ(1), 1] =

∫
d2x[−iB1(X+ − f(σ)) + iB1g̃−− − (Ca∂aX

+)C̄1

−δg̃−−C̄1] (A.21)

A.3 FFBRST in Harmonic Gauge

The finite field dependent paramter corresponding to the conformal gauge

is obtained from the infinitesimal but field dependent parameter, Θ′[φ(k)];

through
∫ κ

0
Θ′[φ(κ)]dκ. We construct Θ′[φ(κ)] as,

Θ′[C, h] = i

∫
d2x[γC̄a{1

2
Aa − (

1

2
∇̂ah− ∇̂bhab)}] (A.22)

Here γ is arbitrary constant parameter and all the fields depend on the

parameter k. The infinitesimal change in the Jacobian corresponding to
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this FFBRST transformation is calculated using Eq.(2.52)

1

J(k)

dJ(k)

dk
= −i

∫
d2xγ[δ(C̄a){1

2
Aa − (

1

2
∇̂ah− ∇̂bhab)}

+
1

2
δ(Aa)C̄

a − 1

2
∇̂aδhC̄a + ∇̂bδ(hab)C̄

a] (A.23)

To express the Jacobian contribution in terms of a local functional of

fields, we make an ansatz for S1 by considering all possible terms that

could arise from such a transformation as

S1[φ(k), k] =

∫
d2x[

ξ1

2
δ(C̄a)Aa +

ξ2

2
δ(C̄a)∇̂ah+ ξ3δ(C̄

a)∇̂bhab

+
ξ4

2
δ(Aa)C̄

a +
ξ5

2
∇̂aδh(C̄a) + ξ6∇̂bδ(hab)C̄

a] (A.24)

where all the fields are considered to be k dependent and we have intro-

duced arbitrary k dependent parameters ξn = ξn(k)(n = 1, 2, .., 6) with

initial condition ξn(k = 0) = 0. It is straight forward to calculate

dS1

dk
=

∫
d2x[

ξ′1
2
δ(C̄a)Aa +

ξ′2
2
δ(C̄a)∇̂ah+ ξ′3δ(C̄

a)∇̂bhab

+ξ′4
1

2
δ(Aa)C̄

a +
ξ′5
2
∇̂aδh(C̄a)− ξ′6∇̂bδ(hab)C̄

a + Θ′{ξ1

2
δ(Aa)δ(C̄

a)

+
ξ2

2
∇̂aδhδ(C̄

a) + ξ3∇̂bδhabδ(C̄
a) +

ξ4

2
δ(C̄a)δ(Aa) +

ξ5

2
δ(C̄a)∇̂aδh

+ξ6δ(C̄
a)∇̂bδ(hab)}] (A.25)

where ξ′n = dξn
dk

. Now we will use the condition of Eq.(2.55).∫
Dφ exp[i(SCF [φ(k)] + S1[φ(k), k])]

∫
d2x[

(γ + ξ′1)

2
δ(C̄a)Aa

+
(−γ + ξ′2)

2
δ(C̄a)∇̂ah+ (γ + ξ′3)δ(C̄a)∇̂bhab +

(γ + ξ′4)

2
δ(Aa)c̄

a

+
(−γ + ξ′5)

2
∇̂aδh(C̄a) + (γ + ξ′6)∇̂bδ(hab)c̄

a

+Θ′{(ξ1 − ξ4)

2
δ(Aa)δ(C̄

a) +
(ξ2 − ξ5)

2
∇̂aδhδ(C̄

a)

+(ξ3 − ξ6)∇̂bδhabδ(C̄
a)}] = 0 (A.26)
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The terms proportional to Θ′, which are nonlocal due to Θ′, vanish

independently if

ξ1 − ξ4 = 0, ξ2 − ξ5 = 0, ξ3 − ξ6 = 0 (A.27)

To make the remaining local terms in Eq.(A.26) vanish, we need the

following conditions:

γ + ξ′1 = 0, −γ + ξ′2 = 0, γ + ξ′3 = 0

γ + ξ′4 = 0, −γ + ξ′5 = 0, γ + ξ′6 = 0 (A.28)

The differential equations for ξn(k) can be solved with the initial condi-

tions ξn(0) = 0, to obtain the solutions

ξ1 = −γk, ξ2 = γk, ξ3 = −γk, ξ4 = −γk, ξ5 = γk

ξ6 = −γk (A.29)

Putting values of these parameters in expression of S1, and choosing

arbitrary parameter γ = −1, we obtain,

S1[φ(1), 1] =

∫
d2x[−1

2
δ(C̄a)Aa +

1

2
δ(C̄a)∇̂ah− δ(C̄a)∇̂bhab

−1

2
δ(Aa)C̄

a +
1

2
∇̂aδh(C̄a)− ∇̂bδ(hab)C̄

a] (A.30)


