
SLAC-TN-84-7
October 1984
(TN)

EVERYTHING YOU WANTED TO KNOW
ABOUT PHYZZX BUT DIDN’T KNOW TO ASK

M. WEINSTEIN*

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.

i

Table of Contents

1. INTRODUCTION 1
2. BASICS 3

2.1. Whatism?3
2.1.1. You As An Editor: Correcting a Mistaken Impression ... 4

2.2. What Is PHYZZX? 5
2.2.1. Why Create A Macropackage like PHYZZX ? 6
2.2.2. So, what does it do? 7

3. STRUCTURING PREPRINTS 9
3.1. Chapters, Sections and Subsections 9

3.1.1. Chapters 9
2.1.2. Sections 14
2.1.3. Subsections 15

2.2. Other Subdivisions: Appendices and Acknowledgements ... 15
2.2.1. Acknowledgements: 15

6.1. Controlling the Way Chapters are Numbered 17
6.1.1. Playing With Numbers 17
6.1.2. Changing Styles 18

7. NUMBERING AND NAMING DISPLAYED EQUATIONS 19
7.1. A Simple Solution to Numbering Equations 20
7.2. Naming Equations: A Powerful Tool 22

7.2.1. Restrictions on Equation Names 23
7.3. Other Macros For Naming Equations 24

7.3.1. Things to Remember About Aligned Equations 24
7.3.2. Numbering Aligned Equations Independently 25

8. REFERENCES, FIGURE AND TABLE CAPTIONS 27
8.1. References: Stuff Which Comes at the Back 27

8.1.1. What features should such a macro possess ? 27
8.1.2. Single References 27
8.1.3. Gaining Ultimate Control of Referencing 29
8.1.4. Generating Your Own Reference Marks 29
8.1.5. Multiple References 30
8.1.6. The Problem of Long References 32
81.7. Questions of Style 33
8.1.8. Typing Journal Entries: A Convenient Macro 34

8.2. Figures and Tables 35
9. FOOTNOTES: THINGS WHICH COMEAT THE BOTTO’M’ : : : 37

9.0.1. Hints and Warnings 37
9.0.2. Controlling Your Footnote Marks 38

ii

10. ITEMIZED LISTS: POINTS, ITEMS AND OTHER STUFF 39
10.1. Fixed Format Lists: Points, Subpoints, Subsubpoints 40

10.1.1. Points 40
10.1.2. Subpoints and Subsubpoints 41

10.2. For Less Structure Consider Items 42
10.3. Having Your Cake and Eating It Too! 42

10.3.1. Levels of Indentation 43
10.3.2. Getting More Serious 43

11. MISCELLANEOUS STUFF ABOUT PAPERS 45
11.1. Page Numbers 45
11.2. Spacing 45
11.3. Commands Which Break Lines and Pages 46
11.4. Some Remarks About Penalties 46
11.5. The Titlepage 47

11.5.1. The Publication Block or Pub-block 47
11.5.2. Specifying the Titlepage 48
11.5.3. Typesetting the Title 48
11.5.4. Getting the Author(s) Right 48
11.5.5. Setting up the Abstract 49
11.5.6. Where’s The Paper Going? 50
11.5.7. Acknowledgements 50
11.5.8. Finishing the Title Page 51

11.6. A Sample Titlepage 51
12. MEMOS 53
13. TYPING LETTERS AUTOMATICALLY 59

13.0.1. Typing the Salutation 60
Multiple Letters 62

Short Letters 62
For Longer Letters 62

14. MISCELLANEOUS MACROS WHICH PHYZZX DEFINES 65
15. GOODBYE 67

15.1. Using Your MYPHYX File 67

1

1. INTRODUCTION

Hi TEX fans, the time has come to document the new version of the macro package,
PHYZZX. Vadim Kaplunovsky has updated it to run under TEXT. Since we envi-
sion this to be the penultimate version of PHYZZX, except for minor corrections
to remove heretofore undiscovered bugs, it now pays to explain what PHYZZX
is and how to use its various features in some detail. For those of you who are
familiar with the old version of PHYZZX you can rest easy, this version has been
designed to be as upward compatible as possible. Unfortunately, there are a few
minor changes in the way some macros work simply because Knuth changed TEX
and made it impossible for us to keep some of the old commands. In general the
changes make things easier to use and any file written for TEX97 will, with very few
changes, run on TEXl. For this reason the adventurous user can begin by ignoring
this writeup completely and try to run his old files. If luck is with you, you will
not have to change anything; if luck deserts you, then either PHYZZX will help
you along (only somewhat likely) or you will have to do a little reading.

Our present incarnation of PHYZZX resides in two places. The FMT file (a term
designed to strike terror into the hearts of those who have not been initiated into
the high mysteries) is on the T-disk, and this is the version you really want to
use. One uses the FMT file because it loads much faster and so you don’t have
the interminable wait for something to happen while the computer is reading all
of the definitions contained in PHYZZX TEX. To use the FMT file all you have to
do is make the first line in your TEX file say
%macropackage=phyzzx
instead of
\input phyzzx
A word of warning, this line must be followed by a blank line or 7&X will think that
the stu$ which follows on the next line is part of the macropackage; this will lead
to error messages saying that just about everything is undefined.

For the curious we try to keep an updated version of the file PHYZZX TEX on the
theory group disk. People interested in mucking around in the guts of this file in
order to see how things were done and what goodies, not described in this writeup
(and there are many), are available can access this disk by saying
GIME PUB$TH
If you wish to use this file to convince yourself how much better it is to use an
FMT file, you can do this by accessing the PUB$TH disk and starting your file
with
\input phyzzx
For cognoscenti: as in earlier incarnations you can tailor much of PHYZZX to your
liking by having a file MYPHYX TEX on your A disk. Each time you run PHYZZX

2 Chapter I INTRODUCTION

it loads this file. Any definitions which are in this file then take precedence over
those specified in PHYZZX. So much for generalities, now on to specifics.

2. BASICS

2.1 WHAT IS TEX ?

In order to make this as simple as possible for the first time user, we will say a few
words about what T&X is, before going on to talk about what PHYZZX does.

TI@ is the baby of Donald E. Knuth of Stanford University and it is our choice
for the best available text processor for use at SLAC. Clear as mud! you say.
What the hell is a text processor ?, you say. How is it diferent from Xedit and
Wylbur ?, you say. Tell you what I’m gonna do, I’m going to tell you the answers
to these questions even if you weren’t perceptive enough to ask. A text processor
is to Xedit and Wylbur what a publishing company (as embodied by editors and
printers) is to a technical typist; namely, it is a thingamajig which takes a crudely
typed manuscript and turns it into a book. Physicists and engineers all know that
the nicer your paper looks before it goes out, the more your colleagues believe
what is in it. Therefore we all want to use TI$ to prepare our papers for journals,
summer schools and conference proceedings. Some of us (hopefully that means
some of you reading this introduction) will use TI$ to type our own papers, and
some of us will rely on others for this task. In any event somewhere in that chain
someone has to know how to use the thingamajig or beautiful manuscripts just
won’t come out the other end. In that case our colleagues won’t know all of the
wonderful things we have to say. To facilitate this process to some degree we wrote
the macro package PHYZZX. In order to make PHYZZX and ?gx more accessible
to people at the lab, we have generated this writeup.

As I said, to all intents and purposes you and Xedit (or you and Wylbur, if you in-
sist on living in prehistoric times) make a typist. Actually, you make a pretty good
typist for text, but you don’t do too well as a technical typist because neither Xedit
nor Wylbur does a very good job at typing equations. You plus Xedit plus TKX
make a stupendous technical typist and a remarkably good printing company. Pur-
suing this analogy the process for producing a beautiful book quality manuscript
starts with somebody typing the first draft. This somebody is presumably you,
the reader, and the tools you use are your trusty computer terminal and an editor
like Xedit. Obviously I have no intention of explaining how to use Xedit since this
is probably unnecessary and anyhow, everything you have to know for the purpose
of typing a text file can be easily learned by reading the IBM Virtual Machine/
System product: CMS Primer. Hence, this writeup assumes that you know
how to log on to the computer and use the editor.

To use the editor to start collecting a file which TEX will turn into a beautiful
paper, memo, or letter, you have to follow a simple procedure. First, in your
incarnation as typist, you have log on and enter an editor (e.g., Xedit) by telling it

4 Chapter I? BASICS

you want to create a file whose name is CRAP and whose filetype is TEX. You
accomplish this feat by typing something difficult like
X (or XEDIT) CRAP TEX A
whereupon the powers that be will throw you into the editor. At this point, since
you are a person of discerning tastes, the very next line you enter is
%macropackage=phyzzx
This command will make sure that when you tell the computer to print a version
of the paper it will become an editor and instruct the typesetter to lay out the
copy according to the criteria established by the macro package PHYZZX. The
very next thing you do is skip a line (i.e., enter a blank line) in order to make your
copy easy to read, and then start to enter your copy. So much for you as a typist.

2.1.1 You As An Editor: Correcting a Mistaken Impression

The preceding discussion indicates that you are to take your manuscript and type
it into the editor in exactly the same way as you would at a typewriter. While this
is a possible way of proceeding it is not really the best way to do things. In order
to you to understand why this is true, you have to understand that once you have
functioned as a typist, the next thing you have to be is an editor.

An editor’s job is to make sure the text looks good and that the printer knows how
he is supposed to layout the copy which he receives. For example, he has to know:
how much space to put between lines of text, what font to set chapter headings in,
how much space to skip before and after a chapter heading, which math symbols
are exponents, greek letters etc. Since you are the editor and T@X is going to be
the printer, you have to mark up the copy so that TI$ and/or PHYZZX knows
what to do with it. This feat is accomplished by including editor’s comments (or
marks) in the text. These comments (or commands to TFX) have to have a special
character in front of them so that TFX will recognize them for what they are; this
character is the \, and the combination of a \ followed by a string of characters is
called a control sequence. One example of a control sequence is \par which tells
TFX to begin a new paragraph. Note that this is not a trivial thing since T&X has
to know to skip some extra space between the text in different paragraphs, indent
the first line by some amount, etc. The basic version of TEX has lots of control
sequences which tell TEX to do lots of wonderful things. To learn about these
things (probably more than you initially want to know about how TI$ operates)
you have to read selectively in the mbook written by Knuth. Since this discus-
sion is between friends, let me warn you this book stinks as a reference manual
and ain’t so hot as an introduction to T&X. Knuth has a philosophy of learning by
ever increasing levels of mistakes which I (and many of my acquaintances) find at
best distracting and at worst impenetrable. Unfortunately, this book is all that is

2.2 What Is PHYZZX? 5

available as an in depth introduction to the basic version of TJG$. If you want to
know how to do sophisticated things which lie outside of the purview of PHYZZX
you will have to read quite a lot of it.* A really good thing to read to get an idea
of the basic things you can do with TEX and to learn about the important control
sequences is a primer entitled First Grade TEX A Beginner’s w Manual
by Arthur L. Samuel. This is short, readable and contains everything you need
to supplement this discussion of PHYZZX. You can request a copy of this manual
from the SLAC Library

First Grade Tex - A Beginner’s w Manual
bY

Arthur L. Samuel
STAN-CS-83-985

Since you are going to be both typist and editor it pays for you to combine these
jobs and mark up the manuscript at the same time that you type it. To be precise,
this means that you want to type in equations so that superscripts, subscripts,
etc., are clearly indicated. You also want to type chapter headings, subchapter
headings, etc., in such a way that the font to be used, the space to be skipped
above and below the heading, etc. are all clearly indicated. In general you want
to tell the printer how to lay out the resulting copy as you type it in. This of
course requires that you make many formatting decisions and then use the basic
TEX control sequences in order to tell it what to do. It will come as no surprise to
you that this can get very complicated very quickly. That’s where PHYZZX comes
in.

2.2 WHAT Is PHYZZX?

PHYZZX is a macropackage which is designed to make typing papers destined for
Physical Review or Nuclear Physics as simple as possible. In addition it allows
you to type letters and produce memos without knowing much about the way T@$
works.

The first question which arises at this point is What is a macropackage ?, or for
that matter What is a macro?. Despite the name a macro is not something eaten

* To get a feeling for T&C it is advisable to browse through the first, three chapters and
read about boxes and modes. If you just, wish to type papers in the most straightforward
way you can defer this reading until you are more experienced so long as you use PHYZZX.
However, in any event, you must read the sections on typing math formulas, typing displayed
equations and a little bit about making boxes since I have neither the time nor inclination
to go into those things in this writeup, and you must have a basic idea of how this stuff
works in order to proceed. After all, ostensibly this writeup is about how to use PHYZZX
and is not a primer on T@C.

6 Chapter 2 BASICS

on a macrobiotic diet. It is a name for a simple thing. Unfortunately, this name has
been carefully designed by computerniks to strike terror into the heart of occasional
users and keep them in their place. (There is nothing more annoying than an uppity
occasional user.) Basically a macro is a way of defining an entry in a dictionary
which is kept in the guts of the computer. The computer uses this dictionary
to find the meaning of words which have been defined using the control sequence
\def. A macropackage is, as the name implies, a package of macros (or definitions
of commands) which we can use to give complicated formatting instructions to
TI$ without having to go to the trouble of typing everything out each time we
want to give the same instruction.

It follows from this discussion that PHYZZX is just a collection of definitions
which tell T@K to do a well defined set of things to make the text which follows
look just the way you want it to look. The best thing about a macropackage is
that once it is written you only have to know what happens when you issue a given
instruction; you don’t have to know how it is made to happen. Although each of
the commands which appear in the macropackage cause apparently simple things
to happen, making them happen can get quite involved if you try to use the PLAIN
version of Tl$X.

2.2.1 Why Create A Macropackage like PHYZZX ?

Finally we get down to brass tacks. We already pointed out that you, the person
preparing the manuscript, must to play the role of typist and editor. As editor you
have the job of telling the printer how large to make chapter titles, what typeface
to use for chapter titles, how much space to skip above and below a chapter title,
etc. Having to give this set of instructions every time you want to type a chapter
title can get to be a pain in the neck. Not only that, but imagine the problem
of remembering exactly what format you want for chapter titles, section titles,
subsection titles, etc., if - as is the case with PHYZZX - you use a different format
for each one. Clearly, if one had to type all of this each time and keep all this
information in one’s head one would probably choose not to use TEX at all.

This discussion raises another point, namely that if one did not have a predefined
set of macros to tell TI$ what to do at a certain point then you would have one
more job dumped upon your shoulders. In addition to being typist and editor you
would have to be a book designer. That means that you would have to make all
of the esthetic decisions about the most attractive print to use for a given paper,
the spacing to use between lines, the best way to number equations and the rest
of that crap. This can be an onerous task which the average user doesn’t want to
have to deal with. Moreover, everybody has his own esthetic criteria (even though
some people have more taste than others), so without a macropackage, to set the

2.2 What Is PHYZZX? 7

formats into predefined molds, there would be little or no uniformity in the layout
of papers coming out of SLAC. While this would be no great tragedy, it could get
confusing.

Okay, so PHYZZX is a macropackage which provides a dictionary of editor’s com-
mands which allow one to easily format a document for the printer. It makes
a set of esthetic choices for how these documents should look and, in the inter-
ests of simplicity, doesn’t make it trivial for the casual user to mess around with
these choices. (Actually, this is not really true since there are many ways in which
PHYZZX can be tailored to your personal preferences, but we will discuss that as
we go along.) The obvious question which comes up at this point is who made all
of these esthetic decisions 2. In the interests of preserving the lives of the parties
involved, anonymity must be preserved. Rest assured, however, it was a consulta-
tive process and many people had an input into the final result. Despite the fact
that PHYZZX is an animal put together by a committee, we think it does its job
fairly well.

2.2.2 So, what does it do?

The main job which PHYZZX is designed to do is to make it easy to format SLAC
preprints destined for submission to Physical Review or Nuclear Physics. Since
these journals require different ways of handling line spacing, footnotes, references,
etc., PHYZZX you need to specify the journal to which the preprint is to be
submitted. Actually, you only have to tell if the journal is going to be Physical
Review, since the default format is that for Nuclear Physics. This is because we,
with our usual impeccable good taste, decided that the Nuclear Physics format
was a better general purpose format. If you don’t like our decision write your own
macropackage.

All kidding aside, changing to Physical Review format is easy, all you have to do
is start your typing with
%macropackage=phyzzx
\PHYSREV
Note, when you are typing a control sequence everything counts; i.e., T@X cares
about capital letters, small letters, spaces, etc. Be careful to copy just what you
see typed here or it won’t work; worse yet, it might work in an unexpected way.

In addition to formatting papers PHYZZX does a great job of producing letters and
memos. In each of these cases it produces, by itself, the appropriate letterhead and
formats the text in a way appropriate to the document at hand. Since, however,
we consider the preprint formatting capabilities of PHYZZX to be of paramount
importance, we will discuss them first and turn to letters and memos when we have
finished.

9

3. STRUCTURING PREPRINTS

A preprint is a document which eventually will be submitted to a journal for
publication. In setting up PHYZZX we assumed that format of a preprint is
essentially fixed. The size type to be used in the body of the preprint is chosen
so that when run off on the laser printer and reduced for distribution it will be
easily readable. In addition, normally we skip one and a half lines between lines
of text. We think this looks most attractive with the size type we are using and
makes the preprints a little shorter, saving paper. To satisfy the requirements of
journals like Phys.Rev. Letters which specify the number of lines per inch which a
manuscript must have, you must use double spacing; the command \PHYSREV
automatically takes care of this, as well as a number of other things.

Concerning spacing and other parameters you may well ask How fixed is fixed ?.
The answer varies. For example, since we realize that people like to play around
with line spacing to some degree, we have provided commands which we hope will
enable you to change the average interline spacing to something closer to your
heart’s desire. The commands which perform this wondrous feat are
\singlespace
\doublespace
and
\normalspace
Obviously, \doublespace means twice \singlespace; but What is the meaning of
\normalspace P. The answer to this question is that \normalspace corresponds
to a spacing between single and doublespace.

You might think, having read a little in the TI$X book, that you can achieve the
same thing by changing \baselineskip and \lineskip. In a sense you would be
correct. However, you should know that the commands \doublespace, etc., do
more; this is because they do different things depending upon the font and format
you are using. If you want to do the same thing you will have to modify a lot of
basic T@K parameters or the esthetic impact of the document which emerges just
won’t be the same.

All of this is by way of a parenthetical comment since it won’t do you any good
unless you know how to use the simplest version of PHYZZX first.

3.1 CHAPTERS, SECTIONS AND SUBSECTIONS

3.1.1 Chapters

Most longer papers are divided into several parts in order to make them easier to
read. These parts usually are preceded by headings or titles which indicate the

10 Chapter 2 STRUCTURING PREPRINTS

subject to be covered in discussion which follows. Stylistically, several decisions
have to be made about how these headings are to be set in type. You, as editor,
have to tell the printer what to do.

We will refer to the major divisions of a paper as chapters. In general each chapter
has a heading. Our choice as book designers has been to set this heading in larger
type and preface the text of the heading with a number. The number is automati-
cally increased each time you declare a new chapter. In addition, some extra space
is skipped both above and below each chapter heading. All of this magic is at your
disposal if you simply use the \chapter command to indicate that the text you
are about to type is the heading of a chapter. To be precise, the way you use this
command is to type
\chapter { text }
where { text } stands for the chapter name which you have to make up and insert.
For example, the chapter title for this chapter was generated by typing
\chapter{ STRUCTURING PREPRINTS }

Note, I chose to type the heading in capitals. That’s because I like the way it
looks. You certainly don’t have to do that. If you don’t, but instead type
\chapter{ St ructuring Preprints }
then you obtain

1. Structuring Preprints

One thing to notice is the curly braces surrounding the text. These braces are
absolutely necessary. They are grouping symbols which tell TEX how much of
the text to follow is to be considered part of the chapter heading and if they
are omitted you will get a disastrous error message saying something like m’s
capacity is exhausted. Unfortunately, on the screen of a computer terminal, these
symbols are easy to confuse with (and so you will have to be careful. If you are
in XEDIT you will be able to issue the command balance. This is an XEDIT
command defined by an exec file on the U disk which counts matching pairs of
curly braces. It is helpful in that it tells you there is a problem, but unfortunately
it doesn’t find the problem for you.

In general you won’t want to play around with the choice of font inside of a chapter
heading and so, by default, you will get a roman font. However, you can play with
it if you wish. We have provided a series of control sequences, or editors marks,
which allow you to change between different fonts all of which have essentially the
same size. Hence, if you type \rm you get the current roman font, if you type \bf
you get the bold face version of the current font, if you type \sl you get a slanted

2.1 Chapters, Sections and Subsections 11

version of the current font, if you type \it you get an italic font, and if you type
\tt you usually get a typewriter font. I say that you usually get a typewriter font
because we do not have typewriter available in all sizes of print. When we don’t
PHYZZX makes a substitution of the same font at a different size. Another font
for which this happens is \caps which is a font which is made up of only capital
letters. This font distinguishes between upper and lowercase letters only by size.
As an example of switching fonts let us see what happens if we change font inside
the command chapter.

If you type
\chapter{ \bf Formatting Text}
you get

2. Formatting Text

If you type
\chapter{ \sl Formatting Text)
you get

3. Formatting Text

If you type
\chapter{ \it Formatting Text}
you get

4. Formatting Text

If you type
\chapter{ \caps Formatting Text}
you get

5. FORMATTING TEXT

Finally, if you type
\chapter{\tt Formatting Text }
you get

12 Chapter 2 STRUCTURING PREPRINTS

6. Formatting Text

While all of this is very nice you should note that the font used to set the chapter
number does not change with the text. This illustrates something about TI$‘s
grouping symbols. Since we put the control sequences for changing fonts inside the
braces, only the text inside the braces is affected. That is, the change only occurs
ZocaZZy. In general any change you make inside a pair of curly braces only affects
the material inside the braces, unless you force the effect to persist. (If you want to
know how to do this look up the \global command in the TI$ book.) It follows,
therefore, that if we want the number to change we have to change the font before
we give the \chapter command.

If you type
{ \bf \chapter{ Formatting Ted}}
you get

7. Formatting Text

If you type
{ \sl \chapter{ Formatting Text }}
you get

8. Formatting Text

If you type
{ \it \chapter{ Formatting Text }}
you get

9. Formatting Text

If you type
{ \caps \chapter{ Formatting Text }}
you get

10. FORMATTING TEXT

Finally, if you type
{ \tt \chapter{ Formatting Text }}
you get

2.1 Chapters, Sections and Subsections

11. FormattingText

Much better, no?

We have already mentioned that PHYZZX put extra space above and below a
chapter heading. Since all of the chapter headings for this writeup were generated
using the command \chapter, you only have to examine them to see how TI$
handles these extra spaces.

Another remark worth making is that in the current incarnation of PHYZZX you
do not have to worry about chapter titles which are too long. The chapter macro
is set up to split your line when necessary and automatically center each line. To
accomplish this feat PHYZZX makes use of a control sequence called \titlestyle.
The command \titlestyle is worth knowing about because sometimes you want to
be able to type in a longish amount of material and want the various lines to be
centered, not left or right adjusted after each break. Typing \titlestyle{ text }
will accomplish this feat. In addition, if you don’t like the way PHYZZX chooses
to break the lines you can force your desires upon the machine by inserting: the
command \break. This command forces the line to break at the point where the
command is given. The command \nobreak will stop the line from breaking at
an undesirable place, and the symbol * will insert some unbreakable space between
words. This stuff is covered in the basic books on TEX and we refer you to there for
details. Combining these control sequences with the control sequence \titlestyle
allows you to easily achieve many interesting effects. For example, you can generate
an invitation by typing
\titlestyle { \it You are cordially invited \break
to the coming out party for \break
the new macro package \break
\rm PHYZZX \break }
and obtain

You are cordially invited
to the coming out party for

the new macro package
PHYZZX

If you are really sharp, and I assume that you are, you will have noticed that the
type in which the invitation is set is larger than the normal type. Remember that
I already told you that titles are set in larger type than the basic text. I also told
you that the commands \rm, \bf, \it, etc., change the style of the font but leave
it the same size. What we have not discussed is how you change the size of the font
the way \titlestyle does with impunity. Well, all things come to he who waits!

14 Chapter 2 STRUCTURING PREPRINTS

Now’s the time to discuss this point.

Font sizes, as you learn from reading the TFXbook come in sizes measured in a mys-
terious printer’s unit call points. You don’t have to know what a point is, you only
have to know that most of the text in this writeup is twelve point type, the titles are
in fourteen point type and the footnotes are in ten point type. It is possible for you
to force TFX to use a particular size of type by saying \tenpoint,\twelvepoint
or \fourteenpoint; in which case the obvious thing happens. Thus, for example,
if you change the typed instructions for generating the invitation to read
\titlestyle { \twelvepoint \it You are cordially invited \break
to the coming out party for \break
the new macro package \break
\rm PHYZZX \break }
you get

You are cordially invited
to the coming out party for

the new macro package
PHYZZX

and if you type
\titlestyle { \tenpoint \it You are cordially invited \break
to the coming out party for \break
the new macro package \break
\rm PHYZZX \break }
the result is

You are cordially invited
to the coming out party for

the new macro package
PHYZZX

2.1.2 Sections

Now that we know everything about generating chapters, we turn to the problem
of generating smaller subdivisions; namely, sections and subsections.

The numbering is done as {chapternumber}.{sectionnumber} . Each time you
start a new chapter, the section numbers restart from 1. You have already seen
many examples of the results produced by the section macro in this writeup. As in
the case of the chapter macro all of the numbering is taken care of automatically.
To accomplish the feat of generating a new section heading you type

2.2 Other Subdivisions: Appendices and Acknowledgements 15

\section { section heading }
For example, if you type
\section { New Section }
you get

ll.A. NEW SECTION

As in the case of chapter headings you can play with the fonts if you insist; however,
remember that the space above and below chapter and section headings have been
carefully matched to our choices of fonts. If you play too much, the esthetic balance
of the final copy won’t be the same.

2.1.3 Subsections

The smallest subdivision for which we have a formal macro defined is a subsection.
Our choice has been to make subsections unnumbered and underlined. When you
type the command \subsection { subsec.heading } you get the sort of heading
which introduces this paragraph. All of the control sequences, \chapter, \section
and \subsection force the start of a new paragraph, so in principle you do not
have to skip lines as you type in text. However, from the point of being able to
proofread your typed copy in order to make corrections, not skipping lines can be
a disaster.

The underlining of the text in the section macro is accomplished using the control
sequence
\undertext { text }
This is a command worth knowing about, but in general using italics is a better
way to emphasize text.

This completes our discussion of the macros which handle the generation of titles
for the major subdivisions of the usual paper.

2.2 OTHER SUBDIVISIONS: APPENDICES AND ACKNOWLEDGEMENTS

In addition to chapters, sections and subsections, papers tend to have auxiliary junk
attached. This extra junk is usually called either acknowledgements or appendices.
To save you the bother of figuring out which font sizes and spacing choices are
necessary to make these appendages consistent with the rest of the paper we also
have control sequences to generate headings for them. Typing the command
\ack
generates the line

16

2.2.1 Acknowledgements:

Note the beauty of the typeface and the precisely chosen amounts of extra space
which gracefully offset the title generated with this simple command. Once again,
for the Philistines among you, you can play with the fonts using the commands
\bf, \sl, etc.; h owever, let the esthetic violence you do to the manuscript be on
your own head.

Generating appendices presents us with a slightly more complex situation and so
you get more choices as to how to proceed. The questions which arise at this
juncture are How many appendices will there be ? and How do you want them
numbered ?. Clearly, if there is to be only one appendix then the choice is simple.
In that event you generate a lovely heading by simply typing
\appendix
which causes TI$ to generate the line

APPENDIX

If there are to be many appendices and you want to number them in any way which
suits you, you only need type
\Appendix{ text }
note the capital letter appearing as the first letter of this control sequence. Re-
member, m cares about upper and lowercase, so this is a different command from
\appendix.

TY ping
\Appendix{ A }
generates

APPENDIX A

Typing
\Appendix{ I }
generat es

APPENDIX I

and typing
\Appendix{ 1 }
generates

6.1 Controlling the Way Chapters are Numbered 17

APPENDIX 1

This completes the discussion of the basic commands which generate division head-
ings. Now we turn to a discussion of the special commands which PHYZZX has
included to allow you to tailor the way in which these macros handle numbering
conventions.

6.1 CONTROLLINGTHE WAY CHAPTERS ARE NUMBERED

The discussion to follow is really not necessary if what you want to learn is how
to use PHYZZX to type a paper. This section is devoted to making PHYZZX do
something out of the ordinary; i.e., something it ordinarily doesn’t want to do.

6.1.1 Playing With Numbers

There will be times when you want to print out just a piece of a paper either
because it is long, or because (as I understand is the case for that strange group
of people called experimental physicists) many people are working on different
chapters (perhaps even sections) of the same paper. In this event you probably
want the chapter and section numbers to print correctly when you are proof reading
so that you don’t get confused. Rest easy, this can be done. PHYZZX defines
two quantities which it updates and refers to when it needs chapter and section
numbers. These quantities are called \chapternumber and \sectionnumber
(big surprise!). You, as the editor, can tell PHYZZX to set these numbers to a
specific value, say 7, by typing
\chapternumber=7
or
\sectionnumber=7
Note that for the first time you have encountered an = sign occurring in a statement
to T@L You will encounter this sort of syntax many times, in general when it occurs
it will be because it is the natural way to write something.

Once you get involved in fooling with chapter and section numbers there are a few
things you have to know. Both the \chapter and \section macros increase the
respective chapter or section number by 1 before they print anything. Thus, if you
want to get a chapternumber like 7 you set
\chapternumber=6
The same is true for setting the section number. If you are so perverse as to start
in the middle of a chapter, then when you set the section number you must also
set the chapter number, since it appears as part of the section heading. Actually,
the quantity which appears in the section heading is called \bf \chapterlabel and
to set it you have to say

18 Chapter 6 STRUCTURING PREPRINTS

\let\chapterlabel=G
or whatever label you want instead of 6. This extra step is required because we
really don’t think its such a great idea to start in the middle of a chapter and
so didn’t bother to make it too trivial to do so. If you are starting a chapter,
then you don’t have to worry about setting the section number since the command
\chapter automatically resets the section number to 0.

6.1.2 Changing Styles

Another way you might want to modify the way PHYZZX handles divisions is
to have it number chapters using letters, or roman numerals, instead of arabic
numerals. Although this defeats the purpose of establishing some sort of uniformity
of style for preprints, etc., it is possible to do. This feature was added to PHYZZX
because we recognize that some folks, particularly experimentalists, just can’t leave
well enough alone. The mood of people like this begins to verge upon hysteria if
they don’t have knobs to twiddle and buttons to push. For this small number
of benighted souls there exists the special command called \chapterstyle. You
change the way in which PHYZZX numbers chapters by saying
\chapterstyle={ \alphabetic} to get the l.c. letters a,b,c,. . .
\chapterstyle={\Alphabetic} to get the U.C. letters A,B,C,. . .
\chapterstyle={ \roman} to get the l.c. roman numerals i,ii,iii,. . .
\chapterstyle={ \Roman} to get the U.C. roman numerals I,II,III,. . .

There is one more option open to you, that is to have all chapters, sections and
subsections unnumbered.* To select this option you begin your file with the com-
mand
\unnumberedchapters
This is not too difficult, but it is long to type.

One final remark. We have not made it possible, other than shutting it off com-
pletely, for you to change the style used when numbering subsections. All you
get is chapterZabel.sectionnumber no matter what you do. Moreover, the section
number is always an arabic numeral. If you don’t like this, write your own section
macro. (This isn’t as bad as it sounds. We’ll discuss doing this sort of thing at the
end of this writeup.)

* Note that this implies that all equations will automatically be sequentially numbered

19

7. NUMBERING AND NAMING
DISPLAYED EQUATIONS

We have now discussed the macros available for defining the basic parts of a paper
and appropriately titling them. Now let us turn to the most important stuff -
other than text - which appears in each section; namely equations. If you’ve done
your homework and read Knuth or First Grade Q$C you know that equations
are typed in math mode and that you let T&X know that you are in math mode by
typing either $ or $$. Enclosing an equation inside a pair of single $ signs puts it
in ordinary mode; enclosing the same equation between matching pairs of $$ signs
puts it in display mode. Regular math mode is used for inserting equations into
a line of text. Since you have done your homework we don’t have to say anything
about this, since PHYZZX doesn’t play with ordinary math mode at all. Display
mode is used for generating equations which are to stand out from the ordinary
text. It allows you to type
$$ (x+y)(x-y) = xA 2 - yA 2 $$
in order to get

(2 + y)(x - y) = x2 - y2

This is called a displayed equation.

Displayed equations are used in all journals and are usually numbered. In PLAIN
TEX there is a built in capability for allowing you to generate equation numbers;
it is the macro \eqno. If you type
8% (x+y)(x-y) = x A 2 - y A 2 \eqno(13) $$ you get

(x + y)(x - y) = x2 - y2 (13)

This example shows what the command \eqno does. It makes the material ap-
pearing to the right of this command into a label for the displayed equation and
sticks it in the right hand side of the line. There is also the PLAIN T&C command
\leqno which does the same thing but puts the equation number on the left. For
example, typing
$8 7x+12 = 24 \leqno (13) $$
produces

(13) 7x + 12 = 24

So, you ask, what d oes PHYZZX have to do with this? Well the answer to that
question depends upon who you are. If you are typing someone else’s handwritten
manuscript which is in final proofread form, then these macros for putting in

20 Chapter 7 NUMBERING AND NAMING DISPLAYED EQUATIONS

equation numbers are all you need. If, however, you are the author of the paper,
typing it in yourself, either from a rough copy or composing it directly at the
terminal, then these two commands leave a great deal to be desired.

To begin with, if you are anything like me, when composing at the typewriter you
usually forget the number of the last equation you have typed. Of course you can
always go back and look it up, but this is time consuming and sometimes difficult to
do. In addition if, as is usually the case, you expect the manuscript to be changed
after it is typed, then it is highly likely that equations will be added, deleted and
moved around. In that case, if you have used \eqno or \leqno you will have to go
through the text and change all of the equation numbers and all references to those
numbers each time there is a revision. Clearly this can get to be a big nuisance.
Wouldn’t it be nice if ‘I’@ would just take care of numbering all of the equations
properly each time it prints the manuscript taking into account all of the revisions
automatically.

Joy of jo ys it can be done!

7.1 A SIMPLE SOLUTION TO NUMBERING EQUATIONS

PHYZZX has a macro \eq which can take care of this chore for you automatically.
All you have to do is type

$$x+y={2\ over (x - y) } \eqno\eq $3
to get

x+y= (x:y) (7.1)
and you will have automatically generated an equation number. The question is,
What sort of equation number will you generate P. Once again, this is a question of
style. If you are in the Phys.Rev. format, or in the default Nuclear Physics format
then the equation label is of the form chapterZabel.equation number. Equations
are numbered sequentially within each chapter, but when you change chapters the
chapter number is increased by 1 and the equation number is reset to 1. If you
have chosen the format with unnumbered chapters and sections, then \eq will
automatically generate sequential equation numbers. As far as we are concerned
this is the most satisfactory way of numbering things. For short papers, i.e. those
with only one chapter, choose the unnumbered chapter format and all of your
equations will be numbered sequentially; for longer papers, i.e. those which call for
dividing them into chapters, numbering the equations by their chapter and number
within the chapter makes it easier to refer to them. Sometimes, however, either
out of perversity or because a paper has many chapters but very few equations,

7.1 A Simple Solution to Numbering Equations 21

an author wishes to choose the format with numbered chapters but sequential
equation numbers. This will happen if, before entering the first equation in your
paper you type the command \sequentialequations Hence, in the default mode,

tYPi%
$$ 7x + 11x- 2 = 50 \eqno\eq $$
8x3 3x + xA 3 = 85 \eqno\eq $$
$$ 4x + 8x6 7 = 12 \eqno\eq $$
$$ 7x + 4x- 2 = 0 \eqno\eq 4%
$$ x + ,?lx^ 5 = -5 \eqno\eq $$
yields

7a: + 11x2 = 50

3x + x3 = 85

4x + 8x7 = 12

7x + 4x2 = 0

x + 21x5 = -5

If, however, you first type \sequentialequations; then typing

$$ 7x + llx^ 2 = 50 \eqno\eq $$
$$ 3x + xA 3 = 85 \eqno\eq $$
$$ 4x + 8xA 7 = 12 \eqno\eq $$
$$ 7x + 4x- 2 = 0 \eqno\eq $$
$$ x + i?lx^ 5 = -5 \eqno\eq $$
yields

7x + 11x2 = 50 (6)

3x + x3 = 85 (7)

4x + 8x7 = 12 (8)

7x + 4x2 = 0 (9)

x + 21x5 = -5 (10)

Since you are an astute reader you have no doubt noticed that what I have told
you to this point only solves half of the problem. While \eq automatically gen-
erates equation numbers which, each time you run the paper through T@L , are

22 Chapter 7 NUMBERING AND NAMING DISPLAYED EQUATIONS

automatically updated to conform to the order in which they appear in the text,
we have no a priori way of knowing what these numbers are. The question is, How
do we get hold of these numbers so that we can refer to them in the text? Well,
\eq provides a partial solution to this problem by definiing the control sequence
\? a synonym for that number each time it is invoked. Hence, typing \? at any
point in the text causes T@C to print the number of the last equation in which you
used the command \eq. For example by typing equation \? we cause TJ$ to print
equation (10) , which is the number of the last equation appearing in our exam-
ples. The only thing wrong with this solution is that the meaning of the symbol
\? changes each time you invoke \eq, so what happens if you want to refer back
to an equation at several different points in the text?

7.2 NAMING EQUATIONS: A POWERFUL TOOL

In order to make it possible to refer back to a specific equation without knowing
its number, PHYZZX has a way of giving the equation a symbolic name, like \?,
which will always stand for the number of that equation. The macro which accom-
plishes this feat does this at the same time it generates (and prints) the number
associated with this equation. Since this command does just one more thing than
the command \eq does, we have given it a name which is just one letter longer;
the name is \eqn. To use \eqn you type
\eqn\ equation-name
Note carefully the \ appearing before the equation name inside the braces. This
backslash must always precede the name itself because you are using \eqn to define
a new control sequence and, as we have already noted, control sequences always
start with a \ . Also note the grouping symbols. They tell T@K to include ev-
erything in the braces as the equation name and they are necessary. To use this
command you type something like
the value of $ \pi $ is

$$ \pi \approx 3.14159 \eqn\valueofpi $8
to obtain

the value of r is

7r x 3.14159 (7.7)
If you now type
the circumference of a circle is given by
38 2 \pi r n 2 \eqn\circumference $$
you define a new equation number and a new name. The result of this is

7.2 Naming Equations: A Powerful Tool 23

the circumference of a circle is given by

If we now type \valueofpi we get (7.7), f i we type \circumference we get (7.8).

A little thought will convince you that this ability to name equations is a very
powerful time saving tool. By giving names to equations you are able to refer to
them at will without ever giving a thought to the number they will be assigned
when the paper is printed. If you use the command \eqn\name to deal with the
numbering problem, then the number assigned to the equation and all references
to the equation will always be correct. It won’t matter if you delete equations, add
equations, move equations around, or decide to switch from the normal conventions
for numbering equations to sequential numbering, etc.

7.2.1 Restrictions on Equation Names

There are only a few simple rules you should observe when giving names to equa-
tions using the command \eq

1. First, the name has to be proceeded by a \ as we already noted

2. Second, the rest of the name has to be all letters. No numbers are allowed.
You may however use upper and lowercase letters, and names can be arbitrar-
ily long. Everyone seems to have his own favorite way of naming equations
in order to facilitate referring back to them later. I invite you to play around
with this until you find a scheme which makes you comfortable.

3. Third, try to remember to always use a different name for each equation.
Neither TEX nor PHYZZX will warn you if you give two equations the same
name. They will quite happily change the meaning of the previously defined
name to mean the number of the last equation to which you have given that
name. If you wish this to happen, o.k., however be sure that is what you
want or you will be in for some surprises later.

4. Finally, never use the name of any macro for an equation name, this road
surely leads to disaster. For example, if you accidentally type \eqn\bf you
not only change the previous meaning of \bf but you also mess up any macro
which uses that control sequence.

As an example of this I note that the names \herman, \Suzanne, \duMMy are
all good names; however, \jerk3, \don’t and \sl are not. There is one exception
to this rule, you can give the name \ ? to an equation, which is what the macro
\eq does. This is useful only if you intend to use it as a temporary name for an
equation that will be referred to once or twice before the name is redefined. If you

24 Chapter 7 NUMBERING AND NAMING DISPLAYED EQUATIONS

really want to give use numbers for you equation names roman numerals are all
right. You can name equations \eqi,\eqii,. . ., \eqix , etc.

7.3 OTHER MACROS FOR NAMING EQUATIONS

We have already noted that TEX allows you to put equations on the left hand side
of a line using the macro \leqno. For this reason, we too need a version of the
naming macros which do the same thing. The obvious name for such a macro
would be \leqn and it is invoked by typing
\leqn\equation.name
If you include this in an equation the number comes out on the left.

In addition to this obvious addition to the macro set there are macros meant to
be used for the automatic numbering of aligned equations. To learn about aligned
equations you should read in the Q$Xbook or in First Grade T@C Assuming
that you have done so, let me remind you how about how aligned equations are
generated, in order to set the stage for explaining how the macros \eqinsert,
\leqinsert, \mideqn and \midleqn work.

Aligned equations are, as the name implies, a set of equations which appear one
after the other. In order to make the spacing between these equations look nice
and in order to make them line up so as not to look messy PLAIN TEX introduces
the macro \eqalign. This macro produces a list of equations which are aligned
with respect to some common feature of each equation, for example an = sign. As
with single displayed equations T@X allows you to number these sets of equations
as if they are a single equation by using the commands \eqno, \leqno. PHYZZX,
too, is kind and permits exactly the same thing; to do this you use the commands
\eqn and \leqn. Since \eqalign is a macro whose argument is the text of the
equations, the way to use \eqn, etc. is to type them after the right } which closes
the \eqalign command. For example, typing
$$ \eqalign{ \ cos { \pi \over 6 }\ = & \ \sqrt{ 3/d} \cr
\cos{ \pi\overd}\ =&\ \sqrt{ l/2} \cr
\cos{\pi\over3}\ =&\ \sqrt{ 8) \cr } \eqn\trig $$
yields

7r
cos - = 3 4

6 d-T

7.9 Other Macros For Naming Equations 25

7.3.1 Things to Remember About Aligned Equations

1. The entire argument of \eqalign must be enclosed in braces. Successive rows
of the equation must be separated by the control symbol \cr to tell T&C to
make a carriage return.

2. Every row contains two parts (or templates) separated by the special tabu-
lation symbol &. This symbol tells TJ$ what character you want to line up
in each line of the set of equations. If you want half of some of the lines to
be empty that is all right, but the symbol & must always appear. Left and
right braces within a template must balance separately.

3. PLAIN TjjX sometimes puts aligned equations too close together. If you
want to force \eqalign to spread the lines apart somewhat there is a special
control symbol for doing this. All you have to do is type \cropen{space}
instead of \cr at the end of each line. For example, \cropen{ 12pt) will force
the lines 12pt further apart. The control sequence \crr is an abbreviation
for \cropen{ 1Opt).

Although it is not obvious from the previous example, \eqalign won’t always put
the equation number where you would like it. For example, if one of the equation
lines is very long and pushes into the right hand margin, then \eqalign will put
the equation number on a separate line below the last equation in the set. If, as
often happens, there is only one or two long lines and there is room on one of
the other lines for an equation number you can force TJ$ to put it there if you
wish. The way to do this is to use the PLAIN ‘I&X control sequence \eqinsert
immediately following the \cr or \cropen ending the line you wish to have the
equation on. If you type
$$. . . =& . . . \cr \eqinsert { equation.number} $$
then you get the equation number you specify on the line indicated. The cor-
responding PHYZZX macros which allow you to do this while at the same time
automatically generating a name and number for the aligned set of equations are
\mideqn\name
If you don’t want to name the equation at the same time that you automatically
generate a number for it you can simply use
\eqinsert\eq

7.3.2 Numbering Aligned Equations Independently

Sometimes you will wish to generate a set of aligned equations but refer to each
of them individually. In this case you will wish to be able to number them inde-
pendently. PLAIN TEX p rovides the control sequence \eqaligno to handle this

26 Chapter 7 NUMBERING AND NAMING DISPLAYED EQUATIONS

eventuality. The command \eqaligno works like \eqalign except that each equa-
tion line consists of three parts (or templates) separated by the character &. The
third template is where you put the appropriate label for that line of the set of
equations. If you wish to number each equation line sequentially without generat-
ing a name, then all you have to do is type
$$ \eqaligno { junk & more junk & \eq \cr } $$
If, however, you wish to name each line separately you may not use the macro
\eqn. It will not work and will give you a peculiar message of the form you cannot
use \eqno inside \eqalign. To name individual lines of aligned equations the
correct macro to use is \eqnalign { \nume } as the entry for the third template
followed by the command \cr. The same command will work in \leqaligno which
works in exactly the same way as \eqalign but puts the contents of the third tem-
plate to the left of each equation instead of to the right. In general, \leqaligno
causes more difficulties than \eqaligno and you should read about it in the T@+C
book before using it.

27

8. REFERENCES, FIGURE AND TABLE CAPTIONS

8.1 REFERENCES: STUFF WHICH COMES AT THE BACK

To this point we have discussed the partitioning of a document into it’s major
parts, and the automatic numbering and naming of equations. We now come to
the question of generating references. In general a reference is signaled by attaching
a label or reference mark, i.e. either a superscripted number or a superscripted
number enclosed in delimiters (e.g., braces, brackets or parentheses), to a specified
word in the text. This number indicates that in the back of the document, on a
page (or pages) labelled REFERENCES, one will find a corresponding chunk of
text prefaced by the same number. This text will usually be a reference to work
published in some journal or some comment which is only marginally relevant to
the subject being discussed. Your problem as typist and editor is to generate the
appropriate number, attach it to the desired word and then type the desired text
into a separate file of text at the same time numbering it with the corresponding
number. You therefore are faced with several formatting decisions; namely, how
to attach the reference number to the word in the text, and how to format the
references when they are typed in the back of the paper. Clearly, there is a real
need for a macro to help you handle this dull and repetitive chore.

8.1.1 What features should such a macro possess ?

First it should handle the task of attaching the desired number to the designated
word, and then it should file away the pertinent text in a form which will allow it to
be printed at the end of the paper. In addition to the mechanical act of attaching
the reference mark and sending the text to another page, we would also like it
to automatically generate the number for us; so that we don’t have to constantly
refer back to the number of the last reference inserted. As in the case of equations,
this would be nice, since then the numbering will automatically come out correct
even if we add, delete or move references around. Finally, since one often cites
the same reference in many places in the text, it would be nice for the macro to
allow us to name a reference (in the same way we named equations) so that we
can cite it without ever knowing exactly what number PHYZZX has assigned to it.

PHYZZX has the macro capability to do all of this and more.

Since, however, there are may different ways in which people like to generate and
cite references we had to make the commands for carrying out these tasks more
flexible than those which we have been discussing to now. For this reason there
are more of them to learn about and their syntax is a little more complicated. We
will take them one at a time in increasing order of generality.

28 Chapter 8 REFERENCES, FIGURE AND TABLE CAPTIONS

8.1.2 Single References

Let us deal with the simplest case first. Suppose you wish to generate a reference,
mark the appropriate word and save the indicated text for printing in the back of
the paper. The command used to accomplish this feat is \ref. The syntax of this
command is
\ref{ text}
where the indicated text is the material which you wish to have appear in the back
of the paper. For example if you type[‘]\ref{ This is the place you want to put a
reference }; then PHYZZX will, as you see, generate a reference number, attach
it to the word immediately preceding the macro command and store the text in a
file on your A disk. Each time you invoke the macro \ref it increases the reference
number by 1 and adds the next reference to the file on your A disk. Anytime
that you wish to print this file all you have to do is type the command \refout.
Normally, you would wait to do this until the end of the document; however, to
see what happens we will now type \refout to obtain

REFERENCES

1. This is the place you want to put a reference

Note, that the simple command \ref is like the command \eq: it automatically
numbers the reference and stores it away, however it does not allow you the free-
dom of naming it. It is like \eq in another way; like \eq it automatically gives the
reference the name \?. This allows you to refer to the last reference until you do
something to redefine \ ?. Clearly, this command has only limited flexibility and
one needs a more sophisticated command to allow you to individually name each
reference. The command which does this is \Ref; the syntax for this command is
\Ref\nume{ text of reference}
where name is the name you wish to assign to this reference and text is the ma-
terial which you wish to have appear on the page of references at the back of the
document. To use the command \Ref you simply begin typing the appropriate
reference immediately following the word to which the reference number is to be
attached. For example if you type
. . . this is the result obtained by Bunks and Kuplunovsky\Ref\junknume{ T. S Bunks
and V. - Kuplunovsky } you get
. . . this is the result obtained by Banks and Kaplnovsky[l]
Note that the word Kaplunovsky has a superscripted version of the current refer-
ence number attached to it and the text has disappeared. The text is stored away
in a file called referenc.texauxil. This file is automatically stored on your A disk
when the TEX file is processed. Once again, to print this stuff we type \refout

8.1 References: Stuff Which Comes at the Back 29

REFERENCES

1. T. Banks and V. Kaplunovsky

If we wish to refer to this reference we need only type Ref. Qunkname to obtain
Ref.1. Note that when you type \junkname you do not automatically get a space
after the number generated, even if you typed one. This is because TBX eats a space
which appears after a control sequence. If you want a space to follow the number
you should type \junkname\ ; i.e., \junkname followed by a \ (space), which
is TBX’s control sequence for an extra space.

8.1.3 Gaining Ultimate Control of Referencing

Recapping, we see that the command \Ref basically does for references what \eqn
does for equations. Ordinarily, \Ref is the most convenient version of the reference
command and will be the one you will use most often. There will be situations,
however, where you wish to generate a named reference without generating its
reference mark. For example, you may be typing a formula, or a footnote and wish
to put the superscripted reference mark inside the footnote or formula (or for that
matter, inside some \hbox which you are defining). You must be careful because
the command \Ref cannot be used in these situations. This has to do with the
way in which it goes about doing its job. You really don’t have to know the reasons
why it won’t work, you just have to know it won’t. This problem is easily solved
if you know how to use the most flexible form of the reference command; namely,
the command
\REF\junknume{ text }
As you see the syntax of this command is identical to \Ref and in fact, it does
almost exactly the same thing. It generates a dummy name (Qunkname) and
writes the text material into the file referenc.texauxil. The difference is that
when \REF is finished it does not attach the reference mark to the preceding
word. To attach the reference mark to a specific word you type the command
\refend immediately following that word. Basically, what \Ref does is invoke the
command \REF immediately followed by the command \refend. Dividing the
reference generating command from the command which attaches the reference
mark solves all of the aforementioned problems. If you wish to put a reference in
a forbidden place, like a footnote, or hbox, or formula, all you have to do is use
\REF somewhere before you enter the forbidden territory and then use \refend
immediately following the place where you want the reference mark.

8.1.4 Generating Your Own Reference Marks

Since the referencing commands are the ones which are most often played with
(because so many people have their own styles for referencing things) it is worth

30 Chapter 8 REFERENCES, FIGURE AND TABLE CAPTIONS

spending a few moments giving you a better understanding of the various subcom-
mands which go into their construction. First, you should know that the current
value of the number assigned to the last reference is filed away under the name
\referencecount. To get hold of this number you type
\number\referencecount
and then YIj$ will type out the current value of this number. PHYZZX attaches
this number to a word by invoking the command \refmark. The syntax of the
control sequence \refmark is
\refmark{ number or name of reference}
When this command is issued PHYZZX tells TI$ to generate a superscripted
version of the material appearing inside the braces and attach it to the word im-
mediately preceding the place where you typed this control sequence. It is not
advisable to leave spaces between the word and the command \refmark (or for
that matter \ref, \Ref and \refend), b ecause if space is left it might creep into
the text. The command \refmark does one more thing, it changes the appearance
of the reference mark depending upon whether the paper is in Nuclear Physics or
Physical Review format.

Since I have referred to \refmark as a subcommand it is only fair to give an
example of how it is used. One place is in the definition of the command \refend.
PHYZZX defines the command \refend to mean
\refmark{ \number\referencecount}
Using \REF to define a reference outside of a forbidden region and using \refend
inside this region to generate the reference mark provides only a partial solution to
the problem we have been discussing. This is because \refend causes the current
value of \referencecount to be printed. If, for some reason you wish to delay
the printing of several reference names; or, if you wish to mix and match various
references and stick them in a single reference mark, you can do this by typing
\refmark{ \junkname . . . } In this way you can gain all but stylistic control
of your reference marks. It is still true that \refmark changes the form of the
reference mark depending upon whether the paper is headed for Phys.Rev. or
Nucl.Phys.

To gain total control of your reference marks you need to use the command \at-
tach. The syntax of this command is
\attach{ stu$}
What \attach does is put stuninto math mode, make a superscript out of it and
attach it to the word that comes before. It also spaces from that word so as to make
the attached quantity look most natural. The \attach command does nothing at
all to the reference mark and it is independent of the format of the paper.

8.1 References: Stuff Which Comes at the Back 31

8.1.5 Multiple References

You have now learned all you should know about generating single references and
taking complete control of the way in which they generate reference marks. How-
ever, you still do not know everything about the way in which PHYZZX can handle
references. This is because we have not yet discussed the question of multiple ref-
erences.

What is a multiple reference? and why should I care about multiple references?
you ask. Good question! In principle you don’t need to care about them at all. You
already have the basic tools for handling any referencing problem should the need
arise, all you need to do is use the commands \REF and \refmark. Nevertheless,
since multiple references occur frequently, especially in experimental papers, they
merit a special construct to make them simpler to handle.

The problem of generating multiple references comes up when you reach a point
in the text where you wish to add a reference to several authors and at the same
time you do not wish to have this saved as a single reference. This may happen for
several reasons, the principal reason being that you may wish to refer to some of
these references individually at a later point in the text. In this case there exists
a set of commands which allow you to do this. These commands allow you to
tell T@ that the material to follow will define and name several references. They
assign a number to each of these references, store them away individually and then
attach the reference mark
{ number of first ref. in set - number of last ref. in set}
The presence or absence of delimiters (in the form of brackets) depends upon
whether or not you have typed \PHYSREV. The commands which perform this
service are
\REFS\name{ test }
\REFSCON\name{ text }
and
\refsend .

To use these commands to generate multiple references you invoke them sequen-
tially. For example, suppose you wish the next three references to form a single
multiple reference. Begin by selecting the word to which you wish to attach the
reference mark. After the word to which you wish to attach the appropriate refer-
ence mark, you type in the first reference by typing
\REFS\first{ Th is is the first reference of a series. }
You then type the next reference using the command \REFSCON as follows
\REFSCON\ second}{ The papers just mentioned are unimaginative, stupid, in-
correct and besides I did it first.}

32 Chapter 8 REFERENCES, FIGURE AND TABLE CAPTIONS

In the same way you continue with \REFSCON to generate all succeeding refer-
ences. Hence, to input the third reference you type
\REFSCON\third{ I am running out of references. }
You finally cause PHYZZX to generate the reference mark by typing[1-31
\refsend
after the closing brace of the last reference. As you see, this set of macros has kept
track of the numbers of the references, filed the text for each reference away and
finally combined the number of the first and last reference in the set into a single
reference mark and attached it to the word typing. To see what has been filed away
we type \refout and obtain

REFERENCES

1. This is the first reference of a series.

2. The papers just mentioned are unimaginative, stupid, incorrect and besides
I did it first.

3. I am running out of references.

If you wish to generate an automatically numbered multiple reference but have no
need to name the individual references then we provide the commands \refs and
\refscon. The syntax of these commands are
\refs{ text }
and
\refscon{ text }
The command \refs{ text } is equivalent to \REFS\?{ text } and the command
\refscon{ text } is equivalent to \REFSCON\?{ text }. The fact that the name
\? is assigned to each reference in turn makes it less useful than in the command
\ref and so you would not tend to use this command unless you are typing an
already finalized manuscript.

8.1.6 The Problem of Long References

First, you we should observe that there is no problem combining many citations in
a single reference. Obviously, this can be done by typing them in as the argument
of any one of the reference commands. If, however, you wish to have a series of
citations all appear under the same number, but wish to have them appear on indi-
vidual lines all you have to do is follow each one by the command \nextline. What
\nextline does is generate a neat break and starts TFX off printing the material
which follows at the beginning of a new line. The important fact about \nextline
is that it preserves the indentation of the text established by the reference macro.

8.1 References: Stuff Which Comes at the Back 33

This brings us to the second point. What happens if you wish to have a reference
which consists of several paragraphs ? Here you have to be careful, since if you use
the command \par or leave a blank line (which amounts to the same thing) you
will spoil the indentation of the text material. To avoid this a special macro exists
called \subpar. To get vertical space between text in a single reference type the
command \subpar whenever you would ordinarily insert the command \par or
leave a blank line. It will accomplish the same feat as \par \noindent but it will
not mess up the formatting of the reference page.

Having discussed the way to properly generate long references, we now come to
the problems this will cause. The fact is, T@ has trouble writing long lines to
an external file. Since, as far as TJ$ is concerned the argument of any one of the
reference macros is just one long line, there will come the time when TJ$ will com-
plain in a mysterious way. If you are running interactively it will issue a horrible
looking PASCAL error message (sending the unforwarned into a case of cardiac
arrest) and then continue with its processing. Since Tl$ will resume processing
after this frightening hiatus you will promptly recover, shake your head and say
Ain’t computers peculiar ?. You will also, in all probability, ignore the fact that it
happened. This will be a mistake. If you look in referenc.texauxil on your A
disk, you will find that TJ$ has found one of the references is too long and has
chopped it off, replacing most of the text by \ETC. I presume that in general this
will not be what you intended.

Have no fear, PHYZZX is here !

There is a control sequence which solves this problem; unfortunately, it is not
a really neat solution. The solution is to go back into the reference and type
\splitout at various places in the text. This command tells T# to begin sending
a new line to the file. As I said, this is a solution but not an elegant one. We are
saddened that the elegant solution has escaped us and hope that a mpert out
there will tell us a better way to proceed.

8.1.7 Questions of Style

Sometimes you will wish to attach a reference mark to a word which is immediately
followed by a comma. This presents you with two choices neither of which produce
truly satisfactory text. If you type
. . . this is the place,\refend
you get
. . . this is the place:’
and if you type

34 Chapter 8 REFERENCES, FIGURE AND TABLE CAPTIONS

. . . this is the place\refend,
you get . . . this is the place13’ ,
In the first case the reference mark is really attached to the comma, causing an
unsightly extra amount of space; in the second case the reference mark separates
the word from the comma, which is even worse. The way out of this predicament
is to make use of Knuth’s command \rlap If you type
. . . this is the place\rlap,\refend
you get
. . . this is the placer]
which is much better. Obviously the same trick applies to the macros \refsend,
\refmark, \ref, \Ref and \attach.

Because of the way references work you always get a single space after an attached
reference. Basically this means that if you attach the reference mark to the last
word in a sentence, the next sentence will start too close. There is a way out of
this dilemma. Type
the end of the world\rlap.\refend\
which will produce

The next

the end of the world!’ The next
The \ forces more space between the sentences.

Finally, if you need a reference followed by a colon and want to get rid of the extra
space that the reference macro puts in simply type \refend\unskip. The com-
mand \unskip is a Knuth construct which eats the last extra space you entered.
(Actually, it eats the last bit of glue that was inserted into the text, but that is a
matter for TEXperts.)

8.1.8 Typing Journal Entries: A Convenient Macro

Since many of the references which appear in a paper are citations of articles ap-
pearing in various physics journals we have a special macro to handle this problem.
The reason one uses a macro to do this is that TEXperts are expected to typeset
such references with the journal name in as slanted (\sl) font, the volume number
in boldface (\bf) font and the remaining text in roman (\rm) font. You can either
remember to do all of this or you can use the command bournal. The syntax of
this command is
\journaljournal name&volume number(year)
This command is used inside any one of the reference commands as follows: if you
want to obtain the same result as typing
\ref{ T. - Banks and V. - Kaplunovsky \sl Nucl. Phys. - \bf B211 \rm (1983)
529 }
you need only type

8.2 Figures and Tables 35

\ref{ T. - Banks and V. - Kaplunovsky Qournal Nucl.Phys.& B211 (83) 529 }
This will produce a reference entry of the form

1.. T. Banks and V. Kaplunovsky, NuclPhys. B211 (1983), 529

Note, the blanks before \journal, before and after the character & and before and
after the (year) are optional. If everything is working as it should they will have
no effect on the final result. On the other hand, be careful about blanks within
the parentheses; if you put them in they will appear. Thus, typing (83) produces
a different result from typing (83). The first will result in the journal year being
typed as 19 83 and not 1983 which is, presumably, the desired result.

8.2 FIGURES AND TABLES

There are two other things which tend to appear at the end of a paper and to which
one refers in the text. These are Figure Captions and Table Captions. In general
these things come up as you are typing in some text and decide Aha! This is a good
place for a figure (or table). A s with equations and references, it is convenient to
be able to generate a number for this figure(table), name it and file away the text
of the figure caption (or something which will remind you what figure you wanted
to put there) in a file called figures.texauxil (or tables.texauxil) to be printed
at the end of the paper. The commands which accomplish this feat are
\FIG\name{ text }
and
\TABLE\name{ text }
As in all other variants of this naming convention, \name will be the name of the
figure (or table) generated, and text is the material to be stored away in a file on
your A disk. These commands work like the reference or equation commands in
that the numbering is automatic and will always be correct no matter how you
subsequently modify the text. The commands, analagous to \refout, which print
the list of figure or table captions are
\figout
and
\tabout
which should come as no big surprise.

There is a fundamental way in which the figure and table caption macros differ
from the reference macros; namely, they do not automatically generate a reference
mark. This is because you normally want to say something like
. . . as you can see from Fig. 7
or something like that. The basic macros, i.e. \FIG or \TABLE permit you to
type this in as you please. For example, one way to have ‘I&X generate the line

36 Chapter 8 REFERENCES, FIGURE AND TABLE CAPTIONS

above is to type
. . . as you can see from \FIG\?{ test } Fig.” \?
which will produce
. . . as you can see in Fig. 8
Obviously, using this form of the command (either for a figure or a table) you have
total control of what follows. Moreover, for simplicity I chose to name the figure
\? since I only intended to refer to it this one time. It is clear that I could have
given it any name.

For those of you who are happy to use the command exactly in this way, i.e. to
name the figure \ ?, file away the caption and then type either Fig. * \? or fig. I
\? there are two macros, named \Fig and \fig respectively. The syntax of these
commands is somewhat simpler; namely,
\Fig{ text }
and
\fig{ text }
They are the analogues of the set of reference macros which automatically generate
a reference mark whose name is \? after filing away the text of the figure caption.
What they do is first execute the command

\FIG\?{ text }
and then follow this by either Fig.” or fig.” . The analagous macro for tables is
\Table{ text }
which performs the same task as typing
\TABLE\?{ text } Table” \?

This completes our discussion of macros associated with things which come at the
back.

37

9. FOOTNOTES: THINGS WHICH
COME AT THE BOTTOM

Everybody knows what a footnote is and you have already seen an example of a
footnote appearing on page 5. Basically what a footnote macro has to do is attach
a footnote mark to a specified word and then file away material to be put at the
bottom of the page (in ten point type). The macro has to decide what to do if the
footnote is too long, or if many footnotes appear on the same page. In addition,
it has to decide what footnote mark to generate. PHYZZX has two macros which
carry out this feat.

The first macro, \foot, has the syntax
\foot{ text }
where the text of the footnote is to be inserted between the braces. When you
invoke this command immediately following the word to which you want to attach
a footnote mark it does several things. First it generates the footnote mark and
attaches it to the preceding word. If you are in the Nucl.Phys. format, this symbol
will automatically be chosen from the set of symbols *, t, *, $, b, 0, l and V. The
macro will continually cycle through this table, according to a specified algorithm,
in such a way that the same symbol will not (except in truly extraordinary cir-
cumstances) appear twice on a single page. If you are in PHYSREV mode, then
the footnote mark will be a superscripted # sign followed by the current value of
\number\footsymbolcount. This is a truly ugly convention, however it is in-
cluded only to provide something for people who insist on numbering footnotes.
Actually, Phys.Rev. does not like footnotes and preferes this material be included
in with the references as endnotes.

Note, that as with references, the text of a footnote is indented using the TEX
command \hangindent, hence to insert multi-paragraph footnotes one cannot
use the \par command but must use instead the \subpar command. If you don’t
do this, but use \par (or equivalently insert a blank line) then TEX will, obligingly,
turn off the \hangindent. This will, of course, mess up the footnote considerably.

9.0.1 Hints and Warnings

Since footnotes use TEX’S basic \insert command, they are meant to be used in
unrestricted horizontal mode. In other words, you use them inside paragraphs, but
outside of \hbox, \centerline or similar commands. If you don’t understand the
meaning of the phrase unrestricted horizontal mode you should read about it in the
T@Cbook, or in First Grade I&X. This fact means that one has to be careful in
attempting combine certain other control sequences with the \foot command.

38 Chapter 9 FOOTNOTES: THINGS WHICH COME AT THE BOTTOM

1. Do not define references, figure captions, table captions, etc., inside the text
of a footnote. If you must put a reference mark inside a footnote use the com-
mand \REF somewhere before you start the footnote and then use \refend
inside the text of the footnote.

2. If you choose to invoke a footnote when you are in vertical mode between
paragraphs, then the footnote, complete with its footnote mark, will be gener-
ated; however, since there is nothing to attach this mark to, no superscripted
footnote mark will appear. Since the command will generate a footnote mark,
the counter \footsymbolcount will be advanced and so, insofar as PHYZZX
is concerned, the symbol is waiting around to be used. Hence, if you wish to
attach this symbol to a word at a later point this can be accomplished by use
of the subcommand \footattach. All you have to do to use \footattach is
type it immediately following the word to which you wish to attach the foot-
note mark. This command works just like \attach or \refmark except that
it attaches the current footnote mark and knows whether to use Nucl.Phys.
or Phys.Rev. format.

3. We already noted that if you wish to attach a footnote inside of a box (either
horizonatal or vertical) the way to do it is to use \foot after the previous
paragraph has ended, but before you make the box in question. Then use
the command \footattach inside the box. What happens if you need to
attach the footnote mark to something inside a box which appears inside
a paragraph? In this case you can use the PLAIN command \vadjust to
accomplish this feat. Simply type
\vadjust{ text }\nobreak
immediately before the box and then use \footattach inside the box.

9.0.2 Controlling Your Footnote Marks

Once again, this section is for those who wish to go beyond the mundane and
use unusual symbols for their footnotes. This can be done by using the PHYZZX
command
\footnote{ symbo2 }{ text }
which will generate a footnote using the symbol you have specified as the footnote
mark. The symbol can be any math mode symbol, or any out& thing that you
can think up. The symbol does have to be in math mode, so if it is something
you made up instead of a math mode control sequence, be sure to \hbox it and
enclose it in $ signs.

39

10. ITEMIZED LISTS: POINTS,
ITEMS AND OTHER STUFF

You now have all of the necessary information to allow you to use PHYZZX to
format a paper for the printer: you can tell him to set up chapter, section and
subsection headings; number equations; format the reference, figure caption and
table caption page; format footnotes, keep track of how many are on a page and
carry them over to succeeding pages if it is necessary. From a stylistic point of
view there is nothing more for you to learn about papers. Using the basic com-
mands defined in PLAIN TI$ and those PHYZZX macros which we have already
discussed, you are now capable of generating a paper of the correct style to be the
body of a SLAC preprint. What we have not discussed to this point are things like
macros for title pages and macros which make typing special constructions simpler
than they would be in PLAIN.

In this section we will discuss a set of macros which make the construction of
itemized lists particularly easy to achieve. Itemized lists appear most often when
one is outlining a paper and trying to arrange the material in some systematic
fashion. This sort of outline shows up in memos and the introduction to a paper.
Itemized lists also appear in the body of the text when one wants to make a series
of points and, at the same time, clearly separate them from the format of the
general body of the text.

Lists of this sort are conventionally set up as a series of indented paragraphs pre-
ceded by some sort of highlighting symbol. This symbol can be a number, letter,
roman numberal or some math mode symbol such as a dot, star, diamond, etc.
When used in writing outlines, etc., one indicates the major divisions of the out-
line by indenting the text associated with them some fixed amount and highlighting
this text with a specific type of symbol. When itemizing the ideas which fall within
each major division, one usually indents the text somewhat more than one did for
the major divisions and highlights each of these sub-points with a symbol which
differs in type from those used to highlight the major points. One then further
subdivides each of these categories into smaller steps and indicates this fact by
once again increasing the amount of indentation and once again changing the type
of highlighting symbol used. So on ad-infinitum . . .

Obviously, at least for those of you who have read the mbook, all of this can
be done using the commands \hangindent and \hangafter. However, if one is
creating long lists of points, subpoints, subsubpoints, etc., then keeping track of
the symbols and appropriate levels of indentation can get to be a problem. For this
reason PHYZZX provides a series of macros to make this as simple as possible. As
in the previous cases, we will begin by discussing the fixed format versions of the

40 Chapter IO ITEMIZED LISTS: POINTS, ITEMS AND OTHER STUFF

macros, which are the ones which are easiest to use, and go on to discuss the ones
which allow you greater flexibility.

10.1 FIXED FORMAT LISTS: POINTS, SUBPOINTS, SUBSUBPOINTS

10.1.1 Points

The macros \point,\subpoint and \subsubpoint exist to make it easy to deal
with itemized lists having up to three levels of indentation. The first level of in-
dentation is the smallest and is generated by typing the command \point followed
by the text associated with that point. Note that unlike the reference or footnote
macros, the text associated with a \point does not need to be enclosed in braces.
Points, etc. are constructed using the \hangindent command and so TFX accepts
all of the text up to the next \par (or blank line) and formats it as you desire.
For this reason, if a point is to consist of more than one paragraph do not use
the \par command to generate the second paragraph but, instead, use the special
command \subpar. In addition to indenting the material to follow, the command
\point also generates a number for the point and attaches it to the left of the first
line. You have seen examples of points in other parts of this writeup; go back and
look at them if my sentences are confusing. Each time you type \point PHYZZX
generates a new paragraph, increases the number of the last point by one and
appends this to the left of the first line of the new point. Obviously, this works
well until you finish with a given set of points and then decide you want to make
a new list of points at a later point in the same paper. Except in unusual circum-
stances you would like the first item on this list to be labelled 1, and not start up
from the number assigned to the last point in the previous list. To avoid this sort
of calamity you use a special command to begin a new set of points namely, the
command \pointbegin. (Clearly this choice of nomenclature is far from sprightly
and imaginative, but it is easy to guess what the correct command is even if you
have forgotten it.)

As an example suppose you type
\pointbegin
This is the first point I wish to make.
\point
This is the second point.
\point
I am not very imaginative, so this is the third point.
You then obtain

1. This is the first point I wish to make.

2. This is the second point.

10.1 Fixed Format Lists: Points, Subpoints, Subsubpoints 41

3. I am not very imaginative, so this is the third point.

You then return to typing ordinary text by following the text of the last point in
your list with a \par or blank line.

10.1.2 Subpoints and Subsubpoints

The format of a subpoint is that it is indented further and highlighted by lower
case letters enclosed in parentheses. The command for generating a subpoint is
\subpoint and, as with points, each time you type \subpoint you automatically
generate the next letter in the alphabet as a highlight. As with points, in order
to start the numbering over again you start each set of subpoints by typing \sub-
pointbegin instead of \subpoint. For example, typing
\pointbegin
This is the first point I wish to make.
\subpointbegin
This is the first subpoint.
\subpoint
This is the second subpoint
\subpoint
Etc.
\point
This is the second point.
will generate

1. This is the first point I wish to make.

(a) This is the first subpoint.

(b) This is the second subpoint

(c) Etc.

2. This is the second point.

Subsubpoints are the last automatically provided subdivision and are generated
using the commands \subsubpointbegin and \subsubpoint. They are indented
still further and highlighted by lower case roman numerals enclosed in parentheses.
I leave it to you to generate you own examples of subsubpoints, the syntax is
completely similar to that of the previous examples.

The command \spoint is acceptable as an abbreviation for \subpoint. Abbrevi-
ations for the other commands are similar; i.e.,
\spointbegin for \subpointbegin
\sspoint for \subsubpoint

and

42 Chapter 10 ITEMIZED LISTS: POINTS, ITEMS AND OTHER STUFF

\sspointbegin for \subsubpointbegin

10.2 FOR LESS STRUCTURE CONSIDER ITEMS

There will come the time, especially for those of you who learn to use TljX to
generate transparencies, when you want to be able generate itemized lists, but you
don’t want the highlighting to happen automatically. Instead you might like to
generate stuff with a \bullet or an \ast as a highlight. For those among you who
are left brain dominated and feel the need for a macro set which takes care of
the boring details of indentation, but allows you to play fast and loose with the
highlights, PHYZZX provides the macros
\item{ symbol }

\subitem{ symbol }
and
\subsubitem{ symbol }
(The last two commands can be abbreviated as \sitem and \ssitem respectively.)

l For example, this item was generated by typing \item\bullet. Note that I
did not put \bullet in braces since it is a single control sequence. If I had,
however, it would have done no harm. Spaces and blank lines before \item
are irrelevant, however, since \bullet is a control sequence and eats one
space following it, you have to have at least one blank after symbol. Once
again I caution you that if you put a blank line or \par after \item and
before the text, or inside a multiparagraph \item, then you destroy the level
of indentation. Remember, indentation only holds for a single paragraph in

* As a second example consider this item which was generated by typing
\item\ast

- Or this, which was generated by typing \item\dash.
At this point I have inserted a blank line in my text and have caused the item to
terminate and the text reverts to its ordinary format.

4 This is item \item\clubsuit
0 And this is \sitem\diamondsuit

- Finally, this is a subsubitem;
it was generated by typing \ssitem\dash.

10.3 HAVING YOUR CAKE AND EATING IT Too!

Clearly, the \item,\sitem and \ssitem macros provide you with the ultimate
in flexibility in the choice of highlighting conventions. With them alone you can

10.3 Having Your Cake and Eating It Too! 43

choose your own format for numbered lists and never have to accept the format
imposed by \point, etc. However, the total lack of structure of \item, etc. has
a drawback; namely, if you use it to define your points, subpoints etc., you are
responsible for keeping track of all of the numbering. This is certainly not too
formidable a task, but it can get tedious.

Fortunately, there is a middle ground.

10.3.1 Levels of Indentation

If all that you want to do is change the levels of indentation of points, subpoints and
subsubpoints you only have to modify the parameter \itemsize. This parameter is
a dimension stored away in TJ$%‘s memory and items are indented l.O\itemsize,
subitems are indented 1.75\itemsize and subsubitems are indented 2,5\itemsize.
The current value of \itemsize is 30pt (30 points); however, you can change this
by simply typing
\itemsize = 4Opt
or whatever else strikes your fancy.

10.3.2 Getting More Serious

Let us suppose, although I cannot imagine that this could possibly be the case, that
you have more serious problems with points, subpoints and subsubpoints. Perhaps
you would prefer to define your own listing macros so that \mypoint generates a
point whose highlight is a capital letter followed by a period; \myspoint generates
a subpoint highlighted by a number square brackets; and \mysspoint generates
a subsubpoint highlighted by a lowercase letter in parentheses. You have two
options, you can write your own macro set or you can use the PHYZZX command
\newlist.

The command \newlist allows you to define your own listing macros which format
things in a manner which is closer to your heart’s desire. All you have to decide
is what sort of delimiters you want around the highlighting number and what you
want the numbering convention for that level of point to be. Your available choices
are the five defined when we discussed changing chapterstyle; namely, \Number,
Alphabetic, \alphabetic, \Roman or \roman.
The syntax of the newlist command is as follows
\newlist\name= /left delim.][style]& [right delim.] c!3 [dimen];
(Note that the =, & , and ; all count.) As an example of its application note that
the \point command is defined by saying
\newlist\point=\Number&.&l.O\itemsize;
This line tells PHYZZX to define a new command called \point and to have it

44 Chapter 10 ITEMIZED LISTS: POINTS, ITEMS AND OTHER STUFF

generate a highlighting symbol which consists of no left delimiter, followed by a
number, followed by a right delimiter which is a period and the indentation of a
point is to be l.O\itemsize. Similarly, subpoints are defined to be
\newlist\subpoint=(\alphabetic&)&1.75\itemsize;
and subsubpoints are defined by saying
\newlist\subsubpoint=(\roman&)U?.Fi\itemsize;
The abbreviations for \subpoint and \subsubpoint are obtained by following
their definition with the statements
\let\spoint=\subpoint
\let\sspoint=\subsubpoint
Note, if you have chosen to redefine \subpoint and \subsubpoint using newlist,
the commands \spoint and \sspoint will not be redefined unless you follow your
newlist instructions with the two lines printed above.

To define the new set of listing macros mentioned earlier you would type
\newlist\mypoint=\Alphabetic&.&l.O\itemsize;
\newlist\myspoint=[\number &]& 1,75\itemsize;
and
\newlist\mysspoint=(\alphabetic&)& \2.5\itemsize;
Note, while there are only five styles available for numbering things, delimiters are
limited only by your imagination.

45

11. MISCELLANEOUS STUFF ABOUT PAPERS

11.1 PAGE NUMBERS

Page numbering is a totally automatic procedure and, in general, requires none
of your attention. Normally, if you are not doing anything funny PHYZZX will
produce a document whose pages are numbered consecutively starting from 1. In
general the first page you get will be numbered, unless you have told PHYZZX
not to do so. The macros \FRONTPAGE, \MEMO, \letter and \titlepage
do issue such a command, and when invoked produce a document where all pages
but the first page are numbered consecutively. If you type \FRONTPAGE then
PHYZZX will complete the previous page (if there is any), set the current value of
the page number to 1 and then tells T&C not to number this page. Visible numbers
appear at the bottom of all the pages which follow and the first visible number is
2. The command \F’rontpage is a synonym for \FRONTPAGE. The \letter
and \MEMO macros, which will be discussed later, and the \titlepage macro,
which is invoked when you are about to type the title page of your latest magnum
opus, all suppress the printing of the pagenumber at the bottom of the first page.

If you wish to start a document in the middle and set the pagenumber all you have
to do is reset the counter called, of all things, \pagenumber by typing
\pagenumber= number
This will make the first page T@C prints have this number. To make sure that the
printing of this number is not suppressed you should also type \frontpagefalse.
If you wish to have PHYZZX number the pages using roman numerals you can
accomplish this by saying \pagenumber=-1 (or \pagenumber=-n if you wish
to start with the roman numeral equivalent to the number n).

- If you wish no pagenumbers type \nopagenumbers (be careful, its not easy
to make them come back afterwards).

* If you want to suppress the page number on a particular page you can type
\frontpagetrue, which will make PHYZZX think that this is the front page.
You’ll sometimes have to play to make this happen where you want.

11.2 SPACING

We have already talked about changing font sizes and selecting spacing, and have
pointed out that three families of fonts are available. These are fonts which are
fourteen points high, twelve points high and tenpoints high. The twelvepoint font
is the font PHYZZX uses for normal text because it looks best when reduced. The
fourteenpoint fonts are used for chapter titles, etc., and the tenpoint font sets,
which are kind of small when reduced, are generally reserved for footnotes. To

46 Chapter 11 MISCELLANEOUS STUFF ABOUT PAPERS

change font size at will you type either \tenpoint, or \twelvepoint, or \four-
teenpoint. To change spacing conventions you use the commands \singlespace,
or \normalspace or \doublespace. Note that all of these commands can be used
inside the paper to temporarily change what is going on; however, you should only
invoke the commands which change spacing when you are between paragraphs. If
you violate this rule, eventually, you will be sorry.

11.3 COMMANDS WHICH BREAK LINES AND PAGES

T@X has its own way of breaking lines and pages and you can learn about them
by reading the T@book. However, we have added three commands which are
convenient. The first command \nextline allows you to generate and incomplete
line. For example, typing This is the way the world ends \nextline produces
This is the way the world ends
Notice that TJ$ has not tried to space the words out to fill the line the way it
would have if you had typed \break. The command \nextline is essentially the
same as typing \hfil\break; it differs slightly in that it also does some things
about glue, but you don’t have to know about that.

The command which forces TEX to break the page at will is \endpage. Typing
this command forces TI$ to start a new page and at the same time it insures that
even if the previous page is not completely full of text the material will be spaced
correctly.

The command with which you finish a paper, memo, letter, etc., is \bye. This
command tells TEX to complete the last page, print it and then turn itself off,
returning you to CMS.

11.4 SOME REMARKS ABOUT PENALTIES

There are a few commands, which belong to PLAIN and not PHYZZX which you
should know about. The basic command which allows you to tell TEX that you
would advise it that this is a good or bad place to break a page or line of text is
\penalty. Penalties can be either positive or negative. If a penalty is positive it
tells TI@ that this is not a good place to put in a break. The bigger the penalty
is, the worse TI$ thinks it is to cause a break at this point. The biggest allowable
penalty is \penalty 10000. If you type \penalty 10000 at a specific point in
the text than TJ$, as the printer, will assume that no matter what his judgement
tells him, you insist that no break can occur at this point. T&$X defines a control
sequence \nobreak which equivalent to typing \penalty 10000. If the penalty
is negative, then TI$ is advised that you believe this point to be a good place
to cause a break. The more negative the penalty, the better you think this place

11.5 The Titlepage 47

is. If the penalty is negative and greater than -10000, then TJ$ will use its own
judgement to balance off your suggestion against its own esthetic criteria. If the
penalty is -10000 (or less), then you are telling l$$ that your judgement must
carry the day. The abbreviation of \penalty -10000 is \break.

Note that using the same commands inside paragraphs and between paragraphs
tell TFX to do different things. Inside of a paragraph \break tells TEX to break
the current line at this point, between paragraphs it tells TEX to break the page. If
you wish to force TJ$ to break the page inside a paragraph, without terminating
the paragraph, you have to type
\vadjust \ break

11.5 THE TITLEPAGE

We have now finished with our discussion of macros which PHYZZX defines for
simplifying the formatting of the body of a paper. To complete our discussion of
the paper generating capabilities of PHYZZX we now have to turn to the question
of generating the title page. A SLAC title page has several parts.

1. First, in the upper right hand corner of the title page one has the publication
number, date of submission and a line telling whether this paper is to be
distributed as T, E or T/E . This chunk of text has to be set up as a block
with the appropriate typeface chosen for each line and then the entire block
is right adjusted. This block is referred to as the pub-block

2. Next comes the title of the paper, which is set in fourteen point type and
this is followed by the list of authors and the institutions they come from.

3. After the title and author list you have a choice. If you have a short abstract
it is included at this point and printed on the title page. If, however, the
abstract is too long, it will not fit on the title page. In this event you skip it
and put it on the next page of the paper.

4. After the abstract, or after the title and author list if the abstract is too
long, we have a line which tells the journal to which the preprint has been
submitted.

5. The next line ends the main body of the title page. After this line the
remaining material, which are contract acknowledgements, etc., are put at
the bottom page in footnote format.

As you can see from this discussion the problem of formatting the title page can
get to be quite difficult if we don’t have special macros to help out. For this reason
a special set of macros for formatting title pages has been included in PHYZZX.

48 Chapter li MISCELLANEOUS STUFF ABOUT PAPERS

11.5.1 The Publication Block or Pub-block

The first commands which you use relate to setting up the block of type which
gives the date, publication number, etc. If you do not want such a block, you type
\nopubblock
If, as will usually be the case you want a pub-block, then you have to specify what
goes into it. To specify the publication number you type
\pubnum={ number }
This causes PHYZZX to put the quantity \pubnum into the publication number.
When you start the quantity \pubnum is 0000.

The next item which appears in the macro is the date. If you do nothing, then
each time you run TEX to produce a new copy of the file it will put the current
date in this place. If you wish to set the date to printed by yourself, then you type
\date = { month day, year }
Note the braces around the entry because they have to be there.

Finally, the last thing that has to specified for the pub-block is the pubtype, which
is either T, E, or T/E. To specify this quantity you type
\pubtype={ publication type }

11.5.2 Specifying the Titlepage

The next macro which has to be invoked is
\titlepage
This is a single control sequence which you type in just before the titlepage. This
command must follow the setting of the \pubnum, \date and \pubtype or you
will only get the default values for these quantities. What this macro does is tell
TEX that this is the titlepage of the document and it should not be numbered.

11.5.3 Typesetting the Title

The next item to be typed is the title of the paper. Since this is set in different
size type and requires a certain amount of spacing above and below the text, you
should use the macro \title. The syntax of this command is
\title{ title }
You are now ready to type in the name and institution of the author (or authors)
of the paper.

11.5.4 Getting the Author(s) Right

If there is a single author you type
\author{ author’s name }

11.5 The Titlepage 49

This is, of course to be followed by his address. PHYZZX will set the name in
upper and lower case capital letters and center it on the page. Then, if you use the
macro \address PHYZZX will typeset the address in italics and center it directly
below the author’s name. The syntax of this macro is
\address{ address }
In general PHYZZX will let TEX decide how to break the address into several lines
if it is too long. If you wish to force these breaks use the command \break. Note,
this is a place where you do not want to use the command \nextline or you will
force the address to come out without having been properly centered. For those
lucky persons who live at SLAC, there is a special macro to save them typing. This
macro has the name \SLAC and if you wish to tell PHYZZX that your address
is SLAC all you have to type
\SLAC
If the author of the paper is a visitor, or is here on detached service, then you
might want to give two addresses. To have TEX print the second address below
the first with the word and in between, all you have to do is type
\andaddress{ second address }

If the paper has more than one author you have two options. If the number of
authors is small and they come from different institutions, then you use the macro
\andauthor whose syntax is
\andauthor{ author’s name }
This does what the \author command does but it also precedes this name with a
line which has the word and centered above the author’s name. This command is
then to be followed by \address in order to give the address of the second author.
This can go on as long as you like.

All of this works well for theorists, however it does not work well for experimental
papers. Experimantal collaborations tend to involve many authors from several
different institutions. All we can do in this situation is to type the command
\authors and then follow this with a list of authors and institutions. All this
command does for you is put the correct amount of space between the list of
authors and the material preceding it.

11.5.5 Setting up the Abstract

At this point you have to decide whether or not you want to include the abstract
on the titlepage. If you wish to do so this is the time to type \abstract. This
will cause TEX to typeset the word ABSTRACT in the center of the next line of
text, skip the appropriate amount of space and set you up in a new paragraph.
The next thing you do is type in the body of the abstract. If you don’t put the

50 Chapter 11 MISCELLANEOUS STUFF ABOUT PAPERS

abstract on the titlepage then you carry out this sequence of commands after you
have finished the titlepage with the command \endpage. After you type in the
abstract on the second page you should force TJ$ to print this as a separate page
by once again typing \endpage. This will produce an abstract on its own page
with white space above and below the text.

If you are in the situation of having an abstract which is too long for the title page
but too short to fill the entire second page you will get ugly output if you type it
in and follow it with the command \endpage. TFX will simply shove everything
to the top of the page because \endpage is the same as \vfil\break. The way to
force T&X to center the title and material is to type
\vfil
\abstract
text of abstract
\endpage

11.5.6 Where’s The Paper Going?

In order to specify the journal to which you have submitted the paper you type
\submit{ journal }
For example, if it is going to Phys.Rev. D you would type
\submit{ Physical Review \bf D }
which will produce the line

Submitted to Physical Review D

11.5.7 Acknowledgements

It is customary to acknowledge the support of various grants or contracts some-
where on the titlepage. Generally this is done in the form of a footnote. The
easiest way to get T@C to typeset such acknowledgements is to use the macro
\foot. You insert this footnote just after the last word of the title or author’s
name, depending upon the situation, and then continue setting the title page. The
\title, \author and \address macros have been written in such a way that the
\foot command can be used with these macros without any trouble. If you fool
around with the title page and put things inside boxes using the PLAIN TI$ com-
mands \line or \centerline this is not true. In this case the text will be put inside
a box in restricted horizontal mode and you must use the commands \footnote
and \footmark as explained in our discussion of footnotes.

For theory group users there is a special macro which generates the acknowledge-
ment to the Department of Energy. the command is \doeack. To generate this

11.6 A Sample Tidepage 51

acknowledgement you simply type \doeack immediately after the last word in the
title. If other groups want to have their own \doeack macro they need generate
a file called MYPHYX TEX and make sure it contains the lines
\def\doeack{ \foot{ Work supported by the Department of Energy, contract
$\caps DE-. . . $ }}

11.5.8 Finishing the Title Page

Close the title page with command \endpage. If you don’t do this TFX will make
some stupid decision about adding extra material to this page. You won’t be happy
with the results.

11.6 A SAMPLE TITLEPAGE

Let us conclude this section by including a sample title page. If you type

\pubnum={ 6666)
\date{ September 1984)
\pubtype{ CRAP}
\titlepage
\title{ THE JOY OF TYPING PAPERS USING PHYZZX \doeack}
\author{ Marvin Weinstein \footnote{ \dag}{ another acknowledgement } }
\SLAC
\andauthor{ V. - I(. * Kaplunovsky }
\address{ Princeton }
\abstract
\centerline{ This paper is a crock. }
\submit{ Physical Review D }
\endpage

then you get

SLAC-PUB-6666
September 1984
CRAP

THE JOY OF TYPING PAPERS USING PHYZZX*

MARVIN WEINSTEIN

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

and

V.K. KAPLUNOVSKY

Princeton

ABSTRACT

This paper is a crock

Submitted to Physical Review D

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.
t another acknowledgement

53

12. MEMOS

We have now finished discussing all of the macros which have to do with the for-
matting of papers. Now as promised we will turn to a discussion of the two other
formats which PHYZZX supports. The first format is that of a SLAC memoran-
dum. The second format is that of a letter.

A memorandum, as we have defined it, is a document meant for internal distribu-
tion, addressed to a specific group of people and designed to transmit information
on a specific subject. This sort of document tends to have a heading which identi-
fies it as a memorandum, gives the date, says to whom the memorandum is being
sent, from whom the memorandum comes and briefly summarizes the topic being
discussed. This heading is then separated from the body of the memorandum by
some sort of ruled line and then one types in the text of the memorandum.

To type a memorandum you begin by typing the formatting instruction
\MEMO
which tells PHYZZX the document to follow is a memorandum. It also forces the
document to be single spaced and generates the heading which identifies the docu-
ment as a SLAC memo and gives the date at which the file was processed; i.e., the
current date. If you wish to type a heading which has the date of your choice then
use the command \memodate instead of \MEMO. The syntax of this command
is
\memodate{ date of your choice }

Now you have to generate the remainder of the heading; i.e., the to, from and topic
(or subject) entries. The macros which do this are
\to , \from , and \topic or \subject
The commands \to, \from and \topic or \subject work like points or items.
Hence, they do not need braces.

Finally, after typing in these commands followed by the relevant text you need to
generate a line to separate the heading from the body of the memorandum. This
is done with the command \rule. Having done this you are now ready to type in
the text of the memorandum.

Note, all of the itemized list macros which we have discussed in earlier sections
work in the MEMO format too. Hence, you can use them with impunity. The
same is true for footnotes, etc.

Finally, when you complete the memo, if you wish to indicate to whom copies are
to be sent you type
\copies
This command works like \point or \item and so you would type

54 Chapter 12 MEMOS

\copies
Mr. A. \nextline
Mr. B. \nextline
etc.
in order to get what you want

Don’t be surprised when you generate multipage memoranda. The way pages are
numbered is going to be different from the numbering of papers. For a memoran-
dum all but the first page are numbered with the numbers appearing at the top of
the page.

A sample memorandum is generated as follows;

\MEMO

\to
Whom it may concern
\from
Marvin Weinstein
\subject
Generating memos without tears.
\rule
Look how easy it is to generate a sample memo. Even a baby can type something
like this. If you use this macro to type your memos people will probably take what
you have to say more seriously. (They shouldn’t but they will!) You can even type
points, for example:
\pointbegin
Any fool would recognize that if we proceed in this way we can only wind up with a
disaster.
\point
Who cares if the DOE doesn’t want us to use the construction funds to take a
Hawaiian vacation. They’re just a bunch of old stick in the muds.
\copies
Burton Richter \nextline
Richard Taylor
\endpage
Which generates something which looks like this

SLAC MEMORANDUM

TO: Whom it may concern

FROM : Marvin Weinstein

SUBJECT: Generating memos without tears.

September 1984

Look how easy it is to generate a sample memo. Even a baby can type something like this.
If you use this macro to type your memos people will probably take what you have to say
more seriously. (They shouldn’t but they will!) Y ou can even type points, for example:

1. Any fool would recognize that if we proceed in this way we can only wind up with a
disaster.

2. Who cares if the DOE doesn’t want us to use the construction funds to take a Hawaiian
vacation. They’re just a bunch of old stick in the muds.

cc: Burton Richter
Richard Taylor

56 MEMOS

If we use the commands \memodate and we would obtain

\memodate{ the fifth of octember }

\to
Whom it may concern
\from
Marvin Weinstein
\topic
Generating memos without tears.
\rule
Look how easy it is to generate a sample memo. Even a baby can type something
like this. If you use this macro to type your memos people will probably take what
you have to say more seriously. (They shouldn’t but they will!) You can even type
points, for example:
\pointbegin
Any fool would recognize that if we proceed in this way we can only wind up with a
disaster.
\point
who cares if the DOE doesn’t want us to use the construction funds to take a
Hawaian vacation. They’re just a bunch of old stick in the muds.
\copies
Burton Richter \nextline
Richard Taylor
\endpage

SLAC MEMORANDUM

TO: Whom it may concern

FROM: Marvin Weinstein

TOPIC: Generating memos without tears.

fifth of octember

Look how easy it is to generate a sample memo. Even a baby can type something like this.
If you use this macro to type your memos people will probably take what you have to say
more seriously. (They shouldn’t but they will!) Y ou can even type points, for example:

1. Any fool would recognize that if we proceed in this way we can only wind up with a
disaster.

2. Who cares if the DOE doesn’t want us to use the construction funds to take a Hawaian
vacation. They’re just a bunch of old stick in the muds.

cc: Burton Richter
Richard Taylor

59

13. TYPING LETTERS AUTOMATICALLY

In addition to typing papers and memos PHYZZX supports a format for typing
letters. To choose this format all you need to type the command
\letters
immediately following
%macropackage=phyzzx
This command will cause PHYZZX to switch over to a different page size, 8 inches
long by 6.5 inches wide (this is a little wider than a preprint) and it automati-
cally changes the linespacing to singlespace. In addition, the same command tells
PHYZZX to put a SLAC letterhead at the top of the first page, and to change the
way in which pages are are numbered.

Having switched over to this mode the very next thing you need to do is type in
the date, followed by the name and address of the person to whom the letter is
being sent. Getting the alignment of these various elements just right takes some
doing and so we have a macro to do the job. The name of this macro is
\letter
Do not confuse this command with the initialization command \letters. Both
statements must appear in your file and the command \letters must come first.
I apologize for this construction but it is a leftover from previous incarnations
of PHYZZX. Since we wanted this version of PHYZZX to be upward compatible
we didn’t change it. What the command \letters does is to tell PHYZZX that
the text to follow is to be set in \letterstyle and then it makes PHYZZX print
STANFORD UNIVERSITY across the top of the first page. The command
\letter tells PHYZZX that this is the first page of a letter, prints the rest of the
SLAC letterhead, suppresses the printing of the pagenumber at the bottom of this
page and then allows you to type in the name and address of the person to whom
the letter is being sent. The syntax of this command is
\letter{ Name \cr

first line of address \cr
. . . \cr
last line of address \cr)

Note that any of the \cr’s can be replaced by the command
\cropen{ extra space }
which will cause PHYZZX to leave the extra amount of space requested between
the lines; or you can replace the \cr by \crr if what you want is 10 points of extra
space.

The reason for typing the commands \letters and \letter separately is that \let-
ters initializes the format for typing a letter and then \letter allows you to start
several new letters in a single file. So long as you begin each letter with the \letter

60 Chapter 19 TYPING LETTERS AUTOMATICALLY

macro each letter will start on a new page, and the letters will not know about one
another.

As with the titlepage macro, PHYZZX assumes that the date which is to appear
above the name and address is the current date. If, however, you wish to fix the
date appearing on the letter you can do so by typing
\date{ your date }
The \date macro will then make your date appear on all of the letters in this file.

Once you have generated the letterhead, date and filled in the name and address
of the person to whom the letter is being sent, you are ready to type in the body
of the letter. This is to be done in the same manner as for a paper or memo, and
all of the itemized list, etc., macros will work in this format too.

13.0.1 Typing the Salutation

Finally, having typed in the body of the letter we come to the problem of generating
the signature. Once again, since placing this upon the space and leaving the correct
space between the Very truly yours, and the typed version of your name can get
to be hairy, we provide the macro \signed. The syntax of this command is
\signed{ Very truly yours (or whatever) \cr

Your name \cr }
If copies of the letter are to go to several people you type this at the bottom of the
letter using the \copies command discussed in the section on memos.

You finish a letter with the command \endletter. This command insures that if
there are several letters in the same file each one will be processed independently.

A sample letter is generated as follows
\letters
\letter{ Dr. Boris Kayser \cr

Program Director for Theoretical Physics \cr
National Science Foundation \cr
Washington, D. C. 20550 \cr }

Dear Boris,

Please send more money.

\signed{ Sincerely, \cr
Michael E. Peskin \cr }

\endletter
\end
which produces

STANFORDUNIVERSITY

STANFORD LINEAR ACCELERATOR CENTER
SLAC
P. 0. Box 4349
Stanford, CA 94309
(415) 926-3300

fifth of octember

Dr. Boris Kayser
Program Director for Theoretical Physics
National Science Foundation
Washington, D. C. 20550

Dear Boris,

Please send more money.

Sincerely,

Michael E. Peskin

62 TYPING LETTERS AUTOMATICALLY

MULTIPLE LETTERS

Very often you wish to send the same letter to many different people; hence, the
text of each letter is the same but the salutations will be different. There are two
ways to go about generating such a series of letters. The only difference between
them is that the first is somewhat more conservative of computer time, but it can
only be used for relatively short letters; the second is a bit more demanding of
computer time, but it doen’t care how long the letter is. By a short letter I mean
one which is no more than one or two pages in length.

Short Letters

To type in short letters you begin by typing
\letters\multiletter
This command is to be followed by the text of your letter. What \multiletter
does is tell PHYZZX to file away the material to follow in the depths of its memory,
to be used later. You let PHYZZX know to stop stuffing stuff away by typing
\letterend
when you have finished. Having now saved the body of the letter for future use
you generate your letters by typing
\letter{ Addressee }
followed by
Dear Mr. Soandso \par
followed by the commands
\lettertext\endletter
As you will have guessed the command \lettertext is the name PHYZZX has
assigned to the body of the letter.

For Longer Letters

The second method for generating many letters is slightly more wasteful of com-
puter time, but to my mind it is simpler to use. I reccommend it over the command
\multiletter and have included a brief discussion of the previous case only to keep
the macro set upward compatible. Do us both a favor and forget I mentioned it.

This method takes a little longer because it requires TEX to input the same file
many times. It is simpler because it requires no change in syntax from the format
used for a single letter. To use this method you create a file YOUR FILE A (the
filetype doesn’t have to be TEX here), which contains the body of your letter,
including your signature. You then create a driver file (filename TEX A) of the
form
%macropackage=phyzzx

Multiple Letters 63

\letters
optional \date{ your date }
\letter{ Addressee }
Dear . . . \par
\input your.file
\endletter
. . .
\letter{ Addressee }
Dear . . . \par
\input your.file
\endletter
\end
Note, the period between the filename and filetype is crucial. What is being done
in this method is that we are using w’s ability to input an external file as often
as you wish. This technique has the added advantage that you can even have the
letters vary somewhat. To perform this trick you use the \def command. To begin
you use the names of some undefined control sequences in the file YOUR FILE
A, and then redefine these sequences in the main driver file after each \endletter
and before the start of the next letter.

65

14. MISCELLANEOUS MACROS
WHICH PHYZZX DEFINES

We have now finished our discussion of all of the macros which pertain to the
formatting of special documents. This section simply lists some special macros
which we have included in PHYZZX simply because they simplify the task of
typing things which occur frequently.

The commands will be listed giving the syntax of each command and an example
of what it does.

1.
\ie generates i.e.

2.
\eg generates e.g.

3.
\dash generates -

4.
\\ generates \

In math mode we have the following useful commands

5.
\coeff{ a }{ b } generates

6.
\partder{ f(z) }{ z } generates

7.
\bra{ \Psi } generates

8.

66 Chapter 14 MISCELLANEOUS MACROS WHICH PHYZZX DEFINES

\ket{ phi } generates

9.
\VEV(H } generates

(H)
10.

\Tr{ G } generates

TrG

11.
\int generates

J
12.

\Isim generates ,zS

13.
\gsim generates 2

67

15. GOODBYE

This completes the basic writeup of the capabilities of PHYZZX. As I indicated in
the introduction, this is not the final version of the macro set, but is in fact the last
but one version that I will have something to do with. The final version will appear
one of these days and will include in the body of the FMT file several macros for
creating wrap around figure inserts and simple tables. The macros already exist
but have not yet been collected together and finalized in format. In addition, it will
probably include a label making capability to generate mailing labels for letters.
Don’t hold your breath for this version, however, first I have to get over having
typed this documentation.

15.1 USING YOUR MYPHYX FILE

I promised you a short discussion of tailoring PHYZZX into your own inimitable
macro package. The simplest way to do this is to have a complicated file called
MYPHYX TEX on your A disk. If there are a few features of PHYZZX which
do almost what you want, but not quite, you can access the PUB$TH disk and
look at the file PHYZZX TEX on this disk. By reading Knuth and studying
this file you will see how everything PHYZZX does is made to happen. The way
to change something is to steal the relevant definition from this file and copy it
to your MYPHYX file. Then, make the changes which you wish to make. Since
PHYZZX inputs this file after it makes its own definitions, you desires will override
the PHYZZX definitions. As an example of how this works I will now print my
MYPHYX file which contains all sorts of goodies you might want to learn to play
with.

GOOD LUCK !!!!!

68 Chapter 15 GOODBYE

\input chapterone.tex
\input chaptertwo.tex

% This is a dummy MYPHYX TEX in case you don't have one of your own.
\message(Dummy MYPHYX TEX used.)

