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Abstract

We consider the derivatives of Horn hypergeometric functions of any number of variables with respect to
their parameters. The derivative of such a function of n variables is expressed as a Horn hypergeometric se-
ries of n + 1 infinite summations depending on the same variables and with the same region of convergence
as for the original Horn hypergeometric function. The derivatives of Appell functions, generalized hyper-
geometric functions, confluent and non-confluent Lauricella series, and generalized Lauricella series are
explicitly presented. Applications to the calculations of Feynman diagrams are discussed, especially the se-
ries expansions in € within dimensional regularization. Connections with other classes of special functions
are discussed as well.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent years, a lot of attention [1-10] has been devoted to hypergeometric series containing
the digamma or psi function,
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On the other hand, series with gamma functions have been known for a long time, see for
example the definitions in the book by Hansen [11]. Recently, however, some new summa-
tions for hypergeometric-type series which contain digamma functions have been established.
In a series of papers by Miller and by Cvijovi¢ [1-3], summation formulae have been derived
for hypergeometric-type series which contain a digamma function as a factor by using certain
transformation and reduction formulae in the theory of Kampé de Fériet double hypergeometric
functions.

Renewed interest in hypergeometric-type series containing digamma functions has emerged
in connection with derivatives of hypergeometric functions with respect to their parameters. The
first derivatives for some special values of parameters were already known a long time ago
[12-14]. Later on, Ancarani et al. have found in a series of papers [4—6] the derivatives of Gaus-
sian hypergeometric functions and some derivatives of two-variable series, namely the Appell
series and four degenerate confluent series. Moreover, it has been shown that the first derivatives
of generalized hypergeometric functions are expressible in terms of Kampé de Fériet functions
[8], and, with the same technique, derivatives of the Appell hypergeometric function have been
obtained in Ref. [7].

In another approach based on the expression of the Pochhammer symbol,

_ I'(a +n)
(@), = W,

and its reciprocal value, the derivatives in terms of Stirling numbers have been provided in the
papers of Greynat et al. [9,10]. With such an approach, one has the possibility to express some
special parameter cases of Appell or generalized hypergeometric functions in terms of finite
sums of well-known special functions as nested harmonic sums [15]. Also, one may formulate
the derivatives as series suitable for numerical evaluation.

In all the above-cited papers except for Refs. [9,10], the technique of infinite-series resumma-
tion [16] is used,
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which might not necessarily be correct if applied to series which are not absolutely convergent.
When the derivative of a hypergeometric function is written as a power series in its arguments, of
course, some discussion of the convergence of the function obtained is needed. Only in some spe-
cial cases, explicit formulae for derivatives have been presented (Appell function, some confluent
hypergeometric functions of two variables), but there are no explicit results for mixed derivatives
of generalized Kampé de Fériet functions.

In various mathematical and physical applications, one finds hypergeometric series which be-
long to classes of functions different from generalized Kampé de Fériet functions, for example,
Horn hypergeometric series of two variables, Hz(a, b, c; x, y) (see Eq. (A.7) below for the def-
inition), where a Pochhammer symbol (a)2,,+, with a double summation index is encountered.
This function belongs to the class of generalized Lauricella series [17] (see Sec. A.3 below for
the definition), and the questions arise how the derivatives of this function look like and to which
class of special functions they belong.

In high-energy physics, one has to calculate higher-order Feynman diagrams for quantum cor-
rections to electroweak and QCD processes. These are expressible in the form of Mellin-Barnes
integrals [18-21], which depend on the external kinematic invariants, the dimension D of space-
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time, and the powers of the propagators. Upon application of Cauchy’s theorem, the Feynman
integrals can be converted into linear combinations of Horn hypergeometric series,
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where x; are some rational functions of the external kinematic invariants (e.g., Mandelstam vari-
ables) and A,;, By, Cpj, Dy are linear functions of the space-time dimension and the propagator
powers. The parameters Ag;, Cp; do not belong to the set of natural numbers N as in the case of
generalized Lauricella functions, but can take any integer value. Within the framework of dimen-
sional regularization, i.e., taking the space-time parameter to be D =4 — 2¢, one has to construct
the so-called ¢ expansion of Eq. (4) in the parameter of dimensional regularization, or just the
derivatives of Eq. (4) with respect to the B,, D, parameters. It is very interesting to find explicit
formulae for such derivatives and the class of functions to which they belong. These questions
provide the motivation for the present paper.

This paper is organized as follows. We begin in Sec. 2 by considering derivatives with respect
to one-summation-index parameters. As an example, the first-order derivatives of generalized
hypergeometric functions and the Appell function are presented. Next, Sec. 3 is devoted to
derivatives with respect to multiple-summation-index parameters, and arbitrary derivatives of
the well-known generalized hypergeometric functions and Appell series with respect to their
parameters are discussed. In Sec. 4, derivatives with respect to parameters with summation in-
dex 2n are considered, while the more involved cases of parameters with summation index gn,
g € N, are discussed in Secs. 5 and 6. As applications, the derivative of the Horn hypergeometric
function Hz(a, b, c; x, y) with respect to its upper parameter a is calculated, and derivatives of
generalized Lauricella hypergeometric functions with respect to their parameters are discussed.
Subsequently, Secs. 7 and 8 are devoted to the case of parameters with summation index gn,
where ¢ is negative. In Sec. 9, the regions of convergence of the series representing derivatives
of the hypergeometric functions considered here are discussed. The main results are collected in
Sec. 10, where we present compact equations for derivatives of hypergeometric functions with
respect to their parameters for the general case of summation indices. We conclude in Sec. 11,
where we also discuss possible applications to the calculation of Feynman diagrams. Appendix A
summarizes the definitions of hypergeometric series used in this paper.

2. Derivatives with respect to parameters with one summation index
2.1. Upper-parameter derivatives

As a first step, we consider the derivative of a hypergeometric function with respect to the
parameter a in the case when the Pochhammer symbol contains only one index of summation,
(a),. As mentioned above, our calculations in this section are similar to Refs. [1-8].

The main trick is to consider the derivative of the Pochhammer symbol (a),. By using the
definition of the digamma function in Eq. (1), which is the logarithmic derivative of the gamma
function I"(z), and the difference equation,

n—1 1
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we can write the derivative of a Pochhammer symbol in the form
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For convenience, let us write the hypergeometric function in the form

F@)=Y Bn@,>. )

n=0

Here, we explicitly write the parameter a to be differentiated and connect it with the summa-
tion index n of variable x. The summation over the index n is then explicitly displayed, but
any number of additional summation indices and Pochhammer symbols are summarized in the
coefficient
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We will use this short-hand notation throughout the article.
With the help of Eq. (6) and a shift of the summation index » — n + 1, we can write for the
derivative of the function F'(a) with respect to the upper parameter

dF(@) & A1 (@)
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By using the rearrangement formula of the summation indices in Eq. (3), we obtain the first
derivative with respect to an upper one-index parameter,
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If the initial hypergeometric series in Eq. (7) converges in some region A, then the series of its
derivative in Eq. (9) converges in the same region A, due to the fact that the ratio of the additional
Pochhammer symbols tends to unity in the large-n limit,

im m:1, i,jeR. an
n=>00 (@ + j)n
As a consequence, the operation of resummation in Eq. (10) is mathematically rigorous, and
the convergence region of the new series is the same as for the initial function in Eq. (7). For a
general consideration of the convergence, see Sec. 9 and Ref. [17].
For the Gauss hypergeometric function » Fi(a, b, c; x), we obtain [4]
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This hypergeometric series can be understood as a generalized Kampé de Fériet hypergeometric
function (see Sec. A.2 below for the definition),

d (@b ) _br oo [ @+ Lb+ 1) (Lay (1)
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It can easily be seen that Eq. (10) is suitable for computing the derivative of any Horn hypergeo-
metric function with respect to a one-summation-index parameter. For example, one can calculate
the derivative of the Appell function Fi(a, b1, bz, c; x, y) with respect to the parameter b; as [6]

dFy _ay (D b2)k y (Dn b2+ Dpgr y" GDm@+ VDpgngr x™
ek Z Z Z —. (4
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where the derivative of F is now expressed in terms of the generalized Lauricella hypergeomet-
ric function (see Sec. A.3 below for the definition) as

ﬂ_ﬂ 21:1.2 ( [a+1:1,1,1; by + 1:0,1,1]: [by:1];[1:1];5[1:15b2;1] (15)
dby — ¢ 00 [c+1:1,1,15 2:0,1,1]: [-1;[-Li[ba+1,1] BV

The corresponding expression for the derivative of F; with respect to the parameter b; can
then be obtained via the exchange rule,

dFi(a, by, by, c;x,y)  dFi(a, by, by, c;x,y)

= 16
dby db, (16)

bi<by,x<y
With similar manipulations, one can also compute the derivatives of the Appell functions

F>(a, b1, by, c1,c2;x,y) and Fs3(ay,az, by, by, c; x, y) with respect to an upper one-index pa-
rameter,

dFy _ ay o~ (De(b2)k y D2+ Dpgre ¥" b1)m(a + 1)m+n+k x™
- Z Z — Z
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(18)

By using the symmetries of hypergeometric functions, we can then find the other derivatives with
respect to upper one-index parameters,

dFy(a, by, by, ci,c;x,y)  dFa(a, by, by, cr,c05x, y)

El

db, dby by<by,c1 <0, x>y
dF3(ai,az,bi,by,c;x,y)  dF3(ai,ax,b1,by,¢;x,y)

3

db, db, aj<ay,by<by,x<y
dF3(ai,az,b1,by,¢c;x,y)  dF3(ai,az,bi,by,c;x, y)
da, db, a1<by,ar<>by ,

dF3(ai,az,bi,bs,c;x,y)  dF3(ai,a2,b1,b2,¢;x,y) (19)

da; db; aj<by,bi<ay,x<>y
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2.2. Lower-parameter derivatives

If the derivative is acting on a lower parameter, Eq. (6) changes to the derivative of a reciprocal
Pochhammer symbol,

d 1 1 (| 1 1S n
il = W(bh) — Wb =) —— =— - . (20
5, = VO 0 O Sy Er i P ST el

Then, using a short-hand notation for the hypergeometric function similar to Eq. (7), i.e.,

I’l

F(b) = ZB( >(b) 1)

one can express the derivative with respect to the lower one-index parameter b as

dF (b) 1S Ok
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Upon rearrangement of the sums, one obtains the following formula:

ok . 1 b
n;oD(n+k+ D Qe B+ Dy b+ D (22)

dF(b)
b

As an example, we obtain for the Gauss hypergeometric function > Fj(a, b, c; x) the following
result [4]:

d a,b| \_ abx v @k s (@4 Dugr b+ D x"H
EZFI( ¢ x)_ Z(c+1)k§ (c + Dpix (n+k+ 1)
_abxz(m(c)ki (D@ + Dt (b + Dy x"F @3
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which is a series that can be expressed in terms of the generalized Kampé de Fériet-type function,

d a,b| \ _ abx o,y (@+1,b+1):(1,0); (1)
&21’1( c x)—— 2 2 |:(c+1,2):(c+1);(—) x,xi|. @9

One can use Eq. (22) also for differentiating any hypergeometric function with respect to
a lower parameter with one summation index only. For the derivatives of the Appell functions
F>(a, by, b, c1,c2; x,y) and Fu(a, b, c1, c2, c; x, y) with respect to the lower parameters ¢ and
¢, we find

dFy _ yaby & (1)k(C2)ky_k§: (D2 + Dk " Z<b1>m(a+1)m+n+kﬂ

dey 3 =5 (ot Di k! = Q)np(ca + Dnpr 1! (cm m!’
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dFy _ yab o~ (Dilea) y* i (D "
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m=
dFs(a, b1, by, c1,c2;x,y) _ dFy(a, b1, by, c1,c2;x,y)
dcl dC2 by<by,c1<cr, x>y ’

dFy(a,b,ci,c2,c;x,y)  dFy(a,b,cr,c2,¢;x,y)

25
dcy dco 25)
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Also these derivatives are then expressible in terms of generalized Lauricella hypergeometric
functions,

dFy _ _yaby poin (- lat BLLE by O, LT (bl B EL: eotl]

dy — 3 RO [241:0,1,15 2:0,L11: [er: 1 [-Blea+1:1] 0 )
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dFy _&bFZ:O;IQ [a+1:1,1,1; b+1:1,1,17: [-];[1:1];[1: L5¢2:1] @7
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From Eqgs. (10) and (22), and the definition of the generalized Lauricella series in Sec. A.3,
one can see that only the first derivatives of generalized hypergeometric functions with respect
to a lower parameter can be written in terms of generalized Kampé de Fériet functions of two
variables. On the other hand, mixed or higher-order derivatives of generalized hypergeometric
functions as well as Appell hypergeometric series can only be expressed in terms of generalized
Lauricella series.

3. Derivatives with respect to parameters with multiple summation indices
3.1. Upper-parameter derivatives

Next, we consider the derivative in the case of multiple summation indices in the Pochhammer
symbol (a)n,4n,+..... Such sums arise in the calculation of mixed derivatives of ,F, and the
first derivative of an Appell function with respect to a parameter with two summation indices
(@)n,+n,- In that case, we factorize the Pochhammer symbol as a product of two terms with one
summation index each,

(@Dni4n, = (@+n1)n,y (@0 (28)
or, in the case of multiple summation indices,
o1 ¢—2 ¢ r—1
@ss =@+ Y mdng@+ Y mdny @y =[J@+ D mim, - (29)
r=1 r=1 r=1 A=l
Upon expressing the hypergeometric function in the form
o
Fa)= Y B(,m)(@mnin ’;,—j: , (30)

m,n=0
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and applying Eq. (28) to factorize the Pochhammer symbol together with the results for the
derivatives with respect to one-index parameters from Sec. 2.1, one obtains

d 1 1 +1 n,,m.,k
(@ =Y E B(n,m+k+1)( e(Dm @ila+ Dmintk X'y™y
da 2 m+k (a+ i n!m'k!
k,n,m=0
+ k
Dr(1 1 n.y,m
+x E B(n+k+1,m)( I Dn (@ mii(@+ Dmgnx X" y"x . a1
k,n,m=0 @n+k (@+ Dtk nlm!k!

As an example, the derivative of the Appell hypergeometric function Fj(a, by, b, c; x, y) with
respect to the parameter a with two summation indices m + n reads [6]

dFy _ybi i 01+ Dini(b2)n (DD @@+ Dt "y v
Cc

da oy e Dunrk Quee @i nlmlk!
i i (1) (b2 4+ Dk (DD (@i (@ + Dinnr x"y"x*F (32)
¢ k.n.m=0 (¢ + Dmtn+k (D n+k @+ Dtk nlmlk! ’

or, alternatively, in terms of the generalized Lauricella series,
dFy  yb; You pani2 [a+1:1,1,1; by +1:1,0,1]: [L:1];[bp:1]5[1:15a:1]
da ¢ 2001 [e+1:1,1,15 2:1,0,17: [Li[-Ls[a+1:1] Y

xby F31 1:1 l[a+1:1,1,1; a:1,0,1; bp+1:0,1,1]: [by:1];[1:1];[1:1]
3:0;00 [e41:1,1,1; 2:0,1,1; a+1:1,0,1]: [-1:[-1:[-] Yo XX

(33)
In the case of hypergeometric function with multiple summation indices,
% ¢
Flay= > B(nl,...,nq;)(a)zi):lmnn—r!, (34)
M1yt =0 r=1
using Eq. (29) and the parametric derivative with multiple summation indices,
d g1 g1 ng—1 1
g(ai;nmé = +§m)né ,; P — (35)

one obtains for the case of multiple summation indices

IF@ & B
da = Z szB(nl,...,ng'Fk"'l"" (2)n§+k r1:[1 'k'

% 1—[ (a)Zizl ny ¢ (a+ I)Zr ny+k (@ + DZs ny+k (a)zé |tk
@F Dyt g @t Dy @t

1 r=£+1 —1 M

(36)
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3.2. Lower-parameter derivatives

The same trick can be applied to the derivative acting on a lower parameter with multiple
summation indices, i.e., the case

0 1 X"y
F) = B(n, . 37
(by=Y_ B(n.m) TE— 37)
m,n=0
Upon factorizing the reciprocal Pochhammer symbol similarly to Eq. (28) as
1 1 1
(38)

Bmin  G+my By’

or, in the case of multiple summation indices, as

¢

1 :1—[ 1 (39)

(b)2f=1 . r=1 (b + Z;;ll nk)n,. ’

one can express the derivative of a hypergeometric function with respect to a lower double-
summation-index parameter in terms of hypergeometric series,

dF (b > DDy 1 b nymyk
()=—y 3 B(n,m—i-k—i—l)()k()m—z D)k xXTyTy
db L= Qmsk b2 (B + Dppgnar (b + Di n'mlk!

. i Bon 4k 4+ 1, my DEDn L B+ xymak
7 Duak b2 0+ Dk (0 + Dy nlmlk!”

(40)

k,n,m=0

As an illustrative example, we present the derivative of the Appell function F3(ay, az, b1, b2, ¢; x,y)
with respect to its lower parameter ¢ with summation indices m + n (see Ref. [6]),

dFs _ yaibi i (@1 + Dk (@2)n (b1 + Dok (52)n () (DD 5" y™ y*

de C2 k=0 (C + 1)m+n+k(C + l)k (2)m+k n!m'k!
_ xazby i @D (@2 + Dk 01)m (B2 + Dk Ok (D (D 1"y *

2 (¢ + Dmtnti(c + Dmr Qntr nlmlk! ’

(41)

C
k,n,m=0

or, alternatively, in terms of the generalized Lauricella series,

dﬁ B _yalbl F2L22 [a1+1:1,0,1; b1+1:1,0,1]: [1:1];[az:1;b2:1];[1:15¢:1] .
de @ 2o e+ 11,11 2:1,0,1: [-J[-Ble+1:1] Y
xazby
c2
% F33020101( [a2+1:0,1,1; bp+1:0,1,1; ¢:1,0,11: [a1:1;b1:11;[1:1]5[1:1] y,x,x) .

[c+1:1,1,1; 2:0,1,1; c+1:1,0,1]: [-];[-1:[-]

In complete analogy to the case of the previous subsection, for hypergeometric series with a
lower parameter containing multiple summation indices,
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© X

¢
Fby= Y B, ....n (b) ]_[ o (42)
R

ny,...,ng=0 »r=1 nr

using Eq. (39) and the derivative with respect to a lower parameter with multiple summation
indices,

d 1 B 1 1 "il b+ Zi‘} )k
LACED STV CED BTN MR Dt A (2D S PO V1
(43)
one obtains for the derivative with respect to a lower parameter
¢ nr _k
dF (D) 1 (D (D Xy Xg
—_— - B g ooy k 1,...,
db b2 Z sz (m g tET n('b) (2)n5+k n,lk!
k.np,...,ng=0&=1 r=1
» §-1 (b)zrfl ¢ (b + l)zrfl 4k (b)z‘i"*l n, (b)25*1 ny+k
r=1 ©® )ZA 1M p=g 41 &+ 1)2’ mk (b + l)zé n+k @+ I)ZS |tk
(44)

With the relations presented thus far, well-known hypergeometric functions such as the gener-
alized hypergeometric, Appell, and Lauricella series can be written in terms of generalized Lau-
ricella series with summation coefficients 9(1) w(l) q)fl), 851), .. .,9(") 1/f(n) ¢g&), 8(”(,,) (see
Sec. A.3 for the definitions) taking the values 0 or 1. Moreover, from Eqgs. (36) and (44) one
can see that any derivative of these functions with respect to one of their parameters can also be
expressed in terms of generalized Lauricella series with the summation coefficients taking the
values O or 1. As a more general statement, we note that, if the initial function can be expressed
as a generalized Lauricella series with summation coefficients from the alphabet {0, 1}, then any
n-th derivative of this initial function can be expressed within the class of the same functions.
The number of variables of an n-th derivative of an initial function with m variables is n + m.

4. Derivatives with respect to parameters with summation index 2n
4.1. Upper-parameter derivatives

In some hypergeometric series, one encounters summation indices with a factor of two, i.e.,
(a)Zn’
o xn
F(@)=) Bim,n)(@n— - (45)
n!
n=0
The simplest realizations are Horn hypergeometric functions of two variables (see Sec. A.4 for
some examples). In this case, one can use Eq. (6) for the derivative of the Pochhammer symbol,

2n—1 2n—1

d(@)om 1 1 (a)k
=@ 2k = @~ Z TERTR (46)

together with a rearrangement of the summation formula in Eq. (3), which splits into two terms
due to the upper summation limit at 2n + 1,
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oo 2n+1 o0 00
}:}:AmJn=§:§]Achn+ky+Aak+Ln+k». 47)
n=0 k=0 n=0 k=0

For the hypergeometric function containing a parameter a with summation index 2n,

Fay= Y Bo@u>. (48)

m,n=0
one obtains for the derivative

dF(a)
da

— (DD
= Bn+k+1
"MZ:O o @t
( a (a+ 1) (@)2n )x"xk
X + .
a+1@+2), (@+1),/) nk!

(a+ 1)(a + 2)2n12k

(49)

4.2. Lower-parameter derivatives

With the same procedure as in Sec. 4.1, for the derivative with respect to a lower parameter of
the type ()2, one obtains

dF(b)
b

.- (D (D 1
— B k41
* k;() (n e ) (2)n+k b? (b + 1)(b + 2)2n+2k

><< b (b+1)21<Jr (b)ak )X”xk
b+1(b+2)u (b+1Dw) nk!

(50)

5. Derivatives with respect to parameters with summation index gn, g e N
5.1. Upper-parameter derivatives

Here, we consider the case when the summation index has a positive integer coefficient gn
with g € N,

xn

o
Fl@) =) Bo)@gn—. (51)
n=0
The particular case of ¢ =2 has been dealt with previously in Sec. 4. The derivative of the
Pochhammer symbol in this case reads

d@g S 1 1S ax
a2 T ey 2y G

With the help of an extension of the resummation formula in Eq. (47) to the case of positive
integer factors g,

oo gn+q—1 oo oo g—1

}: 2: A&Jﬂ:E:E:E:A@k+Ln+kL (53)

n=0 k=0 n=0k=0A1=0
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one obtains the derivative with respect to an upper parameter with a summation index of the type
qn as

Dk (Mn
@ntk

dF () zx"il 1 Ta+q)

o0
Bn+k+1
da gt T D Blntk+1)

k,n=0

y @+ q)gn+qr(@+ A)gr x"xk
(a+x+ gk nlk!

(54)

5.2. Lower-parameter derivatives

For the same summation index gn, but related to a lower parameter, we obtain for the deriva-
tive with respect to this parameter

o0

aFp) 1 T (DD
b T EbtATh+g) k;:OB("”“) On ik
b+ Mgk x"xk

. 55
“ b+ Dgnrak b+ 2+ Dy k! (53)

6. Derivatives with respect to parameters with multiple summation indices ¢, n;, ¢y € N
6.1. Upper-parameter derivatives
By exploiting the previous results, in particular Egs. (36) and (54), one can obtain the deriva-

tives of hypergeometric functions with respect to a parameter with multiple summation indices
gny, where ¢, € N,

00 ¢ n
x r
F(a)= Z B(ni, ..., n¢)(a)zf=l qnx 1_[ n_r' ’ (56)
ny,....,ng=0 r=1
in the form
dF (a) ¢ %! (DD Xk
3 = Z ZZXSB(”I»“'»”E‘HC"‘L“- (2) l_[n'k‘
¢ kning=0E=1 y=0 netho,_y M

[(a +q¢) i:[ (Q)ZK 1 Ga ¢ (a+q5)21 | Gnatask
['(a)(a + V) (G)Zr Ly roe il (a +Q§)Zr U gam ek

(a +q§)2§ qwﬁ-qsk
@get @ty + Dye

(@ + y)ZTl gnrtqgk

(57)

1 quu+qsk

As an example, we calculate the derivative of the Horn function H3(a, b, c; x, y) (see Sec. A.4
for the definition) with respect to its upper parameter a with summation indices 2m + n. This
proceeds as
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- - y_b i D Dn xmy"yk (@om k(1 + a)2m+n+k(b + Dnyk
da c = ke mnlk! (1 4+ a)amak (€ + Dimanar

Lx1+a) i (D (D) Xy x5 (@)25 (2 + @) 2mtn+26 (D)
C

m,n, k=0 (2)m+k m!n!k! (1 +a)2k(c+ 1)m+n+k

xa i (i x"y"x" (1 4+ @)k 2+ Damsns2u Bl 58
C

o, @uek minkl @+ @)t Dogntk
which can be written as a sum of three generalized Lauricella series,
dH3(a) ﬁonll [a+1:2,1,1; b+1:0,1,1;2:2,0,1]: [-];[1:1];[1:1] .
Tda ¢ 3000\ e LT a4 120,15 2:0, L1 BT Y
x(14+a) 1112 [a+2:2,1,2]: [1:1];[b:1];[1:1;a:2]
e oot e i L 261,000 [ et 1:2) )

L ¥ [a+2:2, 120 [L1Gb:AROL
¢ 2000\ e 1:1,1,15 2:1,0,1: [[-li[a+2:2] 7Y

¢
(59)
6.2. Lower-parameter derivatives

In complete analogy to Sec. 6.1, the derivative of a hypergeometric function with respect to a
lower parameter with multiple summation indices gyn; reads

¢ qs—1
dF (b) (1)k(1)n
STAEEED DD 3 DE LIRSS PN (2>n5+:1—[ i

k,ny,...ng=0&=1 y=0 r=1

1
gLl i_[ (b)ZA 1 91 ¢ aH—qs)Zi;l] Gtask

X
P +a)b+y) 5 Oy gm r=t+1 (O +4e)yy_ | qani+qek

(b)zx ! s b+ VISl ek (60)
(b + q‘f)Z | natgek b+y+ I)Zi;; arntqgk

From Eqgs. (57) and (60), one can then deduce that any derivative of a generalized Lauricella
series with respect to one of its parameters with summation indices of the type g ny, g € N, is
expressible in terms of functions in the same class. In particular, we note that the derivative of
a generalized Lauricella function of m variables can be expressed as a finite sum of generalized
Lauricella functions of m + 1 variables.

7. Derivatives with respect to parameters with a negative summation index
7.1. Upper-parameter derivatives
If one of the parameters in a Pochhammer symbol is endowed with multiple summation

indices one of which is negative, as in the case (a),,—n,, the derivative with respect to this
parameter requires additional care. In a first step, we can factorize,

(a)nl—nz = (Cl +nl)—n2(a)n1 . (61)
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Here, the negative summation index (—n») appears, and Eq. (5) needs to be replaced by

n—1
1
Yz —n)—VY(z)=— _. 62
(=m-W@==) —— (62)
k=0
Then, the derivative of a Pochhammer symbol can be written as
d@n _ i I (@a=Dx .
da _nk_oa—l (@)—_r

As an example, we consider the hypergeometric function with a summation index of the type

(@m—n>

B 0 xnym
F(a)= m% Bt m)(@mn— (64)

By using the splitting formula in Eq. (61) together with Eq. (62) for the differentiation of a
Pochhammer symbol with a negative index and the interchange of the order of summations in
Eq. (3), we obtain

Wx (D (@i (@ + Dpgkn x"y"y*
D) m-+k (a+ 1 n!'m!k!

dF (a)
=y

o0
” > Bm+k+1)

k,n,m=0
(DD (@ = Diep—i(@ = Dy x"y"x
Qntk (@m—t(a—1)2 nimik!

o0
—x > Bn+k+1.m)

k,n,m=0

(65)

As another illustrative example, we calculate the derivative of the Horn hypergeometric function
of two variables Hi(a, b, ¢, d; x, y) with respect to its upper parameter a with summation indices
m—n,

dHi(@)  ybe o (Dr(D)n xmy"y*
__(a )2 Z

da sl Qp+r mnlk!
o (@—Dm—t(@—Dm-n—k®+ Dmtnti(c + Dutr
(@m—k(D)m
xb i Dk x™y"x* (@) (1 + @ m—ntk (b + Dingnk (On 66)
d e " minlkd A+ a)d+ Dpor ’

which can be written as a sum of two generalized Lauricella series,

dH,(a)
da
ybc
(a—1)?2
40:1:1 ( [a-1:1,-1,-1; b+1:1,1,1;c41:0,1,15a-1:1,0,-1]: [-];[1:1];[1:1]
X P ( [2:1,0,-1; 2:0,1,15]: [d,1[-:[-] Y y)
xb o102 ( [a+1:1,-1,1;b+1:1,1,1]: [1:1];[c:1]5[1:15a:1]
g P [A+1:1.0.1 210.1): [ [Rfat 1] %) .
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7.2. Lower-parameter derivatives

Following the same procedure as above, for the derivative acting on a lower parameter of a
hypergeometric function, we arrive at the explicit relation for the case of a summation index of

the type 1/(b)m—n,

o0 n.m

F(b)= Y B(n.m) L =y (68)

B)m—n n'm!

m,n=0
By using Eq. (61) and the derivative of the occurring Pochhammer symbol,

1

d 1 _ 1 — 1 (b=Dmx
E(b+m)_n‘(b+m)_n§0b—1 Gt (©9)

and exchanging the order of summation, we obtain

dF (b > De(Dm 1 b nym ok
()z_y Z B(n,m+k+l)()k()m—2 (b)x x"y"y
db k,n,m=0 (z)mJFk b (b + 1)m+kfn (b + l)k n!m'k!

(D (1)n b—1D)m—k xnymxk
(2)n+k b= Dm—n—tD)— nlm!k! '

o
+x Y Bn+k+1.m)
k,n,m=0

(70)

8. Derivatives with respect to parameters with summation index gn, —q e N
8.1. Upper-parameter derivatives

The final step in obtaining the full set of relations for the derivative of a hypergeometric series
with respect to one of its parameters with any set of summation indices consists of elaborating
the case of negative summation index gn, where —q € N,

n

Fl@)=Y_ Bn@g’r. (71)

n=0

The derivative of the Pochhammer symbol in this case reads

U T N

d(a)qn _
da (@gn ; a—1 (a@)_;x (72)

and we note that the upper limit of summation is indeed positive, due to g < 0. Upon adapting
the interchange of the order of summation in Eq. (53) to the case of negative g, we obtain for
the derivative of a hypergeometric function with respect to an upper parameter with a summation
index of the type gn with integer g <0

(Dr(1)n
(2)n+k

dF(a) i 1 T(a+gq)

i Z Bn+k+1)

k,n=0

% @+ @gn+qrl@—1—A)gk x"x
(a— Mgk nlk!

k

(73)
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8.2. Lower-parameter derivatives

For the same summation index related to a lower parameter, i.e., exchanging (a)qn — 1/(b)gn
in Eq. (71), one obtains for the derivative of a hypergeometric function with respect to that
parameter

dF(b) ’f‘ 1 T'(b)
a b—1—1T(b+q),

(b—2r— gk x”xk
(b+q)qn+qk(b Mgk nlk! .

o0

Z B(n+k+1)(1)k(1)n

(2)n+k

(74)

9. Convergence of the series for derivatives of hypergeometric functions

In establishing the regions of convergence of the series for the derivatives of hypergeometric
functions, we follow the same rule as in Ref. [17] (see, in particular, p. 56 thereof), namely, we
exclude all exceptional values of the parameters, i.e., those values for which the series terminates,
becomes meaningless or reduces to a finite sum of hypergeometric series of lower dimension.

To determine the regions of convergence for the series which have been obtained for deriva-
tives of hypergeometric functions, we can utilize the parameter cancellation theorem (see p. 108
of Ref. [17]). This states that the region of convergence for a hypergeometric series is indepen-
dent of the parameters, provided exceptional values of parameters are excluded. For example, the
series

- (a)qn x"
B(m, n) — (75)
ng(:) " By gn !
and
S Bm, ) (76)
n!

have the same region of convergence. By using this theorem, we can exclude from the hyperge-
ometric series all Pochhammer symbols with different parameters, but with the same summation
index.

As an example, we consider here explicitly the regions of convergence for the derivatives in
Sec. 5. The other cases can be dealt with in a similar way. It is easy to see that the region of
convergence for the series in Eq. (54) after application of the convergence theorem is equivalent
to the one of the series

00 .ank
Z Bn+k+ 1)(a)qn+qk (77
n,k=0 ( + k)'

Then, applying the summation formula in Eq. (53), one finds that the region of convergence of
the series in Eq. (77) is the same as the one of the expression

oo gn+q—1

> B(n)(a>qn( g Z(qnw—l)B(n)(a)qn( T (78)

n=0 k=0

Due to the convergence theorem, the region of convergence of the latter series coincides with the
one of the original function before differentiation.
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In this way, we prove the theorem that the expressions for the derivatives of hypergeometric
series have the same regions of convergence as the initial hypergeometric functions.

The regions of convergence for hypergeometric series in two, three, and more variables can be
found by using Horn’s theorem of convergence [17] (see, in particular, p. 56 of Ref. [17]). This
theorem implies an absolute region of convergence of these hypergeometric series, so that the
use of the summation formulae in Egs. (3), (47), and (53) in our calculations is mathematically
rigorous.

10. Derivatives with respect to parameters for general case of summation indices
The combination of Eqs. (57) and (73) finally leads to an expression for the derivative of a

hypergeometric function with respect to one of its upper parameters related to a summation index
with any integer coefficient. The relevant equation reads

00 [
X T

Fay= ) Bmh””anEXﬂ%mII;T, Q. €L, (79)
N,y ng=0 - r=1"""

¢ lggl—1 .
= (Dr() XX
(a) Z ZZng(n1,...,n§+k_|_1,'”,n¢) ng;-l—[ r X

Vel
da k.ony,..., ng=0&=1 y=0 (2)n5+k r=1 nr'k.
[(a + q¢) 1:[ @y _ g, ? (a + 485 gunitack
(@) (a)Z’,qunA r=t+1 (a +q‘f)ZA | danatagk
(a +qs)zs 14A"A+qskﬂ
(a)Z)L_l qrny
IB 1 (Cl + )/)Z (I)Lnk+(1§k g > 0
a+VM+V+UmemHﬂ’ 7
1 (@—y — e i
B=— D s DIatqs ’ e < 0. (80)

a—y—1 (a— y)ZA;l g t+qsk

A similar equation holds for the derivative with respect to a lower parameter,

> 1 L4 x"r
F(b) = Z B(n1,...,n¢)(b)71_[—', g €Z, 81)
ni,..., n¢=0 Zijzqunx =17
¢ lgel—1
dF (b) > (WU%
— = Bny,..., k+1,...,n
db Z Z Z xg B(n ng +k+ (2)n ” l_[ n,'k'
k.ong,..., ng=0&=1 y=0 & r=1

I'(b) l—f()zﬁqm o OF Gyt g, ek

F(b + C]‘g‘) (b)ZA:I BN pg b+ qs)zg:l qrnytqsk
(b)Z)L 1 9T '3
(b + qg)z | @anatqsk
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ﬁ __ 1 (b + )/)Zi;i qrny+qek g > 0
bty bty + Dy,
R
B= Tz ot . ge <0, (82)

b—y—-1 (- y)Zglqmﬁqsk

As an example, we present here the derivative of the function G3(a, b; x, y) in its upper
parameter a with summation indices 2n — m

dGs(a)
da
_ya+D i (Dr(Dn x™y"y* (@) —mr2x (@ + 2)2n-m+26 (b — Dom—n—r
b1 = Qnix minlk! (a+ 1) —mi2x

L i (DD X™y" ¥ (@ 4+ 1) —pmr2n (@ + 2)2n-ms2k (b — Dam—n—t
b—1 ik minlk! @+2)_miok

m,n, k=0
00

_xb(b+1) Z (Dx(W x™y"x* (@ = Dt (@ = Don-m—tk (b +om-nt2t
(@—1D> & Qmix minlk! (@)—k ’

which can be written as a sum of three generalized Lauricella series,

dGs(a)
da
_yla+1
- b—1
F0:L1 ( [a+2:-1,2,2; b-1:2,-1,-1;a:-1,0,2]:[-]; [1:1];[1:1] )
2:0;0;0 [a+1:-1,0,2; 2:0,1,1;]: [-1;[-1;[-] oYY
n £F3;0;];] ( [a+2:-1,2,2; b-1:2,-1,-1;a+1:-1,0,2]:[-]; [1:1];[1:1] Xy y)
b—1" %000 [a+2:-1,0,2; 2:0,1,1:]: [-]5[-1s[-] o

xbb+1) 4.0 [a-1:-1,2,-1;b+2:2,-1,2]: [1:1];[-];[1:1;a-1:-1]
T @—1)2 oo [2:1,0,1]: [-]; [-]:[a:-1] o

11. Conclusions
11.1. Derivatives of Horn hypergeometric functions with respect to parameters

With the results of the present article, the derivatives of the following Horn hypergeometric
functions of multiple variables x;,,

!
Z l—[ /)ZkIkakl_[-;:z!7 el 83)

,,,,, mp= Oz/( )Zqukmkn 1

with respect to one of their parameters, a; and b;, can be expressed with the help of Egs. (80) and
(82), or, alternatively, as finite sums of Horn hypergeometric functions, where the n-th derivative
of a function of m variables is expressed as series with n + m variables. The regions of con-
vergence for these derivatives are the same as for the initial functions. Specifically, for the 34
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distinct confluent and non-confluent Horn hypergeometric functions of two variables, the n-th
derivatives are expressed as Horn hypergeometric functions of n 4+ 2 variables.

Derivatives of generalized Lauricella series, i.e., of Horn hypergeometric series with summa-
tion coefficients gx € N, with respect to one of their (upper or lower) parameters can be expressed
as finite sums of generalized Lauricella series, as explained in Sec. 6. In particular, the derivatives
of generalized Lauricella series with respect to one of their parameters with summation coeffi-
cient gx € {0, 1} can be written as finite sums of generalized Lauricella series with summation
coefficients in the same alphabet g; € {0, 1} as detailed in Sec. 3. Finally, all n-th derivatives of
generalized Appell hypergeometric functions, generalized Kampé de Fériet functions, and gener-
alized hypergeometric functions of one variable are expressible in terms of generalized Lauricella
series with summation coefficients g € {0, 1}.

11.2. Applications in high-energy physics

The main motivation of the present research are calculations in quantum field theory, i.e., of
Feynman diagrams and their series expansions. By applying the Mellin-Barnes method, Feynman
diagrams can be written in the form of Eq. (4) as Horn multi-variable hypergeometric functions
(see, e.g., Ref. [22]). For example, particular types of one-loop diagrams are expressible in terms
of generalized hypergeometric functions or Appell series [23-27].

For the evaluation of the finite parts of dimensionally regularized Feynman integrals in D =
4 — 2¢ dimensional space time, one has to construct their expansions in €. This has motivated us
to seek a general method to obtain the all-order ¢ expansions of Horn hypergeometric functions.
There exist a lot of analytic and numerical methods based on different algorithms which are
appropriate for dealing with ¢ expansions of Feynman integrals [28—34] and are implemented in
computer packages [15,35—40]; see, for example, the review in Ref. [41].

Feynman integrals written in the form of Horn hypergeometric functions as in Eq. (4) de-
pend on the space-time parameter ¢ only through some parameters in the Pochhammer symbols,
namely B, and D,, so that the construction of the ¢ expansion of a given Feynman integral is
equivalent to taking the derivatives of the pertaining Horn hypergeometric functions with respect
to their parameters.

From Sec. 11.1, we can conclude that the ¢ expansions of Feynman integrals at any order are
expressible in terms of Horn hypergeometric functions. Specifically, the n-th term of the ¢ series
can be expressed as a Horn hypergeometric function of n 4 m variables, where m is the number
of summations in the Horn representation of the Feynman integral. The region of convergence
of any of these parameter derivatives, i.e., the coefficients in the & expansion, and the initial
Feynman integral are the same. The explicit formula for the n-th term of the ¢ expansion can be
obtained with the help of Egs. (80) and (82).

In the series of papers in Refs. [22,42-45], the method of differential reduction of hyper-
geometric function has been worked out. In particular, the so-called step-up and step-down
differential operators have been introduced, which shift the parameters of hypergeometric func-
tions by unity. By applying such differential operators to a hypergeometric function, the value of
any parameter can be shifted by an arbitrary integer. The construction of differential operators
allows us to define a set of exceptional parameters for a hypergeometric function and then to find
the condition of reducibility of the monodromy group of the hypergeometric function.

By expressing the ¢ expansion of a Feynman diagram in terms of Horn hypergeometric func-
tions and applying the above-mentioned method of differential reduction, one can reduce the
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corresponding integrals to some basic subset of hypergeometric functions and express them as
series with the least number of infinite summations.

We plan to implement our procedure of taking derivatives of Horn hypergeometric functions
with respect to their parameters in a Mathematica-based computer package along with the
differential-reduction algorithm.

11.3. Example of application to Feynman integral calculation

In Ref. [46], the two-loop sunset diagram with two different masses and threshold kinemat-
ics was considered through O(1) accuracy; in Ref. [47], this result was extended to three- and
four-point diagrams. In the hypergeometric-series representations of master integrals, derivatives
of generalized hypergeometric functions with respect to parameters appeared, and some artifi-
cial parameter § was introduced. As an example, let us consider the first equality in Eq. (2) of
Ref. [47], which we copy here for the reader’s convenience:

2e+1 11,1,1
e2EVE (Mz) JS’{OMQZ =4 F3 < 2 5
pil

1-26 2 3 3
La[xa-22 o f11-63-53-
4dé| (1—-8)3—165)

2

—%)] +O@E).  (84)
=0

By application the results in Sec. 10, we find that the derivative of the generalized hypergeo-
metric function in Eq. (84) can be expressed in terms of the well-known Kampé de Fériet series
and that the artificial parameter § can so be eliminated,

2e+1 11,1,1
eZS)’E (MZ) J01022 =4 F3 ( 2 3
2

+

17 2 1,1,3,3
+ 1 (§x - gxlogx)4F3 ( %’ %2’ 22

3 s2a[ @239 ;) 2 2
280 30| (3,43 :@5(-) 47 4
s [ 2.3 M _x? F
70 301 (GG 47 4
30 s0a[2.3.3):0.3 Hh_ﬁ_ﬁ}
350 30| (3,43 (- 47 4
37 s0a[ 2.3, Dy X X
a0 | 345 A o) _Z’_?]
307 son[@2.3.9):2: (1) ¥ X
+%F3110 _(% %73) (3)( ) —Z,—Zi|+0(8). (85)

The other six master integrals in Refs. [46,47] that contain derivatives of generalized hypergeo-
metric functions with respect to the artificial parameter § (see Egs. (2) and (62) in Ref. [47]) may
also be expressed in terms of Kampé de Fériet series by similar procedures.
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Appendix A. Definitions of hypergeometric series

Here, we give the definitions of some hypergeometric series, whose derivatives have been
considered in this article.

A.l. Appell hypergeometric functions of two variables

The Appell [48-50] hypergeometric functions Fy, F>, F3, and F4 are defined as expansions
about x =y =0 as

Fi(a,b1,b2,c;x,y) =

i 3 (@mtn (b1)m (b2)n X™ y"

= (©m+n m! n!

i 3 (@mtn (DD (b2 X™ "

Fy(a, by, by, c1,c;x,y) = CDOm(c) !’
m n

m=0n=0

(ol e}
m n b m b n "
F3(al,a2,b1,b2,c;x,y)=Zz(al) (@2)n (b1)m (b2)n x

m=0r1n=0 (c)m—i-n W ; '
(@ man(B)man x™ y
Faila,b,c1,00;x,y) = . (A.1)
penty mZ;X;) (€m(c)n m! 1!

A.2. Multi-variable extensions of Kampé de Fériet series

The extensions of Kampé de Fériet functions of two variables to the multi-variable case read
[17]

2 ) ()
Fpasan (o | ppa (@p: (bl) .5 (bg, ) o
SR i @1 B (B
Xn
o0 ST _Sp

— (A2)
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where
[T @))syets, TTL B3, - T, ),

A(Sl, ""Sl’l) =
[T @ TU B sy T2 B,

(A3)

A.3. Generalized Lauricella series

Series of this type have been introduced in Ref. [51]. Special cases of these functions are
reduced to multi-variable extensions of Kampé de Fériet series. The latter include confluent and
non-confluent Lauricella functions,

X1
A:BD;. .M
C:DW;..; DM
Xn
_ Ao (@00, 0B VL (e ™)
Cp®:s D \ [(0) 1y D,y @)@l 18D (@ sy T
e’} S1 _Sp
X1 Xy
= D Q1) (A4)
s1!os,!
S1yeeesSp=0
where
1) (n)
TT21@) g0y g0 T G5 g+ TIZBF) oo
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and all parameters 8(1) w(l) q&%l), 851), ...,9(”) w(") ¢g’&) , 8("(n) are positive and real.

A.4. Horn series in two variables

Here, we recall the definitions of some Horn functions of two variables that have been used in
this article,
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