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ABSTRACT 

Some spontaneously broken gauge theories can give rise to stringlike 

vacuum structures (vortices). It has been pointed out by Vilenkin that 

in grand unified theories these can be sufficiently massive to have cos- 

mological implications, e.g., in explaining the formation of galaxies. 

The circumstances in which such structures occur are examined. They do 

not occur in the simplest grand unified theories, but can occur in some 

more elaborate models which have been proposed. The cross section for the 

scattering of elementary particles by strings is estimated. This is used 

to evaluate the effect of collisions on the dynamics of a collapsing cir- 

cular string, with particular attention to the question of whether energy 

dissipation by collision can reduce the rate of formation of black holes 

by collapsed strings, which may be unacceptably large in models where 

strings occur. It is found that the effect of collisions is not important 

in the case of grand unified strings, although it can be important for 

lighter str.ings. 
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Spontaneously broken gauge theories are presently of great interest, 

both in the context of unified theories of the electromagnetic and weak 

interactions, and, more speculatively, in connection with so-called grand 

unified theories (GUTS) incorporating color W(3), which is presumed to 

be the underlying symmetry of the strong interactions. Spontaneously 

broken symmetries can be restored at temperatures, T, greater than some 

critical temperature, T 
C’ 

' where, in a standard "big bang" cosmology, T 
C 

will be exceeded in the very earliest stages of the universe. A phase 

transition will then occur, as the universe cools below T c, in which a 

multiplet of scalar Higgs fields develops a vacuum expectation value (VEV) 

<cp> = T-). Such phase transitions can result in the development of various 

kinds of vacuum structures, having the forms of regions of normal vacuum 

where <cp> = 0. These structures result from the fact that, immediately 

following the phase transition, the direction of n in the abstract space 

in which the gauge group operates is expected to be different at different 

points in ordinary space; such differences will arise from considerations 

of causality if for no other reason. In order to minimize its energy, the 

vacuum will evolve toward a situation in which it is not spatially depen- 

dent. However, the structure of the gauge group may be such that all 

spatial dependence cannot be eliminated without leaving regions of normal 

vacuum. These.regions may take one of three possible forms, depending on 

the topology of the gauge group.2 One may have a "domain wall", separa- 

ting regions in which n has different directions. Secondly, there may be 

stringlike regions of normal vacuum, sometimes called vortices but hence- 

forth referred to as strings.3 Finally, there may be localized regions 

corresponding to 't Hooft-Polyakov monopolies.4 Domain walls appear 
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likely to produce an unobserved anisotropy in the 3' blackbody radia- 

tion2y5* , hence theories leading to their formation are probably unaccep- 

table. Monopoles have, of course, been extensively discussed, recently 

in connection with the fact that at least the most straightforward forms 

of GUTS may predict a production of heavy monopoles in the early universe 

too large to be compatible with observation. 

In the present paper we shall be concerned with vacuum strings, which 

have been less extensively studied, but which also appear to have poten- 

tially significant cosmological implications. Strings will occur if the 

manifold M of degenerate vacuum states which exist following spontaneous 

symmetry breaking is not simply connected, i.e., if the first homotopy 

group al(M) of the homotopy classes of maps of the circle into M is non- 

trivial.2 The possible cosmological significance of strings has been 

studied by Vilenkin.7 He shows that in models having grand unified 

strings the collapse of closed strings may well lead to a significant 

density of black holes; the corresponding density in the case of elec- 

troweak strings is found to be negligible. (The linear mass density of 

strings is approximately proportional to the temperature at which they 

are formed.2 Consequently, strings associated with the breaking of grand 

unification, which presumably occurs at a mass scale X 10 15 GeV,' are much 

more massive than those which might be associated with the breaking of, 

say, the Weinberg-Salam electroweak symmetry at a mass scale M 100 GeV. 

Throughout the paper, unless otherwise specified, the units used have 

%=c=k = 1, where k is Boltzman's constant.) In the case of GUTS, the 

simplest estimates of black hole formation, as given in Ref. 7, .lead to 

a nonthermal spectrum for the cosmic background radiation as a result of 
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radiation emitted in the evaporation of mini-black holes; thus if these 

estimates are correct, GUTS leading to string formation would be excluded. 

In Ref. 7 the dissipation of the energy of the closed loops as a result 

of the viscosity of the surrounding medium, i.e., as a result of particle 

scattering from the collapsing string, is neglected. (The effect of os- 

cillations of the collapsing string, which may also be important, is also 

neglected there.) If a sufficiently high percentage of the strings' mass 

is dissipated by friction during the collapse, black hole formation could 

be avoided. In the present work this question is investigated by exam- 

ining the dynamics of the collapse of a circular relativistic vacuum loop, 

ignoring gravity but taking into account friction with the surrounding 

medium. In order to do this, the cross section for the scattering of 

particles from the collapsing string is estimated; this is also relevant 

to a discussion of the importance of oscillations. If excessive black 

hole formation can be avoided, then theories with strings may in fact be 

preferred, since heavy closed strings could serve as seeds for the pro- 

duction of the density fluctuations which are required for galaxy forma- 

tion.lOpll 

The outline of the present work is as follows. Section I is devoted 

to a discussion of the conditions under which vacuum strings arise in a 

gauge theory. *We shall see that strings do not occur in the simplest 

physically interesting theories, but may occur in more elaborate models. 

In the following section the cross section for scattering of particles 

by a vacuum string is estimated, and in the final section the dissipation 

of energy by friction in the collapse of a closed circular loop -of vacuum 

strings is considered, and the question of black hole formation discussed. 
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1. CONDITIONS FOR VACUUM STRING FORMATION 

IN SPONTANEOUSLY BROKEN GAUGE THEORIES 

The types of gauge theories in which strings can occur are strongly 

limited by the simple observation that if the symmetry group G is simply 

connected, and if G acts transitively on the manifold M of degenerate va- 

cuum states, then M is simply connected, and strings do not occur when G 

is spontaneously broken. This is almost trivially demonstrated. Since G 

is a symmetry group, if o E M, then ga and u are degenerate and go E M 

for all g E G. The statement that G acts trasitively on M means that if 

o E M, then any u i E M can be written as u i = gia for some gi E G. Hence, 

corresponding to a closed curve u(8) E M there will be a closed curve 

a(8) in the parameter space of G, where u(0) = gCa(e)lu. Since by hypo- 

thesis G is simply connected, one can find a sequence of closed curves 

a(0,t) such that a(e,l) = a(e) and a(e,O) = a(go), where g is the iden- 
0 

tity element of G. There will be a corresponding sequence of closed 

curves a(0,t) = g[:a(e,t)lu through which the curve o(B) in M can be con- 

tracted to the point u, and thus M is simply connected. 

The most commonly discussed GUTS are based on the groups SU(5) or 

Spin(10),12-where we denote by Spin(l0) the simply connected universal 

covering group of SO(10). The choice of SU(5) or Spin(lO), rather than 

the multiply connected groups SU(5)/5 or SO(10) to which they are, res- 

pectively,, locally isomorphic is dictated by the fact that the fermions 

in each model are assigned to representations (the fundamental 5 and the 

spinor 16, respectively) which are multiple valued in terms of SU(5)/5 

and SO(lO), so that the simply connected covering group must be chosen in 
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order that the representation matrices be single valued and well defined. 

In particular, if we have a spatially dependent field $(e) defined along 

a circular path in coordinate space by 

MS = g%> J, (ok(e) (1) 

the continuity of JI and hence the finiteness of kinetic energy terms in- 

volving $ in the Hamiltonian will be guaranteed by the condition g(2n) = 1 

only if the representation is single valued. The two most widely discus- 

sed GUTS thus satisfy the criterion that the gauge group G is simply con- 

nected; clearly this will also be true of a wide class of other gauge 

theories, e.g., any theory based on SU(N) or Spin(N) in which any of the 

basic fields are assigned to multiple valued representations of SU(N) 

or SO(N). 

Before we conclude that such theories do not lead to string forma- 

tion, a brief discussion of the question of transitivity is perhaps in 

order. In discussing this it is important to note that the set of pos- 

sible vacuum states in a spontaneously broken gauge theory is rather dif- 

ferent from the usual set of energy eigenstates in the presence of a sym- 

metry group G in quantum-mechanics in that the states do not belong to 

some irreducible representation of G. If the set of vacuum states did 

provide an irreducible representation of G, then in fact G would not in 

general act on them transitively. (This is easy to see, e.g., in the case 

of SU(N). The only irreducible representations of W(N) on which SU(N) 

acts transitively are the fundamental representation N and its conjugate 

N*. However, since the Clebsch-Gordon decomposition of NxN* contains 

only the adjoint representation and the singlet, if the Higgs particles 
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belong to anything other than the adjoint representation, the Wigner- 

Eckart theorem would require that the vacuum states belong to some repre- 

sentation other than N in order for the Higgs fields to have nonvanish- 

ing vacuum expectation values.) 

The difference in the case of a spontaneously broken gauge theory 

can be thought of as being due to the fact that G represents a symmetry 

of the classical theory, before quantization, rather than of the quan- 

tized theory, and'hence does not determine the structure of the Hilbert 

space of quantum states. This is most easily seen in the unitary 

gauge.13 Let there be a multiplet of Higgs fields cp.. 1 In an SU(N) or 

SO(N) theory, e.g., in order to minimize the potential the VEVs <(pi> 

must satisfy a condition of the form 

c <(Pi>2 = q2 
i 

(2) 

together with possible additional conditions if there are other gauge 

invariant combinations of <(pi> of fourth order or less in the Higgs 

fields. Let <(pi> = ni be a field configuration satisfying Eq. (2). One 

can now impose the gauge condition of the unitarity gauge, namely13 

G-Ma; = 0, all a (3) 

where G and q are vectors whose components are 'p,i and ni, and the Ma are 

the matrices of the generators of G in the representation to which the 

'pi belong. We now define a set of unit vectors n. in the space of the 
J 

Ma to be an orthonormal basis in the subspace orthogonal to all Ma:; in 

particular, we can choose n 1 = G/J;;. Then the nonzero fields are the 
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fields $*n.. One now quantizes the theory, taking the fields $*n as 
J j 

the scalar fields in the theory. The vacuum state of the system is then 

characterized at the point ; (up to renormalization effects) by the 

relations 

<G-n,(:)> = n, <G*nj(3> = 0, j # 1 (4) 

where, if the initial conditions are such as to correspond to the pre- 

sence of a string (or monopole or domain wall) the direction of ;t and 

hence the nj will vary with position. The set of fields G-n., being a 
J 

subset of the cp i, do not provide a representation of the full gauge group 

G; if they did, the representation provided by the 'pi would be reduci- 

ble. They do, however, provide a representation for the subgroup H whose 

generators Ha correspond to the Ma for which Mac = 0. This is easily 

seen. A general element of H can, with appropriate choice of basis, be 

written as h = exp(iHae) = O(H") for some 8. Then, from the transforma- 

tion properties of the (pi, 

h-'G*njh = O(Ma)ik(nj)k"i = $*O(Ma)nj . (5) 

However, M?G*O(Ma)n = O-'(Ma)MaO(Ma)o-'(Ma):*nj = c b-t 
j b cbM nonj = 

0, 

where the c are constants, .b . since the Ma transform among themselves under 

the operations of the group G. Hence O(Ma)nj is just a linear combina- 

tion of the n k' and the G-n 
j 

transform among themselves under the opera- 

tions of H. In particular, since Ma: = 0, G*nl is a scalar under the 

group H. Thus, as might have been expected, the Hilbert space.is a re- 

presentation space for the unbroken symmetry group H rather than the full 
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gauge group. Moreover, since $*n, is a scalar under H, there are no se- 

lection rules which prevent it from having a nonzero VEV. 

The manifold of equivalent choices of vacuum state is determined by 

the manifold of vectors : 
g 

which are equivalent to ; as choices for the 

set of <(pi>. However, strictly speaking, states having different values 

of c would 
g 

(x) lie in different Hilbert spaces. Classically, the set G 
g 

be the set of all vectors whose components satisfy condition (2); this 

is the set of all vectors obtained from ;t by operations of the invariance 

group Gv of the potential, where GV may be larger than G. In the quan- 

tized theory, however, with radiative corrections taken into account, the 

vectors G and i will describe systems with the same energy only if they 

are obtained from one another by a gauge transformation, i.e., if 
-t 
73 

= M(g):, where M(g) is the matrix in the representation of the 'pi of 

some element g E: G, and hence G does indeed act transitively on the mani- 

fold M of possible vacuum states. 

It thus follows that, if one begins with a simply connected gauge 

group G, strings will not arise in a phase transition in which G is spon- 

taneously broken. In particular, strings will not arise at the first 

stage of symmetry breaking in any GUT based on SU(N) or Spin(N). More 

generally,-let us suppose that grand unification is based, as the name 

implies, on a'simple Lie algebra so that there is only a single coupling 

constant in the symmetry limit. The grand unification group then con- 

tains no U(1) factors. Then if the group G is the universal covering 

group of the algebra it will be simply connected and strings will not 

occur at the first stage in the breaking of grand unification. As noted 

above, the question of whether the group G is the universal covering 
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group or a multiply connected group to which it is locally isomorphic 

depends on the representation content of the theory. Thus in a theory 

based on the algebra of SO(N), if no particles were assigned to multiple 

valued representations of SO(N), G would be the doubly connected group 

SO(N). That is to say, solutions are allowed of the form of Eq. (1) for 

which g(2n) is equal to the identity element of SO(N) but not of Spin(N). 

(For the familiar case of the ordinary rotation group, these solutions 

correspond to situations in which the direction in abstract space of the 

vacuum state is rotated by 2nx with n odd in going around a circular path 

in coordinate space.) For these solutions the curve described in M when 

a circular path in coordinate space is traversed cannot be contracted to 

a point, and hence a string is present. In the case of SU(N), if one 
* 

requires that only fermions belonging to the representations 1, 3, or 3 

of color SU(3) be present, then the fermions must be assigned to the 

fundamental representation N of SU(N), or to antisymmetrized Kronecker 

products of N with itself.14 In this case, single valuedness forces one 

to take SU(N) as the group. In the case of SO(N), the possibility exists 

of assigning fermions to the fundamental representation N, which is a 

single valued representation of SO(N). 

If strings are not formed at the first stage of symmetry breaking 

of the grand unified group G, they may occur at a later stage in a chain 

of spontaneous symmetry breaking of the form 

G + G’ -f G” . . . . . . (6) 

in which the group G', say, is not simply connected but has the form 
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G' = K x U(1) . (7) 

From the point of view of cosmological implications one is primarily in- 

terested in the case that the phase transition from G' to G" in which 

the strings are produced also occurs at something like the mass scale 

associated with the breaking of grand unification, so that the strings 

are very massive. There are two different situations which can occur in 

the phase transition from G' to G" which must be distinguished in their 

implications for string formation. Let us suppose that the original 

breaking of the symmetry group G at temperature Tc occurs when a multi- 

plet of Higgs fields 'pi develop vacuum expectation values n. which mini- 1 

mize the effective potential at T . 
C 

The phase transition from G' to G" 

may occur because, at the temperature T' 
C 

at which it happens a second 

multiplet of Higgs fields u i develop vacuum expectation values 6., with 1 

ni remaining largely unchanged. Let M' be the manifold of equivalent 

vacuum states after the symmetry has been broken to G". Then, given one 

state in M', other states in M' are obtained from it only by operators 

which leave the n i invariant; these are just the operators of the group 

G' . Thus, in this situation it is the properties of G' which determine 

whether string formation is possible in the second stage of symmetry 

breaking. In particular, if G' is not simply connected, then string . 

formation is not necessarily forbidden; its occurrence will depend on 

the details of G' and G". In this case G" will be a subgroup of G', 

consisting of those transformations which leave both ni and 6i unchanged. 

The second situation that can occur is that the phase transition at 

TL from G' to G" arises because, due to the temperature dependence of 
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the potential, the vacuum expectation values of the (pi required to mini- 

mize the potential change from ni to T-I;, with G" the group of transfor- 

mations which leave T-I! unchanged. 1 For example, it has been pointed out" 

that in an SU(5) model where the breaking of SU(5) to SU(3) x SU(2) X U(1) 

is associated with a Higgs multiplet transforming by the 24 dimensional 

adjoint representation, there may well be an intermediate phase (corres- 

ponding to G') in which the form of the vacuum expectation values of the 

Higgs fields result in an SU(4) xU(1)' symmetry. In this situation, 

given any state in M', other states in M' may be generated from it by 

acting with any operator in G; there is no requirement that the n i be 

left unchanged, and G" is not a subgroup of G'. Hence in this case the 

topology of M' is determined by G, not G', and if the grand unifi- 

cation group G is simply connected, string formation will not occur at 

the second stage of symmetry breaking, regardless of the properties of 

G' . Thus in the example cited there will be no strings formed in the 

phase transition from SU(4) xU(1)' to SU(3) x SU(2) xU(l), even though 

U(1) and U(1)' are different and symmetry under the multiply connected 

group U(1)' is broken in the transition. 

In the subsequent discussion we suppose that the first of these two 

situations obtains, with G" being a subgroup of G'. We suppose G' has 

the form K'x U(1). There are then two situations of interest. In the 

first the symmetry breaking from G' to G" has the form 

K x U(1) -+ K' (8) 

where K' is a (possibly improper) subgroup of K. Here string formation 

obviously occurs, since, e.g., the closed curve in M' given by 
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de) = (l,eiY ) (5 (o), 0 s e s 2~, clearly cannot be contracted to a 

point; here 1 is the identity of K and Y is the generator of U(l), nor- 

malized to e 2aiY = 1 . 

The type of symmetry breaking in Eq. (8) may be illustrated by two 

models which have appeared in the literature. One of these is a GUT 

based on the group SU(7) and embodying some flavor unification.16 One 

possible sequence of symmetry breakings which can occur in this model is 

SU(7) + SU(4) x SU(3) x U(1)' -f SU(4) x SU(3) -+ SU(3) x SU(2) x U(1). 

String formation will occur in this model at the second stage of symmetry 

breaking, which may occur close to the grand unification mass scale. 

This model avoids the production of heavy monopoles,17 but can lead to 

the production of massive strings. Symmetry breaking as in Eq. (8) also 

can occur in an SU(5) model in which electromagnetic gauge invariance is 

broken at intermediate energies and restored at loti temperature.18 This 

model also avoids overproduction of heavy monopoles, and was indeed pro- 

posed for that reason. The chain of symmetry breaking is SU(5) + cSU(3) x 

SU(2) x U(l)1 -f SU(3) + SU(3) x U(1). The brackets around the second 

stage indicate that the SU(3) x SU(2) x U(1) phase is not necessarily re- 

quired in the model but could well be present. If it is, then again 

string formation will occur at the second stage of symmetry breaking, 

which may occur at a very heavy mass scale, leading to the production of 

massive strings. In this case, because of the fact that the U(1) sym- 

metry is restored at low temperature, the linear mass density of the 

strings is approximately proportional to the temperature,5 which must be 

borne in mind in analyzing the potential cosmological significance of 

strings in this model. 
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An'altemative to Eq. (8) is for the breaking of G' to have the form 

K x U(1) -f U(1)' (9) 

where the generator of U(1)' is a linear combination of the generator of 

U(1) and generators of K. (Some proper subgroup K' of K could appear on 

the right side of (9) as a factor in a direct product without affecting 

the discussion.) The conditions for string formation in this case have 

been discussed by Schwarz and Tyupkin.lg Let Q and Y be the generators 

of U(1)' and U(l), respectively, normalized so that the smallest nonzero 

eigenvalues of Q and Y have absolute values equal to 1. Q will be given 

by an expression of the form 

Q=aY+xb-r 
i ii (10) 

where the T i are the generators of K. In order for the manifold of va- 

cuum states to be simply connected, it must be possible to deform the 

curve eiye, 0 =< 0 < 21' continuously onto the curve e inQB , 0 =< 8 < 27~, 

with n an integer. Hence, strings will occur for the type of symmetry 

breaking of Eq. (9) provided a # l/n in Eq. (1O).2o Strings do not occur 

in the case of the spontaneous breaking of the Weinberg-Salam SU(2) xU(1) 

electroweak symmetry, where Q = 3t3 + Y/2. Strings would occur, as shown 

in Ref.19, in-the SU(3) xU(1) electroweak model of Lee and Weinberg.21 

II. SCATTERING OF A PARTICLE BY A STRING 

In this section the order of magnitude of the cross section for the 

scattering of particles by a string will be obtained. The string thick- 
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ness is of order E = the inverse Higgs mass, where mH = g<cp>, with 

g the coupling constant for the Higgs self-coupling, and <cp> the magni- 

tude of the VEV of the scalar field which minimizes the potentia12; E may 

also be written as E= (v/e)-', where mV is the mass acquired by the gauge 

bosons coupled to the generators of the symmetries broken by the sponta- 

neous symmetry breaking, and e is the gauge coupling constant. 

Considering for the moment only the gauge and Higgs fields, the 

Lagrangian is given by 

L = -F aaBF;B/4 - DaqaDaqa/2 - g((p,‘p, - n212/4 (11) 

where 

F 
aa8 

=aA 
a a@ - aBAaa ' efabcAbaAcB (12) 

where the f abc are the structure constants of the gauge group. Repeated 

Greek Lorentz indices are summed from 0 to 3, and Latin indices over the 

gauge degrees of freedom. Acting on an object cp a belonging to an irredu- 

cible representation of the gauge group, the covariant derivative Da is 

given by 

. . 

. 

Da(Pa = aaqa - ie-cJ A. cp 
ab Ja b (13) 

where rJ is the matrix of the j-th generator of the gauge group in the 

representation to which the (pb belong. Equations (11-13) yield the 

field equations 
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DaDaga = g(cp,rp, - n2h a 

D,F;6 = ef abcQbDBIpc ' 

(14) 

(15) 

Let the VEV <(p,> = n,. To find na in the case of a string, we seek a 

static stringlike solution of these equations which minimizes the poten- 

tial, i.e., for which nana = n2 outside the string. Take the string to 

lie along the z-axis, and introduce cylindrical coordinates r, 8, and z. 

We will choose to define the basis in the space of the cp, in such a way 

that n,(:) varies in the l-2 plane as ; follows a circular path around 

the z-axis; this is, take 

n1 = 0 cos 0, q2 = q sin 8, n, = 0, a # 1,2 (16) 

in the region r >> E, outside the string. Note that for all the states 

described by Eq. (16) to be possible vacuum states they must be connected 

by transformations of the gauge group. That is, the gauge group must 

contain the U(1) subgroup of rotations of $ in the l-2 plane, where $ is 

the vector whose components are the cp,. We will label the generators of 

the gauge group in such-a way that the generator of this U(1) group is 

3 referred to as T . 

Take the vacuum expectation value of Eq. (14). A sufficient condi- 

tion for a solution is that 

Dc%n1 = 2 0, a = 0, 1, 2, 3 . (17) 
, 

The only nontrivial equation which results when Eq. (16) is substituted 
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in (17) is 

ieTjA (18) 

where : is a column vector whose components are n,, and the subscript 6 

indicates the component in the direction of increasing 8. Since G(8) 

3 makes an angle 0 with the l-axis in abstract space, T , which is the ge- 

nerator of intinitesimal rotations in the 1-2 plane, has the effect of 

generating infinktesinal increases in 8; hence, acting on ;, r3 has the 

same effect as the operator -i-&, the generator of infinitesimal rota- 

tions about the z-axis. Thus Eq. (18) can be satisfied by making the 

coefficients of -iL and r 3 
de equal, and choosing A. = 0, j # 3. Hence 

J 
Eq. (17) is satisfied if 

<A3e> = l/(er> (19) 

with all other <Aio> = 0. Equations (16) and (19) also provide a solu- 

tion of Eq. (15) f or the gauge field when the VEV is taken. The right 

side of (15) vanishes By Eq. (17). On the left side, we assume that 

<Aacc) can be treated like a classical field, as will be justified further 

below, so that <AaoAb @> = <Aau><Ab,>. Then the nonlinear terms in F 
aaB -, 

all vanish, since f 
a33 = 0 by the antisymmetry of the structure constants. 

HenceF '=dandF 
aOf aij =E ijk(Vx<xa>)k. Since Eq. (19) can be written as 

<$> = Ve/e (20) 

F aij = 0 since it is the curl of a gradient, so that the left side of Eq. 

(15) also vanishes. Thus outside the string we can take the VEVs of 'pa 
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and A aci to be given by Eqs. (16) and (19). Within the string, of course, 

<cpa> r-+d 0, since Eq. (16) cannot be extended continuously to the origin. 

Let us now introduce additional particles into the theory, and study 

their scattering by the string. (A similar problem for the case of domain 

walls has been studied previously.22) For simplicity, take them to be a 

set of scalar particles described by the real scalar fields ai; the con- 

clusions will not depend on the spin structure. Let Ta be the matrix of 

the ath generator of the gauge group in the representation of the cr., and 
1 

-t 
o a column vector with ai as components. The CJ particles have an intrin- 

sic real mass m, and also develop a mass as a result of a gauge invariant 

coupling to cp, with coupling constant h, of the form h$*Taz(p 
a' 

where, for 

specificity, the Higgs fields cp, are now taken to transform under the ad- 

joint representation of the group to which the generators also belong. 

Consider, to begin with, a representation of the T' in which T1 is dia- 

gonal, so that we are considering scattering of particles with definite 

T? The Klein-Gordon equation satisfied by a component of z with energy 

E will be, for r > E, 

(_nini + M2(e) - E2);: = 0 (21) 

where the mass-squared matrix M2 is given by 

M2=m2+hn(T1cosB+T2sin8) . (22) 

Consider an incident particle of energy E travelling in the negative x- 

direction and described by the incident wave function 

aoi(x> = emikxui 
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where ui is the wave function in the space of the gauge group whose jth 

component is (u.) = 6 
lj ij and 

k = (E2 - ~:~(o))l'~ = (E* - m2 - hnT:i)1'2 * (24) 

Scattering will clearly take place out of the state ooi, because of the 

angular dependence of M2 ii' because of the coupling to other u oj ' j # i, 

due to the off-diagonal elements of T2 which enter M2 for 8 # 0, and be- 

cause of the additional r--dependence in D e due to <A3e>; e.g., if 

T1 ~0, ii there will be a range of energies for which 

i&h) ' E2 ' M?(O), in which case the particle is energetically for- 

bidden from penetrating undeviated into the region of negative x while 

remaining in the state u.. 
1 

However, it is easy to see that the scatter- 

ing is of a trivial character, and is, in fact, an artifact of the choice 

of gauge. Namely, define 

oRi = exp(iT3f3)ooi(x) t R(e)ooi(x) . (25) 

One easily finds that uRi(x) is a solution of Eq. (21). Namely, 

R-'(0)M2(e>R(B) = M2(0), 2 so that M (0) is a diagonal operator acting on 

"Ri' Moreover, DiuRi = 3.u 1 oi' This is trivial except for De. In the 

case of D e,, the additional term (iT3/r)uRi which comes from (l/r)d/de 

acting on R(8) is just cancelled by the term -ie<Aje>T3uR., by Eq. (19). 

Hence, Eq. (21) for aRi reduces to the statement that u oi satisfies the 

free particle Klein-Gordon equation with M2 = M2(0) , which, of course, 

it does. Thus, apart from the deviation from Eq. (21) for r < E, within 

the string, the only effect of the string is to replace uoi by uRi, that 
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is, to cause the particle's direction in abstract space to rotate adia- 

batically to follow the direction of G. 

This result can be understood by noticing that, under the local 

gauge transformation consisting of a rotation about the 3-axis in ab- 

stract space by the angle a(e) = -8, the solutions found in Eqs. (16) and 

(19) behave as 

up> + rl, n,(e) -+ 0, a # 1 (264 

<Aje> + <A3B> + (Va(e)),/e = 0 

where the last equality in Eq. (26b) will hold except on the half plane 

where a(e) is discontinuous. Hence, by a suitable choice of gauge one 

can arrange things so that G has a constant direction and <Aaa> = 0 for 

r > s except on a singular surface, which is the analog of the Dirac 

string singularity in the case of a magnetic monopole. By choosing the 

definition of a, one can take the position of the singular surface, which 

is the only indication for r > E of the existence of the string in this 

w-w, to be anywhere desired; e.g., if a is defined to run from -IT to 

T, the singular surface-will be 8 = TT, the xz-plane with x < 0. Thus the 

singular surface can always be taken to be behind the string with respect 

to the incident particle, so that the only evidence of the string seen 

by the incident particle will be the stringlike region itself at r < c.23 

The fact that <A3e> is a pure gauge field, obtainable by gauge transform- 

ation from a field which is identically zero (almost everywhere) is, of 

course, consistent with the result that the F 
aaB 

to which it gfves rise 

are zero, since the statement that all F 
aaB 

= 0 is invariant under local 
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as well as global gauge transformations. Also, since the effect of a 

local gauge transformation is to add a c-number field to the vector po- 

tential, this justifies our treatment of A as a classical field as far aa 
as its VEV is concerned. 

One can now treat the scattering from the string using the familiar 

techniques of partial 

Schiff's text,24 with 

cylindrical geometry. 

uRi for r > E as 

r 

wave analysis, following, e.g., the discussion in 

the appropriate changes to go from spherical to 

We write the wave function for an incident wave 

1 
U si = 

1 
c An(cos GnJn(kr) + sin bnNn(kr>> cos ne R(B)ui (27a) 
n J 

N 'Ri (27b) 

where Nn is the solution (Neumann function) to Bessel's equation of or- 

der n which is singular at the origin. The differential cross section 

2 per unit length of string is given, as expected, by dcr/dt3 = (f(e)] . 

(We have neglected possible inelastic scattering to states u ' # i. Rj' J 
This does not affect the general conclusions.) Using the standard ex- 

pansion for e ikx as a series in Jn(kr) cos ne, as well as the asymptotic 

form of the Bessel and Neumann functions, and equating the expressions 

for usi on the right sides of Eqs. (27a) and (27b) in the asymptotic re- 

gion,yields an expression for f(e) in terms of the phase shifts 

f(e) = (2/kn)1'2eia'4 C cnei*n sin 6 cos ne n n 
(28) 

whence, on integrating over angles, one obtains for the total cross 



-22- 

section 

utot 
= (2/rk) c ci sin26n 

n 
(29) 

where c 
0 

= 2, c n = 1, n > 0. The phase shifts are obtained by equating 

the logarithmic derivatives of the coefficient of cos ne in the exterior 

solution for u si in Eq. (27a), evaluated at r = E, to the corresponding 

quantity for the interior solution valid inside the string. Denoting the 

logarithmic derivatives of the interior partial waves evaluated at r = E 

by Y n' one finds 

tan 6 n = (kJ;(ka) - ynJn(ks))/(kN'n(ke) - ynNn(ks)) (30) 

where the prime denotes the derivative of the function with respect to 

its argument. Our primary concern is with the case of a thin string, 

ks << 1. In this limit Jn and Nn, for n > 0, go as (ks>n and (ke)-n, 

respectively, so that the JA and NA terms dominate and one gets 

tan 6 - (ke)2n for n > 0, leading to a contribution of order e(ke) 4n-1 

to the total cross section from the partial waves with n > 0; thus, as 

expected, one gets negligible contributions equal to the string thick- 

ness multiplied by powers of the thickness divided by the wave length. 

However, for n = 0, the situation is somewhat different, reflecting the 

difference between cylindrical and spherical geometry. For ke + 0, 

JO 
N constant, and N 

0 
.-w log ke. Now the Jo and No terms dominate in Eq. 

(30), and one obtains tan 6 
0 

- l/log ke, so that the n = 0 phase shift 

only vanishes logarithmically as ke + 0. One thus finds, for ke << 1, 

that the total cross section is given by 
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U tot = (a2/k)/(log2ke> . (31) 

Thus the magnitude of the total cross section in the case of a thin 

string is controlled not by the thickness of the string, but by the wave- 

length of the incident particle, albeit divided by a logarithmic factor 

which can become numerically important if ke is sufficiently small. 

We have derived this result for the case of a scalar field. How- 

ever, from the derivation, it will hold for any field whose components 

obey the Klein-Gordon equation. Equation (31) will fail only in the 

event that y, becomes very close to J'o(ke)/Jo(ks). It may be worth ob- 

serving that there is one case where this happens, namely, in the scat- 

tering of electromagnetic radiation in the special case that it is polar- 

ized with the electric field perpendicular to the string axis. Since 

the boundary condition requires the continuity of the tangential compo- 

nent of 2, which equals E cos 8, the scattered wave which must be added 

to the incident wave to fulfill the boundary condition has no n = 0 

piece, and the lowest nonzero phase shift is n = 1. However, if the 

electric field is polarized along the string direction, E tan = E, and 

(Jo # 0. 

III. DYNAMICS OF A COLLAPSING CIRCULAR STRING 

Let us now consider the problem of the collapse of a closed loop of 

string, using Eq. (31) in estimating the effect of energy dissipation as 

a result of collisions. We will consider the case of a circular loop, 

thus neglecting the possible effect of oscillations in the case of 
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noncircular loops; energy dissipation by gravitational radiation will 

also be neglected. Vilenkin's work7'10 indicates that both oscillations 

and gravitational radiation are potentially important, and must also be 

considered in a complete treatment of the problem, but that will not be 

attempted here. 

Closed loops of string may form in the initial phase transition 

which gives rise to the strings, or they may be formed later when, as 

the strings move, two of them cross and a "change of partners" occurs. 

The strings will have a mass per unit length given by2 

1-1=n 
2 . (32) 

Consider a closed loop which, when formed, is a circle of radius R, and 

in particular, a small portion of the loop subtending an angle 6 which 

remains constant as the string collapses; 6 will be used as a symbol 

for the small element of string as well as for the value of the angle. 

The overall rest frame of the loop and the instantaneous rest frame of 6 

will be designated by S and S', respectively; S is assumed to be also 

the rest frame of matter, i.e., the frame in which the average particle 

velocity is zero. 

To begin with, consider the free collapse of the loop, neglecting 

the frictional force due to collisions with the surrounding particles. 

Let v designate the inward radial speed of 6 when the loop has collapsed 

to a radius r (all three-vector components will refer to the inward ra- 

dial direction). Since energy is conserved in S, E = uR6, while 

E' = ur6 and p' = 0; hence nR6 = yur6, or 
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y = (1 - ,2)-l/2 =R/r . 

2 2 l/2 Since p = u6Rv = ~6R(l - r /R ) , differentiating yields for the . 

&vector force Tu = dpu/dr due to the tension 

Tr = ydp/dt = 116 (344 

(33) 

while 

TO = ydE/dt = 0 . (34b) 

It is interesting to look at the result of transforming these equations 

to S'. One finds T'r = dp'/dt' = ~1.16. Initially, when y = 1, so that S' 

and S coincide and the string appears circular in S', this is just what 

is expected for a string whose tension is given by the mass per unit 

length u. The additional factor of y arises from the fact that 

T: = 2T' sin6'/2, where T' is the string tension in S'. The arc of 

string appears Lorentz contracted in the radial direction in S; i.e., 

the arc is less bowed in S than in S'. Thus 

6 = 6’lY (35) 

and hence the result for Ti corresponds to a string tension equal to u 

for arbitrary values of y. This value for the tension is also consistent 

with the result T' = dE'/dt' = -yvnG = ud(rb)/dt'; since the transverse 0 
arc length is Lorentz invariant and thus given by r6 in either frame, 

dE'/dt' is just the rate in S' at which work is done by the tension 1-1 as 

the arc length decreases. 



-26- 

To include the effect of collisions, write 

dp,,/dt = $,/Y + (dp,,/cWcoll = tu + fu . (36) 

The quantities t and fP are, of course, not 4-vectors; 
?J 

their spatial 

components t r = Tr/y and fr represents the forces acting on 6 in S due 

to the string tension and to collisions, respectively. The collision 

force fP is given by 

fu = nvur& &Y 
!J (37) 

where u is the total string cross section/unit length, n is the number 

of particles/unit volume, and z 
P 

represents the average transfer of p 
lJ 

to the string per collision. Take the string to be infinitely massive, 

and the surrounding gas of particles relativistic. Then, working in the 

frame S', one has E' = 0 and G' = -2p', where p" is the average momen- 

tum in S'. Since p' = 0, p' = yk = yT at temperature T. By Lorentz 

transformation, 

E = -2yvP' 

Y5 = -2yP' . 

(3W 

(38b) 

The foregoing discussion is based on the assumption that (in the 

absence of gravitational radiation which we are neglecting) the total 

energy of the string is conserved except for energy losses due to col- 

lisions. Thus we are neglecting the possibility of particle production 

during the collapse of the string. This is presumably valid as long as 

the radius of curvature of the string is large enough that different 
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parts of the string do not interact with one another; in this case the 

string can be validly approximated as locally straight on the length 

scale appropriate to elementary particle interactions, and a straight 

string will not decay into elementary particles. Since the vacuum is 

invariant under the unbroken symmetries of the gauge group, the string 

is therefore neutral with respect to the charges which generate the un- 

broken symmetries; these are the charges which couple to the gauge fields 

which remain massless and give rise to long-range interactions after the 

spontaneous symmetry breaking. Hence, the forces by which the parts of 

the string can interact with one another have a range of order q'. Thus 

if the angle 6' corresponding to a segment of loop of length G1 in its 

rest frame differs appreciably from 0, such a segment will not be locally 

straight and one expects elementary particle radiation to become important. 

From Eqs. (33) and (35), 6' 2 1 for r6 = <' when 

r = (T)1'2<1Z r. . (39) 

If r. is greater than the Schwarzchild radius, the present discussion 

certainly becomes invalid, and one may expect the string energy to be 

converted into elementary particle radiation before black hole formation 

occurs. Hence the present argument is valid only for the case 

GM = G~ITR~ > ro, or 

R & <1/G2u2 (40) 

If energy loss due to friction is significant in the collapse, then 

Eq. (40) must be modified by replacing M, the total mass of the loop, 

by the fraction of the initial energy which is not dissipated in colli- 

sions. As long as Eq. (40) is satisfied, then the collapsing string will 
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form a black hole before elementary particle radiation becomes important. 

The conditions expressed by Eqs. (39) and (40) may also be thought 

of in terms of the proper acceleration of an element of the loop. The 

magnitude of the proper acceleration a' of the element 6 is given by 

a' = Ti/prS = y/r M R/r2 from Eq. (33) * Hence r=rO corresponds to 

a’ = 
“v, so that r < r o corresponds to values of a' which are appreciable 

on the mass scale m/5 

The strings are first produced at temperature T z n z "v' e. In C 
the standard cosmology, with the early universe treated as an expanding 

relativistic gas, time and temperature are related by 

t = C/T2 (41) 

where the constant C = [45/32a3GN1 l/2 in our units,26 and N is approxi- 

mately the total number of different particle species present in the gas. 

Taking N M 100, which is a typical order of magnitude in GUTS, gives 

c = 1030 in our units. The largest possible value of R is R=t, namely 

a radius equal to the horizon length. Taking mV W 10 15 GeV Fz: 102', one 

finds t & 10 -28 ; 1o-39 set as the time of first formation of grand 

unified strings. From Eq. (40) one has R/t = RT2/C > (T/Tc)2(CmVG2u2)-1; 

numerically this gives R/t > 1015T2/T2 C’ Thus loops formed in the initial 

phase transition at T=Tc fail to satisfy the condition (40). Hence in 

the grand unified case we shall only be concerned with loops formed at 

temperatures T < To = (Tc/10 l5 1'2, i.e., at t > 1O-24 ) set, at which time 

the largest possible loops, with R M t, may produce black holes before 

losing their energy by elementary particle radiation. At later times 

100~s with R > (T/To)Lt will collapse to black holes if friction may be 

neglected. The formation of closed loops at T c Tc may come about, as 
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alreadylmentioned, as a result of collisions between strings in which a 

"change of partners" occurs. It may also come about as the result of the 

formation of closed loops in the initial phase transition with radii 

greater than the horizon length at that time. Vilenkin has shown7 that 

such loops undergo conformal expansion, with the expansion of the universe, 

up to the time t M R at which the entire loop is included within the 

horizon, at which point they begin to collapse. Hence, for the present 

discussion, such loops may be thought of as produced at t=R, the time at 

which collapse starts. Since all loops produced at T << Tc are expected' 

to have R z t, once black hole formation has become possible at all one 

expects, assuming frictional effects are not important, that almost all 

loops which are produced will be large enough to collapse to black holes. 

A similar calculation for the case of electroweak strings, with 

"v M 100 GeV, gives t Z 10 -13 set as the time of the initial phase transi- 

tion. However the condition (40) requires (Tc/T)2 & 1054, which, from 

Eq. (41), implies t & 10 41 sets, far greater than the age of the universe. 

Hence electroweak strings will always decay by elementary particle radia- 

tion before black hole formation occurs. 

From the foregoing, it is clear that the discussion will be con- 

cerned with temperatures T << l/e, and thus, in evaluating Eq. (37), we 

shall be concerned with the case of long wavelength scattering. Hence, 
I 1 

apart from logarithmic factors, u will be of order (p') -1 . Combining 

Eqs. (31), (37), and (38), one obtains 

fr = -2nvryS(r2/log2(yTs)) (42) 
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and 1 

fO = vf r l 

(43) 

Suppose the loop undergoes a collapse to a final radius r between times 

ti and t f . The energy dissipated during this collapse as a result of 

J 
tf 

collisions is W(r) =- fodt. As a result of Eq. (43), this can be 
ti 

written in the usual way as the line integral of the force, so 

/ 

I. 

W(r) = 
R 

frdr' . (44) 

(It is perhaps worth noting that in the case of the tension the result, 

analogous to (44), that would normally hold in special relativity, 

namely that J todt = $ trdr, is not correct. This is because the mass 

of 6 changes during the motion, and hence there are additional terms in 

dE/dt = d(ym)/dt and in dp/dt, involving dm/dt, which spoil the usual 

relation between force and the rate of change of energy.) The equation 

of motion, Eq. (36), is quite complicated, primarily because of the 

highly nonlinear form of the velocity dependent frictional force in Eq. 

(42), even when we omit, as we shall, the final parenthetical factor, 

which is slowly varying because of the logarithmic dependence and nu- 

merically sufficiently close to 1 so as not to affect estimates in an 

important way: The frictional force can be written in the usual form 

f = 
r -av, but here a depends on r and v. In addition, a has an explicit 

dependence on the independent variable t through the density n. In a 

relativistic gas the energy density nE Z NT 4.27 , combining this with 

Eq. (41) gives for the number density 

n Z NC3’2/t3’2 . (45) 
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Fortunately, it turns out that an exact solution is not needed; it is 

possible to find an upper bound to W(r) which shows that, in cases of in- 

terest, the effect of collisions is not important. To do this, note that, 

since the effect of f is to slow down the collapse of the ring, an upper 
r 

bound for y is obtained by using the result of Eq. (33) for the collapse 

of the loop in the absence of collisions. Since v < 1 and n&NC 3'2/t:'2 9 

where t 0 is the time at which the loop began to collapse, we have from 

Eqs. (421, with the factor in parentheses neglected, and (44), that W(O), 

the total energy dissipated by collision, satisfies 

W(0) < 2NC3'2R2&/t3'2 . 0 (46) 

The condition that the fractional loss of energy due to collisions be 

small is that W(0) << uR6, which is just the condition t 312 >>2NC3'2R/u. 0 
This restriction clearly becomes more stringent as R is increased. Since 

the maximum value of R is t 0’ the fraction of energy lost due to colli- 

sions will be small for all loops formed at time t if 0 

to >> 4N2C3/p2 . (47) 

In the grand unified case, this becomes to >> 5x10 -35 sec. Since only 

those closed loops formed at t > 10 -24 set satisfy inequality (40), the 

energy lost due to collisions during the collapse of a circular loop is 

negligible for all cases of interest, that is, for all cases in which 

(40) is .satisfied. Thus collisional energy loss will not prevent the 

loop collapsing to a black hole before elementary particle production 

can become important. 
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For electroweak strings we have already seen that the inequality 

(40) is never satisfied, so that elementary particle radiation can always 

be expected to prevent black hole formation. We may also note that 

frictional effects, as well, are important in the electroweak case. 

From Eq. (47) one obtains t 0 > 1o19 sets in the case of electroweak 

strings. That is, only in the case of loops formed at t > 10 19 sets, 

which exceeds the present age of the universe by at least an order of 

magnitude, could one be sure that the fraction of energy dissipated by 

collision during collapse is small. 

Finally we can examine models of the type in Ref. 16, where the 

U(1) symmetry whose spontaneous breakdown is responsible for string 

formation is restored at low temperature. As mentioned earlier, in this 

case 1-1 is temperature dependent, vanishing at the temperature T' at C 
which the symmetry is restored; if T' << T C C’ then the VEV's of the Higgs 

fields are just proportional to the temperature,5 and thus u = T2 = c/t. 

To study the importance of collisions in such a model one simply has to 

replace LI by C/to in Eq. (45). The sense of the inequality is then re- 

versed, and one finds to < 1/4N2C z 10 -45 set < t C’ Hence, in such a 

model one expects that the effect of collisions will always be important, 

and collapse to black holes will not occur. Black hole production is, 

in any event, not a problem in such models; because of the decrease of 

u with t the observational consequences of black hole production in such 

models would be characteristic of models with a mass scale much less than 

the grand unification scale, and hence not important cosmologically. On 

the other hand, for the same reason closed loops in such models formed 

near the recombination time will be too light to serve as seeds in the 

production of galaxies. 
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Let us sum up the conclusions briefly. Frictional effects on the 

collapse of closed loops in standard GUTS are negligible, and will not 

serve to suppress the possible overproduction of black holes discussed 

in Ref. 7. It is quite possible that black hole production is suppressed 

for other reasons, in particular oscillations and gravitational radia- 

tion. It also could be that the estimates of the rate of formation of 

closed loops in Ref. 7 are too large; as pointed out there, this es- 

pecially might be true if the likelihood of a change of partners 

occurring in a collision between two strings is very small, and this 

question requires further study. If black hole production cannot be 

suppressed by mechanisms other than friction, then GUTS in which string 

formation occurs are experimentally excluded. On the other hand, if 

such suppression is possible, then GUTS with strings may offer an at- 

tractive explanation of galaxy formation. Frictional effects are im- 

portant in the collapse of closed strings with values of P smaller than 

that corresponding to the grand unification mass scale. This applies 

both to electroweak strings, and to grand unified strings in models in 

which a U(1) symmetry is restored at low temperatures, leading to a 

value of 1-1 which decreases with time. There do not appear to be poten- 

tial arguments against GUTS of this type based on the fact that they 

lead to string formation. On the other hand, strings in these models 

are not capable of serving as seeds for the production of galaxies. 
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