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1. String geometry

Strings see geometry in different ways than point particles do because of their extended na-
ture. This feature has led to many novel examples of string geometry which involve modifications,
sometimes radical, of standard geometric structures. One of the first examples of such string sym-
metries was T-duality, which due to string winding modes implies that large and small compact
directions are indistinguishable in string theory. Together with related phenomena such as mirror
symmetry, these predictions from string theory have opened up many unexpected developments in
geometry. In many such cases string theory is usually studied in regimes whereby a geometric de-
scription is available. However, via T-duality string theory also admits non-geometric backgrounds
as consistent solutions [23].

It has been long hoped that closed strings, and also other degrees of freedom in string theory,
provide good probes of Planck scale quantum geometry where the classical notions of general
relativity break down. In fact, a simple argument for the semi-classical quantization of gravity
suggests that spacetime coordinates themselves should be subjected to an uncertainty principle
∆x ≥ `P; here `P is some suitable fundamental length scale such as the Planck scale or the string
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length. This requirement ensures that one cannot localize events in spacetime so as to produce
strong gravitational fields that hide the events to distant observers. In this article we shall review
how such spacetime uncertainties are related to noncommutative spacetime structures and to non-
geometry in string theory. We describe how a complementary target space approach to quantum
gravity based on noncommutative geometry is related to certain non-geometric generalizations of
the target spacetime in string theory.

A precise realisation of noncommutative geometry in string theory first appeared in the dynam-
ics of the open string sector. It was realised some time ago that D-branes in constant background
Neveu–Schwarz B-fields provide concrete dynamical realisations of noncommutative spaces [19,
61, 62]. The low-energy dynamics of this system is described by a noncommutative gauge the-
ory on the D-brane worldvolume, together with Seiberg–Witten maps which relate them to ordi-
nary (commutative) gauge theories. These developments have led to a flurry of investigation over
the past 15 years into the structures and properties of these noncommutative field theories; see
e.g. [25, 64] for early pedagogical reviews on the subject. The key feature of these realisations
is that they involve a low-energy regime of string theory which decouples all massive open string
states and all closed string modes while still retaining the effects of noncommutativity. The emer-
gent noncommutative geometry in this limit is completely analogous to that of electron coordinates
in a constant magnetic background in the lowest Landau level (see e.g. [65]).

Analogous structures can also arise in the dynamics of the closed string sector as a result of
the intertwining of momentum and winding modes in non-geometric backgrounds. To understand
this point, let us recall how noncommutativity in the open string sector arises following [62]. In the
Seiberg–Witten scaling limit which decouples the bulk closed string modes from the open string
boundary degrees of freedom, the two-point function for string field insertions on the boundary
of a disk in tree-level open string perturbation theory depends only on the relative ordering of
the insertion points, and not on their actual positions. This means that the two-point function is
a well-defined target space entity that is independent of the worldsheet coordinates. It leads to a
noncommutative 2-bracket between string coordinates, with the deformation provided by a bivector
which is determined by the inverse of the constant two-form B-field. Quantization of this 2-bracket
yields a star product of fields on D-brane worldvolumes and noncommutative gauge theory as a
deformation of the low-energy effective field theory in the open string sector.

The natural question of how analogous structures can arise in the closed string sector has re-
mained somewhat unclear until the recent works [11, 48, 14]. At tree-level in closed string pertur-
bation theory, the two-point function on a sphere depends explicitly on the worldsheet coordinates
in the low-energy limit, and so is not a bonafide target space quantity. On the other hand, the three-
point function depends only on the relative orientation of the three insertion points on the sphere,
and hence a 3-bracket structure emerges on target space. It is natural to identify this 3-bracket as
a measure of nonassociativity of the closed string coordinates, and in this case the deformation is
provided by a trivector induced by a non-geometric R-flux which is T-dual to the constant three-
form H-flux of a Neveu–Schwarz B-field. Quantization of this 3-bracket structure is anticipated
to lead to closed string nonassociative gravity as a deformation of the low-energy effective field
theory in the closed string sector.

In contrast to open string noncommutativity, which can arise in on-shell string scattering am-
plitudes because only the cyclic ordering of vertex operators is conformally invariant, the nonasso-
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ciativity observed here is a truly off-shell phenomenon. Once momentum conservation in tachyon
scattering amplitudes is taken into account, all traces of nonassociativity disappear and the usual
crossing symmetry of correlation functions in two-dimensional conformal field theory is recovered.
The appearence of nonassociativity should be regarded as a feature whose consistency induces
constraints, such as flux quantization, and teaches us something about the nature of non-geometric
string theory. In the following we shall tackle this nonassociative deformation of geometry head on
and describe techniques for describing its proper quantization, which should be regarded as a type
of short distance spacetime quantization which is not seen by strings due to their finite intrinsic
length and resolution; in this sense these non-geometric quantum geometries can arise as consis-
tent string backgrounds. In particular, we shall show how nonassociativity can be accounted for
via the derivation of dynamical star-products, via a categorified version of Weyl quantization, and
through quasi-Hopf cochain twist quantization techniques. Our quantization obeys the requisite
cyclicity requirements of two-dimensional conformal field theory, and can be used to formulate a
consistent nonassociative version of quantum mechanics. We will describe several analogues of the
Seiberg–Witten map interpolating between associative and nonassociative theories, particularly in
the framework of a nonassociative theory of gravity, and in the context of extending these structures
to non-constant backgrounds.

The appearence of nonassociative geometry in string theory and of systematic noncommuta-
tive deformations of gravity is not new. Nonassociative gauge theories arise naturally in the open
string sector when D-branes are placed in a non-constant B-field background; the nonassociative
deformation in this case is controlled by the three-form H-flux H = dB 6= 0 through Kontsevich’s
deformation quantization of H-twisted Poisson structures which is reproduced by the correlation
functions of open string tachyon vertex operators [21, 33, 31]. These open string nonassociative
spaces are described locally by associative algebras and noncommutative gerbes [7] with charac-
teristic class [H] via a patching of the twisted Poisson manifold. Cyclicity appears and nonas-
sociativity disappears in on-shell tachyon scattering amplitudes by using the Dirac–Born–Infeld
field equations on the D-brane [31, 32]. On the other hand, noncommutative gravity has been
formulated within the cocycle twist deformation framework of [8] which gives a systematic for-
mulation of differential geometry and general relativity on noncommutative spacetime. However,
it is argued by [3] that the twisted diffeomorphisms underlying the symmetries of these associative
noncommutative deformations do not arise as physical symmetries of string theory, and that the
low-energy effective field theory contains terms which cannot be accounted for by a noncommuta-
tive deformation of gravity. Although all of these structures will appear in the following, as long
as we are looking for (nonassociative) quantizations of gravity within the realm of string theory,
the mechanisms and features of the theory we develop in the following will be rather different in
nature.

2. Non-geometric string backgrounds

2.1 Non-geometric flux compactification

Compactifications of string theory are required to relate them to observable phenomenology
and cosmology. Flux compactifications include p-form fluxes along the compact directions; they
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stabilize moduli and can lead to generalized topological as well as geometric structures wherein
open neighbourhoods are patched together by string symmetries. In particular, by demanding T-
duality covariance, Neveu–Schwarz H-fluxes naturally lead to non-geometric fluxes. While the
standard geometric flux compactifications do not give all four-dimensional supergravity theories,
non-geometric fluxes enable more gaugings and avoid many no-go theorems. In this section we
describe the emergence of non-geometry in flux compactifications of string theory, and how non-
geometric Q-fluxes lead to closed string noncommutativity.

The prototypical string background is provided by the three-torus T 3 with constant H-flux and
dilaton field, which by application of the Büscher rules gives rise to geometric and non-geometric
fluxes via the T-duality chain [37, 63]

Hi jk
Ti−−→ f i

jk
Tj−−→ Qi j

k
Tk−−→ Ri jk . (2.1)

Here Ti, i = 1,2,3 denotes a T-duality transformation along the i-th cycle of T 3, which in each step
maps the flux to a new flux with a raised index; geometrically this means that a given differential
form component is dualised to a vector field component. Let us run through the geometric and
non-geometric interpretations of each duality frame in the chain (2.1).

The first member of the T-duality chain is the original flat torus T 3 with H-flux H = dB.
Abelian fluxes in string theory obey analogues of the Dirac quantization condition (see e.g. [66]),
and hence the three-form determines a cohomology class [H]∈H3(T 3;Z) =Z which is the charac-
teristic class of a gerbe. Such a gerbe lies within the realm of what we shall consider as a geometric
background.

The next member of the chain involves a metric flux f , which determines a torsion in the
geometry through the Cartan–Maurer equations

dei =−1
2 f i

jk e j ∧ ek

for one-forms ei dual to a local frame of vector fields ei with [ei,e j] = f k
i j ek. In this T-duality

frame the B-field vanishes and the geometry is that of a twisted torus or Heisenberg nilmanifold,
which is a circle bundle of degree [H] over a two-torus T 2 [60, 45]. Hence this is still a geometric
frame.

The situation becomes more interesting at the next member of (2.1) which involves non-
geometric Q-flux; closed strings in Q-space can be locally modeled as a T 2 bundle over a circle
S1. In this case the closed string momentum and winding modes become entangled, and the back-
ground is called a T-fold as the transition functions between local charts now involve stringy T-
duality transformations [30, 22, 37]. In this instance the metric and B-field are well-defined locally
but not globally; in particular, the T 2-fibre is glued back to itself by an SL(2,Z) transformation as
one winds around the base S1. In [51, 28, 16] it is argued that this non-geometry at the topologi-
cal level can be regarded globally as a fibration over S1 by noncommutative two-tori T 2

θ
with the

commutation relations [xi,x j] = iQi j
k xk among local coordinates. Here θ i j(x) = Qi j

k xk determine
a field of local noncommutativity parameters parametrized by the coordinates of the base S1; this
bivector is naturally dual to the B-field which is a potential for the original H-flux in the T-duality
chain. These topological arguments are based in the open string sector in the sense that they exploit
the realisation of T-duality in the twisted K-theory of certain C∗-algebras; in particular, in the clas-
sical limit θ = 0 they realise a geometric space only up to Morita equivalence. Later on we shall
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see how to regard this identification more concretely and physically in the context of closed strings
which wind in the non-geometric background.

The final member of the T-duality chain (2.1) involves the non-geometric R-flux and leads to
a background which is not even locally geometric [63]. One may object to the existence of this
background because a B-field which sources a constant non-zero H-flux is non-constant, hence the
final direction is not a Killing isometry of the background and the standard Büscher rules cannot
be applied to the Q-flux background. However, the prescription is completely well-defined at the
level of worldsheet conformal field theory, and the final T-duality transformation is performed by
flipping the sign of the corresponding right-moving closed string coordinate; the failure of the
Büscher rules simply reflects the absence of local geometric structures. It is argued by [15, 26]
that the globalisation of this non-geometry is a (topological) nonassociative three-torus, regarded
as a fibration over a point in which the local fibre coordinates obey a 3-bracket relation of the form
[xi,x j,xk] = Ri jk; in this setting nonassociativity is realised in terms of twisted convolution products
in a Busby–Smith convolution C∗-algebra, which again reduces in the classical limit to a geometric
setting only up to Morita equivalence. Later on we shall find more concrete physical realisations of
such nonassociative spaces in the context of closed strings which propagate in the non-geometric
background. We are only beginning to understand the (non-)geometry of R-flux backgrounds in
terms of new types of spatial noncommutative and nonassociative structures.

2.2 Magnetic backgrounds in quantum mechanics

To help understand the meaning of a nonassociative geometry, we shall now describe a simple
magnetic field analog of nonassociativity in the ordinary quantum mechanics of point particles.
This example illustrates that in fact nonassociativity arises naturally in the wild, and how it should
be interpreted in the context of closed string non-geometric backgrounds. For this, let us start by
recalling that the noncommutative deformations of D-brane worldvolumes induced by open strings
in constant B-field backgrounds in the Seiberg–Witten scaling limit have a natural analog in the
physics of the Landau problem (see e.g. [65]). For charged particles constrained to move in two
dimensions under the influence of a perpendicularly applied constant magnetic field BBB = Bẑ, the
strong field limit projects the system to the lowest Landau level and the effective Lagrangian is of
first order in time derivatives of the particle coordinates (x,y); canonical quantization thereby gives
a noncommutative position space with relations [x,y] = iθ , where the noncommutativity parameter
θ is proportional to B−1.

A more general magnetic field analog was proposed some time ago by Jackiw [40]. Charged
particles in three dimensions experience a magnetic field BBB (with sources) via the Lorentz force
law π̇ππ = e

m πππ×BBB for the physical (gauge covariant) momentum πππ . The Hamiltonian H = 1
2m πππ2

generates the Lorentz force π̇ππ = i [H ,πππ] only for a noncommutative momentum space described
by the phase space commutation relations

[xi,x j] = 0 , [xi,π j] = i h̄δ
i
j , [πi,π j] = i h̄ eεi jk Bk . (2.2)

In a magnetic background translation invariance is lost, but there is still a gauge symmetry under
the magnetic translations U(aaa) = e

i
h̄ aaa·πππ . It follows from the commutation relations and the Baker–

Campbell-Hausdorff formula that they do not commute,

U(aaa1)U(aaa2) = e−
ie
h̄ Φaaa1 ,aaa2 U(aaa1 +aaa2) ,

6
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where Φaaa1,aaa2 = 1
2 (aaa1 × aaa2) · BBB is the magnetic flux through the (infinitesimal) triangle 〈aaa1,aaa2〉

spanned by the two vectors. This is simply the well-known result that the wavefunctions of a
particle in a magnetic background only carry a projective representation of the translation group;
in particular, the projective phase is a 2-cocycle of the abelian group of translations.

More dramatically, nonassociativity generically arises through the violation of the Jacobi iden-
tity, as can be seen by computing the Jacobiator

[πi,π j,πk] := [πi, [π j,πk]]+ [π j, [πk,πi]]+ [πk, [πi,π j]] =−e h̄2
εi jk ∇ ·BBB =:−e h̄2 Hi jk .

As a consequence, the magnetic translations do not associate and have an associator given by(
U(aaa1)U(aaa2)

)
U(aaa3) = e−

ie
h̄ Φaaa1 ,aaa2 ,aaa3 U(aaa1)

(
U(aaa2)U(aaa3)

)
where Φaaa1,aaa2,aaa3 =

1
6

(
(aaa1×aaa2) ·aaa3

)
∇ ·BBB is the magnetic flux through the (infinitesimal) tetrahedron

〈aaa1,aaa2,aaa3〉 spanned by the three vectors. Here the projective phase is a 3-cocycle of the abelian
group of translations.

There are now two cases to consider. If we demand that the magnetic field satisfies Maxwell’s
equations, then ∇ ·BBB = 0; in this case there are no magnetic sources, no flux, and associativity
persists. Then the physical momentum operators have the standard representation πππ =− i h̄∇−eAAA
on L2-wavefunctions in terms of a vector potential AAA for the magnetic field; in particular, for a
constant magnetic field BBB = Bẑ the commutation relations (2.2) in the strong field limit reproduce
the noncommuting coordinates of the lowest Landau level [65]. On the other hand, if ∇ ·BBB 6= 0 then
magnetic monopoles are present, and nonassociativity of the magnetic translations persists unless

e
h̄ Φaaa1,aaa2,aaa3 ∈ π Z .

This is simply the Dirac quantization condition for magnetic charge; in this context it ensures the
basic postulates of quantum mechanics, wherein associativity of operators is required. In this in-
stance associativity of the global translations is satisfied, even though the infinitesimal translations
still violate the Jacobi identity.

We shall see in the following that the same sort of nonassociative relations come up in the
non-geometric flux models obtained via T-duality from a constant H-flux background, though in
a “dual” sense through nonassocitivity of coordinate space rather than momentum space. The
analogues of the Dirac quantization condition for R-flux backgrounds are described in the context
of Matrix theory compactifications in [18] and of double field theory in [13]. On the other hand, a
consistent nonassociative version of quantum mechanics based on the phase space quantization of
the R-flux string model can be developed following [53] and shown rigorously to lead to minimal
volume uncertainty relations ∆xi ∆x j ∆xk ≥ 3

2 h̄2 Ri jk characterizing a coarse-graining of the non-
geometric R-flux background; this is consistent with the fact that these backgrounds do not allow
the introduction of point-like objects [26]. The parallels between nonassociative parabolic R-flux
string vacua and the dynamics of charged particles in uniform magnetic charge distributions is
elucidated in [9].

2.3 Geometry of n-algebras

The deformations of geometry we have been describing involve certain higher generalizations
of algebraic structures, in particular certain n-bracket structures. We shall now explain how these
extensions fit into concrete geometric frameworks, and then describe a means to quantize them.
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Let us begin by recalling that a Nambu–Poisson structure on a smooth manifold M is an n-Lie
algebra structure {−, . . . ,−} : C∞(M)∧n → C∞(M), which means that it satisfies the fundamental
identity{

f1, . . . , fn−1,{g1, . . . ,gn}
}
=
{
{ f1, . . . , fn−1,g1}, . . . ,gn

}
+ · · ·+

{
g1, . . . ,{ f1, . . . , fn−1,gn}

}
.

In addition, it is required to obey the generalized Leibniz rule

{ f g,h1, . . . ,hn−1} = f {g,h1, . . . ,hn−1}+{ f ,h1, . . . ,hn−1}g .

These properties imply that a Nambu–Poisson n-bracket is determined via a Nambu–Poisson n-
vector Π = 1

n! Πi1···in(x)∂i1 ∧·· ·∧∂in as

{ f1, . . . , fn}= Π(d f1, . . . ,d fn) = Π
i1···in(x)∂i1 f1 · · ·∂in fn .

In this paper our prominent example will be the flat backgrounds M = R3 or M = T 3 equiped with
the Nambu–Poisson 3-bracket [54], which is defined on coordinate functions in terms of a constant
trivector R = 1

6 Ri jk ∂i∧∂ j ∧∂k by
{xi,x j,xk}= Ri jk ,

and extended by linearity and the generalized Leibniz rule; its quantization gives the Nambu–
Heisenberg algebra. For further details about the quantization of generic Nambu–Poisson struc-
tures, see e.g. [24] and references therein.

We will set up a framework involving a suitable generalization of geometric quantization for
these higher bracket structures; this involves the notion of multisymplectic manifolds. An n-plectic
manifold is a manifold M equiped with a closed n+ 1-form ω which obeys the nondegeneracy
condition: ω(v,−) = 0 if and only if v = 0. In this parlance a 1-plectic manifold is the usual
symplectic manifold, while a 2-plectic manifold involves a three-form ω as in the case of geometric
H-flux compactifications. In contrast to the symplectic case, in general there is no relation between
multisymplectic and Nambu–Poisson structures. However, if M has dimension n+ 1 then ω is a
volume form on M which can be inverted to give a Nambu–Poisson structure ω−1 on M. Such
manifolds serve as multiphase spaces in Nambu mechanics, generalizing the usual Poisson phase
spaces in Hamiltonian dynamics. They are the starting point for a formalism of higher quantization,
which we now describe in the context of non-geometric Q-flux backgrounds following [57, 58].

2.4 Closed string noncommutative and nonassociative geometry

Recall that geometric quantization of a symplectic manifold (M,ω) is based on the require-
ment that the symplectic structure defines an integer cohomology class [ω] ∈ H2(M,Z) which
encodes a prequantum line bundle with connection (L,∇) whose first Chern class in Chern–Weil
theory is represented by the curvature two-form F∇ = 2π iω . Upon prescribing a suitable polariza-
tion, geometric quantization amounts to constructing a Hilbert space of sections of the line bundle
L→M and a quantization map under which functions on M act as operators on this Hilbert space.

In a similar fashion, a 2-plectic manifold (M,ϖ) with [ϖ ] ∈ H3(M,Z) encodes a prequantum
abelian gerbe with 2-connection (G ,A,B) such that H := dB = 2π iϖ represents the Dixmier–
Douady class of the gerbe. It is difficult to make sense of the notions of “polarization” and a
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“Hilbert space of sections” for a gerbe, so we will instead employ the trick of [57, 58] which enables
a proper quantization of closed string Q-flux backgrounds; it involves mapping 2-plectic forms to
symplectic forms by transgressing the gerbe G to a prequantum line bundle over the loop space of
the configuration manifold M. This approach is nicely tailored to describing closed string noncom-
mutative geometry, as it utilizes fundamental loop variables to describe non-geometry rather than
points which are not present in R-flux backgrounds.

We start with the geometric background M = R3 or M = T 3 endowed with a 2-plectic form
given by the constant H-flux H = 1

6 Hi jk dxi∧dx j ∧dxk. Consider the correspondence

L M×S1

ev

zz

∮
%%

M L M

(2.3)

where L M = C∞(S1,M) is the loop space of M parametrizing the configuration space of closed
strings in the H-flux background; the map ev denotes the evaluation of a loop at a point of S1 while
the map

∮
is integration along the S1 fibre. The transgression map

T =
(∮ )

! ◦ ev∗ : Ω
n+1(M) −→ Ω

n(L M)

is defined by pulling back differential forms on M via the evaluation map of (2.3) and then pushing
forward along the integration over S1. It can be expressed locally at a loop x(τ) as

(T α)x
(
v1(τ) , . . . , vn(τ)

)
=
∮

dτ α
(
v1(τ) , . . . , vn(τ) , ẋ(τ)

)
for an n+ 1-form α on M by filling in its first n slots with parametrized vector fields va(τ) on M
and its last slot with the velocity vector ẋ(τ) which is the natural tangent vector to the loop x(τ).

Via the transgression map, the background H-flux on M yields a symplectic two-form on loop
space L M given by

H := T H =
1
2

∮
dτ Hi jk ẋk(τ)δxi(τ)∧δx j(τ) .

This two-form is always invertible and its inverse yields a Poisson bracket on L M with

{ f ,g}Q :=
∮

dτ Qi j
k

ẋk(τ)

|ẋ(τ)|2
(

δ

δxi(τ)
f
)(

δ

δx j(τ)
g
)
,

where the dual Q-flux Qi j
k is naturally identified with the inverse of the H-flux Hi jk. Quantization

of this Poisson structure is rather involved and is dealt with in [57, 58] using an approach to quan-
tization based on integrating the natural Lie algebroid structure on the Poisson manifold L M to a
Lie groupoid convolution algebra. The main virtue of this approach is that it constructs the abstract
algebra directly without concern about its representation on a Hilbert space, which is an appro-
priate arena for considerations involving nonassociativity which at the same time avoids many of
the technically cumbersome constructions of geometric quantization. We will not enter into any
of the technical details of this quantization procedure, which involves complicated analysis on the
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infinite-dimensional loop space L M, except to note that the ensuing quantization map acts on the
loop space coordinates by sending xi(τ) 7→ x̂i(τ) with the commutation relations[

x̂i(τ) , x̂ j(ρ)
]
= i h̄Qi j

k
̂̇xk(τ) δ (τ−ρ)+O(Q2) ,

where the higher order terms are described in [58]. After integration over the loop parameters
τ,ρ ∈ S1, at leading order in the Q-flux this gives the commutation relations

[xi,x j] = i h̄Qi j
k wk , [xi,w j] = 0 = [wi,w j] (2.4)

where xi =
∮

dτ xi(τ) are the closed string zero modes while wi =
∮

dτ ẋi(τ) ∈ Z are the winding
modes. This result shows why the T-fold is only locally geometric: Closed strings which wind
acquire a position noncommutativity proportional to the non-geometric Q-flux and the winding
numbers. As the relations (2.4) describe a Heisenberg Lie algebra, the resulting quantum geometry
is still associative.

The same closed string noncommutativity relations were obtained by a linearized conformal
field theory analysis in [48, 14, 20, 5]. To linear order in the H-flux one can neglect the curva-
ture backreaction of the geometry and still work on flat target space. Then one can quantize the
closed string sigma-model in the constant Q-flux background by regarding it as a left-right asym-
metric conformal field theory on a freely acting orbifold. As a closed string winds around the

base circle of the local fibration M T 2

−→ S1 of the T-fold, the fibre coordinates need only be periodic
up to an SL(2,Z) automorphism of the torus T 2. For the parabolic flux model, which we treat
throughout this paper, the monodromies of T 2 lie in a parabolic conjugacy class of SL(2,Z). The
twisted boundary conditions on the fibre string fields induced by the winding numbers wk and by
the parabolic SL(2,Z) monodromies are completely analogous to those which arise for open strings
in a constant B-field background (see e.g. [19]); as usual, closed strings in a twisted sector of the
orbifold conformal field theory can be regarded as open strings on the universal covering space of
the orbifold. The resulting canonical structure and flat space mode expansion then reproduces the
relations (2.4) among closed string coordinates.

This construction can be used to obtain a quantization of the R-flux background by applying
formal T-duality, which sends the Q-flux Qi j

k to the R-flux Ri jk and the closed string winding
variables wk to the momentum modes pk which are canonically conjugate to the string position
coordinates xi. Under this transformation the commutation relations (2.4) are mapped to

[xi,x j] = i h̄Ri jk pk , [xi, p j] = i h̄δ
i
j , [pi, p j] = 0 . (2.5)

As noted by [49, 52], these relations arise from a twisted Poisson structure on the cotangent bundle
(phase space) T ∗M; in particular, closed string nonassociativity is manifested in the nonvanishing
Jacobiator

[xi,x j,xk] = 3 h̄2 Ri jk (2.6)

exactly as it emerged in the magnetic field analog. Nonassociativity in this instance arises from
the non-trivial position-momentum bracket, so that the antisymmetric brackets (2.5) define only
a pre-Lie algebra. In the following we shall describe the quantization of these non-geometric
backgrounds to all orders in the flux. An important ingredient will be a certain open string in-
terpretation of closed string correlation functions, based on the observation that open strings do
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not decouple from gravity in R-space [26] and hence open and closed strings may become indis-
tinguishable in these backgrounds. In [48] it is in fact argued that closed string momentum and
winding modes define a sort of notion of D-brane in closed string theory. A path integral descrip-
tion of this closed/open string duality as a result of the asymmetric twisted sectors of the underlying
worldsheet conformal field theory is given in [52].

3. Geometrization of non-geometry

3.1 Generalized, doubled and phase space geometry

Let us now describe some of the techniques proposed for casting non-geometric spaces into
local and global geometric formulations. A common feature to all of these geometric descriptions is
that they involve some sort of a doubling of the geometry which is precisely what makes them non-
geometric: In any local description the backgrounds require these additional geometric variables
(such as winding coordinates or momenta below). As transition functions of a smooth manifold
M of dimension d are valued in the structure group of the tangent bundle, the existence of stringy
O(d,d) transition functions leads to a notion of some sort of generalized tangent bundle of rank 2d.

One approach to the study of non-geometric fluxes is provided by generalised geometry (see
e.g. [28, 27, 29]). The key geometric object in this description is the generalized tangent bundle

C = T M⊕T ∗M (3.1)

over the target space M. This bundle has a natural O(d,d)-invariant metric, and a generalized
metric which encodes the usual Riemannian metric and B-field. An abelian subgroup of suitable
O(d,d) transformations, called β -transforms, of sections of C generate the non-geometric fluxes
starting from the standard geometric description in terms of a metric, B-field and dilaton field,
which are then expressed in terms of a bivector field β = 1

2 β i j ∂i∧ ∂ j; in particular, for vanishing
metric flux one has

Qi j
k = ∂kβ

i j , R = [β ,β ]S

where [−,−]S is the Schouten bracket which is the natural extension to multivector fields of the
Lie bracket of vector fields. As this transformation is not globally defined, this leads into a non-
geometric framework. The generalized tangent bundle (3.1) will play a prominent role in this paper
within the guise of Courant algebroids.

Another approach to the study of non-geometric fluxes is provided by doubled geometry and
double field theory [37, 38, 35] (see e.g. [1, 10, 36] for reviews). In this approach one complements
the spacetime coordinates xi on an equal footing with their dual coordinates x̃i which are canonically
conjugate to the winding numbers wi, i.e., one first doubles the geometry xi → (xi, x̃i) and ∂i →
(∂i, ∂̃

i). Doubled geometry is related to generalized geometry by dropping the winding coordinates
while keeping the generalized tangent bundle (3.1). The action for double field theory is cast in
these variables using the generalized metric of generalized geometry and is manifestly invariant
under O(d,d)-transformations which act by rotating the doubled coordinates. Upon implementing
the projection ∂̃ i = 0, one recovers the usual action of supergravity. In particular, by performing
a formal T-duality transformation and a field redefinition in the double field theory action using
the O(d,d) transforms of the generalized geometry formalism, one can in this way obtain a field

11
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theory on M for the non-geometric fluxes [6] (see also [12]). An alternative target space perspective
is described in [4] at purely the supergravity level. This theory can be reproduced from double field
theory by dropping some degrees of freedom and it can be rewritten in the variables of generalized
geometry. It provides a geometric description with non-geometric fluxes of some non-geometric
backgrounds, demonstrating that some non-geometries can be described purely at the supergravity
level without passing to more involved target space frameworks or to a worldsheet formalism.

In the following we shall review our proposal [52] for the geometrization of R-flux back-
grounds in terms of the dynamics of a membrane sigma-model. In this approach the effective
target space seen by non-geometric strings now involves a doubling of M to its cotangent bundle
T ∗M which is interpreted as phase space, i.e., the spacetime coordinates xi are complemented by
their conjugate momenta pi. In this setting, the R-flux is a geometric three-form on T ∗M which
represents the Dixmier–Douady class of an abelian gerbe on momentum space. Because of the
open/closed string duality of R-space, the open membranes have a double life: On the one hand
their dimensional reductions are closed strings which propagate in the non-geometric flux back-
ground, while on the other hand their boundaries (in the form of worldvolume branch cuts) are
open strings and the membrane sigma-model can be recast as an open string R-twisted Poisson
sigma-model with target space T ∗M whose perturbative quantization induces a nonassociative dy-
namical star product of fields; the corresponding Jacobiator quantizes the closed string 3-bracket.

3.2 n-algebroids and AKSZ sigma-models

In the next section we shall develop the systematic quantization of the nonassociative R-flux
backgrounds by computing suitable topological sigma-model correlation functions. A general
framework to describe the sorts of sigma-models we are interested in is provided by the AKSZ
construction [2], which builds Chern–Simons type action functionals in the Batalin–Vilkovisky for-
malism for sigma-model quantum field theories whose target space is a symplectic Lie n-algebroid
E →M. Recall that a Lie algebroid is a vector bundle E over a smooth manifold M together with
an anchor map

E

!!

ρ // T M

||
M

and a Lie bracket [−,−]E on sections C∞(M,E) which is compatible with ρ and the standard Lie
bracket [−,−]T M between vector fields on the tangent bundle T M. A Lie algebroid simultaneously
generalizes the notions of Lie algebra and tangent bundle: If M is a point then a Lie algebroid
is the same thing as a Lie algebra, while E = T M is always a Lie algebroid with the identity
anchor map. A more nontrivial example is provided by the case when M is a Poisson manifold
with Poisson bivector β ; then the cotangent bundle E = T ∗M is a Lie algebroid with anchor map
ρ = β ] : T ∗M→ T M defined by β ](ei) = β i j e j and Lie bracket given by the Koszul bracket on one-
forms: [ei,e j]K =(∂kβ i j)ek. Lie algebras can always be integrated to Lie groups via the exponential
map, and conversely the tangent space of a Lie group at the identity is a Lie algebra. Likewise, there
is a corresponding notion of Lie groupoid which is a (small) category whose object and morphism
sets are smooth manifolds, and for which every morphism is invertible. However, while there is a
suitable notion of differentiation of a Lie groupoid which is a Lie algebroid, not every Lie algebroid

12
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can be integrated to a Lie groupoid. A Lie n-algebroid is a categorification of a Lie algebroid which
is the lowest member of the hierarchy with n = 1; we shall not give here the general definition, as
in this paper we are only interested in the cases with n = 1 and n = 2.

Let us begin with the case n = 1, which is suited to the description of strings in background
B-fields. Then the most general two-dimensional topological field theory that can be obtained from
the AKSZ construction is the Poisson sigma-model [59] with target space a Lie algebroid E →M
equipped with a dual section Θ ∈ C∞(M,

∧2 E∗). Here we will only consider the case E = T ∗M
with bivector field Θ = 1

2 Θi j(x)∂i∧∂ j. Then the action of the Poisson sigma-model is given by

S(1)AKSZ =
∫

Σ2

(
ξi∧dX i +

1
2

Θ
i j(X)ξi∧ξ j

)
,

where X : Σ2 → M are embedding fields of a string worldsheet Σ2 in the spacetime M and ξ ∈
Ω1(Σ2,X∗T ∗M) are auxilliary one-form fields on Σ2 with values in the cotangent bundle T ∗M.
This field theory describes the first-order form of the topological sector of a string sigma-model
obtained by scaling the target space metric to zero (the Seiberg–Witten limit), and in the back-
ground of a B-field which is dual to the bivector Θ; this can be seen by integrating out the one-form
field ξ explicitly, which appears quadratically in the action. Consistency of the equations of motion
requires [Θ,Θ]S = 0 on-shell. In this case Θ defines a Poisson structure on M, with the vanishing
Schouten bracket being equivalent to the Jacobi identity for the corresponding Poisson bracket on
C∞(M), and E = T ∗M is a Lie algebroid; in the general case E is only a quasi-Lie algebroid, with
the trivector [Θ,Θ]S controlling the violation of the Jacobi identity for the Koszul bracket. When
Σ2 is an open Riemann surface, the perturbative expansion of the sigma-model path integral repro-
duces (in both on-shell and off-shell cases) the Kontsevich formality maps for formal deformation
quantization [47, 17].

The next member of the hierarchy of AKSZ sigma-models is the case n = 2; a symplectic Lie
2-algebroid is the same thing as a Courant algebroid E →M. A Courant algebroid is an extension
of the notion of Lie algebroid which is further equiped with a fibre metric hIJ = 〈ψI,ψJ〉, where ψI

is a local basis of sections for C∞(M,E). The anchor matrix ρ(ψI) = PI
i(x)ei and the three-form

TIJK(x) = [ψI,ψJ,ψK ]E := 1
6

〈
[ψI,ψJ]E , ψK

〉
+ cyclic

satisfy various conditions. The presence of TIJK(x) makes the corresponding sigma-models suited
to describe dynamics in background three-tensor fluxes. There is a one-to-one correspondence
between Courant algebroids and three-dimensional topological field theories obtained from the
AKSZ construction, which are called Courant sigma-models [34, 39, 56] and are described by the
action

S(2)AKSZ =
∫

Σ3

(
φi∧dX i +

1
2

hIJ α
I ∧dα

J−PI
i(X)φi∧α

I +
1
6

TIJK(X)α
I ∧α

J ∧α
K
)
. (3.2)

Here X : Σ3 → M are the embedding fields of a three-dimensional membrane worldvolume Σ3 in
spacetime M, α ∈Ω1(Σ3,X∗E) are auxilliary one-form fields on Σ3 valued in the Courant algebroid
E, and φ ∈ Ω2(Σ3,X∗T ∗M) are auxilliary two-form fields on Σ3 valued in the cotangent bundle
T ∗M. In this paper we shall work only with the standard Courant algebroid, which in a suitable

13



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
0
7

Nonassociative geometry in non-geometric string theory Mylonas, Schupp & Szabo

frame for the β -transformation symmetry is the generalized tangent bundle E = C = T M⊕T ∗M
with metric given by the natural dual pairing

〈Y1 +λ1,Y2 +λ2〉= λ2(Y1)+λ1(Y2)

for vector fields Y1,Y2 and one-forms λ1,λ2 on M, and the anchor map is the projection ρ : C→
T M. In the natural frame ψI = (ei,ei) the O(d,d)-invariant metric has only the non-vanishing
components

〈ei,e j〉= δi
j .

3.3 Sigma-models for geometric fluxes

Let us consider first how to apply the AKSZ sigma-model formalism to the case of geo-
metric flux compactifications, focusing for definiteness on the H-space duality frame. The rele-
vant algebroid is the standard Courant algebroid C = T M⊕T ∗M twisted by a three-form H-flux
H = 1

6 Hi jk(x)dxi ∧ dx j ∧ dxk; the twisting is accounted for by equipping C with the H-twisted
Courant–Dorfman bracket

[Y1 +λ1,Y2,λ2]H := [Y1,Y2]T M +LY1λ2−LY2λ1− 1
2 d
(
λ2(Y1)−λ1(Y2)

)
+H(Y1,Y2,−) ,

where LY denotes the Lie derivative along the vector field Y . The only non-vanishing Lie brackets
and 3-brackets evaluated on the natural frame are given by

[ei,e j]H = Hi jk ek , [ei,e j,ek]H = Hi jk . (3.3)

Let us now substitute these structure maps into the general action (3.2), and denote α := (α i,ξi)

with (α i) ∈C∞(Σ3,X∗T M) and (ξi) ∈C∞(Σ3,X∗T ∗M). In this way we arrive at the action for the
topological membrane [55]

S(2)AKSZ =
∫

Σ3

(
φi∧dX i +α

i∧dξi−φi∧α
i +

1
6

Hi jk(X)α
i∧α

j ∧α
k
)
.

For open membranes with boundary the worldsheet Σ2 := ∂Σ3 6= ∅, we can add a boundary
term

∫
Σ2

1
2 Θi j(X)ξi ∧ ξ j for a fixed bivector Θ ∈ C∞(M,

∧2 T M) to get the action of the bound-
ary/bulk open topological membrane [34]. Integrating out the two-form fields φi sets α i = dX i, and
using Stokes’ theorem we arrive finally at the AKSZ string action

S̃ (1)
AKSZ =

∫
Σ2

(
ξi∧dX i +

1
2

Θ
i j(X)ξi∧ξ j

)
+
∫

Σ3

1
6

Hi jk(X)dX i∧dX j ∧dXk .

This is the action of the H-twisted Poisson sigma-model with target space M [46]; the volume
term here is completely analogous to a Wess–Zumino–Witten term. Consistency of the equa-
tions of motion now leads to the on-shell condition [Θ,Θ]S =

∧3
Θ](H), where Θ](H) is the nat-

ural way of contracting the three-form H into a trivector using Θ. This condition means that
the bivector Θ now defines an H-twisted Poisson structure; in this case the Jacobi identity for
bracket { f ,g}Θ = Θ(d f ,dg) is violated, with the Jacobiator controlled by the trivector [Θ,Θ]S, i.e.,
{ f ,g,h}Θ =

∧3
Θ](H)(d f ,dg,dh). This is precisely the sigma-model that governs the topologi-

cal sector of open string dynamics in non-constant B-fields; in particular, its correlation functions
reproduce the nonassociative star products of Kontsevich’s deformation quantization of twisted
Poisson structures [21].
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3.4 Sigma-models for non-geometric fluxes

Now let us turn to the AKSZ sigma-model formalism appropriate to non-geometric flux com-
pactifications. We shall see that, in contrast to the H-space sigma-models, the appropriate R-space
theory really is a membrane sigma-model, not a string theory, which geometrizes the non-geometric
R-flux background, analogously to the way in which M-theory geometrizes the nonperturbative dy-
namics of string theory. Whether or not these membranes are fundamental degrees of freedom and
related to the M2-branes of M-theory is not clear at present. This question could be investigated by
finding a suitable topological twisting of the supersymmetric worldvolume theory of an M2-brane.
As the Courant sigma-model is the unique three-dimensional topological field theory susceptible to
the Batalin–Vilkovisky formalism, it should then coincide with the topological sector of this world-
volume theory. Further evidence for this relation is provided by the fact that the noncommutative
loop algebra from §2.4 agrees with the noncommutativity induced on the boundaries of open M2-
branes ending on an M5-brane in a constant C-field background [57, 58], which can be interpreted
as the noncommutative geometry experienced by closed strings in constant H-flux backgrounds;
this perspective helps to connect the open and closed string points of view required below.

Again we start with the general Courant sigma-model (3.2) for the standard Courant algebroid
C = T M⊕T ∗M, but this time twisted by a trivector flux R = 1

6 Ri jk(x)∂i∧∂ j ∧∂k. This twisting is
described by the Roytenberg bracket

[Y1 +λ1,Y2 +λ2]R := [Y1,Y2]T M +R(λ1,λ2,−)+LY1λ2−LY2λ1− 1
2 d
(
λ2(Y1)−λ1(Y2)

)
,

which when evaluated on the natural frame for C yields the non-vanishing Lie brackets and 3-
brackets

[ei,e j]R = Ri jk ek , [ei,e j,ek]R = Ri jk

that are naturally dual to the bracket relations (3.3). Substituting these structure maps into the
action (3.2), and integrating out the two-form field φ as previously yields the action

S(2)R =
∫

Σ2

ξi∧dX i +
∫

Σ3

1
6

Ri jk(X)ξi∧ξ j ∧ξk +
∫

Σ2

1
2

gi j(X)ξi∧∗ξ j , (3.4)

where g is a Riemannian metric on M and ∗ is the Hodge duality operator associated to a chosen
metric on the worldsheet Σ2. Here we have explicitly broken the topological symmetry of the
sigma-model by adding a metric dependent term, in order to ensure that a non-vanishing R-flux is
consistent with the equations of motion; although this may seem like a somewhat ad hoc procedure
at the classical level, similar metric dependences would appear anyway in the quantum action
through gauge fixing terms.

The membrane sigma-model (3.4) has thus far been written for a general R-flux compactifica-
tion. Let us now assume that Ri jk and gi j are constant. The equation of motion for X implies that ξ

is a closed one-form on Σ2, and hence we can write ξi = dPi for some section P ∈C∞(Σ2,X∗T ∗M);
we do not include possible harmonic one-form contributions to this expression, as they would drop
out of the final expressions below anyway. Using Stokes’ theorem, the action then reduces to a
pure boundary action, which we can linearize with auxiliary fields ηI to get a generalized Poisson
sigma-model

S(2)R =
∫

Σ2

(
ηI ∧dX I +

1
2

Θ
IJ(X)ηI ∧ηJ

)
+
∫

Σ2

1
2

GIJ
ηI ∧∗ηJ
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where X I = (X1, . . . ,Xd ,P1, . . . ,Pd) is interpreted as the embedding of the string worldsheet Σ2 in
the cotangent bundle T ∗M and

Θ =

(
Ri jk pk δ i

j

−δi
j 0

)
, GIJ =

(
gi j 0
0 0

)
. (3.5)

Thus the effective target space of the non-geometric string theory is the phase space of the space-
time M.

From this sigma-model perspective, the quantity Θ is an H-twisted Poisson bivector on phase
space T ∗M, with non-vanishing Schouten bracket

Π := [Θ,Θ]S =
∧3

Θ
](H)

where
H = dB , B = 1

6 Ri jk pk dpi∧dp j (3.6)

is the curvature of a U(1) gerbe on momentum space. It determines a noncommutative/nonassociative
phase space with twisted Poisson brackets{

xI,xJ}
Θ
= Θ

IJ(x)

whose quantization reproduces the closed string commutation relations (2.5). The corresponding
Jacobiator {

xI,xJ,xK}
Θ

:= Π
(
xI,xJ,xK)=(Ri jk 0

0 0

)
quantizes the closed string 3-brackets (2.6).

4. Quantization of RRR-flux string vacua

4.1 Path integral quantization

We would now like to compute correlation functions of suitable operators in the R-space
sigma-model. Ultimately, one would like to do this directly at the level of the membrane sigma-
model, as this is what geometrizes the R-flux background. However, quantization of the topological
membrane theory is extremely difficult, as even the gauge-fixed action is immensely complicated;
part of the problem is that, in addition to the usual gauge symmetries, the AKSZ sigma-models
in general contain higher Lie algebroid symmetries and so require ghosts-for-ghosts in addition to
the usual ghost fields. Instead, we can exploit the hidden open string that is implicit in the open
membrane formulation of the closed string theory in R-space. The multivaluedness of the closed
string fields discussed in §2.4 are implemented in the underlying orbifold conformal field theory via
insertions of twist fields in correlators which create branch cuts on the worldsheet. By extending
the closed string worldsheet to a membrane worldvolume Σ3, the resulting branched surface can be
interpreted as an open string worldsheet; see [52] for further details of the path integral description
of this closed/open string duality. An alternative perspective would be to allow for singularities
and assume that the closed string worldsheet is a surface with corners; in that case one could in
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principle deal with the boundary correlation functions that we discuss below, but such an approach
seems technically cumbersome and we do not know how to proceed with this point of view.

From this open string perspective, suitable functional integrals in the generalized Poisson
sigma-model then reproduce Kontsevich’s graphical expansion for global deformation quantiza-
tion [17]. The key quantities that emerge from these perturbative computations are the Kontsevich
formality maps Un, which take n multivector fields X1, . . . ,Xn on M := T ∗M to a multidifferential
operator

Un(X1, . . . ,Xn) = ∑
Γ∈Gn

wΓ DΓ(X1, . . . ,Xn) ,

where the sum is taken over all admissible diagrams Γ and the weights wΓ of graphs are computed
from certain integrals over geodesic angles in the hyperbolic upper half-plane regarded as the disk
Σ2. The geodesics represent derivatives emanating from the multivector fields which act on func-
tions that are inserted on the boundary ∂Σ2 ∼= R of the upper half-plane. For example, the action
of the bivector Θ = 1

2 ΘIJ ∂I ∧∂J is represented as

∂I ∂J

f g

Θ

and it computes the star product

f ?g =
∞

∑
n=0

( i h̄)n

n!
Un(Θ, . . . ,Θ)( f ,g) =: Φ(Θ)( f ,g) ,

while the action of the trivector Π = 1
6 ΠIJK ∂I ∧∂J ∧∂K = [Θ,Θ]S is depicted by

∂I ∂J ∂K

f g h

Π

and it computes a 3-bracket

[ f ,g,h]? =
∞

∑
n=0

( i h̄)n

n!
Un+1(Π,Θ, . . . ,Θ)( f ,g,h) =: Φ(Π)( f ,g,h) ,

where f ,g,h ∈C∞(M ).
The maps Un define L∞-morphisms of differential graded Lie algebras relating Schouten brack-

ets [−,−]S to Gerstenhaber brackets [−,−]G, which are the natural extensions to multidifferential
operators of the commutator bracket of differential operators; in particular, they satisfy formal-
ity conditions [47]. For example, the formality condition [Φ(Θ),?]G = i h̄Φ([Θ,Θ]S) explicitly
quantifies nonassociativity of the star product through the 3-bracket as

( f ?g)?h− f ? (g?h) = h̄
2i Φ(Π)( f ,g,h) = h̄

2i [ f ,g,h]? .
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The formality conditions also imply derivation properties. For instance, they map Hamiltonian
vector fields to inner derivations of the star product and quasi-Poisson vector fields to differential
operators which are derivations of the star product [52]. On the other hand, the formality condition
[Φ(Π),?]G = i h̄Φ([Π,Θ]S) encodes a quantum analogue of the Leibniz rule for the Nambu–
Poisson structure { f ,g,h}Π := Π(d f ,dg,dh), which for the case at hand with constant R-flux
implies

[ f ?g,h,k]?− [ f ,g?h,k]?+[ f ,g,h? k]? = f ? [g,h,k]?+[ f ,g,h]? ? k . (4.1)

Thus our construction also provides a means for quantizing Nambu–Poisson structures, which is a
notoriously difficult unsolved problem in general (see e.g. [24] and references therein).

Explicit formulas can be obtained from the fact that all Kontsevich diagrams factorize and their
weights can be expressed in terms of three diagrams (up to permutations), two involving the bivec-
tor field Θ and one involving the trivector field Π [52]. This yields the dynamical nonassociative
star-product

f ?g = f ?p g := ···
(

e
i h̄
2 Ri jk pk ∂i⊗∂ j e

i h̄
2 (∂i⊗∂̃ i−∂̃ i⊗∂i)( f ⊗g)

)
, (4.2)

where ∂i =
∂

∂xi and ∂̃ i = ∂

∂ pi
. Nonassociativity arises when the derivatives ∂̃ i hit explicit momenta

pi in the bidifferential operator defining the star product. By replacing the dynamical momentum
variable p with a constant momentum p̄, we obtain an associative Moyal–Weyl type star-product
?̄ := ?p̄. We can then express triple products in terms of a tridifferential operator as

( f ?g)?h =
[
?̄
(

exp
( h̄2

4 Ri jk
∂i⊗∂ j⊗∂k

)
( f ⊗g⊗h)

)]
p̄→p

, (4.3)

where no ordering is required on the right-hand side because of associativity of the star product
?̄, and the notation p̄→ p denotes the reinstatement of dynamical momentum. Nonassociativity is
expressed through the explicit formula for the 3-bracket given by

[ f ,g,h]? =
4i
h̄

[
?̄
(

sinh
( h̄2

4 Ri jk
∂i⊗∂ j⊗∂k

)
( f ⊗g⊗h)

)]
p̄→p

.

This star product reproduces the fundamental phase space commutation relations

[xi ?, x j] = i h̄Ri jk pk , [xi ?, p j] = i h̄δ
i
j , [pi

?, p j] = 0 , (4.4)

and it possesses the desired physical properties anticipated from on-shell closed string scattering
amplitudes. For example, both 2-cyclicity and 3-cyclicity hold, i.e.,∫

M
d2dx f ?g =

∫
M

d2dx g? f =
∫

M
d2dx f g ,∫

M
d2dx f ? (g?h) =

∫
M

d2dx ( f ?g)?h , (4.5)

showing that physical closed string states do not see noncommutativity or nonassociativity of the
non-geometric flux background. In particular, when restricted to functions on configuration space
M, the 3-product (4.3) reproduces the triproduct of [14] which was conjectured to reproduce off-
shell correlation functions of closed string tachyon vertex operators in R-space in a linearized con-
formal field theory analysis. The 2-cyclicity and 3-cyclicity properties are also the basis for a
consistent formulation of nonassociative phase space quantum mechanics.
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4.2 Seiberg–Witten maps and noncommutative gerbes

In open string noncommutative gauge theory, the Seiberg–Witten map is an equivalence of (as-
sociative) star products ? and ?′ generated by a covariantizing map D which is a quantum analogue
of Moser’s lemma in symplectic geometry. Let Θ be a Poisson bivector, i.e., [Θ,Θ]S = 0, with dual
two-form B = Θ−1, and let L →M be a line bundle with curvature F = dA. Let ρ be the flow
generated by the vector field Θ(A,−). Then the map

B
ρ−→ B+F

is generated by a change of coordinates and quantizes to a map which sits in a commutative dia-
gram [41, 42, 43, 44]

Θ

ρ

��

quantization // ?

D
��

Θ′
quantization

// ?′

where Θ′ = Θ(1+ h̄F Θ)−1 is a new Poisson bivector, and D( f ?′ g) = D f ?Dg; the noncommu-
tative gauge field Â is defined by the covariant coordinates Dx =: x+ Â such that an ordinary gauge
orbit of A corresponds to a noncommutative gauge orbit of Â.

This construction can be used to realise the quantization of twisted Poisson structures in terms
of noncommutative gerbes in the sense of [7]. Let Θ be a Poisson structure twisted by a closed
three-form H, i.e., [Θ,Θ]S =

∧3
Θ](H). Let {Uα} be a good open covering of the manifold M .

Then on Uα the H-flux is generated by a locally defined B-field as H = dBα , Bα ∈ Ω2(Uα). On
non-empty overlaps Uα ∩Uβ the difference of potentials Bβ − Bα is a closed two-form, hence
Bβ − Bα = Fαβ = dAαβ for local one-forms Aαβ which determine U(1) gauge fields on a line
bundle Lαβ →Uα ∩Uβ . The local B-fields can be used to locally untwist Θ to Poisson bivectors
Θα :=Θ(1− h̄Bα Θ)−1 on each patch Uα . Then while the quantization of Θ yields a nonassociative
star product ?, quantization of Θα yields a family of local associative star products ?α such that
?α and ?β are equivalent by covariantizing maps Dαβ constructed from the curvatures Fαβ on each
non-empty overlap Uα ∩Uβ .

Now let us apply these general considerations to the construction of generalized Seiberg–
Witten maps for non-geometric fluxes [52]. The R-twisted Poisson structure on phase space M =

T ∗M is generated by the U(1) gerbe on momentum space with curvature (3.6); this is a trivial (but
not flat) gerbe, so we can foliate M by surfaces of constant momentum and replace the open patch
label α with the constant momentum vector p̄. Then the relevant two-tensors are given by

Θ p̄ =

(
h̄Ri jk p̄k δ i

j

−δi
j 0

)
, Bp̄ =

(
0 0
0 Ri jk (pk− p̄k)

)
(4.6)

where Θp̄ are Poisson bivectors which untwist the twisted Poisson bivector (3.5), and H = dBp̄ =
1
6 Ri jk dpi∧dp j∧dpk is the curvature (3.6) of the trivial gerbe. The equivalence maps Dp̄ p̄′ between
associative star products ?̄ and ?̄′ are generated by the gauge fields Ap̄ p̄′ = Ri jk pi (p̄k− p̄ ′k)dp j

with curvature Fp̄ p̄′ =
1
2 Ri jk (p̄k− p̄′k)dpi ∧ dp j. In particular, for p̄ = 0 we recover the canonical
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Moyal–Weyl star-product ?0 on phase space. The map Dp̄ generated by Ap̄ = Ri jk pi p̄k dp j from
associative to nonassociative star products can be computed explicitly [52] and satisfies

f ?g =
[
Dp̄ f ?0 Dp̄g

]
p̄→p .

There is moreover an explicit nonassociative generalization of the Seiberg–Witten map suit-
able for the non-geometric backgrounds. A construction based directly on a twisted Poisson bivec-
tor Θ is usually spoiled by spurious terms involving the non-vanishing Schouten brackets [Θ,Θ]S.
However, in the present case such difficulties can be avoided by restricting to maps involving only
gauge fields A = āi(x, p)dpi which have no components along the configuration space M. There
are two particular cases of interest in the context of this paper. Firstly, there are general coordi-
nate transformations which are generated by the vector field Θ(A,−) = āi(x, p)∂i and are mapped
to quantized diffeomorphisms; this lends some credibility to the hope that there is some notion
of nonassociative gravity in non-geometric string backgrounds. Secondly, there are the Nambu–
Poisson maps which are generated by A = R(a2,−) for an arbitrary two-form a2 ∈ Ω2(M), whose
quantization leads to a higher gauge theory of quantized Nambu–Poisson tensor fields.

4.3 3-cocycles and categorified Weyl quantization

Let us now briefly explain some algebraic meanings behind the quantization of the twisted
Poisson structure as alternative but equivalent quantizations to that obtained via the more analytical
sigma-model approach. This can be elegantly understood through the origin of the generalized
Poisson sigma-model as an AKSZ topological field theory with target space a Courant algebroid;
in this way quantization can be cast as the problem of convolution quantization of Lie 2-algebras,
which are categorifications of Lie algebras.

The reduction of the standard R-space Courant algebroid from before to the case where the
base space M is a point yields a quadratic Lie algebra h with commutation relations

[xi,x j]Q = Ri jk p̄k , [xi, p̄ j]Q = 0 = [p̄i, p̄ j]Q

and an h-invariant O(d,d)-symmetric inner product with non-vanishing values

〈xi, p̄ j〉= δ
i
j .

These are just the commutation relations of a Heisenberg Lie algebra, and they mimick the closed
string relations (2.4) in the Q-space duality frame; in particular, the Lie algebra h can be regarded
as a quantization of the Poisson structure Θ p̄ from (4.6). This quadratic Lie algebra induces in the
standard way a skeletal 2-term L∞-algebra

V1 = R 0−→ V0 = h

with classifying 3-cocycle j : h∧ h∧ h→ R, in the Chevalley–Eilenberg cohomology of h with
values in the trivial representation, whose sole non-vanishing values are given by

j(xi,x j,xk) = 1
6

〈
[xi,x j]Q , xk〉+ cyclic = Ri jk .
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This Lie 2-algebra can be integrated in the usual way to a Lie 2-group

G1 = Gh×U(1) //// G0 = Gh

with Gh the Heisenberg group integrating h via the exponential map, whose associator integrates
j and defines a 3-cocycle in the Chevalley–Eilenberg cohomology of Gh with values in R. The
roles of 3-cocycles of Lie algebra and Lie group cohomology in the quantization of nonassociative
R-space is elucidated in [9]. By computing convolution type products in this Lie 2-group, one can
mimick the standard approach based on Weyl quantization in the associative setting of operator
algebras (see e.g. [64] for a review) to rederive the nonassociative star products (4.2) for the phase
space description of R-space; this algebraic approach is taken in [52, 9].

4.4 Quasi-Hopf cochain twist quantization

There is yet another equivalent algebraic approach to the quantization of the R-flux background
which emphasises the symmetries underlying the non-geometric flux compactification, and which
provides a systematic means to obtain nonassociative deformations of geometry and gravity in R-
space. This approach further illustrates in what sense nonassociative deformations really do grow
naturally in the wild.

For this, let us first recall the associative setting of Hopf cocycle twist quantization [50]. A
Drinfel’d twist for a Hopf algebra H = H(∆,S,ε, ·) is an invertible counital element

F = F(1)⊗F(2) ∈ H⊗H

which satisfies the 2-cocycle condition

(F⊗1)∆1F = (1⊗F)∆2F

with ∆1 = ∆⊗1 and ∆2 = 1⊗∆. The twist F can be used to map H to a new Hopf algebra HF =

HF(∆F ,SF ,ε, ·) with the same underlying algebraic structure but modified coalgebra structure; in
particular, the new coproduct is given by

∆F = F ∆F−1 .

This construction quantizes any H-module algebra A to a “braided-commutative” algebra AF with
deformed product

f ?g = ···
(
F−1( f ⊗g)

)
= F−1

(1) f · F−1
(2) g

for f ,g ∈ A; this deformation ensures that the action of the twisted Hopf algebra HF is compatible
with the product on AF , i.e., that AF is an HF -module algebra.

Now let us relax the 2-cocycle condition and consider an arbitrary 2-cochain twist F ∈H⊗H.
In that case HF is only a quasi-Hopf algebra, i.e., the coassociativity of the coproduct is violated
in a controlled way

(∆F)2 ∆F = φ (∆F)1 ∆F φ
−1

by means of a multiplicative associator φ = φ(1)⊗ φ(2)⊗ φ(3) ∈ H⊗H⊗H which is a 3-cocycle
obtained as the coboundary of the cochain twist via

φ = ∂
∗F := F23 ∆2 F ∆1 F−1 F−1

12
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where F23 = 1⊗F(1)⊗F(2) and F12 = F(1)⊗F(2)⊗1. The notion of quasi-Hopf algebra was intro-
duced in the early days of quantum groups by Drinfel’d when it was realised that many examples
of quantum universal enveloping algebras satisfy only this weaker criterion. Now an H-module
algebra A gets quantized to a “quasi-associative” HF -module algebra AF with

( f ?g)?h = φ(1) f ? (φ(2)g?φ(3)h) .

The power of this approach is its generality: Any algebraic entity can be quantized in this way, once
a Hopf module structure and 2-cochain are chosen. For our applications we are interested in the
specific example where H =U(g) is the enveloping Hopf algebra of a Lie algebra g of symmetries
acting on a manifold M ; then the algebra of functions A=C∞(M ) can be quantized in this way to a
generically noncommutative and nonassociative algebra AF . Similarly, the exterior algebra Ω•(M )

of differential forms on M is quantized to Ω•F(M ), and so on for other geometrical structures.
This construction can be formalised into the notion of a twist quantization functor, i.e., it

simultaneously deforms all H-covariant constructions as a functorial isomorphism

QF : HM −→ HFM

of braided monoidal categories of left H-modules HM and left HF -modules HFM. In the monoidal
category HFM the associator φ ∈H⊗H⊗H induces non-trivial associativity isomorphisms ΦV,W,Z :
(V ⊗W )⊗Z→V ⊗ (W ⊗Z) defined by

ΦV,W,Z
(
(v⊗w)⊗ z

)
= φ(1)v⊗ (φ(2)w⊗φ(3)z) .

The five-term 3-cocycle condition on φ implies that Φ obeys MacLane’s pentagon relations; from
the perspective of quantization of 3-brackets, the pentagon relations yield derivation properties
such as (4.1). On the other hand, a braiding of the category HFM is provided by a quasi-triangular
structure on the Hopf algebra and it induces non-trivial commutativity isomorphisms ΨV,W : V ⊗
W →W ⊗V given by

ΨV,W (v⊗w) = F−2
(1) w⊗F−2

(2) v .

From this perspective, both noncommutativity and nonassociativity are very natural features pro-
vided we work in the “right” category: While the algebra AF is noncommutative and nonassociative
when normally considered as an object of the category of vector spaces, which has trivial braiding
and associator, it is commutative and associative in the category HFM.

Let us now apply these general considerations to obtain the cochain twist quantization of R-
space [53]. For this, let g be the nonabelian Lie algebra of phase space translations and Bopp shifts
whose action on C∞(M ) is generated by the vector fields

Pi = ∂i , P̃i = ∂̃
i , Mi j = pi ∂ j− p j ∂i .

For σ i j =−σ ji ∈ R, the vector fields σ i j Mi j leave momenta fixed and act on position coordinates
as the familiar non-local Bopp shifts xi 7→ xi+σ i j p j from quantum mechanics which mix positions
with momenta. They define a quasi-Hopf deformation of the universal enveloping algebra U(g) by
the cochain twist

F = exp
[
− i h̄

2

(
1
4 Ri jk (Mi j⊗Pk−Pi⊗M jk

)
+Pi⊗ P̃i− P̃i⊗Pi

)]
,
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and the quantization functor on the category of quasi-Hopf module algebras generates nonassocia-
tive algebras through the associator

φ = ∂
∗F = exp

( h̄2

2 Ri jk Pi⊗Pj⊗Pk
)
.

The corresponding deformed product on the algebra C∞(M ) coincides with the star product (4.2),
while the associator reproduces the triple product structure (4.3) and coincides with the 3-cocycle
encountered before in a different context.

To illustrate the utility of this approach in constructing deformations of geometry, let us work
out the corresponding nonassociative exterior differential calculus. We start with the usual exterior
algebra complex (Ω•(M ),∧,d) of differential forms on phase space, and assume that the exterior
derivative d is equivariant under the covariant action of the enveloping Hopf algebra H = U(g).
Then the action of H on Ω•(M ) is given by Lie derivatives Lh along the vector fields correspond-
ing to elements h ∈ H; on differentials the only non-trivial actions are given by

Mi j dxk := LMi j(dxk) = δ j
k dpi−δi

k dp j .

The deformed exterior product ω ∧? η := ∧
(
F−1(ω ⊗ η)

)
is generically noncommutative and

nonassociative with the basic relations

dxI ∧? dxJ =−dxJ ∧? dxI = dxI ∧dxJ ,(
dxI ∧? dxJ)∧? dxK = dxI ∧?

(
dxJ ∧? dxK) .

By the equivariance condition, the exterior derivative d does not undergo any deformation as it is a
morphism of the category HFM. The action of C∞(M ) on Ω•(M ) by pointwise multiplication of
a form with a function is quantized to a deformed AF -bimodule structure whose only non-trivial
relations are given by

xi ?dx j = dx j ? xi + i h̄
2 Ri jk dpk .

The nonassociative differential calculus also obeys the requisite physical properties of graded 2-
cyclicity ∫

M
ω ∧? η = (−1)|ω| |η |

∫
M

η ∧? ω =
∫

M
ω ∧η

and graded 3-cyclicity ∫
M

(ω ∧? η)∧? λ =
∫

M
ω ∧? (η ∧? λ ) .

4.5 Quantum mechanics with a 3-cocycle

The commutation relations (2.5) capture the nonassociative geometry that arises in R-flux
backgrounds and are heuristically expected to lead to novel uncertainty principles for spacetime
positions. However, a rigorous derivation requires a formulation of quantum mechanics adapted
to a nonassociative setting. This excludes all standard associative operator algebra approaches and
is complicated further by the fact that our algebras are not of Jordan type, which is essentially the
only case for which nonassociative aspects of quantum mechanics have been studied so far. A
generalization of the phase space formulation of quantum mechanics, based on the nonassociative
star product (4.2) with fundamental commutation relations (4.4), appears to be the most convenient
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approach. An essential ingredient for consistency are the 2-cyclicity and 3-cyclicity properties
(4.5) of the star product with respect to integration. In the following we give a brief overview
of nonassociative quantum mechanics and some of its consequences, refering to [53] for further
details.

An observable A in this approach is a real-valued function on 2d-dimensional phase space M .
More generally, operators are complex-valued functions and are multiplied together with the star
product (4.2). Dynamics is implemented via Heisenberg-type time evolution equations

∂A
∂ t

=
i
h̄
[H ?, A]

that look familiar, but in general are not derivations of the nonassociative star product operator
algebra; similar evolution equations allow the study of the motion of a charge particle in a mag-
netic field with sources, i.e., ∇ ·BBB 6= 0. States are characterized by normalized (complex-valued)
functions ψα and statistical probabilities λα (for mixed states). Expectation values are computed
via the phase space integral

〈A〉=
n

∑
α=1

λα

∫
M

d2dx ψ
∗
α ? (A?ψα) =

∫
M

d2dx AS ,

and can be expressed as indicated in terms of a normalized real-valued state function

S =
n

∑
α=1

λα ψα ?ψ
∗
α

using (4.5). Given a state, we can define a semi-definite sesquilinear form for operators

(A,B) =
n

∑
α=1

λα

∫
M

d2dx (A?ψα)
∗ (B?ψα)

that satisfies the Cauchy-Schwarz inequality∣∣(A,B)∣∣2 ≤ (A,A)(B,B) . (4.7)

The inequality (4.7) is the basis for the derivation of uncertainty relations

∆pi ∆p j ≥ 0 , ∆xi
∆p j ≥ h̄

2 δ
i
j , ∆xi

∆x j ≥ h̄
2

∣∣Ri jk 〈pk〉
∣∣ ,

and encodes the concept of positivity of operators in our setting. Eigen-state functions S of op-
erators A with eigenvalues λ ∈ C are defined as usual, i.e., A ? S = λS, and observables (A∗ = A)
have real eigenvalues. Due to nonassociativity, this fact is not straightforward, as (A ? S) ?A∗ 6=
A ? (S ? A∗); the proof requires 3-cyclicity (4.5). As in ordinary quantum mechanics, a pair of
operators that do not commute cannot in general be measured simultaneously to arbitrary preci-
sion. A famous example are the limitations to position and momentum measurements imposed by
the Heisenberg uncertainty principle. Only commuting operators have complete sets of common
eigenstates. In nonassociative quantum mechanics, similar statements hold for triples of operators
that do not associate. In particular any triple of coordinates xi, x j, xk that do not associate, i.e., with
non-trivial R-flux Ri jk 6= 0, do not have any common eigenstate. The R-flux induced nonassociativ-
ity thus leads to a coarse-graining of spacetime with fundamental limitations to the determination
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of the exact locations of events. These new uncertainties are quantified by the non-zero expectation
values of area and volume operators given by [53]

〈Ai j〉= h̄Ri jk 〈pk〉 , 〈V i jk〉= 3
2 h̄2 Ri jk .
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