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Einführung

Die Wechselwirkungen aller Objekte der Natur wird durch die vier Grundkräfte der Physik
beschrieben, die Gravitationskraft, die elektromagnetische Kraft, die schwache Kraft und
die starke Kraft.

Wir untersuchen in dieser Arbeit die Auswirkungen der starken und elektromagneti-
schen Kraft. Quarks und Gluonen, die Bestandteile der Hadronen, sind an die starke
Kraft gebunden, wobei das Gluon ihr Austauschteilchen ist. Quarks sind elektrisch ge-
laden, und unterliegen zudem der elektromagnetischen Kraft, können also mit Photonen
wechselwirken. Leptonen unterliegen ausschließlich der elektromagnetischen Kraft.

Zur Untersuchung dieser kleinsten Teilchen in der Natur bedient sich der Mensch Hoch-
energieexperimenten. Die bekanntesten ihrer Art sind der Large Hadron Collider (LHC) am
CERN Kernforschungszentrum, Schweiz, und der Relativistic Heavy-Ion Collider (RHIC)
am Brookhaven National Lab, USA. Dort werden u.a. Protonen mit Protonen zur Kollisi-
on gebracht, Protonen mit schweren Ionen (Blei oder Gold) oder zwei schwere Ionen. Die
erreichten Energien sind so groß, dass man inzwischen davon ausgeht, dass die Nukleonen
beim Stoß zerstört werden, und, für mehr oder weniger lange Zeiträume ein Plasmazu-
stand aus freien Quarks und Gluonen entsteht. Dieses sogenannte Quark-Gluonen Plasma
(QGP) ist Gegenstand zahlreicher experimenteller und theoretischer Untersuchungen. Die
zugrundeliegende Theorie ist die Quanten Chromodynamik (QCD), bei beteiligten Pho-
tonen und Elektronen zusätzlich die Quanten Elektrodynamik (QED). Experimente sind
in der Lage, hadronische Spektren, deren azimuthale Winkelabhängigkeit, einzelne hoch-
energetische hadronische “Jets” und Spektren von Photonen und Dileptonen zu messen.

Der Vergleich von theoretischen Modellen mit experimentellen Daten bestätigte das
Standard-Bild der Evolution von Schwerionenkollisionen: Zunächst entsteht in der meist
mandelförmigen Kollisionszone des Schwerionenstoßes ein Nichtgleichgewichts-Zustand ex-
trem hoher Dichte und Temperatur, bestehend aus stark wechselwirkenden Quarks und
Gluonen. Dieses Gas equilibriert schnell, dehnt sich dabei aus und kühlt ab. Ab einer
inzwischen sehr genau bestimmten Temperatur findet ein Phasenübergang zu normaler,
hadronischer Materie statt. Das hadronische Gas wechselwirkt immer noch stark, dehnt
sich weiter aus und kühlt weiter ab. Ab einem bestimmten Zeitpunkt hören auch die
hadronischen Stöße auf, und die Produkte fliegen auf geraden Bahnen zum Detektor. So-
wohl beim ersten Kern-Kern Kontakt als auch während der gesamten QGP Phase und
hadronischen Evolution werden Photonen und Dileptonen produziert.

Eine der interessantesten Eigenschaften des QGPs sind sein geringes Verhältnis von
Scherviskosität zu Entropie, was Nahe am theoretischen unteren Minimum liegt. Das
QGP bildet damit fast eine ideale Flüssigkeit. Die Zustandsgleichung bei verschwinden-
dem chemischen Potential ist hinreichend bekannt, sie zeigt einen auffälligen Sprung beim
Phasenübergang, jedoch gibt es nur Vermutungen über das Verhalten bei endlichem che-
mischen Potential. Inzwischen gibt es weiterführende Vermutungen über die Volumen-
viskosität, die thermische als auch die elektrische Leitfähigkeit. Diese Transportkoeffizi-
enten charakterisieren die Eigenschaften des QGP auf interessante Art, und man kann
Rückschlüsse auf die mikroskopischen QCD Interaktionen zwischen Quarks und Gluonen
ziehen. Bei niedrigeren Schwerpunktsenergien vermutet man höhere chemische Potentia-
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le der dominanten Ladungen (elektrische, baryonische und seltsame Ladung). Inzwischen
sind auch die Diffusionskoeffizienten und deren Kopplungen bekannt.

Neben Transportkoeffizienten sind Spektren von elektromagnetischen Observablen wert-
volle Informationsquellen, die vor allem die Evolution des Feuerballes beschreiben: Tem-
peraturverlauf, Expansionsgeschwindigkeit und relative Dichten von Quarks und Gluonen
sind dabei die wichtigsten Kenngrößen.

Elektrische Leitfähigkeit und Diffusionseigenschaften von QCD
Materie

In dieser Arbeit entwickeln wir einen Formalismus zur (semi-analytischen) Bestimmung
der elektrische Leitfähigkeit von relativistischer Materie. Nach ausführlichen Tests benut-
zen wir diese Methode für ein hadronisches Modellsystem bei Temperaturen knapp unter
der Phasenübergangstemperatur. Wir berechnen die elektrische Leitfähigkeit für ein Gas
bestehend aus mehreren Hadronen, wobei Pionen die wichtigsten Spezies darstellen (da sie
am häufigsten auftreten). Als theoretische Basis benutzen wir die Boltzmann Transport-
gleichung mit linearisiertem Kollisionsterm, bei dem wir, soweit bekannt, binäre Resonanz-
Streuquerschnitte annehmen. Unbekannte Hadron-Hadron Streuquerschnitte nehmen wir
als isotrop und konstant an und untersuchen die Sensitivität zu Veränderung dieser Kon-
stanten. Wir finden das erwartete abfallende Verhalten des Verhältnisses von elektrischer
Leitfähigkeit über Temperatur mit steigender Temperatur, und vergleichen u.a. mit Litera-
turwerten aus Gitterfeldtheorie, anderen Transportmodellen und chiraler Störungstheorie.
Unsere Ergebnisse liegen zwischen den teilweise stark abweichenden Literaturwerten. Wir
erhalten etwa eine Größenordnung höhere Leitfähigkeit als gitterfeldtheoretische Rech-
nungen. Hierbei merken wir an, dass bisher die gitterfeldtheoretischen Rechnungen nur
bei höheren Temperaturen verlässlich funktionieren. Chirale Störungstheorie ergibt etwa
ein Drittel schwächere Leitfähigkeiten, mit einem sehr ähnlichen Temperaturverlauf wie
unsere Rechnung. Kurz über dem Phasenübergang treffen wir mit den meisten Ergebnissen
der Gitterfeldtheorie zusammen.

Wir haben weiterhin untersucht, wie der elektrische, baryonische und seltsame Strom
aufgrund von Gradienten in thermischen Potentialen (chemisches Potential geteilt durch
Temperatur) entstehen, und sich gegenseitig beeinflussen. Wir stellen eine symmetrische
Matrix aus Diffusionskoeffizienten auf, die klassische, diagonale Diffusionskoeffizienten
(Baryon Diffusionskoeffizient, Elektrischer Diffusionskoeffizient und Seltsamkeits Diffusi-
onskoeffizient) enthalten, als auch drei Kreuz-Diffusionskoeffizienten, die die Diffusionss-
tröme einer Ladung aufgrund von Gradienten einer anderen Ladung beschreiben.

Für Temperaturen über dem Phasenübergang benutzen wir ein vereinfachtes Modell
mit masselosen Quarks und Gluonen mit konstanten isotropen Streuquerschnitten, die al-
lerdings temperaturabhängig sind. Wir wählen eine Beschreibung bei der das Verhältnis
von Scherviskosität zu Entropie das theoretische untere Minimum annimmt. Die Diffusi-
onskoeffizienten sind relativ konstant über diese Temperaturen im QGP.

Für Temperaturen unter dem Phasenübergang benutzen wir 19 verschiedene baryo-
nische und mesonische Spezies mit Massen bis zum Lambda-Baryon. Wie bei der elek-
trischen Leitfähigkeit benutzen wir teilweise gemessene Resonanzquerschnitte, oder Mo-
dellierungen und Parametrisierungen von Streuquerschnitten für die Wechselwirkungen
der Spezies untereinander. Die Temperaturabhängigkeit der sechs unabhängigen Diffu-
sionskoeffizienten variiert stark mit dem baryon chemischen Potential. Wir finden, dass
in den meisten Fällen unsere vereinfachte Annahme der Streuquerschnitte ausreicht, um
ein ungefähre Annäherung der hadronischen und der QGP Rechnung im Bereich des Pha-
senübergangs zu gewährleisten. Eine Ausnahme ist der Elektrisch-Baryonische Kopplungs-
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koeffizient, der bei verschwindendem chemischen Potential im QGP ganz verschwindet. Die
bei weitem stärkste Diffusion ist die Seltsamkeits-Diffusion, der entsprechende Koeffizient
liegt bis zu einer Größenordnung über den anderen Koeffizienten. Interessant ist auch der
Seltsamkeits-Baryon Kopplungskoeffizient, der negativ ist. Das bedeutet, dass ein baryo-
nischer Gradient in thermischen Potential einen negativen Seltsamkeits-Strom hervorruft,
der zudem im hadronischen stark vom baryon chemischen Potential abhängt. Wie erwar-
tet, ist die Abhängigkeit der nicht-baryonischen (Kopplungs-) Koeffizienten vom baryon
chemischen Potential gering.

Es bleibt zu zeigen, inwieweit diese Diffusionskoeffizientenmatrix eine phänomenologische
Relevanz hat. Zukünftige Studien werden zeigen, ob beispielsweise der starke longitudina-
le Gradient in baryon thermischen Potential eine Erhöhung der Seltsamkeit bei zentraler
Rapidität hervorruft, und welche Rolle die elektrische Ladung spielt. Es ist bisher nicht
bekannt, ob sich durch die starken Kopplungskoeffizienten verschiedene Ströme aufheben,
sodass beobachtbare Effekte klein sind. Eine Möglichkeit dies zu untersuchen sind hydro-
dynamische Modelle mit mehreren erhaltenen Strömen, die sich im Moment aber noch im
Aufbau befinden.

Das verwendete Modell zur Beschreibung von
Schwerionenstößen

Das in dieser Arbeit verwendete theoretische Modell zur numerischen Beschreibung des
Plasmazustandes in Schwerionenstößen basiert auf der Lösung der relativistischen Boltz-
mann Transportgleichung (Boltzmann Approach to Multi-Parton Scatterings, BAMPS).
Dazu teilen wir das betreffende Volumen in Zellen auf und simulieren die Verteilungsfunk-
tion der Partonen als Ensemble von Einzelteilchen. Für den Anfangszustand wird hierzu
das Modell Pythia 6 und IP-Glasma für verschiedene Zwecke benutzt. Nach dem Gene-
rieren eines Anfangszustandes aus Quark und Gluon Orts- und Impulsvektoren werden in
diskreten Zeitschritten Kollisionswahrscheinlichkeiten berechnet und die Teilchenensem-
bles durch binäre und radiative Stöße weiterentwickelt. Dies stellt eine numerisch exakte
Lösung der Boltzmanngleichung dar. Nachdem die Energiedichte lokal auf einen kritischen
Wert gefallen ist, wird die Evolution unterbrochen und die Partonenspektren analysiert.
Dieses Modell dient in der vorliegenden Arbeit als Basis für die Untersuchung des Einflusses
von Magnetfeldern, für die Implementation und Analyse von Photonen- und Dileptonen-
produktionsprozessen und ein Projekt zum Einfluss des Anfangszustandes bei Proton-Blei
Systemen.

Magnetische Felder in Schwerionenkollisionen und ihre
dynamischen Auswirkungen

Es ist bekannt, dass sich im Zentrum der Schwerionenkollision extrem starke elektrische
und magnetische Felder aufbauen. Diese entstehen durch das schnelle Vorbeifliegen der
Ladungen der nicht-teilnehmenden Nukleonen in periphären Kollisionen. Im Rahmen die-
ser Arbeit wurde untersucht, wie sich die extremen Felder auf die Dynamik innerhalb des
QGPs auswirken. Durch die Geometrie des Problems zeigen die Magnetfelder fast aus-
schließlich in die Richtung senkrecht zur Ereignisebene und die Lorentzkraft zwingt die
elektrisch geladenen Partonen (Quarks) auf Kreisbahnen. Nachdem wir verschiedene Ma-
gnetfeldkonfigurationen betrachtet haben, untersuchen wir inwieweit sich der Effekt der
elektromagnetischen Kraft auf Observablen wie Spektren oder elliptischen Fluss auswir-
ken. Wir beschreiben genau, welche kinematischen Regionen der Parton-Ensembles Effekte
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hervorrufen. Das Ergebnis ist eine merkliche Erhöhung des elliptischen Flusses bei extrem
niedrigen transversalen Impulsen, die auch in näherer Zukunft nicht messbar sein werden.
Bei diesen Skalen spielen außerdem Effekte eine Rolle, die nicht im Rahmen des Modells
erfasst werden können, wie u.a. die wenig erforschte Hadronisierung.

Photonenproduktion in Schwerionenkollisionen

Das Hauptaugenmerk dieser Thesis liegt auf der Untersuchung von photonischen Observa-
blen. Seit den ersten Messungen von direkten Photonen am RHIC versuchen Theoretiker,
bisher wenig zufriedenstellend, deren gemessene Spektren und den elliptischen Fluss zu
beschreiben. Direkt bedeutet hierbei Photonen, die nicht aus späten Zerfällen, z.B. von
Pionen, stammen, sondern thermisch im QGP und Hadronengas erzeugt werden, oder
aber bei den initialen harten Nukleon-Nukleon Stößen am Anfang der Kollision. Die meis-
ten Untersuchungen dazu wurden mit Hilfe von hydrodynamischen Modellen ausgeführt,
wobei Gleichgewichtsraten zur Photonenproduktion mit dem Temperaturverlauf gefaltet
werden. In unserem Modell müssen durch mikroskopische Parton-Parton Stöße Photonen
erzeugt werden. Dies hat den Vorteil, dass es auch im Nichtgleichgewicht funktioniert,
bzw. es keinen Unterschied macht, inwieweit das Medium equilibriert ist. Der Nachteil ist,
dass die entsprechenden Matrixelemente kompliziert zu konstruieren sind. Hierbei besteht
das Problem, dass die Gleichgewichtsraten der Photonenproduktion zu führender Ordnung
nicht nur Matrixelemente zu führender Ordnung in den Vertizes (Baumdiagramme) ent-
halten, sondern eine unendliche Resummation von radiativen Prozessen, die miteinander
interferieren. Dieses, als Landau-Pomeranchuk-Migdal Effekt bekannte Verhalten ist sehr
schwer mikroskopisch zu modellieren.

Auch bei binärer Photonenproduktion besteht das Problem, dass thermisch berechnete
Gleichgewichtsraten nicht unmittelbar mit mikroskopisch generierten Raten übereinstimmen,
selbst wenn die gleichen Prozesse benutzt werden (Compton-Streuung und Quark-Antiquark
Annihilation). Dies liegt an der Abschirmung der off-shell Propagatoren innerhalb des
Plasmas. Wir benutzen die Ein-Schleifen Quark-Selbstenergie, in der partonischen Kas-
kade dynamisch berechnet (Debye Masse), und fügen einen Anpassungsfaktor hinzu, der,
im thermischen und chemischen Gleichgewicht, an analytisch berechnete Raten angepasst
wird (die mit Hard-Thermal-Loop Theorie konsistent berechnet wurden). Wir korrigieren
zudem mit einem weiteren Faktor die fehlende Quantenstatistik des Modells. Damit stel-
len wir zunächst sicher, dass sich die binäre Rate in BAMPS sehr ähnlich der korrekten
analytischen Rate verhält.

Im radiativen Fall muss ein ähnliches Verfahren angewendet werden. Wir approximieren
daher das Verhalten der radiativen Prozesse und des LPM Effektes auf zwei verschiedene
Weisen.

Zunächst berechnen wir ein 2→ 3 Matrixelement mit effektiven Quark und Gluon Pro-
pagatoren, wobei die zusätzliche kollineare Divergenz zunächst willkürlich abgeschnitten
wird. Hierbei wird die Formationszeit des Photons mit einer effektiven freien Weglänge
verglichen. Im thermischen und chemischen Gleichgewicht kann die so mikroskopisch er-
zeugte Rate mit der analytischen Form verglichen werden. Hier wenden wir nur einen
äußeren Anpassungsfaktor an, der die ungefähre Gleichheit der absoluten Rate in einem
phänomenologisch interessanten Energiebereich sicherstellt.

Die zweite Variante der radiativen Photonenproduktion, die im Rahmen dieser Arbeit
untersucht wurde, ist die Verwendung eines Streukernels, der mit Hilfe von thermischer
Feldtheorie aus der Literatur bekannt ist. Diese Methode beruht darauf, dass aufgrund
von Impulsen einzelner Quarks und einer Hintergrund-Temperatur die Wahrscheinlichkeit
berechnet wird, in einem Zeitschritt ein Photon mit einer bestimmten Energie auszusen-
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den. Wird dieses Photon erzeugt, so fliegt es exakt kollinear zum Quark. Die entstehenden
Raten im Gleichgewicht sind ohne Annahmen nahezu identisch den analytischen Parame-
trisierungen aus der Literatur, allerdings benötigt man einen Temperaturbegriff des Hin-
tergrunds. Wir verwenden hier daher einen Temperaturbegriff, der unabhängig von der
Fugazität ist und als Quotient zwischen zwei Momenten der Verteilungsfunktion errechnet
wird. Dies ist eine sinnvolle, allerdings willkürliche Wahl. Desweiteren kann mit dieser
Methode nicht abschließend geklärt werden, wie sich der Strahlungskernel im chemischen
Nichtgleichgewicht verhält, da sich die internen effektiven Propagatoren bei Fugazitäten
verändern werden.

Wir untersuchen in einem weiteren Kapitel, inwieweit elliptischer Fluss eines partoni-
schen Hintergrunds auf Photonen übertragen wird. Durch einen rein kinematischen Effekt
verringert sich diese Impuls-Asymmetrie deutlich.

Im vielleicht wichtigsten Teil dieser Arbeit werden die oben beschriebenen Methoden
der Photonenproduktion auf realistische Szenarien in periphären Schwerionenkollisionen
angewendet. Dazu berechnen wir für vier Zentralitäten bei RHIC und drei Zentralitäten
für LHC die QGP Photonenspektren mit BAMPS.

Für LHC Simulationen benutzen wir prompte Photonenspektren aus der Literatur und
summieren diese zu dem QGP Anteil, um im höheren Teil der transversalen Impulse einen
Vergleich zum experimentell gemessenen, direkten Photonenspektrum zu ermöglichen. Der
Vergleich wird zu höheren Impulsen etwas präziser, wobei der QGP Anteil als sehr gering
auffällt. Die beiden Methoden der radiativen Photonenproduktion unterscheiden sich mit
geringer Impulsabhängigkeit. Diese Differenz kann als systematische Unsicherheit gewertet
werden.

Für RHIC Simulationen benutzen wir verfügbare hadronische und prompte Photonen-
spektren, und summieren diese zu den QGP Spektren aus BAMPS. Damit sind wir in
der Lage, mit experimentellen Ergebnissen zu vergleichen. Die Übereinstimmung ist gut
bei hohen und niedrigen transversalen Impulsen, aber im mittleren Impulsbereich, wo das
QGP eine dominante Rolle einnehmen sollte, unterschätzen wir die Experimente etwas.
Dies ist bei uns auf die niedrige Anzahl an Quarks zurückzuführen (Quark Fugazitäten
unter Eins).

Wir berechnen weiterhin den elliptischen Fluss für RHIC und LHC. Dabei ist zu be-
achten, dass elliptischer Fluss von Photonen aus mehreren Quellen ein gewichtetes Mittel
ist, bei dem der Fluss aus den Quellen mit dem Spektrum gewichtet wird. Wir benut-
zen daher zusätzlich zu den Ergebnissen aus BAMPS aus der Literatur (Hydrodynamik)
bekannte Ergebnisse von hadronischem elliptischen Fluss und Spektrum, zusammen mit
dem prompten Spektrum (und verschwindendem Fluss) um den elliptischen Fluss von
direkten Photonen am PHENIX Experiment am RHIC für zwei Zentralitätsklassen zu
berechnen. Bis zu einem Transversalimpuls von etwa 1.5 GeV werden die Daten relativ
gut beschrieben, danach unterschätzt unser Modell die Daten signifikant. Da für LHC
keine hadronischen Einzelergebnisse aus der Hydrodynamik verfügbar sind, können wir
keinen echten Vergleich mit dem Experiment anstellen. Wir stellen hier jedoch fest, dass
die exakt kollineare Emission der Raten berechnet mit dem direkten Streukernel für RHIC
und LHC einen deutlich höheren elliptischen Fluss erzeugt. Die nicht-kollineare Emission
aus den Matrixelementen, mit der etwas anderen Gewichtung (hier wird keine effektive
Temperatur benutzt) lässt den elliptischen Fluss fast identisch verschwinden.

Wir zeigen weiterhin, dass eine laufende starke Kopplung das Photonenspektrum um
bis zu einen Faktor 1.7 vergrößern kann. Hierbei benutzen wir verschiedene Skalen bei
denen die Kopplung ausgewertet wird. An den Streuvertizes ist dies der Impulstransfer
(Mandelstam Variablen), und innerhalb der effektiven Propagatoren ist das Quadrat einer
effektiven Temperatur eher gerechtfertigt.
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Da wir im Vorigen sahen, dass die Fugazitätsentwicklung eine wichtige Rolle spielt,
untersuchen wir die Sensitivität darauf indem wir einen künstlichen Faktor auf die Quark-
Antiquark Produktionsquerschnitte multiplizieren. Wir zeigen, wie sich die Fugazität bei
einem Faktor von 10 und 100 deutlich schneller erhöht, und bis zu einem Wert von 3
steigt. In diesen künstlichen Szenarien erhöht sich die Photonenzahl über weite Bereiche
in transversalem Impuls, was unsere Annahme der Sensitivität auf Fugazität bestätigt und
quantifiziert.

Wir vergleichen mit einem anderen Transportmodell (PHSD) und einem hydrodynami-
schen Modell (MUSIC), da diese beiden Modelle ebenfalls ausführliche Studien zu direkten
Photonen in Schwerionenkollisionen ausgeführt haben. Es fällt auf, das der QGP Anteil an
den Spektren sich in allen drei verglichenen Modellen stark unterscheidet. BAMPS zeigt
das flachste (härteste) Spektrum, was allerdings von der Größenordnung her für niedrigere
transversale Impulse unter den anderen beiden Modellen verbleibt. PHSD ist einen Faktor
2 unter den Ergebnissen von MUSIC, dafür zeigt PHSD einen höheren hadronischen Anteil
im Spektrum. Die Unterschiede sind hauptsächlich auf den unterschiedlichen Anfangszu-
stand zurückzuführen, als auch auf unterschiedliche hadronische Raten. Die Zukunft wird
zeigen, welches Modell durch kleine Modifikationen am nächsten an die Daten kommen
wird. Diese werden sicherlich auch noch präziser. Unser Modell betont die Wichtigkeit
des chemischen Nichtgleichgewichts und es ist davon auszugehen, dass die Lösung des
“Photonen-Puzzles” eine delikate Mischung aus verschiedenen kleinen Verbesserungen der
Modelle sein wird.

Studie zur Dynamik von kleinen Systemen und ihrer Sensitivität
zu initialem Zustand und finalen Interaktionen

Im letzten Kapitel dieser Arbeit untersuchen wir das etwas separate Problem der azimutha-
len Korrelationen in kleinen Systemen, was allerdings in der Community der Schwerionen-
physik in den letzten Jahren starkes Interesse gefunden hat. Die gemessenen azimutha-
len Impuls-Anisotropien in Schwerionenkollisionen wurden durch Event-by-Event Hydro-
dynamik ausreichend beschrieben. In kleineren Systemen, z.B. p+Pb oder p+p Stößen
wurden ähnliche Beobachtungen von Anisotropien in Vielteilchen-Korrelationsfunktionen
gemacht. Hydrodynamik und auch alternative Modelle mit reinem anisotropen Anfangs-
zustand konnten viele dieser Beobachtungen erklären. Allerdings ist die klassiche rela-
tivistische Hydrodynamik in kleineren Systemen zunehmend schlechter anwendbar, da
die Gradienten zu stark werden. Bisher wurden alle Studien zu Vielteilchenkorrelatio-
nen entweder zum reinen Anfangszustand oder aber zum reinen Endzustand ausgeführt.
Wir präsentieren hier die erste Studie die sowohl Anfangszustand als auch Interaktionen
zu späteren Zeiten enthält. Dazu kombinieren wir zwei etablierte Modelle: Zunächst be-
nutzen wir ein Modell für den Anfangszustand der p+Pb Kollision, das sog. IP-Glasma
Modell. Es basiert auf dem Farbglas-Kondensat (“color glass condensate”, CGC), und
löst die klassischen Yang-Mills Gleichungen numerisch mit Anfangsbedingungen aus ei-
nem fluktuierenden Proton-Modell. Wir extrahieren die Gluonen Wigner-Verteilungen und
(nach Schmieren für Positivität) generieren einzelne Gluonen im Phasenraum anhand der
(transversalen) Verteilung. Diese Gluon-Verteilungen sind anisotrop im (transversalen)
Impuls- und Ortsraum, enthalten also die intrinsischen Impulskorrelationen des CGCs.
Wir evolvieren die Verteilungen anhand der Boltzmanngleichung mithilfe von BAMPS.
Dabei benutzen wir elastische und radiative pQCD Streuquerschnitte. Am Ende der Evo-
lution analysieren wir den elliptischen Fluss per Zwei-Teilchen-Korrelations Methode. Wir
benutzen zunächst zwei, später mehrere Multiplizitätsklassen um zu verstehen, welchen
relativen Einfluss der Anfangs- und Endzustand auf die Observablen haben. Insbesonde-
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re inwieweit Signale des Anfangszustandes die späteren Wechselwirkungen der Teilchen
überleben um am Ende in Observablen sichtbar zu bleiben ist hier von Interesse.

Wir können zeigen, dass speziell bei niedrigen Multiplizitäten der Anfangszustand sehr
wichtig für den am Ende beobachteten elliptischen Fluss ist. Wir führen aus, welche
Abhängigkeit vom transversalen Impuls diese Aussage hat, denn bei niedrigen Impulsen
beobachten wir auch bei niedrigen Multiplizitäten eine sichtbare Veränderung des Flusses
durch die späten Interaktionen. Der impulsintegrierte elliptische Fluss zeigt ein interessan-
tes dynamisches Verhalten. Nach der Yang-Mills Evolution nimmt der Fluss zunächst für
einige Zeit ab, da die pQCD Streuungen die Impulse isotropisieren, und sich die Symmetrie-
achse neu ausrichtet. Danach setzt die Antwort auf die entstandenen Druckgradienten ein,
die, wie bei Schwerionenkollisionen, für eine ansteigende Impulsasymmetrie verantwortlich
sind. Dieses wechselnde Verhalten ist bei hohen Multiplizitäten deutlich ausgeprägter.

Angesichts der langen Diskussion ob Anfangs- oder Endzustand ausschlaggebend sind
in kleinen Systemen, schlagen wir einen Paradigmenwechsel vor, indem wir betonen dass
beide Stadien wichtig sind. Wir schlagen vor, dass eine differentielle Untersuchung von azi-
muthalen Korrelationen in mehreren Multipliziätsklassen deutlichen Wissenszuwachs über
den Anfangszustand und die frühe Nichtgleichgewichtsphase von hochenergetischen Kolli-
sionen bringen wird. Wir unternehmen erste Schritte in diese Richtung, und zeigen, dass
eine Fragmentierung der finalen Partonen eine Methode sein kann, hadronische Observa-
blen zu generieren, die mit dem Experiment vergleichen werden können. In Zukunft wäre
sicherlich eine mikroskopische Hadronisierung im Rahmen von BAMPS wünschenswert.

Ausblick

Diese Arbeit behandelt mehrere Themen der Hochenergiephysik, mit einem Fokus auf der
theoretischen Beschreibung von Schwerionenkollisionen und Proton-Blei Kollisionen. Wir
haben zunächst einige wichtige Transportkoeffizienten des heißen Hadronengases und des
Quark-Gluon Plasmas berechnet, mit deren Hilfe in Zukunft weitere effektive Modelle noch
genauere Vorhersagen treffen können. Dies wird insbesondere für Kollisionen bei niedrige-
ren Energien relevant sein, die das primäre Ziel verfolgen, das T − µB-Phasendiagramm
der QCD zu kartieren.

Wir haben den Einfluss von externen Magnetfeldern untersucht, mit dem zusammen-
fassenden Ergebnis, dass die Felder zu kurzlebig sind, um in messbaren Observablen eine
Rolle zu spielen. Weitere Studien, die auch interne Magnetfelder in Betracht ziehen, können
darauf aufbauend neue Einsichten bringen.

Das Photonen-Puzzle in Schwerionenkollisionen am RHIC und LHC ist durch die unge-
naue Datenlage oft schwer zu erfassen. Wir arbeiten mit einem neuen Modell, dass explizit
partonische Fugazitäten und eine Nichtgleichgewichtsevolution des Quark-Gluon Plasmas
enthält. Die differentielle Analyse der Spektren und des elliptischen Flusses kann die Daten
nur in einigen Bereichen erklären, und unterschätzt die Daten in den anderen. Dies deutet
darauf hin, dass ein bislang unbekannter Baustein im Modell fehlt. Ein Vergleich mit an-
deren Modellen in der Literatur bringt keine weitere Information, da auch diese Modelle
die Daten unterschätzen. Es erscheint vielversprechend, dass eine Kombination aus dem
richtigen Anfangszustand, laufender Kopplung, exakten Photonenproduktionsraten auch
bei chemischem Nichtgleichgewicht im QGP als auch im Hadronengas sowie präziseren
experimentellen Ergebnissen die Spannung zwischen Theorie und Experiment verringert.

Wir haben weiterhin ein Projekt verfolgt, welches die relative Wichtigkeit des Anfangs-
und Endzustandes in kleinen Kollisionssystemen untersucht. Dieses Modell sollte in Zu-
kunft mit einer etwas genaueren Hadronisierung ausgestattet werden und verspricht dann,
durch systematische Vergleiche mit dem Experiment, viel über die Natur des Anfangs-
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zustandes von Schwerionenkollisionen und das zugrundeliegende “color glass condensate”
Bild herauszufinden, sowie eine genauere Einschränkung der Natur der partonischen In-
teraktionen.



Overview

Abstract

In this thesis we work on the theoretical description of relativistic heavy-ion collisions,
focussing on electromagnetic probes. We present mainly four topics: electric conductivity
and diffusion properties of the hot plasma and hadronic matter, response of the quark-
gluon plasma to external magnetic fields, direct photon production in the quark-gluon
plasma and a study about initial and final state effects in small systems. The latter topic
aims, i.a., at a better understanding of the initial state, which is crucial for electromagnetic
probes. In all research areas we make use of the Boltzmann transport equation, whereby
the presented methods provide analytical and numerical solutions. We pay particular
attention to the construction of complete leading order photon production processes in
numerical transport simulations of the quark-gluon plasma.

To begin with, our findings are the complete conserved charge diffusion matrix and elec-
tric conductivity. Those properties are important ingredients, e.g., for future simulations
of baryon rich collisions. Next, we find that the influence of external magnetic fields to
the QGP dynamics is not quantifiable in observables. We present results for a variety of
direct photon observables and we can partly explain experimental data. We emphasize
the importance of the chemical composition and non-equilibrium nature of the medium
to the direct photon puzzle. Lastly, we observe the interesting dynamic behavior of az-
imuthal correlations in small systems and identify signatures of the initial state in final
observables. This will also be of interest for more precise simulations of electromagnetic
probes and allows for various future studies.

Outline of this thesis

After introducing the theoretical and experimental background in Chap. 1, we present in
the next chapter the first project of this thesis about electric conductivity and diffusion
coefficients of hot quark-gluon and hadronic matter. The chapter is partly reproduced
from and based on Refs. [1, 2]. The following chapter presents a calculation of external
magnetic fields from spectators in peripheral heavy-ion collisions. We use a numerical
solution of the Boltzmann equation to investigate the kinetic influence of these fields to
the QGP dynamics. The chapter is partly reproduced from and based on Ref. [3]. The
next chapter gives an introduction to the theoretical modelling of heavy-ion collisions,
with a focus on transport models. In Chap. 5 we summarize the theoretical foundations
of thermal field theory. We conclude the chapter by the optical theorem and cutting
rules which will be needed in the following. The next four chapters aim at the theoretical
description of direct photons in heavy-ion collisions. Parts of these chapters are extensions
and improvements of the methods and results published in Ref. [4]. Chap. 6 deals with
microscopic photon production in transport models. We construct a consistent leading
order photon production algorithm including binary and radiative scattering.

In the following Chap. 7 we present a to date unpublished method within BAMPS to
compute photon radiation and compare it with the method from Chap. 6 before.

In Chap. 8 we investigate more closely the implementation of boosted production rates
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and the translation of elliptic flow from the background to photons. Furthermore we take
a closer look to emission angles and energy spectra of photons radiated by single quarks.
In Chap. 9 we present an update of the direct photon results from BAMPS for RHIC and
LHC and compare to data. The subsequent Chap. 10 deals briefly with the principle of
QGP dilepton emission in transport theory with temperature extraction as an application.
We then come in Chap. 11 to the last project, dealing with initial and final state effects in
small systems. This somewhat segregated topic is interesting by itself, but will in future
help to find more precise answers to the questions of the previous chapters, especially
regarding the initial state of heavy-ion collisions. To this end we first give an overview
of experimental results, introduce the new model (combining two existing models and an
event-by-event analysis) and present the results. This chapter is partly reproduced from
and based on Ref. [5]. Lastly, we summarize, conclude and give an overall outlook of
future projects.



1. Introduction

A small fraction of our universe’s mass is “bright matter”, meaning it is visible, and
clustered in galaxies, dust or gas clouds. Most of this matter whose existence we claim to
know participates in the strong force, described by the fundamental theory of Quantum
Chromodynamics (QCD).

QCD is a nearly complete quantum theory of matter, with the only parameters being
the masses of the current quarks and the strong coupling constant [6]. Matter properties
of quarks, gluons and hadrons arise from the complicated dynamics of QCD. The inter-
actions among the constituents of the theory play the most important role, but due to its
complexity it is extremely difficult to solve. Adding Quantum Electrodynamics (QED)
into the theory, also the interactions among leptons and photons with quarks (and each
other) add to the problem.

QCD has a perturbative limit, which is in most cases reached if large energy scales are
involved. For this reason one thrives with the help of high-energy experiments to unravel
properties and parameters of QCD and QED; however, several outstanding questions re-
main. In many experiments, the number of involved constituents (partons or hadrons) is
large. This multi-particle dynamics of QCD is both a virtue and a vice. It has the disad-
vantage, that individual properties of partons and their mutual interactions are hidden in
the ensemble and must be disentangled by laborious experimental and theoretical effort.
It is however also a virtue, since ensembles of particles can be described traditionally by a
few macroscopic thermodynamic properties such as temperature or transport coefficients.
Albeit not in a first-principle sense, such descriptions can be surprisingly precise.

In the following, we review the standardmodel of QCD and QED (omitting the elec-
troweak sector), and outline important properties of strongly interacting matter. We then
turn to a selection of high-energy experiments which were crucial for the modern under-
standing of particle physics.

1.1. Standardmodel of particle physics

Quantum Electrodynamics, the theory of interacting leptons and photons, is based on the
Lagrange density

LQED = ψ̄l(i/∂ −ml)ψl − eψ̄l /Aψl −
1

4
FµνF

µν , (1.1)

where ψl denotes the lepton spinor, ml its mass, and the electromagnetic field strength
tensor is

Fµν = ∂µAν − ∂νAµ. (1.2)

Slashed quantities are defined as /a = γµaµ with Dirac gamma matrices γµ [7]. The (classic)
electromagnetic vector potential Aµ takes the role of the photon in the quantized theory.
The Lagrange density has the unit of an energy density (i.e. energy4), the field strength
tensor the unit energy2. The latter incorporates the measurable components of the electric
field ~E and magnetic induction1 ~B. QED is an Abelian field theory, i.e. the photon fields

1In vaccuum, or in a medium with negligible magnetization, the magnetic induction is equal to the
magnetic field ~H.

1
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Aµ commute. Quantum effects in QED loose importance as one probes lower and lower
energy scales, such that in many traditional applications, the classical limit of the theory
(classical electrodynamics) is sufficient. It is based on the Maxwell equation,

∂µF
µν = jν (1.3)

and the Jacobi identity ∂αFµν + ∂µFνα + ∂νFαµ = 0. The electric current density jν

is classically defined as a boost of the local rest frame electric charge density ρ0, jν =
ρ0u

µ with four-velocity uµ. Note that in quantized electrodynamics (after promoting all
quantities to operators) the equations of motion are the Maxwell equation, Eq. (1.3),
coupled with the Dirac equation,

(i/∂ − e /A−ml)ψl = 0. (1.4)

More precise, Eq. (1.4) is the original Dirac equation plus an interaction term with an
external electromagnetic potential. The only possible microscopic process is the emission
or absorption of a photon from a lepton.

Quantum Chromodynamics is the theory of quarks and gluons. It is a non-Abelian
theory, which is the most important difference to QED with a number of striking con-
sequences. Quark fields ψnq transform under a representation of the SU(3) group, where
the corresponding non-Abelian charge is labeled as color, n = 1 . . . 3. Gluons couple to
quark currents and transform under the adjoint representation of SU(3), that means they
belong to a color octet. Defining a fundamental representation λa of the SU(3) algebra,
[λa, λb] = ifabcλc,Tr

(
λaλb

)
= 1/2 δab with structure constants fabc characterizing the

algebra, one can define a covariant derivative for the quark fields Dµ = ∂µ+ igλaAaµ. Like-
wise, one can define a covariant derivative for the adjoint fields Dµ

A. The field strength
tensor in QCD carries the adjoint color index a = 1 . . . 8,

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν . (1.5)

We can now write down the QCD Lagrangian,

LQCD = ψ̄mq (i /Dmn −mqδmn)ψnq −
1

4
F aµνF

µν
a , (1.6)

where mq is the mass of the quark and we explicitly wrote down color indicies.
Similar as in QED, the dynamics is determined by the Dirac equation (i /D−mq)ψq = 0

coupled with the Yang-Mills equation, (which takes the role of the Maxwell equation in
QED),

[Dµ, F
µν
a ] = gψ̄qγ

µλaψ. (1.7)

Possible processes in QCD are quark-gluon absorption or emission, gluon-gluon absorption
or emission and gluon-gluon scattering. Due to its complicated structure, analytic solu-
tions of the theory are intractable. It is however possible to use approximation schemes,
such as perturbative techniques, in order to solve for certain observables. Another com-
mon approximation is space-time discretization, with subsequent numerical evaluation of
observables of the theory, referred to as lattice QCD (lQCD) [8]. Effective theories, inte-
grating out certain degrees of freedom (which are less relevant at the scales of interest)
help in some cases to obtain answers from QCD.

The Standardmodel of particle physics nowadays combines QED, QCD and the elec-
troweak theory in a common framework. The fundamental degrees of freedom are leptons
(neutrinos, electrons, myons, tauons), quarks, gauge bosons (photons, gluons, Z bosons,
W bosons) and the scalar Higgs boson. In Fig. 1.1 all participants are summarized.
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Figure 1.1.: Figure from Ref. [9]. Overview of the fundamental particle species in the
Standardmodel of particle physics to date. The red, grey and green shading
groups the particles interacting strongly (QCD), electromagnetically (QED)
and weakly.

1.2. Properties of strongly interacting matter

QCD is a renormalizable quantum field theory, that means that all bare (i.e. non renor-
malized) fields and parameters can be rescaled in order to absorb unphysical divergences.
There are many different renormalization schemes, all of which involve a renormalization
point µ, which is an arbitrary energy scale. Physical observables must not depend on
µ, whereas internal quantities, such as quark masses or coupling constants depend on µ.
Typically one first regularizes divergent integrals (e.g. using dimensional regularization),
then redefines fields and parameters (renormalization; e.g. minimal subtraction scheme
MS [10]). Physical observables must not depend on the regularization prescription.

1.2.1. Asymptotic freedom

The dimensional regularization is intimately connected to the the running of the strong
coupling constant αs. One lifts the requirement of four spacetime dimensions, introducing
D = 4 − 2ε dimensions, such that the action is S =

∫
dDxL(x) where the Lagrangian

has now D energy dimensions. By this procedure, the regularized coupling gR has ε
energy dimensions - a feature that will translate into the running of αs = g2/4π. The
requirement that the bare coupling gbare be independent of µ leads to the flow equation
(or renormalization group equation),

µ2 dαs(µ
2)

dµ2
= β(αs), β(αs) = − [αs(µ

2)]2

4π

(
11− 2

3
Nf

)
. (1.8)
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This differential equation can be solved with boundary condition2 αs(Λ
2
QCD) → ∞, with

solution

αs(µ
2) =

1

4πβ0 log(µ2/Λ2
QCD)

, β0 =
1

(4π)2

(
11− 2

3
Nf

)
. (1.9)

The value of ΛQCD depends on the subtraction scheme and the number of flavors, but must
be determined from experiments. The world average of ΛQCD at Nf = 3 quark flavors
is [6, 11]

Λ
Nf=3

QCD,MS
= (332± 17) MeV. (1.10)

The corresponding value for 4,5 and 6 flavors is (292 ± 16) MeV, (210 ± 14) MeV and
(89± 6) MeV, respectively. The right hand side of Eq. (1.8) is the 1-loop approximation
of the β-function, however; it is known up to 4-loop order. In QED, where the coupling
constant e =

√
4παEM is widely known as the fundamental electric charge, the β-function

is positive at all orders,

βQED(e) =
e3

12π2
+

e5

64π4
+ . . . (1.11)

The coupling αEM increases for higher values of the energy scale Q, due to the positivity of
the β-function, however; in practice this dependence becomes only relevant at energy scales
as high as the mass of the Z-boson mZ = 91 GeV. At lower energies, αEM(0) ≈ 1/137,
whereas αEM(mZ) ≈ 1/128. In heavy-ion collisions, the typical energy scales are of the
order of the temperature T . 600 MeV, thus in this thesis we fix for all applications
αEM ≡ 1/137. The renormalization scale µ is unphysical, and the fact that the coupling
αs(µ

2) depends on µ indicates that αs itself is no observable. Observables, such as collision
cross sections, depend on αs and a renormalization scale dependent matrix element, and
their dependences on µ should cancel. As an example, taking the renormalization scale as
the momentum transfer in a scattering process, µ ∼ Q, the effective interaction strength
is αs(Q

2). In Fig. 1.2 we show the world collection of measurements of αs(Q
2) from

Ref. [11]. The described effect is known under the term asymptotic freedom, and was
found by Gross, Wilczek and Polizer [12,13].

1.2.2. Color confinement

Color charge can not be observed. No measurement will yield a color charge other than
white (=“color + anticolor” or “red+blue+green”). The reason is, that color charged
particles, i.e., quarks and gluons, are usually bound to white objects called hadrons. A
rare special case are relativistic plasmas, such as the quark-gluon plasma (QGP), where
quarks and gluons are free and unbound. However, any attempt to observe color charged
objects within the plasma will first cause the hadronization of partons into white hadrons,
whose electric charge, position, momentum or mass can be measured. This phenomenon
is called confinement. It is postulated, and so far consistent with existing research, but
its reasons and existence not yet rigorously proven. Phenomenologically, the strong force
between a pair of colored partons is constant over distance, such that the energy increases
with increasing distance. At some point, this energy suffices to generate a new pair of
colored partons in between. This process is often depicted as a “flux tube” breaking.
Color confinement belongs to one of the seven Millenium problems defined by the Clay
Mathematics Institute in Cambridge, Massachusetts, US.

2The boundary condition is given in terms of the perturbatively defined coupling constant. At its scale,
non-perturbative physics dominates.
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Figure 1.2.: Figure reproduced from Ref. [6]. World data on the running coupling constant
dependent on the momentum scale Q. As a reference value, the world average
of αs(MZ) with the mass of the Z-boson Q ≡MZ , is given.

1.3. Detection of hot QCD matter

The most important experiments for studying vacuum QCD are hadronic collisions. Ther-
modynamic properties and multi-particle dynamics is probed by nucleus-nucleus collisions.
Today, in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) at BNL or in
Pb+Pb collisions at the Large Hadron Collider (LHC) at CERN, matter is highly dynamic,
and temporarily the energy density is high enough such that a QGP is formed [14–17].

1.3.1. The detection of quark-gluon plasma signatures at SPS

Since 1975 it was proposed, that nuclear matter undergoes a phase transition from hadronic
matter to deconfined quark-gluon matter [18, 19]. The picture became more concrete
around ten years later [20–23]. In 1994, the Super Proton Synchroton (SPS) at CERN
carried out the first heavy-ion collisions which were powerful enough such that the search
for evidence of the new state of matter, the QGP, seemed reasonable. In fact, seven
experiments took part (NA44, NA45, NA49, NA50, NA52, NA57, WA98), and multiple
datasets hinted to the formation of strongly interacting matter which was likely not only
a hot hadronic gas - however, evidences were only indirect or remained inconclusive [24].

At center-of-mass energies per colliding nucleon pair of
√
sNN = 17.2 GeV, the expan-

sion rate of the fireball reached more than half the speed of light at freeze-out temperatures
of T ∼ 120 MeV [25]. Particle multiplicities could consistently be described with statis-
tical hadronization models [26–28], assuming a nearly thermal particle production at a
chemical freeze-out temperature of T ∼ 140 MeV. It was also found, that heavy-ion
collisions (Pb+Pb) build up significant collective transverse flow [28] (more to collective
flow in Sec. 1.3.3). Furtheron, J/ψ-suppression could be measured [29–31], which was
long before predicted to be a significant evidence for a transient existence of quark-gluon
plasma [21]. Free color charges are able to screen the charm-anticharm potential inside a
plasma such that the initially produced J/ψ bound states dissolve3. In the case of char-

3Central Pb-Pb collisions at SPS produce 1-2 J/ψ initially, at top RHIC energy about 7 − 10, at LHC



6 1. Introduction

monium suppression, alternative hadronic models could also describe the data and their
interpretation remained inconclusive [32]. Relative to proton-proton collisions, hadrons
containing strange particles (probed by, e.g., the K+/π-ratio) are enhanced by a factor of
two in lead-lead collisions [26, 33]; however, deconfinement models could neither be ruled
out nor proven by these results, and purely hadronic rescattering explained some of the
data.

One of the best direct evidences for a quark-gluon plasma is the measurement of direct
photons or dileptons from a thermal QGP phase. At the SPS facility, the background
was too strong to give conclusive answers, however, a significant direct photon signal was
reported [34]. At the expected temperatures, a dilepton or photon signal from thermal
radiation is very low. Some experiments have however seen an enhancement of the dilep-
ton rates over the cocktail from hadronic production, which is believed to be of thermal
origin [35,36].

1.3.2. From SPS to RHIC to LHC

As outlined in the previous section, at SPS many studies supported the onset of de-
confinement, and evidently higher collision energies had promised much clearer effects.
Those came with the beginning of the Relativistic Heavy Ion Collider (RHIC) facility, and
its four main experiments, BRAHMS [14], PHOBOS [16], PHENIX [37] and STAR [17].
To date, only PHENIX and STAR are still operative. Collisions at RHIC extend to√
sNN = 200 GeV, but the facility is capable to cover a range of collision energies ranging

down to
√
sNN = 7.7 GeV. For a review, see, e.g., Ref. [38].

The initial energy density at times τ ∼ 0.1 fm/c can be up to 1400 GeV/fm3 at central
Pb+Pb events at

√
sNN = 2.76 TeV [39], and around 500 GeV/fm3 at τ ∼ 0.2 fm/c

for central Au+Au collisions at
√
sNN = 200 GeV [40]. Even other, more conservative,

estimates exceed the nuclear ground state energy density (∼ 1 GeV/fm3, [41]), such that
deconfinement should be possible. Also at RHIC, statistical hadronization could precisely
describe the particle abundancies, using a freeze-out temperature of T ∼ 177 MeV and
baryon chemical potentials of a few tens of MeV only. This was the first time when such
low net baryon densities had been produced, and the Bjorken picture is truly applicable
(Ref. [22]; see Sec. 4.1).

Rather unexpected was the discovery of strong collective flow in peripheral collisions [42–
44]. As depicted schematically in Fig. 1.3 in an off-central collision, the eccentric, dense
fireball (blue shaded area) develops in the transverse plane an anisotropic angular momen-
tum distribution (green arrows) due to pressure gradients building up. Such collective flow
indicates a strongly interacting medium. The QGP appeared as a possible explanation for
this behavior, which is dubbed “elliptic flow”, since he azimuthal momentum distribution
has an elliptic shape (more precise definition is given later) and the collective motion of par-
ticles in the transverse plane can be described by hydrodynamic equations. Measurements
of particle momentum anisotropies could be explained first by ideal hydrodynamics, later
on the theory was refined and dissipative hydrodynamics became standard. With great
accuracy, particle identified elliptic flow v2 could be understood by hydrodynamics [45],
see Fig. 1.4.

The high energies at RHIC initiated research involving so-called hard probes, namely jets
of particles traversing the strongly interacting medium. In all participating experiments, it
turned out that high-energetic particles (pT & 10 GeV) traversing portions of the strongly
interacting central collision region loose significant amount of their energy. The most
cited observable is the nuclear modification factor RAA. It could be shown in experiments

around 100.
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Figure 1.3.: A schematic picture of the transverse plane in a peripheral heavy-ion collision.
Spatial eccentricity is translated into momentum anisotropy due to strong
pressure gradients.

(compared to theory), that the energy loss of energetic particles occurs indeed due to
final state interactions (in d-Au collisions the suppression is absent, [37, 46–48]). This is
a further proof of a medium which interacts strongly with high energetic particles and
consistent with QGP models [49].

1.3.3. Hydrodynamic behavior and shear viscosity

If two heavy ions collide, it is a priori not clear, if the system behaves as a collection of
individual particles, or as a thermodynamic medium. The latter requires a sufficiently
large number of particles and high interaction rates4 such that the ensemble is locally
equilibrated. A locally (nearly) thermal system can meaningfully be described by averaged
quantities like temperature, pressure, energy density, entropy density and several transport
coefficients. If this is the case, hydrodynamic equations are applicable, which reduces
the computational effort compared to microscopic descriptions. The equation of state is
another key ingredient to describe the dynamics.

The standard picture of high-energy heavy-ion collisions is that the central energy den-
sity shortly after the collision is high enough such that matter deconfines into a quark-
gluon plasma. The QGP quickly thermalizes (thermalization times are of the order of
1 fm/c). The QGP cools down and expands subsequently and trespasses the QGP-hadron
gas transition at critical temperatures5 of about Tc ∼ 160 − 170 MeV (at vanishing net
baryon density). Thermal hadron yields are mostly fixed at this transition (“chemical
freeze-out”) and statistical models are successful, assuming a freeze-out temperature and
volume. Indeed, this temperature rises with increasing collision energy, but saturizes at
Tc and excess energy heats up the QGP stage only.

Since the vast majority of studies have supported a transient QGP phase, it is important
to determine its material properties. In relativistic fluids the most important quantities
are shear- and bulk viscosities, diffusion coefficients and electric conductivity. The latter

4The inverse scattering rates should be much larger than the systems lifetime.
5The phase diagram of nuclear matter, featuring the phase transition, is only well defined in near-

equilibrium systems.
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Figure 1.4.: Particle identified elliptic flow from the STAR experiment at RHIC (from
Ref. [50]) compared to an ideal hydrodynamic model (from Ref. [45]) using a
purely hadronic equation of state and one incorporating a phase transition.
Clearly, the latter is more realistic. Figure from Ref. [51].
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Figure 1.5.: Compilation of results to date for the shear viscosity to entropy ratio η/s.

two coefficients have gained little attention in literature so far but several new results will
be presented in this thesis. Shear- and bulk viscosity are most important for dissipative
hydrodynamic codes, because they influence the dynamical properties significantly.

Consider a fluid between two parallel walls. Simply, shear viscosity describes the pro-
portionality between the shear stress (parallel force per area exerted to the walls resulting
from drag) and the transverse velocity gradient within the fluid (more precise definition
in Sec. 4.1). The determination of the shear viscosity in the QGP, at the phase boundary
as well as the hadron gas has been a long standing problem, but some progress has been
achieved. A theoretical lower bound of η/s = 1/4π was given from AdS/CFT correspon-
dence [52] (KSS bound).

It came as a surprise, that one had to assume a model with (nearly) zero viscosity, thus
assuming an ideal fluid, in order to explain the experimental flow patterns at RHIC by



1.4. Electromagnetic observables 9

hydrodynamics [53–55], see Fig. 1.4. More precise parameterizations of η/s(T ) and fits to
experimental data constrained the value of the shear viscosity to entropy ratio to below
unity [56–60].

At T ≈ Tc, it could be narrowed down to probably be close to the KSS bound η/s & 0.08,
but its temperature dependence plays a more important role the more differential datasets
are explained. In Ref. [60] it was concluded, that the differential elliptic flow v2(pT ) at
RHIC energies is almost independent to the value of η/s in the QGP but strongly sensitive
to its behavior in the hadron gas, whereas at LHC the sensitivity to the value in the QGP
is strong and results are independent of the hadronic value of η/s.

Even though intrinsically difficult, some attempts to determine η/s were done in lattice
QCD [61–63]. Using perturbative QCD (pQCD), and solutions of the Boltzmann equa-
tion, the temperature dependence of η/s in the QGP was calculated numerically [64–67]
and semi-analytically [68, 69]. The functional renormalization group approach has been
exploited in Ref. [70], and a dynamical quasi-particle model is constructed in Ref. [71].
In the hadronic phase, kinetic theory estimations using resonance cross sections are done
in Refs. [72, 73]. Recent results for η/s from the hadronic transport model SMASH are
given in Ref. [74]. In Fig. 1.5 some of the results are summarized, and show the interesting
trend, that η/s approaches a minimum at the phase transition temperature Tc. Indeed
it was proposed, that the minimum of the shear viscosity to entropy ratio pinpoints the
transition temperature [75].

1.4. Electromagnetic observables

So far, we were very brief about one of the most direct messengers of the heavy-ion
collision: electromagnetic probes. Those are in most cases photons and electron-positron
pairs, but also muon-antimuon pairs. Their mean free path exceeds by far the diameter of
the collision fireball, such that they travel nearly undisturbed from the production point
to the detector.

1.4.1. Photons

Photons have been used for decades as a valuable probe of the hot matter created in
heavy-ion collisions. They are emitted from the initial nucleon-nucleon contacts (prompt
photons), during the subsequent QGP phase and the hot hadron gas (HG) phase (thermal
photons and jet-medium photons), by the fragmentation of jets outside the fireball, and
finally by the decay of long lived resonances into real photons. The sum of all but the
latter sources is called direct photon contribution, and experiments have succeeded in
separating decay from direct photons (ALICE experiment at the LHC [76, 77], PHENIX
experiment at RHIC [78–80]). The measurements extend down to transverse momenta
pT = 0.4 (0.9) GeV for RHIC (LHC), and both find an exponential excess above Ncoll-
scaled prompt photons, which indicates a strong additional source, most likely the shining
QGP and hot HG. The decay background subtraction is done via different methods, and
improvements of the direct photon data is expected in the future.

Direct photon yields

In experiment, after the extraction of a clean inclusive photon signal, i.e., the yield of all
real photons, taking detector effects and non-photonic signals into account, decay photons
must be subtracted. Since the dominant6 number of particles which decay into real photons

6about 96 % [81]
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are π0 and η mesons, those two species must be identified and measured within the same
experiment. Based on those data, the number of decay photons is calculated with Monte-
Carlo algorithms. Finally, the direct photon spectrum (γdirect) is the difference between the
inclusive (γinclusive) and decay (γdecay) yields. In practice, this subtraction would require
unreachable accuracy of the components in order to achieve reasonable errors. Instead, a
statistical subtraction method is applied, which can be schematically written as (here, π0

denotes the mesonic spectrum),

γdirect = γinclusive − γdecay =
(
1−R−1

)
γinclusive

R =
γinclusive

γdecay
=

{
γinclusive/π

0
}measured

{γdecay/π0}calculated
. (1.12)

The advantage of computing the double ratio R lies in the partial canceling of systematic
errors. The measurements of γinclusive and the mesonic spectrum (π0 and η) both include
similar systematic errors like energy scale nonlinearities which cancel out in the nominator.
The spectrum of background photons in the denominator γdecay is obtained from measured
meson spectra and their simulated decay photons.

In Ref. [82] this method was applied for transverse momenta up to pT ≈ 13 GeV for
Au+Au collisions in several centrality bins at

√
sNN = 200 GeV. It turned out, that at

these rather high momentum scales, the yield could satisfactorily be described by NLO
pQCD calculations, scaled by the number of binary collisions Ncoll. This is expected, if
any thermal (QGP or HG) contribution is negligible, as direct photons in proton-proton
collisions are explained rather precise by NLO pQCD calculations [83]. A breakthrough
was achieved by the PHENIX experiment in 2010, when the enhancement of direct photons
over the pQCD estimate became significant [78]. In Fig. 1.6 it can be seen, that below
pT ∼ 3 GeV the direct photon signal is strongly enhanced with respect to Ncoll-scaled pp
results. This is interpreted as thermal photon emission from the QGP and hadron gas7.
From now on, research in this direction focused on this low momentum region.

At the LHC, the ALICE experiment measures direct photons. The yield showed a
significant thermal excess at

√
sNN = 2.76 TeV [76].

Thermal photons are a an undimmed probe of the hot fireball itself and as such unique.
Apart from the correct photon production, an accurate modeling of the heavy-ion back-
ground is necessary. Until now, popular descriptions of the spacetime evolution of heavy-
ion collisions are given by fireball parameterizations [85, 86] or hydrodynamic simula-
tions [57,87–93]. Photon spectra can be obtained from those models by folding the space-
time evolution of temperature T and four-velocity uµ over analytically known photon
production rates R(T, uµ) [85,94–99].

Recently, much work is done concerning alternative rates (e.g. Ref. [100]) or rather
ignored effects, such as viscous corrections (e.g. Ref. [101]) or unknown sources (e.g.
Ref. [102]).

Anisotropic flow of photons

An asymmetry in the azimuthal distribution of direct photon momenta is produced by
a radiating medium which itself flows asymmetrically. Unlike hadronic particle species,
photons emitted isotropically, e.g. prompt photons, necessarily wash out any elliptic flow
signal because the measured direct photon signal is always a sum of all contributions.
Within the first fm/c, quark and gluon elliptic flow is built up, later it is translated into a
hadronic phase. Photon flow is thus a spectrum-weighted average of the produced photons.

7 In Ref. [84] no significant low pT enhancement was observed in d+Au collisions. This proved that the
low pT enhancement is indeed a thermal, and as such final state effect.
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Figure 1.6.: Thermal enhancement of direct photons at RHIC, for two centrality classes
and min bias events. Reproduced from Ref. [78].

There were suggestions, that elliptic flow can be enhanced by strong magnetic fields,
but this is not yet widely accepted and questions remain open (see e.g. Ref. [103] and
Ref. [3] and Chap. 3).

Recently, ALICE and PHENIX have measured elliptic and triangular flow of direct pho-
tons for several centrality classes (PHENIX,

√
s = 200 GeV: 0− 20%, 20− 40%, 40− 60%

[104], ALICE,
√
s = 2.76 TeV: 0−40% [105] and 0%−20%, 20%−40% [77]). Both exper-

iments show unexpectedly large flow, however the measurement is extremely challenging
and errorbars are still large. It is nearly impossible for experiments to disentangle the
measured time-integrated photon spectra into their separate sources. Theoretical models
however, compared to data, do not suffer from this problem.

The ultimate goal is the explanation of the measured photon spectra by the correct
combination of photon production mechanisms of hard and soft quantum chromo/electro
dynamical (QCD/QED) interactions and a suitable spacetime evolution of the high-energy
heavy-ion collision.
It is furthermore desirable to explain the elliptic and triangular flow of photons in theoret-
ical models. The explanation of elliptic flow for hadrons has required accurate modelling
of the initial state and a correct treatment of the nearly hydrodynamic expansion of the
medium with suitable viscosity [87,93,106–108].

The flow of photons is substantially different. Photons leave the fireball without any
further scattering such that their flow originates solely from the production process. For
now, the large elliptic flow of photons poses a formidable challenge for dynamical models,
and the simultaneous description of the yield and the flow of direct photons remains an
unsolved puzzle.

Photon studies within this thesis

Transport approaches, such as BAMPS [40], PHSD [109, 110] or UrQMD [111, 112] have
two possibilities to study photon or dilepton production: “coarse-graining” of the particle
ensemble [113] and obtaining a spacetime background which can be used in the same way
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Figure 1.7.: Direct photon elliptic flow (top row) and triangular flow (bottom row) from
the PHENIX experiment at RHIC for three different centrality classes. Re-
produced from Ref. [104].

Figure 1.8.: Direct photon elliptic flow from the ALICE experiment for 0% − 20% (left)
and 20%− 40% (right) centrality. Reproduced from Ref. [77].
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as a hydrodynamic evolution as described above, or, using the microscopic cross sections
for the desired photon production processes and generating photons within the transport
framework directly. The latter method will be our choice in the Boltzmann Approach to
Multi-Parton Scatterings (BAMPS) [4,40], which is based on the numerical solution of the
Boltzmann equation.

In this thesis we show how tree-level and radiative scattering diagrams can be imple-
mented in dynamical transport simulations to nearly reproduce full leading order (LO)
photon rates. To this end we introduce two separate methods to realize radiative scatter-
ing processes. Subsequently we compute results for the QGP phase of high energy nuclear
reactions. The physical difference of our approach compared to hydro, fireball or coarse-
graining approaches is the intrinsic non-equilibrium nature - high or low energetic jets and
the non-, nearly- or full thermal medium is treated equally. Furthermore, spacetime de-
pendent quark and gluon fugacities8 influence the photon rates by default. We investigate
carefully the dependence of photon rates on parton fugacities.

As a main result, we claim that the photon yield of the QGP can be much smaller than
previously thought, due to the small initial quark content of the fireball. Furthermore, the
preequilibrium phase of the QGP does not contribute significantly to yield or elliptic flow
of direct photons. Secondly, we show how important non-equilibrium photon production
can be for the elliptic flow: energetic particles behave “jet-like”, and contribute negatively
to the elliptic flow. These results provide necessary complementary aspects to hydrody-
namic calculations, which in most cases does not include strong off-equilibrium dynamics.
Supplied with hadronic and prompt contributions from elsewhere, we are able to explain
experimental data only in limited regions of transverse momentum.

1.4.2. Dileptons

Correlated pairs of leptons (dileptons, or virtual photons) are a very differential observ-
able, and several physical effects have to be taken into account which do not exist in
direct real photon measurements. With energy q0 and momentum ~q of the dilepton pair,
the invariant mass is defined as M =

√
q2

0 − ~q 2. Typically, spectra are measured in trans-
verse momentum qT or invariant mass M . Compared to real photons, dileptons benefit
from a better signal to background ratio (due to the additional variable M). Dileptons,
once produced, leave the fireball without further interactions, they are however, produced
during all stages in heavy-ion collisions of all energies (like real photons). Even before
the nuclei touch, the Coulomb field of the approaching but decelerating nuclei produce
dileptons by coherent bremsstrahlung. It was shown in Ref. [114], that this contribu-
tion is negligible and thus not further studies are currently under way. The equivalent of
prompt photon production, the hard production of dileptons in the very first moment of
the nuclear overlap, is called Drell-Yan process [115]. Hard quark-antiquark pairs from
colliding hadrons produce dileptons with invariant masses beyond M & 3 GeV. They are
rather well understood and shall be of no further interest here. Also in a partonic phase,
quark-antiquark annihilation leads to dilepton emission. Assuming a rapid thermaliza-
tion, production rates can be computed by perturbative thermal quantum field theory.
A very important dilepton contribution stems from thermal hadronic radiation. As one
of the most important processes, pion-antipion annihilation forms resonances, such as a
ρ-resonance, which decays into dileptons. After freeze-out, long-lived resonances such as
heavy quarkonium states decay into dileptons. More dominantly however, π0, η and ω
mesons decay into dileptons and photons (Dalitz decay). This populates the low mass re-

8For high energy reactions the number of quarks and antiquarks is very similar, so that it makes sense
to speak of an absolute quark fugacity defined as λq ≡ nq+q̄/nequilibrium

q+q̄ with the density n.
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gion, M . 1 GeV. Finally, there is the so-called open charm contribution, which consists
of correlated DD-pairs which decay individually into dileptons. The last contribution is
rather little understood and often remains as a conclusion in studies containing all other
contributions. The spectrum of open charm decays appears in the smooth region below
the mass of the J/ψ.

The motivation to study dileptons is manifold. A thermal signal constitutes a direct
test of equilibrium quantum field theory. The medium properties like temperature and
density can experimentally be accessed (see, e.g., Ref. [116]). Light vector mesons, formed
as intermediate states in hadronic thermal dilepton production, are characterized by their
spectral function which is modified by the surrounding finite temperature medium (nonzero
baryon density plays a role, too). As an example, the ρ meson’s spectral function broadens
significantly for higher temperatures, and in-medium effects are also substantial for ω and
φ mesons [109,117]. Conveniently, the invariant mass spectrum of dileptons, produced by
vector meson decay, gives direct access to the spectral function of the vector mesons.

Compared to real photons, dilepton spectra show visible resonance peaks and thus offer
several mass scales at which models can be restricted. The low mass region (LMR, M <
1 GeV), intermediate mass region (IMR, 1 < M/GeV < 3) and high mass region (HMR,
M > 3 GeV) have different sensitivity to the aforementioned dilepton contributions.

In this thesis, we merely show the possibility to include 2 ↔ 2 dilepton production in
partonic transport simulations. We prove the correct implementation of the corresponding
dilepton rates and show, as an example, how an effective temperature can be extracted
by a fit of dilepton spectra (see Chap. 10).

Experiments

Dileptons have been measured in ultrarelativistic heavy-ion collisions at CERN-SPS with
the CERES/NA45 experiment [36, 118]. Furthermore, the NA38 collaboration [119] and
NA50 collaboration [120] have done several measurements at the end of the 90s.

At CERES, dielectron spectra in proton-nucleus collisions could be explained by hadron
decay channels which were obtained by using measured hadron multiplicities and known
decay mechanisms. This method (“cocktail”) however strongly underestimates parts of
the spectrum in nucleus-nucleus collisions (e.g. sulphur-gold). It was suggested that
π+π− → l+l− processes are the missing piece: this was true but more subtle than expected.
Intermediate vector mesons had to be strongly medium modified in order to explain the
data, otherwise the mass region 0.3 < M/GeV < 0.6 was underestimated by several
groups, see the comparison in Fig. 1.9. In the IMR, the spectrum is continuum-like, and
the inverse slope of invariant mass spectra can yield the averaged medium temperature
(see Chap. 10). Here, four-pion annihilation processes and also QGP contributions had to
be taken into account (in the LMR, the QGP contributes only 10− 20 % [123]).

From 2001 to 2004 the successor experiment at SPS was NA60, which measured with
great accuracy dilepton spectra and excess over decay cocktails for In+In collisions [124].
Employing several theoretical improvements, the physical processes behind the data be-
came more and more clear [117,125]. Apart from a detailed modeling of in-medium spectral
functions of light vector mesons, also late ρ-meson decay at thermal freeze-out, primordial
ρ mesons subject to energy loss, an improved Drell-Yan scheme and an improved thermal
hadronic production rate, as well as a detailed investigation of the background dynamics
(freeze-out temperatures, critical temperatures) led to a satisfactory explanation of the
data [117, 125]. Note that in these studies, decays of correlated DD pairs were taken
into account without medium modifications by extrapolating experimental results from
p-p collisions. An example of the successful description of NA60 data is shown in the left
panel of Fig. 1.10.
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Figure 1.9.: Left: Low mass dilepton enhancement over the hadronic decay cocktail. Fig-
ure from Ref. [121]. Eight different models could not reproduce the enhance-
ment. Right: Solution of the puzzle by employing realistic ρ meson in-medium
modifications. Figure from Ref. [122].

Figure 1.10.: Left: Dimuon spectrum with decay dileptons subtracted as measured by the
NA60 collaboration at SPS compared to a model calculation including in-
medium modified ρ mesons and several other contributions. Figure from
Ref. [125]. Right: Dielectron spectra as measured at RHIC compared to a
model calculation. Figure from Ref. [113].

Since 2013, the STAR collaboration published precise results from RHIC [126–128] and
in 2016 PHENIX published improved dielectron results in Ref. [129]. The results of both
experiments agree [113], however, the statistics from the PHENIX experiment is somewhat
lower due to its construction. These new data could be explained by a coarse-graining
approach within the hadronic transport model UrQMD [113]. Thermal hadronic and
partonic dilepton emission with medium modification of the spectral functions account for
the low mass excess above the decay cocktail. In the right panel of Fig. 1.10 an example of
this study is shown, which retraces the STAR data with great accuracy, and also depicts
the different contributions.
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1.5. Units

In this thesis we use natural units, c = kB = ~ = 1. The metric tensor takes the form
(gµν) = diag(1,−1,−1,−1). We use megaelectronvolt (MeV) or gigaelectronvolt (GeV) as
energy units (1 GeV = 1000 MeV), and femtometer (fm) as length unit (1 fm = 10−15 m).
By convention, times will be given in units of fm/c. Length and energy units are connected
via

1 GeV =
1

0.197 fm
. (1.13)



2. Electric and diffusion properties of QCD
matter

In high energy collider facilities one thrives to pin down properties of QCD matter around
the phase transition from the partonic to the hadronic phase.

If the collision energy is sufficiently high, in the core of the fireball the quark-gluon
plasma (QGP) is produced [14–17] which cools down and undergoes a phase transition
into a hadronic phase [130].

The hadron gas (HG) produced at the late stages of the collision is still hot and hadrons
can still collide multiple times before they stream freely into the detector. If the collision
energy is lower, instantly after the passing of the nuclei a hot hadron gas is produced,
which can also have temperatures of T . 160 GeV [131]. The characterization of the
hot medium often relies on the local rest frame temperature T , which can be obtained by
thermal fits [132] or through hydrodynamic simulations [56–59]. Also the flow velocity is
computed by hydrodynamics. More information about the fundamental properties of the
hot matter lies in its transport coefficients, such as viscosities (shear and bulk viscosity)
and conductivities (heat conductivity or conductivities of conserved charges). As material
constants, they are interesting by themselves to characterize the hot matter produced in
hadronic collisions, and should in principle be calculable from first principles, i.e., the
QCD Lagrangian. They depend strongly on the degrees of freedom and their mutual
interactions as well as the temperature. One expects extrema at the phase transition [75].
To this end, the temperature dependence is important. Those transport coefficients are
furthermore popular quantities employed in order to compare effective models and it is
also customary to use them as fit parameters in dynamical models, such as hydrodynamics
[56–59] or Langevin transport [133,134]. In the past, the shear viscosity over entropy ratio
η/s was the prime coefficient as it has a dominant influence in dissipative hydrodynamic
calculations [60, 135]. Since the advent of precision modeling of heavy-ion collisions, also
the bulk viscosity has gained increasing interest [136–143].

The influence of magnetic fields in the evolution of QGP has drawn attention to the
electric conductivity; several studies on the lattice [144–149], in perturbative QCD (pQCD)
[68,69,150,151], Dyson-Schwinger calculations [152] and other theories [153–155] have been
carried out. Most of these calculations aim at the value of σel in the QGP phase, some
extend below the transition temperature towards the HG. In general, the results differ
over several orders of magnitude, and comparisons among different approaches are often
intriguing. The electric conductivity can be related to the diffusion of magnetic fields in
a medium [155–157] and the soft dilepton production rate [149,158,159] of a hot thermal
medium. This is a measurable quantity, however, experimental constraints would e.g.
require an accurate modeling of heavy-ion collisions, and the theoretical understanding of
dilepton yields is still subject of ongoing research [113].

Apart from the electric conductivity, diffusion coefficients of QCD matter have been
neglected thus far. In gaseous systems, density gradients will always generate diffusion
currents, characterized by the diffusion constant and the gradient. As for the baryon diffu-
sion coefficients, apart from the holographic calculation in Ref. [160], and simple relaxation
time estimates [161,162], to our knowledge, not much was known about its magnitude or
temperature dependence. For other conserved quantities, such as strangeness or electric
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charge, even less work had been done. Diffusion coefficients will be very important input in
hydrodynamic calculations including conserved currents. Those models are needed to ex-
plain current and future low energy collision systems, were the baryon chemical potential,
and, possibly, also strange and electric chemical potential is large.

In this chapter we begin with a sketch of the calculation of the electric conductivity in
the QGP phase applying pQCD, which summarizes the results from Ref. [150]. Next, we
present a calculation of the electric conductivity in a realistic hadron gas model in detail.
Large parts of this calculation and results were published in Ref. [1]. The following section
deals with diffusion processes, were we focus on cross-diffusion among different charge
types, such as electric, baryon and strange charges. We apply the developed formalism
to diffusion processes, and compute the full diffusion matrix of baryon, strangeness and
electric diffusion in the HG and QGP, for several values of baryon chemical potential.
Those results were published in Ref. [2].

2.1. Electric conductivity of the QGP

The strongly interacting weakly coupled quark-gluon plasma has a typical shear viscosity
to entropy ratio η/s close to the theoretical lower bound in AdS/CFT, η/s = 1/(4π). This
is the result of many theoretical studies, see the compilation in Fig. 1.5. Such extreme
matter is expected to also show a very small electric conductivity. The longitudinal static
electric conductivity σel relates the response of the electric current1 ~j to the externally
applied static electric field ~E,

~j = σel
~E. (2.1)

At very high collision energies of interacting particles, or very high temperatures in thermal
systems, perturbative QCD (pQCD) is an good approximation of QCD. However, owing
to the lack of alternative methodology, it is customary to extrapolate pQCD down to
temperatures close to the quark-hadron phase transition. In Ref. [150] we use pQCD
scattering matrix elements (NLO in the scattering vertices) within the full collision term
of the Boltzmann equation to extract estimates of the electric conductivity of the QGP.
This numerical study (within the transport approach BAMPS) uses two different Monte-
Carlo methods in a thermal system of massless quarks and gluons. The result is shown in
Fig. 2.1, where we compare to different other results (see references in the caption). Clearly,
the running of the strong coupling constant αs(Q

2) is responsible for the temperature
dependence of σel/T , whereas the inclusion of radiative processes (2 ↔ 3) decreases the
overall conductivity. In general, the perturbative result is larger than most other results,
especially those from the lattice. We refer to Ref. [150] for more details to the calculation.

2.2. Electric conductivity of the hot hadron gas

In the HG there has been so far no analytic computation of the electric conductivity from
pure kinetic theory, this is what we will provide in this work.

Extending the analytic developments from Refs. [72, 169, 170], we investigated how an
equilibrated relativistic gas of electrically charged particles, governed by the BE, behaves
upon the influence of a small, static, electric field that is turned on. Assuming that the
total system is electrically neutral, naturally an electric current will develop and eventually
reach a static value (in an infinitely large system or setting periodic boundary conditions).
We can thereby compute σel for a given set of (massive or massless) particle species in the

1More precise, the electrically charged particle diffusion current density
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Figure 2.1.: Figure reproduced from Ref. [150]. Numerical results for the electric con-
ductivity from BAMPS [150] (filled symbols) compared to recent results from
literature. The open symbols represent results from lattice QCD. PHSD: [163],
SYM: [164], non-conformal holographic model: [154], lattice A: [165], lattice
B: [166], lattice C: [167], lattice D: [144], lattice E: [145], lattice F: [146], lattice
G: [168]. The electric charge is explicetly multiplied out, e2 = 4π/137. Around
T = 0.3 GeV results from Ref. [152] (not shown), using a Dyson-Schwinger
approach, are consistent with the results from Ref. [167].

system and the given set of their mutual, elastic, collision cross section. In this study we
restrict ourselves on classical statistics. This is basically an extension to the well-known
Drude formula for the electric conductivity (see Sec. 2.2.3) for a hadron resonance gas.

We investigate the influence of masses, average total cross sections, and different species.
We finally state the temperature dependent electric conductivity of a hadron gas with
well justified approximations. Indeed, the framework can give a very precise answer from
kinetic theory for any (charge neutral) elastic particle system, and is not restricted to the
results considered here.

In Sec. 2.2.1 we give basic definitions regarding the relativistic formulation for the fluid
dynamical quantities. In Sec. 2.2.2 we derive the algorithm for the computation of the
conductivity from linear response, and continue in Sec. 2.2.4 with our results. First, we
reproduce previously published numerical results and show the convergence of the method
in Sec. 2.2.5, then we show the influence of masses systematically in Sec.2.2.5, followed by
the results for a realistic Pion gas in Sec. 2.2.5, a Pion-Nucleon-Kaon gas with fixed cross
sections (Sec. 2.2.5) and realistic cross sections (Sec. 2.2.5).

2.2.1. Basic definitions

We consider a dilute gas consisting of Nspecies particle species, with the i-th particle species
having electric charge qi and degeneracy gi. This system is in the presence of an external
electromagnetic field, given by an electromagnetic field strength Fµν , and its net-electric
charge density is assumed to be approximately zero at all space-time points. The state
of the system is characterized by the single particle distribution function of each parti-
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cle species, fi(x, p). The time evolution equation satisfied by fi(x, p) is the Boltzmann
equation, which we repeat here for clarity,

kµ
∂

∂xµ
f ik + kνqiF

µν ∂

∂kµ
f ik =

Nspecies∑
j=1

Cij(x
µ, kµ), (2.2)

where Cij is the collision term, that will be specified later in this work. Since our goal
is to calculate the electric conductivity of this system, we shall consider the case of a
homogeneous, but time-dependent electric field.

The energy-momentum tensor and net electric charge four-current are expressed as the
following momentum integrals of the single-particle distribution function

Tµν =

Nspecies∑
i=1

〈kµkν〉i , Nµ
q =

Nspecies∑
i=1

qi 〈kµ〉i , (2.3)

where we employ the following notation

〈. . .〉i ≡ gi
∫

d3k

(2π)3k0
(. . .)f ik. (2.4)

These currents are associated to conserved quantities and satisfy the continuity equations,
∂µT

µν = 0 and ∂µN
µ
q = 0. Here we also refer the interested reader to the later section

about hydrodynamics, Sec. 4.1.
It is convenient to decompose Tµν and Nµ

q in terms of the fluid’s collective velocity field,
uµ. Without loss of generality, these currents are re-expressed as

Tµν = εuµuν −∆µν (P0 + Π) + πµν , (2.5)

Nµ
q (x) = nqu

µ + jµq . (2.6)

Above, we introduced the energy density ε, the thermodynamic pressure P0, the bulk
viscous pressure Π, the shear stress tensor πµν , the net electric charge density nq, and the
net electric charge diffusion current jµq (which we will further investigate in Sec. 2.3). We
also defined the spatial projector ∆µν = gµν − uµuν and employed Landau’s definition of
the fluid velocity as an eigenvector of Tµν with eigenvalue ε, that is, Tµνuν = εuµ. In this
scheme, each new variable introduced is expressed by a given contraction/projection of
the currents with uµ and ∆µν ,

ε = uµuνT
µν , P0 + Π = −1

3
∆µνT

µν , (2.7)

πµν = ∆µν
αβT

αβ, nq = uµN
µ
q , jµq = N 〈µ〉q . (2.8)

For convenience, we adopt the notation A〈µ〉 ≡ ∆µ
νAν and A〈µν〉 ≡ ∆µν

αβA
αβ. The lat-

ter definition used the double, traceless, symmetric projection operator ∆µν
αβ = (∆µ

α∆ν
β +

∆ν
α∆µ

β)/2 −∆µν∆αβ/3. Since our goal will be to compute the electric conductivity coef-
ficient of a gas, most of the dissipative currents introduced above will play no role in our
calculation. Nevertheless, we introduced them above for the sake of completeness.

We can define a temperature and chemical potential for this system using the traditional
matching conditions,

ε = εeq(T, µq), nq = neq
q (T, µq). (2.9)

where εeq and neq
q are the energy density and net electric charge density of a system in

thermodynamic equilibrium with temperature T and chemical potential µq. The values
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of temperature and chemical potential must be inverted from the above equations. With
these definitions, we can introduce the local equilibrium distribution function for Boltz-
mann statistics,

f i0,k = gi exp (−uµkµ/T + qiµq/T ) , (2.10)

and the deviation from equilibrium δf ik = f ik − f i0,k, where, µi = qiµq is the chemical
potential of the i–th species. Momentum integrals over these distribution functions will
be expressed using the following notation

〈. . .〉i,0 ≡ gi
∫

d3k

(2π)3k0
(. . .)f i0,k, 〈. . .〉i,δ ≡ gi

∫
d3k

(2π)3k0
(. . .)δf ik. (2.11)

The electric net charge diffusion current then is (omitting the index q for now)

jµ ≡ N 〈µ〉q = ∆µ
ν

Nspecies∑
i=1

qi 〈kν〉i,δ . (2.12)

2.2.2. Linear response to the electric field

The scenario we want to consider here is that of a thermal ’brick’ of matter, in which
the temperature T ≡ β−1

0 and chemical potential µq ≡ αq0/β0 do not vary in space nor
time. We generalize the methods proposed in [72, 170, 171] to calculate retarded Green’s
function associated to the response of a multi-component system to an external electric
field. We present the general calculation first, using the full linearized collision term,
and show afterwards that the formalism reduces to the well-known Drude formula in the
relaxation time approximation. In all remaining computations we use the full linearized
collision term.

2.2.3. General calculation with linearized collision term

We consider a system initially in thermal equilibrium, with f ik = f i0,k and Fµν = 0. We
then suddenly turn on a small external electric field. No external magnetic fields are
present and we neglect the effect of any induced field. The distribution function acquires
an off-equilibrium part, f ik = f i0,k + δf ik, and the field strength tensor becomes

Fµν → δFµν = Eµuν − Eνuµ, (2.13)

where Eµ = uνF
µν is the electric field. We write down the linearized BE (similar to [72]),

neglecting any term that is second order in δf , δFµν , or their product,

kµ
∂

∂xµ
f i0,k + kµ

∂

∂xµ
δf ik + kνqiδF

µν ∂

∂kµ
f i0,k =

Nspecies∑
j=1

C
(l)
ij (xµ, kµ), (2.14)

with C
(l)
ij (xµ, kµ) being the linearized collision term. Without loss of generality, we carry

out all computations in the local rest frame of the fluid, uµ = (1, 0, 0, 0). Since Eµ is
orthogonal to the velocity, uµE

µ = 0, we replace kνE
ν → k〈ν〉E

ν . Then we have

kµ
∂

∂xµ
δf ik +

qi
T
f i0,kk〈ν〉E

ν =

Nspecies∑
j=1

C
(l)
ij (xµ, kµ). (2.15)
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The linearized collision term can be written as an operator Ĉ acting on δf ,

C
(l)
ij (xµ, kµ) ≡ Ĉδf ik =

∫
dK ′dPdP ′γijW

ij
kk′→pp′f

i
0,kf

j
0,k′

(
δf ip
f i0,p

+
δf ip′

f j0,p′
− δf ik
f i0,k
− δf jk′

f j0,k′

)
(2.16)

where we use the notation dK ≡ d3k/
[
(2π)3k0

]
, γij = 1 − 1/2δij and W ij

kk′→pp′ =

sσij(s,Θ)(2π)6δ(4)(kµ + k′µ − pµ − p′µ). Above, we only considered elastic 2-to-2 colli-
sions. The total cross section σtot,ij(s) is related to the differential cross section σij(s,Θ)
in the following way,

σtot,ij(s) = 2πγij

∫
dΘ sin Θσij(s,Θ), cos Θ =

(k − k′)(p− p′)
(k − k′)2

, s = (k + k′)2. (2.17)

We take the Fourier transform of the Eq. (2.15), and divide it by the energy Ek =√
k2 +m2, leading to the following equation for the Fourier transform of the non-equilibrium

distribution function, δf̃ ik,

−iωδf̃ ik + i
k

Ek
· qδf̃ ik −

Nspecies∑
j=1

1

Ek
Ĉijδf̃

i
k = − qi

TEk
f0,kk

〈ν〉Ẽν

⇒ δf̃ ik = − 1

T

qi

−iω + i k
Ek
· q−∑Nspecies

j=1
1
Ek
Ĉij

f i0,k
k〈ν〉

Ek
Ẽν , (2.18)

where Ẽν is the Fourier transform of Eν and the last equation is the formal solution for
the distribution function in Fourier space. Using the formal solution derived for δf̃ ik in
Eq. (2.18), we can express the Fourier transform of the net electric charge current in the
following simple form

j̃µ = −
Nspecies∑
i=1

qi
T

∫
dKk〈µ〉

qi

−iω + i k
Ek
· q−∑Nspecies

j=1
1
Ek
Ĉij

f i0,k
k〈ν〉

Ek
Ẽν ≡ G̃µνR (ω,q)Ẽν ,

(2.19)
where we introduced the retarded Green’s Function G̃µνR (ω,q).

In order to compute the static electric conductivity, it will be enough to compute the
retarded Greens function G̃µνR (ω,q) at vanishing frequency and wavenumber, G̃µνR (0,0).
For this purpose, we introduce a vector Bα

i (Q,Ki), which satisfies the following integro-
differential equation−iω + i

k

Ek
· q−

Nspecies∑
j=1

1

Ek
Ĉij

Bα
i (Q,Ki) = qif

i
0,k

k〈α〉

Ek
. (2.20)

Once Bα is known, the solution for G̃µνR (ω,q) follows trivially as

G̃µνR (ω,q) = −
Nspecies∑
i=1

qi
T

∫
dKk〈µ〉B

〈ν〉
i (Q,Ki). (2.21)

Strictly speaking, Bα is a general function of Q = (ω,k), however, since we will need it
only at vanishing Q, it is sufficient to only consider its dependence on the 4-momentum
K, that is, Bα

i (Q = 0,Ki). We know that Bα
i (K) is a 4-vector orthogonal to uµ and its

tensor structure must be constructed from combinations of uµ, kµ, and gµν . Therefore,
it must be a tensor of the following form, Bα

i (K) ∼ k〈α〉, with the proportionality factors
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being functions of the scalars µq, T , and Ek. It is convenient to express it as an expansion
in powers of the energy,

Bα
i (K) = f i0,kk

〈α〉
∞∑
n=0

a(i)
n E

n
k , (2.22)

where a
(i)
n are the expansion coefficients. Using the well-known relation∫

dKk〈µ〉k〈ν〉Eni,kf
i
0,k =

1

3
∆µν

∫
dKEnkf

i
0,k∆αβk

αkβ, (2.23)

together with Eqs. (2.21) and (2.22), it is possible to express the retarded Green’s function

in terms of the coefficients a
(i)
n ,

G̃µνR (0,0) = −∆µν

Nspecies∑
i=1

∞∑
n=0

qi
3T

a(i)
n

∫
dKf i0,kE

n
k∆αβk

αkβ ≡ ∆µνG̃R. (2.24)

Above, we defined the scalar retarded Green’s function

G̃R = −
Nspecies∑
i=1

∞∑
n=0

qi
3T

a(i)
n

∫
dKEnk(∆µνk

µkν)f i0,k,

which can be used to express the linear relation between current and driving electric field
at Q = 0 as

j̃µ = G̃RẼ
µ.

The above relation allows us to identify the electric conductivity as σel ≡ G̃R.
Naturally, the expansion (2.22) must be truncated at some point and we will discuss

the convergence of our results to the order of the truncation. We note that, even at
the lowest possible order of truncation, the resulting transport coefficients are expected
to be accurate up to 10 %, see, e.g., [169, 172]. Our next step is the determination of

the expansion coefficients a
(i)
n . Multiplying Eq. (2.20) with Emk k

〈β〉 and integrating over

momentum we get an equation for a
(i)
n ,

∞∑
n=0

∫
dKiE

m−1
k k〈β〉

−Nspecies∑
j=1

Ĉijf
i
0,kE

n
kk
〈α〉a(i)

n

 = qi

∫
dKiE

m−1
k k〈α〉k〈β〉f i0,k.

Using straightforward manipulations of this equation and the above definition of the col-
lision term, Eq. (2.16), we can rewrite it in the following form,

∞∑
n=0

Nspecies∑
j=1

[
Aimnδij + Cijmn

]
a(j)
n = bim, (2.25)

where we defined

Aimn =

Nspecies∑
j=1

∫
dKidK

′
jdPidP

′
jγijW

ij
kk′→pp′f

i
0,kf

j
0,k′E

m−1
i,k k〈α〉

(
Eni,pp

〈α〉 − Eni,kk〈α〉
)
,

Cijmn =

∫
dKidK

′
jdPidP

′
jγijW

ij
kk′→pp′f

i
0,kf

j
0,k′E

m−1
i,k k〈α〉

(
Enj,p′p

′〈α〉 − Eni,k′k′〈α〉
)
,

bim = qi

∫
dKEm−1

k (−∆µνkµkν) f i0,k. (2.26)
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For later use we denote the above matrix in particle species space and expansion space as

N ij
mn ≡ Aimnδij + Cijmn. (2.27)

Note that there is no sum over i implied. The Landau matching condition can also be
expressed as

∆λ
νuµT

µν =

Nspecies∑
i=1

∫
dKuνk

νk〈µ〉δf ik = − 1

3T

Nspecies∑
i=1

∞∑
n=0

a(i)
n

∫
dKf i0,kE

n+1
k (∆αβkαkβ)Ẽµ = 0.

Since this should be true for any electric field and any of its components, we obtain a

constraint that must be satisfied by the coefficients a
(i)
n ,

Nspecies∑
i=1

∞∑
n=0

a(i)
n

[∫
dKf i0,kE

n+1
k (∆αβkαkβ)

]
= 0

⇒
Nspecies∑
i=1

∞∑
n=0

a(i)
n d

i
n = 0 with din ≡

∫
dKf i0,kE

n+1
k (∆αβkαkβ).

(2.28)

Solving the integrals in Eq. (2.26) for a given set of species and cross sections allows

us to obtain the unknown coefficients a
(i)
n by inverting the matrix Aimnδij + Cijmn along

with condition (2.28). In practice, this amounts to removing one line and column from
the matrix N ij

mn.

Relaxation time limit

Nonrelativistically, the Drude formula for the electric conductivity σel,nr of a single charge
carrying species (e.g. electrons) with charge qe, density ne and mass me reads [173]

σel,nr =
neq

2
eτ

me
, (2.29)

where τ is the mean time between collisions of the charge carriers (e.g. electrons) with,
e.g., atomic cores. The Boltzmann equation can be solved analytically in the relaxation
time approximation, which corresponds to a simplistic model for the collision term,

pµ∂µfq + qFαβpβ
∂fq
∂pα

= −p
µuµ
τ

(fq − feq,q) . (2.30)

It allows for a straightforward calculation of the charged particle distribution fq after
applying an external electric field. The uncharged particle distribution remains thermal
fq=0 = feq,q=0 and is not affected by the electric field,

σel =
1

3T

Nspecies∑
i=1

q2
i niτ. (2.31)

Here, τ is the mean time between collisions of particles, independent of the particle type;
for more details, see, e.g., Ref. [150]. Using Eq. (2.21) with a relaxation time collision
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operator we recover the relaxation time answer, Eq. (2.31), for the electric conductivity,

j̃µ =

Nspecies∑
i=1

(qi)
2

T

∫
dKk〈µ〉

1

−∑Nspecies

j=1 Ĉij
f i0,kk

〈ν〉Ẽν

=

Nspecies∑
i=1

(qi)
2

T

∫
dKk〈µ〉

τ

Ek
f i0,kk

〈ν〉Ẽν

=

Nspecies∑
i=1

(qi)
2τ

3T

[∫
dK

1

Ek
(∆αβkαkβ)f i0,k

]
Ẽµ

=

Nspecies∑
i=1

(qi)
2τ

3T
n0,iẼ

µ. (2.32)

2.2.4. Results

Our main goal is to calculate the electric conductivity of a hadron gas characterized
by (measured) hadron-hadron cross sections (e.g. Breit-Wigner peaked resonances). In
practice we have to limit the calculation to the dominant hadron species, such as pions,
protons, neutrons, kaons. To understand the results and to cross check our method, we
work systematically and include more species, masses and cross sections step-by-step. The
use of simplified hadronic cross sections is common practise, e.g. in Ref. [174] the authors
model a multicomponent hadron gas with species dependent constant cross sections in
order to compute shear viscous phase space corrections. The authors of Ref. [72] compute
the hadronic shear viscosity over entropy ratio using different constant cross sections for
meson-meson, meson-baryon and baryon-baryon scattering.

2.2.5. Massless particles and constant isotropic cross sections

As a first step, we compute the electric conductivity for a massless gas of charged and
uncharged particles, colliding with a fixed value of the cross section σtot, which is assumed
to be constant. We give the result for the matrix in Eq. (2.27), which we truncate at

n = 2. We define n̄ij = (δijninT − ninj), with nT =
∑Nspecies

i ni being the total particle
density. The matrix is

N ij
mn =


N ij

00 N ij
10 N ij

12

N ij
10 N ij

11 N ij
12

N ij
20 N ij

21 N ij
22



= σtot


15
2 T

2n̄ij 36T 3n̄ij 210T 4n̄ij
36T 3n̄ij T 4 (216 δijninT − 192ninj) T 5 (1520 δijninT − 1240ninj)
210T 4n̄ij T 5 (1520 δijninT − 1240ninj) T 6 (12510 δijninT − 8850ninj)

 .

(2.33)

This is the key information to obtain the electric conductivity at order 0 + 1 + 2 in the
above energy expansion for arbitrary many massless particle species. In order to compare
with previously published numerical solutions of the BE, we give the explicit result for
a gas of seven species, with electric charges (in units of e) q1,3 = 1/3, q2,4 = −1/3, q5 =
2/3, q6 = −2/3, q7 = 0 and degeneracys g1,2,3,4,5,6 = 6, g7 = 16, which mimic a quark-gluon



26 2. Electric and diffusion properties of QCD matter

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  1  2

A
n
a
ly

ti
c
 s

o
lu

ti
o
n
/B

A
M

P
S

 r
e
s
u
lt

Order of expansion .

Figure 2.2.: Convergence of the analytical computation for the electric conductivity for a
massless quark-gluon gas towards the numerical value obtained by the partonic
cascade BAMPS [150].

plasma. Using that e2 = 4π/137, and considering a cross section of σtot = 3 mb, we obtain
the following value of conductivity for this system,

σel/T =
const.

σtot
=

0.000832737 GeV2

T 2
. (2.34)

In Ref. [150] the ultrarelativistic BE was solved for exactly this configuration (using the
partonic cascade BAMPS), and the result matches the analytic computation of this paper,
Eq. (2.34), by about 99%. By changing the order of the expansion, we show in Fig. 6.8,
that the result converges for the considered order in expansion (truncation of the sum in
Eq. (2.22) at n = 2).

Influence of masses to the electric conductivity

In order to see the influence of sizeable masses to the electric conductivity, we consider an
arbitrary, simplified scenario for illustrative purposes. There are three species present, one
species with charge +1, degeneracy 1, one with charge −1, degeneracy 1, and one with zero
charge and degeneracy 9. All particles have masses, and we vary the ratio of the mass of the
charged species with respect to the mass of the uncharged species. In Fig. 2.3 we show the
results for the electric conductivity over temperature depending on this ratio, for different
absolute values of the mass of the charged species. There we fix the cross section to an
arbitrary value (10 mb) and set the temperature to be 140 MeV and the chemical potential
is µq = 0. This is a useful exercise to illustrate the mass dependence. In thermal and
chemical equilibrium, lower mass particles are more abundant than higher mass particles,
and one sees clearly the dependence of the electric conductivity to the number-density ratio
of charged to uncharged particles. The electric conductivity is clearly very dependent on
both the mass (or density) ratio of charged/uncharged species, and also on the mass (or
density) of the charge carrying species. However, the precise values need to be computed
(finally via numerical integration) as explained in Sec. 2.2.2.
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Figure 2.3.: The mass dependence of the electric conductivity for (three species of) inter-
acting relativistic particles. The cross section was arbitrarily fixed to 10 mb,
and the degeneracy ratio of charged/uncharged species is 2/9, the charges are
±1, 0. On the x-axis we vary the mass ratio of the charged to the uncharged
species, and show results for different masses of the charged species. (color
online)

Pion Gas

Pions are the most abundant hadrons in an equilibrated hadron gas. Therefore a pure
pion gas can be considered a good starting point to understand some features of a realistic
hadron gas. We set the chemical potential to zero for simplicity. Mainly, pions interact via
the formation and decay of a ρ-resonance (see App. C.2). In the right panel of Fig. 2.4 we
show three possible resonance cross sections. The blue solid curve includes all resonances
as given in Ref. [175], whereas the gray dashed curve is a simple Breit-Wigner (BW) type
parametrization, as well as the red dotted curve, which we adopt from Ref. [176]. The
results from our calculation is given in the left panel of Fig. 2.4 for all three cross section
parameterizations. Clearly, the two ρ-resonance parameterizations do not differ very much,
however, the larger cross section which includes all resonances suppresses the conductivity
strongly. The electric conductivity approaches a minimum below ∼ 180 MeV. This can be
physically motivated, as transport coefficients like the conductivity are expected to show
a minimum in the QGP-hadron crossover region. This region is now believed to be in the
vicinity of∼ 154 MeV [177]. Here we also compare to preliminary results from the hadronic
transport model “Simulating Many Accelerated Strongly interacting Hadrons” (SMASH)
[176]. This calculation applies the Green-Kubo formalism in an equilibrium setup. The
agreement is good, but not entirely perfect. This may be attributed to some numerical
uncertainty. In Fig. 2.5(a) we show the result using the simple BW parameterization of
the ρ meson and compare our results with the results from different groups. The brown
dash-dotted line represents calculations using Chiral Perturbation Theory (ChPT) [155]
and include only pions. The ChpT-based analysis uses the Green-Kubo formula to extract
the conductivity from the spectral function, identifying the dominant diagrams in a low
energy and low temperature expansion and implementing unitary of the partial waves in
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the thermal width. The temperature dependence of the results from ChPT is very similar
to those found in our results, although the overall magnitude of our electric conductivity is
about a factor of ∼ 1.6 higher. The blue open diamonds are results obtained from lattice
QCD calculation for an 2+1d anisotropic and unquenched lattice, Ref. [147]. However,
the authors discuss that the lattice data especially around the phase transition should
be treated with caution (see Ref. [147] for details). The grey dashed line is the result
obtained in a conformal Super-Yang Mills plasma [164]. In Ref. [154, 160], the authors
used a non-conformal, bottom up holographic model to compute the electric conductivity
(cyan dotted line). The full orange diamonds are results from the pQCD-based partonic
cascade BAMPS [150], employing a running coupling, leading order, Debye-screened
pQCD interactions including elastic and inelastic (radiative) scattering of gluons, up,
down and strange quarks.

Pion-Kaon-Nucleon Gas with constant cross sections

Constant isotropic cross sections are often used to compare different models or theories.
In Fig. 2.5(b) we show results for the electric conductivity for a gas of pions (π+, π−, π0;
m = 138 MeV), Kaons (K0, K̄0,K+,K−; m = 496 MeV) and nucleons (p, p̄, n, n̄; m =
938 MeV), all interacting with a constant cross section σtot. The chemical potential is
again zero. We tune this cross section, in order to meet other calculations at the transition
temperature from hadrons to the QGP. Strongly coupled theories and 2+1d non-quenched
lattice require cross section values of 30 − 110 mb, whereas the pQCD-based partonic
cascade BAMPS needs a value of ∼ 3.5mb. These numbers should be taken with care,
as we are dealing here with an oversimplified scenario of effective average cross sections.
Especially as one approaches the crossover region, this concept is questionable, however
it allows to gain some understanding about the effective coupling strength of different
theories. In Fig.2.5(b), the purple open circles include only pions, and uses σtot = 30 mb.
By comparing with the red solid squares (all species), one sees the influence of other,
heavier species. Also the temperature dependence changes slightly. This is due to the
fact, that the ratio of densities of different species is temperature dependent, as the mass
enters here as an additional scale. Different contributing massive species can thus result
in different temperature behavior of the conductivity. We expect, that the inclusion of
even more species, albeit not very abundant, may decrease the electric conductivity. This
may be true even in the case of realistic s-dependent cross sections, cf. Sec. 2.2.5.

Pion-Kaon-Nucleon Gas with experimental cross sections

The presented calculation procedure becomes gradually more complicated as more particle
species are included, with the final numerical integrations becoming rather tedious and
time consuming. Furthermore, all cross sections among all species have to be known,
something quite problematic in the hadronic zoo. In order to get a rough picture of the
electric conductivity in a hadron gas, we use pions, kaons and nucleons as in the previous
section, but include now as realistic cross sections as possible, as shown in Tab.2.1. Many
of them are approximated by constant values, but we include different resonances. The
π + π scattering resonance is that from the right panel of Fig. 2.4 (simple BW), whereas
all non constant resonances are taken from the Particle Data Group [6, 11], as shown in
Fig. 2.6. The result for zero chemical potential is shown in Fig. 2.7. In order to get a
handle on the uncertainty introduced by using approximated constant cross sections σconst.

we multiply these with a factor k, σconst. → σconst.k, and vary k = 0.5, 1, 2. The change of
the conductivity is visible but not dramatic.

As can be seen by comparing with Fig. 2.5(b), the overall magnitude in our case is
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Figure 2.4.: Top: Results for the electric conductivity from this work including only pions,
compared to preliminary Monte-Carlo results from a hadronic transport model
Ref. [176]. Bottom: The three different resonance cross sections used for the
lines in the left plot. SMASH uses the red dotted cross section parametrization
with only the ρ resonance for the grey spheres in the left figure.

dominated by the constant cross section values, mostly ∼ 10 mb in the important channels.
Although results have to be taken with care due to the uncertainties in the cross sections,
they are (to our knowledge) the first (semi-)analytic kinetic computation of the electric
conductivity in the hadronic sector for multiple species.

In Fig. 2.7 we also compare to results from the Parton-Hadron-String Dynamics (PHSD)
approach [163,179] (open squares). PHSD is in the hadronic sector a covariant extension
to the Boltzmann-Uehling-Uhlenbeck model [180]. The authors apply an electric current
to the numerical simulation in thermal equilibrium and observe a static current in order to
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and isotropic, and we show results for 4 different values. Results for a pure pion gas
are shown for comparison.

Figure 2.5.: Results for the electric conductivity from this work and other theories. Parton
transport BAMPS [150], Chiral Perturbation Theory ChPT [155], SYM theory
[164], a non-conformal holographic model (n-c hm) [154] and lattice [147,167]
calculations are shown for comparison. These theories all require very different
effective cross sections when compared to kinetic theory.

extract the electric conductivity. The hadronic sector contains several mesons and baryons
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Figure 2.6.: The non constant cross sections which we use, involving at least one baryon.
They are available from the Particle Data Group [6,11]. The π+K,π0 + p, n
and the π− + n cross sections are simple parameterizations from Ref. [178].
For the numerical integrations, the curves are interpolated and sometimes
extrapolated at the edges when the tables stop.

in mb π+ π− π0 K+ K− K0 K̄0 p n p̄ n̄

π+ 10 res res 10 10 res 10 res 10 10 res

π− 10 res res 10 10 res res res res 10

π0 5 res 10 res res res res res res

K+ 10 10 10 50 res 10 20 10

K− 10 50 10 res res 6 10

K0 10 50 6 6 20 20

K̄0 10 8 20 6 6

p res res res 20

n 20 res 100

p̄ 10 10

n̄ 10

Table 2.1.: All elastic cross sections among all species. The constant cross sections are
in units of mb, the label resrefers to the tabulated or parametrized resonance
cross sections we show in Fig. 2.6. We use constant cross sections where no
resonance cross section was available.

with resonance cross sections.
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Figure 2.7.: Results for the electric conductivity from this work (red solid band), including
pions, kaons and nucleons [1], compared to results from PHSD [163,179] and
all other theories as before. The band shows the uncertainty in the choice of
the constant cross sections from Tab. 2.1, by multiplying all of them with a
factor 0.5 and 2.

2.3. Diffusion processes

In high energy heavy-ion collisions, dissipative effects due to charge diffusion [181] are
typically very small and experimental observation becomes difficult. The recently started
beam energy scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC) per-
forms hadronic collisions at lower energies in order to investigate the phase diagram
and transport properties of nuclear matter at finite net-baryon (and net-electric charge)
density [182–184]. The Bjorken assumption of a flat shape of net baryon multiplicity
dNB−B̄/dη around mid-rapidity (central plateau) is not fulfilled at those low energies,
such that strong gradients in the chemical potential of conserved charges are expected. At
RHIC BES, beam energies reach down to

√
sNN = 7.7 GeV, and the baryon chemical po-

tential can reach values up to µB ∼ 400 MeV, which can be larger in magnitude than the
local temperatures [131,185]. This is the reason, why the high-density region of the phase
diagram can be explored by low-energy collisions and furthermore, they are particularly
useful to explore the properties of net-charge diffusion of nuclear matter.

Gradients of particle density generate particle currents due to diffusion. More precise,
gradients of chemical potentials of a conserved charge generate net currents of this charge.
Among the most important conserved charges in heavy-ion collisions are baryon charge
(B), electric charge (Q) and strangeness (S).

In the relativistic Navier-Stokes-Fourier theory, a net-charge (q) diffusion 4-current, jµq ,
is determined by the following constitutive relation,

jµq = κq∇µαq, (2.35)

where αq ≡ µq/T is the thermal potential, with µq being the charge chemical potential,
T the temperature and κq the corresponding net-charge diffusion coefficient. We further
defined the transverse gradient ∇µ ≡ ∆µν∂ν , and the projection operator ∆µν ≡ gµν −
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uµuν , where uµ is the local fluid velocity and gµν the space-time metric. We remark that
this relativistic constitutive relation does not only describe the effects of charge diffusion
but also includes the effects of heat flow.

The constitutive relations satisfied by the diffusion 4-currents become different in the
presence of more than one conserved charge. Since several hadrons (and quarks) carry more
than one of the above mentioned B,Q or S charges, the diffusion current of each charge will
no longer be solely proportional to the gradient of the thermal potential (∇µαq) of that
specific charge. Instead, there will be a mixing between the currents, with gradients of
every single charge density being able to generate a diffusion current of any other charge.
In general, one has

 jµB
jµQ
jµS

 =

 κBB κBQ κBS
κQB κQQ κQS
κSB κSQ κSS

 ·
 ∇µαB∇µαQ
∇µαS

 , (2.36)

where αa ≡ µq/T, q = B,Q, S is the ratio of charge chemical potential over temperature.
The charge conductivity due to diffusion is defined by σqq′ ≡ κqq′/T .

It is possible to include dissipative charge currents in relativistic hydrodynamic equa-
tions [161, 162, 186]. This will be relevant in the near future, when hydrodynamic simu-
lations are needed for low energy experiments. The study of baryon, electric or strange
diffusion coefficients (κBB, κQQ, κSS) is rather new and only very few publications give
explicit values. In Ref. [160] the baryon diffusion constant was calculated in an holo-
graphic model of the strongly coupled quark-gluon plasma. In Ref. [161] the diffusion of
quark number was given in the relaxation time approximation. The transport coefficient
for baryon diffusion has been overlooked in the past, arguing that for collision energies√
sNN ∼ 0.2− 2.76 TeV at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron

Collider (LHC) µB/T and its gradients are only on the order of 1 − 5% [181]. At RHIC
BES collisions at

√
sNN = 7.7 GeV the thermal potential can be α ≡ µB/T ∼ 2.6 [185]

around the phase transition and diffusion effect might be important. In Ref. [181] the
influence of baryon diffusion to hydrodynamical predictions for the net baryon rapidity
distribution dNB−B̄/dy were found to be significant, even for very low baryon diffusion
constants and very small initial µB. It was seen (even for RHIC and LHC calculations),
that the dissipative baryon current flows visibly due to a gradient in baryon chemical
potential into the mid-rapidity region. It is expected that this effect is much more pro-
nounced at low collision energies and a precise knowledge of the diffusion constants will
be crucial to quantitatively understand experimental data.

The computation of the diffusion matrix is analogous to the electric conductivity pre-
sented in Sec. 2.2.3. The electric charge qi of species i must now be replaced by the
conserved charge under consideration, being baryon charge, electric or strange charge. An
important difference in the calculation concerns the force term in the Boltzmann equa-
tion. Instead of Eq. (2.15), where the electric field drives the distribution function out of
equilibrium, the source term is now a gradient in αq of the conserved quantity q [170],

kµi ∂µδf
i
k +

∑
q∈{B,Q,S}

f ik,0kµ∇µαq
(
Ei,knq
ε0 + P0

− qi
)

=

Nspecies∑
j=1

Cij(x
µ, kµ), (2.37)

with the total energy density ε0, isotropic pressure P0 and

nq =

Nspecies∑
i=1

qi 〈Ei,k〉i,0 (2.38)
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is the net charge density. The deviation from equilibrium has an expansion, similar to
Eqs. (2.18) and (2.22),

δf ik =
∑
q

kµi ∇µαq
M∑
m=0

aiq,m(Ei,k)m, (2.39)

where the integer M characterizes the truncation of the power series in energy, and the
coefficients aiq,m are calculated from Eq. (2.25), where one must replace the vector bim (see
the last definition in Eq. (2.26)), which must read now

bim =
nB

ε0 + P0

∫
dKEmk (∆µνkµkν) f i0,k + qi

∫
dKEm−1

k (−∆µνkµkν) f i0,k, (2.40)

In the following we present our results for baryon, electric and strangeness diffusion as
function of baryon chemical potential and temperature.

The q–th charge diffusion current is given as

jµq =

NSpecies∑
i=1

qi

∫
d3ki

(2π)3Ei,k
∆µ
νk

ν
i δf

i
k. (2.41)

Substituting the expansion for δf ik into Eq. (2.41), and comparing to Eq. (2.36), leads to
the following expression for the diffusion coefficients

κqq′ =
1

3

NSpecies∑
i=1

qi

M∑
m=0

aiq′,m

×
∫

d3ki
(2π)3Ei,k

Emi,k∆µνk
µ
i k

ν
i f

i
0k. (2.42)

Therefore, calculating κqq′ is reduced to evaluating the integrals in Eq. (2.26) and Eq. (2.40)
and then solving the set of linear equations satisfied by aiq′,m in Eq. (2.25). Both these
tasks are performed numerically.

As a sidenote, in a simple relaxation time approximation, the baryon diffusion counter
part of the “Drude” formula (electric conductivity) reads with relaxation time τ [162],

κBB = τnB

(
1

3
coth(αB)− nBT

ε+ P0

)
. (2.43)

2.3.1. Chemical composition and choice of cross sections

We aim to fix the chemical composition of the system by requiring that the system re-
sembles a (high energy) heavy-ion collisions. This means, for each conserved charge q we
are free to either fix its net number Nq or its chemical potential µq. First, we require the
total net strangeness to vanish, as this resembles probably the physical reality in heavy-ion
collisions (strange quarks must be pairwise produced: s + s̄). The chemical potential of
baryon charge is fixed to different values (given in the plot legends), as this is common
practice and allows for comparisons with other models. The electric charge depends on
the specific collision (number of protons). For simplicity and comparability, we choose
µQ ≡ 0.
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Quark-gluon plasma

In order to get an estimate for the scale of the diffusion constants found in the hadron
resonance gas, we apply our method for a system, where the degrees of freedom are massless
quarks and gluons. To this end we have seven species, u, d and s quarks with degeneracies
g1,2,3,4,5,6 = 6 and gluons with degeneracy g7 = 16 all with their corresponding baryon,
electric and strange charge. For vanishing chemical potentials, using the matrix elements
found in Ref [1], it is possible to derive analytic expressions for the six different κqq′ .

However, it is worth looking again at the chemical composition of the QGP. We define
quark chemical potentials µup, µdown, µstrange in such a way, that they are related to the
usual (hadronic) chemical potentials µB, µQ, µS in the following way, µup

µdown

µstrange

 =

 1/3 2/3 0
1/3 −1/3 0
1/3 −1/3 −1

 ·
 µB

µQ
µS

 , (2.44)

As mentioned before, we want to fix the net strangeness to be zero, thus µstrange = 0.
It is also reasonable to assume isospin symmetry (number of protons equals the number
of neutrons), such that µup = µdown. Solving Eq. (2.44) with these conditions leads to
µB = 3µup = 3µdown, µQ = 0 and µS = µup = µdown. Fixing µB to a given value means
we must set µQ = 0 and µS = µB/3. All results for the quark-gluon plasma will assume
these chemical potentials.

For simplicity and feasibility we choose an unique, isotropic, total cross section σtot, so
that the shear viscosity to entropy ratio has the theoretical lower bound, η/s = 1/(4π) [52].
By using2

η = 1.2
T

σtot
, (2.45)

this leads for µB = µQ = µS = 0 to σtot = 0.72/T 2, where the entropy is s = 4n, with total
density n. At nonzero chemical potential, the entropy is s = 4n − µB/TnB − µS/TnS −
µQ/TnQ, and the cross section σtot = 1.2T/(sη/s).

Hadronic gas

Assuming Isospin symmetry, we set µQ ≡ 0 from now on. In this case the density of a
hadronic species i is given by

ni(T, µB, µS) = giTm
2
iK2(mi/T ) exp

(
qS,i

µS
T

+ qB,i
µB
T

)
. (2.46)

For given µB we can solve to following equation for µS ,∑
species i

qS,ini(T, µB, µS) ≡ 0. (2.47)

This fixes the chemistry, and all the results for the hadron gas will assume the so obtained
chemical potentials, solved individually for each temperature. For the diffusion coefficients
involving baryon and strangeness charge it will be relevant, and more realistic, to include
also the Λ and Σ baryons. Since the cross sections involving strange baryons are largely
unknown, we take the values from the UrQMD transport code, which are fixed cross
sections, independent on the electric charge, as given in Table 2.2.

2The factor 1.2 (Israel-Stewart computation, [187]) was recalculated in the 41 moment DKR scheme,
being 1.267 [169]. We will however use the Israel-Stewart value here.
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in mb Λ Σ

π 23.1 5

K 18.5 3

p/n 34.7 10

Λ 30 10

Σ 10 10

Table 2.2.: The isotropic, elastic cross sections of strange baryons in units of mb, as used
in Ref. [111,112].

2.3.2. Results for the complete diffusion matrix

We first remark that we checked that Onsager’s theorem [188, 189], which imposes that
κqq′ = κq′q, is fulfilled in all our calculations. We display our results for the diffusion
coefficient matrix from Eq. (2.42) in Fig. 2.8 for µB = 0, 300, 600 MeV. For the sake of
presentation, we switch the degrees of freedom from hadronic to QGP at temperature
T = 160 MeV.

Baryon diffusion

For the baryon diffusion current jµB, we expect a strong dependence on both µB and T ,
and indeed this can be seen, e.g., from the functional behavior of the coefficient κBB/T

2

in Fig. 2.8. In Fig. 2.9 we show the coefficient κBB/T
2 in the T and µB plane. It becomes

apparent that at high µB the temperature dependence weakens, and around µB ∼ 400 MeV
and T ∼ 150 MeV the coefficient takes a local maximum. For µB . 300 MeV the coefficient
rises rapidly with increasing temperature, as the system is less meson dominated at higher
temperatures, and mesons act purely as a resistance for the diffusion of baryons. This
effect is also visible in the off-diagonal coefficients −κSB and κQB. In Fig. 2.10 we show
the baryon-electric cross-diffusion coefficient κQB/T

2 in the T − µB plane for hadronic
degrees of freedom, and in the bottom left panel of Fig. 2.8 we compare the hadronic and
the QGP results. It is apparent, that κQB/T

2 is of the smallest magnitude, and exhibits
a very strong µB dependence. Interestingly, for µB = 0 and QGP degrees of freedom, it
vanishes. This can be understood schematically by summing up the electric current due to
a constant baryon gradient. The only difference among the quarks is their electric charge,
thus,

jup-quark
Q ∼

(
2

3
e

)
︸ ︷︷ ︸

electric charge

(
1

3

)
︸ ︷︷ ︸

baryon charge

jstrange-quark
Q = jdown-quark

Q ∼
(
−1

3
e

)
︸ ︷︷ ︸

electric charge

(
1

3

)
︸ ︷︷ ︸

baryon charge

jnet
Q = jup-quark

Q + jdown-quark
Q + jstrange-quark

Q = 0. (2.48)

Since this is true for arbitrary gradients, the coefficient κQB must vanish with those specific
particle species.

In Fig. 2.11 we show the strange-baryon cross-diffusion coefficient −κSB/T 2 in the
T − µB plane for hadronic degrees of freedom, and in the bottom right panel of Fig. 2.8
we compare the hadronic and the QGP results. The negative sign of κSB indicates that
gradients in strangeness act to reduce the baryon current. The reason for the negative
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Figure 2.8.: All diffusion coefficients for baryon- electric and strangeness diffusion. The
hadronic results include resonance cross sections of the lightest 19 hadronic
species, whereas the QGP uses massless quarks and gluons with fixed 4πη/s =
1. For illustrative purpose, we show the hadron resonance gas results for T ≤
160 MeV and above that the QGP calculation. We compare to holographic
results from Ref. [160,190].
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Figure 2.12.: Electric-Electric diffusion coefficient κQQ/T
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chemical potential.

sign is the definition of negative strangeness of the strange quark. In the hadron phase
the dependence on µB is very pronounced, indicating the important role of the hyperons.

Comparing κQB to κBB, in Fig. 2.8, we infer that the electric charge gradients con-
tribute to the baryon diffusion current about an order of magnitude less than the baryonic
gradients. In contrast, gradients in strangeness can be as important as gradients in the
baryon charge, as can be seen in the bottom right panel from the magnitude of the coef-
ficient −κSB, which is similar in magnitude to κBB. We remark that this is due to the
hyperons, which carry both B and S charge.

In dynamical models, the coefficient κBB/T
2 is the only one that has been used to study

baryon diffusion, e.g., in Ref. [162].

Electric charge diffusion

The coefficients κQQ, κSQ, κQB, characterize the diffusion of electric charges3.
In Fig. 2.12 we plot κQQ/T

2 depending on temperature and baryon chemical potential
for hadronic degrees of freedom. We see that κQQ/T

2 decreases with temperature, and for
increasing values of µB. This happens because the particle density grows, but the ratio of
charged to uncharged species stays the same.

In the top middle panel of Fig. 2.8 we compare the hadronic result with the QGP
result. We see that in the QGP at µB < 600 MeV the coefficient does not exactly
match the hadronic result. This is due to the fact that the QGP is treated only in an
effective way. We remark, that only for the case µB = 0 there are several other results
available in literature, in particular also from the lattice, see Fig. 2.7. In general, they

3 at µB = 0, κQQ/T
2 is equal to the electric conductivity σel/T
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Figure 2.13.: Strange-Electric diffusion coefficient κSQ/T
2 over temperature and baryon

chemical potential.

show an increasing behavior with rising temperature, hinting to the conjectured minimum
of κQQ/T

2 at the phase transition.
In Fig. 2.13 we show the strange-electric cross-diffusion coefficient κSQ/T

2 again in the
T − µB plane for hadronic degrees of freedom, and in the bottom middle panel of Fig. 2.8
we compare the hadronic and the QGP results. This coefficient shows a very small µB
dependence, and its magnitude for T & 120 MeV is of the same order of magnitude as
κQQ/T

2. The QGP and hadronic results match surprisingly well at the phase transition.
The small ratio κQB/κQQ indicates the little importance of baryon chemical potential

gradients to the electric diffusion current, whereas κSQ is (for T & 100 MeV) of the same
order of magnitude as κQQ, indicating that strangeness gradients contribute significantly
to the electric diffusion current.

We can again calculate the electric conductivity, taking also the strange baryons into
account (see Tab. 2.2), for different baryon chemical potentials. This is an extension of the
results in Fig. 2.7, shown in Figs. 2.14 and 2.15. The electric conductivity behaves similar
to the electric charge diffusion, decreasing for higher temperature and higher chemical
potential.

Strangeness diffusion

In Fig. 2.16 we plot the coefficient related to strangeness diffusion currents due to strangeness
gradients, κSS/T

2, depending on temperature and baryon chemical potential for hadronic
degrees of freedom and in the top right panel of Fig. 2.8 we compare the hadronic with
the QGP result. We find that κSS is larger than both −κSB and κSQ (bottom right and
middle panel in Fig. 2.8), being even larger in magnitude than the baryon diffusion coef-
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ficient (except for very small values of temperature). Its µB dependence is weak, and the
temperature dependence weak compared to the other coefficients.

We find that baryonic gradients act to significantly reduce strangeness currents in both
the QGP and HRG, since κSB is negative and its magnitude is only about a factor two
smaller than κSS . Therefore, it is possible that cancellation effects due to coupling between
the currents can lead to small strangeness diffusion currents. On the other hand, κSQ is
about an order of magnitude smaller than κSS , indicating that electric gradients are less
important for strangeness transport. We remark that the µB dependence of κSS , κQQ and
κSQ is very weak, however their dependence on µQ and µS can behave differently. κSS
was only calculated before in Ref. [191] for a Kaon system.

2.4. Conclusion and phenomenological consequences

As a main result, we quoted the full matrix of diffusion coefficients for the relevant range
of temperatures T ∼ 50 − 250 MeV and chemical potentials µB ∼ 0 − 600 MeV. We
switched the degrees of freedom at an approximate transition temperature, T = 160 MeV
without any further calculation, keeping in mind, that this transition is probably more
complicated, and there might be a mixed phase.

The six transport coefficients include the traditional baryon diffusion coefficient κBB,
and the electric and strangeness diffusion coefficients κQQ and κSS , respectively. We
present for the first time also the three off diagonal transport diffusion coefficients κQB, κSB
and κSQ which describe the mixing between gradients and currents of different charge.

In our semi-analytic approach, we confine ourselves to classical statistics, elastic colli-
sions and isotropic scattering, employing a Chapman-Enskog-type calculation [192,193].
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The calculations in the hadron gas phase are carried out including analytic resonance
and measured elastic hadron-hadron cross sections, when available, taking into account
hadrons up to the Σ baryons. This constitutes the most extensive result of the charge
diffusion matrix in the HRG to date.

For calculations in the QGP phase, we employ a much simpler model, fixing η/s to
be a constant and assume all up, down and strange quarks to be massless. It is in fact
very interesting that most of the diffusion coefficients in the QGP match the HRG results
quite well nearby the conjectured phase transition region. At this point it is unfeasible
to assess the systematic uncertainties in a reliable way, thus physical interpretations of
the discontinuity around the phase transition is difficult. It however hints to missing
ingredients.

In brief words, our results emphasize that the mixing between gradients of the ther-
mal potential of different charges is in general important and should not be neglected
when simulating low energy heavy-ion collisions. For example, the contribution to the
baryon diffusion current from gradients of baryon number density can be almost com-
pletely canceled by gradients in strangeness of comparable magnitude, whereas we found
electric gradients to be almost negligible for baryon transport. Electric diffusion currents
are mainly driven by electric and strangeness gradients. Strangeness diffusion is mostly
affected by strangeness and baryon number gradients, with electric charge gradients being
less important. The relevance of these effects for experimental observables remains to be
investigated.

The diffusion coefficients can readily be used in dissipative hydrodynamic calculations
for charge rich systems. Only then the true relevance of the three diffusion currents for
experimental observables can be evaluated. Due to the growing interest in baryon rich
experiments, like RHIC BES, NICA or FAIR, we expect that more work on diffusion
phenomena will be undertaken in the near future.

The transport coefficients are matter properties, like η/s, σel/T or the bulk viscosity
over entropy ratio ζ/s, and as such it is instructive to compare them to different theories,
with the goal to learn about microscopic interactions, or transition lines in the phase
diagram of QCD. As an example, in Fig. 2.8 we compare to the holographic results from
Ref. [160, 190] which match ours at high T (conformal limit). Their µB dependence for
the diagonal coefficients is as weak as for our QGP results, but the coefficients are slightly
lower in magnitude for temperatures T . 150 MeV. It is interesting how a simple kinetic
calculation, that simply fixes η/s = 1/4π, is already capable of reproducing the basic
trends of such holographic calculations. It would be interesting to see whether this holds
for the off-diagonal coefficients.

It is furthermore desirable to compare our kinetic calculations with lattice QCD stud-
ies. Unfortunately, those calculations require a solution for the highly non-trivial inversion
problem (analytic continuation). To date, lattice studies exist only (for vanishing chemical
potentials) for the electric charge diffusion coefficient σel = κQQ/T [147, 149, 194]. In the
confined phase, the lattice results are extremely difficult to compute and thus not reliable.
The holographic result for strongly coupled N = 4 Yang-Mills theory is 2πTD = 1, where
D ≡ κQQ/(TχQ), with the electric charge susceptibility χQ. Those comparisons were
already made in Sec. 2.2.5. The coefficients κBB, κSS and the off-diagonal diffusion coeffi-
cients have never been calculated on the lattice. All coefficients should also be accessible
from hadronic transport models, or other dynamical approaches.

We plan to extend our work to quantum statistics, a more realistic description of the
QGP and possibly more particle species to achieve a fully comprehensive framework of
diffusion properties. Especially the use of non-isotropic cross sections (resonance p-wave
scattering in the HRG or pQCD inspired matrix elements in the QGP) will be an inter-
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esting possibility for the future.
The electric conductivity is a key ingredient of Maxwell’s equations in medium, and as

such a crucial ingredient for investigations of magnetohydrodynamics or other calculations
of electromagnetic fields in the quark-gluon medium. A first step in this direction will be
undertaken in the next chapter, where we look at the response of partons to external
magnetic fields. The electric conductivity influences the dynamic behavior strongly, and
we compare, i.a., the difference between a free streaming medium and a medium with
finite electric conductivity, both under magnetic field influence.
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In peripheral heavy-ion collisions, the passing nuclei generate very strong electromagnetic
fields. They each carry 79 (Au nucleus) or 82 (Pb nucleus) protons, and the typical
distance of the passing electric charges to the QGP is very small (O(1) fm). All charges,
which fly outside the almond shaped overlap region contribute strongly to the magnetic
field. Fields induced by spectators located inside the overlap region mostly cancel each
other. In high energy experiments, the velocities of the nuclei reach nearly the speed of
light, which, in addition to the geometry explained above, is the reason for electromagnetic
fields which are at eB ∼ 1018 G among the largest in the Universe [195,196]

A large part of this chapter was published in Ref. [3]. We first calculate the field
strength of the electric and magnetic field at three different positions inside the almond-
shaped transverse collision region, induced by the spectators. We then investigate the
influence of these fields to the dynamics of the partons in the QGP, with and without
collisions. After looking more differentially on the kinematic regions of interest, we find,
that the elliptic flow v2 at very low transverse momenta can be significantly enhanced. As
an other example, we calculate the corresponding photon elliptic flow enhancement, which
is also visible at low transverse momenta.

3.1. Fields from Spectators

For all the following studies it is a natural first step to calculate the magnetic field strength
due to fast spectator nucleons at the time when both nuclei pass each other, t ≡ 0. In
general, the solution of Maxwell’s equations for Nch charged particles with charge Qi = qie
moving with constant speed ~vi reads

e ~E(t, ~r) = αEM

Nch∑
i

qi
~Ri

γ2R3
i (1− (~Ri × ~vi)2/R2

i )
3/2

e ~B(t, ~r) = αEM

Nch∑
i

qi
~vi × ~Ri

γ2R3
i (1− (~Ri × ~vi)2/R2

i )
3/2

, (3.1)

where ~Ri = ~r−~ri(tR) = ~r−~ri(t−|~r − ~ri(t)|) is the relative distance between the observation
point ~r and the trajectory of the charged particle ~ri(t) evaluated at the retarded time
tR = t− Rn(t) with Rn(t) = |~r − ~rn(t)|. Numerically, it turns out to be more efficient to
compute the fields rather at advanced times tA = t+Rn(t), such that the rhs of Eq. (3.1)
must be evaluated at the present time t, e ~E(tA, ~r), e ~B(tA, ~r).

Since protons travel on straight lines, and stopping effects in high energy collisions are
weak, we can assume that the velocity vector of the protons is ~v = (0, 0,±vz), where
the magnitude is given by the collision energy, v2

z = 1 − (2mp/
√
sNN )2 [157, 196], and

γp =
√
s/(2mp).

3.1.1. Geometry

For the computation of the external fields one must precisely sample the positions of the
charges. Inside each nucleus of charge number A, the particle density n at radius |~r| = r

47
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from the nucleus’ center is approximated by the Woods-Saxon distribution [197,198],

n = γp
n0

exp((r −RA)/dA) + 1
(3.2)

where the central density n0 is obtained by solving
∫

d3 ~rn(~r) ≡ A. The radius of the
nucleus is given by RA/fm = 1.12A1/3 − 0.86A−1/3 and the skin depth for an Au (Pb)
nucleus is dA = 0.535 fm (0.546 fm) [199]. It is straight forward to sample the transverse
positions ~ri of the protons, and shift their positions by ±b/2 for impact parameter b. In
the right panel of Fig. 3.1 we show the result of such a sampling, whereas in the left panel
the nucleon positions are sampled according to a homogeneous disc distribution,

n(r) = n0Θ(r −RA). (3.3)

Figure 3.1.: Typical sampling of nucleon positions of two overlapping Au nuclei (impact
parameter b = 6fm). Shown are only the protons, as they generate the ma-
gentic field. The positions are sampled uniformly across the disc (left), and
along a realistic Woods-Saxon distribution (right).

3.1.2. Field strengths

We want to compute the fields at the moment of maximal overlap, t = 0+ and we assume
that due to the strong Lorentz contraction the nuclei are two dimensional pancakes, such
that the distance of the charges to the computation point ~Ri = ~r − ~ri lies entirely in the
x-y-plane, ~Ri ≡ ~R⊥,i. In this case, the field strengths reduce to [196,200,201]

e ~E = αEM

Nch∑
i

qi
~R⊥,i∣∣∣~R⊥,i∣∣∣3γp,

e ~B = αEM

Nch∑
i

qi
~vi × ~R⊥,i∣∣∣~R⊥,i∣∣∣3 γp. (3.4)
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In Fig. 3.2 we show the magnetic field strength at t = 0 for Au+Au and Pb+Pb collisions
at
√
sNN = 200 GeV and

√
sNN = 2.76 TeV in the center of the collision, at the side

and the top of the almond-shaped overlap zone. We show separately the event averages
〈Bx,y〉 and the absolute value of the fields averaged, 〈|Bx,y|〉. The z-components are very
small, so we omit them here. In Fig. 3.3 we do the same study for the electric field
strengths Ex,y. The results in Figs. 3.2 and 3.3 are in qualitative agreement with previous
studies [196, 200, 202]. The results of Ref. [196] are about a factor of 2 smaller than the
results of Ref. [200] or ours.
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Figure 3.2.: Event averaged magnetic field components (〈Bx, By〉) and averaged absolute
fields (〈|Bx| , |By|〉) at midrapidity for RHIC (Au+Au

√
sNN = 200 GeV, left

panels) and LHC (Pb+Pb
√
sNN = 2.76 TeV, right panels) at the center of the

fireball, at the side of the almond-shaped overlap zone, x = RA − b/2, y = 0,

and at its top, x = 0, y =
√
R2
A − (b/2)2 at time t = 0.
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Figure 3.3.: Event averaged magnetic field components (〈Bx, By〉) and averaged absolute
fields (〈|Bx| , |By|〉) at midrapidity for RHIC (Au+Au

√
sNN = 200 GeV, left

panels) and LHC (Pb+Pb
√
sNN = 2.76 TeV, right panels) at the center of the

fireball, at the side of the almond-shaped overlap zone, x = RA − b/2, y = 0,

and at its top, x = 0, y =
√
R2
A − (b/2)2 at time t = 0.
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3.2. Magnetic field influence on the QGP dynamics

In this section, we turn to a fundamental question which has not gained much attention
in literature: will there be directly measurable effects of the electromagnetic Lorentz force
in heavy-ion collisions? Early attempts [203] to model a hadron gas under the influence
of magnetic fields did not show strong effects.

The authors of Ref. [204] have studied the charge dependent directed flow of pions and
protons in a simplified analytic model, taking electric and magnetic fields into account.
They find a very small signal, owing mainly to the currents induced by electric fields gen-
erated by the fast decaying magnetic fields (Faraday effect). For very low pT however,
they see a strong influence of the magnetic field itself (dubbed as “Hall” effect). In partic-
ular, the magnetic effect becomes important for the directed flow at transverse momenta
pT . 0.25 GeV for RHIC and LHC. We will later see the growing influence of the magnetic
effect at low pT .

Hydrodynamic calculations including magnetic fields are rare, and still under develop-
ment [205,206]. Recently, it has been found that the directed flow of charm quarks is very
sensitive to the magnetic and electric field [207]. Furthermore, it has been proposed, that
the J/Ψ formation becomes anisotropic which leads, e.g., to a sizable elliptic flow at high
transverse momenta [208].

We attempt an exploratory study of the early-time non-equilibrium dynamics of decon-
fined quarks and gluons including simple parametrizations of an external magnetic field.
We find that the quark momenta rotate parallel to the event plane and develop a surpris-
ingly large momentum anisotropy at mid- and forward rapidity for very low transverse
momenta. This is roughly reminiscent to the Hall effect. The particle velocity stems
mainly from the large boosts in beam direction (longitudinal expansion), whereas the
magnetic field comes from the charged spectator nucleons.

We see furthermore that the spectra are also slightly enhanced at early times and we
show explicitly how collisions damp both the effect of the flow and the spectra.

Figure 3.4.: Geometry of our model. The magnetic field is constant and homogeneous.
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3.2.1. Simple model without collisions

We investigate how strong the effect of the Lorentz force alone can be on the particle
distributions. To this end, we outline a simple model for the heavy-ion collision, neglecting
parton-parton collisions in a first step. We consider the passing of two heavy nuclei along
the z-axis. For simplicity, we assume the magnetic field ~B to be constant and homogeneous,
pointing in y-direction, ~B ≡ By~ey. The situation is depicted in Fig. 3.4. Here we neglect
electrodynamical induction effects. We assume that all events are symmetric and the
impact parameter points in x-direction. In this geometry elliptic flow can be seen as an

average (〈·〉) momentum asymmetry
〈
(p2
x − p2

y)/p
2
T

〉
≡ v2, where pT =

√
p2
x + p2

y.

Initial state and formation time

In this simple model setup we do not consider space-dependent effects, thus we sample
only four-momenta of the particles. All particles are assumed to be massless. The pT
distribution is sampled according to a power law,

dN/dpT =

(
n− 1

p1−n
T,min

)
p−nT , n = 2, 3, 4. (3.5)

We choose a minimal value pT,min = 0.01 GeV. For all the following results we assume a
constant distribution in rapidity, y = 1/2 log(E + pz)/(E − pz),

dN/dy = const., pz = pT sinh y. (3.6)

We find that the results are not dependent on the rapidity window in which we initialize
the particles, as long as it is larger than the observed rapidity bins. For most studies,
−3 < y < 3 is sufficient.

It is possible to use a formation time ∆tf = cosh(y)/pT during which particles are still
off-shell and do not interact, but propagate freely. This formation time has been used
earlier in transport approaches using the Minijet model for the initial condition [209–211].
We can assume that the magnetic field will also not influence the partons within their
formation time. However, as quarks carry their electric charge even off-shell, their classical
interaction with magnetic fields is arguable, and the formation time could be irrelevant.
As this point is conceptually uncertain, we show results for both options, assuming the
particle-field interaction to be switched on immediately (no formation time), or, only after
∆tf , respectively. In this simplified collisionless scenario we only initialize quarks, carrying
the electric charge q = e/3 or q = 2e/3, respectively. The exact quark and gluon content
in the early phase of heavy-ion collisions is under debate. It is clear, that the more gluon
dominated the system is, the less pronounced such electromagnetic effects will be.

Magnetic field parameterizations

The external magnetic field present at t = 0+ after the collision is still subject to active
research, and depends strongly on the geometric modeling of the nuclei as well as the
electric conductivity and also possible non-equilibrium effects. Common to all the results
in literature is the dominant By-component, perpendicular to the event plane, which is
about an order of magnitude larger than the Bx-component, the Bz-component is nearly
absent, see Sec. 3.1.2. The authors of Ref. [212] look explicitly at fluctuations of the
direction of the magnetic field and find that for middle central collisions the field fluctuates
less around the direction perpendicular to the event plane than for near central or very
peripheral collisions. For the qualitative understanding of the dynamical effects to the



54 3. Magnetic fields

quark momenta, we adopt several simplified scenarios for the field strength By, and set
Bx = Bz = 0. In Ref. [203] it was found that the spatial dependence over the overlap region
is mild, so that we restrict ourselves here to a homogeneous field in space, parametrized
as

param 1 eBy(t) = 4 m2
π Θ(0.3 fm/c− t)

param 2 eBy(t) = eBt=0
y (1 + t2/t2c)

−3/2 with tc = 0.065 fm/c.

e
B

y
 [

m
π

2
]

t [fm/c]
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Figure 3.5.: The two simple parameterizations of the homogeneous magnetic field. Param
2 follows Ref. [196].

Param 2 is the parametrization of the results of Ref. [196] as given in Ref. [202]. We
use it with parameters corresponding to RHIC collisions (Au+Au,

√
sNN = 200 GeV) at

typical impact parameters of ∼ 8 fm corresponding to 20− 40% centrality (see also, e.g.,
Refs. [200,213] for typical field strengths). In the very early stage, the medium is assumed
to be gluon dominated, such that the electric conductivity can be neglected [202] (being
roughly proportional to the sum of the electric charges squared, weighted by the densities
of the charge-carrying species [1, 150]). The authors of Ref. [196, 202] approximate the
total magnetic field thus by the external component produced by the charged nucleons
passing each other. The full solution of the Maxwell- and Boltzmann equation will slow
down the decay of the magnetic field, but so far, only little is known about the precise
evolution. Parametrization 1 is an optimistic imitation of a strongly conducting medium,
which would keep the magnetic field present for some time. We have tried even higher or
longer field parametrizations, but for simplicity we restrict ourselves to an optimistic, and
a realistic one.

Larmor movement

The magnetic field changes the direction of velocity of the particles by the Lorentz force,
~FL = q~v × ~B. In our geometry, particles will move in a circle around the y-direction,
clockwise or anticlockwise depending on their charge q. Thereby, any momentum in z-
direction will increase or decrease the momentum in x-direction, px → px + ∆px.
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To analytically estimate the effect of increasing px components, we note that in the
whole particle ensemble by symmetry 〈px〉 = 0, 〈py〉 = 0. We consider two same-charge
particles with opposite px momentum components, px,1 = −px,2 as representer of the (in
total charge neutral) particle ensemble. Their py momenta are equal, and chosen in a way,
that the initial momentum asymmetry v2 takes a given value. The change px → px + ∆px
on the v2 of the whole particle ensemble can then, in a simplified fashion, be estimated by

v2(∆px)

=
1

2

(
(px + ∆px)2 − p2

y

(px + ∆px)2 + p2
y

+
(−px + ∆px)2 − p2

y

(−px + ∆px)2 + p2
y

)
. (3.7)

In Fig. 3.6 we show this momentum asymmetry for three choices of the initial v2, positive,
zero and negative. Clearly, for zero initial v2, the increase of ∆px must be larger than
pT in order to enhance the asymmetry. All cases show a minimum in v2 for ∆px < pT ,
which can be strongly negative. Note that Eq. (3.7) is symmetric under the change of
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Figure 3.6.: After the increase of px, the momentum asymmetry v2 is in all cases positive
for ∆px > pT . The result is symmetric in ∆px.

∆px → −∆px, thus insensitive to the sign of the electric charge. An ensemble of particles
with positive and negative charges, and momenta drawn from a distribution, can also give
positive v2, this is what we will explore in the next section. The resulting v2 of such
ensembles is in principle an average like Eq. (3.7), just taken over a larger set of particles.

The radius of deflection due to the magnetic field is

rLarmor =

√
p2
x + p2

z

qBy
, (3.8)

and the angle of the circular movement of time t is αLarmor = t/rLarmor. The value of ∆px
depends on the momenta px and pz of each particle, for a given magnetic field times its
duration, Byt.
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Figure 3.7.: For three different initial pT -distributions (power-law exponent n) we show
how the spectra change after 0.3 fm/c under the influence of a magnetic field.
Here we use an arbitrary number of particles and magnetic field parametriza-
tion 1.

In this study, we do not include electromagnetic effects other than the Larmor move-
ment. The reason is outlined in the following. The Faraday effect due to the time depen-
dent magnetic flux ϕ = ByA through surface A generates an electric field,

−∂ϕ
∂t

=

∮
5~r · ~E. (3.9)

This electric field accelerates charges in the opposite direction than the Lorentz force
~FL = qv × ~B. Assuming for a moment, that ~FL ≡ 0, the electric current due to the
force q ~E will generate a magnetic field component Bind counter balancing the decay of
the field, ~Bind ∼ ∂ ~B/∂t, depending on the electric conductivity. On top of these effects,
the electric fields generated by the spectators, albeit small in magnitude, has also an
x-component [201], which is positive Espec

x > 0 for x > 0 and negative Espec
x < 0 for

x < 0. All these 3 effects can cancel or enhance each other, and depend crucially on the
assumed electric conductivity and parametrization of the bare spectator induced fields.
Furthermore, the calculation of the magnetic flux as well as the electric fields would
require a full space-time dependent (propagating) solution of the electromagnetic fields.
This is why we restrict ourselves to show what maximum effect on the particle dynamics
is expected from the magnetic field only.

3.2.2. Results of the collisionless model

First we show how pT -spectra of quarks are influenced in the early time by a magnetic field
in Fig. 3.7. Here, for parametrization 1 of the magnetic field, the spectrum is enhanced
for 0.02 < pT /GeV < 0.1 due to the Larmor turn of pz-momenta. In Fig. 3.6 we explained
that the final momentum asymmetry depends strongly on the additional ∆px. We explore
which momentum space region (regions in rapidity) is necessary to gain sufficiently large
values of ∆px for the v2 to change visibly. Here we differentiate between initial quantities,
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and those after the circular Larmor-movement has been applied to the particle. For this
purpose we show in Fig. 3.8 the final v2 (after the Larmor movement had been applied
for a time t) as function of initial rapidity yinitial. We split this up in a soft region, for
final pT < 0.3 GeV, where the averaged v2 reaches large values, and the region of final
pT > 0.3 GeV, where the v2 is consistent with zero. This ultrasoft pT ranges can already
be expected from the spectra, Fig. 3.7. Note that the saturation in Fig. 3.8 is due to
the cuts in final pT , which means, that, in the curve for final pT < 0.3 GeV, the larger
sinh(y), the smaller the values of pT which contribute. Clearly, momentum rapidities
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Figure 3.8.: Final average v2 per particle for three different pT ranges as function of initial
rapidity yinitial of the particle. Here we use an initial state with power law
exponent n = 2 and magnetic field parametrization 1. The result for n = 3, 4
looks very similar, only the maximal value of the final v2 increases by up to
25%.

y > 1 are responsible for ∆px & pT and the average momentum asymmetries larger than
zero. The three initial pT -distributions show similar behavior, only the maximal value
of v2 increases with increasing n. Finally we turn to the differential v2. Using magnetic
field parametrization 1, we show in Fig. 3.9 the resulting v2(pT ) without the use of the
formation time, for mid- and forward rapidity and all three initial state parametrizations.
The v2 can be (temporary) up to 80 %. It is larger for forward rapidity. In Fig. 3.10 we
show the result when the formation time ∆tf = cosh(y)/pT was taken into account. This
results in deleting all relevant interactions among the field and the particles, and the v2

remains zero.

3.2.3. The effect of collisions

Next we want to consider the effect of particle collisions. To this end we employ the 3+1-
dimensional transport approach BAMPS (Boltzmann Approach to Multi-Parton Scatter-
ings), which solves the relativistic Boltzmann equation by Monte-Carlo techniques [40,214]
for massless on-shell quarks and gluons1 (See Chap. 4 for more details about the model).

1corresponding to an ideal equation of state
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The Boltzmann equation is ideally suited to study thermalization and isotropization pro-
cesses [40, 215] and the electromagnetic fields enter by an external force term. With the
phase-space distribution function f i(x, k) ≡ f ik for particle species i, the Boltzmann equa-
tion reads

kµ
∂

∂xµ
f ik + kνqiF

µν ∂

∂kµ
f ik =

Nspecies∑
j=1

Cij(x
µ, kµ), (3.10)

where Cij is the collision term, and qi the electric charge. The field strength tensor

Fµν = Eµuν − Eνuµ − Bµν , with Bµ0 = B0ν = 0, Bij = −εijkBk and Eµ = (0, ~E),
introduces the electromagnetic forces to the charged particles [216]. For the BAMPS
simulations we include 3 flavors of light quarks, antiquarks and gluons. Space is discretized
in small cells with volume ∆V and particles scatter and propagate within timesteps ∆t.
In each cell, the probability for binary/inelastic scattering is

P22/23 =
σtot,22/23(s)

Ntest
vrel

∆t

∆V
, (3.11)

where σtot(s) is the (in general Mandelstam s dependent) total cross section and vrel the
relative velocity. The inelastic backreaction works similar. In the simplest case, we employ
constant and isotropic cross sections in BAMPS (later we will use the model with per-
turbative QCD (pQCD) cross sections [217,218]). There is no qualitative difference when
employing pQCD cross sections, so we restrict ourselves to constant and isotropic scatter-
ing in this study. As a new feature, we include the electromagnetic force, which within
the Monte-Carlo framework reduces to the additional change of the particle momenta (for
every computational timestep) by

d~ki = ∆t FLorenz = ∆t qi

(
~E + ~v × ~B

)
. (3.12)
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Figure 3.12.: The pT -differential v2 from BAMPS for the ultrasoft pT range with and
without magnetic field. The initial state is equivalent to Sec. 3.2.1, with
exponent n = 2. The initial geometry is equivalent to an impact parameter of
b = 8.5fm. We ignore formation times here. For a rough comparison we show
data from PHENIX [221] (unidentified charged hadrons,

√
sNN = 200 GeV,

20%− 60% centrality, |η| < 0.35).

As mentioned before, we set ~E = 0. The propagation of fields (by retarded Liénard-
Wiechert potentials) generated by quarks would refine the picture, this will be mentioned
later in Sec. 3.3.3. Nevertheless, electric currents appear by default in BAMPS, and the
electric conductivity of the matter is built in naturally [150]. We use the same initial
state in momentum space in BAMPS as in the simple model from Sec. 3.2.1, and use
smooth a Glauber Monte-Carlo distribution of particle positions. Here we use an impact
parameter of b = 8.5 fm. The particle numbers are roughly equal to simulations performed
in earlier studies using BAMPS for Au+Au collisions at

√
sNN = 200 GeV [218–220].

Flavors for gluons and quarks (Nf = 3) are sampled randomly with probabilities Pg =
16/52, Pq = 36/52. We note that this setup is certainly rough, but it should suffice for
our purpose of an optimistic upper estimate of the “Hall current” to the anisotropic flow.
We show in Fig. 3.11, how the spectra are affected by collisions. Here we see, that in the

viscous case (including collisions, σtot = 10 mb), the spectra influenced by the magnetic
field for momenta pT & 1 GeV are very close to the field free case. Without fields, the
medium thermalizes at timescales of 0.5 ∼ 1 fm/c (see Ref. [40]). Again, in the region of
0.01 . pT /GeV . 0.1 the spectra are enhanced compared to the field free spectra. The
green dashed line shows the collisionless result, which is close to the initial power law for
larger momenta, pT & 1 GeV, and enhanced in the soft region.

In Fig. 3.12 we show the pT -differential v2 of light quarks from BAMPS, and turn the
magnetic field on and off. Clearly, the field causes a strong momentum anisotropy below
pT ∼ 0.1 GeV, but has hardly any effect above this soft pT -range. We see in comparison
with Fig. 3.9, which shows the collisionless result, that the collisions damp the v2 (about
20% lower v2 at around pT = 40−60 MeV). Here we show results with parametrisation 1,
which switches off the field at t = 0.3 fm/c. After that time, the collisions isotropize this
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Figure 3.13.: Same as Fig. 3.12, but here we compare the magnetic field parametrizations
1 and 2.

initial flow, such that after t = 2 fm/c it is around 0.34 and the maximum is pushed to even
lower pT . In Fig. 3.13 we compare the effect of the two magnetic field parametrizations.
Parametrization 2, probably more realistic, has a weaker effect than parametrization 1.
The maximal flow is still about 30%, but, more importantly, it is shifted to much lower
transverse momenta. For comparison we plot the softest points of experimentally measured
unidentified charged particle flow. Unfortunately they are still measured at such high
transverse momenta, that a detection of the presented magnetic field effect is unlikely at
present. We need to recall at this point, that all strong elliptic flow signals appear only,
when the formation time of quarks is neglected for the interaction among the field and
the particles. This issue must be further adressed in future. We note, that we ignore
for simplicity hadronization and the subsequent hadron gas evolution here, nevertheless,
elliptic flow on the order of 30% is likely to survive to some degree. This remains subject
for future work.

Photons are an ideal probe to test effects throughout the spacetime evolution of the
medium, such as magnetic field induced flow, as they leave the fireball nearly undisturbed,
once produced. Later in this thesis, and in Ref. [4], we present the implementation of lead-
ing order photon production rates for microscopic transport approaches such as BAMPS.
As an application and example, we here anticipate the 2↔ 2 photon production method
(of Chap. 6) for the QGP influenced by magnetic fields.

At very low pT (where all interesting magnetic effects happen), the microscopic photon
production processes for collisions of two low pT partons will have typical Mandelstam
variables at magnitudes, where the concept of perturbative QCD methods is questionable
(s . Λ2

QCD). Nevertheless, we allow photons to be produced as we are mainly interested
in the non-equilibrium effect of photon production from a flowing quark medium. In
Fig. 3.12 we show the v2(pT ) of produced photons with that of the quarks at time t =
2 fm/c. Photons are produced during the whole collision, and observables are thus always
spacetime averaged, weighted by the production yield. In the beginning of the collision,
the medium is dense and the energydensity is high, so many photons are produced, but
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(in our simplified initial state) the flow is zero. Later, the photons inherit some of the
flow, but their rate decreases steadily. This is the reason, why the observed photon flow
is smaller than the pure quark flow. Below pT . 0.1 GeV the photon flow is enhanced.
It will be challenging to measure such an effect, considering that recent measurements of
(direct) photon flow [105, 222] extend down to pT = 0.4 GeV (PHENIX)/pT = 1 GeV
(ALICE).
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3.3. Conclusion and outlook

We have shown how the Lorentz force in heavy-ion collisions can affect observables. To
this end, we have assumed two simple parametrizations for an external, homogeneous
magnetic field, which is produced by the fast spectator nucleons. We investigate a free
streaming, and a viscous medium (with collisions), employing the partonic transport sim-
ulation BAMPS. We use a simple boost invariant initial state, assuming a power-law in
the transverse momentum distribution, and a peripheral Monte-Carlo Glauber geometry
of the overlap zone. We have shown that the magnetic field will generate a strong elliptic
flow only at very small transverse momenta due to the Larmor movement of the charged
particles. In this very soft region, also the transverse momentum spectra are enhanced.
We show that collisions will wash out both the enhancement of the spectra and the elliptic
flow. However, the flow is still quite large, such that it could be measured, if experiments
had access to ultrasoft transverse momenta. Assuming an initial formation time of the
particles, within which the magnetic field can not act, all strong effects are deleted. The
interaction of classical fields and unformed particles is however a difficult theoretical prob-
lem and must be clarified further. We emphasize, that the present study should only give
an order-of-magnitude estimate of what can be expected from the magnetic Lorentz force
(“Hall effect”) for light quarks. Apart of the experimental challenge, there might be other
consequences. Especially final spectra of tomographic probes like photons or dileptons
will inherit information of this strongly flowing but ultrasoft region. To get an idea of this
effect we have shown that photons inherit a fraction of the elliptic flow from the quarks
at nearly the same ultralow transverse momenta.

3.3.1. Propagating fields in the QGP

The most realistic description of a relativistic electromagnetic plasma includes propagating
electromagnetic fields. Within the description of the plasma by the Boltzmann equation,
an approximate solution of the Boltzmann and Maxwell equation simultaneously is pos-
sible. This would include a realistic space dependence of the external fields, and a full
spacetime evolution of retarded fields including induction effects (similar to Ref. [203]).
Here we shall give an outlook how this could be implemented, elaborate on the necessary
algorithm and present results for fixed geometry. We assume the free quarks and gluons
in the QGP to be massless. Massless quarks will however generate infinitely collimated
fields, as one can see from Eq. (3.1). In Fig. 3.15 the absolute field strength around a
single charged particle is plotted. One can observe how much the field is collimated per-
pendicular to the velocity vector. Massless charged particles emit magnetic fields only
exactly transverse to their velocity, and electric fields only in the direction of it. For any
practical calculation we must use a small mass for the emitting particles, in order to have
a finite cone of field radiation. If the mass is small enough, it suffices to use it in the
Liénard-Wiechert Potentials, and treat the particle propagation as for massless particles.

3.3.2. Algorithm for simultaneously solving the Maxwell and Boltzmann
equation

In order to build an algorithm that is capable of propagating Liénard-Wiechert potentials,
we have to simplify the situation. First, the fields from Eq. (3.1) depend strongly on
the position of the particle and the observer (quadratic parametric dependence). We will
need to discretize space into cells. This is natural to do, as the Boltzmann equation is
also solved in discretized form (within BAMPS). For simplicity and consistency we should
use the same space discretization for the solution of the Maxwell equation as for the
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Figure 3.15.: Contour plot of the absolute field strength of the induced B-field around a
charged particle (charge e) traveling with different velocities (white arrow
indicates velocity direction). Clearly, at velocities close to the speed of light,
the field is transversely collimated.

Boltzmann equation. Also time must be discretized. Next, the γ-factors in Eq. (3.1) must
include a small mass, the dependence on this mass will be apparent in, e.g., Sec. 3.3.3. As
mentioned before, we compute the fields in the future rather than recovering the past, as
this is numerically better feasible. We propose the following algorithm for the propagating
fields:
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Algorithm 1: Propagating fields

Initialize fields ~E(~r, t), ~B(~r, t) = ~0 for all future timesteps and all cell positions.
At each timestep ti do:
for all particles j do

get massive energy Ej =
√
~pj

2 +m2
j ;

get velocity ~vj = ~pj/Ej ;
for all cells k do

get cell position ~rcell;
get distance particle-cell Rjk;
compute advanced time tA = ti +Rjk;
get index ind(tA) of timestep array;

compute contribution ∆ ~Ej(R, v),∆ ~Bj(R, v) with Eq. (3.1);

add ∆ ~Ej(R, v),∆ ~Bj(R, v) to ~E(~rcell, ind(tA)), ~B(~rcell, ind(tA))

The local induction effect should as well be evaluated from ∂t ~B, ∂t ~E. Before or after
the propagation of the fields the collision algorithm from BAMPS must be applied, that
is, calculating the collision probabilities, Eq. (3.11), colliding the particles, and sampling
of the new momenta. Next, the evolution of all particles in BAMPS will be influenced by
the fields at each timestep. At time t, all particles located in a cell with position vector
~rcell (pointing to the center of the cell) thus get the additional momentum

d~k = ∆tqi

(
~E (~rcell, ind(t)) + ~v × ~B (~rcell, ind(t))

)
(3.13)

We will leave the full implementation of the simultaneous numerical solution of the
Maxwell and Boltzmann equation and tests of those algorithms for a future project. The
propagation of the fields from the above algorithm can however be tested by using a
standard problem of electrodynamics, the magnetic field of a straight, conducting wire.

3.3.3. Testcase for dynamically propagating fields-conducting wire

In Ref. [201] it is shown that the angular component of the magnetic field around a particle
with charge q with velocity v at transverse (to the velocity) distance r and longitudinal
distance z at time t can be computed with

eBφ =
q

4π

vγr(
γ2 (vt− z)2 + r2

)3/2
. (3.14)

We now assume a wire along the z-axis of length L carrying Nch charges with fixed momen-
tum ~p = (0, 0, pz) and energy E =

√
~p2 −m2 so that its one-dimensional charge density

is
∑Nch

i=1 qi/L and velocity ~v = ~p/E. We set the observer at z = 0 and integrate Eq. (3.14)
over the longitudinal distance from −L/2 to L/2. One obtains the field strength of the
magnetic field at z = 0 and t = 0 depending on the transverse distance only,

eBφ = αEM

(
Nch∑
i=1

qi

)
1

r

2vγ√
γ2L2 + 4r2

. (3.15)

It is instructive to compare to the non-relativistic result, which can be obtained by the
Biot-Savart law,

~B(~r) =
1

4π

∫
d3~r ′~j(~r)× ~r − ~r ′

|~r − ~r ′|3
, (3.16)
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with electric current ~j = qnq~v for charge density nq. The charge density in this case can

be written as nq = δ(x)δ(y)
∑Nch

i=1 qi/L. Using the same system as above, we find

eBφ = αEM

(
Nch∑
i=1

qi

)
1

r

2v√
L2 + 4r2

, (3.17)

which is the identical to Eq. (3.15) when setting γ = 1.
As a testcase for the propagation of fields we initialize in BAMPS a straight conducter

in vertical z-direction carrying a constant electric current. The current constists of a
number nparticles of single point particles with electric charge +1e and momentum ~p in
z-direction. We impose periodic boundary conditions, that means particles moving out
of the conducter at the top are inserted again at the bottom of the “wire”. We remark
that the particles move without collisions. Around the conducter there is a vaccum. We
then apply the algorithm in Sec. 3.3.2 for the propagating fields. At this point we include
(for numerical reasons) a small “mass” only in the γ factor appearing in the computed
fields from each charge, Eq. (3.1). Numerically, it does not make a difference if particles
propagate with exact lightspeed or slightly slower due to a small mass that is why in the
simulation it is sufficient to propagate them with velocity v = 1. It does however make it
impossible numerically to compute infinitely collimated fields due to particles moving at
lightspeed.

After enough time has passed, the magnetic fields close to the conducter become constant
in time, and can be compared to the analytic formula.

In Fig. 3.16 we show the field strength in angular direction Bφ scaled by the transverse
distance r and the number of particles nparticles, resulting from BAMPS and compared to
Eq. (3.15) for 5 different values of the mass, from m = 10 GeV− 0.001 GeV. Clearly, the
numerical results match the analytics very closely, and for mr . 1 the mass dependence is
very small. The deviation of the numerical result extremely close to the wire (r . 0.03 fm)
is due to the finite cell sizes.

This shows how the correct propagation of fields can be achieved microscopically. It
will be an important step for the near future to simulate a conducting medium, including
collisions, where electric and magnetic fields propagate and influence the particles. Then,
e.g., the Lenz effect of induction can be microscopically realized. To come to a conclusion,
it will be possible with BAMPS to simulate microscopically all electromagnetic phenomena
in vaccum and matter.
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4. Modeling of heavy-ion collisions

The theoretical description of heavy-ion collisions has a long history. One of the first
theoretical studies about the dynamical description of high energy hadronic collisions,
being essentially the spark initiating most of the modern models, was done by James
Daniel Bjorken in 1982 [22]. In order to follow his arguments, let us start from a typical
heavy-ion collision, say, two gold nuclei in a collider experiment with a large center of
mass energy

√
sNN. After the passing of the nuclei, which for high

√
sNN causes only little

deceleration, a large amount of energy density is deposited at the collision point. Viewed
from the center-of-mass (COM) frame, the receding nuclei are Lorentz-contracted pancakes
which do not play any role in the following picture, but the central blob of energy density
behaves nearly as an ideal fluid. Bjorken imposed a symmetry of this system, assuming
that the fluid velocity in the beam direction (henceforth labeled longitudinal direction) is
entirely given by the distance of the fluid element to the central point, z, and the time
since the collision happened, t,

vz =
z

t
. (4.1)

Due to this property, it is useful to introduce light cone coordinates or Bjorken coordinates,

t = τ cosh(ηs), z = τ sinh(ηs), τ =
√
t2 − z2, ηs =

1

2
ln
t+ z

t− z , (4.2)

where ηs is the space-time rapidity and τ the proper time. Similarly, we introduce the
momentum rapidity y,

y =
1

2
ln
E + pz
E − pz

. (4.3)

Evidently, for massless particles in the Bjorken picture, Eq. (4.1) implies y = ηs. It
also implies that the initial condition after the passing of the nuclei, and the subsequent
evolution is the same for all η′s, which is commonly referred to as boost invariance. Boost
invariance reduces hydrodynamic equations to 2 + 1 dimensions. Central observable is the
particle number with respect to rapidity, dN/dηs, which shows a plateau structure around
midrapidity, ηs = 0. In his seminal paper [22], Bjorken neglected any transverse expansion,
and described only the longitudinal expansion of the system. In the next section, we show
that a hydrodynamical description of this system can be for simpler cases even analytical.

4.1. Hydrodynamics

Undoubtedly the most prevalent methodology to model the dynamics of heavy-ion colli-
sions lies in the solution of hydrodynamic equations, which rely on the assumption of local
thermal equilibrium. They are direct reformulations of energy and momentum conserva-
tion and local conservation of particle number,

∂µT
µν = 0, ∂µN

µ = 0. (4.4)

In the context of heavy-ion physics, the hydrodynamic concept was initiated by the seminal
papers, Refs. [223,224] and later refined in, e.g., Ref. [225].

69
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For the purpose of decomposing the energy-momentum tensor Tµν and particle current
Nµ, one defines, at first arbitrary, a time-like four vector uµ, which is normalized to unity,

uµuµ = 1. (4.5)

Naturally, one can define a projection operator orthogonal to uµ, ∆µνuν = 0, ∆µν =
gµν − uµuν . It is then straightforward to decompose,

Nµ = nuµ + νµ

Tµν = εuµuν − (p+ Π)∆µν +Wµuν +W νuµ + πµν , (4.6)

where one can later identify the local rest frame (LRF) energy density ε, isotropic pressure
p, bulk viscous pressure Π, energy flow Wµ as well as the shear stress tensor πµν . The
LRF particle density is n and the diffusion current νµ. The vector uµ, which will be called
four-velocity from now on, must be specified, where two choices are common: One can
choose it to be either parallel to the particle number current Nµ, or to the energy flow
uνT

µν . The first choice, called Eckart frame or Eckart velocity, reads,

uµ =
Nµ√
NµNµ

. (4.7)

By definition, the diffusion current νµ vanishes, and the heat flow qµ = Wµ− (ε+ p)/nνµ

simplifies, qµ = Wµ. This choice was, e.g., used in previous studies to extract the heat
conductivity coefficient [226]. The second choice is the so-called Landau frame,

uµ =
Tµνuν√

uαTαβT
γ
β uγ

, (4.8)

in which frame there is no flow of energy, Wµ = 0, and heat flow is proportional to
particle diffusion flow νµ. The Landau velocity is the four-velocity of the energy flow,
whereas the Eckart velocity is the four-velocity of charge (or particle) flow. The shear
viscosity coefficient η is defined in lowest order approximation (Navier-Stokes) by

πµν = 2η (5µuν −5νuµ) . (4.9)

So far, the hydrodynamic equations Eq. (4.4) have 14 unknowns for 5 linear indepen-
dent equations. They must be supplemented with an underlying theory, which in almost
all applications in high energy physics is kinetic theory, where the starting point is the
Boltzmann equation,

pµ∂µf(~x, ~p, t) = C[f ]. (4.10)

Here, C[f ] denotes schematically the collision operator and f(~x, ~p, t) the single particle
distribution function. C[f ] describes locally a rate of instantaneous momentum change of
the particles and must be modeled in a way to represent the local, microscopic interactions
of the system one wants to describe. In the case of QCD below or above the quark-hadron
phase transition, the Boltzmann equation is often used to describe the medium effectively
with an appropriate set of scattering cross sections in C[f ].

In local thermal equilibrium, the solution of the Boltzmann equation is the equilibrium
distribution function,

feq(x, p) = g

[
exp

(
pµu

µ(x)− µ(x)

T (x)

)
± 1

]−1

, (4.11)
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where g is the degeneracy of the particle species and µ the chemical potential. Temper-
ature, velocity and chemical potential are in general dependent on the location. From
kinetic theory, the energy momentum tensor and particle current are given by

Tµν(x) =

∫
d3~p

(2π)3

1

2E
pµpνf(x, p)

Nµ(x) =

∫
d3~p

(2π)3

1

2E
pµf(x, p), (4.12)

such that local charge density, energy density and pressure are given by

n = uµN
µ, ε = uµuνT

µν , p = −1

3
∆µνT

µν −Π. (4.13)

A strong assumption, that of the ideal fluid, consists in neglecting all dissipative currents,
νµ = Wµ = πµν = 0. This forces strict local equilibrium, where the local scale is defined
to be smaller than space-time gradients of of T, ε and n [130]. Together with an equation
of state p = p(ε, n), the 6 unknowns ε, p, n, uµ are solved uniquely by 6 equations.

As an example, consider the Bjorken picture of only longitudinal expansion. The equa-
tions to solve reduce to

∂τ ε = −ε+ p

τ
∂ηp = 0

∂τn = −n
τ
, (4.14)

as well as the equation of state. For the ideal equation of state, ε = 3p, the hydrodynamic
evolution is analytic,

T (τ) = T0

(τ0

τ

)1/3
, ε(τ) = ε0

(τ0

τ

)4/3
, n(τ) = n0τ0/τ, (4.15)

where τ0 is the initial time at which the temperature is T0, charge density n0 and energy
density ε0. We see that these quantities are independent of rapidity, consistent with the
Bjorken picture.

If one assumes transverse hydrodynamic expansion, the equations are considerably more
complicate and require a numerical solver for coupled differential equations. Introducing
the transverse coordinate ~xT = (x, y), the energy flow velocity ṽi = T τi/T ττ , the transport
velocity v̄i = vi cosh(η) and the scaled quantities p̃ = τp, Ñµ = τNµ and T̃µν = τTµν , the
hydrodynamic equations can be written as [130],

∂τ T̃
µν + ∂x

(
ṽxT̃

ττ
)

+ ∂y

(
ṽyT̃

ττ
)

= −p

∂τ T̃
τx + ∂x

(
v̄xT̃

τx
)

+ ∂y

(
v̄yT̃

τx
)

= −∂xp

∂τ T̃
τy + ∂x

(
v̄xT̃

τy
)

+ ∂y

(
v̄yT̃

τy
)

= −∂yp

∂τ Ñ
τ + ∂x

(
v̄xÑ

τ
)

+ ∂y

(
v̄yÑ

τ
)

= 0. (4.16)

The relaxation of the ideal assumption leads to dissipative hydrodynamics. The equa-
tions are again more complicated, however nowadays widely used and common practice.
Typically, the shear viscosity η/s ∼ 0.08− 0.3 [87,135,218] is of prime interest, and other
transport coefficients are neglected (see also Chap. 2. Among the most successful and
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important hydrodynamic calculations are, i.a., Music [87,227,228], the Hydro framework
from Refs. [60, 229] and Hirano’s Hydro [230] (selected Refs. only).

The transport coefficient of bulk viscosity has gained increasing interest [136–143]. The
discrepancy between models and experimental data could be reduced by including a tem-
perature dependent bulk viscosity, which was estimated to be around ζ/s ≈ 0.3 or larger
at the phase transition temperature Tc [143].

4.2. Transport theory

The underlying assumption of any hydrodynamic simulation is that of local thermal equi-
librium. Our goal is however the description of all stages of a heavy-ion collision, which
does in general not fulfill this requirement. Especially the early to intermediate stage
(τ ∼ 0.2 − 1 fm/c for central Au + Au collisions) may not be thermal [40, 214, 231–236].
In the field of high energy physics, transport theory usually sets the focus on solving the
Boltzmann equation. The formulation of the theory in Ref. [172] can be seen as a baseline,
and most modern approaches follow these principles. The Boltzmann equation, Eq. (4.10)
describes the spacetime evolution of the single particle distribution function f(x, p) within
a multiparticle system. It is valid under the assumption of the Boltzmann Stoßzahlansatz.
It consists of two assumptions about the scattering processes in the gas:

1. Incoming particle momenta for each individual scattering process are uncorrelated,
as well as the momenta of the outgoing particles. This is known as “Molecular
Chaos”.

2. The mean free path of particles, i.e. the mean distance between the particles, is
much larger than the typical distance where interaction potentials are relevant. In
other words, the time it takes for the collision to take place is much shorter than the
mean free time between collisions. This is the dilute gas assumption.

These conditions are in practice often challenged, and often pushed to their limits of
applicability.

4.3. The partonic cascade Boltzmann Approach to Multiparton
Scatterings

The main numerical framework of this thesis is called Boltzmann approach to multi-
Parton Scatterings (BAMPS), which simulates the partonic evolution of heavy-ion colli-
sions [40, 214]. It is a full (3 + 1)-dimensional transport approach which solves the rela-
tivistic Boltzmann equation by Monte Carlo techniques for on-shell quarks and gluons by
using perturbative QCD (pQCD) scattering matrix elements including 2 ↔ 2 and 2 ↔ 3
(radiative) processes.

With the phase-space distribution function f i(x, k) ≡ f ik for particle species i, the BE
reads

kµ
∂

∂xµ
f ik = C2→2[f ] + C2↔3[f ], (4.17)

where C2→2[f ] and C2↔3[f ] are the elastic and inelastic collision terms. BAMPS uses
the test particle method: The physical particle number is increased by an integer factor
Ntest; however, all cross sections σ are simultaneously scaled down, σ → σ/Ntest. This
procedure increases the statistics but does not affect the physical results. Throughout this
work, we include three flavors of light quarks, antiquarks, and gluons. All particles are on
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shell and massless (corresponding to an ideal equation of state) and carry physical electric
charges and degeneracies. We neglect heavy quarks (see Refs. [209,219,237]) because their
presence is subdominant for photon observables. Space is discretized in small cells with
volume ∆V and particles scatter and propagate within time steps ∆t. Within each cell,
the probability for binary scattering is

P22 =
σtot,22(s)

Ntest
vrel

∆t

∆V
, (4.18)

where σtot,22(s) is the (in general Mandelstam-s-dependent) binary total cross section. For
2→ 3 particle scattering the probability is equivalently

P23 =
σtot,23(s)

Ntest
vrel

∆t

∆V
. (4.19)

The inelastic 3 → 2 backreaction has a similar probability expression1. For massless
particles, the relative velocity of the two incoming particle with four-momenta p1,2 =
(E1,2, ~p1,2) is vrel = s/(2E1E2). BAMPS allows binary and inelastic processes, which
in all cases are based on perturbative QCD cross sections with effective, infrared safe
propagators.

BAMPS features a running coupling αs(Q
2), which is evaluated at the momentum

transfer Q2 of the respective scattering process [219]. Among the new features developed
in this thesis, are dilepton and real photon production.

4.3.1. Elastic cross sections

The total isotropic cross section for binary collisions of two onshell partons is given by

σ2↔2 =
1

2s

1

ν

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4
|M2↔2|2 (2π)4δ(p1 + p2 − p3 − p4), (4.20)

with symmetry factor ν = 2 (1) for identical (different) final state particles. It can
be transformed in terms of the differential cross section in Mandelstam t, dσ2↔2/dt =
|M2↔2(s, t, u)|2 /(16πs2),

σ2↔2(s) =

0∫
−s

|M2↔2(s, t, u)|2
16πs2

dt (4.21)

For the binary scattering of quarks and gluons we use all possible tree-level pQCD matrix
elements, which obtain hard-thermal loop effective propagators. This amounts in dressing
gluon (quark) propagators with a Debye (thermal) mass mD,g(q) ∼ gT (for binary photon
production, see Sec. 6.2.1). There are 8 different cross sections possible, gg ↔ gg, qq̄ → gg,
gg → qq̄,q(q̄)g ↔ q(q̄)g, q(q̄)q(q̄) ↔ q(q̄)q(q̄), qq̄ ↔ qq̄, qq′ ↔ qq′, qq̄′ ↔ qq̄′. The
differential cross sections determine the angular distribution of the outgoing momenta,
whereas the total cross section σ2↔2(s), evaluated at the squared center of mass energy s,
influences if the process happens or not along Eq. (4.18).

1We do not include 3 → 2 processes involving photons, because these are subdominant processes. For
gluon radiation it is implemented.
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4.3.2. Radiative cross sections

For gluon radiation in 2 → 3 inelastic collisions we use the Gunion-Bertsch approxima-
tion for the matrix elements [238], which was further improved in Ref. [217], whereas for
radiated photons we use the full QCD+QED matrix element, see Appendix B.

The bremsstrahlung process q + q → q + q + γ is an important ingredient to the LO
photon rate (more details in Sec. 6.3), and processes radiating gluons x + y → x + y + g
influence the QGP background dynamics considerably, thus in the following we give details
regarding the evaluation of the total cross section.

Radiative processes (particles 1 + 2 → 3 + 4 + 5) are described by the momentum
labels p1, p2, p3, p4 and p5 ≡ k. The collision axis be the z-axis. All considered 2 → 3
processes have an internal gluon propagator with momentum q. We define the momentum
components transverse to the z-axis by kT and qT , the longitudinal k component be kz.
The rapidity of the radiated particle in the center of momentum (CoM) frame is defined
as y = 1/2 ln [(ω + kz)/(ω − kz)], where ω = k⊥ cosh y is the CoM energy of the radiated
particle. The energy of the outgoing particle 3 is E3 = q⊥ cosh y3, with its rapidity being
y3. The angle between ~q⊥ and ~k⊥ is φ. The total cross section for radiative processes is
defined as

σ2→3 =
1

2νs

∫
d3p3

(2π)32E3

d3p4

(2π)32E4

d3k

(2π)32Ek

× (2π)4δ(4) (p1 + p2 − (p3 + p4 + k)) |M2→3|2

=
1

256π4

1

ν

1

s

∫ s/4

0
dq2
⊥

∫ s/4

k2
⊥,min

dk2
T

∫ ymax

ymin

dy

∫ π

0
dφ

× |M2→3|2 J [s, q⊥, k⊥, φ, y] , (4.22)

with a symmetry factor ν = n! for n identical final-state particles, the radiative matrix
element |M2→3|2 and the Jacobian

J [s, q⊥, k⊥, φ, y] =
∑{(

∂F

∂y3

)−1
}
, (4.23)

where the sum is over the roots of

F = (p1 + p2 − p3 − k)2

= s− 2
√
s (q⊥ cosh y3 + k⊥ cosh y) + 2q⊥k⊥ cosφ

+ 2q⊥k⊥ (cosh y3 cosh y − sinh y3 sinh y) . (4.24)

The lower integration limit k2
⊥,min > 0 will be explained in Sec. 6.4 in the context of

radiative photon production. For gluons, a similar effective description of the LPM effect
is used, supplying the Gunion-Bertsch matrix element with a step function Θ(λ−XLPMτf ),
where τf is the formation time in the CoM frame, and λ the average mean free path.

The limits in the rapidity of the outgoing particle ymax, ymin are functions of k2
⊥,min, k⊥

and s. For given coordinates s, k⊥, q⊥, y, φ we can unambiguously obtain four-momenta in
the CoM frame p1, p2, p3, p4, k to get the value of the matrix element at this point without
any approximation. In BAMPS, for quark and gluon bremsstrahlung the Gunion-Bertsch
matrix element is used, which can be given in terms of k⊥, q⊥, φ, s, y. The phenomenolog-
ical factor XLPM was set to 0.3 by comparison to experiment [218]. The bremsstrahlung
matrix element for photons has no approximation and will be discussed in Sec. 6.4. More
details regarding these kinematics can be found in Ref. [217].
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4.3.3. Selected results from BAMPS

BAMPS had been developed to investigate the thermalization of gluons within a per-
turbative, kinetic framework. It was shown, e.g., that gluons thermalize fast and in the
subsequent evolution local thermal equilibrium is maintained. In BAMPS, not only ki-
netic, but also chemical equilibration sets in, on timescales about three times longer than
kinetic equilibration [40,214]. This picture was applied to color-glass condensate inspired
initial conditions, where the thermalization timescale was extracted and it was found that
soft and hard gluons thermalize around the same time [239]. The shear viscosity to en-
tropy ratio η/s for the elastic and inelastic pQCD scattering processes was investigated in
several studies and different methods. Using only gluons, and an approximative relation
depending on the transport scattering rates was carried out in Ref. [240]. Using a second
order2 expression for the shear viscosity, it could be extracted from (1+1) dimensional
boost invariant setup from BAMPS, including inelastic processes [241]. The shear vis-
cosity could be extracted from BAMPS in two alternative ways using the Green-Kubo
method in thermal equilibrium [64] and a gradient method [242].

The relativistic Riemann problem in viscous gluon matter was formulated within BAMPS
such that the transition from ideal to viscous shock waves was investigated [243]. This
could clarify the regime of validity of second-order fluid dynamics in relativistic shock phe-
nomena [244]. BAMPS was widely acknowledged as an exact numerical solver for the rela-
tivistic Boltzmann equation. A novel formulation of relativistic dissipative fluid-dynamical
theory (resummed transient relativistic fluid dynamics) up to second order in Knudsen
number could be shown to handle strong gradients by comparing to BAMPS [245]. In a
recent study, the applicability of dissipative fluid dynamics for small systems was explored
by comparing to exact solutions in BAMPS [246]. BAMPS could be supplemented to
handle Bose-Einstein distribution functions with condensation [236,247].

Concerning phenomenology, BAMPS explored elliptic flow of gluons at RHIC [65,240].
BAMPS could successfully describe the nuclear modification factor RAA for RHIC and

LHC for charged hadrons (using parton fragmentation functions), along with a significant
builtup of elliptic flow [218]. With the same parameters, the shear-viscosity to entropy
ratio could be shown to be in agreement with hydrodynamic model fits to experiment. In
this reference, BAMPS could as a first model explain integrated elliptic flow and nuclear
modification factor within the same framework.

The extraction of electromagnetic probes, mainly photons [4], is subject of this thesis in
chapter 9. The medium response due to external magnetic fields was studied in Ref. [3],
and is also part of this thesis, see chapter 3.

BAMPS has been used to study hard probes such as jets and/or heavy quarks. Jet
quenching and energy loss of highly relativistic particles was studied, e.g., in Refs. [248,
249]. The momentum imbalance of reconstructed jets was studied in a similar setup [250].

Heavy quark production during the dynamical evolution of heavy-ion collisions was
examined in Ref. [251]. The elliptic flow and energyloss of heavy quarks with binary
collisions was studied in [209], and an updated study in Ref. [219], where the need for ra-
diative processes was realized. In Ref. [220] radiative heavy quark processes were presented
and confronted to experiment. Also the momentum imbalance of D mesons at the LHC
was studied within BAMPS [252]. Furthermore, the different energy loss mechanisms of
inclusive and b-tagged reconstructed jets was investigated more differentially in Ref. [253].

Apart from the shear viscosity, other transport coefficients were studied within BAMPS.
The heat flow of a gluonic gas could be compared to estimates from Chapman-Enskog
theory [226]. The electric conductivity of a quark-gluon system with elastic and inelastic

2Including terms of second order in a momentum expansion of the deviation of the equilibrium.
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processes including a running coupling was extracted in with two different methods in
Ref. [150].

Recently, the initial state in BAMPS was extended to gluon distributions obtained from
the color glass condensate in order to describe elliptic flow in small systems [5]. This is
part of this thesis, and presented in chapter 11.



5. Theoretical foundations

In this chapter we introduce the fundamental theoretical principles of finite temperature
field theory that are needed in the following chapter on photon prooduction. Having this
explicit application in mind, we focus the discussion stronlgy on a few topics: definitions
of the partition sum and propagators, definition and examples of the self energy, thermal
emission rate of photons and the zero temperature optical theorem and Cutkosky cut-
ting rules. This chapter thus summarizes existing formalisms in literature, putting them
in context and relating them to the production of photons and dileptons in heavy-ion
collisions.

5.1. Basic definitions

We begin by recapitulating the fundamental definitions of finite temperature quantum
field theory. This section is closely oriented on Ref. [254,255], and we restrict ourselves to
the imaginary time formalism.

Central object in quantum statistics and thermodynamics is the partition sum Z, which
is defined as the sum of weighted energy states of the theory. It gives direct access to
thermodynamic quantities, e.g., the isotropic pressure in thermal equilibrium is given by
p = (V β)−1 lnZ(β, V, µ), where β = T−1 is the inverse temperature, V the volume and µ
the chemical potential of the conserved particle species under consideration.

The partition sum can be expressed as Z(β) = Tr
(
e−βĤ

)
, where Ĥ is the Hamilton

operator of the theory (neglect chemical potentials). Then the thermal average of an
operator Ô in finite temperature field theory is〈

Ô
〉

=
1

Z(β)
Tr
(
Ôe−βĤ

)
. (5.1)

As customary in finite temperature field theory, we use imaginary times doing a Wick
rotation from the ordinary time t,

t→ −iτ. (5.2)

The partition sum Z of a quantum many body system at finite temperature can be written
in path integral form,

Z(β) =

∫
φ(0)=φ(β)

Dφ(τ)e−SE(β), (5.3)

where SE(β) is the unitless Euklidean action with periodic boundary conditions,

SE(β) =

β∫
0

dτ

∫
d3~x LE, (5.4)

and LE the Euklidean Lagrangian. In Eq. (5.3) one sums all paths of the fields φ(τ) with
the boundary condition φ(0) = φ(β). From now on, this will be implied with the symbol∫
Dφ.

77
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5.1.1. Propagators

Propagators constitute one of the most fundamental objects in quantum field theory. They
are Green’s functions, describing the probability of propagation of particles. More precise,
the propagator ∆(X − Y ) denotes the probability to find a particle located at spacetime
point X at spacetime point Y .

Using the position operators φ̂ = eiĤtφ̂e−iĤt in the Heisenberg picture, the propagator
can be given in terms of a time ordered product of the Heisenberg position operators,
similar to zero temperature quantum field theory,

∆(τ) =
〈
T
(
φ̂(−iτ)φ̂(0)

)〉
, (5.5)

where the time ordering operator T is defined as T (a(τ1)b(τ2)) = a(τ1)b(τ2)Θ(τ1 − τ2) +
b(τ2)a(τ1)Θ(τ2−τ1). Due to the periodicity of the action in Eq. (5.4), Eq. (5.5) is periodic
in β, ∆(τ − β) = ∆(τ). As an example, the harmonic oscillator (HO) with frequency ω
has the propagator ∆HO(τ) = [(1 + n(ω)) exp(−ωτ) + n(ω) exp(ωτ)]/(2ω), where n(ω) is
the Bose-Einstein distribution. We observe that the propagator has the unit of inverse
energy. The Fourier transform of Eq. (5.5) is

∆(iωn) =

β∫
0

dτeiωnτ∆(τ), ωn = 2πn/β, (5.6)

which now has units of energy−2. It is often useful to define the generating functional

Z(β; j) =

∫
Dφ(τ) exp

[
−SE(β) +

∫ β

0
j(τ)φ(τ)dτ

]
. (5.7)

Functional differentiation gives

δ2Z(β; j)

δj(τ1)δj(τ2)

∣∣∣
j=0

=

∫
Dφ(τ)φ(τ1)φ(τ2)e−SE(β). (5.8)

It can be shown, that this is exactly the propagator,

1

Z(β)

δ2Z(β; j)

δj(τ1)δj(τ2)

∣∣∣
j=0

= 〈T (q(−iτ1)q(−iτ2))〉 . (5.9)

5.1.2. Scalar field theory

For any further consideration, we have to specify the action S, corresponding to a specified
Lagrangian L. In order to explain basic principles without bloating the required formalism,
we confine ourselves to neutral scalar field theory (without conserved charges). A real
scalar field φ(x) (unit energy) of particles with mass m and interaction potential V (φ) has
the Lagrangian L = (∂µφ)(∂µφ)/2−m2φ2/2− V (φ).

Fixing the interaction term to zero, V (φ) ≡ 0, one can proceed with the free (F) theory
and, e.g., obtain the free imaginary time propagator,

∆F (iωn, k) =
1

ω2
n + k2 +m2

, (5.10)

which can be Fourier transformed to obtain a dependence on imaginary time,

∆F (τ, k) =
1

2ωk
[(1 + n(ω)) exp(−ωτ) + n(ω) exp(ωτ)], ωk ≡ k2 +m2. (5.11)
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Fourier transformation of k would lead to the propagator in 4-position X, ∆(x)F , which
now has units of energy squared. A non-zero interaction term, like V (φ) = λφ4/4! with
unitless coupling λ, will induce a different propagator. It can be defined like in Eq. (5.8),

∆(X − Y ) =
1

Z(β)

∫
Dφφ(X)φ(Y )e−SE(β). (5.12)

The propagator in Eq. (5.12) is called a full propagator, because it contains all possible
processes (within the theory) in the two-point amplitude of the particle. The most easy
way how to deal with the propagator in Eq. (5.12) is the perturbative expansion of the
exponential, under the condition that one has a small quantity in the action, e.g., the
dimensionless coupling λ. Doing so, up to first order in λ, yields

∆(X − Y ) = ∆F (X − Y )− λ

2

β∫
0

d4Z∆F (X − Z)∆(Z = 0)∆(Z − Y ) +O(λ2). (5.13)

We allow now real values of time t, and define a time-ordered propagator

D(t) ≡
〈
T
(
φ̂(t)φ̂(0)

)〉
. (5.14)

Immediately one can also define its two terms,

D<(X) ≡
〈
φ̂(0)φ̂(X)

〉
D>(X) ≡

〈
φ̂(X)φ̂(0)

〉
. (5.15)

5.1.3. Spectral density

For later purposes, we introduce the spectral density, or spectral function ρ,

ρ(k0) = D>(k0)−D<(k0). (5.16)

The spectral function (dimension energy−1) is a real function, odd in its argument.
The Matsubara propagator in Eq. (5.6) is complex, but its domain of definition is the

set of discrete Matsubara frequencies on the imaginary axis. One can analytically continue
the domain uniquely, such that ∆(z), z ∈ C where z has the dimension of energy. The
requirement is, that |∆(z)| → 0 for |z| → ∞ and the analyticity of ∆(z) in the complex z
plane without the real axis. Then, using Eq. (5.16), we can write

∆(iωn) = −
∞∫
−∞

dk0

2π

ρ(k0)

iωn − k0
→ ∆(z) = −

∞∫
−∞

dk0

2π

ρ(k0)

z − k0
. (5.17)

We now introduce the retarded propagator, which is the most relevant function for linear
response theory. It can be defined in various ways [254, 255]. The retarded (advanced)
propagator Dret(Dadv) with space-time dependence is

Dret(X) =
〈
θ(x0)

[
φ̂(X)φ̂(0)

]〉
,

Dadv(X) = −
〈
θ(−x0)

[
φ̂(X)φ̂(0)

]〉
. (5.18)

The connection of the retarded propagator to the finite temperature imaginary time prop-
agator in Eq. (5.6) is most easily given in momentum space by the analytic continuation
Dret(k

0) = −i∆(k0 + iη), where η is a small positive number.
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5.1.4. Self energy

The full propagator ∆(X − Y ) to first order in λ can be Fourier transformed

∆(iωn, k) = ∆F(iωn, k)− λ

2
∆F(iωn, k)

(
T
∑
m

∫
d3k

(2π)3
∆F(iωm, k)

)
∆F(iωn, k) (5.19)

The self-energy Π is defined via

∆−1(iωn, k) = ∆−1
F (iωn, k) + Π(iωn, k) (5.20)

or
∆(iωn, k)

∆F(iωn, k)
= (1 + Π(iωn, k)∆F(iωn, k))−1 (5.21)

To first order in λ, we have from Eq. (5.19)

∆(iωn, k)

∆(iωn, k)F
= 1−

(
λT

2

∑
m

∫
d3k

(2π)3
∆F(iωm, k)

)
∆F(iωn, k)

=
1

1 +

(
λT
2

∑
m

∫
d3k

(2π)3 ∆F(iωm, k)

)
∆F(iωn, k)

+O(λ2) (5.22)

By comparing with Eq. (5.21) we conclude the explicit expression for the self-energy to
first order in λ,

Π(iωn, k) =
λT

2

∑
m

∫
d3k

(2π)3
∆F(iωm, k) (5.23)

Doing the integral, we find the self energy in scalar field theory to first order in λ, Π =
λT 2/24. We remark that the Schwinger-Dyson equation ∆ = ∆F −∆FΠ∆ is identical to
Eq. (5.20).

The retarded self energy is accessible by analytic continuation from the imaginary time
self energy, or can be derived from the retarded Dyson-Schwinger equation,

∆R = ∆R
F −∆R

FΠR∆R. (5.24)

The self energy describes particle interactions within the propagation of a particle be-
tween two space-time points. Without interactions, the self energy vanishes. One can
construct Feynman rules for the self energy, and subsequently impose it any any given
order in perturbation theory by diagrammatic methods [255]. In simple cases, the self
energy acts effectively as a thermal mass, meff ∼

√
Π. For applications in thermal field

theory, it became very useful to use an effective field theory, where self energy insertions
in propagators are resummed. This is known as hard thermal loop (HTL) effective the-
ory, proposed by Braaten and Pisarksi [256–258]. In later chapters, we will make use of
effective propagators, known under the concept of Debye screening, which dates back to
the HTL approximation.

5.2. Thermal emission rate of photons

In thermal equilibrium at temperature T the emission rate of photons with four momentum
Kµ = (Ek,~k) is proportional to the imaginary part of the trace of the retarded photon
self energy Im ΠR,µ

µ [255,259],

Ek
dR

d~k
=
−2

(2π)3
Im ΠR,µ

µ

1

eEk/T − 1
. (5.25)
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This is a valid description to all orders in the strong coupling g (for possible strongly
interacting contributions in ImΠR,µ

µ ); however, only to order e2 for electromagnetic in-
teractions. This carries the assumption, that the medium is so dilute, that the photon
does not scatter anymore once produced. More precise, the formula is valid for systems
of spatial extends smaller than the mean free path of the photon (which is the case in any
application of interest within this thesis).

5.3. Optical theorem and cutting rules

The optical theorem relates the imaginary part of a Feynman diagram to a sum of products
of matrix elements of physical sub-processes. This can be refined to a set of so-called
cutting rules, which give a prescription how to obtain sub-diagrams from a Feynman
diagram from which its imaginary part is easier to compute. In the later chapters of
this work, we will need the evaluation of the imaginary part of a self-energy diagram
for a different reason: The sub-diagrams obtained by “cutting” a self-energy diagram
are physical scattering processes which are suitable for dynamical modeling in transport
approaches, whereas the imaginary part of the self energy itself would only give a rate by
Eq. (5.25).

The optical theorem follows directly from the unitarity of the S-matrix. The S-matrix,
as defined in, e.g., Ref. [7], relates asymptotically incoming and outgoing many particle
states

〈p1p2 · · · |k1 k2 · · · 〉outgoing ingoing ≡ 〈p1p2 · · · |S| k1k2 · · · 〉 . (5.26)

The following discussion follows mainly Refs. [7,260]. There is the probability that even in
interacting theories there is no scattering among the incoming particles, such that S = 1.
One thus conveniently separates the interesting from the non-interacting part,

S = 1 + iT. (5.27)

The usual matrix element M is defined by

〈p1p2 · · · |iT | k1k2 · · · 〉 = (2π)4δ(4)
(∑

ki −
∑

pf

)
iM(k1, k2, . . .→ p1, p2, . . .). (5.28)

From the unitarity of the S-matrix, SS† = 1, it follows,

1 = S†S = (1− iT †)(1 + iT ) = 1− iT † + iT + T †T

↔ i(T † − T ) = T †T (5.29)

We sandwich the right hand side of this equation by initial
∣∣i〉 and final

〈
f
∣∣ states. We

can now insert a complete set of orthogonal states
∣∣n〉〈n∣∣ =

∣∣ {pi} 〉〈 {pi} ∣∣,〈
f
∣∣T †T ∣∣i〉 =

∑
n

n∏
i=1

∫
d3pi
(2π)3

1

2Ei

〈
f
∣∣T †∣∣n〉〈n∣∣T ∣∣i〉. (5.30)

We specialize now to the case, where the initial and final states are the same
∣∣i〉 =

∣∣f〉,
which is the case for self energy diagrams which shall be important in this work. The
ingoing and outgoing momentum be k, the matrix element of the process M(k → k).
Using Eq. (5.28) we can write Eq. (5.29) in terms of matrix elements,

−i [M(k → k)−M?(k → k)] =
∑
n

n∏
i=1

∫
d3pi
(2π)3

1

2Ei
M?(k → n)M(k → n)(2π)4δ(4)(A)

↔ 2ImM(k → k) =
∑
n

n∏
i=1

∫
d3pi
(2π)3

1

2Ei
δ(4)(A) |M(k → n)|2 , (5.31)
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where the function A within the delta function depends on k and all momenta in the
outgoing state of the matrix elements,

A ≡ k −
n∑
j=1

pj . (5.32)

Equation (5.31) is the Optical Theorem. This equation says, that the imaginary part of
a self energy diagram is given by the sum of all its sub-scattering diagrams, each of which
contains on-shell incoming and outgoing states. The right hand side can be reformulated
to a sum of total cross sections for scattering processes from the initial particles to all
possible final states of these particles.

In his original work [261], Cutkosky has invented a set of cutting rules, which can be
applied to the original scattering amplitude to obtain the sub-processes of Eq. (5.31).
Cutting essentially means putting propagators on-shell, but we shall be more detailed in
the following. The optical theorem was proven to all orders in perturbation theory by
using the cutting rules.

Zero temperature and density cutting rules

In the following we recapitulate the zero temperature and density derivation of the cutting
scheme by t’ Hooft and Veltman in Ref. [262]. For simplicity we work with a simple scalar
field theory (see Sec. 5.1.2). Consider a Feynman diagram with n vertices, from which we
shall attempt to find the imaginary part. In the simplest case, this can be a one-loop self
energy. We first ignore external lines, and write the corresponding amplitude in coordinate
space as F (x1, x2, . . . , xn). We will first introduce a subset of diagrams obtained from F ,
and then sketch the derivation of the largest time equation. Then we attach external
lines and transform F to be a physical amplitude. Subsequently we find rules for the
non-vanishing set of sub-diagrams, obtained by graphically cutting the diagram. It then
becomes apparent, that the imaginary part of the amplitude is given by the sum of the
cut diagrams.

We begin with the Källén-Lehmann representation of the propagator from space time
xi to xj ,

∆±ij(xi − xj) =

∫
d4p

(2π)3
eip·(xi−xj)Θ(±p0)ρ(p2), (5.33)

where ρ(p2) is the a positive spectral density and we define the Feynman propagator for
positive and negative energies,

∆ij(x) = Θ(x0)∆+
ij(x) + Θ(−x0)∆−ij(x), (5.34)

with x ≡ xi − xj . Note that (∆±)? = ∆∓, and ∆±ij = ∆∓ji, and

∆?
ij = Θ(x0

i − x0
j )∆

−
ij + Θ(x0

j − x0
i )∆

+
ij . (5.35)

Each vertex obtains a coupling constant ig. We now draw all possible copies of the
original Feynman diagram F (x1, x2, . . . , xn) where we circle one or more vertices in all
possible combinations. We define new functions F for each of these circled diagrams by
the following rules,

1. Use the original amplitude as a starting point

2. Replace the propagator ∆ij by ∆+
ij if vertex xi is circled but not vertex xj
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3. Replace the propagator ∆ij by ∆−ij if vertex xj is circled but not vertex xi

4. Replace the propagator ∆ij by ∆?
ij if vertices xi and xj are circled

5. Insert a factor (−1) for each circled vertex.

If vertex xi is not circled, and the time component of xi is larger than any other time
component of any other vertex, the value of the diagram is minus the value of the same
diagram with the vertex xi circled. This is called largest time equation, and can be stated
as follows,

F (x1, . . . , xi, . . . , xj , . . . , xn) = −F (x1, . . . , xi , . . . , xj , . . . , xn). (5.36)

This is easy to proof from the definitions Eq. (5.34) and Eq. (5.35), considering a vertex

combination · · ·xk · · ·xi · · · xj · · · and its counterpart · · ·xk · · · xi · · · xj · · · . What do

these rules mean? Clearly, circling all vertices is nothing else than complex conjugating
the diagram,

F ( x1 , x2 , . . . , xn ) = F ?(x1, x2, . . . , xn). (5.37)

Having a circled and an uncircled vertex controls the flow of energy inside the diagram; the
energy flow points always from the uncircled to the circled vertex, which is a consequence
from Eq. (5.33). Immediately from Eq. (5.36) follows∑

all possible circles

F (. . . , xi , . . .) = 0. (5.38)

Introducing now external lines to the diagrams, one must multiply the corresponding phase
factor (e.g., external momentum k attaching to vertex x needs exp(ik · x)), and integrate
over all internal vertices. The Fourier transform of the propagators is proportional to Θ-
functions of the energy, ∆±(k) ∼ Θ(±k0), thus energy must flow into circled vertices. Due
to energy conservation, some combinations of circlings in Eq. (5.38) vanishes. Working
out the possible cases one can proof that only those diagrams survive which have two
connected regions, each one connects to at least one external line: one circled region
and one uncircled region. Thus one must be able to “cut” through the diagram with a
continuous cut, thus separating the diagram in two parts, each containing at least one
external line. What follows is the Cutkosky cutting rule, where F̃ denotes the Fourier
transform of F ,

F̃ (no circles) + F̃ (all circled) = −
∑

all possible cuts

F̃ (k1, . . . , kn). (5.39)

The diagrams F , multiplied by the sources and integrated over space are a contribution of
the S-matrix, Eq. (5.27). Multiplication of a factor −i yields the T-matrix and Eq. (5.39)
is of the form of Eq. (5.29) and as such equivalent to the optical theorem1

Note that for fermions, special care has to be taken about the routing of the charge and
the momenta. To be more precise to what has been said above, positive energy flows from
uncircled to circled vertices, but negative energy flows from circled to uncircled vertices.
One should therefore name all positve momenta in the original diagram, together with
the flow of charge. Next, the cuts are applied. For each cut diagram, working on one side
of the cut, one specifies if the cut propagator (which now represents an external line) is
ingoing or outgoing. Hereby the momentum label must be kept [263]. Simple Feynman

1More details can be found in Ref. [262].
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rules for cut diagrams can be found, e.g., in Ref. [262]. The resulting contribution of each
cut diagram in the sum of Eq. (5.39) is an integral over a product of the matrix element of
the diagram at the left hand side of the cut times the complex conjugated of the right hand
side. Specifically, axis-symmetric cuts generate squared matrix elements of the process left
(or right) of the cut.

Specific examples of cut diagrams and their corresponding matrix elements can be found
in Ref. [264]. Albeit for QED with a massive vector particle, the principles are universal.
Ref. [264] focuses on finite temperature and density cutting rules, the worked out matrix
elements of self energy cuts are valid at zero temperature, too. In Ref. [263] self energy
diagrams for a scalar field theory are evaluated up to four-loop order using cutting rules.
In Ref. [265], important examples for scattering amplitudes from, e.g., QED self energies
are given, which are very similar to what we will need in Chap. 6.

Finite temperature cutting rules

One of the first worked out examples of an imaginary part of a self energy can be found
in Ref. [266]. This was still done without a cutting scheme, however, Kobes and Semenoff
generalized the Cutkosky cutting rules to finite temperature in Ref. [267], and used the
results from Ref. [266] as reference. Later, Refs. [264, 265, 268] improved on this scheme.
Especially the handling of internal loops ws refined. In Ref. [268], physical amplitudes
were extracted in the imaginary time formalism for the two loop vector boson self energy
in QCD, whereas the authors of Ref. [267] work in the real time formalism. At finite
temperature, Eq. (5.39) can not be written in this form. The notion of cuts can not be
applied anymore without further constrains [267] as now thermal factors appear. Physi-
cally, the thermal medium can absorb and emit particles, and diagrams which would have
impossible combinations of circlings at zero temperature can survive.



6. Microscopic photon production

Quantum electrodynamics is the most consistent and complete theory of light and its
interaction with electric charges. The electromagnetic field is quantized, and the photon
is its elementary excitation.

In this chapter we review perturbative photon production processes in ensembles of on-
shell quarks and gluons, and explain different orders in perturbation theory. In this context
we construct algorithms for what we call microscopic photon production, as opposed to
thermal photon rates, which are used, e.g., in hydrodynamics.

We distinguish two types of microscopic photon production processes. One possibility
is the use of algorithms based on vacuum scattering matrix elements with one outgoing
photon, which are reasonably modified to yield correct rates in a thermal setup. Those
photon production processes require the momenta of two individual scattering partners
(quarks and gluons). It is the purpose of this chapter to construct the corresponding cross
sections.

This is methodically different from photon production based on a radiation kernel, which
requires the temperature of the medium and the momentum of a radiating quark. The
latter method will be described in Chapter 7 in the context of jet emission, however, it is
numerically also suitable for (thermal or nearly thermal) ensembles of quarks.

6.1. Construction of photon production processes

In this section we explain order by order the different production mechanism for photons.
As detailed in Sec. 5.2, the imaginary part of the retarded photon self energy controls the
rate of photon production, Eq. (5.25). In order to understand the underlying microscopic
processes, our aim is to find out which incoming and outgoing states are relevant for
the production of a real photon, and subsequently obtain the corresponding scattering
amplitudes. The photon self energy can be expanded in loops up to some finite order in
the strong coupling g. Then, by the optical theorem, Eq. (5.31), or the Cutkosky cutting
rule from Eq. (5.39) the imaginary part of the self energy can be obtained as a set of
squared matrix elements, and Eq. (5.25) is equivalent to a rate equation in relativistic
kinetic theory. This is not only useful for the understanding of the microscopic origin
of the interactions, but in many cases the only practical way how to deal with the self
energy. In the following we will go loop by loop through the corresponding processes.
The one-loop contribution turns out to vanish, whereas the two-loop diagram constitutes
Compton scattering and quark-antiquark annihilation processes. Higher loops correspond
to inelastic pair annihilation and bremsstrahlung.

In Sec. 5.3 we presented the cutting rules for zero and finite temperature. Finite
temperature cutting rules are considerably more complicate and intricate, but we shall
not need to evaluate them. The reason is, that for the microscopic implementation of
photon production processes we will need solely the vacuum scattering matrix elements
M({initial} → γ +X). The incoming momenta can be thermally distributed or not, this
is only part of the evolution within the dynamical transport setup. Several approaches in
literature seek an algorithmic and thus easier way how to deal with self energies, with the
goal to compute exactly this quantity. In this case, naturally, thermal weights must be
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Figure 6.1.: The photon self energy at one loop order, and the only possible cut.

taken into account, and zero temperature cutting rules cannot be applied any more.
We repeat the zero temperature cutting prescription formally derived in Sec. 5.3: Draw

the self-energy diagram with unique momentum labels on all internal propagators, respect-
ing momentum conservation at the vertices. Draw all topologically different cuts (through
propagators), that separate the diagram into two, where each of the two contains at least
one external particle. Specify how momentum flows through the cuts on both sides of
the cut. Cut lines become external lines (they are put on-shell). All external lines can
represent either incoming or outgoing particles. In all following diagrams, the arrows on
quark propagators or external lines denote the flow of negative electric charge. For each
cut diagram, we may apply the zero-temperature Feynamn rules to obtain the amplitudes.
For the diagrams considered here, where we have a circularly connected quark line, the
momentum routing can be clockwise or anticlockwise, and the same cut with both routings
must be included.

It is useful to label cut propagators at the cut point and the external photon with either
the label

”
in“ or

”
out“ in all possible ways, denoting whether the particle is incoming in

the scattering amplitude or outgoing. Do this labeling on the left as well as on the right
side of a single cut propagator with the same label. Having done this, use the usual zero

temperature Feynman rules to write down the amplitude for the left hand side M(left)
P

and the right hand side of the diagram M(right)
P , understanding the external

”
in“ (

”
out“)

lines as incoming (outgoing) particles. By this procedure, an axis-symmetric cut generates

now amplitudes that are the complex conjugate of each other, M(left)
P =

(
M(right)

P

)?
. For

axis-symmetric cuts, the contribution to the imaginary part of the self energy generates
a squared matrix element, more precise, it includes the product of the left-hand side of
the cut diagram with the right-hand side. Cuts which are not graphically axis-symmetric,
generate interference diagrams. In general, every cut diagram has the interpretation as a
product of the left and right scattering matrix elements, that it creates.

6.1.1. One-loop contribution

The simplest possible contribution to the photon self energy is shown on Fig. 6.1. It is of
order e2, and corresponds to quark antiquark annihilation to a photon, quark antiquark
production from a photon or photon absorption by a quark or antiquark. All processes
are kinematically forbidden; thus it does not contribute to the rate.



6.1. Construction of photon production processes 87

Figure 6.2.: One particular contribution to the photon self energy at two loop order, and
one particular cut that is possible.

Figure 6.3.: One particular contribution to the photon self energy at two loop order, and
the two cuts that are possible, but give equivalent contributions after changing
the routing of the momenta.

6.1.2. Two-loop contribution and symmetric cuts

The next possible order of the self-energy is e2g2, including one gluon propagator1. The
gluon propagator can be connected in two different ways. In Fig. 6.3 the diagram with one
so-called gluon rung is shown. It can be seen as a vertex correction to the diagram from
Fig. 6.1. The dashed lines indicate the possible symmetric cuts, that are equivalent upon
reversing the momentum routing of the quark loop. In Fig. 6.2 the diagram with a gluon
is shown, which can be seen as a propagator correction to the diagram from Fig. 6.1. The
dashed line indicates the only possible symmetric cut. Of course the gluon can also attach
to the lower quark line, which again is the same upon reversing the quark momentum
direction. We will show now, how the well-known diagrams2 of Fig. 6.4 are encoded in
these cut diagrams. Let us consider Fig. 6.2 first. We define the photon to carry the label

”
out“, as we are exclusively interested in photon production and not decay. There are four

possible ways to assign the labels to the external lines after the cuts:

1. The cut gluon propagator can be
”
out“, the cut (and now external) quarks are then

”
in“. It can be read off from Fig. 6.2, that in this case a quark with negative charge

is incoming, and a quark with positive charge is incoming; the photon and a gluon

1It will become clear later, why also diagrams with more than one gluon propagator contribute at the
same order to the rate, even if the diagrams are formally of higher order. First we explain the diagrams
arising from one gluon propagator, the calculation with two or more gluons is more involved

2These diagrams only have been used by Refs. [23, 269,270] to obtain a photon production rate.
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(a) Compton-scattering, s-channel (b) Compton-scattering, u-channel

(c) Pair annihilation, t-channel (d) Pair annihilation, u-channel,

Figure 6.4.: The pictures/diagrams stemming from symmetric cuts of the photon self en-
ergy at order e2g2. The diagram in Fig. 6.2 yields the square of each of the
shown channels, the diagram in Fig. 6.3 yields the interference terms between
s and u (t and u) channels for the Compton scattering process (pair annihi-
lation process). There is no interference between Compton and annihilation
pictures/diagrams.

are outgoing. This setting holds for the left- as well as the right-hand side of the cut
diagram. This corresponds to the pair annihilation process of quarks to a photon
and gluon.

With the routing of the quark loop3 from Fig. 6.2, we get the square of Fig. 6.4(d).

2. If we reverse only the routing of the quarks in Fig. 6.2, but keep everything else as
in the previous case, the get the square of the diagram in Fig. 6.4(c).

3. The cut gluon propagator and the lower quark propagator be
”
in“, the photon and

upper quark propagator be
”
out“. This gives on the left-hand side of the cut the

diagram in Fig. 6.4(b), and on the right-hand side the same diagram, but quarks
are replaced by antiquarks, so we obtain the square of the u-channel diagram of
Fig. 6.4(b).

4. The cut gluon propagator and the upper quark propagator be
”
in“, the photon and

lower quark propagator be
”
out“. The right-hand side of the cut corresponds to

the diagram in Fig. 6.4(a), and on the left-hand side it corresponds to the same

3We define that the left hand side of the cuts in the self energy gives the scattering matrix element, and
the right hand side its complex conjugate.
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⋆

Figure 6.5.: One interference diagram resulting from the cut in Fig. 6.3. It is the in-
terference contribution between s- and u-channel of the Compton scattering
process.

diagram, but where quarks are replaced by antiquarks and we obtain the square of
the s-channel diagram of Fig. 6.4(a).

Now we turn to Fig. 6.3. This cut diagram will generate interference terms between the
channels. Again, we label the cut propagators systematically:

1. Consider the left diagram of Fig. 6.3. The gluon propagator and the lower right
quark propagator be

”
in“, the upper left quark be

”
out“. The left and right-hand

side of the cut produce in this case the interference diagram in Fig. 6.5.

2. Reversing the momentum routing of the quark loop results in the same interference
term as before, just quarks and antiquarks in Fig. 6.5 must be swapped (arrows
reversed).

3. We consider the left diagram of Fig. 6.3. The gluon propagator and the upper left
quark propagator be

”
in“, the lower right quark be

”
out“. Reversing the depicted

momentum routing, the left and right-hand side of the cut produce the interference
diagram in Fig. 6.5.

4. The left diagram of Fig. 6.3 with the depicted momentum routing (keeping the same
in- and out-states as before) yields the interference term from figure Fig. 6.5, where
quarks and antiquarks must be swapped. Because of the crossing symmetry, this is
the same contribution as before.

5. We consider the left diagram of Fig. 6.3, but now the gluon propagator be
”
out“and

both quark propagators be
”
in“. We assign a momentum label to the upper quark

line, and define here to draw the resulting external incoming line beginning from
the top left end in the tree diagram. This generates the interference diagram of the
annihilation channels, as shown in Fig. 6.6.

6. We can equally well define the external incoming line, stemming from the upper cut
quark line, to begin from the bottom left end in the tree diagram. This gives the
complex conjugated of the diagram in Fig. 6.6.

7. Reversing the momentum routing generates exactly the interference term in Fig. 6.6,
but with quarks and antiquarks swapped. This holds for both configurations in point
5 and 6 above.

Note that the right diagram of Fig. 6.3 produces exactly the same contributions as the
above cases, thus we omit them. To conclude this section, we have proven that the
imaginary part of the photon self energy to two-loop order involves the square of two
matrix elements, which are the well known Compton scattering matrix element and quark-
antiquark annihilation.
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6.2. Binary photon rates

The binary rate4 for the production of hard photons with momentum K = (Ek,~k) from
two particles with momenta P = (Ep, ~p) and P ′ = (Ep′ , ~p

′) can be written in kinetic
theory as

R = N
∫

d3p

2Ep(2π)3

∫
d3p′

2Ep′(2π)3

∫
d3k

2Ek(2π)3

∫
d3k′

2Ek′(2π)3
(2π)4δ(4)(P + P ′ −K −K ′)

× |M|2 fB,F (P )fB,F (P ′)
(
1± fB,F (K ′)

)
, (6.1)

where K ′ = (Ek′ ,~k
′) is the last outgoing momentum. The probability of finding parti-

cles with momentum P, P ′ is given by the thermal Bose (Fermi) distribution functions
fB(fF ) for bosons (fermions). The last factor accounts for Bose enhancement (+) or Pauli
blocking (−) for the outgoing particle with momentum K ′ being a boson or fermion. The
prefactor N is a symmetry factor respecting the electric charges qi and degeneracies di of
the incoming species,

N =
∑

incoming
species i,j

didj
∑

incoming
species k

q2
k. (6.2)

In the case of Compton scattering, the symmetry factor for two flavors is N = 5/9 ×
12 × 16 = 320/3, for three flavors N = 128. In the case of quark-antiquark annihilation,
the symmetry factor for two flavors is N = 20, for three flavors N = 24. The scattering
matrix element M in this expression can be expressed in terms of the usual Mandelstam
variables s = (P + P ′)2, t = (P −K ′)2 and u = (P −K)2 [23, 271],

|M|2Compton =
16

3
π2αEMαs

(
s2 + st

s2
+
s2 + st

u2

)
, (6.3)

|M|2qq̄−ann. =
128

9
π2αEMαs

(−st− t2
t2

+
−st− t2

u2

)
. (6.4)

Using bare (quark) propagators in M will not yield a finite rate due to an infrared diver-
gence (as one integrates up to zero momentum transfer). There are two possibilities to
account for this divergence: a) one can fix a lower integration limit greater than zero in the
divergent integration over the transfered momentum5; b) one can introduce massive prop-
agators, such that the integrands at the lower integration limits s, t, u = 0 still give finite
results. The traditional calculations of binary photon production rates (Refs. [23, 269],
later [272] and, with a similar method, just another purpose, Ref. [270]) use method a);

4The total rate is the total number of photons emitted per volume per time (0’th moment), R =
∫∞

0
dE dR

dE
.

5In Ref. [23] this is written as −k2
c ≥ t, whereas Ref. [270] and Ref. [272] use other integration variables,

such that qcut ≤ q or q? ≤ q.

⋆

Figure 6.6.: One interference diagram resulting from the cut in Fig. 6.3. It is the interfer-
ence contribution between u- and t-channel of the pair annihilation process.
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however, they treat the low momentum transfer region separately, and add both contri-
butions in the end. It turns out, that the sum of both contributions is independent of the
cut in the momentum integral, and the final result is unambiguously defined.

Infrared contribution

We shall briefly summarize the calculations that lead to a finite contribution for the photon
rate at the lowest momentum transfers, as carried out in Refs. [23,269,270,272]. Physically,
a new effect becomes important in a thermal many-body system when the momentum
transfer goes to zero. Charges are screened and propagators become effectively massive.
This effect can be captured in the effective hard thermal loop theory (HTL) which has been
introduced in Ref. [256–258]. To account for screening effects, propagators and vertices
are replaced by effective HTL propagators and vertices. Those carry one-loop corrections
evaluated at high temperatures. It was argued in Ref. [23] that at lowest order in g, only
one quark propagator in the one-loop photon self energy must be dressed6. With four-
momentum P of the dressed quark propagator, and K − P the bare one, the one-loop
photon self energy is [23],

Πµν(K) = −3e2
∑
f

q2
fT

∞∑
j=−∞

p0=2πjT

∫
d3~p

(2π)3
Tr [Sdressed(P )γµS(K − P )γν ] , (6.5)

where Sdressed(P ) denotes the HTL effective quark propagator and S(K − P ) the bare
propagator. The trace of the retarded self energy ΠR,µ

µ (K) is accessible by contraction
and analytic continuation from the imaginary time self energy (see Secs. 5.1.2 and 5.1.4).
After some calculations, one can write the imaginary part of the retarded self energy as
an integral over the quark energy ω and its absolute momentum |~p|, where one calculates
only the soft part which satisfies 0 ≥ ω2 − ~p2 ≥ −p2

c . The cutoff momentum is on the
order of pc & gT , and plays the role of a thermal mass of the dressed quark. It separates
the infrared part of the phase space and the high momentum transfer part.

Hard momentum transfers

In order to find an analytic expression, the authors of Ref. [23] make the approximation
that the photon energy Ek is large, Ek � T . This enables them to rewrite Eq. (6.1) with
matrix elements Eqs. (6.3) and (6.4) in integrals over Mandelstam s and t. The diverging
phase space is cut off by inserting the energy scale pc as infrared cutoff, −p2

c ≥ t ≥ −s+p2
c ,

2p2
c ≤ s ≤ ∞. The cutoff is much smaller than the hard scale T , p2

c � T 2, and one can
evaluate the integrals and subsequently take the limit p2

c → 0. In Ref. [269] this is done
similarly.

Full rate

By summing the results of the infrared contribution of the rate and the hard contribution,
the authors of Ref. [23] report for two flavor QCD,

Ek
dR

d3k
=

5

9

αEMαs
2π2

T 2e−Ek/T log

(
2.912

g2

Ek
T

)
. (6.6)

This rate is independent from the cutoff scale p2
c , which would lie in the range gT < pc < T .

The rate calculated by essentially the same method in Ref. [269] is identical.

6“dressed” means replaced by the corresponding HTL effective propagator.
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The authors of Refs. [272, 273] repeat the calculation from Refs. [23, 269], but relax
the approximation of large photon energies, at the cost of two integrals which must be
evaluated numerically in the end of the calculation. One of those integrals involves a cutoff
scale q? ∼ pc which will also appear in a corresponding soft calculation (as in Ref. [23]).
After numerical evaluation one sums both contributions and repeats this procedure for
several q? → 0, until the result converges. This then constitutes the most precise result to
date.

Note that Eq. (6.6) is an approximated rate for Ek � T , however, already for Ek/T & 3
the approximation deviates only a few percent from the precise result [272],

Ek
dR

d3k
= (2π)38πT 2αEMαsfF (k)

 ∑
flavorf

q2
f

[ln(3

g

)
+

1

2
ln

(
2k

T

)
+ C2↔2 (k/T )

]
(6.7)

where C2↔2 (k/T ) involves the numerical evaluation of integrals. A parametrization of the
precise numerical results for it is given by

C2↔2

(
k

T

)
= 0.041

T

k
− 0.3615 + 1.01 exp

(
−1.35

k

T

)
. (6.8)

Notice that Eq. (6.7) equals Eq. (6.6) when taking the limit lim
k/T→∞

C2↔2 (k/T ) ' −0.3614902

and replacing fF (k) by its Boltzmann limit, ∼ exp(−k/T ).

6.2.1. Semi-analytic evaluation of a screened photon rate

In this section we outline the evaluation of the kinetic photon rate from Eq. (6.1) with
screened matrix elements. The low momentum region can be treated in two different ways,
as explained below. It shall later be our strategy to compare the result from this section
to Eq. (6.7), and tune two parameters to obtain a similar total rate.

To begin with, note that for thermally distributed particle momenta in the incoming
states, the Mandelstam variables t and u are interchangable in the sense that the total scat-
tering rate for matrix elements |M|2 (u, t) equals the rate for matrix elements |M|2 (t, u).
As we only compute total rates in this section, we define simplified matrix elements,

|M|2Compton =
16

3
π2αEMαs

(
−s
t
− t

s

)
(6.9)

|M|2qq̄−ann. =
128

9
π2αEMαs

(
2u

t

)
. (6.10)

We now follow the procedure from Ref. [270] (Appendix A), which again follows Ref. [272].
The terms of the matrix elements in Eq. (6.9) and Eq. (6.10), which involve Mandelstam
t channel propagators have to be treated differently to the s channel term in Eq. (6.9),
when a minimal momentum transfer is imposed. This is because the integration over the
exchanged momentum would diverge in the t channel without further changes, and the
integration has to include an explicit cutoff in exchanged momentum. The integration
over the s channel term requires no special treatment for soft momenta. This has been
shown explicitly in Ref. [274]. However, without the use of a fixed minimal momentum
transfer qmin, one can screen the propagators by hand to include a thermal mass ∼ gT .
Having the screened matrix elements at hand, we then carry out the integration to obtain
the total cross section and finally the photon spectra. This integration requires no special
treatment of the s channel. These rates will by construction not be equal to the HTL
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improved rate Eq. (6.7), that is why we multiply the thermal masses by a real number κ.
The propagators for the different channels read correspondingly,

1

t2
→ 1

(t− κm2
D,q)

2
,

1

u2
→ 1

(u− κm2
D,q)

2
,

1

s2
→ 1

(s+ κm2
D,q)

2
. (6.11)

The squared thermal mass for light quarks is defined as

m2
D,q = g2CF

∫
d3p

(2π)3Ep
(fg + fq). (6.12)

Thermal quark masses mD,q (“quark Debye mass”) are very similar to thermal gluon
masses, which are often dubbed (gluon) Debye masses (we will need gluon Debye masses
later for screened propagators in inelastic matrix elements). Quark and gluon Debye
masses are of order gT but have different prefactors depending on the type of statistics.
The squared thermal gluon mass is defined as [254]

m2
D,g = 16παs

∫
d3p

(2π)3Ep
(Ncfg +Nffq). (6.13)

Using Boltzmann statistic distributions, it evaluates to

m2
D,g =

8

π
(Nc +Nf )αsT

2 ≈ 15.28αsT
2, (6.14)

whereas the squared thermal quark mass is

m2
D,q =

1

9
m2
D =

8αsT
2

9π
(Nc +Nf ) =

16

3π
αsT

2 ≈ 1.7αsT
2. (6.15)

Using quantum statistic distributions, the squared gluon Debye mass is

m2
D,g =

4παs
3

(
Nc +

Nf

2

)
T 2 = 6παsT

2 ≈ 18.85αsT
2, (6.16)

whereas the squared thermal quark mass is

m2
D,q =

1

2
m2
∞ =

1

2

CF g
2
sT

2

4
=

2παs
3

T 2 ≈ 2.09αsT
2. (6.17)

We will explain below in more detail, how to choose the value of κ in Eq. (6.11) in order
to reproduce Eq. (6.7).

Coming back to the integration as done in Ref. [270], we begin with a first choice of
integration variables, which is suitable for t channel integrations with lower momentum
cutoff. Defining the momenta in the scattering process, p + p′ → k + k′, one introduces
the exchanged momentum ~q = ~p− ~k, and ω = p− k (where we define p = |~p|, and so on),
such that the Mandelstam variable t = (P −K)2 = ω2−q2. In the full rate R, the authors
of Ref. [270] replace the integration over ~p with an integration over ~q. Then one uses the
spatial delta function δ(3)(~p+ ~p′−~k−~k′) to eliminate the integration over ~k′. In spherical
coordinates one trivially integrates out dφk dφq with remainder,

R =

∫
p′

2
dp′dφp′ q

2dq k2dk d cos θkqd cos θp′qδ(p+ p′ − k − k′) 2(2π)2

(2π)824pp′kk′

× |M|2 f(ω + k)f(p′)(1± f(ω + p′)θ(ω + k)θ(ω + p′). (6.18)
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It is useful to introduce also an integration over the transfered energy ω [275,276],

δ(p+ p′ − k − k′) =

∞∫
−∞

dω δ(ω + k − p)δ(ω + p′ − k′), (6.19)

where the new delta distributions can be transformed to be functions of the cosines,

δ(ω + k − p) =
p

qk
δ

(
cos θqk −

ω2 − q2 + 2ωk

2qk

)
θ(ω + k)

δ(ω + p′ − k′) =
k′

qp′
δ

(
cos θp′q −

ω2 − q2 + 2ωp′

2p′q

)
θ(ω + p′). (6.20)

As the momentum ~k of the photon is isotropically distributed, one can transform

k
dR

d3~k
=

dR

4πkdk
, (6.21)

and thus

Ek
dR

d3k
=

1

16(2π)7Ek

∫
dq dp′ dω dφp′ |M|2 f(ω + k)f(p′)(1± f(ω + p′)θ(ω + k)θ(ω + p′).

(6.22)

The Mandelstam variable u ≡ (P ′ −K)2 can be expressed as

u = −2p′k(1− cos θkq cos θp′q + sin θkq sin θp′q cosφp′), (6.23)

where cos θp′q and cos θkq can be determined by the delta distributions Eqs. (6.20). The
final expression for the t-channel integration reads, after trivially integrating dφp′ ,

Ek
dR

d3k
=

N
16(2π)6Ek

∞∫
qmin

dq

q∫
max{q−2k,−q}

dω

∞∫
(q−ω)/2

dp′ |M|2 f(ω + k)f(p′)(1± f(ω + p′).

(6.24)

Here we inserted the degeneracy factor from Eq. (6.2), which accounts for the degenera-
cies of the incoming species and their electric charges. Eq. (6.24) can readily be solved
numerically, under the condition that one specifies the scale qmin, or, uses well-behaved
matrix elements (from Eqs. (6.11)) and sets qmin = 0.

The s channel integration is most conveniently done using a different parameterization,
where we shift the integration over ~p to an integration over ~q = ~p + ~p′ with ω = p + p′,
such that s = ω2 − ~q2. Again, using the spatial delta function one can perform the ~k′

integration. The temporal delta function can be split in delta functions over total energy
ω,

δ(p+ p′ − k − k′) =

∞∫
0

dω δ(ω − p− p′)δ(ω − k − k′), (6.25)

and

δ(ω − p− p′) =
p

p′q
δ

(
cos θp′q −

ω

q
+

s

2p′q

)
Θ(ω − p′)

δ(ω − k − k′) =
k′

kq
δ

(
cos θkq −

ω

q
+

s

2kq

)
Θ(ω − k). (6.26)
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Moment AMY/Born

0’th 99.5 %

1st 112.5 %

2nd 121.9 %

3rd 128.1 %

4th 132.1 %

Table 6.1.: The comparison of AMY with Born-photon rates for higher moments of the
photon rate, using the fixed value of κ = 2.45.

The final expression for integrating the s channel reads

Ek
dR

d3k
=

N
16(2π)6Ek

∞∫
k

dω

ω∫
|2k−ω|

dq

(ω+q)/2∫
(ω−q)/2

dp′ |M|2 f(ω + k)f(p′)(1± f(ω + p′). (6.27)

Note that the Mandelstam variables which have to be inserted in the matrix element
in Eq. (6.27) differ from the definition in the t-channel integration (e.g., in Eq. (6.23)), it
can now be expressed as

u = −s− t
t =

s

2q2

([
(p′ − p)(k − k′)− q2

]
+ cosφk

√
(4p′p− s)(4kk′ − s)

)
, (6.28)

6.2.2. Screening of soft momentum transfers

We will use the integrations from Eqs. (6.24) and (6.27), with matrix elements from
Eqs. (6.9) and (6.10) where the propagators are screened as in Eqs. (6.11), to compute
a thermal rate. It is now our strategy to choose the value of κ in such a way that our
simplified procedure leads to a rate that resembles the HTL improved rate from Eq. (6.7)
closely (a similar procedure was done for heavy quark energy loss, e.g., in Ref. [277]).
We do this by comparing the moments of the rate (where the n’th moment is defined as∫∞

0 dEEn dR
dE ). To this end we solve Eq. (6.24) numerically first for quantum statistical

distributions and screened matrix elements including the κ-factor (we call this “Born”-
rate), and compare the result to the HTL improved (2↔ 2) rate, Eq. (6.7), from Refs. [272,
273] (we call this “AMY”-rate). We adjust κ (which is of order O(1)) so that the total
rates R are equal, with the result,

κ = 2.45 (6.29)

The comparison is shown in Fig. 6.7(a), where we plot dR/dE in both schemes. One
observes that the Born rate (blue cross shaded area) has a slightly shifted peak when
compared to the HTL improved rate. The deviation in the energy spectrum of the Born
rate to the AMY rate is mild, and maximal 20% for certain photon energies. To get a
handle on the quality of the comparison, we compare higher moments of the rate, the
results are shown in Tab. 6.1. The deviation increases for higher moments, but even the
4th moment of the Born rate deviates only about 32% to the AMY rate. This gives
confidence, that the screening model is physical, and can be used in phenomenological
situations in a well-controlled way. Note that the result for κ is rather insensitive to the
numerical integration limits, as the integrand drops to zero for E/T → 0,∞.
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(a) The parameter κ = 2.45 is tuned to make both integrated rates equal.
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(b) The Born matrix element integrated with Boltzmann statistics (green dotted
line). Reducing this rate by Cstat = 0.84 (orange dashed line), the total rate R equals
the Born rate with quantum statistics (which equals approximately the elastic HTL
improved rate, see panel (a)).

Figure 6.7.: The photon rate from Refs. [272,273] compared to the rate obtained from the
numerical solution of Eq. (6.1) with matrix elements Eq. (6.4) and (6.3), using
a Debye mass κm2

D,q. In the left panel the κ is fixed. In right panel we keep
κ = 2.45 and fix the parameter Cstat by integrating the Born matrix element
with Boltzmann statistics.
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Figure 6.8.: For two values of κ we compare the numerically obtained 2 ↔ 2 photon rate
to the analytic expectation (obtained by using the method from Ref. [270]).

6.2.3. Correction of the distribution functions

Finally, we need to correct for the small effect of the distribution functions. In the numer-
ical study which we aim at, we can only use Boltzmann (classical) statistics, in initial and
final states. There is no Pauli blocking or Bose enhancement (for an exploratory study
in this direction, see Ref. [236]). That is why we will multiply the cross sections (equiv-
alent to the rate) with a factor Cstat to get the correct number of photons even without
quantum statistics. This factor does not alter the differential cross section, as it is an
overall prefactor. Note that also the Debye mass follows the Boltzmann distribution (later
it is dynamically computed in simulations with Boltzmann statistics). To obtain Cstat,
we solve Eq. (6.24) numerically with Boltzmann distributions and ignore Pauli blocking
or Bose enhancement, but keep the fixed value of κ from the procedure above7. Then
we compare again to the HTL resummed 2 ↔ 2 rate from Refs. [272, 273], which uses
quantum statistics. The difference of both total rates is

Cstat = 0.84 (6.30)

The rates are shown in Fig. 6.7(b). The fact that Cstat is below unity implies that the
Pauli-blocking effect of the outgoing quark in the Compton channel is more important
than the Bose enhancement effect of the outgoing gluon in the annihilation channel. This
is consistent, because the Compton process happens more often (due to the combinatorics
of the ingoing particles).

Sampling a thermal ensemble of partons in a homogeneous box simulation with BAMPS
(see Sec. 11.4), we can use the 2↔ 2 photon production rate including the above explained
ingredients to produce emitted photons. As an important numerical check, we compare the
numerical results with the analytic expectation by using the exact same matrix elements
(using two arbitrary values of κ for illustration) in Fig. 6.8, and find excellent agreement.

7Here again, the Debye mass is in Boltzmann form.
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Figure 6.9.: The two contributing vacuum diagrams we use for the numerical evaluation of
the radiative photon rate. All internal propagators are screened by hand, and
an overall factor Kinel ensures the similarity to the AMY rate, as explained in
Sec. 6.4.

6.3. Bremsstrahlung, LPM effect and inelastic photon
production

The purely binary photon production rate from the previous section is of order O(e2g2T 4).
In the beginning of the 1990s it was believed, that diagrams of higher order in the coupling,
like bremsstrahlung of quarks, would also contribute to the rate at higher order in the rate,
and was therefore neglected. However, in certain kinematic regions, higher order diagrams
contribute at the same order O(e2g2T 4). This was rigorously proven by Arnold, Moore and
Yaffee in Refs. [272,273]. Their main result is a rather complicated integral equation, whose
numerical solution yields the thermal photon production rate (more details in Sec. 7.2).
The parameterization of Refs. [272,273] reads

k
dRγinel

d3~k
= 2αEM

(∑
s

q2
s

)
g2
sT

2fF (k)Cinel

(
k

T

)

Cinel (x) =

√
1 +

Nf

6

[
0.548 log(12.28 + 1/x)

x3/2
+

0.133x√
1 + x/16.27

]
, (6.31)

where qs is the fractional charge of a quark species s (e.g., 2/3 for up quark species), and
fF (k) is the Fermi-Dirac distribution function.

We now outline briefly the arguments of Refs. [272, 273] leading to the leading order
photon rate, before coming explicitly to interference phenomena.

6.3.1. Parametric estimates of higher order photon production

The argument chain of Refs. [272, 273] begins with the diagram Fig. 6.9(b). As it is
important for the motivation of this study, we concisely report it here. If the momentum
of the exchanged gluon is hard, Q ∼ T , then the naive diagrammatic power counting is
valid, and the process yields a rate of order O(e2g4T 4) which is subdominant compared to
the binary rate of order O(e2g2). However, one can show that for soft exchanged momenta
of order gT the rate can be as strong as O(e2g2). For simplicity, Ref. [273] uses scalar
quarks to show the power counting, although the results are true also for fermionic quarks.
We consider the squared amplitude for the process in Fig. 6.9. The gluon propagator,
∼ 1/Q2 contributes 1/Q4 ∼ 1/(g4T 4). We now make the restriction, that

Q · P2 ∼ g2T 2. (6.32)
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This restriction constrains the angle between the momentum P2 and Q to be small. In
principle, all components of Q are of order gT , and P2 ∼ T , but by g2T 2 ≡ P2 · Q =
gT 2(1 − cosα) ∼ gT 2α2 the angle α is restricted to be of order

√
g. In Ref. [273], it is

argued, that in the regime, where P2 ·Q ∼ gT 2, there is a cancellation within the scattering
matrix elements, which makes only the high collinear region contribute.

From Eq. (6.32), by energy-momentum conservation Q+P2 = P4 +K and the fact that
the incoming and outgoing momenta are almost onshell, K2 ≈ P 2

2 ≈ P 2
4 ≈ 0, it is implied

that P4 ·K ∼ g2T 2. From

Q2 = −2K · P2 + 2P4 ·Q (6.33)

it follows that also K · P2 ∼ g2T 2 and P4 ·Q ∼ g2T 2, given that all external particles are
on-shell. The angle between ~p4 and ~k be Θ. These conditions imply collinearity, as the
following calculation shows,

g2T 2 ∼ P4 ·K = p0
4k

0 − ~p4 · ~k = p0
4k

0 − p4 · k cos Θ

∼ T 2(1− cos Θ) ≈ T 2(Θ2/2)

⇔ Θ ∼ g. (6.34)

It follows directly, that the (scalar) quark propagator gives a large enhancement, 1
(P4+K)2 ∼

1/(g2T 2). The gluon vertices give a factor g2. The physical photon polarization ε is purely
spatial (ε0 = 0) and orthogonal to ~k. The photon-quark vertex in Fig. 6.9(b) (in scalar
QCD) is (P2 +Q+P4) · ε (or (P2 +P4−Q) · ε for Fig. 6.9(a)). For P2 and P4 the product
is O(gT ),

~ε · ~p2,4 = cos
(π

2
−Θ

)
p2,4 = p2,4 sin Θ ≈ p2,4Θ ∼ gT. (6.35)

Note that this implies also that the component of ~k orthogonal to ~p4 is also O(gT ). For
Q · ε we have

~ε · ~q = cos(β) q ∼ cos(β) gT . gT, (6.36)

such that the photon vertices contribute (P2 + P4 ± Q) · ε ∼ egT . The angle between ~ε
and ~q is β. Now, in order to get the rate from the 2 → 3 diagrams, one must integrate
out all incoming and outgoing on shell momenta (where the integration can be performed
only over three momenta, as the energy is fixed by the on-shell condition). In general,
all external momenta are O(T ), so that the external lines contribute O(T 2). One can
substitute some integration variables to integrate, among others, over ~q and Θ. As we
have seen before that the dominant contribution to the rate comes from soft ~q and small
angles, the integration must give a phase space suppression g3 × g. There will be two
unrestricted integrations over three momenta left, contributing O(T 6). In the rate, the
matrix elements are squared, and from all the above the total rate goes like

R ∼ T 3T 3︸ ︷︷ ︸
int.measure

e2g4︸︷︷︸
vertices

T 4︸︷︷︸
other momenta

1

g4T 4

1

g4T 4︸ ︷︷ ︸
propagators

g4︸︷︷︸
ph.sp.supp.

g2T 2︸ ︷︷ ︸
γ−quark−vertex

∼ e2g2T 4. (6.37)

This is a remarkable result, as the 2 ↔ 2 rate has exactly the same order. This means
that any sensible photon production rate must include radiative processes.

Note that the parametric estimate above does not specify any Landau-Pomeranchuk-
Migdal effect. In fact, it turns out, that not only the diagram above contributes at leading
e2g2T 4 order to the rate, but also diagrams with more gluon rungs, interfering with each
other.
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6.3.2. Landau-Pomeranchuk-Migdal effect

Apart from a rigorous calculation, there are multiple ways to show heuristically the ex-
istence and mechanism of multiple scattering and interference effects in bremsstrahlung
processes. Our first explanation is based on the previous arguments and uses the dominant
part of the phase space derived earlier [272,273].

We have seen, that the momentum of the photon transverse to the emitting quark
is O(gT ), which implies that the spatial extent of the wave packets must be of order
O(1/gT ). The angle between the photon momentum and the quark momentum is O(g),
so that by simple geometry the traveling time of the quark before it separates from the
photon must be O(1/g2T ). Within this time, which is parametrically larger than the
time the photon travels transversely to the quark, the quark may scatter again, which the
following reasoning shows. The 2 ↔ 2 cross section can be obtained from, e.g., pQCD
scattering matrix elements by

σtot =
1

16πs2

0∫
−s

dt |M22|2 . (6.38)

For soft scattering, the typical momentum transfer is
√
t ∼ gT . The squared matrix

elements typically behave as |M22|2 ∼ g4s2/t2, or similar combinations of Mandelstam
variables, which do not change our parametric result qualitatively. This implies,

σtot ∼ g2T 2 g4

g4T 4
∼ g2

T 2
, (6.39)

such that the mean free path between individual soft scatterings is

λsoft
mfp ∼

1

nσtot
∼ 1

g2T
. (6.40)

This is of the same order as the time the quarks takes to separate from the photon, which
indicates that sequential scatterings may interfere and can not be treated independently.
This is the origin of the Landau-Pomeranchuk-Migdal (LPM) effect. Before the photon is
completely formed, the quark can scatter again and those multiply radiated photons can
interfere. For photons it turns out that the interference from successive bremsstrahlung
acts destructively, such that corrections due to the LPM effect suppress the photon pro-
duction rate. Note that a single soft collision of a quark with energy E and momentum
transfer qT has by geometry (and tan Θsingle ≈ Θsingle) typical angles of

Θsingle =
qT
E
∼ mD

E
, (6.41)

with an effective mass mD. Hard collisions, that is collisions with large momentum trans-
fers,

√
t ∼ √s ∼ T have typical cross sections of σtot ∼ g4/T 2 which implies a mean free

path for large angle (LA) scatterings,

λLA
mfp ∼

1

g4T
� λsoft

mfp. (6.42)

If for certain processes the mean free path is parametrically larger than O(1/g2T ), such as
large angle scatterings, these processes do not play a significant role for the LPM suppres-
sion, as the emission time is O(1/g2T ). Therefore only soft scattering is important, and
the calculation of Refs. [272,273] ignores processes with parametrically larger momentum
transfer than gT . The authors of Refs. [272,273] also argue, that much softer scatterings,
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Figure 6.10.: Independent scattering of a quark (thick line) with gluons with subsequent
photon emission.

with scattering angles Θ � g would be too ineffective to be important for interference
effects, and can safely be neglected.

A second, more classical picture can be given in the following way, which also explains
some important scales [278]. A quark moves with ultra-relativistic high energy E and
scatters N times randomly with particles. Each collision deflects the particle by a small
angle Θsingle, such that the total angle, which should still be small, is the result of a random
walk of N steps, namely Θ =

√
NΘsingle. This is depicted schematically in Figs. 6.10 and

6.11. Classically, the soft photon field itself is peaked around the angle Θ around the
quark (see the angle in Fig. 6.11). Now, classically, each scattering at point xi generates
a photon wave which contains a factor exp(Kγ · xi). If the first (at point x1) and last (at
point xN ) scatterings are independent, the phase factors are large, Kγ · (xN − x1) � 1,
whereas in the case of interferences Kγ · (xN − x1)� 1. One computes

Kγ · (xN − x1) = k0
γ(x0

N − x0
1)− ~kγ · (~xN − ~x1)

= kγ(1− cos Θ) |~xN − ~x1| ∼ kγNτ(1− cos Θ)

≈ kγNτΘ2 � 1 (6.43)

where the photon is on-shell |~kγ | = k0
γ as well as the massless particle, such that ∆t ≡ x0

N−
x0

1 = |~xN − ~x1| = Nτ . In the case of interference, there are typically N ∼ 1/
√
kγτΘ2

single

scatterings, which can not be resolved by the radiated photon and thus act as one single
scattering, as shown in Fig. 6.11. Equation (6.43) is valid for soft kγ � E, but if
E − kγ ∼ O(E), and kγ ∼ E, it is parametrically still correct. Using Eq. (6.41), the

number of soft collisions for hard bremsstrahlung (kγ ∼ E) is N ∼ max
(

1,
√
E/(τm2

D)
)

.

Clearly, for mean free times τ � E/m2
D, there will be no interference between successive

soft collisions, N ∼ 1. Imagine two such scatterings at point xA and xB, each with typical
angles Θsingle. One can define a classical formation time tf by requiring that the two
waves have different phase factors, Kγ · (xA−xB) ∼ 1, which by a similar calculation as in
Eq. (6.43), and the definition x0

A−x0
B ≡ tf reduces to kγtfΘ2

single ∼ 1. The angle can either
be defined by the momentum transfer before the photon radiation, Θsingle ∼ qT /E, so that
the formation time for the N = 1 case is tf ∼ E/q2

T . Defining a transverse momentum
kT of the photon with respect to the quark (see Fig. 6.12), one finds another parametric
estimate for the scattering angle,

Θ2
single ≈ k2

T /k
2
γ , (6.44)
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Figure 6.11.: Photon radiation of a quark (thick line) due to multiple soft scattering with
gluons. The typical radiation cone is sketched.

Figure 6.12.: Kinematics in a photon radiation process of a quark (thick line), with trans-
verse momentum kT and opening angle Θ.

and as such,

tf =
kγ
k2
T

. (6.45)

For kγ ∼ E and Θsingle ∼ qT /E the formation time is simply tf ∼ E/q2
T . For small τ ,

such that N successive scatterings strongly interfere, the formation time is tf ∼ Nτ . From
the above we have

tf ∼ Nτ ∼
1

Θ2kγ
∼ 1

ENΘ2
single

∼ E

Nq2
T

. (6.46)

This formula is valid in the single and in the multiple soft scattering case. We see that for
softer photons, kγ � E, the formation time is longer than for hard photons. Note that
radiated gluons, due to their capability to scatter during formation, will typically loose
their coherence faster than photons.

6.3.3. Interference effects in transport models

Many transport approaches, such as BAMPS, which we shall use extensively in this work,
are based on the numerical solution of the Boltzmann equation. The validity of the
Boltzmann equation requires that individual scatterings are sequential and the scattering
duration is shorter than the mean free time between collisions. A priori it is therefore not
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Figure 6.13.: The diagrams which contribute to the inelastic photon production rate at
leading order. The dots [. . .] represent infinite possible gluon rungs, which
must be resummed.

possible to include interference effects such as the LPM effect by using successive scattering
processes from the Boltzmann collision kernel. The reason is, that all scattering processes
are independent (this is immediately apparent in Monte-Carlo solutions of the Boltzmann
equation). However, incorporating a local mean free path in the scattering matrix element
allows for an effective description of the LPM effect. We have seen that a large mean free
path will lead to the interference free regime,

τ � E/m2
D ∼ tf , (6.47)

whereas a short mean free path leads to formation times, which are N times longer than
the mean free time between collisions, tf ∼ Nτ . It is natural to use the formation time
of produced photons as a scale to compare to the mean free path. The simplest case of
an implementation would be to discard any produced photon which has a formation time
tf larger than the mean free path of the radiating parent quark. As such, we allow only
single independent scatterings.

6.4. Radiative photon production

We have seen in Sec. 6.3.1 that due to certain kinematic enhancements some diagrams
contribute at the same order to the photon rate as the 2 ↔ 2 photon production. In
fact, the authors of Refs. [272, 273] have proven, that only diagrams of the type shown
in Fig. 6.13 contribute. All other diagrams with crossed gluon rungs, or other more
complicated combinations, do not show the kinematic enhancements and thus do not
contribute at leading order.

We want to stick to this picture, and neglect diagrams which would not emerge by cuts
of this self-energy, even though in our transport setup those could be substantial.

To this end, we again employ the cutting-rules of Sec. 5.3, and obtain scattering matrix
elements. This is more intricate for diagrams like Fig. 6.13, and details concerning the
cuts is outlined in appendix A. What emerges are exactly the diagrams of Fig. 6.9.

Note that a (possible) 2→ 3 process like g+ q → q+ g+ γ (with a three gluon vertex),
is not included in the set of diagrams resulting from the cuts. Ignoring the rigorous LO
power counting of Refs. [272,273], and just looking at the number of vacuum QCD vertices,
this process could be included and would contribute significantly within BAMPS, because
gluons are abundant, especially in the early phase of the QGP. This will be investigated in
a future study. For now we use only one kind of matrix element, motivated by the leading-
order picture. As we only have vacuum matrix elements, we will insert thermal screening
masses by hand into the propagators, as done before in the case of 2 ↔ 2 scattering. In

Appendix B.1 we derive the full squared matrix element |M|2rad. starting from spinors
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λq
mfp

Figure 6.14.: Sketch of an LPM interference effect: Due to a short quark mean free path
a subsequent radiation is suppressed. Note that this diagram is not used
as shown here, we rather evaluate the quark-quark elastic mean free path
dynamically in BAMPS and compare it to the formation time of the photon.
The photon is produced by the pure bremsstrahlung subdiagram.

and propagators without any further approximation. This is the radiative matrix element
for photons that we will use in BAMPS, using techniques from Ref. [217].

Interference effects

As outlined before, photon radiation from bremsstrahlung processes suffers from the
Landau-Pomeranchuk-Migdal effect. The analytic calculation of the leading order ra-
diative photon production rate in Refs. [272, 273] fully includes the interferences among
subsequently radiated photons. Within a transport approach, using individual scatterings
for photon production, such interferences are necessarily destroyed, and must be restored
by hand. In our microscopic description which is based on individual scatterings, we use
an effective method to simulate the LPM interference effect, based on the mean free path
of the radiating quark. As the only relevant diagram is that of Fig. 6.13, we need an
effective method which respects the processes from Fig. 6.13. This is the reason, why we
need a specific mean free path, calculated only from the quark-quark scattering processes
appearing in the diagram.

At first, we calculate the specific inverse rate λspec
mfp of the quark species which appear

in the inelastic matrix elements for photon production8. For the calculation of λspec
mfp we

take solely the specific 2 ↔ 2 processes into account which appear as subdiagram before
or after the photon is radiated (see Fig. 6.14). These specific processes are:

processes 1 qq → qq / q̄q̄ → q̄q̄

processes 2 qq̄ → qq̄

Here q (q̄) are quark (antiquark) species, for up, down and strange quarks. The cor-
responding numerical method is explained in Appendix B.1.4, and a typical process is
schematically depicted in Fig. 6.14. In Fig. 6.15 we show numerical results for the inverse
rate (mean free path) corresponding to these processes separately. It depends strongly on
the (anti-)quark fugacity and temperature. We will come back to the fugacity dependence
of the mean free path and the rate in Sec. 6.4.1.

8This can be seen as a mean free path (mfp), where only certain scattering processes are included.
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to different reactions (processes 1: qq → qq / q̄q̄ → q̄q̄, processes 2: qq̄ → qq̄),
depending on temperature and fugacity.
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Next we multiply the amplitude for photon radiation by a Heaviside-function Θ
(
λspec

mfp − τf
)

which ensures, that the formation time τf of the radiated photon is smaller than the mean
free path of the radiating quark,

|M|2rad. → |M|2rad.Θ
(
λspec

mfp − τf
)
. (6.48)

By doing this, we discard photons with such soft k⊥ (transverse momentum relative to the
radiating quark), that the radiating quark could have scattered again within the formation

time. The k2
⊥ integration in Eq. (4.22) in this case is limited by k2

⊥,min =
(
λspec

mfp

)−2
. As

this procedure reflects the underlying interference effect only incomplete, we must insert
a scale factor Kinel in front of the matrix element.
Recall that the current implementation of the LPM effect for radiated gluons in BAMPS
is done in a similar way, the only difference is a factor XLPM being multiplied to the
formation time and a different determination of the mean free path. These differences are
motivated by two physical effects: First, radiated gluons suffer from scatterings after the
radiation process, which dynamically alter their formation time. That is why we allow
more radiated gluons than would actually be radiated if we required them to be fully
formed. Second, gluon radiation rates involve far more diagrams (see, e.g., Ref. [279]),
such that the mean free path is the total mean free path qX → Y where X can be a quark
or gluon.

Fixing the scaling factor for bremsstrahlung

As mentioned in the previous section, the implementation of radiative photon production
is incomplete. There are in fact several parts which deviate from the AMY description.
First, as we include only vacuum matrix elements with Debye screened propagators, we
miss the correct treatment of soft momentum transfers. In the matrix element there are
two propagators (a quark- and a gluon propagator) where we insert Debye or thermal
masses by hand and we could in principle tune these Debye masses by multiplying κ-
factors as in the 2 ↔ 2 case from Sec. 6.2.2. However, it is not clear how and if they
should be tuned individually. The second simplification is the LPM effect described in the
previous section. Third, we have the small effect of missing quantum statistics here, too.
At last, the full AMY rate includes effectively not only the bremsstrahlung process, but
also inelastic pair annihilation (a 3 → 2 process), which we do not include here in this
study. In Refs. [272, 273] it is shown that this is a subdominant contribution. To cure all

these problems, we scale the full matrix element |M|2rad. with a factor Kinel. Such scaling
is the simplest choice, and very common in transport approaches.

For inelastic processes, the total AMY rate dR/dE diverges for small E, and the integral
is ill defined. However, for small energies (transverse momentum), experiments are not
capable to measure anymore, and, the perturbative AMY description breaks down [159],
so that we choose a suitable lower integration limit.

Having our application in mind, where we focus on transverse momenta in the range
0.5 < pT /GeV < 3, we translate this at T ∼ 0.4 GeV to a sensible integration region of
1 < E/T < 7, where the result is very insensitive to the upper integration limit. For the
following, we use this integration region, and obtain Kinel = 2.57.

Using this factor, we make sure that we get (in an equilibrium case) the same number
of photons and a similar spectrum in the energy region of interest. In Fig. 6.16 we show
the numerical photon rate compared to the AMY rate, and also its first moment. The
numerical rate from microscopic scatterings in Fig. 6.16(a) shows a similar slope as the
AMY rate in the considered integration region, and the integrals of the curves in the plot
are equal.
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energy (b) from BAMPS (red solid line) compared to the full inelastic AMY
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Using instead the first moment of the rate to fit Kinel would result in a less than 1 %
different value, using the second moment less than a 4 % different value.

In Appendix B.1.5 we show the corresponding differential cross sections and cross-checks
of the kinematics. As a note, the thermal photon elliptic flow, being a transfer of flow
from a boosted thermal distribution to photons, is not sensitive to the differential photon
rate (because photons are emitted isotropically in the local rest frame). In a non thermal
case this is not true anymore, and differential cross sections matter.

6.4.1. Photon rate at nontrivial quark fugacities

The photon rate naturally depends on the quark and gluon content of the medium. For
finite baryon chemical potentials (or quark chemical potential) the rate is modified by the
(trivial) statistical factors (qq̄ annihilation and Compton scattering behave differently),
but also by other ingredients of the rate, such as the gluon self energies. These effects
are studied thoroughly in Ref. [280]. The authors conclude, that the effect of the chem-
ical potential to the photon spectra at RHIC or LHC is small, due to the small baryon
chemical potential and the moderate sensitivity of the rates. Although we use a simplified
diagrammatic setup, the effect of a quark-antiquark number asymmetry is included in the
transport approach by default. For the present study at high energies, however, the effect
is negligible.

The second, more important characterization of the parton content is the “absolute”
fugacity. Assuming by the previous argument, that the number of quarks equals the
number of antiquarks, we define the gluon (quark) fugacities λg(λq) as

ng = λgn
equilibrium
g

nq + nq̄ = λq

(
nequilibrium
q + nequilibrium

q̄

)
.

Effectively, for the considerations in this section, there is no difference between quark and
antiquark. Note that the fugacities in heavy-ion collisions are in general time dependent.
The initial state is still uncertain, especially the quark and gluon content is under debate.
It is commonly believed, that gluons are saturated or over-saturated [281], and quark-
antiquark pairs are not very abundant in the very early phase after the collision [214].
In Ref. [282] an undersaturation of quark-antiquark pairs (λq < 1) seems to be favored
by data within a rate equation approach. However, no precise answer about the fugacity
dependence could be given up to now. Other studies [281, 283–286] give slightly different
pictures, but we shall not elaborate on this topic here. Common ground is a quark fugac-
ity λq which is lower than unity and may or may not approach it within the lifetime of
the fireball. We investigate in the following, how the photon rate behaves for nontrivial
quark/gluon fugacities. Our arguments are similar to those of Ref. [287].
Naively, the 2 ↔ 2 Compton scattering (quark-antiquark annihilation) rates are pro-
portional to λqλg (λqλq) just by taking the incoming parton distribution functions into
account. However, the Debye screening prescription from Eq. (6.11) lets the quark and
gluon fugacities enter one more time into the rate. This will scale the rates differently
as naively expected. In Fig. 6.17 we show the fugacity dependence of the 2 ↔ 2 photon
production (purple triangles) by comparing the total rate R to the rate at unity fugacity,
R[λq]/R[λq = 1]. We have computed the Compton scattering and quark-antiquark anni-
hilation rates for several quark fugacities (the gluon fugacity λg is unity here), and find a
combined scaling as λ1.07

q . We conclude that the 2↔ 2 rates can be seen as being simply
proportional to the quark fugacity.
The inelastic photon rate will scale naively with λqλq; however, our implementation of
the LPM effect uses the numerically (i.e., dynamically) evaluated quark mean free path
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for specific processes (see Fig. 6.15), which depends on the average cross sections σ and
particle densities n and thus on the (quark) fugacity λq as ∼ 1/(nσ) ∼ 1/(σλqT

3). The
average cross sections are themselves Debye screened, and decrease for higher fugacities.
These effects are summarized in Fig. 6.18, where we show the scaling of Debye mass, den-
sity, average cross section and mean free path, for the two processes considered.
Additionally, the fugacities enter also in the Debye screened gluon propagator. In Fig. 6.17
we show the scaling of the inelastic photon rate (normalized to the rate at λq = 1) with the
fugacity and compare with a naive scaling (without the effect from the LPM procedure
or Debye screening), R[λq]/R[λq = 1] = λ2

q . By fitting a simple power law we find for
bremsstrahlung roughly R ∼ λ1.36

q , for λq & 0.3.

6.4.2. Running Coupling

It was pointed out in Ref. [288] that it is possible to define a infrared-finite running cou-
pling. In two separate experiments the effective infrared behavior of the running coupling
has been determined, including non-perturbative effects. The time-like part, Q2 > 0 [288]
can be extended also for space-like scales [289]. We use the following parametrization of
the coupling constant,

αs(Q
2) =

4π

11− 3nf/3

1

ln(−Q2/Λ2
QCD)

, for Q2 < −Λ2
QCD (6.49)

αs(Q
2) =

4π

11− 3nf/3

(
1

2
− 1

π
arctan

[
ln(Q2/Λ2

QCD)/π
])

, for Q2 > 0. (6.50)

αs(Q
2) = αmax

s ≡ 1, for − Λ2
QCD < Q2 < 0 (6.51)

Space-like momentum transfers include most importantly the Mandelstam t variable. It
has been checked, that observables are insensitive to the value of of αmax

s [220]. Due to
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renormalization flow equations, the scale at which the running coupling is evaluated can
not be set definitely, but should represent the typical scale of the problem.

Since we are using screened pQCD matrix elements (Eqs. (6.9), (6.10), (6.11) and (B.14))
the momentum scales at the vertices (Mandelstam variables) are in an individual scattering
different from the background medium, whose energy scale is the temperature T . The
hard-thermal loops thus operate at characteristic scale T .

In order to evaluate the running coupling αs(Q
2), at the vertices one should use the

Mandelstam variables of the respective channel, Q2 = s, t or u. The running coupling
appears however also within the definition of the Debye mass, mD,g ∼

√
αs(Q2)T , see

Eqs. (6.12)-(6.17). Here we have several possibilities what to use for Q2. In the past, it
was customary within the BAMPS framework to also use the hard scale, the Mandelstam
variables, however, following the above argument of hard thermal loop theory, the scale
should rather be the squared temperature T 2. More precise, it is common to use the
squared first Matsubara frequency (2πT )2 instead [254]. In literature, there was an argu-
ment to use the Debye-mass itself as a scale, see Ref. [290]. This leads to a self-consistent,
recursive evaluation of the Debye mass,

m2
D,g =

4π

3
αs(m

2
D,g) (Nc +Nf/2)T 2. (6.52)

This can be solved easily numerically, we will however not pursue this approach any further.
In Fig. 6.19 we compare all these different descriptions for the Debye mass but the one at
the Mandelstam scale, because mD in this case depends on the scattering channel. We see
that at the most relevant temperatures T ∼ 0.2− 0.8 GeV all descriptions are very close
and the temperature dependence of mD,g/T is mild. Self-evidently this holds also for the
thermal quark mass mD,q.
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7. Photon radiation using thermal
resummed rates

In this chapter we first introduce a different photon production algorithm based on thermal
radiation rates. Applied in a thermal or nearly thermal medium, only the temperature
and the energy of an individual quark must be known to calculate the probability of radi-
ating a photon from this quark per unit time as well as the photon’s energy distribution.
This method is theoretically based on the perturbative calculation from Arnold, Moore
and Yaffee [272, 273], hence dubbed “AMY-formalism”. In contrast to the original works
of AMY, which mostly concentrated on thermal emission rates, we evaluate the photon
emission for single quarks, which in turn can easily be generalized to a thermal ensem-
ble of the latter. We will compare the so obtained spectra of different systems (single
quarks and thermal ensembles) to spectra obtained via microscopic photon production
constructed in chapter 6. The stark physical differences lie in the angular emission struc-
ture (the AMY formalism has a simplifying assumption of exact collinearity) and the
energy spectra. More important, the AMY formalism includes an exact resummation
of the Landau-Pomeranchuk-Migdal effect. This microscopic photon radiation using a
radiation kernel can be seen as an alternative method to that using the 2 → 3 matrix
element.

7.1. Caveats in evaluating differential photon rates

One should divide the problem of jet-photon emission to the total rate of emitted photons
from a jet, its rate differential in photon energy and the angular emission pattern of the
photons. The term “jet” in this context only describes a single quark traversing a medium
(in usual heavy-ion terminology it describes a shower of high energy particles). The first
quantity is the number of photons per time, Γ(p), emitted from a quark of momentum p.
The differential rate is dΓ(p)/dk, where the photon energy is k. The angular spectrum is
dΓ(p)/dθ, where θ is the angle between the jet and the emitted photon.

As a reminder, at leading order in the rate, half of the photons in a thermal QGP bath are
produced from binary processes (Compton scattering and quark-antiquark annihilation),
the other half from bremsstrahlung processes qq → qqγ or inelastic pair annihilation
qq̄q → γq. In Secs. 6.2 and 6.3 we have shown in detail, how photon scattering matrix
elements (of the above processes) can be constructed, which lead to the approximate
leading order, thermal photon rates in a chemically and thermally equilibrated heat bath,
EkdR

γ/d3~k. This was done by comparing to isotropic, local rest frame photon rates from
leading order perturbation theory (AMY rate) and the subsequent fixing of the model
parameters κ,Cstat,Kinel.

However, it stays somewhat questionable that also the microscopic photon emission
rates Γ(p), dΓ(p)/dk or dΓ/dθ of non-thermal systems like “jet”-particles traversing a
thermal medium are fully correct.

In the next section (Sec. 7.2) we will construct a numerical method within BAMPS using
radiation kernels to guarantee that the rate dΓ(p)/dk and Γ(p) is nearly identical to the
AMY result, as well as the thermal rate EkdR

γ/d3~k, without any fitting parameter. In this

113
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method, however, the angle of a single emitted photon is assumed to be zero (consistent
with AMY) and might not be fully physical.

7.2. Gluon and photon splitting in the AMY formalism

Based on the original (thermal heat bath) AMY formalism, we can describe the proba-
bility of radiating photons or gluons from single hard quarks. Based on the separation
of scales T � gT � g2T , radiation rates are calculated by solving a complicated in-
tegral equation, respecting the LPM effect and the Bethe-Heitler regime correctly, but
assuming an infinite medium, such that no length dependence appears (as, e.g., in the
Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) [291] scheme).

7.2.1. From thermal photon rates to jet transition rates

We now summarize systematically in detailed steps the differential photon production rates
from quarks of fixed momentum p, beginning with the thermal equilibrium formulas (a
numerical parametrization was given in Eq. (6.31)), based on Refs. [272,273,279,292–294].

Let the quark propagate in z-direction [294]. Then pz ∼ T , and ~p⊥ ∼ gT , and the quark
is nearly on-shell, p0 = p = pz +O(g2T ). We denote the electric charge of a flavor f with
qf , e.g., an up-quark carries qup = (2/3)e. The rate is [272,273,279],

k
dRγ

d3k
=

3αEM
4π2

∑
f

q2
f

e2

 ∞∫
−∞

dpz
(2π)

∫
d2~p⊥
(2π)2

fF (pz + k) [1− fF (pz)]

× p2
z + (pz + k)2

2p2
z(pz + k)2

2~p⊥ · Re~f(~p⊥, pz, k). (7.1)

Here, fF denotes the Fermi distribution function and ~f is a dimensionless function,
obeying the integral equation (in this form explicitly and correctly1 given in Refs. [296,
297]),

2~p⊥ = iδE ~f(~p⊥, pz, k) + g2
sT

∫
d2~q⊥
(2π)2

C(~q⊥)
[
~f(~p⊥, pz, k)− ~f(~p⊥ − ~q⊥, pz, k)

]
. (7.2)

The collision kernel is [296,298]

C(~q⊥) =
m2
D,g

~q 2
⊥(~q 2
⊥ +m2

D,g)
. (7.3)

with squared gluon Debye mass

m2
D,g =

g2
sT

2

6
(6 +Nf ). (7.4)

The inverse formation time of the photon [297] is

δE = k
~p 2
⊥ +m2

∞
2pz(pz + k)

(7.5)

and the asymptotic (quark) mass,

m2
∞ = g2

sCRT
2/4 = m2

q . (7.6)

1In Ref. [294] there is a 2 missing, and in Ref. [295] there is an unclear factor 2π
3

.
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It is useful to show, that the last integral in Eq. (7.1) scales with g2
s . To this end, we

define scaled variables,

~̃p⊥ = ~p⊥/gs,

~̃q⊥ = ~q⊥/gs,

~̃f
(
~̃p⊥, pz, k

)
= gs ~f (~p⊥, pz, k) ,

m̃2
D = m2

D/g
2
s ,

m̃2
∞ = m2

∞/g
2
s , (7.7)

such that Eq. (7.1) becomes

k
dRγ

d3k
=

3αEM
4π2

∑
f

q2
f

e2

 ∞∫
−∞

dpz
(2π)

fF (pz + k) [1− fF (pz)]
p2
z + (pz + k)2

2p2
z(pz + k)2

× g2
s

∫
d2~̃p⊥
(2π)2

2~̃p⊥ · Re ~̃f
(
~̃p⊥, pz, k

)
. (7.8)

In these scaled variables, Eq. (7.2) has no dependence on g2
s any more, such that it must

only once be solved numerically to obtain the rate for arbitrary g2
s . We keep the original

notation (without the scaled variables) from now on.
The dpz integration can be interpreted physically as follows,

−∞ < pz < −k : Bremsstrahlung of antiquark of energy − pz
−k < pz < 0 : Inelastic pair annihilation with antiquark from medium, energy p

0 < pz <∞ : Bremsstrahlung of quark of energy p+ k (7.9)

We define the integrand of Eq. (7.1) as

G(pz, k) ≡ fF (pz + k) [1− fF (pz)]
p2
z + (pz + k)2

2p2
z(pz + k)2

∫
d2~p⊥
(2π)2

2~p⊥ · Re~f(pz, ~p⊥, k), (7.10)

and write the integral as

∞∫
−∞

dpz
(2π)

G(pz, k) =

−k∫
−∞

dpz
(2π)

G(pz, k) +

0∫
−k

dpz
(2π)

G(pz, k) +

∞∫
0

dpz
(2π)

G(pz, k)

=

0∫
−∞

dpz
(2π)

G(pz, k)Θ(−k − pz) +

0∫
−∞

dpz
(2π)

G(pz, k)Θ(pz + k)

+

∞∫
0

dpz
(2π)

G(pz, k)

=

∞∫
0

dpz
(2π)

[G(−pz, k)Θ(−k + pz) +G(−pz, k)Θ(−pz + k) +G(pz, k)] .

(7.11)

Using fF (−p) = 1− fF (p), we remark that G(pz − k, k) = G(−pz, k), namely,

G(−pz, k) ≡ fF (pz) [1− fF (pz − k)]
p2
z + (pz − k)2

2p2
z(pz − k)2

∫
d2~p⊥
(2π)2

2~p⊥ · Re~f(−pz, ~p⊥, k). (7.12)
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Here, the inverse formation time δE from Eq. (7.5) with substitution pz → −pz is the
same as with substitution pz → pz − k, thus Re~f(−pz, ~p⊥, k) = Re~f(pz − k, ~p⊥, k). In the
last integral (only the G(pz, k) term) of Eq. (7.11), we substitute

p′z = pz + k, dp′z = dpz, (7.13)

shifting the integration region to k < p′z < ∞ (and renaming afterwards p′z → pz), such
that Eq. (7.11) becomes

∞∫
−∞

dpz
(2π)

G(pz, k) =

∞∫
0

dpz
(2π)

[G(−pz, k)Θ(pz − k) +G(−pz, k)Θ(−pz + k)

+G(pz − k, k)Θ(pz − k)] .

= 2

∞∫
0

dpz
(2π)

[
G(−pz, k)Θ(pz − k) +

1

2
G(−pz, k)Θ(−pz + k)

]
. (7.14)

The region describing the inelastic pair annihilation 0 < pz < k includes the contribution
of quarks and antiquarks. We introduce a function

b(pz, k) =

[
1

2
Θ(k − pz) + Θ(pz − k)

]
, (7.15)

which guarantees that the inelastic pair annihilation is not doubly counted when we write
the rate of photon emission of only quarks,

k
dRγq

d3k
=

3αEM
4π2

∑
f

q2
f

e2

 ∞∫
0

dpz
(2π)

b(pz, k)

∫
d2~p⊥
(2π)2

fF (pz) [1− fF (pz − k)]

× p 2
z + (pz − k)2

2p 2
z (pz − k)2

2~p⊥ · Re~f(pz, ~p⊥, k). (7.16)

where the inverse formation time in the integral equation Eq. (7.2) must (in this nota-
tion, calling the function ~f with positive pz argument) be changed to

δE = k
~p 2
⊥ +m2

∞
2pz(pz − k)

. (7.17)

This concludes the calculation for photons. In analogy to the radiative gluon production
rate (from literature [278]), we however want to introduce another notation, for the only
purpose of enabling a direct comparison to literature. As customary, we define a vector
~h = ~p× ~k. This is only an internal variable, but can be imagined as a measure, how non-
collinear the final state is, since in an exactly collinear case ~h would vanish. We define a
two-dimensional vector in the transverse plane of ~pz ≡ ~p‖, which is denoted by ~p⊥ = p⊥~e⊥
and order gT . In this notation, we have [279]

~h = ~p‖ × ~k = p⊥k~e⊥ = ~p⊥k, (7.18)
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thus Eq. (7.16) becomes

k
dRγq

d3k
=

3αEM
4π2

∑
f

q2
f

e2

 ∞∫
0

dpz
(2π)

b(pz, k)

∫
d2~h

(2π)2 k2
fF (pz) [1− fF (pz − k)]

× p′ 2z + (pz − k)2

2p′z 2(pz − k)2
2
~h

k
· Re

~F

k

=
2

2

3αEM
8π2k

∑
f

q2
f

e2

 ∞∫
0

dp

(2π)
b(p, k)

∫
d2~h

(2π)2
fF (p) [1− fF (p− k)]

× 1

p5

1 + (1− x)2

x3(1− x)2
2~h · Re~F , (7.19)

where we renamed pz ≡ p and introduced x ≡ k/pz in the second step.
The function ~F ≡ ~fk must now be determined from Eq. (7.2) but with an appropriate

variable change (this will be done in Eq. (7.27) with CA ≡ 0) and wherein Eq. (7.17)
changes to

δE =
~h2 + k2m2

q

2pk(p− k)
. (7.20)

Equation (7.19) is the form of the radiative scattering rate given, e.g., in Ref. [279]. We
now make the connection to the transition rate dΓγf (p, k)/dk. With the quark+antiquark
density

dN q+q̄

d3~x
=
∑
f

12

∫
d3~p

(2π)3
fF (p), (7.21)

we transform the thermal photon production rate

k
dRγ

d3~k
≡
∑
f

12

∫
d3~p

(2π)3
fF (p)k

dΓγf (p, k, T )

d3~k
b(p, k)

=
∑
f

12

∫ ∞
0

dp p2 (4π)

(2π)3
fF (p)k

dΓγf (p, k, T )

k2dk(4π)
b(p, k)

=
∑
f

12

∫ ∞
0

dp

(2π)3
fF (p)

p2

k

dΓγf (p, k, T )

dk
b(p, k)

= 2
∑
f

6

∫ ∞
0

dp

(2π)3
fF (p)

p2

k

dΓγf (p, k, T )

dk
b(p, k) = 2k

dRγq

d3k
(7.22)

By rewriting Eq. (7.19),

k
dRγq

d3~k
=
∑
f

6

∞∫
0

dp

(2π)3
fF (p)

p2

k
b(p, k)

×
[
k

p2

αEM
4k

q2
f

e2

∫
d2~h

(2π)2
[1− fF (p− k)]

1

p5

1 + (1− x)2

x3(1− x)2
2~h · Re~F

]
, (7.23)

we find the radiative photon production rate from a single quark with flavor f , momentum
p at background temperature T

dΓγf (p, k, T )

dk
=
q2
f

e2

αEM
4p7

[1− fF (p− k)]
1 + (1− x)2

x3(1− x)2

∫
d2~h

(2π)2
2~h · Re~F (~h, p, k). (7.24)
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Alternatively, we can use

dΓγf (p, k, T )

dk
=
q2
f

e2

αEMk
4

4p7
[1− fF (p− k)]

1 + (1− x)2

x3(1− x)2

∫
d2~p⊥
(2π)2

2~p⊥ · Re~f(~p⊥, p, k).

(7.25)

The rate for emission of an antiquark naturally has the same expression. The solution
of the integral equations is most conveniently done by the impact parameter method
[297,298], transforming the integral equation into an ordinary differential equation which
can be numerically solved.

7.2.2. Numerical implementation of AMY emission rates in BAMPS

We evaluate Eq. (7.25) numerically for several values of p/T and k/T . The rate diverges
for k = p and k = 0, that is why we omit singular regions of width ∆p/T = ∆k/T = 0.05.
The rate is tabulated, and numerically interpolated, and can then be integrated over k/T
from k/T = 0 to k/T = ∞ to obtain Γγ(p, T ) = Γγ(p/T )T . In the local rest frame of a
microscopic ensemble of quarks such as in BAMPS, the number of emitted photons from
a quark with flavor f in timestep ∆t is thus ∆tΓγf (p, T ). If this number is not integer, one
must sample the number of photons, according to the emission probability. If a photon is
created, the momentum k of the photon is sampled along dΓγ(p, T )/dk. The numerical
steps are

1. Boost every numerical cell into a frame with zero collective velocity

2. Extract the temperature T in this cell

3. For each quark with LRF momentum p, generate a photon with probability ∆tΓγf (p, T )

4. Sample the momentum k of the photon with probability distribution Eq. (7.25)

5. Boost all particles, including the photons back to the original frame

Very crucial numerical tests include the comparison of (a numerical evaluation of) Eq. (7.25)
with the same quantity obtained by propagating a single quark with energy p through a
medium with temperature T in BAMPS, emitting photons with the above algorithm. This
is done in Fig. 7.1, for up-quark type jets of energy p/T = 1, 5, 50. Clearly, the method is
reliable and precise2.

The second test one should conduct is the comparison of the analytic thermal photon
production rate from Eq. (6.31) with the rate obtained in BAMPS, where one generates a
thermal ensemble of Nf = 3 massless quarks and gluons, letting the quarks emit photons
by the above algorithm. This effectively folds the thermal parton distribution function
with the emission rate Eq. (7.25). This is done in Fig. 7.2. The agreement is quite precise
and suffers only from small discretization errors due to tabulated and interpolated rates.

2We furthermore obtain identical emission rates as used in the established MARTINI code [299].
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Figure 7.1.: Photon emission rate per up-quark of momentum pquark versus photon energy
E from Eq. (7.25) (“AMY”) and from BAMPS, using the tabulated “AMY”
radiation kernel.

7.2.3. Gluon emission rates

The thermal invariant gluon production rate (for simplicity here only for processes q →
q + g in a thermal bath) is [279]

k
dRg

d3~k
=

g2
s

16(2π)3k4

∑
f

12CR

∫ ∞
−∞

dp

2π

∫
d2~h

(2π)2
fF (p+ k) [1− fF (p)] [1 + fB(k)]

× p2 + (p+ k)2

p2(p+ k)2
2~h · Re~F (~h, p+ k, k)

=
g2
s

16(2π)3k4

∑
f

12CR

∫ ∞
−∞

dp

2π

∫
d2~h

(2π)2
fF (p) [1− fF (p− k)] [1 + fB(k)]

× (p− k)2 + p2

(p− k)2p2
2~h · Re~F (~h, p, k)

=
g2
s

16(2π)3k

∑
f

12CR

∫ ∞
−∞

dp

2π
fF (p)

∫
d2~h

(2π)2
[1− fF (p− k)] [1 + fB(k)]

× 1

p5

1 + (1− x)2

x3(1− x)2
2~h · Re~F (~h, p, k),

(7.26)
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where ~h = ~p × ~k, the quadratic Casimir of the emitter, CR = 4/3 and x ≡ k/p. The
function ~F (~h, p, k) (unit energy) has to be determined by solving the following equation,

2~h = iδE(~h, p, k)~F (~h, p, k) + g2
sT

∫
d2~q⊥
(2π)2

C(q⊥)
{

(CR − CA/2)
[
~F (~h)− ~F (~h− k~q⊥)

]
+ (CA/2)

[
~F (~h)− ~F (~h+ p~q⊥)

]
+ (CA/2)

[
~F (~h)− ~F (~h− (p− k)~q⊥)

]}
,

(7.27)

with CA = 3 and where

δE =
~h2

2pk(p− k)
+
m2
k

2k
+

m2
p−k

2(p− k)
−
m2
p

2p
(7.28)

can be interpreted as the inverse formation time of the emitted particle. The masses of
the particles, labeled by the momentum of the particle, are thermal masses ∼ gT . For
photons, mγ = 0, for gluons, mg = mD,g/

√
2 (with squared Debye mass from Eq. (7.4))

and for quarks, mq = gsT/
√

3. For gluon emission from quark jets with momentum p, we
get in a similar way as before for the photons,

dΓg

dk
(p, k) = CR

g2
s

16πp7

1

1− e−k/T
1

1 + e−(p−k)/T

1 + (1− x)2

x3(1− x)2

∫
d2~h

(2π)2
2~h · Re~F (~h, p, k),

(7.29)

where the main difference is an additional Bose enhancement factor 1 + fB(k) = (1 −
exp(−k/T ))−1 for the outgoing gluon, and the overall g2

s dependence instead of e2 as in
the photon radiation case.





8. Differential kinematics of photon
production

If the geometry of a heavy-ion collision is exactly known, one can define transverse sym-
metry axes, and evaluate momentum asymmetries with respect to these axes. The most
important observable in this respect is the elliptic flow v2. If the geometry of an event is
not known, in order to extract momentum asymmetries, one must compute multi-particle
correlation functions and their Fourier decomposition [300, 301]. With the azimuthal an-
gle φ and the event-plane angle ψn of the n’th Fourier component, the n’th order flow
coefficient is vn = 〈cos (n[φ− ψn])〉, where the brackets denote the event average. If the
geometry is fix, one can turn the coordinate system to set ψn ≡ 0. For the important case
n = 2 we have cosφ = px/pT and sinφ = py/pT such that cos(2φ) = (p2

x − p2
y)/p

2
T and

v2 = 〈(p2
x−p2

y)/p
2
T 〉. Note that the value of, e.g., the elliptic flow v2 is not boost invariant,

if the boost is in x or y direction. In the local rest frame of a thermal distribution function
there is now elliptic flow, whereas a boosted distribution dN/d3~p ′d3~x ′ exhibits a nonzero
v2 = 〈(p′ 2

x − p′ 2
y )/p′ 2

T 〉 if the boost velocity has x or y components. In this chapter, we
examine the relation of relativistic boosts and average momentum asymmetries, and focus
on the question, how v2 is translated from a particle distribution onto the distribution of
produced particles such as photons. Additionally, we investigate the angular structure of
photon emission of single quarks, for quark and gluon jets. In some cases one can speak
of jet-photon conversion, and this can have consequences for the measured elliptic flow.

8.1. Boosted particle production rates

In general, a particle production rate of the following form is Lorentz invariant,

E
dR

d3~p
= E′

dR

d3~p ′
. (8.1)

For clarity, we first construct a simple production rate of particles with constant, isotropic
cross section σtot, which is realized by the matrix element |M|2 = 16πsσ22. This can be
seen by the formula for massless particles,

dσ

dt
=
|M|2
16πs2

,

0∫
−s

dσ

dt
dt = σtot. (8.2)

In this case, we are able to integrate the rate integral, Eq. (6.27), analytically, with the
result

R(E, T ) ≡ E dR

d3~p
=

1

ν

T 3

2(2π)6E
(16πσtot)e

−E/TE2. (8.3)

Here, the symmetry factor ν = 2 is due to the indistinguishable two incoming particles.
For different particles in the initial state, one has ν = 1. For a general velocity uµ, this
generalizes because of Eq. (8.1) to

E
dR

d3~p
=

1

ν

4T

(2π)5pµuµ
(T 2σtot)e

−pµuµ/T (pµuµ)2 . (8.4)

123



124 8. Differential kinematics of photon production

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-4 -2  0  2  4

d
R

/d
p

x
/T

3

px/T

σtot=10mb

analytic, γ=2.0
BAMPS, γ=2.0
analytic, γ=1.4
BAMPS, γ=1.4
analytic, γ=1.1
BAMPS, γ=1.1

Figure 8.1.: A differential particle production rate in px for an in x direction boosted
system. The production of the particles is governed by a constant isotropic
cross section σtot = 10 mb.

For a boosted system, say, with boost velocity in x-direction, uµ = (γ, γβx, 0, 0), the
interesting differential rate is dR/dpx/T

3, which is expected to show a tilt around px/T =
0, as particle momenta are boosted. One calculates the rate via,

dR

dpx
=

dN

dtd3~xdpx
=

∫
dpy

∫
dpz

P · U
E

1

P · UR(P · U, T ), (8.5)

where E =
√
p2
x + p2

y + p2
z and P ·U = γ(E−βpx). Using BAMPS, we initialize a boosted

thermal distribution of particles (of single species), applying a fixed particle production
cross section σtot. In Fig. 8.1 we compare Eq. (8.5) with the numerical results. We show
the scaled production rate versus momentum component px for three different boosts,
γ = 1.1, 1.4, 2.0. The rate becomes asymmetric, since the background distribution is
already asymmetric around px. The perfect agreement validates the numerical extraction
of the rate, as well as its implementation. The asymmetry in the px-component of the
produced particles immediately implies a nonzero v2 (with respect to px, py).

8.2. Analytically computed thermal average

Next we want to study, how momentum anisotropies of background particle distribu-
tions f(p) translate into anisotropies of particles, which are radiated by the background
medium. This is a fundamental question, because the elliptic flow v2, being a measure for
momentum anisotropy, is experimentally measured for identified or inclusive hadrons, as
well as for direct photons. The inclusive hadron spectra emerge from a nearly thermal,
but anisotropically flowing QGP medium, which itself produces photons. The photons do
not interact anymore until they reach the detector, and naturally one must ask how the
momentum distributions oft the quarks and gluons differ from that of the photons.
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Thermal averages of momentum dependent observables like the momentum anisotropy

v2(px, py) =
p2
x − p2

y

p2
x + p2

y

(8.6)

can be computed analytically for systems of background (bg) particles belonging to a
distribution f = dN/d3~p: 〈

vbg
2

〉
=

∫
d3~p f(~p) v2(px, py)∫

d3~p f(~p)
. (8.7)

For particles that are created with a certain rate R from a background distribution f , the
average is given by a weighting with the differential rate,

〈
vproduced particles

2

〉
=

∫
d3~p dR

d3~p
v2∫

d3~p dR
d3~p

, (8.8)

where the rate is computed from a system where f is the underlying distribution. In
Fig. 8.2 we show the comparison between the thermal averages Eq. (8.7) and Eq. (8.8)
with the numerical results from BAMPS. To this end we sample a collection of particles
from a boosted thermal distribution with uµ = (γ, γvx, 0, 0). We then use three different
cross sections to produce noninteracting particles. We plot γ on the horizontal axis and
the average

v2 = 〈v2(px, py)〉 (8.9)

on the vertical axis in Fig. 8.2. The red spheres are values extracted by averaging v2(px, py)
over the sampled background particles, and the red dotted line is the result from Eq. (8.7).
The precise agreement shows that the sampling works satisfactorily. The green squares
are obtained by using a constant, isotropic cross section σtot to produce particles, whereas
the green line is obtained by using Eq. (8.8) with the distribution Eq. (8.4). The yellow
upward triangles are the results from a 2 ↔ 2 pQCD photon production (see Chap. 6),
which is Compton scattering and quark-antiquark annihilation. Here we use Eq. (8.8)
with a simplified analytic photon rate from Ref. [23]. The numerical results agree in both
cases very well with the analytic estimate. We observe that the behavior of the momentum
anisotropy is extremely similar to that obtained from constant isotropic cross sections. We
expect, that also more complicated rates, such as bremsstrahlung, follows this trend. We
therefore plot also the result for photon bremsstrahlung (see Chap. 6) with blue downward
triangles, and see that this is true. In fact, this is the expected behavior since particle
production rates must be evaluated in the local rest frame of an underlying particle system.
This is common practice in hydrodynamics, and here, we merely show the corresponding
formalism in a microscopic picture. Denoting the rate by R(E, T ) = E dN

d3~pd4x
, the rate of

photons of a flowing (hydrodynamic) medium is given by

E
dR

d3~p
=

∫
flow field

d4xR(uµ(x)pµ, T (x)), (8.10)

where it is made explicit that the rate is evaluated in the local rest frame.
The most important lesson to learn from this exercise however is the difference between

the background v2 and the v2 of produced particles. For infinite boosts, γ → ∞, as well
as in the rest frame, they are equal (v2(γ =∞) = 1 or v2(γ =∞) = 0, respectively), in all
other cases the v2 of produced particles is smaller than the background v2. The reduction
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depends on the strength of the boost, where the ratio
〈
vproduced particles

2

〉
/
〈
vbg

2

〉
is smallest

for small boosts. In heavy-ion experiments, momentum anisotropies of charged hadrons
are of the order of a few percent. Assuming a nearly thermal quark and gluon distribution
to have a momentum anisotropy of the same order, one expects the photon anisotropy to
be somewhat smaller.

8.3. Photonic elliptic flow from multiple sources

In relativistic heavy-ion collisions, photons are produced by very different mechanisms,
each contributing a part to the photon spectrum, whereby the photons all show different
strength of the momentum asymmetry observable v2. The final, observable photon v2 is
weighted average over all sources (prompt, preequilibrium, QGP, hadronic), the spectrum
being the weight of each contribution:

v2(pT ) =
1∑

source i

dN i

dpT

(
dNpromt

dpT
vpromt

2 (pT ) +
dNpreequilibrium

dpT
vpreequilibrium

2 (pT )

+
dNQGP

dpT
vQGP

2 (pT ) +
dNhadronic

dpT
vhadronic

2 (pT )

)
. (8.11)

At present, one mostly assumes vanishing v2 for the prompt contribution, and in this
thesis, we show that also the preequilibrium and QGP value of v2 is small. It is however
never enough to investigate only the flow patterns, the yield is just as important.
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8.4. Elliptic flow of photons originating from parton jets

In BAMPS, photon production shows a small, positive v2, coming from a hydro-like flowing
background, “carried over” from quarks to photons. At higher transverse momenta, we
will partly see negative v2, which we explain by leaking particles; An asymmetric collision
region, combined with collinear emission of photons or jet-photon conversion, has more
photons emitted in the long direction of the almond-shaped collision region which can
make the v2 negative1.

Here we investigate in some more detail this leakage effect. We remark that this obser-
vation would not be possible in hydrodynamic calculations.

8.4.1. Box calculation of photon leakage effect

To understand the kinetics of photons originating from hard partons qualitatively we use
a fixed box with volume V = Lx · Ly · Lz, and populate it homogeneously with a thermal
distribution of quarks and gluons (temperature T ). This distribution can either be at rest
with a four-velocity uµ = (1, 0, 0, 0), or boosted in the x direction, uµ = (γ, γvx, 0, 0),
such that there is a strong collective flow in the x direction (as seen from the laboratory
frame). We change the box size to be either very thin, Lx/Ly � 1 or cubic, Lx = Ly = Lz.
Furthermore, we initialize at the geometric center of the box a large amount of “jet”-like
particles isotropically with a fixed energy Ej ∼ 5T − 10T . All particles are allowed to
scatter and produce photons, however, when any particle hits the wall, it is deleted. We

define a transverse momentum, pT =
√
p2
x + p2

y. Our observable resembles an elliptic flow

v2, but here it is merely a momentum anisotropy,

v2 =

〈
p2
x − p2

y

p2
T

〉
average all photons

. (8.12)

To this end, we consider five scenarios:

A Cubic box at rest, including jets

B Cubic box with flow, without jets

C Cubic box with flow, including jets (jet pT = 10T )

D Thin box, Lx/Ly � 1 at rest, including jets (jet pT = 5T, 10T )

E Thin box, Lx/Ly � 1 with flow, including jets (jet pT = 10T )

Evaluating the momentum anisotropy from these scenarios, we plot the results in Fig. 8.3.
As expected, no flow is visible in the symmetric scenario A. In scenario B a thermal, flowing
background generates a momentum anisotropy which increases for higher pT . Undisturbed
flow from the background is carried over to photons. Here we note that, by a simple
relativistic effect, the (Lorentz variant) result of Eq. (8.12) for produced particles is lower
in magnitude than that for the background distribution. This effect depends on the boost.
Including jets, which are isotropically emitted from the center, the flow reduces to zero at
exactly the jet energy. For Compton scattering and quark-antiquark annihilation a large
amount of photons inherit nearly the full momentum from the jets (jet-photon conversion).
Because the jet momentum is dominant, the momentum anisotropy of these photons is

1The results from Chap. 9 and Ref. [4] use a smooth Glauber initial state. An event-by-event calculation
would probably be more realistic and also a leakage or escape effect reflecting the geometry could be
possible.
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Figure 8.3.: Results for the qualitative understanding of elliptic flow of photons originating
from flowing thermal background and non thermal ”jet”-like partons for the
5 scenarios explained in Sec. 8.4.1. The thermal medium has a temperature
of 0.4 GeV, and for simplicity photons originate from 2↔ 2 processes only.

zero, hence the curve of scenario C drops at the jet energy. The flow at lower pT stems
from the background flow. In scenario D there is no background flow, and no positive
v2 contribution. The jets, initialized in the middle of the box, traverse it until whichever
wall comes first until they are deleted. During their traveling path, they can hit a thermal
particle and produce a (conversion) photon, with a momentum close to that of the parent
jet. This is more likely to happen in the (long) y or z direction, than in x, as the box has a
small Lx size. Most of the photons have larger py momenta than px, thus the v2 becomes
negative (see, e.g., Ref [302] for similar findings). We show this effect for two different jet
pT and, clearly, the minimal v2 is reached at exactly the jet pT . This effect can be termed
the geometric leakage effect. Finally, the combined effect of thermal background flow and
jet conversion photons is shown in scenario E: For low pT there is substantial momentum
anisotropy, whereas around the jet pT the conversion effect dominates and pushes the v2

into the negative region. This toy example shows what we can expect in a heavy-ion
collision when both, jet particles and thermal flowing particles are present. The relative
strengths of both effects have to be investigated in a full simulation.

8.5. Angular structure

To date, only insufficient knowledge exists about the correct angular emission pattern of
photons. In the AMY formalism (explained in Sec. 6.3), the emission angle of radiated
photons or gluons with respect to the momentum direction of the radiating parton is
parametrically of order O(g). This is why it can be taken to be zero2 (in the local rest
frame of the background fluid cell in which the radiating parton is located). We however
remind at this point, that in realistic scenarios, the coupling is large, g ∼ O(g).

2This is done, for instance, in the microscopic event generator MARTINI [299].



8.5. Angular structure 129

The BAMPS framework (see Chap. 4) employing microscopic photon production by ma-
trix elements is ideally suited to study the angular emission patterns, which are nontrivial
due to the exact 2 ↔ 2 and 2 → 3 matrix elements and their rich functional structure of
the in- and outgoing momenta.

At this point we repeat, that the algorithm employing the matrix elements for photon
production was constructed to generate the correct, total leading order rate (integrated
over all angles) only in chemical and thermal equilibrium, and the angular structure of
single emissions employing microscopic matrix elements may contain uncontrolled uncer-
tainties.

In this section we look more closely to photons emitted from highly relativistic quarks
scattering off the QGP background. This emission from “jet-like” particles is rather lit-
tle understood and can give important contributions to experimentally measured direct
photon spectra. To this end we point out when one can speak of jet-photon conversion,
and look differentially in energy and angle how photon production behaves for quark and
gluon induced photon radiation.

8.5.1. Jet photon conversion and angular structure with microscopic 2→ 3
matrix elements

To explicitly see how partons with fixed energy (called “jets” for higher energies) interact
with thermal particles and create a photon, we carry out a simple box calculation, where
quarks with fixed energy Equark hit particles from a thermal bath (Nf = 3). All the
following results are carried out in a static thermal QGP medium. A flowing medium
would affect the results. In Fig. 8.4 we show the resulting photon spectra (Nγ=number
of photons), normalized by the number of jets Njet for a certain time t. Quark jets can
interact via 2 ↔ 2 (Compton scattering and quark-antiquark annihilation) and 2 → 3
processes (bremsstrahlung)

The specific mean free path, necessary for the bremsstrahlung processes (see Sec. 6.4)
is set to the equilibrium value at unit fugacity, R−1

q = 21.4 fm (processes 1) and R−1
q =

17.6 fm (processes 2).
In the following we separate results for “only 2↔ 2”,“only 2→ 3” and both processes.

The shape of the spectrum depends on the ratio Equark/T . In the top (bottom) panel
of Fig. 8.4 we show results for Equark/T = 1 (Equark/T = 10). For higher jet energies
(bottom panel), the total spectrum is dominated by the 2 → 3 processes at all energies,
whereas at lower jet energies (top panel) 2 ↔ 3 scattering dominates only below photon
energies of 0.5 GeV, and above 2→ 2 and 2→ 3 contribute about equally. We make the
following observations.

� Quark jets, interacting only in 2↔ 2 processes, have a peak at the jet energy Equark

(barely visible in the bottom panel of Fig. 8.4).

� Quark jets, interacting only in 2→ 3 processes, show a peak at low photon energies,
irrespective of the quark energy. Only the strength of the peak grows with the quark
energy.

� The full spectrum (2↔ 2 + 2→ 3) shows always a peak at low energies.

In Fig. 8.5 we show the angular spectrum of emitted photons with respect to the incident
quark, again for two different ratios Equark/T = 1 (top panel) and Equark/T = 10 (bottom
panel), normalized to the total rate Rγ . Clearly, at quark energies comparable to the
background medium temperature, the total photon emission is almost isotropic; at least
one cannot speak of a clear favorite direction. This is true individually for binary and
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radiative photon production. At quark energies larger than the typical thermal energy
of the background partons (bottom panel), there is a clear collinear peak, photons are
emitted closely to the quark, for binary and radiative scattering. The 2↔ 2 contribution
shows a even more collinear shape, but the bremsstrahlung contribution is much more
important, thus the total rate has a similar shape as the bremsstrahlung spectrum. To
further disentangle the kinematics, we show in Fig. 8.6 more differentially how the angular
distribution looks like for different photon energies. For low quark energies (top panel) all
energy-bins have a similar angular distribution. For high quark energies (bottom panel)
one observes that the large photon energies are more collinear than the low photon energies,
which can have all angles and show only a small forward enhancement (low angles).

For a gluon jet, the only possible process is Compton scattering. In Fig. 8.7 we show
the photon spectra by energetic gluons and quarks (Ejet = T and Ejet = 10T ), normalized
as before. At low energy, Ejet = T , quark and gluon jets do not generate much different
photon spectra. The comparison of the two radiative processes shows the strong low energy
enhancement of the AMY kernel emission compared to the inelastic matrix element. At
these low energies, one cannot speak of jet-photon conversion any more, as the the “jet”
particles have thermal energies. At high energies, Ejet = 10T , it can be seen, that for
photon emission from gluons the photon spectrum is weakly peaked at values E ∼ O(T )
due to the present channel (Compton scattering). It is apparent that for gluons we cannot
speak of jet-photon conversion. A quark jet interacting by only binary scattering exhibits a
strong peak in the photon spectrum at the quark energy, which is a jet-photon conversion.
The radiative emission patterns however have a broader energy distribution.

8.5.2. Phenomenological consequences

Having determined the kinematics of the single photon emission mechanisms, it remains
to see how they behave in dynamical heavy-ion collisions. It became clear, that energetic
quark jets are probable to almost collinearly translate to photons. Here, the higher the
energy of the produced photon, the more collinear it will be to the originating quark.
Gluon jets do not show this translation, photons (by the Compton mechanism) have a
broad angular distribution.

The application of the AMY collision kernel guarantees much softer photons than the
matrix element method, or binary scattering. We will see that this will show up in larger
low-pT spectra in heavy-ion collisions.
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9. Photons from heavy-ion collisions

In the following we show results from realistic simulations of heavy-ion collisions by using
the photon production methods explained in Chap. 6 and Chap. 7 within the framework
of BAMPS. To date, experimental data is rather limited, thus we must often compare to
preliminary or very uncertain data.

The model BAMPS currently simulates only the QGP phase, beginning with formed
partons. For the initial parton distribution we use pythia 6.4 [303], a p+p event generator.
We compute the number of binary nucleon collisions Ncoll depending on the centrality, and
run Ncoll individual p+ p events from pythia to generate momenta of quarks and gluons
(details about the implementation can be found in Ref. [237]).

The transverse positions are computed by a Glauber-type initial condition [40, 237].
Each particle obtains a formation time τf = p−1

T cosh(y). Before this formation time, it
is not allowed to interact, but merely travels on a straight line while it is being formed.
Further details concerning the BAMPS setup for heavy-ion collisions, as well as numerous
previous studies can be found in [40,218,248,249].

At RHIC, the PHENIX collaboration, working with
√
sNN = 0.2 TeV Au+Au collisions,

published midrapidity (|y| < 0.35) photon spectra at 0% − 20%, 20% − 40%, 40% − 60%
and 60%− 92% most central events [80].

A centrality selection of an event ensemble as done in experiment would require a
fluctuating impact parameter, but since we use individual p+p collisions, we must estimate
an average impact parameter b for which the theoretical Ncoll coincides rather precise
with the experimental average within a centrality class, 〈Ncoll〉. The calculated number
of participating nucleons Npart should also match the values quoted by experiment. We
estimate Ncoll from a standard Glauber model tuned by a factor of 80% due to shadowing
effects. We so obtain the effective impact parameter b = 4.4 fm for 0% − 20% central
collisions, b = 7.9 fm for 20% − 40% most central collisions, b = 10.3 fm for 40% − 60%
most central collisions, and b = 12.7 fm for 60%− 92% most central collisions.

The ALICE collaboration, working at
√
sNN = 2.76 TeV, uses 3 centrality classes of

Pb+Pb collisions (0%− 20%, 20%− 40%, 40%− 80%) for spectra [76] as well as 0%− 40%
in a first study [304] on v2. Recently, the ALICE collaboration published more precise
data for the elliptic flow, using the 0% − 20% and 20% − 40% centrality class within 0.8
units of rapidity. In order to allocate an impact parameter b to those centralities we use
the values from the ALICE collaboration [76,305] for Npart and Ncoll, and compare to the
Glauber results, obtaining b = 5 fm for 0% − 20% most central collisions, b = 8.4 fm for
20%− 40% most central collisions and b = 11.6 fm for 40%− 80% most central collisions.

Because photons are very rare probes, they do not alter the collision dynamics. For
this reason we use recorded BAMPS events, and sample photons by collisions among the
recorded particles. This method allows us to reduce numerical noise by enhancing the
photon cross section by a nearly arbitrary factor and scale the resulting spectra down by
this factor. We have checked that all our results are independent of these factors. The
background collision includes the latest improvements from BAMPS, such as the improved
Gunion-Bertsch matrix elements for gluon radiation and a pQCD running coupling1 [217,

1Note that photon production is numerically separated from the background events, and we chose the
coupling of the photon production processes to be fixed, see also Fig. 9.14.

135



136 9. Photons from heavy-ion collisions

218, 220]. The evolution of BAMPS runs until the energy density drops locally below
εc = 0.6 GeV/fm3. We have checked that the photon spectra are insensitive to this choice,
because the rather cool medium in the later stages no longer produces many photons.

In this chapter we first take a closer look to effective thermodynamic properties of
the medium in order to characterize the background medium, which radiates thermal
photons. This means, we investigate temperature, collective velocity, energy and particle
density and fugacity at different positions within the fireball. Subsequently, we compare
available prompt photon spectra from literature, since they are essential for comparisons
to experiment. We then present photon spectra and elliptic flow from BAMPS for RHIC
and LHC, and compare, where possible to the experiments. Next, we compute photon
spectra using different running coupling prescriptions. Since chemical equilibration plays
a major role, we study the sensitivity of the photonic observables to the quark and gluon
fugacities. Finally we show a global comparison to other models computing direct photons.

9.1. Background chemistry in BAMPS

BAMPS was built as a genuine tool for studying the non-equilibrium evolution of the
quark-gluon plasma. As such, it is not unambiguous to characterize its properties with
macroscopic quantities like temperature or chemical potential, which require an underlying
equilibrium distribution function. It is however possible, and instructive, to do so approx-
imately. In the case of temperature, one has in principle infinite possibilities of using
different moments of the non-equilibrium distribution function, or combinations thereof,
to obtain an effective temperature. In equilibrium, the energy density for massless parti-
cles is ε = 3nT , and energy and particle density n are given by moments of the distribution
function f(p),

ε =

∫
d3~p

(2π)3Ep
E2
pf(p) (9.1)

n =

∫
d3~p

(2π)3Ep
Epf(p) (9.2)

which are in this form not Lorentz invariant. A boost of the momenta yields the respective
local rest frame quantities εLRF and nLRF, such that we can define an effective temperature
by the second over the first moment, T 2nd

? = εLRF/(3nLRF). Alternatively we can use the
first moment over the zero’th moment, defined by Ref. [278],

J =

∫
d3~p

(2π)3Ep
f

I =
1

2

∫
d3~p

(2π)3Ep
Epf

T 1st
? =

∑
species i

νi
g2Ci
dA
Ii
/ ∑

species i

νi
g2Ci
dA
Ji , (9.3)

where the dimension of the adjoint representation of SU(3) is dA = 8, the degeneracy
for gluons is νg = 16, and for every quark and antiquark species νu = 6, νū = 6, νd =
6, νd̄ = 6, . . .. The quadratic Casimir Ci for quarks in the fundamental representation is
CF = 4/3 and for gluons in the adjoint representation CA = 3. Here we note, that J is
Lorentz invariant (proportional to the Debye mass), and can easily be evaluated in the lab
frame, however, I (proportional to the density) is not Lorentz invariant. In order to obtain
the temperature (defined in the LRF) T 1st

? , it is necessary to evaluate I in the LRF, which
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requires merely a factor of γ. Explicitly, within BAMPS, we sum up lab momenta of the
particles within a cell of volume V , where the testparticle number is Ntest, the number of
gluons Ng, the number of quarks+antiquarks Nq and the boostfactor of the cell γ,

Ig =
1

2

Ng

νgNtestV γ
,

Iq =
1

2

Nq

12NfNtestV γ
,

Ji =
1

di

1

V Ntest

∑
particles j

1

pj
. (9.4)

The boost velocity ~β is cellwise computed by

~β =

∑
~p∑
E
. (9.5)

The boostfactor γ = (1− β2)−1/2 is quite sensitive to the number of testparticles used for
the average, since

〈
(1− β2)−1/2

〉
6= (1−〈β〉2)−1/2. Numerical studies showed, that at rest,

at least 30 particles are necessary to obtain γ ≈ 1 with good accuracy. To this end, we
cluster all nine grid cells around each respective cell at the same space-time rapidity for the
calculation of γ, Iq, Ig,Ji, εLRF, nLRF, and also the Debye masses. Another temperature
definition uses only the zero’th moment J , by inversion of Eq. (6.14),

T 0th
? =

√
π

8(Nc +Nf )αs
m2
D,g. (9.6)

We use this form only for the evaluation of the running coupling, due to numerical reasons2.
Towards equilibrium, all temperature definitions coincide more and more closely. The
energy density in the rest frame of the cell is only needed for the freeze-out criterion εLRF <
εc ≡ 0.6 GeV/fm. The energy momentum tensor in the lab frame Tµν is transformed to
that in the rest frame of the cell T̂ ,

T̂µν = Λµµ′Λ
ν
ν′T

µ′ν′ , (9.7)

The energy density is defined as the 00-component in the rest frame, εLRF = T̂ 00. Thus
we have

εLRF =
(
Λ0

0

)2
T 00 +

(
Λ0

1

)2
T 11 +

(
Λ0

2

)2
T 22 +

(
Λ0

3

)2
T 33

+ 2Λ0
1Λ0

0T
10 + 2Λ0

2Λ0
0T

20 + 2Λ0
3Λ0

1T
30 + 2Λ0

2Λ0
1T

21

+ 2Λ0
3Λ0

1T
31 + 2Λ0

3Λ0
2T

32

= γ2T 00 + γ2v2
xT

11 + γ2v2
yT

22 + γ2v2
zT

33

− 2γ2vxT
10 − 2γ2vyT

20 − 2γ2vzT
30

+ 2γ2vxvyT
21 + 2γ2vxvzT

31 + 2γ2vyvzT
32 (9.8)

which we calculate using all particles in each 3x3 cell cluster, corresponding to 0.9 fm ×
0.9 fm.

9.1.1. Temperature

The (effective) temperature within the fireball is strongly dependent on the transverse
position as well as the time in the evolution. Generally, for times earlier than t ∼ 1 fm/c

2It is unfeasible to tabulate cross sections differential in temperature and Debye mass.
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Figure 9.1.: The time evolution at midrapidity of the effective temperature T ≡ T 1st
? (cal-

culated using Eq. 9.3) for RHIC (left) and LHC (right) at three different
positions along the short axis (x-axis) in peripheral heavy-ion collisions.

the notion of temperature is questionable as the medium is not equilibrated. In this

preequilibrium phase, using the above mentioned T
1st/2nd
? results in effective temperatures

of around 600− 800 MeV at the LHC and 400− 600 MeV at RHIC. In Fig. 9.1 we show
the time evolution of the effective temperature T 1st

? at three different locations across the
almond-shaped fireball (x = 0, 1.2, 2.4 fm). Clearly, the medium is cooler in the outer
region, but the difference in temperature between the center at the edge of the fireball is
largest at around t = 2 fm/c for both RHIC and LHC.

In Fig. 9.2 we compare the temperature evolution of BAMPS (as an example for central
RHIC collisions) with a simple Bjorken solution of hydrodynamic equations, Eq. (4.15),
using as parameters T0 = 0.4 GeV, τ0 = 0.6 fm. Clearly, the temperature falls of much
steeper in BAMPS, but the lat-time behavior, due to the local equilibration, behaves
comparable to Bjorken hydrodynamics. We also compare to the result of viscous hydro-
dynamics from Ref. [306] and a much simpler fireball model from Ref. [85]. Both are
comparable, but start with different initial temperatures. BAMPS exhibits initially much
higher temperatures than all other approaches. Since photon spectra are sensitive to
the temperature profile (spacetime integrated) we can expect harder photon spectra from
BAMPS than, e.g., hydrodynamics, assuming comparable flow velocities (collective flow
can red or blueshift spectra).
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RHIC compared to a simple Bjorken solution with T0 = 0.4 GeV initial tem-
perature, and two results from literature.

9.1.2. Velocity

In Fig. 9.3 we show the time evolution of the local boostfactor γ at the same positions
as before for the temperature in Fig. 9.1. The boostfactor γ characterizes the collective
flow of the cell, and it is quite interesting to observe, that the flow increases dramatically
as one moves outwards from the center. At position x = 2.4 fm from the center of the
fireball the boost is highly relativistic, up to γ = 3 at the LHC and γ = 2.5 at RHIC. The
flowing medium produces photons; the relativistic translation of flow from the medium to
photons is discussed in detail in Chap. 8, Sec. 8.2.

Elliptic flow of photons is a convolution of the rate (being proportional to the temper-
ature squared kdRγ/d3k ∼ T 2) with the flow velocity. The combination of large tem-
peratures only at early times, where flow is still small, disfavors large final elliptic flow.
The distribution in space shows the same pattern, in the peripheral areas, where the flow
velocity is large, the temperature is lowest, whereas in the hot center the flow is zero.
Many photons are thus emitted isotropically from the center, reducing the final elliptic
flow.
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Figure 9.3.: The time evolution at midrapidity of the collective boostfactor for RHIC (left)
and LHC (right) at three different positions along the short axis (x-axis) in
peripheral heavy-ion collisions.

9.1.3. Energy density

The energy density of the medium ε, calculated from Eq. (9.8), is shown in Fig. 9.4 again
averaged over squares of 0.81 fm2 in the center, and 1.2 fm and 2.4 fm away on the short
axis of the almond-shaped fireball. Here we observe, that the functional form of ε in the
center is very different to the one at the edge, which falls off much steeper initially and
levels off in a more shallow way at late times. This feature is seen in all five collision
systems. Generally, the initial energy density decreases from the center to the edge,
especially at early times. Since we keep the outer observation point at x = 2.4 fm fix, the
flow of the medium increases the energy density at this point with respect to the center.
Due to this radial flow, and also the slow equilibration, the functional form is different to
the Bjorken assumption, Eq. (4.15).
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Figure 9.4.: The time evolution at midrapidity of the local rest frame energy density ε ≡
εLRF for RHIC (left) and LHC (right) at three different positions along the
short axis (x-axis) in peripheral heavy-ion collisions.



142 9. Photons from heavy-ion collisions

10
-1

10
0

10
1

10
2

Gluons

n
 [

fm
-3

]
0-20 % Pb+Pb
√s=2.76 ATeV

Quarks

center
x=1.2 fm
x=2.4 fm

0-20 % Pb+Pb
√s=2.76 ATeV

10
-1

10
0

10
1

10
2

0 1 2 3 4 5

Gluons

n
 [

fm
-3

]

t [fm/c]

20-40 % Pb+Pb
√s=2.76 ATeV

0 1 2 3 4 5 6

Quarks

t [fm/c]

20-40 % Pb+Pb
√s=2.76 ATeV

Figure 9.5.: The time evolution at midrapidity of the local rest frame quark and gluon
densities n ≡ nLRF for the LHC at three different positions along the short
axis (x-axis) in peripheral heavy-ion collisions.

9.1.4. Particle density and fugacity

The chemical composition of the background medium is seen in Fig. 9.5 for LHC and
Fig. 9.6 for RHIC in terms of local rest frame density evolutions at x = 0, 1.2, 2.4 fm from
the center. In absolute numbers, the quark densities begin about an order of magnitude
lower than the gluon densities, but due to gg → qq̄ quark production processes, the
densities become comparable or even larger at late times. Similar to the energy density,
the particle densities fall off at the edges about a factor of 2− 5, compared to the center.
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Figure 9.6.: The time evolution at midrapidity of the local rest frame quark and gluon
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axis (x-axis) in peripheral heavy-ion collisions.
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Figure 9.7.: Quark and gluon fugacity λ at midrapidity for LHC (left) and RHIC (right)
computed in the center and a peripheral cell 2.4 fm from the center. For these
fugacities the temperature prescription from Fig. 9.1 was used.

In order to characterize the parton composition of the medium even further, the fugacity,
λ = n/neq is the relevant quantity. In Fig. 9.7 we show the midrapidity fugacities for RHIC
and LHC, corresponding to the densities and temperatures from Figs. 9.5,9.6 and 9.1. We
show the fugacity averaged in the center of the fireball and x = 2.4 fm away from the
center. The gluon fugacity starts at a much higher value than the quark fugacity. Its
prominent peak at early times should not be taken too serious, as the medium is not yet
equilibrated and the concept of temperature still doubtful. The density is however large,
and the formation of a Bose-Einstein condensate might be possible [236]. In all cases, the
gluons saturate to around unity, whereas quarks only in the center of most central LHC
collisions reach unity at late times. We see in addition, that the difference of chemical
equilibration for quarks and gluons in the center and at the edge of the fireball is quite
strong. The quark fugacities in the central cell are about double as large as at the edge.
This difference decreases slightly for peripheral collisions. The gluon fugacities show the
same tendency, albeit with very different shape, and gluons are strongly under saturated
away from the center.
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9.2. Photon yield from heavy-ion collisions

At present, BAMPS simulates only the QGP phase of heavy-ion collisions. This com-
plicates studies and comparisons with direct photon data from experiment as for other
observables (such as, e.g., heavy quarks, jets, or bulk medium elliptic flow). We how-
ever at this stage compare to data whenever possible and use additional contributions of
prompt and hadronic photons when available.

Photons from 2 ↔ 2 collisions are produced along the method described in Chap. 6.
In the previous chapters we presented two alternative methods for radiative photon pro-
duction: in Chap. 6 we described the use of microscopic 2 → 3 matrix elements. In
equilibrium, and at unit quark and gluon fugacities, the 2 → 3 matrix elements were
tuned to obtain spectra which are similar in shape and magnitude to the (parametrized)
AMY resummed pQCD photon spectra. This method, added to photons from 2 ↔ 2
collisions, is henceforth labeled as “22+23”.

The second method is described in Chap. 7, using radiation from individual quarks (nu-
merically 1→ 2 processes), added to photons from 2↔ 2 collisions, is henceforth labeled
as “22+AMY”. It uses the emission kernel directly, and, in thermal and chemical equi-
librium reproduces even more precise the analytic AMY rates. The fugacity dependence
of photon radiation with this method is precisely ∼ λq. The kernel utilizes the effective
temperature T 1st

? , defined in Eq. (9.3), which is, in practice, averaged within the compu-
tational cell (or including neighboring cells) in the transverse plane of the collision. This
averaging geometry is also used to obtain the effective Debye masses which are used by
the 2↔ 2 and 2↔ 3 matrix elements for the background as well as the photon production
processes.

When looking at photon production within the BAMPS framework, one should bear in
mind the following subtleties concerning the background evolution of the model.

� Within the BAMPS scheme, using Ncoll-scaled p + p collisions as initial state, the
parton multiplicity is no free parameter. As a cross-check, the transverse energy
distribution has been checked to be in the experimental ballpark. However, due to
the unsolved hadronization problem of parton cascades such as BAMPS, a careful
comparison of hadron multiplicities remains for the future.

� The initial state from BAMPS is harder than, e.g., in hydrodynamic simulations, as
we concluded from Fig. 9.2.

� Since there are no physical fluctuations in the initial state, we do not perform an
event-by-event analysis. A fluctuating initial state, which has a broad eccentricity
distribution, analyzed event-by-event, will typically result in larger values for ob-
servables sensitive to momentum asymmetry, such as two particle correlation elliptic
flow of partons, hence also for photons.

This being said, we emphasize the caveats within the BAMPS framework concerning
the three production mechanisms for photons

� The radiative matrix elements for photons (“2→ 3”) suffer from the simplified LPM
suppression, and simple Debye screened propagators, see Sec. 6.4. The corresponding
rate in equilibrium was investigated in detail in Sec. 6.4, however, the extrapolation
to the non-equilibrium situation in heavy-ion collision simulations in BAMPS might
contain uncontrolled systematic uncertainties.

� The 2 ↔ 2 matrix elements for photon production, screened by Debye masses, are
under control in the equilibrium situation, see Sec. 6.2. In a non-equilibrium medium
however, the screening algorithm is an assumption.
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� The microscopic “AMY” formalism used within BAMPS is based on the full equilib-
rium calculation3 in Ref. [272,273]. We therefore assume thermal equilibrium, using
an effective temperature, see Sec. 9.1.1. This might lead to uncertain radiative pho-
ton production rates, e.g., the effective temperatures appear generally quite large at
early times. The overall fugacity dependence ∼ λq is maintained.

� The microscopic “AMY” formalism used within BAMPS assumes chemical equilib-
rium, thus the fugacities from BAMPS are ignored. This is in line with hydrodynamic
calculations, but not in strict consistency with BAMPS. See also Sec. 9.3.

� The microscopic “AMY” formalism used within BAMPS assumes collinear emission.
This is consistent with the analytic derivation, where the angle is order g, however,
in realistic scenarios, where αs ∼ 0.3, one would expect a broader distribution in the
emission angle with respect to the emitting quark. The “22+23” method does not
assume collinear emission, see also Sec. 8.5.1.

Furthermore, when comparing photon spectra in realistic scenarios of heavy-ion colli-
sions, in general, one is sensitive to the following points.

� Direct photons, as measured in heavy-ion collisions, are emitted from initial nucleon-
nucleon contacts (prompt photons), and the subsequent QGP and hadronic phase,
whether thermal or not. The prompt contribution is mostly treated independently,
and may contain serious uncertainty, see also Sec. 9.2.1. Most calculations add the
prompt contribution on top, instead of a dynamic transfer of prompt collisions and
the subsequent thermalization.

� The hadronization process, from the quark-gluon to the hadronic phase, is micro-
scopically unknown. Hydrodynamic calculations claim to have a good description of
the thermodynamic behavior across the phase transition (four-volume, temperature
profile, velocity profile) using some equation of state including a cross-over phase
transition, however, they assume chemical equilibrium and local thermal equilib-
rium across the phase transition. A more realistic description might yield different
behavior, and thus a different photon yield. The spacetime profile of velocity and
energy-momentum Tµν of the quark-gluon and hadronic phase determine a large
fraction of the low-pT direct photons, and the spacetime borders are therefore cru-
cial.

� The quark and gluon content is very important, since every photon production
process must contain quarks. Most hydrodynamic calculations assume complete
chemical equilibration, defined by local equilibrium quark and gluon densities, nq =
n0,q, ng = n0,g. Stemming from the initial condition as computed by pythia 6.4,
the medium is in our case far from chemical equilibrium, as can be seen, e.g., from
Fig. 9.7. Especially the quark and antiquark fugacities are important, as photon
rates scale by powers of 1− 2 of the quark fugacities, see also Sec. 9.3.

Despite those caveats, in the following we compare spectra and elliptic flow as much as
possible with experimental data and other theoretical calculations.

9.2.1. Prompt photons in literature

In proton-proton collisions, photons are produced by Compton scattering or quark-antiquark
annihilation among quarks and gluons within the colliding protons. They are then final

3In Ref. [294] this was generalized to include viscous corrections. In Ref. [280] the formalism was inves-
tigated for finite baryon chemical potential.
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Figure 9.8.: Schematic diagram of prompt photon production by factorized proton parton
distribution functions fa,b/p(xa,b, Qfact), the photon fragmentation function

Dγ/c(zc, Qfrag) and the reaction cross section dσ/dt.

state particles from hard processes and may be separable from hadronic showers. Parton
jets generated by hard initial parton interactions can also fragment into photons. Frag-
mentation photons are the result of higher order corrections in the strong coupling to the
hard Compton or annihilation processes [307], and likely to be surrounded by hadrons, if
not too energetic. The collisions are characterized by large momentum transfers and small
coupling, the reason for which calculations in perturbative QCD are in good agreement
with experimental measurements of direct photons in p-p collisions. See Ref. [307] for a
detailed comparison to world-data.

It is customary to compute total invariant cross sections σpp→γX = NγSp instead of
invariant yields EγdNγ/d

3kγ , where σpp→γX = NγSp, with the plain transverse surface of
the proton, Sp. In Fig. 9.8 we show the schematic diagram of the factorized process. The
invariant photon production cross section then is (from Ref. [308]),

Eγ
dσ

d3pγ
=
∑
abcd

∫
dxa

∫
dxbdzc fa/p(xa, Qfact)fb/p(xb, Qfact)Dγ/c(zc, Qfrag)

× s

πzc

dσab→cd
dt

δ(s+ t+ u)

=
∑
abcd

1∫
xa,min

dxa

1∫
xb,min

dxb fa/p(xa, Qfact)fb/p(xb, Qfact)Dγ/c(zc, Qfrag)
1

πzc

dσab→cd
dt

with zc =
xT
2xb

e−y +
xT
2xa

ey,

xa,min =
xT e

y

2− xT e−y
, xb,min =

xaxT e
−y

2xa − xT ey
, xT = 2pT /

√
spp (9.9)

Here, s, t, u are Mandelstam variables in partonic processes, spp is the squared center of
mass energy of the p-p collision, pT is the transverse photon momentum and y its rapidity.
The protons are labeled A and B, and the fraction of longitudinal momentum carried by
a parton a, b is xa, xb. Taken the positive z-axis a the axis of the incoming proton a, and
the rapidity with respect to this axis, the Mandelstam variables in the differential cross
section is given by [308]

s = xaxbspp, t = −xapT
√
sppe

−y, u = −xbpT
√
sppe

y. (9.10)

dσab→cd/dt is the partonic differential cross section from Compton scattering or pair an-
nihilation, which can be evaluated, e.g., at NLO in the strong coupling constant αs(Qren),
evaluated at a typical scale Qren (transverse momentum) [309,310].

The functions fa(b)/p(xa(b), Qfact) are parton distribution functions (PDFs) of the proton
a (b). In Ref. [94], the authors use CTEQ61m [311] for the proton, and in case of prompt
photons from AA collisions, the nuclear PDFs EPS09 are used [312]. For the parton-to-
photon fragmentation function Dγ/c(zc, Qfrag) the set BFG-2 [313] is commonly used. In
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the calculation from Ref. [94] (within MUSIC) the scales are set equal, Qfact = Qren =
Qfrag = Q = pT /2. In order to estimate the prompt rate in heavy-ion collisions, the yield
in pp, evaluated with the above algorithm, is then scaled by the number of binary collisions
Ncoll. MUSIC computes prompt photons also for very low pT , even though pQCD at these
scales should not be applicable. However, the exact value of the scale of breakdown is
not clear, and experimental p-p direct photon data can be described by the algorithm of
Ref. [94] down to pT = 1 GeV.

In Fig. 9.9 we show spectra of direct photons in AA collisions from the PHENIX exper-
iment at RHIC, measured at midrapidity (|y| < 0.35), compared to the theoretical results
for only prompt photons from MUSIC [94] and PHSD [314] (PHSD uses experimental
values), as well as Ncoll-scaled pp-results from experiment, see Refs. [78, 80].

First we observe, that above pT ≥ 3 GeV the prompt photon yield reaches the experi-
mental data within their uncertainty, in all three cases. In general, the three calculations
agree well (compared to the experimental uncertainty) with each other for pT ≥ 1 GeV.
Below, the NLO calculation shoots significantly above the scaled experimental pp yield.
This is due to the fact, that below pT = 1 GeV there is no direct photon data available,
and the curves were extrapolated to low pT with functional form a(1+p2

T /b)
c, which might

be doubtful at low pT .
In the following, we use the MUSIC estimate of prompt photon sources for comparisons

of BAMPS to experiment.
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Figure 9.9.: Comparison of an Ncoll-scaled fit to pp direct photon data from Ref. [80](red
solid line), the prompt contribution adopted within the PHSD framework [314]
as well as the approach from MUSIC [94], which relies on the formalism pre-
sented in Eqs. (9.9),(9.10).
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9.2.2. Spectra and elliptic flow at LHC from BAMPS

In Fig. 9.10 we show the currently available experimental data for direct photon spectra
from the ALICE collaboration, along with selected results from BAMPS, in four centrality
classes. These results are for center-of-mass energies of

√
sNN = 2.76 TeV for Pb+Pb

collisions, measured at midrapidity (|y| < 0.8). It is clear that here we compare a model
for the photon production in the QGP phase with direct photon data, which includes
hadronic and prompt photons, however, it is instructive since in an intermediate pT -
window (∼ 2− 4 GeV), photons from the QGP are expected to dominate the spectra.

The red solid line shows photons obtained by binary processes and radiative photons
from the “22+AMY” method. The green dashed line shows photons obtained by the
“22+23” method.

At the highest pT , the spectra of “22+AMY” are a factor 2 larger than with photons
obtained by “22+23”. The very peripheral calculation (40%− 80%) is an exception, here
the “22+AMY” results diverge from the “22+23” matrix element results at higher pT . The
most pronounced difference however is seen at very low pT . Here, the correct treatment
of the LPM effect in the “AMY” scattering kernel leads to enhanced emission of low pT
photons, up to a factor of 10 above the matrix element results. This could be expected
from Fig. 6.16(a), where photons from the 2 → 3 matrix element are seen to be much
suppressed compared to the analytic AMY result for small energies, E/T ≤ 1. The way
how this is realized dynamically in low-pT regions is in fact quite interesting.

As mentioned above, the “AMY” algorithm within BAMPS has a trivial, linear λq de-
pendence. Since every quark has its (temperature and momentum dependent) emission
probability, the rate scales linearly with fugacity R ∼ λq. However, the algorithm else-
where assumes a chemically equilibrated medium, such that the screening masses are the
equilibrium ones. As investigated in Fig. 6.17, the 2 → 3 matrix element has a much
more complicated fugacity dependence, scaling approximately with λ1.36

q for λq ≥ 0.3.
As an example, assuming λq = 0.2, the ratio λq/λ

1.36
q ≈ 1.8 explains approximately the

higher rates. We remark, that photons produced by the “AMY” method, obey the rule,
that production stops, when the energy density drops below ε ≤ 0.6 GeV/fm3. We how-
ever checked, that an additional temperature cut (production stops, when the effective
temperature drops below Tc ≤ 160 MeV) does not make a visible difference.

We added the prompt contribution from Ref. [94] to our photon spectra in the two most
central multiplicity classes (dotted lines). These results miss only thermal hadronic data,
but at the highest available pT , the hadronic photon spectrum should not contribute any
more. Comparing the dotted lines with data, the theoretical calculations undershoot the
data about a factor of 2− 3, however, the slope of the resulting spectra comes very close
to the data.

Arguing from the slope, we conclude, that the thermodynamic properties, like the flow
field uµ(t, ~x) and temperature field T (t, ~x) are realistic. The too little overall factor hints
to a possibly large hadronic contribution, a medium which is even denser, or equilibrates
chemically much faster.

In Fig. 9.11 we show the elliptic flow of direct photons from the LHC for 0% − 20%
and 20% − 40% most central collisions. Under the assumption of full correlation of the
systematic uncertainties in pT , the experimental collaboration reports a significance of the
deviation from the hypothesis of vanishing elliptic flow with 1.0σ (0% − 20%) and 1.4σ
(20%− 40%). We compare the data points to the results from BAMPS, which constitute
only the QGP contribution. The above mentioned leakage effect affects the elliptic flow
negatively, but the final result is a combined effect of leakage and the weighted average of
the sources. All BAMPS results show elliptic flow of only up to a few percent. The result
using the “22+AMY” method shows a significant elliptic flow of up to 5 %, whereas in the
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Figure 9.10.: Experimental direct photon spectra from the ALICE collaboration [76, 304]
compared to photons from the QGP computed within BAMPS with two dif-
ferent methods (22+23: microscopic matrix elements, 22+AMY: microscopic
2↔ 2 matrix elements and AMY emission kernel emission.)

matrix element calculation “22 + 23” the flow is consistent with zero. The reason for this
is twofold. First, photon elliptic flow is the result of a weighted average of flow, weighted
by yield, across the entire emission lifetime. The “AMY” radiation yield scales with
effective temperature, thus the weighting is different from the “22+23” method. Second,
the photons radiated by quarks from the AMY method are emitted exactly collinearly,
which can have a difference in the azimuthal distribution for a non-equilibrium situation.
The results suggest, that the radiative part of the photons in the “22+AMY” scheme is
responsible for all the flow, since the “22+23” method does not show visible flow.

9.2.3. Spectra and elliptic flow at RHIC from BAMPS

In Fig. 9.12 we show spectra of direct photons at from the PHENIX experiment at RHIC,
measured at midrapidity (|y| < 0.35), compared to theoretical results from BAMPS, using
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Figure 9.11.: Elliptic flow of direct photons as measured from the ALICE collaboration
within |y| < 0.8 in rapidity for 0%− 20% (left panel) and 20%− 40% (right
panel) most central collisions at

√
sNN = 2.76 TeV. We only compare here

to theoretical calculations of photons emitted from the QGP using BAMPS.
The red solid line shows results from the “AMY” method, whereas the green
dashed line shows results from the binary and inelastic matrix elements.

the two methods described above, “22+AMY” (red solid) and “22+23” (green dashed).
The blue dotted lines in the two top panels show theoretical direct photon calculations,
obtained by summing prompt photons (from Ref. [94]), the BAMPS results “22+AMY”
and the thermal hadronic contribution from hydro (as well from Ref. [94]).

For the two more central event classes, the difference between the two production meth-
ods is not as large as for the LHC calculations in Fig. 9.10. Interestingly, the experimental
spectra are much steeper than the BAMPS QGP photon spectra, opposed to the LHC
case, where the slope of the QGP spectra from BAMPS are very similar to the exper-
imental data. The two methods, “22+AMY” and “22+23” show similar shapes of the
spectra, where the “22+AMY” results are about a factor of 2 larger in magnitude than
the “22+23” for central collisions, the difference increasing with decreasing centrality.

We observe, that in all but the 60%−92% centrality bin, the QGP results from BAMPS
(using the “22+AMY”) method crosses or touches the highest pT bin of the experimental
data. For the “22+23” method, only in the most central case (top left panel), the experi-
mental data at the 3.5 < pT < 5 GeV bin is reached by the QGP contribution. Comparing
the simulated direct photon spectrum (dotted line) with the experimental data, we see
an underestimation of the spectrum for the 0%− 20% centrality bin in all but the bin at
pT ∼ 3 GeV. In the 20%− 40% centrality bin the theoretical direct spectrum touches the
error bars of the experimental data for the lowest pT bins, pT ≤ 1 GeV, indicating that
the hadronic calculation from Ref. [94], dominating at the lowest momenta, is reasonable.
At intermediate pT , we undershoot the data, whereas above pT ≥ 2.5 GeV the error bars
are crossed.

In Fig. 9.13 we show the elliptic flow of direct photons from RHIC for 0% − 20%,
20%− 40% and 40%− 60% most central collisions. Here again, the flow is small, and the
result of leakage and the weighted average of the moving sources.

We compare the data points to the results from BAMPS with “22+AMY” (red solid)
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Figure 9.12.: Compilation of direct photon spectra at midrapidity (|y| < 0.35) from RHIC
(PHENIX experiment, Ref. [80]) in four centrality classes, compared to ther-
mal QGP photons from BAMPS. Here we compare photons obtained from
the 2 ↔ 2 + 2 ↔ 3 matrix elements (dubbed 22 + 23) with the spectra ob-
tained using the 2↔ 2 matrix elements and the microscopic AMY radiation
(dubbed 22+AMY). For the two more central multiplicity classes 0%−20%
and 20%− 40% we add prompt photons and thermal hadronic photons from
Ref. [94] to the 22 + AMY QGP spectra from BAMPS (the sum is dubbed
“direct”).

and “22+23” method (green dashed), which constitute only the QGP contribution. Ad-
ditional, the blue dash-dotted line shows the weighted average of all components of direct
photons, where we use Eq. (8.11). Again, the prompt and thermal hadronic data come
from Ref. [94].

The “22+23” QGP result shows no significant flow, whereas the “22+AMY” method



154 9. Photons from heavy-ion collisions

-0.1

 0

 0.1

 0.2

 0.3

 0.4

0 1 2 3 4

v 2
ph

ot
on

pT [GeV]

PHENIX
BAMPS, 22+AMY

BAMPS, 22+23
"direct"

0%-20%

0 1 2 3 4
pT [GeV]

Au+Au, √s=200 AGeV
20%-40%

0 1 2 3 4
pT [GeV]

40%-60%

Figure 9.13.: Elliptic flow of direct photons at midrapidity (|y| < 0.35) from RHIC
(PHENIX experiment) in three centrality classes as function of transverse
momentum pT (blue symbols). We compare to the thermal QGP radia-
tion from BAMPS, using the 2 ↔ 2 matrix elements and the microscopic
AMY radiation (“22+AMY”, red solid line) and the “22+23” method (green
dashed line). For the two more central multiplicity classes 0% − 20% and
20%−40% we use additional prompt photons and thermal hadronic photons
from Ref. [94], weighted by their corresponding spectra together with the
“22+AMY” QGP spectra from BAMPS (in total dubbed “direct”).

shows flow with a maximum at pT ∼ 2 GeV of 3% at 0%−20% and 5% at 20%−40%. The
weighted average of direct photons (blue dashed-dotted) line hits the experimental data
points below pT ≤ 1.5 GeV. This is due to quite large hadronic flow and non-vanishing
QGP results which count positive in the weighting. The large experimental values on the
order of 10%− 20% remain a puzzle.

9.2.4. Running coupling

In Sec. 6.4.2 we differentiated different prescriptions of how to implement a running strong
coupling in thermal photon production processes.

Here we show in Fig. 9.14 selected results from BAMPS on how this affects final photon
spectra of the QGP, using as an example 0% − 20% most central Au+Au collisions at
RHIC. Using a fixed coupling αs = 0.3 at the vertices and in the Debye and thermal masses
we show spectra for only binary photon production (red solid line) and “22+23” binary
and inelastic photon production (blue solid line). This we compare to photons computed
with running coupling evaluated at the Mandelstam scale at the vertices, αs(s, t, u), and
the scale (2πT )2 in the Debye and thermal masses (red dashed line for binary photon
production and blue dotted line for binary and inelastic photon production). For binary
photon production we show the resulting spectrum using the Mandelstam variables of
each channel as the scale within the Debye and thermal masses m2

D,g/q ∼ αs(s, t, u). It is
apparent, that in all cases, running strong coupling increases the photon rates compared
to the standard choice αs = 0.3. We observe, that the running coupling (m2

D,g/q ∼
αs[(2πT )2]) increases the spectra by about a factor of 1.5 within 2 < pT /GeV < 5, and 1.7
within 0 < pT /GeV < 2. The spectrum is thus softened slightly (larger slope). In Fig. 9.15
we show the elliptic flow from BAMPS for fixed (solid lines) and running coupling (dashed
and dotted lines). Here we do not see any significant change, the v2 is nearly zero in all
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Figure 9.14.: Photon spectra from BAMPS for RHIC 0% − 20% most central collisions,
where we compare photons obtained through the “22+23” matrix element
method (blue) and only 2 ↔ 2 photon production (red) with fixed coupling
(solid lines) and running coupling. At the vertices, the scale of the run-
ning coupling is the momentum transfer (Mandelstam variables s, t, u). The
strong coupling in the Debye mass is evaluated both at Q2 = (2πT )2 (dashed
and dotted lines) or as well the Mandelstam variables (dash-dotted line).

cases. The running coupling does neither change the weighting of the v2 contributions
from different times, nor the non-equilibrium emission characteristics to gain significant
v2.
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(dashed and dotted lines) or as well the Mandelstam variables (dash-dotted
line).
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√
sNN = 200 GeV, where the g + g → q + q̄ cross section was increased
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9.3. Artificial equilibration scenario

As shown in Fig. 6.17 the 2↔ 2 photon rates scale nearly linearly with the quark fugacity,
so that they are strongly affected by the quark fugacities λq . 0.2 at early times in
BAMPS. The inelastic (2 → 3) rate has a more complicated fugacity dependence, such
that the photon rate at λq = 0.2 is less than 10% of the equilibrium rate at λq = 1. Photon
rates employing the AMY formalism in the form we presented above depend linearly on the
quark density (emitters). In principle, the AMY emission rates for single quarks would
have to adopt background fugacities, within the screening masses, Eqs. (7.4) and (7.6)
which appear in the collision kernel and the inverse formation time in the integral Eq. (7.2).
We omit this improvement at this point and just note, that in an under-saturated case,
scattering rates would increase due to less effective screening. The distribution functions
in Eq. (7.1) are represented by the BAMPS background medium itself and contain the
fugacities already. The combined effects of the above said are apparent in the photon
spectra.

To see which role is played by the chemically equilibrating medium, we alter the fugacity
evolution of the quarks (and thus also the gluons) by tuning arbitrarily the quark-antiquark
production cross section4 by a factor of 10 and 100. The resulting fugacity evolution
is shown in Fig. 9.16. It can be seen, that at around t = 2 fm/c the quark fugacity
increases from λq(t = 2 fm/c) ≈ 0.3 to λq(t = 2 fm/c) ≈ 0.5 (for Kgg→qq̄ = 10) and
λq(t = 2 fm/c) ≈ 1.5 (for Kgg→qq̄ = 100). This can be compared to the original case from
the middle right panel in Fig. 9.7.

In Fig. 9.17 the resulting photon spectra are shown. The difference between the three

4We ignore the tuning of the backreaction qq̄ → gg because the purpose of this test is to drive the chemical
equilibration faster. In the central cell, the quark fugacity even increases above unity for late times
and Kgg→qq̄ = 100.



158 9. Photons from heavy-ion collisions

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  1  2  3  4  5

√s=200 AGeV

artifical equilibration scenario
σgg→qq-  scaled

d
N

/(
2

π
p

T
d
p

T
d
y
) 

[G
e
V

-2
]

pT [GeV]

BAMPS 22+23: Kgg→qq-=1    
         Kgg→qq-=10  
        Kgg→qq-=100

 
BAMPS 22+AMY: Kgg→qq-=1    

         Kgg→qq-=10  
        Kgg→qq-=100

20%-40% Au+Au

Figure 9.17.: The thermal photon spectrum from the QGP for RHIC collisions at |y| <
0.35, where we change the chemical equilibration of the medium during the
evolution by artificially increasing the gg → qq̄ cross section by a factor of
10 (green dashed line) and 100 (blue dotted line).

scenarios is moderate, because most of the photons are produced within the first 2 fm/c.
The difference in the fugacity is however, much stronger at later times (for Kgg→qq̄ = 100

at t = 4 fm/c about a factor of six), where not many photons are produced due to
the thinner and colder medium. This shows, that the quark content at the very initial
phase is crucial for photon spectra. In the case of “22+AMY” photon production, at
high pT ≥ 4 GeV, there is almost no difference visible between the different background
evolutions. This indicates, that those high-pT photons are produced at the earliest times
of the evolution, t � 1 fm/c, where the strong artificial equilibration has not yet set in,
but temperatures are very high. The “22+23” photon spectra do not show this effect very
strongly, since these rates are sensitive to the full distribution, and not single moments in
terms of an effective temperature.

9.4. Comparion to other models

In Fig. 9.18 we show a compilation of direct photon contributions from BAMPS, MU-
SIC [94] and PHSD [314] for the two most central centrality classes along with PHENIX
data. We emphasize here that at 0% − 20% centrality the direct photon sum of MUSIC
and PHSD agree well (especially around pT ∼ 2 GeV), whereas at 20% − 40% centrality
the agreement is not as precise.

The prompt contribution was compared already in Sec. 9.2.1, and is comparable. The
QGP contribution is however very different in all three models: BAMPS shows the hardest
spectrum (most shallow slope), and its magnitude is for pT < 2 GeV below PHSD and
MUSIC. PHSD again is about a factor of two below MUSIC, and harder at high pT . The
hadron gas contribution dominates the spectrum in MUSIC below pT ≤ 1 GeV, in PHSD
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hadrons dominate the spectrum below pT ≤ 2 GeV for the 0% − 20% centrality class,
increasing in importance as one goes to more peripheral collisions, such that at 60%−92%
centrality the photon spectrum below pT ≤ 3.5 GeV is hadron dominated. It becomes
apparent that the suppressed QGP contribution in PHSD is compensated by an enlarged
hadronic yield. At this point it remains an open question which approach is closer to
nature.

9.5. Conclusion

In this chapter we have presented a detailed comparison of photon spectra and elliptic
flow from BAMPS to other models and experiment, using two separate methods for pho-
ton production introduced in previous chapters. BAMPS has in general harder but lower
photon spectra, and less elliptic flow than hydrodynamic models. In some cases com-
parisons with experiment are reasonably successful, even though flow and yield is mostly
underestimated. Our very low absolute yield in the QGP hints to a possibly important
hadronic contribution. We have set the resulting spectra in connection to the background
chemistry of the model, and we have shown their sensitivity to it. The emerging physical
picture bears a list of caveats, mainly due to the many different photon production stages
across the spacetime evolution of the heavy-ion collision. Collected photons in the detec-
tor are a sum (for spectra) or weighted average (for elliptic flow) of all emission locations
in spacetime, making it hard to distinguish and separate theoretical uncertainties of the
models. However, it is very interesting to observe the dynamical realization of photon
production influenced by the different processes, by running coupling, quark and gluon
chemical equilibration and the temperature evolution. We have pointed out, why large
elliptic flow of photons is strongly disfavored by the combination of parton flow and back-
ground thermodynamics. This is consistent with other studies in literature, however, in
BAMPS we are dealing with a kinetic and chemical non-equilibrium. We conclude, that
the chemical evolution in the QGP is extremely important. Compared to hydrodynamic
models, the main differences lie in the non-equilibrium nature of BAMPS, the initial state,
the equation of state and the viscosities. The transport model PHSD again has a different
background dynamics, and also the photon production mechanisms differ.

It remains to say, that to date, no model explains experimental direct photon data
neither from PHENIX nor ALICE for yield and flow satisfactorily. In future, additional,
yet unexplored photon production mechanisms, or new insights in the initial state might
lead to an improved picture. It is possible, that initial state photon radiation, possibly
non-isotropic, leads to an additional positive contribution for both elliptic flow and total
yield. Other ideas in literature deal with the connection to initially strong magnetic fields.
In hydrodynamic studies, researchers explore the precise dependence of photon production
rates to shear and bulk viscosities. Furthermore, hadronic rates are under debate.

It appears highly probable, that the solution of the “photon puzzle” is a delicate col-
lection of improvements of model building, yet to come. In this work, we have evened the
path and pointed out sensitivities which have not gained attention before or were plainly
neglected.
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Figure 9.18.: Nearly complete comparison of the direct photon contributions from
BAMPS, MUSIC and PHSD. The BAMPS results show the QGP results
with the two different methods, along with a sum of prompt and thermal
hadronic photons from MUSIC, Ref. [94] (see Fig. 9.12 and its description).
The MUSIC prompt, QGP, hadron gas and direct photons are from Ref. [94].
The PHSD results are from Ref. [81].



10. Dileptons in heavy-ion collisions

Dileptons, such as e+e−, µ+µ− or τ+τ− pairs, are very important probes in heavy-ion
experiments. They are virtual photons, and due to their finite mass have a different kine-
matics and different open questions in phenomenological studies. Dileptons are studied
extensively in low energy experiments, and even in high-energy experiments the contribu-
tion from the hadron gas is much more important than from the QGP. This is the reason
why we will be rather short in this chapter, merely elucidating the possibility of dilepton
production within BAMPS. As a possible application, we extract an effective, averaged
temperature from simulations of heavy-ion collisions.

10.1. Perturbative dilepton rates

Dilepton rates in the QGP do not suffer from the enhancement property of photons which,
e.g., augments bremsstrahlung to lading order (see Chap. 6). The leading order diagram
q + q̄ → l+ + l− is the only one contributing to the rate at leading order. The matrix
element, spin averaged in the initial state and spin summed in the final state, reads [7,315],

|M|2 =
(4παEM)2

Nc

∑
species i

q2
i

(
2 + 4

t

s
+ 4

(
t

s

)2
)
. (10.1)

Note that the color factor (Nc = 3) is due to the various color states in the initial state.
The fractional quark charge qi is in units of the elementary charge e, and the sum runs
over all flavors, such that for Nf = 3,

∑
i q

2
i = 2/3. The total cross section is

σqq̄→l+l− =
∑

species i

q2
i

4πα2
EM

9M2

(
1 + 2

m2

M2

)√
1− 4

m2

M2

≈
∑

species i

q2
i

4πα2
EM

9M2
, (10.2)

where we assumed vanishing bare lepton mass in the second line, m ≡ 0. As a note, this
cross section can be obtained by the pure QED cross section

σe−e+→l+l− =
4πα2

EM

3M2
, (10.3)

and its generalization to quark-antiquark production,

σl+l−→qq̄ = Nc

∑
species i

q2
i

4πα2
EM

3M2
, (10.4)

which must then be color averaged (factor 1/9) in order to obtain Eq. (10.2). This is
correctly done in Refs. [7,315], whereas in Ref. [316] the cross section is wrong by a factor
of 2 and in Ref. [317] by a factor 1/3.

161
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The differential dilepton production rate (for massless leptons) is

dR

d4p
=

dN

d4xd4p
=

∑
species i

q2
i

α2

4π4
e−E/TKf (p, T, µ), (10.5)

where the function Kf for Boltzmann statistics is equal to unity, and for quantum statistics
reads [316]
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(10.6)

With the transformation dP = dEd3p = M/EdMd3p, and for isotropic systems d3~p =
4πp2dp, the rate can be given as

dR

dMdp
=
M

E
4πp2 dR

d4p
. (10.7)

By integrating Eq. (10.7) over a certain range in p or M , one can plot and compare the rate
easily. Implementing the total and differential cross section in the transport model BAMPS
is straight forward. Since the only diagram is an s-channel, no screening is necessary,
and Eqs. (10.1) and (10.2) can readily be implemented. In Fig. 10.1 the normalized
equilibrium rates from BAMPS are compared to the analytic rates from Eq. (10.5) with
perfect agreement.

10.1.1. Higher order rates

Dilepton rates hat higher order were not implemented within this thesis. When the dilep-
ton energy is on the order of gT one must include HTL corrections which are as large as
the Born rate. In [318] this was done (for zero momentum) by resummation, to obtain an
HTL improved annihilation rate. The authors of Ref. [318] conclude, that at low energies
(order of thermal quark mass) the HTL resummed rate is larger by orders of magnitude
compared to the Born rate. In Refs. [319] the dilepton rate for hard invariant masses
(M ≥ πT ) at NLO was presented including extrapolation to finite three-momentum. At
very soft invariant masses, M � πT , the dilepton rate must include an LPM resummation.
This has been done at LO in Ref. [297] and been connected to the hard (M ≥ πT , [319])
NLO computation in Ref. [320]. In Ref. [321] the dilepton rate at soft invariant masses was
computed at NLO, with an increase of 30%− 40% with respect to the LO calculation. In
lattice QCD, dilepton rates can only be computed at discrete temperatures. In quenched
QCD, no significant temperature dependence was found [149]. An overview about the
existing rates and also effective hadronic models can be found in Ref. [86].

10.2. Temperature fits

In Ref. [116] it was proposed to use the invariant mass spectrum as a thermometer of the
medium. It does not suffer from Lorentz boost distortion (since the mass is the same in all
frames) thus will give an average local rest frame temperature. In the intermediate mass
range (1 < M/GeV < 3), medium effects on the spectral function are small (O(T 2/M2)),
and a suitable fit function (fit parameters x1, x2) is given as

dR

dM
= x1(Mx2)3/2e−M/x2 , (10.8)
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Figure 10.1.: Dilepton production rate differential in momentum p and invariant mass M
from BAMPS compared to the analytic rate from Eq. (10.5).
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Figure 10.2.: Fit of an equilibrium invariant mass spectrum by using the fit function from
Eq. (10.8). In the fitrange 5 < M/T < 10, the temperature is reproduced by
more than 99 %.

where the temperature is identified as T ≡ x2 and x1 is a unitless fit parameter without
important relevance. We test this scheme with the analytic rate from Eq. (10.5) at T =
0.4 GeV in Fig. 10.2, where the fitrange is chosen from 2 − 4 GeV. Especially at low
invariant mass, the fit deviates from the analytic rate, but in the intermediate mass fit
range, it is acceptable. Using BAMPS, we calculate invariant mass spectra of dileptons
in heavy-ion collisions. The result for Au+Au collisions at RHIC energies

√
s = 200 GeV

is shown in Fig. 10.3 for six different times within the QGP evolution. We also show fits of
those spectra, using Eq. (10.8) and their corresponding temperatures. The temperatures
are higher than the temperatures extracted at certain space-time points of the collision,
e.g., in Fig. 9.1. The comparison is however not entirely meaningful, since the dilepton
fits give space-time averaged temperatures, and not a local temperature. We stress that
this average is weighted by the local emission rates. The method using dilepton fits
constitutes an independent check of an averaged temperature, weighted by the effective
dilepton emission rates, and can serve as an (experimental) thermometer of the fireball.

10.3. Conclusion

We have shown how to correctly implement leading order dilepton production within the
transport model BAMPS. We use the simple Born approximation, which includes the
tree-level annihilation diagram. In an equilibrium setup, the invariant mass spectrum can
be fitted with a simple parameterization, where one fitparameter yields the background
temperature with great accuracy. As an example of application, we compute dilepton
emission in a heavy-ion setup, where we are also able to extract temperatures by fitting.
Dilepton phenomenology however focuses in most studies on the hadronic emission rates
and their medium modifications. It would be certainly interesting in future to differentially
compute azimuthal dilepton correlation functions, and more precise spectra. Especially at
the highest energies of LHC the QGP should contribute much to those observables, and
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Figure 10.3.: Invariant mass spectra of dileptons at
√
s = 200 GeV Au+Au collisions from

BAMPS for different lab times. Each spectrum is fitted by Eq. (10.8), giving
averaged temperatures from 522 MeV to 361 MeV.

the use of BAMPS could give important supplementary information to coarse-graining,
hydrodynamics, or other transport approaches.





11. Initial and final state effects in p+Pb
collisions

In this chapter we introduce several new concepts and improvements in the modeling of
high energy hadronic collisions, using proton-lead collisions as one important application.

We are pursuing a number of goals. First, we are developing the partonic cascade
BAMPS (presented earlier in this thesis) further by including new analysis methods, a new
initial state and novel event-by-event processing. We use this model to simulate proton-
lead collisions at

√
sNN = 5 TeV (LHC energies), touching the rich phenomenological

questions behind these small systems. The presented results aim at understanding its
dynamic nature, which has gained enormous interest in the community in the past years.

The Discovery of pronounced azimuthal two-particle correlations at large rapidity dis-
tances in small systems (p+p and p+Pb collisions) raised the question whether those
can be attributed to a collective, multiparticle effect. In small systems, the measured
long-range correlations are at first glance reminiscent to those observed in central and
mid-central heavy-ion collisions, however, the size of the heavy-ion collision region is much
larger. In heavy-ion collisions, the collective, hydrodynamic behavior is considered certain.
It may also be, that initial state gluon saturation is mostly responsible for the momentum
asymmetries.

Our novel methodology includes for the first time initial and final state interactions
and should also be seen as a baseline for future projects and other applications not only
for electromagnetic probes. We are now able to carry out a systematic multiplicity scan,
probing the dynamics on the border of initial state dominated to final state dominated
- but not yet fully developed hydrodynamic regime. The goal is to predict at which
multiplicity and transverse momentum many-body QCD effects in the initial state can be
experimentally unveiled.

Large parts of this chapter are published and reproduced from Ref. [5]. It is organized
as follows. First, we give a concise overview of experimental efforts at the LHC. We then
highlight in more detail the purpose of the present study before explaining the implemen-
tation of initial and final state interactions. After presenting the analysis method (which
resembles that used in experiment), we show our results for pT dependent and integrated
two-particle correlation elliptic flow. After that, we show fragmented results and give an
outlook of what can be done now, having set the stage with this model, and conclude the
chapter.

11.1. Overview of experimental results

Beginning in 2013, the experimental collaborations ALICE, ATLAS and CMS published
their measurements on correlations in small systems. In this section we summarize experi-
mental results at the LHC mainly focusing on two particle ∆η−∆φ correlation functions in
p+Pb collisions at nucleon-nucleon center-of-mass energy of 5.02 TeV, however, also up to
eight particle correlations can be measured. Often, the correlation functions are expanded
in Fourier harmonics, vn, which have a direct connection in hydrodynamics. The elliptic
flow v2 in hydrodynamics reflects directly the initial geometry of nuclear collisions and
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the triangular flow v3 the initial fluctuations. Experimental analyses thrive to subtract
non-flow effecs, such as back-to-back jets, by working with multi-particle cumulants or
alternative methods such as Lee-Yang zeros method [322].

Two-particle correlations are measured usually as function of the difference in azimuthal
angle φ of the momenta of charged particles, ∆φ, as well as their difference in pseudo-
rapidity1 ∆η. It is very important to also differentiate between different multiplicites in
small systems, to smoothly sweep over from (high-multiplicity) heavy-ion collision picture
to low-multiplicity events (a p+p picture).

11.1.1. Multiplicity classes

In proton-lead collisions, the traditional event selection based on the geometrical impact
parameter b is not practical any more. Instead, events are categorized in event classes
corresponding to their average number of particles, or transverse energy, within certain
kinematic ranges. In Tab. 11.1.1 we list common methods in classifying the multiplicity
along with the most important publications of three collaborations at the LHC.

Experiment Selection Observable Event classes Publication

ALICE mid-rapidity multiplicity 〈dNch/dη〉, |η| < 0.5 4 [323]

ATLAS transverse energy ΣPb
T 12 [324]

ATLAS transverse energy ΣPb
T 6 [325]

ATLAS transverse energy ΣPb
T , particles N rec

ch 23 [326]

CMS reconstructed track multiplicity Noffline
trk 5 [327]

CMS reconstructed track multiplicity Noffline
trk 15 [328]

Table 11.1.: Summary of important experimental publications on p+Pb collisions with
their event selection observable and the used number of classes.

11.1.2. Experimental results

The three collaborations make use of a similar methodology, but due to the different
hardware setups, they have different capabilities in extracting multi-particle correlation
functions. Here we outline their individual results.

ALICE

The two particle correlation is computed as associated measured yield per trigger particle
for
√
sNN = 5.02 GeV by ALICE [323, 329] . In the kinematic range 0.5 < pT /GeV <

4, |η| < 1.2 for trigger and associated particles, ALICE sees a strong correlation around
∆η ≈ 0, ∆φ ≈ 0 stemming from particles in the same jet. At ∆φ ≈ π an enhanced
correlation for all ∆η is observed, interpreted as coming from particles with momenta
back-to-back in azimuth. It is found that low-multiplicity p+Pb events have similar corre-
lation results as p+p events and the correlation strength increases with multiplicity. Once
the results of low-multiplicity events are subtracted from those at high-multiplicity, two
“ridges” (enhanced correlation in a range of ∆η, “long-range”) appear which are nearly
identical at the “near-side” (around ∆φ ≈ 0) and the “away-side” (∆φ ≈ π). The average
transverse momentum 〈pT 〉 increases stronger with the total number of charged particles
in p+Pb and p+p collisions than in Pb+Pb collisions.

1The pseudorapidity is defined as η = − ln(tan[θ/2]), with polar angle θ between the beam direction and
the particle momentum.



11.1. Overview of experimental results 169

CMS

The two-particle correlation function in −4.8 < ∆η < 4.8 and full azimuth was mea-
sured by CMS for p+Pb collisions in different pT ranges and for different track multi-
plicities [327]. The measurable absolute pseudorapidity range is |η| < 2.5. At low track
multiplicity, Noffline

trk < 35, a narrow jet peak is seen at ∆η ≈ 0, ∆φ ≈ 0 as well as a broader
peak (extended in ∆η) from back-to-back particles at the away-side, ∆φ ≈ π, similar as
in the ALICE experiment. These phenomena are well understood and also appear at
higher multiplicities. At Noffline

trk > 115, a near-side (∆η ≈ 0) long-range (∆η > 4) ridge
is very pronounced. This structure is not as well understood2. In very high-multiplicity
p+p collisions this was observed by CMS [330]. Averaging over ∆η, the correlation in
∆φ was investigated for several pT ranges and multiplicities. The long-range near-side
correlation increases for higher multiplicities, and can only be seen above Noffline

trk > 35,
being largest for 1 < pT /GeV < 2. In p+Pb collisions it is always higher than in p+p.
In Ref. [328], the measurement of CMS was extended to study a larger sample of high-
multiplicity events. The integrated yield of the long-range near-side ridge3 was studied as
function of transverse momentum up to pT ∼ 11 GeV and multiplicity up to Noffline

trk ∼ 350,
which corresponds to mid-central Pb+Pb collisions. It is found, that in p+p,p+Pb and
Pb+Pb collisions the long-range near-side ridge builds up above Noffline

trk & 40 − 50. In
Pb+Pb collisions it is about two times higher than in p+Pb, but in both systems it rises
with multiplicity, and the maximum is seen in a bin around trigger particle transverse
momentum of 2 < ptrig

T /GeV < 3. A Fourier decomposition of the ∆φ correlation function
gives the elliptic and triangular flow coefficients, which were also measured by a four-
particle cumulant analysis. Several methods are used to reduce jet-like correlations and
other non-flow components. This was done for pT differential v2 and v3 as well as for pT
integrated flow coefficients as function of multiplicity. The main findings are, that at low
pT , the elliptic flow coefficient is about 30% higher in Pb+Pb than in p+Pb. The v3 is
consistently smaller than v2, but in all cases the maximum is at pT ∼ 2−3 GeV. As func-
tion of increasing multiplicity, the pT integrated v2 increases slowly in Pb+Pb collisions
whereas in p+Pb it is almost constant (above Noffline

trk & 120). The collective origin of the
strong v2 signal was further supported by using a 6 and 8-particle cumulant method by
CMS in Ref. [331]. A very detailed and recent study was presented in Ref. [332].

ATLAS

ATLAS has done an independet study of the ∆η − ∆φ correlation at a slightly higher
range in pseudorapidity than ALICE or CMS, |∆η| < 5. ATLAS characterizes the event
activity by the sum of the transverse energy in the calorimeter at the lead-going side,∑
EPb
T . In Ref. [324], results for 12 multiplicity classes were presented. Some of them

were combined to two effective multiplicity classes: central events with
∑
EPb
T > 80 GeV,

corresponding to 〈dNch/dη〉 ∼ 30 and
∑
EPb
T < 20 GeV, corresponding to 〈dNch/dη〉 ∼ 5.

ATLAS sees the near-side jet peak as CMS and ALICE, and explicitly a broadening of the
away-side ridge from low to high-multiplicity. With higher multiplicity, the near-side peak
(ridge) appears, consistent with the CMS results, and the away-side peak grows in a similar
shape with increasing

∑
EPb
T . This was concluded by integrating the 2D-correlation in

2 < |∆η| < 5 as a function of multiplicity. By doing a Fourier-type decomposition, it was
found that the long-range component contains a back-to-back (recoil) component and a
∆φ component symmetric around π/2. The difference between central to peripheral events

2In Pb+Pb collisions, it is also seen, and attributed to hydrodynamic flow patterns.
3The two-particle correlation function integrated over −1.2 < ∆φ < 1.2, |∆η| > 2 or |∆η| < 1 (the latter

selects the jet-structure).
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Figure 11.1.: Two-particle correlation function 1/NtrigdNpair/d∆η∆φ for charged parti-
cles, normalized to the number of trigger particles, Ntrig, from the CMS
experiment [327]. Left: low-multiplicity event, Noffline

trk < 35, the near-side
long-range correlation is absent. Right: the near-side long-range correlation
is very pronounced.

in the near-side and away-side correlation has a similar pT dependence, and a maximum
at pT ≈ 3− 4 GeV. The near-side ridge has a maximum around pT ≈ 2− 4 GeV. ATLAS
concludes in Ref. [324] that their results are consistent with final-state effects exhibiting
collective features. In Ref. [325] the measurement was extended to two and four particle
cumulants, c2{2} and c2{4}, and pT differential and integrated elliptic flow v2.

11.2. Purpose of the present study

A fluctuating initial geometry in peripheral A+A collisions, to first order elliptic (but dom-
inated by fluctuating nucleon positions in the incoming nuclei) is known to be converted
due to hydrodynamic pressure gradients into anisotropic momentum space distributions.
Hydrodynamic simulations agree well with a wide range of experimental observables at
RHIC and LHC [56–59].

As summarized in the previous section, measurements in smaller collision systems such
as p+p and p+A, in particular those of multi-particle correlation functions, have shown
very similar features as in heavy-ion collisions (see also Ref. [333] for a review). While
calculations within the hydrodynamic framework have also been quite successful in describ-
ing observables in p+p and p+A collision systems [98, 334, 335], alternative explanations
relying entirely on intrinsic momentum correlations of the produced particles can also
reproduce many features of the experimental data. This includes two and more parti-
cle azimuthal correlations and their pT dependence [333, 336, 337] and mass splitting of
identified particle vn [338]. Apart from the existence of alternative explanations, the ap-
plicability of hydrodynamics becomes increasingly doubtful as the system size decreases
and gradients increase. Some recent studies argue that hydrodynamics should be applica-
ble in systems of sizes down to ∼ 0.15 fm [339], but off-equilibrium corrections to particle
distribution functions for momenta pT & 0.5 GeV can be significant [335], which limits at
least the quantitative reliability of the framework.

So far all calculations of multi-particle correlations in small collision systems have stud-
ied either only intrinsic momentum correlations or purely final state driven effects. Here
we present the first study where both effects are combined into a single framework to
assess their relative importance.
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In ultrarelativistic heavy-ion collisions, the initial state is defined as the immediate
reactions once the nucleons of both nuclei have merged. One speaks of initial state physics
within the first τ ≈ 0.2 − 0.6 fm/c after the first nucleon-nucleon contact. After the
initialization of the collision event, a non-equilibrium phase leads the system to local
thermal equilibrium, given that the system is dense enough and its lifetime long enough.
Thermalization is intimately connected to the nature of the initial state.

In this chapter we show results obtained by using a color glass condensate initial model
combined with a partonic cascade for the evolution of the QGP. The latter is then evolved
until fragmentation, which leads to hadronic observables that can be measured in experi-
ment.

To this end we compute initial state gluon Wigner-distributions from the Impact Pa-
rameter dependent Glasma model (IP-Glasma) [340, 341] and via sampling of individual
gluons feed them into the partonic transport simulation ’Boltzmann approach to mul-
tiparton scatterings’ (BAMPS) [40]. The initial gluon distributions [342, 343] from the
IP-Glasma model are anisotropic in momentum space [338,344,345], thus contain the in-
trinsic momentum space correlations of the color glass condensate (CGC) picture [346,347].
Final state interactions mediated by perturbative quantum chromo dynamic (pQCD) cross
sections are then simulated microscopically in BAMPS. We analyze the time evolution of
the momentum space anisotropy of the partonic plasma by simulating events in two dif-
ferent multiplicity classes to understand how final state interactions modify initial state
momentum correlations and whether signals of the latter can survive to affect final ob-
servables.

11.3. Initial state & phase-space distribution

Based on the IP-Glasma model, including event-by-event fluctuations of the proton’s ge-
ometrical structure [348], we calculate the solution to the classical Yang-Mills equations
of motion up to τ0 = 0.2 fm/c following the standard procedures described in [340, 341].

Event-by-event we extract the Wigner distribution
dNg

dyd2xT d2pT
in hyperbolic phase-space

coordinates xµ = (τ cosh ηs,xT , τ sinh ηs), pµ = (|pT | cosh y,pT , |pT | sinh y), by evalu-
ating equal time correlation functions in Coulomb gauge and projecting them onto the

transversely polarized mode functions ξ
(λ)
pT (τ) of the free theory according to (details and

notation can be found in Ref. [349])

dNg

dyd2xTd2pT
=

1

(2π)2

∑
λ=1,2

N2
c−1∑
a=1

τ2 gµµ
′
gνν

′

×
∫

d2s
(
ξ

(λ)∗
pT ,µ(τ)i

←→
∂τ A

a
µ′(xT + s/2)

)
(
Aaν′(xT − s/2)i

←→
∂τ ξ

(λ)
pT ,ν(τ)

)
e−ipT ·s . (11.1)

Even though the position and momentum dependent Wigner distribution includes all rel-
evant information about the initial state coordinate space eccentricity as well as the initial
state momentum space anisotropies, it suffers from the deficiency that it is not neces-
sarily positive semi-definite. To warrant a probabilistic interpretation of a quasi-particle
distribution entering the subsequent Boltzmann transport simulation, it is necessary to
perform a smearing of the Wigner distribution over phase space volumes σxσp ≥ ~/2. Ac-
counting for the boost-invariant nature of the classical Yang-Mills fields the single particle
distribution function fg0 , which will enter the subsequent parton cascade, is obtained by
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performing the Gaussian smearing

fg0 (xT , ηs,p⊥, y) =
(2π)3

2(N2
c − 1)

δ(y − ηs)
|pT |τ

(11.2)

×
∫

d2x′Td2pT
′

(2π)2
e
− (xT−x′T )2

2σ2
x e

− (pT−pT
′)2

2σ2
p

dNg

dyd2x′Td2pT ′
,

with σx = 0.197 fm and σp = 1 GeV chosen to achieve a reasonable compromise between
spatial and momentum resolution.

11.4. Final state interactions

Even though the classical Yang-Mills evolution includes re-scattering effects at early times,
the semi-classical description of the dynamics becomes inapplicable after a relatively short
time when quantum effects become important and the subsequent dynamics is more ap-
propriately described in terms of weakly interacting quasi-particles [349–351]. We simulate
the dynamics within 0.2 fm/c < τ < 2.0 fm/c, with a 3+1-dimensional Boltzmann ap-
proach to multi-parton scatterings (BAMPS), which, starting from the initial phase-space
density of gluons in Eq. (11.2), solves the relativistic Boltzmann equation

pµ
∂

∂xµ
f i(x, p) =

∑
j=g,q,q

Cij(x, p), (11.3)

for the phase-space distribution function f i(x, p) of massless on-shell quarks, anti-quarks
and gluons by Monte-Carlo techniques [40, 214, 236]4. The collision integrals Cij include
2 ↔ 2 and 2 ↔ 3 interactions, based on perturbative QCD matrix elements (using a
fixed strong coupling constant αs = 0.3) where internal propagators are regulated by a
dynamically computed screening mass m2

D ∼ αs
∫
d3pf i(x, p)/p (see, e.g., Refs. [217,218]).

Inelastic 2↔ 3 interactions are simulated based on the improved Gunion-Bertsch matrix
elements [217], and the Landau-Pomeranchuk-Migdal (LPM) effect is treated effectively,
based on a dynamically determined mean free path [218].

Since in practice the Monte-Carlo implementation is based on individual particles, prop-
agating along straight lines between scattering events, one needs to supply a list of particle
positions xµInit and momenta pµInit as initial condition for BAMPS. For every event we sam-
ple a collection of individual gluons from the momentum distribution fg0 (xT , ηs,pT , y) of
the IP-Glasma model, such that the overall number of gluons is given by the integral of the
distribution. Since according to Eq. (11.2) the initial momentum rapidity y is equal to the
coordinate space rapidity ηs, which we sample uniformly between −2 < ηs < 2 from the
boost invariant distribution, the initial position and momentum vectors of each particle are
given by xµInit = (τ0 cosh(ηs),xT , τ0 sinh(ηs)) and pµInit = (|pT | cosh(ηs),pT , |pT | sinh(ηs)).

We have checked explicitly, that the energy density (T ττ ) and flow coefficients (v2) ex-
tracted from the sampled particle ensemble agree well with the corresponding quantities
extracted directly from the IP-Glasma distribution. Even though the IP-Glasma initial
condition is boost invariant, the BAMPS calculation is performed in 3+1 dimensional
Minkowski space. We will therefore extract all observables at |y| < 0.5 for different lab
times t, where y = log[(E+pz)/(E−pz)]/2, noting that at midrapidity |y| ≈ |ηs| ≈ 0 such
that the lab time t ≈ τ .

4Even though the IP-Glasma initial state only contains gluons, quarks and anti-quarks are produced
during the kinetic evolution of the fireball.
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11.5. Evolution of azimuthal anisotropies

We investigate the evolution of the azimuthal momentum space anisotropy characterized
by the Fourier harmonics vn{2PC} of the two-particle correlation function. We follow
the experimental analysis [328] in decomposing the (normalized) two-particle correlation

function for Ntrig trigger particles in a momentum range given by pref
T and Nassoc particles

in a momentum bin around pT , in Fourier harmonics w.r.t. the relative azimuthal angle
∆ϕpT :

2π

NtrigNassoc

dNpair

d∆ϕpT
(pT , p

ref
T ) =

1 +
∑
n

2Vn∆(pT , p
ref
T ) cos(n∆ϕpT ). (11.4)

The two particle v2{2PC} is obtained as [328]

vn{2PC}(pT ) =
Vn∆(pT , p

ref
T )√

Vn∆(pref
T , p

ref
T )

, (11.5)

with the reference momentum range chosen as 0 GeV < pref
T < 8 GeV by default5. Since

in our model the double-inclusive spectrum in each event is given by the product of single
inclusive spectra, we follow [345,352] and directly compute

Vn∆(pT , p
ref
T ) =

〈
Re
bn(pT )b∗n(pref

T )

b0(pT )b∗0(pref
T )

〉
events

(11.6)

where in each event bn(pT ) =
∫ dφpT

2π
dNg
d2pT

einφpT is the azimuthal Fourier coefficient of the

single-inclusive spectrum. Since our model does not include correlations from back-to-
back di-jet pairs, we also note that – contrary to the experimental analysis – no additional
subtractions are required to eliminate such correlations.

Including both initial state effects and final state evolution, we analyze the time evolu-
tion of the momentum space anisotropy v2{2PC}(pT ) for

√
spA = 5.02 TeV p+Pb colli-

sions in Fig. 11.2. We show v2{2PC}(pT ) at different times, t = 0.2 (initial),0.4,0.6,1,2 fm/c
for the following event classes:

low-multiplicity: 0.5 < (dNg/dy) /〈dNg/dy〉 < 1

high-multiplicity: (dNg/dy) /〈dNg/dy〉 > 2.5.

While in both cases momentum correlations lead to a sizeable initial state v2 [345], the sub-
sequent dynamics is quite different: In high-multiplicity events, we observe a pronounced
effect of the final state interactions such that the high initial anisotropy at intermediate
momenta (pT ∼ 2− 5 GeV) is significantly reduced within the first 0.2 fm/c evolution in
the parton cascade, while at the same time the correlation strength at higher and lower
momenta begins to increase. Subsequently, the azimuthal anisotropy increases for all pT
up to maximally 5%. As a result, the pronounced peak at around pT ∼ 3 GeV, present
after the IP-Glasma stage, is washed out by the final state interactions. In contrast, for
low-multiplicity events modifications due to final state effects appear to be less significant,

5Because we are studying the momentum anisotropy of gluons, we choose the reference momentum to
extend to larger values than the range used in the experimental analysis.
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Figure 11.2.: Gluon v2{2PC}(pT ) at mid-rapidity (|y| < 0.5) for different times in high-
multiplicity (〈dNg/dy〉 = 26, upper panel) and low-multiplicity (〈dNg/dy〉 =
6, lower panel) p+Pb collisions.
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as the final curve v2(pT ) closely resembles that of the IP-Glasma initial state. Only at low
transverse momenta, pT . 2 GeV the azimuthal anisotropy is increased to 2− 3 %.

While our results confirm the basic expectation that final state effects gain significance
as the density of the medium increases in high-multiplicity events [336, 353], the way
this is realized dynamically is in fact very interesting. We find that the average number
of interactions in low-multiplicity events (Nscat = 4.5 ± 1.1) is indeed almost the same
as in high-multiplicity events (Nscat = 5.6 ± 1.1). Because of the nature of the QCD
cross sections, most interactions however correspond to small momentum transfers ∼mD

which itself depends on the density of the medium [278], such that the average momen-
tum transfer is larger in high-multiplicity events. Hence, the average number of large angle
scatterings, estimated according to N large angle

scat = 1
Nparticles

∑
coll

3
2 sin2 θcoll

c.o.m. where θcoll
c.o.m. is

the scattering angle in the c.o.m. frame of the partonic interaction6, is in fact significantly
larger in high-multiplicity events (N large angle

scat = 1± 0.18) as compared to low-multiplicity

events (N large angle
scat = 0.53± 0.14).

Initial state vs. final state effects. In order to further disentangle the effects of initial
state momentum correlations and final state response to geometry, we performed an addi-
tional set of simulations (henceforth labeled rand. azimuth) where the azimuthal angle of
the transverse momentum pT of each gluon is randomized (0 < ϕpT < 2π) before the evo-
lution in the parton cascade. Our results are compactly summarized in Fig. 11.3, where
we compare the azimuthal anisotropy v2{2PC}(pT ) in the different scenarios. By con-
struction no initial state momentum correlations are present in the rand. azimuth case –
shown as open gray symbols – and the initial state v2 vanishes identically at t = 0.2 fm/c.
However, over the course of the kinetic evolution a v2(pT ) of ∼ 4% at pT ∼ 2 GeV in
high-multiplicity events and . 3% at pT ∼ 1 GeV in low-multiplicity events is built up
by t = 2.0 fm/c. Nevertheless, for momenta above pT ∼ 2.0 GeV (low-multiplicity) and
pT ∼ 4.0 GeV (high-multiplicity), the purely final state v2 in the rand. azimuth sce-
nario remains significantly below the initial state + final state v2 of the full calculation,
indicating the importance of initial state momentum correlations.

Despite the fact that initial state correlations have a significant impact on v2{2PC},
we find that the additional v2{2PC} built up in the parton cascade can be attributed to
the response to the initial geometry. In order to demonstrate this feature more clearly, we
have also computed the azimuthal anisotropy v2{ecc. plane} w.r.t to the coordinate eccen-
tricity plane – obtained by replacing the reference momentum vector bn(pref

T ) in Eq. (11.6)
with the coordinate eccentricity vector en =

∫
d2xT T ττ (xT ) |xT |n einφxT , where φxT is

the azimuthal angle in space. Our results in Fig. 11.4 show that the initial anisotropy
with respect to the geometric eccentricity plane vanishes, as the initial momentum space
anisotropy is uncorrelated with the event geometry [345].

In contrast, during the kinetic evolution a clear correlation with the initial state ge-
ometry is built up. The magnitude of this final state generated v2{ecc. plane} depends
only weakly on the presence or absence of initial state momentum correlations. While the
comparison of the results for v2{ecc. plane} (Fig. 11.4) with v2{2PC} (Fig. 11.3) indicates
that in the rand. azimuth case, the observed v2{2PC} can almost entirely be attributed to
a geometric response, this is clearly not the case for the more realistic scenario including
initial state correlations.

Even though the effects of initial state momentum correlations are more apparent in
low-multiplicity events, quantitative differences remain also in high-multiplicity events, as

6Note that the pre-factor 3/2 is chosen such that for constant isotropic cross sections N large angle
scat = Nscat.
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Figure 11.3.: Comparison of initial and final two-particle v2(pT ) for high (upper panel)
and low (lower panel) multiplicity

√
spA = 5.02 TeV p+Pb events. Events

including initial state momentum correlations (filled symbols) are compared
to the same events where the initial momenta were randomized in azimuth
(rand. azimuth, open symbols).
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Figure 11.5.: Evolution of the pT integrated azimuthal anisotropy v2{2PC} for high and
low-multiplicity p+Pb events.

can also be observed from Fig. 11.5, where we study the time-evolution of the pT integrated
v2{2PC}. While in the rand. azimuth case, the v2{2PC} is built up slowly as a function
of time in response to the initial state geometry, a qualitatively different behavior emerges
in the more realistic case including initial state correlations. In this case, large angle
scatterings at early times begin to destroy initial state momentum correlations leading to
an initial decrease of v2{2PC} as a function of time. This happens because the directions
of the initial state anisotropy and the eccentricity responsible for generating the final state
v2 are generally uncorrelated. Subsequently, between t ∼ 0.5− 1 fm/c the response to the
initial state geometry sets in, leading again to an increase of v2{2PC}. Overall, we find
that the relative effect of initial state correlations on the final v2{2PC} is on the order of
25− 50%, being larger for low-multiplicity events.

11.6. Multiplicity selection and fragmentation

We now work more differentially on several multiplicity classes, defined by gluon multi-
plicity of Ng = 0.5− 3.45×min.bias., where “min.bias.” denotes the minimal bias gluon
multiplicity (e.g., at CMS dNtrk/dy = 8.46).

We use a strong coupling in the Yang-Mills evolution (acting as normalization) of
g2 = 6.25 and (as an arbitrary choice) the parameter XLPM = 0.05 in BAMPS, as well
as a running coupling αs(Q

2) evaluated at the Mandelstam scale of microscopic scatter-
ings within BAMPS. (This small value of XLPM = 0.05 might lead to an unphysically
small value of η/s, but here we merely want to see the possibilities of strong final state
interactions.) In Fig. 11.6 we show gluon v2 {2PC} for n = 0.5, 1.5 and 3.45 compared to
data from the CMS experiment at the LHC [328], where the 3.45× min.bias. multiplicity
calculation would correspond to the lowest multiplicity from CMS7, 120 < Ntrk < 150,

7The mean multiplicity at CMS is
〈
Nmin.bias.

trk

〉
= 40, such that 3.45

〈
Nmin.bias.

trk

〉
= 138 within an accep-

tance of ∆η = 4.8.
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even though CMS data is very mildly dependent on multiplicity only, as can be seen by
the 220 < Ntrk < 260 class (gray triangles). We observe that the multiplicity dependence
from BAMPS is also mild, but visible, and increases for increasing pT .

The choice of XLPM = 0.05 enhances the inelastic transport rate considerably compared
to the previously used value of XLPM = 0.3, and thus increases the elliptic flow variable,
however, the experimental data is about a factor of 1.5 larger. In Fig. 11.7 we show the
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the corresponding class from BAMPS, 3.45× min.bias. (green solid line) as
well as two lower multiplicity classes. Here we use running strong coupling,
αs and XLPM = 0.05.

time evolution of gluon v2 {2PC} from time t = 0.2 fm to t = 2 fm for two multiplicity
classes, N = 0.5, 3.45 min.bias.. Here we confirm the previously drawn conclusions, that at
N = 3.45 min.bias. elliptic flow builds up strongly in BAMPS up to pT = 7 GeV, whereas
at N = 0.5 min.bias. only below pT = 3 GeV elliptic flow is built up. So far we used only
gluons as dynamical particles, however, in experiments, (charged) hadrons are measured.
At high pT , a very common hadronization model is the concept of “fragmentation”. It
describes hadrons, propagating collinearly to the parton, carrying away a fraction z of
the parton momentum. The probability of a contribution from parton i to a hadron h
at momentum scale Q2 is the so-called fragmentation function Dh

i (z,Q2). It is extracted
from global fits to experimental data. We will use the set of fragmentation functions from
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Kniehl, Kramer and Potter (KKP) [354]. Using

dNh

d2phT dy

(
phT

)
=

∑
species i

∫ 1

zmin

dz

z2
Dh
i (z,Q2)

dNi

d2piT dy

=
∑

species i

∫ 1

zmin

dz

z2

∫
d2piT δ

(2)

(
piT −

phT
z

)
Dh
i (z,Q2)

dNi

d2piT dy
(11.7)

in the formula for any hadronic observable

Oh
(
phT

)
=

∫
d2phT O

(
phT

) dNh

d2phT dy
(11.8)

gives

Oh
(
phT

)
=

∑
species i

∫
d2piT

dNi

d2piT dy

∫ 1

zmin

dz O
(
zpiT

)
Dh
i (z,Q2) (11.9)

where zmin = 0.05. In Fig. 11.8 we show gluon v2(2PC)(pT ) and its corresponding hadronic
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result, for two different multiplicity classes. The fragmentation mechanism of Eq. (11.9)
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shifts the partonic curves further left towards lower pT , whereby a certain mixing of
the partonic values at different pT takes place. This mechanism can however not easily
increase the value of v2(2PC)(pT ) since it is an averaging and folding procedure. The
shaded area in Fig. 11.8 indicates the region pT < 2 GeV wherein the fragmentation
functions are not reliable any more, but only there the value increase due to the shift
of the values from the right. The multiplicity dependence is small, but it is visible that
(above pT & 2 GeV) our model lies one third below the data. It may very well be, that a
more realistic hadronization process, such as microscopic hadronization (e.g., by using an
event generator) could explain the missing ingredient.

11.7. Conclusions

The observation of long range rapidity correlations with characteristic structures in az-
imuthal angle in small systems has challenged our understanding of the space-time evo-
lution of high-energy nuclear collisions. Despite the fact that several phenomenological
works have attempted to explain various aspects of the experimental data, it remained
unclear to what extent observed correlations should be attributed to initial state or final
state effects. Based on a weak-coupling picture of the space-time dynamics, we devel-
oped a new framework including both initial state momentum correlations and final state
interactions. By matching classical Yang-Mills dynamics (IP-GLASMA) to an effective
kinetic description (BAMPS) on an event-by-event basis, we showed that the relative im-
portance of initial and final state effects in p+Pb collisions at LHC energies depends on the
event multiplicity as well as the transverse momenta under consideration. Especially at
low-multiplicity, the initial state correlations are very important for integrated as well as
differential v2, and need to be taken into account in a quantitative theoretical description.

We also note that multi-particle correlations of more than two particles can provide
additional insight into the nature of the observed correlations. Since final state induced
correlations emerge in response to the global event-geometry, these naturally produce
m-particle correlations (with m > 2) of similar strength. Conversely, for initial state cor-
relations the existence of pronounced multi-particle correlations is not a priori obvious.
However, it was shown recently in an Abelian model that initial state effects can generate
similar 4-, 6-, and 8- particle correlations [355]. Explicit studies of multi-particle correla-
tions beyond m = 2 within our framework are numerically very intensive and will be left
for future work. Our results indicate that a differential study of azimuthal correlations
across a large range of multiplicities and transverse momenta, can provide new insights into
properties of the initial state and the early time non-equilibrium dynamics of high-energy
collisions. In this context, it would also be interesting to include jet-like correlations at
higher momenta, to achieve a fully comprehensive framework of multi-particle correlations.
It is furthermore desirable to construct a microscopic hadronization method in order to
consistently compare our results to experimental data. It then becomes feasible to carry
out a systematic multiplicity scan, and predict kinematic windows revealing initial and
final state correlations.



12. Summary, conclusion and outlook

We now briefly summarize the main aspects of this thesis, conclude and explain possi-
ble next steps. We then highlight important future extensions and interesting follow-up
projects. In Fig. 12.1 we show a word cloud highlighting the most frequent words used in
this thesis.

12.1. Summary

In this work we study different aspects of of high energy physics, focusing on heavy-ion
and p+A collision phenomenology.

In order to better characterize the hot Quark-Gluon Plasma (QGP) medium as well
as the hot hadron gas (HG) we compute their electric conductivity and the conserved
charge diffusion matrix. These transport coefficients have gained less interest in literature
compared to, e.g., the shear viscosity to entropy ratio η/s or the bulk viscosity to entropy
ratio ζ/s. Based on the Chapman-Enskog formalism, and related linear response theory
from literature, we develop an algorithm to compute diffusion coefficients and electric
conductivity from the linearized Boltzmann equation. In the HG, we use binary, isotropic
scattering of up to 19 hadronic species and wherever available the collision cross sections
are Mandelstam-s dependent resonance cross sections. In the QGP, we here use a simple
toy-model, keeping all partons massless with an isotropic cross section which guarantees
4πη/s = 1.

For the electric conductivity, we present the -to our knowledge- most extensive result
available in the HG, and compare to several other works in literature. Around the phase
transition temperature, we match results from lattice QCD (lQCD) and our temperature
dependence is close to that of chiral perturbation theory.

We investigate diffusion currents due to gradients in the thermal potentials (chemical
potential over temperature) and find, that gradients of each charge couple to currents of all
charges, thus a whole matrix must be considered. Relevant charges in heavy-ion collisions
are baryon, electric and strangeness charge. The diagonal coefficients are what is known
as the baryon diffusion coefficient (κBB), the electric diffusion coefficient (κQQ) and the

Figure 12.1.: Word cloud of the most frequent words of this thesis. Small common english
words are not counted. Created with https://wordart.com/.
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strangeness diffusion coefficient (κSS). The off-diagonal coefficients (κQB, κSQ, κSB) of the
(by Onsager’s theorem diagonal) matrix describe the coupling of gradients and currents
of the three charges, and have never been computed before. By presenting the complete
diffusion matrix relevant for heavy-ion collisions, we can draw important conclusions for
the evolution of high-density experiments. We find, that the temperature and chemical
potential dependence in the QGP is mild, but strong in the HG. In most cases the simple
assumptions of the QGP are sufficient to surprisingly well match the coefficients quite
closely at the phase boundary, the off-diagonal coefficient κBQ being the exception. The
strangeness diffusion coefficient κSS is the largest, such that possible diffusion effects for
strange baryons might be observable. The cross coefficient κSB is negative, which means
that a gradient in baryon thermal potential initiates a negative strangeness current.

The rest of the thesis uses the model Boltzmann Approach to Multi-Parton Scatterings
(BAMPS) as the main tool. BAMPS models the QGP phase of heavy-ion (or proton-ion)
collisions as a non-equilibrium ensemble of partons governed by the Boltzmann equation.
This numerical framework solves the relativistic Boltzmann equation numerically exact in
3 + 1 dimensions, by using Monte-Carlo methods. Hereby BAMPS employs elastic and
radiative pQCD cross sections, running coupling, as well as a simple approximation of the
LPM effect for subsequent radiative scattering.

It is known, that in the center of peripheral heavy-ion collisions extremely large magnetic
fields appear in vertical direction. Those are generated by the passing spectator nucleons
which have relativisitc speeds. The Lorentz force pushes charged partons on circular
trajectories. We use BAMPS, supplied with a simple power-law initial state and constant
cross sections, to investigate the influence of external magnetic fields on the dynamics of the
fireball. After investigating the appearing Liénard-Wiechert Potentials and the resulting
fields for several configurations we find out which kinematic regions in momentum space are
affected by the Lorentz force. We then compare spectra and elliptic flow with and without
magnetic fields. We find, that even for optimistic estimates of the field configuration, a
change of the spectra and an enhancement of the elliptic flow in most measurable regions
of transverse momentum pT is small.

We then turn to the theoretical description of photon production processes. To this end
we first construct matrix elements for photon production, and modify them in a reasonable
way, such that they are infrared safe and do not diverge. We furthermore specify parame-
ters, which modify the matrix elements in a way, that in thermal and chemical equilibrium
the corresponding photon rates are very close to leading order rate calculations in thermal
field theory. We do this separately for binary and radiative matrix elements. We further-
more investigate the fugacity dependence of the rates within the microscopic algorithms,
and show that they scale like λ1−2

q . We show how photon production rates change under
boosts, and proof the correct generation of boosted rates in BAMPS. The translation of
the elliptic flow variable from a boosted background onto produced particles suffers from
a relativistic reduction effect, which we elucidate. We have constructed a second, alterna-
tive way to microscopically generate photons, based on the “AMY” scattering kernel. We
clarify its formalism and test the resulting rates. This photon production requires an effec-
tive background temperature and the momentum of the radiating quark. In thermal and
chemical equilibrium the method reproduces very precisely the analytic rates, however,
the angle of the outgoing photon is always approximated to be zero.

We investigate the collinearity and the energy spectra of the photon production mech-
anisms for single radiating quarks and show the effect of leakage of collinear photons. For
some of the photon production cross sections the photon momentum is very probable to
be close to the parton momentum, which we call parton-photon conversion. We highlight
which kinematic regions exhibit a clear quark-photon conversion.
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We compute direct photons from the QGP phase for RHIC and LHC collisions at sev-
eral multiplicities, using the two alternative mechanisms. In order to understand their
behavior we calculate the background thermodynamics and chemistry for the collision
systems in BAMPS and set the photon rates in connection to it. Collected photons in the
detector are a sum (spectra) or weighted average (elliptic flow) of all emission locations
in spacetime, making it hard to distinguish and separate theoretical uncertainties of the
models. However, it is very interesting to observe the dynamical realization of photon
production influenced by the different processes, by running coupling, quark and gluon
chemical equilibration and the temperature evolution.

Comparisons to direct photons from experiment are attempted by using the missing
contributions (hadronic and prompt) from literature. The general picture is an under-
estimation of the yield and also the elliptic flow in all centrality classes. At RHIC, for
high and low transverse momenta the agreement of the spectra to data is acceptable and
within errors, at LHC we can only compare the high-momentum parts, also with reason-
able agreement. Our calculation of the elliptic flow at RHIC describes the data well for
transverse momenta pT ≤ 1.5 GeV. At LHC we are missing hadronic literature values. We
realize, that the strict collinear “AMY” emission in all cases yields significantly stronger
elliptic flow. We show that running coupling enhances the spectra by up to a factor of
1.7, but does not alter the elliptic flow. We systematically investigate the fugacity effect
by generating artificial background events with a much faster quark generation. In these
scenarios the photon yield increases, but the effect is rather mild, since photon production
is dominated in the hot early phase where, in all scenarios, quark production is still at the
onset. These results however proof and quantify the effect of the fugacities.

We compare to a different transport model (PHSD) and a hydrodynamic model (MU-
SIC). To date, no model explains experimental direct photon data neither from PHENIX
nor ALICE for yield and flow satisfactorily. It is apparent that the QGP contribution dif-
fers significantly among the different models, so do the hadronic photon spectra. BAMPS
shows harder spectra than both of them, and an overall lower magnitude. It is probable,
that direct photon spectra and flow are dominated by hadronic sources in a wide kinematic
range. Our model underlines further the importance of the chemical non-equilibrium and
kinetic non-equilibrium effects such as collinear jet-photon conversion. The solution of
the “photon-puzzle” certainly includes a number of subtle improvements and a collection
of modifications to the current models. It seems probable, that only a combination of
different models will give the desired success.

In a separate project, we study the influence and interplay of initial state and final
state effects in the dynamics of small systems, focusing on azimuthal correlations at dif-
ferent multiplicities. Measurements in small collision systems such as p+p and p+A, in
particular those of anisotropies in multi-particle correlation functions, have shown very
similar features as those in heavy-ion collisions, and calculations within the hydrodynamic
framework have been quite successful in describing observables even though the applica-
bility of hydrodynamics becomes increasingly doubtful as the system size decreases and
gradients increase. Calculations using only intrinsic momentum correlations of the initial
state can also reproduce many features of the experimental data. We present a first study
where both initial and final state effects are combined into a single framework to assess
their relative importance for azimuthal correlation functions. We introduce a new model,
matching the classical Yang-Mills dynamics of pre-equilibrium gluon fields (IP-GLASMA)
to BAMPS (for the final state interactions) on an event-by-event basis.

In summary, depending on multiplicity of the event, we see transverse momentum depen-
dent signatures of the initial, but also the final state in azimuthal correlation observables,
such as v2 {2PC} (pT ). For instance, we see in low-multiplicity events, that initial state
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correlations dominate for transverse momenta pT > 2 GeV, whereas in high-multiplicity
events and at low momenta final state interactions dominate and initial state correlations
strongly affect v2 {2PC} (pT ) for pT > 2 GeV as well as the pT integrated v2 {2PC}.
Nearly half of the final pT integrated v2 {2PC} is contributed by the initial state in low-
multiplicity events, whereas in high-multiplicity the share is much less. We investigate
furthermore the dynamic behavior of the integrated flow.

We have now set the stage to carry out a systematic multiplicity scan, which, supple-
mented with a hadronization scheme, allows the comparison to experimental data, probing
the dynamics on the border of initial state dominated to final state dominated - but not
yet hydrodynamic – regime.

12.2. Conclusion and outlook

All the presented projects are prone to multiple improvements, some of which are currently
undergoing.

We have calculated a variety of transport coefficients such as conserved charge diffusion
and electric conductivity, and it remains to show first and foremost how relevant their
effect is for phenomenology, i.e. measurable observables. So far, hydrodynamics with
diffusion currents is in its beginning, but efforts are underway to include all (also higher
order) diffusion terms for multiple charges, and their couplings. In low-energy collisions,
the rapidity distributions of baryons and strange baryons are still not fully understood,
and it seems promising, that diffusive hydrodynamic simulations can give some answers.
Due to the large parameter space from the cross sections, resonances and hadronic species
it is certainly possible and desirable to improve the values of the transport coefficients even
further. However, the presented (semi) analytic formalism is less suitable for significant
extensions, such as inelastic scattering, as, e.g., dynamical hadronic transport models.
In frameworks such as UrQMD, GiBUU or SMASH the diffusion matrix and the electric
conductivity can be analyzed for instance via the Green-Kubo method, and resonance
propagation, a nearly complete hadronic zoo, extensive scattering potentials, correct dif-
ferential cross sections (s- and p-wave scattering) are no principle problem. The present
results in this thesis can however benchmark those codes. Besides, it is unlikely that the
results will change largely upon the inclusion of more species and more precise scatter-
ing, since the mass hierarchy determines the abundances in thermal equilibrium, and we
include the 19 lightest species. Another, further unexplored possibility is the inclusion
of Hagedorn states. Furthermore, it will be extremely interesting to compare the present
results for the diffusion matrix with lattice QCD results. To date, they are not available.
Results from other theories like holography are likewise welcome.

Currently, magneto-hydrodynamics is an acclaimed field of study. First magneto-hydro
codes are working and being improved both numerically and theoretically, however a
viscous hydrodynamic code with finite conductivity is not developed yet. We have found
that in one of the most prominent observables, v2, magnetic fields are almost irrelevant. It
will be interesting to verify our conclusion with a full magneto-hydrodynamical solution.
At this point, our calculation of the electric conductivity comes into play - since a full
magneto-hydrodynamical code requires a temperature and chemical potential dependent
electric conductivity, which we provide in this thesis. Another immediate step is the
simultaneous microscopic solution of the Boltzmann and Maxwell equation. We have
carried out first tests in this direction in this thesis. Even if those algorithms might be
unnecessary in the context of heavy-ion physics, there are many astrophysical applications.

Direct photons are a delicate probe in heavy-ion collisions, and to date no model explains
the experimental data satisfactorily. The implementation of direct photon production in
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BAMPS constitutes an important supplement to existing models. We have calculated
direct photon spectra and elliptic flow for various collision systems. Photons are sensitive
to rates and background, and it is probably necessary to improve on both. The leading
order rates in the QGP are relatively well esteemed, and even known to NLO (also first
lattice results show no significant differences to NLO rates). Hadronic rates are under more
debate, and in near future important improvements are anticipated. Even prompt photon
calculations are not parameter free, nor do all models coincide on them. Theoretical
prompt photon spectra should thus be improved. Our results anticipate a possible large
hadronic contribution to direct photon data. Improvements of the background will concern
mostly its composition. One should focus some research effort to the question, whether the
initial state is gluon dominated, and, if so, how fast quarks are produced. This is closely
connected to the question of thermalization. We conclude based on our results that the
importance of quark and gluon fugacities must not be underestimated. We cannot find an
outshining importance of the preequilibrium phase, since our model of the initial state has
a sparse quark population. The possibility exists, that non-isotropic initial state photon
radiation leads to an additional positive contribution for both elliptic flow and total yield.
It seems crucial to know the initial state very precisely, and the last project of this thesis
is an important step in this direction.

Based on our development of a new framework for p+A systems including both initial
state momentum correlations and final state interactions, it will be possible to construct a
realistic hadronization framework, as follow up of the BAMPS evolution. Then, systematic
comparisons with data in several multiplicity classes will quantify and reveal signatures of
the initial state. If our framework proves to be able to explain a wide range of data, we
would be able to predict which kinematic regions within azimuthal correlation observables
are purely determined by the initial color glass condensate correlations. Going further into
multiplicities where final state interactions begin to be visible, the early non-equilibrium
phase can be investigated. In this stage, the quark and gluon content governs also early
photon production rates. If experimental data become available, it will in fact be very
interesting to learn about photon spectra of small systems. This in turn might hint to the
missing ingredient of the “photon puzzle” in heavy-ion collisions.
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A. Cutting rules for bremsstrahlung

Here we want to elaborate more on the cutting schemes which are used within this thesis.
First we look at non-symmetric cuts that appear at two-loop level, then we turn to three
loop diagrams and their cuts to obtain bremsstrahlung matrix elements.

A.1. Two-loop contribution and non-symmetric cuts

At two loop order, there are possible cuts, which produce two fundamentally different
diagrams at the left- and right-hand side of the cut. They are shown in Fig. A.1. The rules
that were discussed in Sec. 6.1.2 apply essentially here in the same way. The difference is
obvious: there are no squared amplitudes to be expected, as we are dealing only with non-
symmetric cuts, that will generate only interference diagrams. The interference involves a
diagram with a closed loop, and a photon-quark-antiquark pair diagram from Sec. 6.1.1.
The method to deal with closed loops will be explained in the next section. In the present
case the product of the left- and right-hand side of the cuts from Fig. A.1 involves so-
called spectator particles from the heat bath, as explained in Refs. [264, 265]. We omit
detailed calculations at this point, as the tree-level quark-antiquark annihilation part of
the amplitude (which appears in all cases in the diagrams) has no phase space for on-shell
particles.

A.1.1. Three-loop contribution and symmetric cuts

Including three loops results in diagrams and cuts as in Fig. A.2. Here we investigate the
cuts which are denoted by the dashed lines and the dotted lines (Other possible cuts are
not shown). The dashed lines each generate 4 cut propagators, that must be labelled “in”
or “out” in all (

(
4
0

)
+
(

4
1

)
+
(

4
2

)
+
(

4
3

)
+
(

4
4

)
= 16) possible ways. This cut generates squares

and interference diagrams of various 1(2, 3, 4)→ 4(3, 2, 1) processes.
The dashed cuts of Fig. A.2 produce two on-shell gluons, and one quark line radiating a

photon. This, and corresponding diagrams with more gluon rungs, represent a sequential
scattering with gluons, which is included by default in BAMPS (see Chap. 4), because
the dominating subprocess q + g → q + g was included from the beginning, and the rare
radiation of the photon is Compton scattering in this case.

(a) (b) (c) (d)

Figure A.1.: The two possible non-symmetric cuts for each of the possible diagrams of the
photon self energy at (two-loop) order e2g2. The first and last two are of
course topologically the same.
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Figure A.2.: A possible three loop diagram with two gluon rungs. The dashed and dotted
lines are possible, topologically different cuts.

The dotted line creates two diagrams with a single closed loop. Here we have to label
the cut propagators that become on-shell by the label “in” or “out” in all possible ways, as
shown in Fig. A.3, corresponding to incoming or outgoing quarks/antiquarks. The cutting
rules prescribe in cases, where the cut diagrams show closed loops, that the loops has to
be opened in all possible ways [264, 265, 268]. In Ref. [265] these openings are called tics,
using the notation of marking opened propagators with a tic. This comes from the loop
integration, which is the reason for putting all internal propagators in turn on-shell [264].

There are rules for allowed tics: 1) All loops must be opened 2) The total number of
opened loops plus cut propagator lines must equal the number of loops in the original
diagram plus one 3) From both external legs one can move continuously to the cut line
along propagators without crossing tics or cuts (see Ref. [265]). All these rules are fulfilled
by either ticing 1 , 2 or 3 . In our case of Fig. A.3, the evaluation of the contribution
to the imaginary part of the self energy by defining both cut lines as incoming, results
in several 3 → 2 processes, like qq̄q̄ → q̄γ, qqq̄ → qγ or qq̄g → gγ. Likewise, defining
both cut lines as outgoing will end up in matrix elements of 1 → 4 processes (which are
kinematically not allowed but this is not important at this point).

We want to compute the 2→ 3 contribution, which is generated by defining one of the
cut quark propagators as incoming, the other as outgoing, as shown in the middle panel
of Fig. A.3.

We have to tic the marked propagators one by one, which has the same effect as cutting
it, with the difference, that one end of the ticed propagator is incoming, the other outgoing
[264]. Doing this in turn for tic 1 , 2 , 3 generates six different diagrams. Of course, these
diagrams have to be complex conjugated and multiplied with the six diagrams from the
left-hand side of the cut.

In Fig. 6.9 the two topologically different bremsstrahlungs-diagrams are shown, that
arise from the tic 3 in the diagram of Fig. A.3(b). The other four possible diagrams
(arising from tics 1 and 2 ) are for the processes gq → gqγ (s+t channel), q → qq̄qγ and
qq̄ → qq̄γ (s-channel).

For every possible in/out-configuration of the cut, the left- and right-hand side have
to be multiplied. This will in principle generate interference diagrams among the six
aforementioned diagrams. As we are interested in S-matrix elements with a specific in/out
state, we consider only the states with the same in/out state, that is for example the two
diagrams qq → qqγ as shown in Fig. 6.9. They have to be summed and multiplied with
its complex conjugate.
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2

1

3

in

in
(a) This configuration generates 3→ 2 processes.

2

1

3

in

out
(b) This configuration generates 2→ 3 processes.

2

1

3

out

out
(c) This configuration generates 1→ 4 processes.

Figure A.3.: One of the two different symmetric cuts to the three-loop photon self energy.
The cut propagators can be incoming or outgoing. The photon is defined to be
outgoing. The loop on each side must be opened once, the three possibilities
are given by circled numbers. There are 9 possibilities for the whole diagram,
as left- and right-hand side must be multiplied.





B. Matrix elements for bremsstrahlung

B.1. Bremsstrahlung diagrams for quark-quark scattering

In this section we compute the squared matrix element for the qq → qqγ process, shown
in Fig. 6.3. For this purpose, we label the amplitude of Fig. 6.9(a) with Ma, and the one
from Fig. 6.9(b) withMb. We have to compute (Ma+Mb)

? ·(Ma+Mb). As customary in
scattering theory, the matrix element is given by an average over initial spin, polarization
and color states, and a sum over final states.

B.1.1. Matrix elements

With the momentum assignment p3 = p1 + q, p4 = p2 − q − k we write down the first
matrix element [Fig. 6.9(a)] by using momentum space Feynman rules:

iMa = ūw(p3)(ig)γµλailu
s(p1)

−igµνδab
q2

ūr(p4)

× (ig)γνλbmj
i(m+ /p2

− /k)

(p2 − k)2 −m2

× (iQEM )γαε?α(k)ut(p2). (B.1)

The second matrix element [Fig. 6.9(b)] is

iMb = ūw(p3)(ig)γµλailu
s(p1)

−igµνδab
q2

ūr(p4)

× (iQEM )γαε?α(k)

×
i(m+ /p4

+ /k)

(p4 + k)2 −m2
(ig)γνλbmju

t(p2). (B.2)

By using the Dirac equation we transform the numerators of the quark propagators in the
following way:

(/p2
+m)γαu(p2) = 2pα2u(p2)

( /p4 +m)γνu(p2) = 2pν4u(p2),

and we simplify the denominators,

(p2 − k)2 = −2p2 · k, (p4 + k)2 = 2p4 · k. (B.3)

Note that, later on, we screen the t-channel quark-propagator in Ma by using a Debye
mass m2

D,q,

1

−2p2 · k
→ 1

−2p2 · k −m2
D,q

, (B.4)

and the s-channel propagator in in Mb,

1

2p4 · k
→ 1

2p4 · k +m2
D,q

. (B.5)
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Only at this step we set the masses to zero, m ≡ 0. The gluon propagator will be screened
with the Debye mass m2

D,g,

1

q2
→ 1

q2 −m2
D,g

. (B.6)

B.1.2. Amplitude

Next we simplify the summed matrix elements,

iMa + iMb = ūw(p3)(ig)2γµλailλ
b
mju

s(p1)
−igµν
q2

(iQEM )ūr(p4)

×
[
i(γνpα2 − γν/kγα)

−2p2 · k
+
i(2γαpν4 + γα/kγν)

2p4 · k

]
ut(p2)ε?α(k)

= −ig2QEM ū
w(p3)γνu

s(p1)
λailλ

a
mj

q2
ūr(p4)

×
[
γν/kγα − γνpα2

2p2 · k
+
γα/kγν + 2γαpν4

2p4 · k

]
ut(p2)ε?α(k). (B.7)

This amplitude needs to be squared in the next step, (iMa + iMb) · (iMa + iMb)
?,

and then summed over final states and averaged over initial states. We define the result-

ing summed and averaged squared matrix element as |M|2. The sum over final photon
polarizations reduces to [7] ∑

ε

ε?α(k)εβ(k)→ −gαβ. (B.8)

The sum of the color matrices is (see Ref. [7], Eq. (17.63))

1

N2
c

∑
colors

λaλaλbλb =
2

9
. (B.9)

The average over initial quark spins and sum over final spins gives a factor 1/4, and, by
using ∑

spin t

ut(p)ūt(p) = /p, (B.10)

we can transform the matrix element into traces,

|M|2rad. =
1

4

2

9

Q2
EMg

4

q4
Tr

{
/p4

[−γν/kγβ + 2γνp2,β

2p2 · k
+
−γβ/kγν − 2γβp

ν
4

2p4 · k

]
× /p2

[
γβ/kγµ − 2γµpβ2

2p2 · k
+
γµ/kγβ + 2γβpµ4

2p4 · k

]}
. (B.11)

The gluon momentum squared is q2 = (p4 − p2 + k)2 and the gluon propagator reads,

1

q4
=

1

(2p4 · k − 2k · p2 − 2p4 · p2)2
, (B.12)

and after screening,

1

q4
→ 1(

2p4 · k − 2k · p2 − 2p4 · p2 −m2
D,g

)2 . (B.13)
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The trace in Eq. (B.11) can be done using the MATHEMATICA package FeynCalc 8.2.0
[356], with the result (where we defined the scalar product of four-vectors (ij) ≡ pi · pj),

A ≡ 2(25) +m2
D,q

B ≡ 2(45) +m2
D,q

C ≡ 4(45) +m2
D,q

D ≡ (35)B2 − 2(34)A(2(25)−B −m2
D,q)

E ≡ (23)A((25)C + (45)(−B −m2
D,q)) + (24)A(2(34)A+ (35)(A+B)) + (25)D

F ≡ (24)A(A+B) + (25)B2

G ≡ (23)A((24)B + (45)A) + (34)F

H ≡ −2(23)B + (34)(−B −m2
D,q) + (35)m2

D,q

J ≡ (45)H + (24)(35)B + (25)((34)C + 2(35)(45))

|M|2rad. =
1

4

2

9
Q2
EMg

4128
A((12)J − 2(13)(24)(45)A) + (14)E + (15)G

A2B2(2(24) + 2(25)− 2(45) +m2
D,g)

2
(B.14)

We have checked that the Ward identity is fulfilled.

B.1.3. Symmetry-factor

The self energy in Fig. A.3(b) with the given cut generates the qq → qqγ -process. We
discuss its multiplicity factor here. The photon legs of the self energy can be crossed,
which is why the self energy carries a factor of two. The four gluon vertices are completely
identical. Every gluon can be reversed. This contributes a factor of four. The loop can
be opened by tic-ing the upper or lower quark line, which introduces a factor of two. In
total the symmetry factor is 16.

B.1.4. Algorithm to determine specific mean free paths

The mean free path is the inverse of the scattering rate per particle λmfp = R−1. The
inverse rate for scattering of a single particle q within a medium of particle density nq is

λqmfp,qq→qq = (nq 〈σ(s)vrel〉therm)−1 , (B.15)

where the average is over the thermal ensemble and vrel ≡ s/(2E1E2), where E1, E2 are
the energies of two incoming particles and the Mandelstam variable s = (P1 + P2)2 is the
squared sum over their four-momenta. A thermal ensemble allows for the direct calculation
of the mean free path from the thermal ensemble, just given the cross section σ(s) and
the equilibrium density nq. However, we explicitly want to extract the mean free paths
in a chemical and/or kinetically nonequilibrated system. For this purpose, we choose
all possible scattering partners i in each computational cell and compute their collision
probability P i22 from Eq. (4.18), such that

λqmfp,qq→qq = (nq 〈σ(s)vrel〉therm)−1

= Nq
1

M

M∑
i=1

P i22

∆t
,

=
1

∆V

2

(Nq − 1)

M∑
i=1

σivrel,i

∆t
,

M ≡ 1

2
Nq(Nq − 1). (B.16)
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Note, that here Nq is the total number of quarks in the cell with volume ∆V , which
is the physical number times the number of test particles, Ntest. The cross section in
Eq. (4.18) is divided by Ntest, such that the mean free path is the physical mean free
path and independent of Ntest. For processes qq → qq there are

(
Nq
2

)
= 1/2Nq(Nq − 1)

possible scattering processes for Nq quarks in the system, and we take numerically the
average to get the mean free path of a quark when considering only scatterings with
another quark of the same flavor. In a similar way we can compute the mean free paths
for qq′ → qq′, q̄q̄′ → q̄q̄′, qq̄ → qq̄.

B.1.5. Verification of the bremsstrahlung process and kinematics

To cross-check the inelastic photon production and verify the kinematic integration limits
and the limit stemming from the LPM constraint, we show in Fig. B.1 a typical set of
sampled photon momenta according to the full bremsstrahlung matrix element. Each of
the red dots represents one sampled photon for a fixed (but arbitrary) configuration of
incoming quark momenta. For illustrational purposes (to see the intrinsic asymmetry in
y) we fix the quark line where the photon is emitted, and discard the radiation from the
other quark line. However, in any real simulation of BAMPS the incoming quarks are
randomly taken to be either quark one or two - thus the momentum spectrum will be
symmetric in y. Omitting the integration over y in Eq. (4.22), we compute numerically
the differential cross section dσ23/dy normalized by the total cross section σtot in Fig. B.2.
Here the symmetry in y can clearly be seen. Omitting the integration over k2

⊥ in Eq. (4.22),
we compute also the differential cross section with respect to k2

⊥, as shown in Fig. B.3.
Both figures are done for an arbitrary momentum setup of the incoming quarks, namely
p1 = (2T, 0, 2T, 0), p2 = (2T, 0, 0,−2T ) and T = 0.4 GeV. It is clearly visible, that the
mean free path changes the kinematics of the outgoing photon momenta, a larger mean
free path allows more collinear radiation.



B.1. Bremsstrahlung diagrams for quark-quark scattering 199

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4

k
T
 [

G
e

V
]

y

λmfp=20 fm

λmfp=10 fm

LPM constraint: λmfp=1.7 fm
kinematical constraint

BAMPS, λmfp=1.7 fm

Figure B.1.: The exact photon bremsstrahlung matrix element is used to sample photons.
Their momentum is given in k⊥, q⊥, y, φ-space; here we show several reali-
sations (red dots) as an example, for a fixed configuration of the incoming
momenta (see text). The green dashed curve represent the kinematic limit,
the green dotted curve the LPM limit. The purple and blue dash-dotted lines
show the limit from the LPM constraint for larger mean free paths. The
asymmetry in y is forced by using only one fixed quark as the radiating one.
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C. Calculations for hadronic conductivity

C.1. Calculations of the collision integrals

In the calculations of the matrix elements, the following integrals have to be solved. We
will show only some examples, all other integrals can be worked out in a similar fashion.
Consider the following integral,∫

dPdP ′(2π)6sσij(s,Θ)δ(4)(kµ + k′µ − pµ − p′µ)pα ≡ Γα. (C.1)

We define a unitless vector (normalized total momentum of the collision) P̃µT = (kµ +
k′µ)/

√
s, and the projection orthogonal to it, ∆µν

P = gµν − P̃µT P̃ νT . The tensor Γα can only
depend on P̃µT , so we can decompose,

Γα = a(s)P̃αT , a(s) = P̃αT Γα (C.2)

where

aij(s) = γij

∫
dPdP ′(2π)6sσij(s,Θ)δ(4)(kµi + k′µj − p

µ
i − p

′µ
j )(pαi P̃T,α). (C.3)

We can always evaluate a scalar integral in the center of momentum/center of mass frame,
where pαi P̃T,α = p0

i . In the massless case, a = σij(s,Θ)s
√
s/4, in the massive case,

aij(s) = γij

∫
d3p

p0
i

d3p

p0
i

sσij(s,Θ)δ(p0
i + p′0j −

√
s)δ(3)(pi + p′j)p

0
i

= γij

∫ |r|2d|r|
p0
i p
′0
j

sσij(s,Θ)δ(p0
i + p′0j −

√
s)δ(3)(pi + p′j)p

0
i

=
1

2

(
γij

∫
dΩσij(s,Θ)

)√
(s− sija )(s− sijb )

√
1

4s
(s− sija )(s− sijb ) +m2

i (C.4)

where we defined

|r| = 1

2x

√
(x2 − (mi +mj)2) (x2 − (mi −mj)2), sija = (mi +mj)

2,

sijb = (mi −mj)
2, x = p0

i + p0
j , (C.5)

and use

dx

x
=
|r|d|r|
p0
i p

0
j

. (C.6)

The dKdK ′-integrals of Eq. (2.26) are easily done in the massless case, but require nu-
merical integration in the massive case.

201



202 C. Calculations for hadronic conductivity

C.2. Cross sections for pion-isotriplett elastic scattering via ρ
resonances

As an example for the resonance cross sections, the total cross section for the reaction

π± + π∓ → ρ0 → π± + π∓ (C.7)

is given by (we use the parametrization given e.g. in [111,112])

σtot(
√
s) =

〈
jπ∓ ,mπ∓ , jπ± ,mπ± ||Jρ0 ,Mρ0

〉
(2Sρ0 + 1)

(2Sπ∓ + 1)(2Sπ± + 1)

π

p2
CMS

Γρ0→π±+π∓Γtot

(Mρ0 −√s)2 +
Γ2

tot
4

(C.8)

Here, j, J is the isospin of the particle or resonance, Sparticle its spin and m,M the z-
component of it. The Clebsch-Gordon coefficients can be looked up:

〈
jπ∓ ,mπ∓ , jπ± ,mπ± ||Jρ0 ,Mρ0

〉
∓
√

1
2〈

jπ− ,mπ− , jπ0 ,mπ0 ||Jρ− ,Mρ−
〉

−1
2〈

jπ0 ,mπ0 , jπ− ,mπ− ||Jρ− ,Mρ−
〉

1
2〈

jπ+ ,mπ+ , jπ0 ,mπ0 ||Jρ+ ,Mρ+

〉
1
2〈

jπ0 ,mπ0 , jπ− ,mπ− ||Jρ− ,Mρ−
〉

−1
2

The center-of-mass momentum is given by

pCMS =
1

2
√
s

√
(s− (mπ+ +mπ−)2) · (s− (mπ+ −mπ−)2). (C.9)

The widths are themselves energy-dependent:

Γρ0→π±+π∓(
√
s) = Γpole

ρ0→π±+π∓
mρ√
s

(
pCMS(

√
s)

pCMS(mρ)

)2l+1
1.2

1 + 0.2
(
pCMS(

√
s)

pCMS(mρ)

)2l
, (C.10)

with an angular momentum l of the decay. We are considering only one decay channel for
each process, so Γtot = Γdecay channel. In practical numerical integrations we use a simpler
Breit-Wigner parameterization of Eq. (C.8).



D. Lorentz invariance

Lorentz invariance one of the most fundamental principles in relativistic kinematics. Phys-
ical laws are valid in every coordinate frame, or, experiments will show the same physical
results from every inertial frame. Lorentz invariance of particle distribution functions
and related collision probabilities (following from the Boltzmann equation) are however a
subtle issue which we shall address here.

D.1. Lorentz invariance of phase-space measures and
distribution functions

In this section we define the phase space elements in a Lorentz invariant way.

D.1.1. Momentum space measure

The Lorentz transformation of a momentum 4-vector in x−direction reads,
p0

px

py

pz


′

=


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




p0

px

py

pz

 (D.1)

Obviously, py, pz do not transform, neither do dpy, dpz. For the transformation of dpx we
compute the Jacobian and find

dp′x = γ − βxγ
px

p0
dpx ≡ U · P

p0
dpx, (D.2)

where we defined the 4-velocity

U = (uµ) = (γ, βx, 0, 0). (D.3)

The transformation of the momentum space element of a primed to an unprimed system
is simply

d3~p′ =
E′

E
d3~p. (D.4)

Space time measure

We consider a space time volume element d3~xLAB that contains two particles, a and b.
We consider a boosted frame, whose coordinates and momenta will get a prime. At some
time, that we call t = 0, the frames coincide, t = t′ = 0, and the two particles are inside
d3~xLAB. More precise, their initial positions on the x-axis marks the length measure:
xa(0) − xb(0) = dx. For simplicity, we consider only a boost in x-direction. The two
particles have 4-trajectories (world lines)

Xa(ta) =


ta

px
E ta + xa(0)

ya(0)
za(0)

 , Xb(tb) =


tb

px
E tb + xb(0)

yb(0)
zb(0)

 . (D.5)
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From the primed frame, these vectors are

X ′a(ta) =


γta − βγxa(ta)
γxa(ta)− βγta

ya(ta)
za(ta)

 , X ′b(tb) =


γtb − βγxb(tb)
γxb(tb)− βγtb

yb(tb)
zb(tb)

 . (D.6)

As they belong to the same small volume element, we require that the times of a and b
are the same. We call this simultaneity:

x0′
a ≡ x0′

b . (D.7)

We use Eq. (D.6) in Eq.(D.7) to compute a time difference in the LAB,

γta − βγxa(ta) = γtb − βγxb(tb)
ta − β

px
E
ta − βxa(0) = tb − β

px
E
tb − βxb(0)

ta − tb = β
xa(0)− xb(0)

1− β pxE
= β

dx(0)

1− β pxE
.

(D.8)

Similarly, the distance of a and b in the primed frame is

dx′ ≡ x′a − x′b = γ
(px
E
ta + xa(0)− px

E
tb − xb(0)− β(ta − tb)

)
= γ

px
E

(
β

dx(0)

1− β pxE

)
+ γdx(0)− γβ

(
β

dx(0)

1− β pxE

)
= γdx(0)

(
1− 1

1− β pxE

(
β
px
E
− β2

))
= γdx(0)

1

γ

E

γE − βγpx
= dx(0)

E

E′
. (D.9)

As a conclusion, if the primed observer chooses the volume element

d3~x′ =
E

E′
d3~x (D.10)

then the number of particles counted instantaneously inside d3~x′ is the same as in d3~x.

D.1.2. Lorentz invariant distribution function

Combined with Eq. (D.4) we have a Lorentz invariant phase space measure,

d3~xd3~p = d3~x′d3~p′, (D.11)

provided the d3~x is chosen in the way explained above, with the corresponding transforma-
tion, which depends on the particles momentum. Following a specific number of particles,
we can define a Lorentz invariant distribution function,

f(X, ~p) =
dN

d3~xd3~p
. (D.12)
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D.2. Boltzmann equation and stochastic collisions

We write down the Boltzmann equation for f(X, ~p),

pµ
∂

∂xµ
f(X,P ) = C22(X,P ) + . . . (D.13)

Here we only consider elastic scattering. Using the notation dK ≡ d3k/
[
(2π)32k0

]
the

collision term for 2↔ 2 collisions reads (C22 is C22 up to a factor E)

C22(X1, P1) =
1

2E1

∫
dP2

1

ν

∫
dP ′1

∫
dP ′2f

′
1f
′
2 |M|2 (2π)4δ(4)(P ′1 + P ′2 − P1 − P2)

− 1

2E1

∫
dP2

1

ν

∫
dP ′1

∫
dP ′2f1f2 |M|2 (2π)4δ(4)(P1 + P2 − P ′1 − P ′2) (D.14)

The total collision cross section is defined as

σ22 =
1

2s

1

ν

∫
dP ′1

∫
dP ′2 |M|2 (2π)4δ(4)(P1 + P2 − P ′1 − P ′2) (D.15)

The collision term defines the collision rate, which is the number of collisions in a time
interval ∆t, for two particles inside a volume element ∆3~x with momenta in momentum
space elements ∆3~p1,∆3~p2 around the momenta p1, p2,

∆Ncoll

∆t∆3~x
=

∆3~p1

2(2π)3E1

∆3~p2

2(2π)3E2
f1f22sσ22. (D.16)

Here we defined the Lorentz invariant distribution function of particle 1, f1 ≡ f(X1, ~p1),
and particle 2, f2 ≡ f(X2, ~p2) as in (D.12). As it can be seen here, the right hand side of
Eq.(D.16) is Lorentz invariant. Thus, also the left hand side must be Lorentz invariant.
But, what is the frame and transformation property of ∆t∆3~x? For now, we keep it as
an undefined space time element, for which the only thing we know is, that ∆t and ∆3~x
belong to the same frame, and the product is Lorentz invariant ∆t∆3~x = ∆t′∆3~x′. The
collision probability in this space time element is

P22 ≡
∆Ncoll

∆N1∆N2
=

∆t∆3~x

∆3~x1∆3~x2

s

2E1E2
σ22. (D.17)

In a boosted frame (prime), we have

P ′22 =
∆t′∆3~x′

∆3~x′1∆3~x′2

s

2E′1E
′
2

σ22 =
∆t∆3~x

∆3~x1∆3~x2

E′1E
′
2

E1E2

s

2E′1E
′
2

σ22 = P22, (D.18)

and thus, Lorentz invariance of Eq.(D.17) is explicitly guaranteed.
As for now, in BAMPS the Lorentz transformation of ∆3~x is assumed be the same for all
particles, independent of their momentum. Under this assumption it is then justified to
cancel the volume elements in Eq. (D.17), to end up with the collision probability

PBAMPS
22 =

∆t

∆3~x

s

2E1E2
σ22. (D.19)
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