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ABSTRACT 

A model describing photoproduction of a heavy fermion pair which 

interacts by the exchange of gluons with the target is considered 

in the framework of the Cheng-Wu picture. Its characteristics are 

presented and it is applied to qc and nc photoproduction where the heavy 

quarks are assumed to be produced in the target’s gluon potential. The 

angular distribution of orthocharmonium reveals a characteristic zero 

point at n = 2mc whereas the angular distribution of paracharmonium 

is flat. Arguments and estimates are given for the neglect of the gluon 

tree diagrams. The model applied to electromagnetic production of 

(=r-) shows that the inclusion of multiphoton exchanges enhances the 

cross sections by a factor 2-3. 
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1. INTRODUCTION 

chotoproduction of a pair of bound heavy quarks (l’charmoniumll) presents 

the attractive opportunity of studying several theoretical assumptions in strong 

interaction dynamics which so far have escaped direct insight. The interaction 

between the quarks is supposed to occur through the exchange of gluons. In 

analogy to weak and electromagnetic interactions, the strong forces are assumed 

to be correctly described by a non-Abelian gauge theory whose interaction 

strength decreases with increasing gluon mass. 1 Consequences of such a view- 

point2are at present subject to extensive phenomenological investigation which 

have lead to a number of characteristic and measurable predictions concerning 

hadron multiplicity, 3 large pt reactions4 and the existence of jets. 5 

The binding of the quarks into physically detectable particles and the non- 

existence of free quarks is attributed to the confinement mechanism6 which allows 

the quarks to appear as quasifree objects at short distances. The reason for the 

large mass of the charmed quarks7 is another mystery which we have to take as 

a phenomenological fact which however permits further study, and tests of our 

present understanding of strong interaction dynamics. Apart from these con- 

ceptional theoretical questions, there are a number of phenomenological features 

in z$ photoproduction which are substantially different from photoproduction of 

the conventional vector mesons p, w and $0 One wonders why $ photoproduction 

is suppressed in comparison to photoproduction of the light-quark vector mesons 

9 and why its angular distribution is less peaked in forward direction. 

In this paper we investigate the consequences of the non-Abelian gauge 

theory picture of strong interaction dynamics’ assuming that the interactions 

between the quarks are mediated by colored gauge bosons. In particular we 

study the photoproduction of a heavy quark pair which subsequently undergoes 
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interaction with the conventional quarks via gluon exchange and eventually forms 

.the bound state $(cE). The most crucial assumption is the validity of a pertur- 

bative determination of the scattering amplitude which is motivated at large 

space-like momenta by the renormalization group results commonly termed as 

ltasymptotic freedom”. Measurable consequences of such a point of view have 

been found in an analysis of the spin dependence of Zc, photoproduction. 10 Here 

rather, we will concentrate on the angular distribution of such a process and its 

parastate analogue. First results have been reported earlier” and we here 

present our complete analysis. Photoproduction of a fermion pair within the 

framework of quantum electrodynamics has been studied extensively by Cheng 

and Wu, ‘2 whose approach we:follow closely, and a number of other authors. 13 

The main consequences of the picture sketched above will be studied in a 

simple model which, we believe, makes obvious many of the features charac- 

teristic of our general framework. We will consider the scattering process of a 

photoproduced heavy quark pair in a scalar l/r (long range) gluon potential due 

to the target nucleon. The bound state nature of the quark pair is taken into 

account in the formal presentation of the model but we ignore it in the numerical 

computations as we wish to focus upon the phenomenological consequences of the 

gluon exchange picture. 

The main question we ask in this work is: What implications has gluon 

exchange for the angular distribution? The paper is organized as follows: In 

Section II we give a short introduction to the basic assumptions of QCD and the 

perturbative recipes for its phenomenological applications. 12 Section III is 

intended as a brief summary of the infinite momentum frame calculus. l4 The 

general form of the scattering amplitude with the (fluctuation) wave functions of 

the photon and the quark bound state is introduced in Section IV. Its structure 
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is analyzed in Section V and it is cast into an easily calculable form which is 

used for the evaluation of our numerical results; these are presented and dis- 

cussed in Section VI. We have determined the cross sections for photoproduc- 

tion of qc and 7, as well as the photoproduction of an unbound heavy lepton pair 

7+7-. 15 The application of this model to photoproduction of quark pairs 

involves the neglect of gluon tree diagrams which, as we are able to show in 

Section VII, is well justified. Our results and conclusions are summarized 

in Section VIII. 

II. THE GLUON APPROACH 

The successes of non-Abelian gauge theories in unifying weak and electro- 

magnetic interactions and the continuing attempts at a more general framework 

unifying weak, electromagnetic strong interactions ’ lead us to pursue the 

dynamical consequences of a field theory of the non-Abelian type in strong inter- 

action dynamics. Its most important characteristic are the gluons being exchanged 

between the quarks. Much recent study of the phenomenological consequences 

of such an assumption has been devoted for instance to large-pt reactions, 4 to 

the scaling violation of lepton and hadron induced deep inelastic reactions 16 and 

most recently to the study of the Pomeron. 2 Before going into the details of our 

work, we would like to sketch the most important assumptions and perturbative 

recipes for quark-gluon theories. 

What are the main requirements one would expect of such a theory? The 

conditions generally agreed upon are (for the hadronic sector)‘: 

(i) renormalizability 

(ii) conservation of parity, isospin, . . . 
1 

(iii) asymptotic freedom 
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(iv) no strongly interacting scalar fields 

- (v) color confinement. 

The first condition follows as one desires a calculable descriptive framework 

which leads to no nonmanageable infinities. Phenomenology leads us to impose 

condition (ii). As a consequence gluons are polar vectors and all fermions 

have equal parity under strong interactions. Condition (iii) follows from the 

non-Abelian character of gauge theories, leading to a p(g) opposite in sign rela- 

tive to Abelian theories (for small g). 17 Again phenomenology imposes condi- 

tion (iv) whereas (v) is a consequence of the fact that no free quarks and gluons 

have been seen to date. 

The large coupling constant in any field theory describing strong interactions 

raises the question of whether the apparatus of perturbation theory is applicable. 

Here we will ignore this problem and assume that indeed a perturbative recipe 

for quark-gluon theories is applicable. Nussinov’ has developed a practical 

approach for this purpose using the following assumptions: 

(i) The multi-Regge and quark-gluon descriptions are equivalent in 

the Regge region. 

(ii) Planar duality holds and the simple quark picture of bosons and 

baryons is correct. 

(iii) Gluon exchanges can be treated perturbatively; but binding into 

color singlet states has to be treated differently. 

Nussinov (and also Low)~ recently presented a description of hadronic interac- 

tions and in particular their Regge characteristics based upon these rules. 

Figure 1 illustrates the idea. Whenever quarks come close they exchange gluons; 

these in turn create an internal “quark bubble” which attracts many more gluons. 

Assuming that gluon exchange can be treated perturbatively, one can, to leading 

order for each diagram, reproduce Regge asymptotics. 
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The exponential t-dependence, expected for diffractive processes, is due 

to the quark-bag interaction in this model, which prevents the quarks from 

appearing as free objects. As an alternative one might argue that two-gluon 

exchange may only be considered as an order of magnitude approximation since 

such diagrams show relatively little t-variation. The diffractive t-dependence 

then might result from the infinite sum of multigluon exchanges; although it is 

true in QED, this point of view is an unproved conjecture for &CD. Recently 

the consequences of the two-gluon exchange picture have been investigated in an 

extensive study of its spin characteristics in +photoproduction. It was con- 

cluded that measurement of the spin density matrix elements in the threshold 

region can give indications of the existence of gluons. 10 

We here adopt the opposite viewpoint by assuming that multigluon exchange 

leads to the Pomeron-like characteristics. We consider the scattering process 

. of a pair of charmed quarks in a scalar l/r (long range) potential. The bound 

state nature of the quark-pair is retained in the formal presentation of the model; 

however, it is ignored in the numerical evaluations since we are mostly con- 

cerned here with the consequences of gluon exchange. We first present the form 

of the scattering amplitude as given by Cheng and Wu. 18 Subsequently, we give 

the angular distribution of the ortho and para cc-states; and, finally, we numeri- 

cally determine the dependence of the scattering amplitude on the quark mass 

and study the influence and behavior of the multigluon exchange contributions. 

However before embarking upon this program and before deriving the form 

of the scattering amplitude let us briefly introduce the basics of the infinite 

momentum frame calculus and with it our notation. 
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III. THE INFINITE MOMENTUM FRAME 

Dze to covariance and Lorentz invariance of the S-matrix, the scattering 

processes can be viewed and described in any Lorentz frame. In particular a 

Lorentz frame may be chosen where the form of the scattering amplitude 

reduces to a simpler expression and thus allows greater theoretical intuition: 

the infinite momentum frame. 

The infinite momentum frame variables are defined by 

(t,X,y,z) --) 
( 
.=z, x, y, z=%) , i’=(x,y) 

and similarly for the momenta: 

, P,, py, F = <px, P,) 

(3.1) 

(3.2) 

with the convenient transformation properties under Lorentz boosts along the 

z-axis 
U -u 

v-77 , H-e H ; (3.3) 

here tanh u =v is the relative velocity of the two Lorentz frames. Another 

interesting characteristic of these new variables is that they reveal a formal 

analogy with nonrelativistic Galilean mechanics in two dimensions. 
14 For 

-2 
example the on-mass shell condition p2 = 277 H-p =m2 can be written in the 

form 

(3.4) 

which clearly indicates the correspondence: H - energy and 7 u mass, pro- 

vided the second term in Eq. (3.4) is interpreted as the potential energy. In 

these new variables the wave functions are normalized according to 

<T-/‘,Tp I7-/,T> = (27r)3 2q S(Tyrj’) S2(E-&) (27r)3 6.. . (3.5) 
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and the invariant measure reads: 

Galilean boost invariance demands invariance of the wave functions under 

c -T+T~ giving for a multiparticle state 

= I&, Ri Rj> Ri zz +3i.“;, 71i pi= 7 
K 

P-6) 

IV. THE SCATTERING AMPLITUDE 

Following the approach presented in Section II, the scattering process as 

described in Fig. 2 occurs in three steps: First, the incoming physical photon 

fluctuates into a system of freely moving constituents (c-quarks), the partons 

in the DLY approach. 19 Second, each individual constituent undergoes instan- 

taneous, elastic multiscattering processes in the gluon potential of the nucleon. 

There is no interaction between the quarks during this process. Finally, they 

interact to form the observed bound state. Within the gluon exchange frame- 

work, this three-step picture is expected to be valid at high energies where the 

fluctuation lifetime is much larger than the time needed for the interaction with 

the external gluon potential. 

This picture has been elegantly formulated by Bjorken, Kogut and Soper 14 

using the infinite momentum frame calculus. The determination-of the scattering 

amplitude requires consideration of the fluctuation wave functions due to the 

photon, the quark-pair bound state and the amplitude describing the actual gluon 

3 scattering process. 
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A. The Photon Fluctuation Wave Function 

In-the spirit of the parton approach, we assume that the initial photon state 

is expanded in a complete set of ‘bare’ states r -the bare photon and the partons 

-and write: 

Iy> = IT> -t- 12: dI’12*M;2 IT> - Is> + . . . (4.1) 

where 

(4.2) 

stands for the phase space integration over the intermediate parton states which 

are characterized by their transverse momenta 3, longitudinal momentum 

fractions ni, spin si and all other quantum numbers. Since we are working on 

lowest order electromagnetic interactions only the two parton intermediate state 

is relevant here. The photon fluctuation wave function is in principle a function 

of the total momentum x =rl+r2, n = ql +n2 and also depends on the momentum 

components of the two intermediate partons; but it can easily be shown to depend 

only on the variable combinations 

F= $*p2 -I*p ; 2 1 (4.3) 

because of Galilean invariance. Thus to perform a Lorentz transformation is 

to change the variable cand p. The explicit form of the fluctuation wave functions 

in lowest order QED have been determined in Ref. 14 using standard rules of the 

old-fashioned perturbation theory for time-ordered Feynman diagrams with 

dvi .MY=-e. u1’v2 
H-HI-H2 * (4.4) 

H and Hl 2 are the Hamiltonians of the bare photon and parton states in the 
, 

infinite momentum frame and cl and v2 represent the spinors of the fermions. 
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For explicit spin combinations we have: 

MY *I, **la) = e* zrn 2 a 
m +F 

(4.5) 

(4.6) 

MY *~,$a) = 0 

where p, = px rt ip . 
Y 

(4.7) 

(4-W 

B. Quark Fluctuation Wave Function 

In a completely analogous manner the final state I$> is expanded in parton- 

antiparton states (where here however no bare @-state is allowed since $ is a 

bound state of a pair of quarks) 

I$> = /CdE12.M12. zc) IT> l2> + . . . (4.9) 

e-7 with the $-fluctuation wave function M.12 (p , p’) being dependent on the momenta 

of the parton states lr> and the total momentum x’=q +3 , 7’ =ni*i as 

defined in Eq. (3.2). Following Cheng and Wu 18 we relate the bound state fluc- 

tuation wave function M#@, p’) to the ordinary Schroedinger bound state wave 

function e,(p) and describe the bound quark pair by 

Me@, /3’) = JxB. @,@ , MB+‘) C (;, AI,;, X2/s’, hl) (4.10) 

MB is the mass of the bound state system, s and At are its spin and helicity and 

Al, h2 are the helicities of the partons. C(. . . /. . ) stands for the Clebsch-Gordan 

:coefficient. The Schroedinger wave function is normalized as usual: 

/ 
d3p 3 I$,$) I2 = ’ (4.11) 
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The above ansatz (4.10) is well justified as long as the quark masses are heavy 

and bi&ing energy is small. The factorization of the spin part from the space 

part in M$ is a good approximation if the internal motion of the partons can be 

neglected and thus the appropriate Wigner rotation for spin projections onto the 

z-axis may be neglected. If for example a l/r potential between the quarks is 

assumed the bound state wave function reads 20. . 

=A “O- mars (4.12) 

where a0 is the radius of the bound state and Q s E gi/4= is the strong coupling 

constant. 

C. Scattering Amplitude 

We are now in a position to specify the scattering amplitude. We sandwich the 

scattering operator R (defined in S= l+i. R) between the wave functions I $> and 

I?> and obtain for the T-matrix the well known result 

TAhgi;;j = J+ [ 
t27d 

F-tGa F+(=ij - (27r)4s2(s?5 s2(?i-i$ - J,,,(r;tq) , 1 
(4.13) 

where &$-Ff) = 2i? and Fi Gf) represents the transverse momentum of the initial 

y-state (final q-state) and t= -Gi-cf)“. The “impact factor” Jhtx contains all 

information about the creation process and final state binding of the constituent 

system through the fluctuation wave functions introduced above: 
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where m’= it-pi; and the sum extends over the fermion helicities which we 

have omitted. The differential cross section is 4r 
dcr -= I 2 ITA,hl2 . 

dA2 (47r)3 
(4.15) 

The S-matrix amplitude describing the interaction of each constituent with the 

gluon potential is parametrized by the eikonal form 

(4.16) 

such that each constituent acquires an eikonal phase shift whereas their longitu- 

dinal momenta and helicities remain unchanged. 

Let us for later purpose assume a Coulomb-like gluon potential 

V(r) =$ (4.17) 

where gs stands for the “strong charge”. The phase shift ~6). appearing in 

Eq. (4.16) is related to the potential V(r) by 

+a, 
x@=-1 dz~gs-v&) (4.18) 

-co 

with the vector E = (b , b ) 
x Y 

in impact parameter space. The integration is easily 

performed once an auxiliary nonzero photon mass is introduced through a factor 

8’ to prevent divergence of the integration. Then 

= -2~~. Ko(,ub) 

‘IO-2as (In(c) + y) 

and inserting this into Eq. (4.16) immediately gives the result 

F,(c) =ii 
47ros ~w-h as) 

e 
-2(1Ticys) 

q 

(4.19) 

(4.20) 
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with the phase factor 

- A@, as) = 2. p-!+y) + arg F(l+ias) 1 . (4.21) 

depending logarithmically on the small photon mass ~1. The formalism presented 

above (Eqs. (4.13)-(4.15)) has been derived in many different ways: for example, 

by summing the leading asymptotic behavior of Feynman diagrams, through use 

of nonrelativistic multiparticle wave functions, by using relativistic eikonalization 

methods and by the application of infinite momentum frame techniques. 12-14 

We therefore do not consider it worthwhile to go into more details here. Instead 

we are more concerned with the explicit evaluation of the scattering amplitude 

and the extraction of its dependence on the momentum transfer. 

V. EVALUATION OF THE AMPLITUDE 

In the preceding section we have assembled all the necessary ingredients 

for the scattering amplitude and now are concerned with its explicit dependence 

on the momentum transfer t = -@i-sf)2. 

We start by considering the impact 

+$ 

factor Eq. (4.14); its explicit form is 

(5 - 1) 

with m’ given in Eq. (4.14). h and At are the spin of the photon and the final quark- 

antiquark bound state and C stands for the sum over the spins of the intermediate 

partons. One immediately realizes that the evaluation of the T-matrix is very 

difficult in general and nonelegant. We therefore ignore the influence of the 

bound state here and replace the bound state wave function by a delta-function 
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which permits determination of JhA, in a simpler form: 

Jut M;. C(. . ./s’,h’) 1 (5.2) 

By explicit insertion of MI and of the Clebsch-Gordon coefficient it leads to 

where 

J o,*l = -+o-2re - 
s+ 1 

2 +2 - - 
m+q fi 

J *l,*l 
=+$. 27re. 2m+2 & 

m -i-q 
J- 

is the bound state wave function at the origin. 

We are now in a position 

Eqs. (5.3) and (5.4) into Eq. 

para charmonium production 

1 

to specify the T-matrix 

(4.13). By defining the 

T AG T*1 il = & r-R1 
, 

0 T* ET~,*~ = r-R 0 

with 

(5.3) 

(5.4) 

(5.5) 

we have to determine the t-dependence of the functions 

elements by inserting 

amplitudes for ortho and 

(5.6) 

(5.7) 

R’(t) = /-+m G&C(“J 21 2 - 
1 

-00 m +c m2+?i2 

R’(t) = /+m d< &?ii as) 
-co 

(5.8) 

(5.9) 

(5 0 10) 
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where 

tCr;C,C as) = i(l-ia ) x 
1 - 
2(l+ias) (5.11) 

tF+3 s (ii-~) 

is due to the product of form factors. In deriving Eq. (5.9) we have used the 
2 -2 

“regularized impact factor It and introduced the additional term l/m +q in 

order to weaken the divergence of the integrand at T=&ii; this is allowed since 

the identity 

J II 
d< F-(5;) F+(c-:) - (27r)4 S2(&<) a2($-c) 1 J&i,<) = 0 (5.12) 

holds. In order to extract the t-dependence of Eqs. (5.9) and (5.10) we use the 

generalized Feynman parameter integrals: 

1 1 shros ,l 

J dcr c?(l-o)Y 
pbl+Y=y-O [oa + ( l-o)b12 

and integrate in Eqs. (5.9) and (5.10) over G with the result18 

R!(t) = 2 o * Lo(a) 
m3 * 

R’(t) = - 3 E * Ll(O) 

where 

shra! 1 
Lo(c) =+.I /dordp 

*-Y(1-a)~(l-20!)p2 

s 0 [/3g2. F + l-+-j2 

o?(l-or)Yp(l-0) 

da! dp [pu2. F f l-/l]2 

and the functions 

F z 1 - (1-2~~)~/3 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 
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have been introduced. Straightforward application of the Mellin transformation 

techniques permits evaluation of the a-behavior for small values. The result 

after a lengthy but straightforward calculation is 18 : 

Lo=-&-$(5) +4y[Re$(I+y)-$(l)+$ln4]+ . . . 

.I=-(---$)2ln()2+... ’ 

(5.19) 

(5.20) 

In evaluating Eqs. (5.16) and (5.17) we have limited ourselves to the most singu- 

lar terms which correspond to 1,3, . . . gluon exchange for Lo and to 2,4, . . . 

gluon exchange for L’. This is consistent with C-invariance which requires 

that an even number of gluons be exchanged for ortho charmonium and an odd 

number for para charmonium. Since color conservation forbids single gluon 

exchange the first contribution to Lo in Eq. (5.19) has to be dropped. It repre- 

sents the Born approximation and would be analogous to Primakoff photoproduc- 

tion of nc. Lo and L1 can be expressed in closed form as derived in Ref. 21 

and also recently discussed in Ref. 22: 

LO=$Q@, 1 W(E2) E2 
L1 = 5 V(l) In (&2) 

where 

and 

(5.21) 

(5.22) 

V(E 2 ) = 25 t-Y,Y,~ ;E 2 ) ; W(E) = 2F1(1-y, l+y, 2;~ 2 ) . (5.23) 
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The above derivation is based upon the fact that the binding effect of the 

~ produced parton pair may be ignored and thus essentially we determined the 

production of two free c-quarks which move with the same momentum. Before 

going to the numerical evaluation and phenomenological discussion of this model 

we indicate a possible extension of this formalism which accounts for the 

binding effects. We return to Eq. (4.13) and write it in the form 

(5.24) 

where 5 (z,;) is defined in Eq. (4.13) and JAI1 for specific helicities may be 

given by 

Using the Fourier transformed bound state wave function 

we may rewrite Eq. (5.24) in the factorized form 

T= +w dy 
I ----$I(?-ji). 12(j?)*13(Xi;) 
-ax (27r) 

(5.25) 

(5.26) 

(5.27) 

where I, stands for the interaction between the quarks and the exchanged gluons, 

I2 describes the quark creation process and 

nature of the quark- antiquark system. The 

3- t- 

I3 parametrizes the bound state 

explicit forms are 

(5.28) 

-03 
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1 
+co dr 

I,lm =/ 
+-i 

p$ ,I dP* e / 

-iP(2G%MB. r3) 
cpm (5.30) 

.da 
2 

Further simplification of these expressions is involved. Since our main interest 

in this paper is in the effects due to gluons we leave the nature of bound state 

corrections for a later investigation. 

VI. NUMERICAL RESULTS 

The numerical evaluation of this model is straightforward. Before pre- 

senting the results let us first make a few observations about the formulas: 

We first consider cc-photoproduction in an ortho state like p, w, . . . 

ZCI . . . . The amplitude R’(t) has a universal zero at o=l corresponding to 

fl= 2m due to the logarithmic term in L’(o). (This apparent divergence can- 

cels against the zero in E.) This zero is already present in the two-gluon 

exchange term. Its position in the momentum transfer variable depends upon 

the mass of the constituents m; thus if a heavy quark system is produced the 

minimum lies far out in -t whereas a light quark system has the minimum at 

lower t-values. 

Plotting -t/4mE should then reveal a constant and fixed minimum point at +l. 

We now consider photoproduction of the para cc-state. Keeping only the first 

term in Lo , we find the Born amplitude of single gluon exchange which however 

is forbidden by color conservation. It shows an angular distribution with a sharp 

spike in forward direction, like l/t, and which then falls to zero. Both ampli- 

tudes R” and R1 depend only on the variable (T and therefore scale in the quark 

mass if a change ir. the overall size of the cross section is ignored. Since we 

are working in the infinite momentum frame, the dependence on the initial 

energy EC m has completely dropped out; our formalism is therefore not valid . . 
in the threshold region and is preferentially applied in the asymptotic region 
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where the diffraction phenomena seem to dominate. The bound state wave 

function $,((II,, mc) most likely depends on the mass of the quarks as well as 
- 

the strong coupling constant. This dependence is undefined unless a specific 

choice of the bound-state wave function is made. As an attempt we assume the 

form resulting from a Coulomb potential 

Ignoring the mass dependence of the bound state wave function e. both ampli- 
-7/2 tudes R” and R1 are proportional to mc . Note that the above results show 

no dependence on the target (nucleon) size since we have used an infinitely 

extended l/r-gluon potential. 

We have numerically evaluated the shape of the differential cross section 

for $c-photoproduction adjusting the bound state wave function-at the origin +. 

in Eq. (6.1) by a multiplicative factor such that its size agrees with the data at 

Ec m - 120 GeV. . . In Fig. 3a we show its shape for mc= 1.5 GeV and as = 0.5; 

the analogous curves in Fig. 3c are for m = 0.3 GeV. The dashed lines 
q 

(2-gluon exchange) represent the lowest order contribution. The solid lines 

(2,4,6 . . . gluon exchanges) take multigluon corrections into account and the 

dashed-dotted lines (4,6, . . . gluon exchanges) have the 2-gluon exchange sub- 

tracted. One notices that the 2-gluon exchange approximation is damped down 

by the higher order multigluon exchanges which however interfere such that 

their contribution is about one order of magnitude smaller. An exponential fit 

in the region 0.1~ -t < 0.6 (GeV/c)2 gives a slope parameter b - 2-4 GeVe2; - - 

it is less for 4,6, . . . gluon exchange. Mass extrapolation to mq = 0.3 GeV 

(Fig. 3c) brings the zero-point in the amplitude R1 (see Eq. (5.10)) to 
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-t=O. 36 (GeV/Q2. This diffraction minimum is not observed in p-photopro- 

ducten and it might disappear if the relativistic bound state nature of the 

p-meson is taken into account. 

In Fig. 4a and Fig. 4c we show the analogous curves for photoproduction of 

the para states n, and nq. For illustrative purpose we have drawn the Born- 

approximation (which however is forbidden by color conservation); it is strongly 

peaked for small It 1 -values. 3,5, . . . gluon exchange is flat over a long t-range 

and bends off towards zero in the extreme forward direction. The same calcula- 

tion with mc = 0.3 GeV shows a rising curve towards smaller I tl-values with 

b N 5 GeVW2 and a falloff to zero in the extreme forward direction. 

In Figs. 3b and 4b the value of the strong coupling constant is changed to 

as = 0.8 but the quark mass is kept at mc = 1.5 GeV. Comparing Figs. 3a and 3b 

one notices that the curves rise by a factor 5-M in going from a! s=o.5 to 0.8. 

Furthermore the sum of terms describing 4,6, . . . gluon exchange is much more 

influential relative to the 2-gluon exchange term. The fact that at larger (-t)- 

values the 4,6,. . . gluon exchange and the 2,4,6, . . . gluon exchange contribu- 

tions are of similar size is a consequence of the interference pattern between 

the amplitudes T2 and T46 ; however, the qualitative shape of the curves . . . 
changes little. Similar conclusions can be drawn by comparing the diagrams 

in Figs. 4a and 4b. Again one finds that the relative size of the various contri- 

butions becomes narrower. Note in particular that the 3 gluon exchange is of 

almost equal size as the cross section due to 3,5, . . . gluon exchange. The 

trend we see here is that the influence of the multigluon exchange terms is more 

strongly felt as we increase the coupling strength of the gluonic interaction. It 

‘is in agreement with the intuitive expectation that higher order terms become 

more strongly felt. 



- 21 - 

So far we havenot mentioned the application of the above formalism to the 

_ prodwtion of a particle system which interacts predominantly by electromag- 

netic force. Primakoff-photoproduction of an unbound r+r- system (7’ and T- 

produced with equal momenta) in the multiple charged field of nuclei is an 

example. The replacement of the exchanged gluon coupling constant as -, Z. a! 

(a! E e2/4r, Z G nucleus charge) and explicit calculation shows that the higher 

order corrections are nonnegligible and in fact enhance the cross section by a 

factor 2-3. 

The production of the unbound r+~- para state in the single photon approxi- 

mation leads to the familiar form 

= 8~ o4 (cvZ)~ 

which gives the integrated cross section 

Elab 
Upara a4 (~YZ)~ In - m 

C 
7 

(6.2) 

(6.3) 

The differential distribution and integrated cross section for production of the 

analogous ,‘7- ortho state is not as suppressed as it might seem by considering 

the extra factor o2 (due to the additional photon being exchanged) since the elec- 

tromagnetic field of the nucleus contributes an additional factor Z. In Figs. 5 

we show the shapes and sizes of the differential cross sections. We emphasize 

that these results may not be applied to “leptoniuml’ photoproduction 15 since we 

have ignored the electromagnetic binding forces. Since these are very weak, 

the resulting t-dependent form factor is exponentially damped with a large slope 

value so that the integrated cross sections are orders of magnitudes below the 

ones given in Fig. 5. 
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VII. OTHER DIAGRAMS 

& the above analysis we have considered a specific class of gluon exchange 

diagrams for the description of the interactions between the photoproduced heavy 

quark pair and the nucleon. Quantum chromodynamics however does permit a 

much larger class of diagrams which has been ignored so far. In this section 

we attempt an estimate of the importance and influence of these diagrams. 

Primarily we wish to know whether the class of diagrams with multigluon 

couplings as shown in Fig. 6 can be neglected. 

To simplify the discussion we ignore any interaction among the two heavy 

quarks and draw the diagrams with the two quarks leaving in opposite direction 

(Fig. 7). The class of diagrams contributing to this process is subject to the 

two constraints : 

(i) The number of gluons attached to the c-quark lines must be even 

(odd) for $c (nc) photoproduction due to Furry’s theorem (C- 

parity conservation). 

(ii) The number of gluons which are exchanged between the gluon 

source and the cc-pair must be > 2 due to color conservation. 

Let us first consider photoproduction of an ortho bound state. The diagrams 

contributing in lowest order gz (the gluon coupling constant), ‘I with the gluon 

lines attached in all possible ways on the quark lines, are-- indicated in Fig. 8. 

In next order gi tree-diagrams such as shown in Fig. 9a are excluded since an 

un-even number of gluons is attached to the quark lines violating.constraint (i). 

In order g8s the tree-diagram which might spoil our earlier results are of the 

type shown in Fig. 9b. That these diagrams give contributions which are 

unimportant is assured by the following two points: 

(a) Since we have carried out all our analysis assuming that 
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perturbation theory is applicable, the gluon coupling has to be 

4r smaller than 1; as a consequences contributions to order g”, are 

suppressed with respect to order gz. 

(b) We have carried out a numerical analysis of the influence of the 

triangle-loop diagram by comparing the size of the diagrams in 

Fig. 10. 

Our findings are: the amplitude of diagram (b) in Fig. 10 is suppressed by two 

orders of magnitude with respect to the amplitude of diagram (a) in Fig. 10 

(we have here not included the additional suppression due to the gluon coupling 

constant). The influence of the third type of diagrams, also much smaller than 

diagram (a) in Fig. 10, is absorbed in the gluon vertex renormalization and 

therefore does not concern us. Adding extra gluon exchanges does not substan- 

tially change this picture. As a result we come to the conclusion that, in low 

orders of gs, tree-diagrams are suppressed with respect to ladder-type dia- 

grams. 

We now consider photoproduction of the para state. The class of 

diagrams we have to compare are shown in Fig. 11. The importance of these 

diagrams is estimated by the following chain of arguments: 

(a) Both diagrams are cut along the dashed lines and the size of the 

remaining amplitudes on the left hand side will be estimated and 

compared. 

(b) We have mentioned earlier that the size of the triangle-loop dia- 

gram (Fig. lob) has been estimated with respect to the single 

gluon exchange diagram (Fig. 10a); it is suppressed by two orders 

I of magnitude .in amplitude. 
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(c) The differential cross section resulting from the diagram in 

4\ Fig. lob is 4 orders of magnitude below single gluon exchange 

in Fig. 10a which means: M 10m2 nb/GeV2. The 

corresponding value for diagram Fig. lla (left of dashed line) 

is determined using Fig. 3a: M l-10 nb/GeV2. 

We thus conclude that the contribution of diagram (a) is sub- 

stantially more important than diagram (b) (Fig. 11). 

Our findings are: tree-diagrams contribute in 7, photoproduction in the same 

order of gs as ladder-type diagrams. However their contribution is orders of 

magnitudes below the ladder diagrams considered above. Note that this result 

does not substantially change if crs grows or the quark mass is changed. 

VIII. CONCLUSION 

In this paper we have presented an analysis of photoproduction of a 

heavy fermion pair assuming that it interacts via a long range gluon 

potential with the target nucleon. Within the framework of the Cheng- 

Wu picture a theory has been developed for para and ortho quark-pair 

production assuming that gluons are responsible for the interaction with the 

target. The characteristics of the resulting angular distributions have been 

determined; in particular the sizes and shapes of 3 and 3,5, . . . gluon exchanges 

for para production and 2 and 2,4,. . . gluon exchanges for o&ho production was 

found. The angular distribution for 7, production is predicted to be flat and the 

cross section in the nanobarn range whereas it exponentially decreases in the 

case of $, photoproduction. We also were able to show that diagrams with three 

or more gluons attached to each other (gluon-trees) may safely be neglected. The 

‘theory also has been applied to photoproduction of an unbound r+~- pair where 

multiphoton exchanges were found to enhance the cross sections by a factor 2-3. 
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FIGURE CAPTIONS 

1. Quark interaction in gluon theories. - 

2. Three-step picture of zj(cc) photoproduction in the gluon potential of the 

nucleon. 

3. (a) and (b) Photoproduction of ortho charmonium ($,). The solid line 

represents 2,4,6, . . . gluon exchange, the dashed line indicates the 

importance of 2-gluon exchange alone, whereas the dash-dotted line shows 

the cross section size of 4,6, . , . gluon exchange. The parameters are: 

mc=1.5 GeV and os=0.5 and crs=0.8. (c) Photoproduction of an ortho 

qi state ($,). The solid line, dashed line and dash-dotted line represent 

2,4,6,... gluon exchange. The parameters are: mq=0.3 GeV and as=0.5. 

4. (a) and (b) Photoproduction of para charmonium (nc). The solid line 

represents 3,5,7, . . . gluon exchange, the dashed line indicates single gluon 

exchange (which is forbidden by color conservation! ) and the dotted line 

indicates the size of the 3-gluon exchange near the forward direction. The 

parameters are: mc = 1.5 GeV, os = 0.5 and os = 0.8. (c) Photoproduction 

of a para qS state (nq). The solid line, dashed line and dotted line repre- 

sent 3,5,7,. . . gluon exchange, single-gluon exchange and 3-gluon exchange. 

The parameters are: mq=0.3 GeV and as=0.5. 

5. (a) and (b) Photoproduction of a T+? pair in an ortho (Fig. 5a) and para 

(Fig. 5b) state. The solid line represents 2,4,6, . . . (1,3,5, . . . , respec- 

tively) photon exchange whereas the dashed line indicates the size of 2 

(1, respectively) photon exchange along. The nucleus charge is chosen to 

be Z =82 and m7= 1.8 GeV. 

‘6. Gluon tree-diagrams which have been ignored in the model. 

7. Cutting and opening of the fermion loop. 
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.- 

8. Ladder-type diagrams of order gz considered by the model. 

9. Eluon tree-diagrams of order gz (a) and order gz (b). 

10. Estimate of size of single gluon exchange diagram (a) versus the size of 

simplest gluon tree-diagram (b, c). 

11. Estimate of size of ladder-type diagrams (a) versus size of tree-like gluon 

exchange diagrams (b, c) . 



M . . 
302OAl8 

Fig. 1 

Fig. 2 



loo 

h’ 
---- 2 Ghm Exchmge 
- 2,4,6...Ghm Exchange 
--- 4,6,... Glum Exchange 

\ 
‘. In,’ 1.5 Gev, (4’0.5 

1, I ,’ , I, I, 1, I 

-1 

- ‘\ (b) 

~c-phdoproductii 

---- 2 Gluon Exchange 
E - 2,4,6...Ghm Exchange 5 
I -*- 4,6. . . . Glum Exchange r 

~=1.5Gev,q=o.6 
c 

I I I I I I I Ia I I I I 
0 0.2 0.4 0.6 0.0 I.0 1.2 IA 

---- 2 Gluon Exchange 
- 2,4,6...Ghm Exdwqe z 

0 0.2 0.4 0.6 0.0 I.0 1.2 I.4 
-t [GN/c)‘] 

Fig. 3 



I 

(o) qc - photopoduaion 

low ---- I Glum Exchqe 
- 3,5,7...Gluon Exchmqe 
-*- 3 Gbon Exchmge 

loo ‘, 1 m,=1.5 G&J. %=0.5 

‘\. 

o~~~~~~ 

. 0 0.2 0.4 0.6 0.8 1.0 1.2 I.4 
-7 -t [6ev/c)*] 

(b) 
q- photwi 

--- I Glwn Exclmqe 

1, - 3,5....Gluon Exchange : 
- \ 
- \ --- 3 Glwn Exchange 

\ 
\, mc= I.5 GeV, a,=0.8 

‘. 
I-._ 

---_ - -< 

I I, I I t I I I I I I I 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

-t [Gev/c,*l 

---- I Gluon Exchange 
- 3,5,7...Gluon Exchonqz 
-.- 3 Glucn Exchange 

mq=0.3GeV,a,=0.5 

‘5.. 
-- 

\ 

I I I II1IIIIII 1 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

-t [(GeVk,*] my, 

Fig. 4 

,. 



or+ho -photoproduction 

----- 2~ Exchange 

- 2, 4, 6, --- 

Z=82, m,=l.8 GeV 

I I 

(b) = 
-photoproduction 

----- ly Exchange 

- I) 3, r Exchange 

Z=82, mT=l.8 GeV 

10-8 10-8 I I I I I I I I I I I I I I I I I I I I I I I I 

0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 

-t [(GeV/c*,] -t [(GeV/c*,] PYU PYU 

Fig. 5 



I 

7 - 77 3236A6 

Fig. 6 



I 
I 
I 
I 

. - 1 

I 

I 

7-77 (a) 3 236A7 

Fig. 7 

. . 



+ + 

Fig. 8 



I 

7 -77 (b) 3236A9 

Fig. 9 



I 

7-77 (a) (b) w 3236AlO 

Fig. 10 



Y 
I 
I 
I . I , . I . 
I 
I 
I 
I 

7-77 (a> ( b) 3236All 

Fig. 11 


