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I. Introduction

The knowledge of the various matrix elements involving the local four-quark operators which
appear in the calculation of different processes in kaon physics, e.g., K® — K mixing, K
decays, CP violation, etc., is known to be very important to test the standard model [1] - [3].
A gquantity of particular significance is the value of the matrix element entering the transition
amplitude for K° — K° mixing. Some qualitative features of the above processes may be
understood on the basis of current algebra, isospin symmetry, etc. However, when it comes
to quantitative predictions, these are subject to large uncertainties. The need for a more
accurate knowledge of these matrix elements has led to the development of new theoretical
approaches. Presently, there are three main frameworks: lattice gauge theory simulations
[4], QCD sum rules either combined with chiral perturbation theory [5] - [7] or based on
three-point functions, [8] - {10], and the 1/N, expansion [11] - [13].

In the case of K¢ - K° mixing, the problem reduces in the end to a calculation of the matrix
element of the local four-quark AS = 2 operator. Results are usually given in terms of the
parameter B which measures the departure from the simple vacuum saturation (B, ., = 1).
Preliminary results from lattice calculations suggest B < 1 but with large errors [4]. The
authors of [5] have obtained B ~ 1/3 from QCD sum rules, while the 1/N, expansion gives
B ~ 0.7 but within a truncated theory. The approach based on three-point function QCD sum
rules, in spite of some unsettled issues concerning their analyticity properties [14], represents
a viable alternative. Unfortunately, available predictions are scattered over the wide range
B ~ 04— 1.5 [8] - [10]. Although some authors have used three-point functions involving
axial-vector currents [8] [9] and others [10] pseudoscalar current's, one is to expect consistent
results, at least within error bars. The reason for such a discrepancy does not appear cbvious
and, furthermore, it seems that some of these calculations are in contradiction with each
other as we shall discuss later. .

Given the impact of the B parameter on our present understanding of the standard model,
and in an attempt to resolve some of the existing discrepancies, in this paper we reexamine
this issue in the framework of three-point function QCD sum rules.

The paper is organized as follows. In Section II we give some general definitions and discuss
the saturation of the three-point function. The hadronic and the QCD pa.fametrizations are
derived in Sections III and IV, respectively. In Section V we obtain the solutions to the
Laplace transform sum rules which determine the B parameter. Finally, Section VI is devoted

to conclusions and a brief general discussion of the results.



II. Saturation of the Three-point Function

Following [10], we choose to work with a three-point function invelving two pseudoscalar
currents, in addition to the AS = 2 four-quark operator. This choice has the advantage
that loop corrections are suppressed, thus reducing uncertainties from perturbative terms
and the continuum, while the dominant contribution is proportional to the quark condensate

< 0|gq|0 >. This three-point function reads

U(p,p') = izfd‘:ce"”'“jd'*ye""’"y < 0|T(js(2)Oas=2(0)7s(y)}0 > (1)

where
7s(x) =: d(z)iyss(z) : (2)
is the pseudoscalar current which couples to the kaon according to
, frmk
0i75(0)| K >= ———= 3
<Ojs(O)K >= TETK. (3)

and fx = 1.22, f, = 161 MeV.The local operator (Oas=2, stemming from the short distance

expansion of the box diagram, is given by
Ons=a = [7u(1 — 75)d][7*(1 — 7s)d]. (4)
The matrix element of this operator between kaon states reads
< B Oasual KO >= 201 + 1) frmk B, (5)

where

A B(u?) = Bla,(1?)**, (6)
and B is ¢ independent quantity. B = B, , =1 if vacuum saturation is used. Notice that the
dependence on the renormalization scale p cancels with the corresponding p dependence of

the Wilson coefficient appearing in the off-diagonal K° — K° matrix element.

To make contact with the 1/N. expansion of [13], one may rewrite (6) as

3 3 1

3 1 7
B 4 + 4Nc + O( Nc )nonfada ( )

so that the leading term is Bjeaq = 0.75, the second term in (7) being the factorizable 1/N,
correction, and the third term the nonfactorizable 1/N, contribution.

The idea behind the large N, expansion origina,teé from the hope that the true expansion
parameter could be not exactly 1/N, = 1/3, but rather something like 1/47N. or even
1/4nN?, as it happens in QED where an expansion in the coupling constant e becomes
in reality an expansion in o = e?/4m [15]. Unfortunately, eq.(7) clearly shows that the

" factorizable subleading term is already a large 33% correction, which makes this expansion
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doubtful, at least in the sense of [15]. Nevertheless, it has been noticed recently in connection
with charm decays [3! that although 1/N. corrections appear large by themselves, there are
large cancellations among them which approximately restore the validity of large N, results.
In principle, this feature would also be tested in the calculation performed.

Turning to ¥(p,p'), the phenomenoclogical expression may be obtained by saturating
¥(p,p') with the lowest intermediate kaon states, i. e,

m3 —o
Y(p, P Vhadr = (—fK—Ig:)ZAK(pm) < K (p')|Oas=2|K°(p) > Ax(p?)

™m, +m
+higher states + continuum, (8)
where
1
Ax(p?) = —— 9

is the free kaon propagator. Since, in general, the kaons are off mass shell in the matnx

element appearing in (8) , one should wnte
) .
< E°|Oas=a|K® >=2(1 + )k (p - P)B- (10)

The factor p - p’ will eventually get canceled as it will also appear in the QCD expression for
¥(p,p')- ‘

In previous calculations [8]-[10] the contribution from higher states in (8) was absorbed
in the continuum and eventually moved to recombine with its counterpart appearing in the
QCD expression for ¥(p,p'). We shall argue here that this is not a good approximation
as far as the chiral symmetry breaking contribution from the K’'(1400) is concerned. This
kaon radial excitation term should be taken into account exp'iicitly and, effectively, it leads

to corrections to the free kaon propagator (9).

I11. Hadronic Corrections to ¥(p,p’)

We now discuss the hadronic corrections to the kaon propagator , i. e., the continuum

integral in

© d
Ax(@) = 5?1_@_ * ./z t+tQ2pK(t)’ (1)
[

where ty = (mg + 2m,)?. It has been pointed out in [16] that, as a matter of principle, the
pseudoscalar meson radial excitation contributions to the kaon (pion) propagator cannot be
neglected , as in some cases they are of the same order in the quark masses as the ground
state term and in other cases they induce non-negligible chiral symmetry breaking corrections.
As a matter of practice, these corrections have the welcome feature of stabilizing light quark

mass and vacuum condensate predictions from QCD sum rules [16]-[18]. It is easy to show the
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matter of principle by considering, e.g., the two- point function associated to the axial-vector

current divergences

s(q?) = i ] d*zet= < 0[T(0* A, ()8 AL(0))[0 >, (12)
where 8*4, has charged kaon (pion) quantum numbers. The hadronic spectral function is
given by

1
L rmpe() = Frm (¢ — mi) + pc(t) (13)

Just for the sake of argument let us concentrate on the first K radial excitation and make a

zero-width approximation to px(t), which then becomes

2 .4

pilt) = T (1 — ). (1)
Since the K radial excitations do not become Goldstone bosons in the chiral limit, fx' must
vanish linearly in the quark masses and the coefficient of the delta function in Eq. (14) is of

order O(1).

' As it stands, the parametrization (14) is highly unrealistic since, for all practical purposes,
fx+ is not measurable. In addition, the K'(1460) has a sizable width , I'xs ~250 MeV. As first
pointed out in [16], it is possible to get rid of fx+ by imposing the threshold behavior which
follows from the gﬁ'e{:tive chiral Lagrangian realization of QCD at long distances. Working
in the chiral limit for simplicity, one has [19]

1 2 2.4
lim ;Imlf’s(f) - fomxt- (15)
Although the full expression away from the chiral limit is now available (18], we shall use

eq.(15) as in the end the various corrections tend to compensate. Imposing this threshold

behavior on a Breit-Wigner resonance form, one finds that

t
(t - m%,)z -+ m%rrz '

S () = fmi 6t — mi) + (1 +7) L)

where 0
2 . _ = 4 , 17
“ = 3(16m2f2) K a7
and r _
=K (18)
my

The accuracy of this parametrization may be assessed by computing the strange quark mass,
and then comparing the result with the value obtained from an estimate of m, + my [18]
together with the current algebra ratio [20] m,/(m, +m4) = 1341, leading to m,(1GeV?) =
199+ 33 MeV. Using eq.(16} together with Laplace transform or finite energy QCD sum rules

- for 1;(¢*), one obtains m,(1GeV?) = 170 - 240 MeV, in very good agreement with the above
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value. The uncertainty in m, is due to uncertainties in the values of the vacuum condensates
and to the kind of sum rule being used.

We now consider the following two-point function:

ou(p) = i [ d*oe™ < OIT(js(x)4u(0))]0 >
= ip, TI5(p?), (19)

which contributes to the factorizable piece of ¥{p,p'), as discussed in the next section. The
hadronic parametrization of the two-point function II5(Z) may be obtained directly from

€q.(16) using the relation

1 1 11
—Imll(t) = ——-——1I t). 20
SImIly(t) = S Tmis(t) (20)

Notice that contrary to ¥5(t), the two-point function II5(t) does not vanish in the chiral limit.
In fact, in this limit one obtains the PCAC relation

fim? = —(m, + mq) < 0[3s + dd|0 > . (21)

Chiral symmetry breaking corrections to this result, arising from K radial excitations, have
been extracted in[17} and found to be large. Their contribution to the three-point function

Y(p,p') may be written as

, , 1, o fxmk 1+ Cr(p?). 1+ Cx(p”)
=(p- —_— 22
\I‘(Psp )kaon (P P )2(1 + N. )B m;j [ m%{ _ p2 ][ m% _ p,2 ]3 ( )
where d Yy
A = m2(m — $)a? 2 [* 05 23
Cir(t) = mi(me = a1 +7) | (s =) [(s -~ mk)? + mET%]’ (23)

and one should keep in mind that the threshold behavior s7*[s—(mx +2m, )?] of the integrand
in (23) has been approximated by its chiral limit value of unity. As pointed out earlier, the
various kinematical corrections tend to compensate, so that in the end eq.(23) is a very good
approximation to the full expression. |

Concerning the contributions from higher resonances and from the hadronic continuum, we
follow the established practice and approximate them by the asymptotic freedom expression

for ¥(s,s’) starting at some threshold so > m%., i. e.,
‘I’(S&S')hadr = \P(s,‘g’)kaoﬂ + 9(3 - -5"0)9(3r - SU)‘I'(S"‘S,)A-FA (24)

where Im¥(p,p')a.r. entering the dispersion relation for ¥(p,p') is given, to leading order in
m, and a,, by

1 ) 9
N, 64n4

1
—Im¥(p,p)ar =2(1+ mi(p - p'). | (25)



IV. The Three-point Function ¥(p,p') in QCD

A theoretical expression for ¥(p, p')has been calculated in QCD, to leading order in m, and
@, by the authors of [10]. We have repeated this calculation to have an independent check,
and have been able to reproduce their results except for the gluon condensate contribution
to II;, whose correct Wilson coefficient is obtained below.

In the framework of the Operator Product Expansion with power corrections to asymptotic
freedom [21] [22], the expression for ¥(p,p’) may be decomposed into two contributions: one
without color flow through the four-quark vertex in Fig.1 (factorizable contribution) and the

other with color flow (nonfactorizable contribution), i.e.,

‘I’(Pspi)QCD = ‘I’(Pap')fact + ‘I'(P:P’)nonfact- (26)

The piece ¥(p.p')sact is simply given in terms of the product

U(p, P ) fact = 2(1 +

L (D) (=), (27)

where IIs,(p) is defined by (19). To leading order in a, and m, we obtain

| , 3 —p* 1, - _ 1m, @, .,
H5“(p) = zp“[—@m,ln(F) + ;2'(< dd > + < 3s >) - g p4 < ?G >], (28)

which differs from [10] in the last term (these authors have —1/12 instead of —1/8). In order
to compute the gluon contribution, one has to use the massive quark propagator. However, as
is well known [21][22] ,A in the case of light quarks the operator m.gq also contributes to the two-
gluon matrix element (to the same order in @,) and these two effects must be distinguished.

In fact, the Wilson coefficient of the gluon condensate may be written as 121][22]

1

Co(p) = Cglp,m1,ma) + 15 [Cma(P) + Crm, (D)), (29)

where C4(p,m1,m;) is the Wilson coefficient of < 2@? > computed directly using the full
massive propagators, i.e., including all vacuum gluon field contributions, and Cy,( p) are the

coefficients of the quark condensates < m;g;q; >. For the first term we obtain

P 1 Qs 2
Is.(p)lcy, = 2p—i(m1 + mz)ﬁ < ";;Gz > Cg, (30)
where : 2
- 1 m m m;
Com -t -T2 0(%2). | (@)
2 my My P

Next, to compute C,,, and C,,,, one has to include contributions of order m3 < gq > to Is,.
We find that



. 1 1 _ 1 1 B
Usu(p)lm2 <gq> = Z%f[(mg +5mimy - Emf) < Gyq1 > +H(mi+ 5 MM ~ Emg) < §2¢2 >, (32)

which on account of (29) leads to

. my ms
i =2« 2@ — + me—2). 33
sulP)lCms +Co 12 " (m1m2 2 (33)

Finally, adding (30) to (33) gives the total result for the gluon condensate term
P 1 «,
O5.(p")icer> = _Eﬁ(ﬂh +ma)g < —;—Gz > . (34)

Notice that potential mass singularities of the form m, /m; and m;/m; in eq.(31) are exactly
canceled by corresponding terms in (33). It is important to stress that the procedure of
setting ab initio one of the quark masses to zero and then using the dimensional regularization
prescription to regulate mass singularities does not lead to the correct answer [23]. One should
first compute the corrections (33) for massive quarks, add it to the direct piece (30), and in
the end set one of the quark masses to zero in (34).

It is possible to obtain the complete expression (28) more economically by means of a

Ward identity relating II5(p®) to the nontransverse invariant function D;(p?) defined through

T#(p) = i / d*ze™® < 0|T(4%(z)4 (0)1)[0 >

= (—=1*p* + p"p")Ts(p’) + 7 Ds(p*), (35)

where Dg(p®) is known in QCD at the two-loop level and with power corrections up to

dimension d = 6 [24]. We briefly describe this procedure as it serves as a check of the

correctness of expression (28). To leading order in o, and in the quark masses, Ds{p?) is
given by [24] ' '

3 -p2 1 (m, + md)z 1.

8

Ds(pz) = —Q(m, + md)z ]n(?‘;) + E(m, + md)(< 35+ dd >) - P

<2
7
(36)
The Ward identity relating II5(p?) to Ds(p?) can be easily obtained by multiplying eq.(35) by,
e.g., p, and integrating by parts. In this way one finds that T5(p?) is obtained from dividing
(36) by {m, + my); the result (28) then follows.
Turning to the nonfactorizable contributions to ¥(p,p’) , we are in agreement with the
results of [10] to leading order in a, and m, for the power corrections involving vacuum

condensates of dimension d < 10. We quote this expression for the sake of completeness:



(P, p' nonfact = —17;:2 < %Gz > ;)2-;1"2 n ;?; ) In( _:; )+ (1n(;—1;) - 1)(1’1(_;’ )= )
+g—r~’~2— < ggo* awaq pzjz: [1“(;_2)“ (_pzrz)]
_% <Zgticgg > {’;[_5 (‘;'2) + 1%111(—?;—)]
+E < gq >< ggo* *);Giuq izj;(gi 515)
"4% < —G’2 >< gg >° i-p{i - %I < QQ‘TWEGGJI > |2p4' p; (37)

V. Results for the B parameter

In order to optimize the determination of the B parameter we shall work with the Laplace

transform of the three-point function ¥(p,p’), i.e.,

1 *® z [ f
V(M M) = f dse=*/Mi f ds'e™* ™M Im (s, 5'). (38)
g L]
In this case, the sum rule determining B is
W(MZ, M = 21 4 [T (M2 )T (M2 (M2, M2)|ntet 9
(M7, M3 Jhade == 2(1 + =) (5 (M7 ) s, (M; ) gop + ¥ (M, 2)och (39)

where

‘ 1 'f4 m4 e—mK/ i e--mf,{/M.f
W(METMg)lhadf = 2(1 + E\_T—)B I:,ng M12 M2
[ s 2

+2(1 + ——)

[1+ Cx(M3)]1 + Cx(M;)]

sapamee e, (40).

and
ds

s —mi)? + miT%,

Cx(M?) = P i (1 ) [ e (41)

The QCD expressions on the r.h.s. of (39) are easily obtained by applying the familiar rules
‘of Laplace transformation [21], [25] to Eqgs. (28) and (37).

Following the established practice in QCD sum rule calculations, we shall seek for sum
rule windows in the two-parameter space (M2, M2) inside which we expect duality between
the hadronic Lh.s. of (39) and the QCD r.h.s. This duality will take place only for certain
values of the B parameter which will then become the prediction from this method. This
strategy differs from that used in [10] where the first QCD term on the r.h.s of (39) was
saturated with the kaon-pole contribution to the hadronic piece of the three-point function.
Although it is true that we have computed the QCD expressions to leading order in m, and

a,, we find no reason to discriminate between the factorizable and the nonfactorizable pieces.
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In other words, if one were to mistrust the former, there is no reason not to mistrust the
latter. At the end we shall make a qualitative estimate of these systematic uncertainties
associated with radiative and higher order quark mass corrections.

We now turn to our choice of values for the various QCD parameters entering Eqs. (28)

and (37). For the strange quark mass we use the most recent result [18]

T, = 288 + 48MeV,

. (1GeV?) = 199 + 33MeV, (42)

where m, and 1, are the running and invariant masses, respectively. The value of the gluon
condensate is somewhat controversial (for recent reviews see, e.g.,/26]). We shall here use the
conservative range

< 26 >= (0,012 - 0.03)GeV*, (43)
™

which includes the so-called standard value [21],[27] (lower bound), as well as higher values
obtained recently from ete~ [28] and 7 -lepton decay data [29]. The mixed quark-gluon
vacuum condensate may be parametrized as

Aa
< 930" -Gl g >= M3 <3¢ >, (44)

where M} =~ 0.4GeV? [30] and M7 ~ (0.6 — 1.0)GeV? [31], both from baryon sum rules,
MZ ~ 0.3GeV? [32] from charmonium, M7 ~ 1GeV? [33] from a lattice calculation, and
ME ~ (0.4 — 0.6)GeV? [34] from an analysis of the D and B mesons. We shall give results
for a choice: MZ = (0.4 — 0.6)GeV? as well as for the extreme value M = 1GeV?. To
reduce the uncertainties, we shall absorb m, into < §¢ > and use the renormalization group
invariant < m,Jg >. Even neglecting the small SU(3) vacuum symmetry breaking, so that
< dd >~< 3s > [22],[35], the quantity < m,gg > is not known a priori. Assuming that it
is given by kaon-PCAC is a dangerous approximation, as shown by explicit calculations of
chiral symmetry breaking corrections [17]. For < m,gg > we shall therefore use the value
extracted from QCD sum rules. This result, however, depends on m, since < m,gg > is given
in terms of the difference between a hadronic integral and a QCD expression proportional to

m? [17]. For instance, using the central value of 712, in (42), one finds

< m,gq >~ —1.65 x 1073GeV*,

(2, = 288MeV), (45)

while changes in 77, within errors modify the above result by 20 — 30%; the smaller 7,
the larger < m,gg >. This correlation between +h, and < m,gg > will have the welcome
feature of softening the dependence of B on m,. Notice that, naively, B would depend on
m?, which is subject to a large uncertainty. Finally, the value of Agcp , which appears as
the renormalization scale in the Laplace transform ¥(M?, M§)|B°g{,m in (39), will be fixed to
AQCD = 100MeV,

10



With the above choice of values for the QCD parameters, and using the one-loop ex-
pression for the running quark-mass 7i,, we have solved the QCD sum rules (39) for the B
parameter and searched for sum rule windows in the Laplace parameters M? and M. Some
representative results are shown in Figs. 2-4, for MZ = M2 = M? and sq = 3GeV?. Cases
where M? # MZ and so has different values are qualitatively and quantitatively comparable
with these results. Figure 2 shows the sensitivity of B to the value of the gluon conden-
sate, which was allowed to change in the range (43), with all other parameters fixed, i.e.,
M2 = 0.6GeV?, 7, = 288MeV and < m,gg > as in Eq.(45). The dependence of B on M7 is
illustrated in Fig.3 for M? = 0.4GeV? (curve a), MZ = 0.6GeV? (curve b), and M{ = 1GeV?
(dashed curve). All other parameters are fixed as for Fig.2 except for the gluon condensate,
which was taken as < 2:G? >= 0.012GeV*. Figure 4 shows the maximum (curve a) and
minimum (dashed curve) values of B obtained from M = 0.4GeV?, < 2G? >= 0.012GeV*
and MZ = 1GeV? < 2G? >= 0.03GeV*, respectively, with 7, = 288MeV? and< m,gq >
as in Eq.(45). Allowing m, and < m,gq > to change within errors, one obtains results for B
which are inside the maxirmmum and minimum values shown in Fig.4.

The results above may be summarized as B = 0.5 & 0.1. However, there is an additional
systematic uncertainty arising from radiative and higher order quark mass corrections. Us-
ing the two-loop results from [24] for the factorizable piece of the three-point function and
computing the next order in m, in Eq.(28), we estimate the overall uncertainty in B, from
the uncalculated three-loop corrections to the nonfactorizable piece of ¥(p,p'), to be at the
level of 40%. This uncertainty includes the implicit u dependence of our result. Three-loop
radiative corrections would account for the explicit  dependence of the form given in eq.(6).
This is the same as in [6]-[7] where perturbative radiative corrections restored the y depen-
dence. However, this source of uncertainty is only modest since a variation of x in the range

g =~ 0.5-1.0 GeV produces a change in B(u) of less than 8%. Our final result then becomes
B=05+0102, (46)

where the first error reflects the uncertainties in the various QCD parameters, and the second
is an educated guess of radiative and higher order quark mass effects. In view of the rather
large overall uncertainty in B, we find it unjustified to go beyond the present level of accuracy
in QCD and to attempt the formidable task of three-loop calculations for the nonfactorizable

contributions.

VI. Discussion and Conclusions

We begin by contrasting our result for the B parameter , eq.(46), with the values reported

" by the authors of [8]-[10]. Using a three-point function involving axial-vector currents, to-
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gether with Oag.;, Chetyrkin et al.[8] have obtained
B=1.240.1. (47)

On the other hand, choosing exactly the same three-point function Decker [8] obtained quite
a different result
B = 0.55 % 0.15. (48)

The reason for such a flagrant discrepancy has been partially explained in [9]. Chetyrkin
et al. [8] attributed only the perturbative term in the factorizable piece of the three-point
funection to the vacuum saturation result B,, = 1. This is incorrect. In fact, a part of the
nonperturbative corrections calculated in [8] contributes to B,,. Actually, it is the whole
factorizable QCD piece (and not only the free quark contribution as stated in [9]) which
should build up the vacuum saturation value B,, = 1. In any case, a distinction between
perturbative and nonperturbative factorizable parts has no physical meaning, as far as the B
parameter is concerned. The relative importance of these two parts depends on the choice of
the currents in the three-point function. This relative ”weighting” is the motivation behind
the choice of pseudoscalar currents in [10]. For axial-vector currents one should then accept
(48) , and not (47), as the answer. However, we should point out that the value (48) was
obtained in [9] using the on-mass-shell expression (5). Since the kaons are definitely off-mass-
shell in (8), the actual prediction for B could be somewhat different from (48) if the correct
expression (10} is used in the calculation. |

Our determination of the B parameter presented here is closely related to that of [10].
However, we differ from these authors in two important points, to wit. (i) On the hadronic
side, we have explicitly included chiral-symmetry breaking corrections to the kaon propagator
arising from the radial excitation K'(1400). Past experience shows that these corrections are
quite important and, furthermore , that they should not be absorbed in the hadronic contin-
uum. (3} On the QCD side, we have first corrected the result of [10] for the Wilson coefficient
of the gluon condensate in II5,.(p), €q.(34). Next, instead of saturating \Il(p,p')|é°gtp, eq.(27),
by kaon states we have used its QCD expression. This is the standard procedure in QCD
sum rule applications where one seeks for duality between a given hadronic parametrization
and a QCD expression for a two- or a three-point function (see eq.(39)). In this way we have
treated factorizable and nonfactorizable contributions on the same footing , and absorbed
the overall uncertainty due to uncalculated radiative and higher order mass corrections in

the final error bars.

It should be stressed that we have found these overall uncertainties to be significantly

larger than those claimed in [8],(9], and in [10], i.e.,
B = 0.84 + 0.08. | (49)

In fact, we have estimated AB ~ 0.3 which then makes our prediction (46) consistent with
(48) and (49) within errors.
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As a byproduct of our calculation we confirm the general expectation (3], [13] from the
1/N, expansion that factorizable and nonfactorizable 1/N. contributions tend to cancel each
other to some extent. Quantitatively, though, we are not able to state this very precisely
because of the inherent uncertainties. However, we do confirm the conjecture [3] that non-
factorizable contributions should significantly decrease the value of the B parameter from
the vacuum saturation result B,, = 1. In this connection, our prediction (46) is consistent,

within errors, with that from an 1/N, analysis [13], giving
Byx. = 0.7 % 0.07. (50)

In our opinion, however, the above error is most likely an underestimate. Notice that the
calculation of the B parameter in this framework is closely related to the calculation of
K+ — n*x® and should therefore have a comparable accuracy. However, the uncertainties
quoted for K+ — m*7° [12] are considerably larger than those in (50). In any case, one should
wait to see how the prediction (50) changes when one goes beyond the truncated theory (in
this context, see also the discussion in [36]).

With a realistic estimate of the uncertainties in three-point function QCD sum rule cal-
culations of the B parameter, as in Eq.(46), we may safely compare our result with that from

a two-point function analysis [5], i.e., -
B = 0.33 4 0.09. (51)

A similar answer has also been obtained earlier from PCAC and chiral perturbation theory
(37]-[38]. It should be noticed that the same techniques leading to the prediction (51) in [5]
reproduce the closely related amplitude for A + _ 7+x° almost exactly [6]. However, the
AI = 1/2 rule remains unexplained in this approach; its explanation could well lie outside
the short distance local operator.®. This is at variance with the results from the 1 /N, analysis
of [12]- [13] which claim an explanation of this problem. More effort is needed to understand
this discrepancy.

In our view, it appears difficult to achieve a sizable reduction of the error in eq.(46) to
compete with the accurate two-point function analysis of [5]. We then conclude that in the
framework of QCD sum rules, three-point function calculations of the B parameter support

the result (51), but cannot claim the same level of accuracy.
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Figure captions

1. Diagrammatic representation of the three-point function , Eq. (1).

2. Results for the B parameter as a function of M? = M?.= M?, for /h, = 288MeV,
< m,gq >= —1.65 x 1072GeV*, MZ = 0.6GeV?, and < 2+G? >= 0.012GeV* (curve a),
and 0.03GeV* (curve b).

3. Results for the B parameter as a function of M7 = M2 = M? for /n, = 288MeV,
< m,gq >= —1.65 x 1073GeV?, < 2G? >= 0.012GeV*, and M{ = 0.4GeV? (curve a),
0.6GeV? (curve ) , and 1GeV? (dashed curve).

4. Results for the B parameter as a function of M? = M7 = M? for th, = 288MeV,
< m,gg >= —1.65 x 1073GeV*, and the three pairs of values M? = 0.4GeV? and
< 2¢G? >= 0.012GeV* (curve a), 0.6GeV? and 0.03GeV* (curve b), and 1.0GeV? and
0.03GeV* {dashed curve). |
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