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2 Joint Institute for Nuclear Research, 141980 Dubna, Russia

E-mail: kotikov@theor.jinr.ru

Abstract. We present details of study of the polarized Bjorken sum rule Γp−n
1 (Q2) carried

out recently in [1]. Four QCD coupling versions are considered: perturbative QCD (pQCD) in
the MS scheme, Analytic Perturbation Theory, and 2δ and 3δ analytic QCD (AQCD) versions.
In contrast to pQCD, these QCD variants do not have Landau singularities at low positive Q2.
In general, when 2δ and 3δ QCD coupling is used the fitted curves give the best results.

1. Introduction
The polarized Bjorken sum rule (BSR) Γp−n1 (Q2) [2, 3] is an important spacelike QCD observable
for various reasons. It is a difference of the first moment of the spin-dependent structure functions
of proton and neutron, therefore its isovector nature makes it easier to describe it theoretically,
in pQCD, than the separate integrals of the two nucleons. Further, high quality experimental
results for this quantity, obtained in polarized deep inelastic scattering, are now available in a
large range of spacelike squared momenta Q2: 0.054 GeV2 ≤ Q2 < 5 GeV2 (see [1] and references
therein).

Theoretically, pQCD in MS scheme, has been the usual approach to describe such quantities.
This approach, however, has the theoretical disadvantage: the running coupling αs(Q

2) possesses
Landau singularities at low positive Q2 . 0.1 GeV2, and this makes it inconvenient for evaluation
of spacelike observables at low Q2, such as BSR. In recent years, an extension of pQCD
couplings to low Q2, without Landau singularities, called (Fractional) Analytic Perturbation
Theory [(F)APT)] [4]-[21] has been applied in the fitting of the theoretical expression to the
experimental inelastic contributions to BSR [22]-[25], with good results.

In Ref. [1] (which is an extension of our previous works [26, 27] on BSR) we fitted the
theoretical expressions to the experimental BSR results in pQCD, in (F)APT, and two additional
extensions of QCD to low Q2, namely the 2δ [28, 29] and 3δ [30, 31] AQCD. The latter three
extensions have the coupling A(Q2) which is free of Landau singularities.

2. Bjorken sum rule: theoretical expressions
BSR is defined as the difference between proton and neutron polarized structure functions g1
integrated over the whole x-Bjorken interval

Γp−n1 (Q2) =

∫ 1

0
dx
[
gp1(x,Q2)− gn1 (x,Q2)

]
. (1)
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Based on the various measurements of these and the related structure functions, the inelatic part
of the above quantity, Γp−n1 (Q2)inel., has been extracted at various values of squared momenta
Q2
j (0.054 GeV2 ≤ Q2

j < 5 GeV2).
Theoretically, this quantity can be written as following [2, 3]

Γp−n1 (Q2) =
∣∣∣gA
gV

∣∣∣1
6

(1−DBS(Q2)) +
µ2(Q

2)

Q2
, (2)

where Q2-dependence of µ2(Q
2) is exactly defined in [32, 33] (see also Ref. [1]).

Here, |gA/gV | = 1.2723± 0.0023 [34] is the ratio of the nucleon axial charge, (1−DBS) is the
perturbation expansion for the leading-twist (LT) contribution, and µ2/Q

2 is the higher-twist
(HT) contribution. In addition, in Ref. [1] we included the HT term µ6/(Q

2)2 but this case is
beyond the present report.

The LT term has the canonical part DBS(Q2) whose perturbation expansion in a ≡ αs/π is
known up to N3LO (∼ a4)

DBS(Q2)pt = a(µ2) + d1(k)a(µ2)2 + d2(k)a(µ2)3 + d3(k)a(µ2)4 +O(a5), (3)

where the renormalization scale has a general value µ2 = kQ2 (0 < k ∼ 1). The NLO, N2LO
and N3LO coefficients dj at k = 1 (j = 1, 2, 3) were obtained in [35, 36, 37], respectively.
The expressions for the coefficients dj at any k values are obtained on the basis of the
the renormalization group equation (RGE). In the considered range of momentum transfer
0 < Q2 < 5 GeV2, we assumed in Ref. [1] that the effective number of active quark flavors
is Nf = 3, and therefore only the nonsinglet (NS) contributions appear.

In those versions of AQCD where the coupling is a holomorphic function A(Q2) with
nonperturbative contributions, the power expansion (3) becomes a nonpower expansion where
an get replaced by An (An 6= An)

DBS(Q2)AQCD = A(µ2) + d1(k)A2(µ
2) + d2(k)A3(µ

2) + d3(k)A4(µ
2) +O(A5). (4)

The construction of the power analogs An of an were obtained in Refs. [38]-[40]. These
expressions can be done in close analogy with the RGE in the perturbation theory. The couplings
An(Q2) can be obtained once the coupling A(Q2) is known. The construction of A(Q2) coupling
is summarized in Appendix C of [1] for all used variants: (F)APT, 2δ and 3δ AQCD (see also
the recent papers [41, 42] and references therein).

3. Numerical fits
In the numerical fits, we considered in Ref. [1] the following parameters to be fitted in the
expression (2): (i) the renormalization scale parameter k ≡ µ2/Q2 of the LT contribution (3)
[for pQCD] or (4) [for AQCD]; (ii) the initial values µ2(Q

2
in) (where Q2

in = 1 GeV2). The
experimental data for the inelastic contribution to BSR were taken from [?];1 they are in the
momentum interval 0.054 GeV2 ≤ Q2

j < 5 GeV2. The fits were performed by the least squares

method, taking into account the statistical uncertainties σj,stat in the data points Q2
j , which

were considered to be independent of each other. These uncertainties σj,stat are in general
significantly smaller than the systematic uncertainties σj,sys. The latter are strongly correlated,
and we considered them as completely correlated. The uncertainties in the values of the extracted
parameters k ≡ µ2/Q2 and µ2(Q

2
in) are then due to statistical (small) and systematic (larger)

uncertainties of the data. They can be found in Tables in [1]. We refer to Ref. [1] (see its
Appendix D) on how we obtained the uncertainties of the extracted values of the fit parameters.

1 For detailed information on the experimental data, see Ref. [1] and references therein.
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Using specific values of the renormalization scale parameter k ≡ µ2/Q2 may allow us to
incorporate in our evaluations (4) at least a part of the contributions of higher orders of the
series. It is expected that k ∼ 1, and usually it is taken in the literature in the range 1/2 < k < 2,
sometimes 1/4 < k < 4. In the considered work, after replacing the powers of the pQCD coupling
by their analytic counterparts, cf. Eqs. (3)-(4), a spacelike observable depends usually weakly on
the contributions of higher orders. Still, in order not to miss the possibly relevant influence of
higher orders, we decided in Ref. [1] to increase the range of possible k values to: 1/16 < k < 16.

We show below the results of the fits of the inelastic contributions to the expression (2), in
Sec. 3.1. In Sec. 3.2 we present the corresponding fits for the case when the HT term has a mass
parameter (see Eq. (5) below).2

In each case, the fits were performed for four variants of QCD: in pQCD (in MS), in
(F)APT (in MS), and in 2δ [28, 29] and 3δ AQCD [30, 31]. Each of these fits is performed
by excluding the data points with Q2 < Q2

min, where Q2
min = 0.268 or 0.66 GeV2. In MS pQCD

and in 2δ and 3δ AQCD the pQCD running coupling a(Q2) is determined by the requirement
πa(M2

Z ; MS) = 0.1185 [43, 34], and in (F)APT we use Λ3 = 0.45 GeV.

3.1. The basic case
In Figs. 1(a),(b), we present the curves in the mentioned four QCD variants, for Q2

min = 0.66 and
0.268 GeV2, respectively. The corresponding results and various fit quality parameters χ2/d.o.f
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Figure 1. (color online): Fits of the expression (2) to the experimental data for Γp−n1 (Q2)inel.,
in four different QCD variants, where in the fits: (a) Q2 ≥ 0.66 GeV2; (b) Q2 ≥ 0.268 GeV2.
The respective lower bound of the fitting interval, Q2

min = 0.66 or 0.268 GeV2, is included as
the thin dotted vertical line.

are given in Ref. [1].
We wish to point out that the approach of (MS) QCD in the case of Q2

min = 0.268 GeV2 is,
in principle, not applicable. This is so because the corresponding coupling a(Q2) has a Landau
branching point at Q2

branch = 0.371 GeV2, which makes the running coefficient µ2(Q
2) in Eq.

(2) undefined at Q2 ≤ 0.371 GeV2. Nonetheless, in order to be able to present a curve, we
applied in the fitting case Q2

min = 0.268 GeV2 in the MS pQCD approach the replacement in the
running coefficient µ2(Q

2): µ2(Q
2) 7→ µ2(kQ

2). It solves the problem because k > 1.383 (see
the corresponding Tables in [1]). In other approaches (APT and AQCD’s) this is not necessary,
as there are no Landau singularities.

As we can deduce from Figs. 1, the best results are obtained in 3δ AQCD. Moreover, we
can observe in the results (see Tables in [1]) that the values of the HT parameter µ2(Q

2
in) are

2 The fits with twist-6 term, with the elastic contribution and for two different ansätze for BSR at very low Q2

can be found in Ref. [1].
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in the analytic variants of QCD smaller (in absolute value) than in pQCD, this reduction being
especially strong in the 3δ QCD variant. It has been noted in the literature that in pQCD
there is a duality between the order of truncation of the LT series and the HT contribution
[22]-[25], [44]-[52]: HT contribution often significantly decreases with the inclusion of higher
orders in the LT part. This effect and the related ambiguity become stronger in the ranges
where the perturbation theory becomes questionable (for example, at the large and low values
of the Bjorken variable x, as it was shown in Refs. [53, 54], respectively). It has been observed
that the HT contribution is smaller, but also more stable (under the inclusion of more terms in
the LT), in QCD variants with infrared modifications of the coupling (various modifications lead
to quite similar results [55]). The latter probably incorporate a part of the HT contributions
(which are rather cumbersome [56]) into (formally) the LT contribution for small x range at
moderately small Q2 values (. 1 GeV2) (see Refs. [57]-[61] for the DIS structure function F2).

3.2. The “massive” case
For comparison, we performed a similar fit, but now with a “massive” higher-twist term instead
of the truncated OPE expression (2)

Γp−n,m1 (Q2;M2) =
∣∣∣gA
gV

∣∣∣1
6

(1−DBS(Q2)) +
µ2(Q

2)

(Q2 +M2)
, (5)

where the squared mass M2 in the denominator of the HT part3 is taken to be constant (not
running)4. The resulting curves, for Q2

min = 0.268 GeV2, are given in Figs. 2(a),(b), at the
higher Q2 and the lower Q2 < 1 GeV2 momenta, respectively. Numerically, the behavior at low
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Figure 2. (color online): As Fig. 1, but for the fit of the expression (5) with “massive”
higher-twist term was used.

Q2 in the “massive” case is significantly influenced by the Q2-dependence of µ2(Q
2). In the MS

pQCD case, as before, we replaced in the HT running parameter µ2(Q
2) the scale Q2 by the

renormalization scale kQ2, in order to artificially avoid the problem of Landau singularities in the
pQCD coupling a(Q2). Comparing Figs. 2 with the corresponding “non-massive” case Figs. 1,
we see that the results and extrapolations are better in the “massive” approach, especially in
the cases of AQCD.

3 Similar HT expressions were used in the analyses of BSR in [62]-[64] where the LT contribution was evaluated
with the “Massive” Perturbation Theory (MPT) [65, 66].
4 The results with Q2-dependent parameterization of the dynamical effective gluon mass [67, 68] can been found
in Ref. [1].
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4. Summary
Experimental results for the polarized Bjorken sum rule (BSR) Γp−n1 (Q2) were fitted in Ref.
[1], for various ranges of Q2, with theoretical expressions using QCD couplings obtained in
four different approaches: perturbative QCD (pQCD) in MS scheme; (Fractional) Analytic
Perturbation Theory [(F)APT]; Two-delta AQCD (2δ); and Three-delta lattice-motivated
AQCD (3δ). The QCD running coupling A(Q2) in the latter three QCD variants does not
have Landau singularities, in contrast to the pQCD coupling a(Q2).

The fits were presented here for the ranges Q2
min ≤ Q2 ≤ 3 GeV2, where Q2

min = 0.66 and
0.268 GeV2. In general, the best curves were obtained when 2δ or 3δ-couplings were used. The
quality of the fitted curves, in the range of the fit and in the extrapolated ranges of Q2, in general
did not depend significantly on Q2

min of the fit (see Tables in Ref. [1]). Even better results were
obtained when “massive” HT term was used and the QCD coupling was either from (F)APT or
2δ or 3δ AQCD.

When the range of fit had Q2
min = 0.268 GeV2, the pQCD MS coupling approach worked and

gave acceptable results only if the renormalization scale of the coupling was changed Q2 7→ kQ2,
in the HT coefficient µ2, in order to avoid the problem of the Landau singularities.

The results in Ref. [1] (see Tables in [1]) can be interpreted as an additional indication of the
following important property: the evaluation of the LT contribution of spacelike low-Q2 QCD
observables such as inelastic BSR, in QCD variants 2δ and in particular 3δ AQCD [both have
infrared finite and holomorphic coupling A(Q2)], appear to resum effectively a large part of the
perturbative contribution of the observables, and leads to reduced extracted values of the HT
term. This property was noted earlier, for different observables, in Refs. [69, 30]. In this context,
it appears to be important that in 2δ and 3δ AQCD the coupling practically merges with the
underlying pQCD coupling a(Q2) at higher values of Q2 � Λ2

QCD. This property is not shared

by the (F)APT holomorphic coupling where the LT series contains parts of the HT contribution.
The extracted parameters in the HT contribution, including those in the “massive” case, are

especially reduced in 3δ AQCD (see Tables in [1]). This suggests the possibility that the true HT
contribution is small and that the result with 3δ AQCD LT gives, through fitting, an extracted
value which is a good approximation to this true value of the HT contribution. Numerically, the
significantly reduced extracted value in 3δ AQCD is probably partly related with the fact that
3δ AQCD differs from both 2δ and (F)APT AQCD variants in that its coupling goes to zero in
the deep infrared regime, A(3δ)(Q2) ∼ Q2 → 0. Recall that the latter property is suggested by
the large-volume lattice calculations of the dressing functions of the Landau-gauge gluon and
ghost propagators at low Q2 values (see [70]-[72] and references therein).

Acknowledgments
This work was supported by FONDECYT Postdoctoral Grant No. 3170116 (C.A.) and by
FONDECYT Regular Grant No. 1180344 (G.C. and C.A.).
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