
Numerical studies of the efficiency of resonant

relaxation around a massive black hole

Gábor Kupi, Ehud Eilon1 and Tal Alexander

Faculty of Physics, Weizmann Institute of Science, Rehovot 76100, Israel

E-mail: gabor.kupi@weizmann.ac.il

Abstract. Resonant relaxation (RR) is a rapid relaxation process that operates in the nearly-
Keplerian potential near a massive black hole (MBH). RR dominates the dynamics of compact
remnants that inspiral into a MBH and emit gravitational waves (extreme mass ratio inspiral
events, EMRIs). RR can either increase the EMRI rate, or strongly suppress it, depending
on its still poorly-determined efficiency. We use small-scale Newtonian N-body simulations to
measure the RR efficiency and to explore its possible dependence on the stellar number density
profile around the MBH, and the mass-ratio between the MBH and a star (a single-mass stellar
population is assumed). We present a suite of simulations with a range of stellar density profiles
and mass-ratios, and measure the mean RR efficiency in the near-Keplerian limit. We do not
find a strong dependence on the density profile or the mass-ratio. Our numerical determination
of the RR efficiency in the Newtonian, single-mass population approximations, suggests that
RR will likely enhance the EMRI rate by a factor of a few over the rates predicted assuming
only slow stochastic two-body relaxation.

1. Introduction

Dynamical relaxation processes near MBHs in galactic centers affect the rates of strong stellar
interactions with the MBH, such as tidal disruption, tidal dissipation, or gravitational wave
(GW) emission (e.g. [1]). These relaxation processes may also be reflected by the dynamical
properties of the different stellar populations there [6], as observed in the Galactic Center [5, 7].
Of particular importance, in anticipation of the planned Laser Interferometer Space Antenna
(LISA) GW detector, is to understand the role of relaxation in regulating the rate of GW
emission events from compact remnants undergoing quasi-periodic EMRI into MBHs.

Two-body relaxation, or non-coherent relaxation (NR), is inherent to any discrete large-N
system, due to the cumulative effect of uncorrelated two-body encounters. These cause the
orbital energy E and the angular momentum J to change in a random-walk fashion (∝

√
t) on the

typically long NR timescale TNR. In contrast, when the gravitational potential has approximate
symmetries that restrict orbital evolution (e.g. fixed ellipses in a Keplerian potential; fixed
orbital planes in a spherical potential), the perturbations on a test star are no longer random,
but correlated, leading to coherent (∝ t) torquing of J on short timescales, while the symmetries
hold. Over longer times, this results in resonant relaxation (RR) [10, 9], a rapid random walk
of J on the typically short RR timescale TRR ≪ TNR. RR in a near-Keplerian potential can
change both the direction and magnitude of J ("scalar RR"), thereby driving stars to near-radial
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orbits that interact strongly with the MBH. RR in a near-spherical potential can only change
the direction of J ("vector RR").

RR is particularly relevant in the potential near a MBH, where compact EMRI candidates
originate. Hopman and Alexander [6] show that RR dominates EMRI source dynamics.
Depending on its still poorly-determined efficiency, RR can either increase the EMRI rate over
that predicted assuming NR only, or if too efficient, it can strongly suppress the EMRI rate by
throwing the compact remnants into infall (plunge) orbits that emit a single, non-periodic and
hard to detect GW burst. The still open questions about the implications of RR for EMRI rates
and orbital properties provide a prime motivation for the systematic numerical investigation of
RR efficiency presented here. A more detailed treatment of this subject can be found in [4].

2. Theory

2.1. Non-coherent Relaxation (NR)
The NR time for E-relaxation, TE

NR
, corresponds to the time it takes non-coherent 2-body

interactions to change the stellar orbital energy by order of itself, |∆E|∼E (by stellar dynamical
definition convention, E > 0 for a bound orbit). Similarly, the NR time for J-relaxation, T J

NR
,

corresponds to the time it takes the stellar orbital angular momentum to change by order of the
circular angular momentum |∆J | ∼ Jc, where near a MBH of mass M , Jc = GM/

√
2E. The

E-relaxation timescale can be estimated by considering the rate of gravitational collisions in a
system of size R between a test star and N field stars: TE

NR
∼ (M/m)2P/(N lnΛ), where m is

the mass of stars, P = 2π
√

R3/GM is the Keplerian period and Λ is the Coulomb logarithm
lnΛ ∼ ln(R/rmin), rmin is the minimal impact parameter where the small angle deflection
assumption still holds. Near the MBH lnΛ∼ lnQ, where Q ≡ M/m.

Rauch and Tremaine [10] (RT96) parametrized the uncertainties in the evolution of the orbital
E, J and J by a set of numeric coefficients (αΛ, ηs,v, βs,v), whose operational definition is tied to
the procedure by which they are estimated (left unspecified by RT96). We adopt this notation
and estimate these coefficients by the rms change over the stellar population. The NR changes
in E, J and J (here generally denoted by x) over the dimensionless time-lag τ ≡(t2 − t1)/P1 are
thus formally defined as

δx(τ) ≡
〈

(|x2−x1| /x0)
2
〉1/2

=K(
√

N/Q)
√

τ (1)

where x0 is E1 for E and Jc,1 (angular momentum of circular orbit) for J and J. The

dimensionless, order-unity constants K are α
√

lnΛ, ηs

√
lnΛ and ηv

√
lnΛ respectively. The exact

determination of these constants, which are system-dependent, requires detailed calculations
or simulations. The corresponding NR timescales are related to these coefficients by TE

NR
=

(M/m)2P/(Nα2
Λ
), T J

NR
=(M/m)2P/(Nη2

sΛ) and T J

NR
=(M/m)2P/(Nη2

vΛ
).

2.2. Resonant Relaxation (RR)
When the gravitational potential has symmetries that restrict the orbital evolution, for example
to fixed ellipses in the potential of a point mass, or to planar annuli in a spherical potential,
the perturbations on a test star are no longer random, but correlated. This leads to a coherent
changes in J on times P ≪ t<tω, ∆J=Tt, by the residual torque |T|∼

√
NGm/R exerted by the

N randomly oriented, orbit-averaged mass distributions of the surrounding stars (mass wires for
elliptical orbits in a Kepler potential, mass annuli for rosette-like orbits in a spherical potential).
The coherence time tω is set by deviations from the true symmetry, which lead to a gradual
orbital drift and to the randomization of T. For example, the enclosed stellar mass leads to non-
Keplerian retrograde precession; General Relativity leads to prograde precession. Ultimately,
the coherent torques themselves randomize the orbits. The effective coherence time is set by the
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shortest de-coherence (quenching) process. The accumulated change over tω, |∆Jω|∼|Ttω|, then
becomes the basic step-size, or mean free path in J-space, for the long-term (t≫ tω) random-walk
phase (∝

√
t) of J by RR . Since this step-size is large, RR can be much faster than NR. The

RR timescale TRR is then defined by |∆J | /Jc = (|∆Jω| /Jc)
√

t/tω ≡
√

t/TRR. Note that the
relaxation of E is not affected by RR because the potential of the system is stationary on the
coherence timescale, and so E changes incoherently on all time scales. The torques exerted by
elliptical mass wires in a Kepler potential can change both the direction and magnitude of J. In
contrast, the torques exerted by planar annuli can only change the direction of J. The long-term
random walk

√
τ growth continues until |∆J| /Jc ∼ O(1), at which point |∆J | /Jc and |∆J| /Jc

can no longer grow, but J does continue to change its value randomly.
Here we consider only Newtonian dynamics. The coherence timescale for scalar RR is

determined by the time it takes for the orbital apsis to precess by angle ∼π due to the potential
of the enclosed stellar mass (“mass precession”),

tω = tM = AM (Q /N )P , (2)

where AM is an O(1) factor reflecting the approximations in this estimate. The coherence
timescale for vector RR is determined by the time it takes for the coherent torques to change
|∆J| ∼ Jc

tω = tφ = Aφ

(√
N /µ

)

P ≃
[

AφQ
/√

N
]

P , (3)

where Aφ is an O(1) factor, µ=Nm/(M + Nm) and where the approximate equality is for the
Keplerian limit Nm≪M . The RR changes in J and J during the coherent phase (τ < τω) are
defined in terms of the rms change in analogy with Eq. (1)

δJ(τ) = βs

√
N

Q
τ , δJ(τ) = βv

√
N

Q
τ , (4)

where the dimensionless coefficients βs and βv depend on the parameters of the system and reflect
the uncertainties introduced by the various approximations and simplification of this analysis.
Accurate determination of their values requires detailed calculations or simulations.

The scalar RR change in J on time-lags τ ≫τM and the scalar RR timescale are then

δJ(τ) = βs

√

AM/Q
√

τ , T J
RR =

[

Q
/

AMβ2
s

]

P . (5)

The RR efficiency factor χ=(βs/βs,RT96)
2 defined by [6] for an assumed value AM =1, expresses

how much shorter T J
RR

is relative to the value estimated by RT96. Scalar RR is faster than NR
by a factor T J

NR
/T J

RR
∝(M/m)/N ln Λ. Similarly, the vector RR change in J on time-lags τ ≫τφ

in the Keplerian limit and the vector RR timescale are

δJ(τ) = βv

√

Aφ

√
N/Q

√
τ , T J

RR =
[

Q
/√

NAφβ2
v

]

P . (6)

3. Simulations

Our N -body code uses a 5th order Runge-Kutta integrator without gravity softening. The time
steps were chosen to conserve total energy at the level of |∆Etot| /Etot∼O(10−5)−O(10−8), well
below the NR energy changes expected in the simulations.

To simulate RR reliably, the N -body code must maximize angular momentum conservation
and minimize numerical RR quenching, which can be caused by numerical precession of the apsis,
which changes the torque, or to a lesser degree by a drift in the orbital period (equivalently, the
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Figure 1. Left: The measured (points) and fitted (lines) correlation curves for δE (top line),
δJ (bottom line) and δJ (middle line) in a Q= 106, γ = 1.5 simulation with N = 200 particles.
The points are the results of the N -body simulation, the thick lines are the predicted theoretical
curves; the thin straight lines show the asymptotic linear behavior. The best fit coefficients and
related quantities are also listed. Right: The long-term scalar RR (bottom curve) and vector
RR (top curve) in a Q=104 simulation with N = 49 particles and γ=1 density profile. The mass-
precession timescale τM is calculated from Eq. (2) with the assumption that AM = 1 (verified

here, see text). The saturation timescale of scalar RR, τ∞, is defined by
(

τ∞/τJ
RR

)1/2
= 1/3.

energy), which changes the moment of inertia of the “mass wire”. We estimated these numerical
drifts by integrating, over many orbits, a highly eccentric 2-body system (e=0.99995, Q=3×106),
since most of the numerical errors accumulate at periapse, where the acceleration is largest. We
tracked the change in the period, ∆P =(P −P0)/P0, in the angular momentum ∆J= |J− J0| /J0

and in the direction of the apsis ∆ê= |ê − ê0| / |ê0|, where ê is the normalized Runge-Lenz vector.
We find that after τsim = 4.5 × 104, ∆P ∼ 8 × 10−5, ∆J∼ 3 × 10−4 and ∆ê∼ 9 × 10−8, which
correspond to drift timescales of τ∆P ∼ (π/∆P )τsim =2 × 109, τ∆J∼5 × 108 and τ∆ê∼3 × 1012.
These are many orders of magnitude longer than our longest simulations, and can therefore be
safely neglected.

We carried out two sets of Newtonian simulations. The first, designed to study the short-term
behavior of RR (τsim < τM ) and to measure NR and RR parameters α, ηs,v and βs,v, consisted
of 200 particles (including the MBH as a fixed particle in the origin of the coordinate system).
The initial orbital semi-major axes were randomly drawn from a ρ(a)da∝a2−γda distribution for
γ=1, 1.5, 1.75, for a in the range (0, 1/2), with eccentricities drawn from a thermal ρ(e)de = 2ede
distribution, with random phases, orbital orientations and isotropic velocities. This distribution
corresponds approximately to a r−γ number density distribution with an outer cutoff at radius
r=R=1 from the MBH (in dimensionless units where G=1, M+Nm=1). We made nsim=114
simulations in this set.

The second set of simulations was designed to study the long term behavior of RR (τ ≫τφ), the
transition from the coherent RR phase to the random-walk phase, and the asymptotic saturation
limits. Due to the high computational load, this set (nsim =7) was limited to a relatively small
mass ratios, Q≤104, smaller number of particles, (50≤N ≤200) and flat cusps with γ=1, where
time-consuming close star-star interactions are rarer.

4. Results

The results of a typical Keplerian simulation are shown in Fig. 1L. Note that in such a
potential, vector RR measures the combined change in the magnitude and direction of the
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Table 1. Measured NR and RR coefficients a.
γ Q nsim ᾱΛ η̄sΛ η̄vΛ β̄s β̄v

1 10
6

12 10.48±0.43 4.58±0.38 7.31±0.61 1.14±0.07 1.95±0.08

1 10
7

12 9.37±0.32 4.18±0.26 6.69±0.46 1.13±0.07 1.98±0.10

1 10
8

12 10.27±0.36 4.26±0.22 7.02±0.47 1.13±0.06 1.89±0.08

1.5 10
6

13 12.61±0.90 4.12±0.48 6.65±0.61 1.00±0.05 1.77±0.07

1.5 10
7

12 11.35±0.46 4.09±0.35 6.58±0.57 1.05±0.06 1.86±0.07

1.5 10
8

12 10.51 ± 0.51 3.99±0.21 6.57±0.49 1.09±0.07 1.92±0.09

1.75 10
6

14 12.06±0.54 3.97±0.35 6.50±0.48 0.95±0.06 1.68±0.06

1.75 10
7

12 12.29±0.43 3.39 ± 0.14 5.29±0.18 0.99±0.07 1.75±0.09

1.75 10
8

15 11.90±0.43 3.89±0.39 6.20±0.52 1.01±0.05 1.73±0.05

Grand averageb 〈α〉 〈ηs〉 〈ηv〉 〈βs〉 〈βv〉
114 2.82±0.05 1.01±0.03 1.64±0.04 1.05±0.02 1.83±0.03

a The quoted errors are the errors on the mean (the sample rms is
√

nsim times larger).
b 〈α〉=

D

αΛ/
√

lnΛ

E

,
˙

ηs,v

¸

=

D

ηs,vΛ/
√

ln Λ

E

over all simulations for Λ=Q.

angular momentum vector. The numerical prefactors ηsΛ and βs are obtained by fitting the

δJ curve to the function δJ = (
√

N/Q)
√

η2
sΛτ + β2

sτ2. Note that NR dominates the evolution

at early times, τ < τ0 ≡ η2
s,vΛ

/β2
s,v. A similar procedure is used to obtain ηv,Λ and βv.

We summarize our results in table (1). The coefficients αΛ and ηs,vΛ do not directly express

the intrinsic properties of NR, since they should vary as
√

lnΛ ≃ √
ln Q ≃ 4(1±0.07) over the

Q-range of our models. This small fractional difference and the relatively low statistics of our
simulation suite may explain why we do not detect a clear Q-dependence in these quantities.
Since we do not see a dependence on Q, and the γ dependence seems weak (αΛ shows hints of
an increase with γ, and η and β of a decrease with γ), we adopt as the best fit estimates of the
values of α, ηs,v and βs,v their grand average over all the simulations.

To explore the long-term behavior of the system, verify that the short-timescale coherent
torquing phase leads to long-term relaxation and to estimate the coefficients that enter the
coherence timescales, we also conducted several very long simulations (τ ∼ 104 ≫ τφ). The
resulting RR correlation scalar curves clearly display a first clear detection of a transition at the
mass precession coherence time τM = AMQ/N (Eq. 2) from the asymptotically ∝ τ coherent
RR phase to the ∝√

τ RR relaxation phase (Fig 1R). The mean best-fit estimate over 7 long
time-scale simulations is AM = 0.99±0.06, where the error is dominated by the simulation to
simulation scatter. The vector RR curve does not display a coherent rise beyond τM , since by
its definition it includes a scalar component, and neither a distinct random-walk phase beyond
τφ, since the transition to the asymptotic saturation limit occurs soon after, at τ & τφ . This
non-trivial behavior makes it harder to quantify and measure Aφ by a fit to the correlation curve,
and we do not attempt it here.

Our analytical calculations predict that on very long time-lags, the correlation curves saturate
to δJ → 1/3 and δJ → 1 [4]. These limits can be seen in Fig. (1R).

5. Implications for gravitational wave source dynamics

We conclude the discussion of our results by briefly considering the implications of this revised
value of βs for EMRI rates. [6] assumed AM = 1, parametrized the RR efficiency by a
factor χ = [βs/βs,RT96]

2, and derived the χ dependence of the branching ratio of the EMRI
and infall (plunge) rates (Fig. 2). The RT96 value χ = 1 happens to lie very close to the
maximum of the RR-accelerated EMRI rate. We confirm here that AM = 0.99 ± 0.06 and find
βs/βs,RT96 =1.98 ± 0.04, which corresponds to a factor 4.9 increase in the EMRI rate compared
to that estimated for NR only, but is a factor ∼ 1.5 smaller than implied by the RT96 value,
because the higher RR efficiency leads to a higher plunge rate at the expense of the inspiral rate.
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Figure 2. The change in the EMRI and plunge rates relative to that predicted assuming only
NR, as function of the RR efficiency χ (Adapted from [6], Fig. 5). The RT96 estimate of βs

(χ= 1) predicts an increase of ×7.1 in the EMRI rate due to RR, close to the maximum. Our
new ([4], EKA09) higher measured RR efficiency (χ= 3.9) predicts an increase of only ×4.9 in
the EMRI rate, and a higher plunge rate.

6. Summary

We characterized and measured the mean efficiency coefficients of NR (αΛ, ηs,Λ, ηv,Λ) and RR
(βs, βv) in Newtonian N -body simulations of isotropic, thermal, near-Keplerian stellar cusps
around a MBH. We measured these coefficients in a large suite of small scale N -body simulations
with different stellar density distributions and MBH/star mass ratios. We do not find strong
trends in the values of these coefficients as function of the system properties. This may require
better statistics. We identified an early phase of NR-dominated relaxation that precedes the
coherent RR phase. We carried out several long-term simulations and robustly detected, for
the first time, the transition from the coherent to the random walk phase of RR, measured
the efficiency of RR, and observed the asymptotic limits of the angular momentum correlation
curves. Our measured RR efficiency suggests that RR increases the EMRI rate by a factor of
∼5 above what is predicted for NR only.

Our measured RR efficiency is broadly consistent with that suggested by the analysis of the
dynamical properties of the different stellar populations in the Galactic Center, which indicates
an unusually rapid randomization of the stellar orbits [6, 8], and with the warping of the maser
disk of NGC4258, if interpreted as due to RR [3].
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