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Summary

This thesis resulted from work on a project with the goal to simulate lattice

QCD with light dynamical quarks. To achieve this goal we employ so-called

chirally improved fermions.

Quantum Chromodynamics (QCD) is the quantum field theory of strong

interactions, formulated in terms of quarks and gluons. Lattice QCD is QCD

formulated on a four-dimensional euclidian space-time lattice. It provides

a non-perturbative regularization scheme of QCD. Apart from regularizing

QCD the lattice also provides a way of putting the theory on a computer

and simulating it.

Chiral symmetry is an approximate symmetry of the light quark flavors

of QCD. It would be exact for massless quarks. Despite this small explicit

breaking by the quark masses its effects can clearly be seen in the hadron

spectrum. The implementation of chiral symmetry has been a longstanding

problem in lattice QCD. It has been partly resolved in a negative way by

Nielsen and Ninomiya in 1981. In their famous no-go theorem they proved

that it is impossible to have exact chiral symmetry in a formulation of QCD

on a finite lattice that is local and which has the correct number of flavors.

To be more precise in this last point, in such a local and chiral formulation

of lattice QCD the quarks would come in groups of 16 for every different

quark mass one wants to introduce. This is known as the fermion doubling

problem, of course it is clearly unacceptable if one wants to describe nature.

In 1982 Ginsparg and Wilson suggested a relation which is now known

as the Ginsparg-Wilson relation. This relation defines theories, in which the

chiral symmetry is broken in a local way only. At the time of its finding

the Ginsparg-Wilson relation did not have a great impact because nobody

knew how to construct a theory which fulfills the relation. Only during

the 1990-s such theories started to appear. The chirally improved action is a

lattice discretization of the Dirac operator which fulfills the Ginsparg-Wilson

relation approximately. This action has been successfully applied in various

simulations over the last six years. These simulations, however, have been

neglecting the vacuum polarization effects from dynamical quark loops.
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Simulating lattice QCD means solving high-dimensional integrals. There-

fore Markov Chain Monte Carlo methods are employed. Dynamical quark

loops are often neglected because including them renders simulations much

more expensive. This is especially true if one wants to consider light quarks.

Simulations with small quark masses always are more expensive than sim-

ulations with large quark masses, no matter what lattice action is used.

Apart from other problems, however, simulations with light quarks that use

a non Ginsparg-Wilson action are plagued by the breaking of chiral symme-

try. This can be at least partly resolved using Ginsparg-Wilson actions. At

quark masses smaller than half the strange quark mass, or 40 MeV, it can

be expected that simulations will substantially profit from using Ginsparg-

Wilson actions.

Until know there exist only few simulations using Ginsparg-Wilson actions

which include these quark loop effects, and currently this is a topic of active

research by different groups in the field. Among these efforts is a project of

C.B. Lang, Pushan Majumdar and myself, which has been started in 2003

and to which I have been contributing from the beginning. This project is

the topic of my thesis.

Chapter 1 of the thesis introduces the main ideas behind the project.

Chapters 2 to 5 of this thesis contain a review of some properties of lattice

QCD and Markov Chain Monte Carlo simulations which are important in

the context of the project. Chapter 2, titled “Lattice QCD”, contains some

basic facts of lattice QCD in general. Since chiral symmetry in lattice QCD

is a main topic of this work, it is discussed separately in Chapter 3, “Chiral

Symmetry in Lattice QCD”. The next chapter, Chapter 4, “Markov Chain

Monte Carlo”, describes besides some standard techniques of Markov Chain

Monte Carlo the Hybrid Monte Carlo algorithm. In Chapter 5, “Lattice

QCD Simulations”, simulations of lattice QCD, using the methods described

in Chapter 4, are discussed. The two main chapters of the thesis, describing

the project itself, are Chapters 6 and 7.

In Chapter 6, titled “Hybrid Monte Carlo for Generalized Dirac Oper-

ators” the techniques of employing the Hybrid Monte Carlo algorithm for

Dirac operators like the chirally improved operator are developed. The Hy-

brid Monte Carlo algorithm is the most successful algorithm in dynamical
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simulations using various actions. However, employing this for an action like

the chirally improved action poses serious technical problems. These prob-

lems are serious enough that in order to avoid them a a special algorithm

called Partial-Global algorithm has been suggested. However, the perfor-

mance we were able to achieve with that approach was very dissatisfying.

For that reason we decided to employ the Hybrid-Monte-Carlo algorithm.

Therefore we had to solve the technical problems mentioned above.

One important conclusion we can draw from this work is that it is possible

to employ the HMC algorithm for an action like the chirally improved action.

Chapter 6 of my thesis describes the various aspects of implementing HMC for

an action like that. We found a relatively elegant way of solving the technical

problems involved, which we describe in detail Chapter 6 of the thesis. We

think that the methods developed there could be useful for for simulations

not only with the chirally improved action, but with other, similar, actions

too.

Chapter 7 is called “Simulating QCD with two Dynamical Flavors of

CI Fermions”, and discusses results from using them methods of Chapter

6 in practical simulations. After some initial studies on smaller lattices,

we simulated lattice QCD with two dynamical flavors of mass-degenerate

chirally improved quarks on lattices with 123 × 24 lattice sites (12 lattice

points in the three space dimensions, and 24 in the time direction). These

early calculations have been restricted due computer resources. Again, our

big goal was to simulate light dynamical quarks. Therefore our discussion in

Chapter 7. of the thesis put a strong emphasis on quark and pion masses.

On this lattice size and with the computer resources at hand we reached

quark masses down to about 30 MeV which corresponded to a pion mass of

about 460 MeV in our calculations. Our calculations seem to indicate that

quark masses of about 20 MeV can be reached on lattices of this size. It can

be expected that the quark masses can be further reduced in simulations on

larger lattices.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the quantum field theory of strong

interactions, formulated in terms of quarks and gluons [1]. Together with

perturbative methods it has been very successful in predicting phenomena

at small distances, where the coupling constant of QCD is small. These

perturbative methods start from a free theory and treat the coupling as a

small perturbation to this. Therefore they can only work at small coupling.

At the scale of the hadronic world (about 1 fm), the coupling constant of

QCD is too large for such perturbative expansions to work.

Lattice QCD (LQCD) was introduced by Wilson in 1974 [2]. LQCD

is QCD formulated on a four-dimensional euclidian space-time lattice. It

provides a non-perturbative regularization scheme of QCD: On the finite

grid the infinities, which occur in the continuum, are removed. Furthermore,

physical quantities appear to have a finite, well behaved limit when the lattice

spacing is taken to 0, the continuum limit. Until today it is the only known

gauge invariant regularization method which allows non perturbative solution

approaches to QCD. All other known regularization schemes are tied closely

to the perturbative expansions mentioned above.

Apart from regularizing QCD the lattice also provides a way of putting the

theory on a computer and simulating it. However, such simulations turned

out to be computationally very demanding. Therefore in the last thirty years

a lot of effort has been invested into improvements of simulation algorithms

and the way QCD is discretized.
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Whether a lattice discretization is good or bad depends crucially on the

way it deals with the symmetries of QCD. The breaking of symmetries when

discretizing is unavoidable in many cases. This can be readily seen if one

considers continuous rotations, which simply cannot exist on a discrete grid.

Breaking of symmetries is acceptable, as long as the symmetries are restored

in the continuum limit. In this case the breaking can be seen as a discretiza-

tion error which can be controlled by making the lattice fine enough. How

fine it has to be depends on the discretization. From a pragmatical point

of view we could say that one discretization is better than another one, if it

allows for coarser lattices.

Wilson’s proposal for a lattice discretization [2] was formulated in terms of

very short range interactions. This provides a simple and elegant formulation

of lattice QCD. This discretization preserves gauge invariance. On the other

hand it breaks the chiral symmetry of lattice QCD.

Chiral symmetry is an approximate symmetry of the light quark flavors

of QCD. It would be exact for massless quarks. Despite this small explicit

breaking by the quark masses its effects can clearly be seen in the hadron

spectrum.

The implementation of chiral symmetry has been a longstanding problem

in lattice QCD. It has been partly resolved in a negative way by Nielsen and

Ninomiya in 1981 [3]. In their famous no-go theorem they proved that it

is impossible to have exact chiral symmetry in a formulation of QCD on a

finite lattice that is local and which has the correct number of flavors. To

be more precise in this last point, in such a local and chiral formulation of

lattice QCD the quarks would come in groups of 16 for every different quark

mass one wants to introduce. This is known as the fermion doubling problem,

of course it is clearly unacceptable if one wants to describe nature.

In 1982 Ginsparg and Wilson suggested a relation which is now known as

the Ginsparg-Wilson relation [4]. This relation defines theories, in which the

chiral symmetry is broken in a local way only. At the time of its finding the

Ginsparg-Wilson relation did not have a great impact because nobody knew

how to construct a theory which fulfills the relation. Only during the 1990-s

such theories started to appear [5, 6, 7]. The chirally improved [8, 9] action

is a lattice discretization of the Dirac operator which fulfills the Ginsparg-

5



Wilson relation approximately. This action has been successfully applied in

various simulations over the last six years. These simulations, however, have

been neglecting the vacuum polarization effects from dynamical quark loops.

Dynamical quark loops are often neglected because including them ren-

ders simulations much more expensive. This is especially true if one wants to

consider light quarks. Simulations with small quark masses always are more

expensive than simulations with large quark masses, no matter what lattice

action is used. Apart from other problems, however, simulations with light

quarks that use a non Ginsparg-Wilson action are plagued by the breaking of

chiral symmetry. This can be at least partly resolved using Ginsparg-Wilson

actions. At quark masses smaller than half the strange quark mass, or 40

MeV, it can be expected that simulations will substantially profit from using

Ginsparg-Wilson actions.

Until know there exist only very few simulations using Ginsparg-Wilson

actions which include these quark loop effects, and currently this is a topic

of active research by different groups in the field. Among these efforts is a

project of C.B. Lang, Pushan Majumdar and myself [10, 11, 12, 13], which

has been started in 2003 and to which I have been contributing from the

beginning. This project is the topic of my thesis.
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Chapter 2

Lattice QCD

2.1 Euclidian QCD at the Classical Level

Definitions

We will use the euclidian formulation of quantum field theory exclusively.

The action of QCD in its euclidian formulation is defined on 4-dimensional

euclidian space:

S[A, ψ, ψ] =

∫
d4x L , (2.1.1)

where the Lagrangian Density is defined as

L =
1

2g2
tr FµνFµν + ψ(D/ +m)ψ , (2.1.2)

with

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] , (2.1.3)

D/ = γµ(∂µ + igAµ) . (2.1.4)

The A field is a non-abelian gauge field Aµ ∈ su(3) (i.e., the algebra of the

gauge group SU(3)). The fermionic Dirac spinors ψ and ψ, called anti-quark

field and quark field respectively. They carry three indices, the 3-component

color index, the 4-component Dirac index and a flavor index. In nature

there are 6 different flavors called up, down, strange, charm, bottom and top

(lattice QCD calculations are often restricted to less flavors, however). The
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mass matrix m is a diagonal matrix with the masses of the different flavors

appearing in the diagonal. The euclidian γ matrices are hermitian and obey

{γµ, γν} = 2δµ,ν ,

{γµ, γ5} = 0 ,

γ5 = γ1γ2γ3γ4 .

(2.1.5)

Symmetries

The action defined above is invariant under 4-dimensional translations. It is

invariant under O(4), the euclidian equivalent of the full Lorentz group in

Minkowski space. There is also an euclidian version of charge conjugation

which leaves the action invariant. We will not discuss the transformation

properties of the gauge and quark fields under these transformations here,

they can of course be found in text books, e.g., [14].

What we want to discuss in a bit more detail are two other symmetries:

The action of QCD is invariant under a local SU(3) transformation. This

is called a gauge transformation; we denote it by Ω(x) ∈ SU(3). Under this

the gauge fields transform as

A′(x)µ = Ω(x)(A(x)µ + ∂µ)Ω(x)† , (2.1.6)

and the anti-quark and quark fields transform as

ψ ′(x) = ψ(x)Ω(x)†, ψ′(x) = Ω(x)ψ(x) . (2.1.7)

We define the chiral projectors as

PL = 1
2
(1− γ5) , PR = 1

2
(1 + γ5) , (2.1.8)

and use this to define left-handed and right-handed quark and anti-quark

fields as

ψL = PLψ , ψR = PRψ ,

ψL = ψPR , ψR = ψPL .
(2.1.9)

Inserting these into the QCD action with m = 0 we get

S[A, ψ, ψ] =

∫
d4x

1

2g2
tr FµνFµν + ψLD/ ψL + ψRD/ ψR . (2.1.10)
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In the massless case therefore the left and right handed anti-quark and quark

fields decouple, and as a result the action possesses an U(Nf )L ⊗ U(Nf )R

symmetry, called chiral symmetry. Chiral symmetry manifests itself in the

Dirac matrix D/ as

{D/ , γ5} = 0 , (2.1.11)

which is a necessary condition for the symmetry. The masses of the up and

down quarks are quite small compared to the scale of spontaneous chirally

symmetry breaking in QCD of about 1 GeV. That is why one sees strong

effects of a spontaneously broken U(2)L ⊗ U(2)R.

2.2 Quantization via Path Integrals

To quantize the classical theory discussed in the last Section the method of

Feynman path integration can be used. This framework allows to formulate

the quantized theory in terms of a system of classical statistical mechanics.

In the rest of this Section a few basic facts of this method are summarized.

We are interested in vacuum expectation values of time ordered products

of certain operators

〈0|T{Ô1(x1), Ô2(x2), . . . }|0〉 . (2.2.1)

Using Feynman path integrals we can formally express our vacuum expec-

tation values in terms of expectation values in the framework of classical

statistical mechanics

〈0|T{Ô1(x1), Ô2(x2), . . . }|0〉 =

1

Z

∫
d[A, ψ, ψ] O1(x1)O2(x2) . . . exp(−S) ,

(2.2.2)

where

Z =

∫
d[A, ψ̄, ψ] exp(−S) . (2.2.3)

This function Z we call partition function in analogy to statistical mechanics.

The definitions above are only formal at this point since we have not yet

defined the integration measure.
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Figure 2.1: Illustration of the lattice discretization of QCD

2.3 Wilson’s Formulation of Lattice QCD

To give the path integrals of the last Section a proper definition the procedure

of lattice regularization can be used: The action gets discretized on a four

dimensional hypercubic lattice. We set the lattice spacing a = 1, and use

the notation µ̂ for the identity vector in the direction µ. On this lattice

the lattice gauge field is defined as a set of SU(3) matrices connecting two

neighboring lattice sites, which are called link variables. The link variable

between two sites x and x + µ̂ we denote as Ux,µ . The discretization of

the quark and anti-quark fields introduces Grassmann variables, which live

on the lattice sites. We will denote them as ψ(x) and ψ(x) just like their

continuous counterparts. This discretization procedure is illustrated in Fig.

2.1 The historically first lattice discretization of the QCD action, and one of

the simplest, is called Wilson’s action [2, 15], named after its inventor.

We split the Lagrangian (2.1.2) into one part containing only the gauge

fields Lg and another part containing gauge fields and quark (fermionic) fields

Lf .

L = Lg + Lf ,

Lg =
1

2g2
tr FµνFµν ,

Lf = ψ(D/ +m)ψ .

(2.3.1)
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Using this the we split the action into

S = Sg + Sf ,

Sg =

∫
d4x Lg , Sf =

∫
d4x Lf .

(2.3.2)

The Gauge Part

In Wilson’s approach the discretization of the gauge part of the action Sg

is done using only the smallest closed loops on the lattice, the so-called

plaquettes. They consist of four link variables between the four neighboring

points connecting them, e.g., in the following way:

x→ x+ µ̂→ x + µ̂+ ν̂ → x + ν̂ → x . (2.3.3)

The parallel transporter around this plaquette is

Upl
x,µν = Ux,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν . (2.3.4)

Wilson’s gauge action (discretization of Sg) is defined as

Sg[U ] = βW

∑

x

∑

µ<ν

(
1− 1

3
Re tr(Upl

x,µν)
)
,

βW =
1

g2a2
,

(2.3.5)

where we have introduced Wilson’s beta βW.

The Fermionic Part

A simple symmetric lattice version of the covariant derivative Aµ+∂µ is given

by

Dµ(x) = 1
2
(Ux,µδx+µ̂,y − U †x−µ̂,µδx−µ̂,y) . (2.3.6)

Using this the so-called naive lattice fermion matrix MN can be derived:

MN(x, y) = m δx,y + 1
2

4∑

µ=1

γµ

[
Ux,µδx+µ̂,y − U †x−µ̂,µδx−µ̂,y

]
. (2.3.7)

It is called naive for the following reason: In the free case, i.e., all Ux,µ = 1,

and for one fermion flavor, the resulting propagator in momentum-space is:

〈ψψ(p)〉 = [i
∑

µ

γµ sin(pµa) +m]−1 . (2.3.8)
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In the continuum limit and for m = 0 this should have one pole at p = (0, 0),

corresponding to the one fermion species. What we get instead are 16 poles,

one at every corner of the Brioullin zone

p1 = (0, 0, 0, 0), p2 = (0, 0, 0, π), . . . , p16 = (π, π, π, π) , (2.3.9)

which all survive in the continuum limit. This is known as the fermion

doubling problem.

To overcome the fermion doubling problem Wilson added a second deriva-

tive term to the fermion matrix:

r
2
[Ux,µδx+µ̂,y − 2δx,y + U †x−µ̂,µδx−µ̂,y] , (2.3.10)

which gives the unwanted extra 15 fermion a mass proportional to 1/a. This

way the unwanted fermions get infinitely massive in the continuum limit and

ought to decouple. The Wilson fermion matrix can be written as

MW(x, y) = δx,y − κ
4∑

µ=1

[
(r − γµ)Ux,µδx+µ̂,y + (r + γµ)U †x−µ̂,µδx−µ̂,y

]
.

(2.3.11)

Wilson’s fermionic action is given by

Sf(U, ψ, ψ) = ψMWψ . (2.3.12)

2.3.1 Symmetries of Wilson’s Action

The different symmetries of the continuum QCD Lagrangian (Section 2.1)

are reflected by Wilson’s lattice action in different ways:

• Gauge symmetry and charge conjugation are preserved exactly as they

appear in the continuum.

• The translation and O(n) rotation symmetries from the continuum

manifest themselves on the lattice as discrete translations and hyper-

cubic rotations and reflections. In the continuum limit a → 0 these

symmetries become their continuum counterpart again.
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• The introduction of the second derivative term 2.3.10 violates the γ5

anti-commutation relation

{MW, γ5} 6= 0 ,

even at vanishing quark mass. Therefore chiral symmetry is not main-

tained like in the continuum. Furthermore chiral symmetry is broken

in a hard way in O(a). Also there is no exact lattice symmetry corre-

sponding to continuum chiral symmetry (like in the case of O(n) and

translation symmetries which have discrete counterparts, see above).

2.4 Path Integrals on the Lattice

For the integration over the lattice gauge fields U Wilson proposed the Haar

group measure, we denote it as dUx,µ. This measure is invariant under the

gauge group transformations (SU(3) in our case). For the integration over

the quark fields the rules of integration over Grassmann variables are applied.

The lattice counterpart of the vacuum expectation value (2.2.1) is

〈0|T{Ô1(x1), Ô2(x2), . . . }|0〉 =

1

Z

∫ ∏

x,µ

dUx,µ
∏

x

dψ(x)
∏

x

dψ(x) O1(x1)O2(x2) . . . e−S(U,ψ,ψ) ,
(2.4.1)

Z =

∫ ∏

x,µ

dUx,µ
∏

x

dψ(x)
∏

x

dψ(x) e−S(U,ψ,ψ) . (2.4.2)

The continuum vacuum expectation values are defined as the continuum limit

of the lattice vacuum expectation values, i.e., the limit of a→ 0. To perform

the continuum limit the free parameters of the theory, the gauge coupling

and the quark mass, have to be replaced by measurable quantities. This

procedure is referred to as renormalization.

2.5 Improved Gauge Actions

The Taylor expansion of Wilson’s gauge action gives Fµ,νFµ,ν in leading order,

corrections are O(a2). There are various approaches that try to improve that
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by adding gauge loops that are longer than the plaquette, for instance of

length six. These longer loops ought to cancel the O(a2) corrections coming

from the plaquette. These longer loops get a certain coupling strength. To

choose this coupling strength (such that the wanted cancellation takes place),

different techniques have been applied: Methods from perturbation theory,

mean field improvement or renormalization group inspired so-called perfect

actions.

2.6 Improved Fermionic Actions and Smear-

ing

For Wilson’s fermionic action, lattice corrections are starting at O(a). As

in the case of the gauge action various ways to improving this have been

suggested, perturbative and non-perturbative ones. One class of non pertur-

batively improved actions are the lattice chiral or Ginsparg-Wilson actions,

which we will discuss in Chapter 3.

Another way of to effectively improve a fermionic action is link smearing.

The idea is to define new link variables called smeared links that consist of

some local combination of the usual link variables (which are then often called

thin links for distinguishing). The process of smearing ought to reduce short

distance (ultra-violet) fluctuations and leave the long distance properties of

the system unchanged. It has been shown for various fermionic actions that

some of their properties, including scaling, improve significantly when some

sort of smearing is employed (see for instance [16, 17, 18]).
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Chapter 3

Chiral Symmetry in Lattice

QCD

3.1 Nielsen-Ninomiya No-Go Theorem

There is a theorem called Nielsen-Ninomiya No-Go theorem [3, 19] for a

lattice Dirac operator D (a lattice discretization of the continuum Dirac

operator D/ ). This theorem states that such a D which has no doubler

modes cannot obey the following conditions simultaneously:

• D is (exponentially) local

• D is translational invariant

• D is chirally symmetric (i.e. {D, γ5} = 0).

• D(p) = iγµpµ + (O)(ap2), where D(p) is the Fourier transform of D.

3.2 The Ginsparg-Wilson Relation

Ginsparg and Wilson [4] suggested to replace chiral symmetry in continuum,

{D, γ5} = 0, which is equivalent to {D−1, γ5} = 0, by the milder condition

{D−1, γ5} = 2aRγ5 , (3.2.1)

where a is the lattice spacing and R is some local operator.
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Figure 3.1: The spectrum of a lattice chiral Dirac operator is bounded by

two circles.

It has been shown that this implies an exact symmetry of the lattice ac-

tion, which becomes the usual chiral symmetry in the continuum limit [20],

and is often referred to as lattice chiral symmetry. This symmetry implies

some very favorable properties for actions satisfying it: Lattice chiral ac-

tions possess no additive mass correction. At finite masses they are always

invertible (there are no exceptional configurations). They are automatically

O(a) improved. There is a lattice version of the Atiyah-Singer index the-

orem, relating topology to the eigenmodes of the Dirac operator. For the

renormalization constants the relation ZA = ZV holds.

3.3 Neuberger’s Overlap Fermions

Neuberger’s overlap fermion matrix [7, 21] with zero mass fulfills the Ginsparg-

Wilson relation (3.2.1) with R = 1
2
I:

{D−1, γ5} = aγ5 , (3.3.1)

I being the identity matrix. One starts with a kernel Dirac matrix, for

instance the Wilson fermion matrix MW with a negative mass, m ≈ −1/2.
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2 − 2 mumu

Figure 3.2: The spectrum of the massive overlap operator lies on the circle

sketched above.

Using this one defines the overlap Dirac operator as

Dov = 1 + γ5 sign(HW) , (3.3.2)

where

HW = γ5MW . (3.3.3)

From the massless case it is possible to construct massive fermions using the

relation [22, 23]

Mov(µ) = (1− µ)Dov + µ . (3.3.4)

The mass parameter µ must be in the interval [0, 1], the corresponding

fermion mass is

m = µZ−1
m (1 +O(a2)) , (3.3.5)

Zm is the mass renormalization constant for which

ZψZm = 1 , (3.3.6)

and Zψ is the wave function renormalization constant.
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3.4 Generalized Dirac Operators

Some parameterizations of Ginsparg-Wilson fermions start by writing down

a most general Dirac operator that satisfies the basic symmetries of gauge in-

variance, translation invariance, hypercubic rotations and reflections, charge

conjugation plus γ5-hermiticity. These conditions fix some of the properties

of the ansatz

Dx,y =
∑

n

cn(U)δx,y ⊗ Γn ⊗ un , (3.4.1)

where cn(U) is a real coefficient, Γn is an element of the Clifford algebra and

un is a gauge path connecting x and y. Some freedom in the choice of the

coefficients remains, this can be used to give the operator certain desired

properties, for instance lattice chiral symmetry. For detailed descriptions of

this approach we want to refer to [24] and to [8].

3.4.1 Fixed-point Fermions

The fixed-point (also referred to as classically perfect) fermions [25] follow a

concept which is based on renormalization-group techniques. There one aims

to simulate the theory close to the renormalized trajectory. From this one

expects very good scaling properties. It has been shown that the fixed-point

action satisfies the Ginsparg-Wilson relation [26].

This concept can be used to fix the free parameters of a generalized Dirac

operator. Doing this one can retain a practical implementation or the the-

oretical concept [27]. For practical reasons these constructions can contain

only a certain number of terms of the most general Dirac operator. An exact

fixed-point action would have to contain infinitely many terms. Therefore

such constructions can only be approximate fixed-point actions.

3.4.2 Chirally Improved Fermions

Another possibility fix the coefficients of a generalized Dirac operator was

suggested in [8]. The idea is to plug the generalized Dirac operator into

the Ginsparg-Wilson relation. Then a system of algebraic equations for the

coefficients is retained. Solving these equations one can fix the coefficients of
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the generalized Dirac operator and retains a lattice chiral operator. Again in

practice one is always restricted to a certain number of terms. For an exact

Ginsparg-Wilson operator one would need infinitely many terms, therefore

such an operator can only be approximately lattice chiral.

In practice it was found that one would need very many terms in order

to get an operator with no additive mass correction. Therefore the original

concept has been modified to allow for an additional parameter which ensures

that there is no additive mass correction [9]. This parameter is dependent of

the underlying gauge background. In this modified version the concept was

successfully used in quenched QCD calculations, for instance [28].
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Chapter 4

Markov Chain Monte Carlo

4.1 Introduction

The purpose of this chapter is to discuss some mathematical aspects of of

the simulation techniques we want to use. In the first part of this chapter

(Sections 4.2 to 4.7) a quick overview over some standard methods of Markov

Chain Monte Carlo methods is given. These can be found in various text-

books, for instance [29, 30]. In the second part of the chapter (Sections 4.8

to 4.9) the Hybrid Monte Carlo algorithm is discussed. This is done with a

special emphasis on how it fits into the framework of the methods of the first

part of this chapter. Many of the results in this chapter can be proved in an

elementary and instructive way, therefore we want to discuss some of these

proofs. For the notation throughout this chapter we will closely follow [29].

In the last Section of this chapter we will briefly discuss autocorrelation and

error estimation for data with autocorrelation.

4.2 General Definitions

For our lattice QCD calculations we are interested in integrals of the general

form

E(m) =

∫
dx π(x)m(x) . (4.2.1)

Here x ∈ R stands for some field, taking values from a measure-space R,

and dx for an appropriate measure. The function m(x) is assumed to be
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complex valued, the function π(x) is assumed to be positive real valued, and

normalized, i.e., ∫
dx π(x) = 1 . (4.2.2)

We can use this this to define a new measure Π on R as Π(dx) = π(x)dx,

Π(A) =
∫
A

Π(dx), which we call distribution, π(x) we call distribution density.

Using this the integral can be written as

E(m) =

∫
Π(dx)m(x) . (4.2.3)

The method of Markov Chain Monte Carlo integration will allow us to gener-

ate samples {Xi : i = 1, 2, . . . } according to the distribution Π. Using these

we can then express our integral as

E(m) = lim
n→∞

1

n+ 1

n∑

i=0

m(Xi) . (4.2.4)

This will allow us to estimate our integral as a finite sum over a certain

sample.

4.3 Markov Chains

Let {Xi : i = 0, 1, . . . } be a set of random variables taking values in a set

R. Let further Xn be related to Xn−1, . . . , X0 by a conditional probability

P (Xn ∈ B|X0 = x0, . . . , Xn−1 = xn−1) (the probability that Xn ∈ B under

the condition X0 = x0, . . . , Xn−1 = xn−1). The set {Xi : i = 0, 1, . . . } is then

called a Markov chain if

P (Xn ∈ B|X0 = x0, . . . , Xn−1 = xn−1) = P (Xn ∈ B|Xn−1 = xn−1) (4.3.1)

for every B ⊂ R and n ∈ 0, 1, . . . , N . The chain is called time homogeneous

if

P (Xn ∈ B|Xn−1 = x) = P (X1 ∈ B|X0 = x) . (4.3.2)

We will restrict ourselves to that case from now on. The function

K(B|x) = P (X1 ∈ B|X0 = x) (4.3.3)
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we call the transition probability, and

Kn(B|x) = P (Xn ∈ B|X0 = x) (4.3.4)

the n-step transition probability. The Markov chain is determined by K and

some initial distribution P0.

A distribution Π on R is called a stationary distribution if

Π(B) =

∫

R

K(B|x)Π(dx) , ∀B ⊂ R . (4.3.5)

The Markov chain {Xi : i = 0, 1, . . . } is called reversible with respect to Π if

∫

A

K(B|x)Π(dx) =

∫

B

K(A|x)Π(dx) (4.3.6)

for all A,B ⊂ R. The (4.3.6) is also called detailed balance condition. From

(4.3.6) it follows immediately that

∫

R

K(B|x)Π(dx) =

∫

B

K(R|x)Π(dx) = Π(B) , (4.3.7)

therefore Π is a stationary distribution for the chain. A chain is called φ-

irreducible if there exists a measure φ on R such that for all A ⊂ R with

φ(A) > 0 and for all x ∈ R there exists a positive integer n such that

Kn(A|x) > 0.

If there is an integer d ≥ 2 and disjoint subsets of R ,

A0, . . . , Ad ⊂ R , (4.3.8)

with Π(Ai) > 0 such that

K(Ai|x) = 1 for all x ∈ Aiand 0 ≤ i ≤ d− 1 , (4.3.9)

and

K(A1|x) = 1 for all x ∈ Ad , (4.3.10)

then the chain is said to be periodic. The chain is called a-periodic otherwise.

If a chain has a stationary distribution π and it is φ-irreducible and a-

periodic then it converges to π starting from almost every x ∈ R (i.e., every

x ∈ R except maybe for a subset A ⊂ R of measure Π(A) = 0).
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4.4 The Metropolis-Hastings Algorithm

Metropolis et al. [31] proposed in 1953 an algorithm to construct a chain

satisfying detailed balance (4.3.6) which was later generalized by Hastings

[32]. We will discuss this generalized version, also known as Metropolis-

Hastings algorithm. The chain is constructed recursively: To start we choose

an x0 ∈ R and set X0 = x0. To generate Xn+1 from Xn where Xn = xn we

• Choose a state y from a conditional distribution Q(dy|x) = q(y|x)dy.

We refer to Q as proposal distribution, and to q as proposal density.

• Evaluate

α(y|x) = min{1, q(x|y)π(y)

q(y|x)π(x)
} . (4.4.1)

This α we call acceptance probability function.

• Generate r ∈ [0, 1] with uniform distribution

• Set

Xn+1 =

{
y if α(y|x) ≥ r

x otherwise
. (4.4.2)

This procedure defines a transition probability K:

K(B|x) =

∫

B

α(y|x)q(y|x)dy + r(x)IB(x) , (4.4.3)

where

IB(x) =





1 if x ∈ B
0 otherwise

, (4.4.4)

and r(x) is the probability that a proposal is chosen which is then rejected,

i.e., the probability that the new element of the chain is equal to the old

one, x. We will not need an explicit form of this this function r for the proof

of detailed balance below. For the matter of completeness only we write it

down:

r(x) =
1

π(x)

∫

{y:π(y)q(x|y)<π(x)q(y|x)}
[π(x)q(y|x)− π(y)q(x|y)]dy . (4.4.5)
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The transition probability K satisfies detailed balance with respect to π. To

show that, we first derive a relation for α:

α(y|x)

α(x|y)
=

min{1, q(x|y)π(x)
q(y|x)π(y)

}
min{1, q(x|y)π(y)

q(y|x)π(x)
}

=
q(x|y)π(x)

q(y|x)π(y)
.

(4.4.6)

Using this we get

∫

A

K(B|x)π(x)dx

=

∫

A

[∫

B

α(y|x)q(y|x)dy + r(x)IB(x)

]
π(x)dx

=

∫

A

∫

B

α(y|x)q(y|x)π(x)dy +

∫

A∩B
r(x)π(x)dx

=

∫

B

∫

A

α(y|x)q(y|x)π(x)dy +

∫

B

r(x)IA(x)π(x)dx

=

∫

B

K(A|y)π(y)dy .

(4.4.7)

The original Metropolis algorithm of [31] is a special case of the above algo-

rithm with a symmetric proposal distribution, i.e., q(x|y) = q(y|x).

4.5 Sampling in Subspaces

Let now be R a Cartesian product of a number n of sets S1, . . . , Sn

R = S1 × S2 × · · · × Sn . (4.5.1)

The elements of R can be written as n-tuples, for instance

x = (x1, x2, . . . , xn) , (4.5.2)

and the m-th element Xm of a Markov chain as

Xm = (X1
m, X

2
m, . . . , X

n
m) . (4.5.3)

Often it is impracticable to update this whole vector at once.
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We are now going to construct a Markov chain recursively, altering only

one of the Xk
m at once. Cycling through all the variables we will then be

able to get a Markov chain converging to some distribution π for the whole

vector. For every 1 ≤ l ≤ n we have a certain probability of getting from

X l
m = xl to X l

m+1 = yl in a single step, which we denote by

P (X l
m+1 ∈ Bl|X1

m+1 = y1, . . . , X l−1
m+1 = yl−1, X l

m = xl, . . . , Xn
m = xn) .

(4.5.4)

We want to construct a completely new state y out of a given state x by

cycling through all the components of our state vector. The transition matrix

of this chain is the product of all these probabilities

P (y ∈ B|x) =P (X1
m+1 ∈ B1|X1

m = x1, . . . )

P (X2
m+1 ∈ B2| . . . , X2

m = x2, . . . ) · · ·
P (Xn

m+1 ∈ Bn| . . . , Xn
m = xn) .

(4.5.5)

If we choose them such that all leave our specific distribution Π invariant,

then Π is a stationary distribution for the chain.

4.6 Gibbs Sampling

Ideally we would always like to draw independent samples from our distri-

bution Π(dx1, . . . , dxn) right from the start of our Markov chain (no equi-

libration time). This is not possible usually. However, in some cases it is

possible to sample in that way in some small subspace from a corresponding

conditional distribution. For instance one would sample in the l-th subspace

(variable xl), with the values of the other xk, k 6= l held constant.

Π(dxl|xk, k 6= l) , (4.6.1)

and set the probabilities of (4.5.5):

P (X l
m+1 ∈ Bl|X1

m+1 = y1, . . . , X l−1
m+1 = yl−1, X l

m = xl, . . . , Xn
m = in) =

Π(Bl|y1, . . . , yl−1, xl+1, . . . , in) . (4.6.2)

Then Π is a stationary distribution for our chain. This so called Gibbs Sam-

pling was introduced by Geman and Geman in 1984 [33].
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4.7 Mixed Chains

In the last Sections we discussed two possibilities of generating a distribution

which is stationary with respect to a chosen distribution, the Metropolis-

Hastings algorithm and Gibbs-sampling. There are many others. If we com-

bine them such that we generate samples in different subspaces with different

of these algorithms, the resulting chain will again be stationary with respect

to our chosen distribution. Such an approach we call a mixed chain.

4.8 Hybrid Algorithm

Let the distribution be of the form

Π(dx) = e−V (x)dx , (4.8.1)

where x = (x1, . . . , xn) ∈ RN . For every xi we add an auxiliary variable

pi ∈ R, p = (p1, . . . , pn), and define a Hamiltonian

H =
N∑

i=1

p2
i

2
+ V (x) . (4.8.2)

We now define a distribution

Π̃(dx, dp) = e−H(x,p) dx dp . (4.8.3)

Integrating over p we get back our original distribution Π
∫

p

Π̃(·, dp) = Π(·) . (4.8.4)

Thus if we sample {(x, p)}from Π̃, x will be distributed according to Π.

Integrating Hamilton’s equations,

dxi
dt

=
∂H
∂pi

,

dpi
dt

= −∂H
∂xi

,

(4.8.5)

for a time t one gets an evolution of x and p:

(x, p)→ (x′, p′) = gt(x, p) , (4.8.6)

which is
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• Deterministic,

• Energy conserving: H(x′, p′) = H(x, p),

• Reversible: gt(g−t(x, p)) = (x, p),

• Area preserving: dx′ dp′ = dx dp.

This evolution can be used to construct an updating scheme which satisfies

detailed balance with respect to our distribution Π̃(dx, dp) = e−H(x,p) dx dp

and which is ergodic:

• Choose p from the gaussian distribution e
PN
i=1

p2i
2 .

• Evolve the system for a certain time t, going from (x, p) to (x′, p′) =

gt(x, p).

To see how this satisfies detailed balance we choose some A ∈ R2n and define

B = g(A). We call K t the transition probability which results from evolving

for a certain time t:

Kt(B|(x, p)) = IB(gt(x, p)) =





1 if gt(x, p) ∈ B
0 otherwise

(4.8.7)

(IB defined as in (4.4.4)). For this we get the relation:

∫

A

Kt(B|(x, p))e−H(x,p) dx dp =

∫

A

IB(gt(x, p))e−H(x,p) dx dp

=

∫

B

IA(g−t(x′, p′))e−H(x′,p′) dx′ dp′

=

∫

B

K−t(A|(x′, p′))e−H(x′,p′) dx′ dp′ .

(4.8.8)

This would be detailed balance in the usual form (4.3.6) if we had K t = K−t.

To restore detailed balance we could randomly choose the sign of t for the

evolution. However, we do not have to do that: Before starting the evolution

we refresh our p, and the chance of getting p and −p is the same (e−p
2/2 =

e−(−p)2/2). Reversing the sign of t has the same effect as reversing the sign

of p.
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4.9 Hybrid Monte Carlo Algorithm

Assume we have an evolution which is reversible and area preserving, but not

energy conserving. This case occurs often in practice: Numerical techniques

for the integration of differential equations make use of a time discretization

leading to discretization errors. In our case this would mean a violation of

energy conservation. Using this for the hybrid algorithm described above

would violate detailed balance. Therefore in the hybrid algorithm one has

to make sure that the violation of energy conservation is kept small. This

can be achieved by making the time discretization fine. Choosing a fine

discretization, however, makes the integration expensive. On the other hand,

there exist numerical integration techniques which satisfy the requirement of

area preservation and reversibility at arbitrarily coarse time discretizations.

For such an integrator detailed balance can be restored. The idea of

the Hybrid Monte Carlo algorithm [34] is to add a Metropolis-Hastings like

accept-reject at the end of the hybrid algorithm, which corrects for this

change of energy. The result is a three step algorithm (where the first two

steps are the same as in the hybrid algorithm):

• Choose p from the gaussian distribution e
PN
i=1

p2i
2 .

• Evolve the system for a certain time t, going from (x, p) to (x′, p′) =

gt(x, p).

• Accept the (x′, p′) with a probability min{1, e−δH} where δH = H(x′, p′)−
H(x, p) .

The transition probability in this case is

Kt(B|(x, p)) = IB(gt(x, p)) min{1, e−δH}+ r(x)IB(x, p) . (4.9.1)

By r(x) we denote the probability that (x′, p′) is rejected, explicitly this is

r(x) =





0 if e−δH > 1

1− e−δH otherwise
. (4.9.2)
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The explicit form of r(x) is given only for the sake of completeness, it is not

needed in the following relation:

∫

A

Kt(B|(x, p))e−H(x,p)dnxdnp

=

∫

A

[IB(gt(x, p))e−H(x,p) min{1, e−δH}+ r(x)IB(x, p)]dnxdnp

=

∫

B

IA(g−t(x′, p′))e−H(x′,p′)eδHmin{1, e−δH}dnx′dnp′ +
∫

A∩B
r(x)dnxdnp

=

∫

B

IA(g−t(x′, p′))e−H(x′,p′) min{eδH, 1}dnx′dnp′ +
∫

B

r(x′, p′)IA(x′, p′)dnx′dnp′

=

∫

B

K−t(A|(x′, p′))e−H(x′,p′)dnx′dnp′ .

(4.9.3)

The result is the same as in (4.8.8), detailed balance follows from this (see

argumentation following (4.8.8)).

In principle the time evolution does not need have anything to do with H
as long at it is area preserving and reversible. However the acceptance will

be very poor if the energy non-conservation is too large.

4.10 Autocorrelation and Error Estimation

Error Bars for Uncorrelated Samples

Let{X1, . . . , XN} be uncorrelated random numbers of the same type. Being

of the same type these random numbers of course have the same expectation

value

µX = 〈Xi〉 , i = 1, . . . , N (4.10.1)

and variance

σ2
X = 〈(Xi − µ)2〉 , i = 1, . . . , N . (4.10.2)

We define the sample average as

X̂ =
1

N

N∑

i=1

Xi (4.10.3)
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The variance of X̂ is then

σ2
X̂

=
1

N
σX . (4.10.4)

Using a sample {x1, . . . , xN} of {X1, . . . , XN} to estimate µX , as one

usually does in a Markov Chain Monte Carlo calculation, one can take

σX̂ =
√
σ2
X̂

(4.10.5)

as a measure of the error of this estimate, also called error bar. Of course in

such a calculation σX̂ has to be estimated from the sample {x1, . . . , xN} too.

This can be done in various, for instance using the jackknife method.

Error Bars for Correlated Samples

If the random variables {X1, . . . , XN} are correlated the situation is different.

To define the integrated autocorrelation time τint we consider an infinite set

of random variables of the same type, {X1, X2, . . . } and let {X1, . . . , XN} be

the first N of these. We define the autocorrelation function ρ as

ρ(i) =
Γ(i)

Γ(0)

Γ(i) = 〈(Xk − 〈X〉)(Xk+i − 〈X〉)〉 .
(4.10.6)

The k appearing in the definition of Γ stands for any value from {1, 2, . . . }.
Because we assumed all Xi to be of the same type this gives a unique defini-

tion of Γ(i) independent of the value of k.

The integrated autocorrelation time is defined as

τint =
1

2

∞∑

i=1

ρ(i) (4.10.7)

When estimating the statistical error, the autocorrelation time has to be

taken into account. The variance of the sample average for autocorrelated

data is

σ2
X̂

=
2τint
N

σ2
X (4.10.8)
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Binning

To calculate σ2
X̂

using a sample {x1, . . . , xN} from {X1, . . . , XN} the method

of binning can be used. For this method one introduces bins of size M. We

assume M to be an integer fraction of N. If N = L × N then one divides

{X1, . . . , XN} into L bins. For these bins one can calculate a sample average

which we we simply call M̂ , and a corresponding variance which we call σ2
M̂

.

For uncorrelated data one gets

σ2
M̂

=
1

M
σ2
µ . (4.10.9)

The expectation value of the average over all samples takes the value µ (cor-

related and uncorrelated data). Again for uncorrelated samples the variance

of this is simply σ2
µ. For correlated data this variance depends on the bin

size M , it approaches a constant in the limit M → ∞. In practice this

variance will be more or less constant if M > τint. Therefore error bars for

autocorrelated data can be estimated using bins of various size, and taking

the variances for a bin size where the variance is maximal. This procedure

only makes sense for M � N , however.

Like in the case of un-binned data one can apply the method of jackknife

to the binned data to estimate the wanted variances. This we refer to as

binned jackknife.
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Chapter 5

Lattice QCD Simulations

5.1 Prerequisites

When talking about “Lattice QCD simulations” what we mean is to calculate

path integrals of the form (2.4.1). We are doing this using Markov Chain

Monte Carlo techniques. Before we can start doing that, we integrate out

the Grassmann fields ψ and ψ. In the simplest case, where except in the

action Sf there are no Grassmann variables in the path integral the analytic

integration yields ∫
dψdψ eψMψ = det(M) . (5.1.1)

If there are fermionic operators in the path integral the integration yields

some fermionic propagators, for instance (simplest case)
∫
dψdψ ψiψje

ψMψ = M−1
i,j det(M) . (5.1.2)

The path integrals of (2.4.1) can thus be expressed as integrals over the gauge

fields U only, what we have to deal with is (in a most general form)

1

Z

∫ ∏

x,µ

dUx,µ f(U)e−Sg(U) det(M) , (5.1.3)

Z =

∫ ∏

x,µ

dUx,µ e
−Sg(U) det(M) . (5.1.4)

If we take the det(M)n instead of det(M) in the above formulae we get n

mass-degenerate flavors for every flavor of our original action. In the rest of
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this chapter we will discuss how to sample this Z using Markov Chain Monte

Carlo methods.

5.2 Quenched Simulations

For a so-called quenched simulation we assume the fermionic determinant to

be constant. We set

det(M(U)) = 1 . (5.2.1)

Of course this is an uncontrolled approximation, doing this one ignores all

fermionic pair-creation and - annihilation processes. This yields a weight

function which is merely dependent on the gauge action

Z =

∫ ∏

x,µ

dUx,µ e
−Sg(U) . (5.2.2)

Exploiting the local nature of the gauge action it allows for an efficient up-

dating. In a local updating scheme one goes through the lattice changing one

link variable after the other. The locality of the action means that the cost

of one such step is independent of the lattice volume V . An update all the

link variables is called sweep. For this we have to do V local updates. The

cost of one sweep thus increases linearly with the lattice volume.

5.3 Locality of Lattice QCD and the Fermionic

Determinant

A priori, the fermionic as well as the gauge part of our action is local. How-

ever, integrating out the Grassmann variables we get the fermionic determi-

nant det(M) as part of our action. This determinant is not only non-local

but the cost of evaluating it increases fastly with the lattice volume. The cost

of evaluating a determinant of a general n×n matrix with standard methods

(gaussian elimination, usually done as a LU decomposition) increases as n3.

The size n of the fermionic matrix is related to the number of lattice sites Ns

by n = 12Ns. For any simulation using such a brute-force approach the cost

would therefore increase at least proportional to N 3
s . Fortunately there exist
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much better ways to do simulations with dynamical fermions which will be

discussed in the subsequent Sections of this chapter.

5.4 Pseudofermions

In 1981 Petcher and Weingarten proposed a way to deal with the fermionic

determinant by introducing an auxiliary bosonic field which is often called a

pseudofermion field [35]. They used the relation

det(A†A) ∝
∫
dRe(φ)dIm(φ)e−|A

−1φ|2 . (5.4.1)

If we set A = M we can rewrite a 2k flavor partition function (assuming M

is an k-flavor fermion matrix) as

Z =

∫ ∏

x,µ

dUx,µ e
−Sg(U) det(M)2

=

∫ ∏

x,µ

dUx,µ e
−Sg(U)dRe(φ)dIm(φ)e−|M

−1φ|2 .
(5.4.2)

If we want to avoid this doubling of flavors (which has of course nothing

to do with the “fermion doubling problem” discussed in Section 2.3) for

any M, with det(M) positive and real, we can set A =
√
M , retaining the

determinant of M as det(M) = det(A†A).

A Simple Updating Scheme with Pseudofermions

We want to discuss here a simple updating scheme for the partition function

(5.4.2). In this two-step updating scheme we update U in step one and φ in

the other.

• For fixed U we can generate φ directly from the distribution e−|M
−1φ|2dφ

(Gibbs sampling, see Section 4.6): This can be done by generating an

auxiliary vector ξ according to the gaussian density e−|ξ|
2

and setting

φ = Mξ.

• To update U we use the Metropolis-Hastings algorithm 4.4: For fixed φ

generate a proposal gauge field U ′ from U with a transition probability
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function Q(U ′|U) = q(U ′|U)dU ′ and accept it with

min

(
1,
q(U |U ′)e−Sg(U ′)−|M−1(U ′)φ|2

q(U ′|U)e−Sg(U)−|M−1(U)φ|2

)
. (5.4.3)

Note that in every of these two steps we have to re-calculate M−1φ, either

because φ changes or because U and therefore M = M(U) changes. This

calculation of M−1φ is the most time consuming part of this procedure. It

can be done efficiently using conjugate gradient algorithms (see for instance

[36]) which can solve the problem in a time proportional to the size of the

matrix n for sparse matrices, like the Dirac Matrices we are concerned about.

A sweep through the whole lattice thus takes a time proportional to N 2
s

(Ns being the number of lattice sites) for the updating scheme discussed here.

5.5 Hybrid Monte Carlo for Lattice QCD

We will now discuss how the second step of the algorithm of the last Section

can be replaced by the Hybrid Monte Carlo procedure (see also Section 4.9).

For this we need a generalization of the Hamiltonian evolution for a sys-

tem of classical mechanics to our system of U fields (the pseudofermions φ

we want to hold constant in this step). This generalization can be found in

[37]: For every U ∈ SU(3) a conjugate momentum p ∈ su(3) is introduced

which is used to define a time derivative of U as

U̇ = ipU , (5.5.1)

which is the equation of motion of U . These momenta are then used to define

a Hamiltonian as

H =
1

2

∑

i,µ

tr(p2
i,µ) + Sg + φ†(M †M)−1φ . (5.5.2)

The equation of motion for p is retained by writing down Ḣ in terms of

U, p, U̇ and ṗ and demanding that Ḣ = 0. This gives ṗ = f(U, p, U̇). The

function f of course depends on the H which in turn depends on p and the

action used. The exact form of f for Wilson’s gauge action and staggered as
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well as Wilson’s fermion action can be found in [37]. For the Lüscher-Weisz

action and the chirally improved fermionic action we will derive it in Chapter

6.

To do the evolution we still need a way to integrate the equations of

motion. The integration scheme has to be reversible and area preserving. It

should conserve energy as good as possible, since a large δH leeds to poor

acceptance. A particularly simple integration scheme that is area preserving

and reversible is the leapfrog integration. We call the evolution time t again,

and divide it into n intervals of δt = t/n:

U( δt
2

) = ei
δt
2
p(0) U(0)

for s = 0 to t− 2δt step δt do

p(s+ δt) = p(s) + ṗ(s)δt

U(s + 3δt
2

) = eiδt p(s+
δt
2

) U(s+ δt
2

)

end for

p(t) = p(t− δt) + ṗ(t− δt)δt
U(t) = ei

δt
2
p(t− δt

2
) U(t− δt

2
)

How does the cost of this HMC updating grow as a function of the volume

Ns ? Since the acceptance probability falls exponentially like e〈δH〉 we have

to keep δH small, otherwise we will get very poor performance. We can keep

it small by adjusting δt. It has been shown [38, 39] that with this integration

scheme in order to keep 〈δH〉 constant the integration step size has to grow

like 1
δt
∝ N

1/4
s . Therefore, in order to keep t constant the number of steps n

has to grow like n ∝ N
1/4
s . Since the cost of evaluating H grows like Ns the

cost of HMC with leapfrog integration grows like N
5/4
s .

5.6 The Cost of Dynamical Fermion Simula-

tions

In this Section we want to discuss the cost of dynamical fermion simulations

using the Hybrid Monte Carlo algorithm depending on the (not independent)

quantities Mπ/Mρ (determined by the quark mass mq) the number of lattice

sites Ns the physical lattice volume V and the lattice spacing a. For tradi-
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tional HMC an empirical formula for the scaling behavior can be found in

[40]. It was found that the cost grows proportional to :

(
mπ

mρ

)−6

V 5/4a−7 . (5.6.1)

This behavior was found empirically. We want to discuss some theoretical

arguments supporting that it should be like that.

• The V dependence: At constant a and quark mass parameter the phys-

ical volume V ∝ Ns. The cost of evaluating our action grows like Ns.

Another factor of N
1/4
s is obtained because going to larger lattices the

integration step size during the molecular dynamics trajectory has to

be decreased [38, 39].

• The a dependence: To keep the physical volume V constant when

decreasing a, Ns has to grow proportional to a−4, therefore from the

N
5/4
s growth of the cost discussed above we get a factor proportional to

a−5. One also expects a growth of the cost related to the fact that the

condition number of the fermion matrix grows like 1/(amq), or like 1/a

for mq held fixed. This is expected to make the inversion of the fermion

matrix more expensive by a factor of 1/a2. Also the integration step

size has to be decreased when the condition number is increased.

• The Mπ/Mρ dependence: The cost of the inversion is expected to grow

like 1/(amq)
2, in addition to this the integration step size has to be

shrunk. This provides a factor of m−3
q for fixed a. Using the relation

M2
π ∝ mq (leading order chiral perturbation theory) and the fact that

Mρ is approaching a constant when mq is taken to zero this gives a

factor (Mπ/Mρ)
−6 in leading order of mq.

Dynamical fermion actions using Wilson’s action and traditional HMC proved

to be impractical at Mπ/Mρ < 0.5, or Mπ < 400MeV on the computers avail-

able today or in the near future (see [41, 42, 43, 44, 45] for some more recent

results).

Recent algorithmic developments now allow to simulate Wilson’s theory

at much smaller masses than with traditional algorithms. One approach
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[46] is to use multiple pseudofermions [47] together with multiple timescale

integration [48]. The other approach is to use domain decomposition methods

[49].

These new methods may overcome the (Mπ/Mρ)
−6 cost increase of dy-

namical fermion simulations and promise to allow to simulate at pion masses

as low as 200 MeV in the near future [50].

5.7 Improved Actions

Apart from improvement of the algorithm there is much room for improving

the performance of dynamical fermion simulations by using improved actions.

This can be seen from the discussion in Section 5.6. Improved actions allow

to work with larger lattice spacings a and the cost of the simulations grows

as a−7.

Traditional perturbatively improved fermionic actions like clover-improved

Wilson and improved staggered as well as improved gauge actions like the

Lüscher-Weisz action have long been used in dynamical simulations. They

can be used with HMC straightforwardly.

It has been shown that link-smearing can improve fermionic actions sub-

stantially. Factors of two in lattice spacing could be gained in tests with HYP

smeared link variables [16]. Therefore such techniques bear a large potential

for improvement in quenched as well as in dynamical simulations. Unfortu-

nately traditional smeared link variables are not well suited for being used

together with the HMC algorithm since they are difficult to differentiate. To

circumvent that problem different ways have been suggested: The first one

was to develop methods other than HMC for the simulation of quantum field

theories with dynamical fermions [51, 52, 53]. These are very substantially

improved versions of the algorithm discussed in Section 5.4. The big down-

turn of these methods is that they scale unfavorably with the lattice volume,

like V 2, or maybe even worse.

Another approach to do dynamical fermion simulations with smeared link

variables is to develop new methods of smearing, which can be used together

with HMC [54, 55].
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5.8 Ginsparg-Wilson Type Actions

Having an action which fulfills the Ginsparg-Wilson relation certainly is very

desirable for every quenched and dynamical simulation. Besides other ad-

vantages such actions are expected to allow for larger lattice spacings which

is a definite advantage when it comes to performance of dynamical fermion

simulations. Of course such actions are much more expensive to evaluate

than Wilson’s action at large quark masses and a given lattice size. How-

ever, when going to small quark masses and exploiting the fact that one can

use coarser lattices it might well be that simulations with Ginsparg-Wilson

actions turn out to be even cheaper at some point.
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Chapter 6

Hybrid Monte Carlo for

Generalized Dirac Operators

6.1 Outline

This chapter describes the technical aspects of a Hybrid Monte Carlo ap-

plied to actions containing a generalized Dirac operators. Though we have

implemented and tested it only in case of the chirally improved operator, the

methods described here can be applied more generally.

6.2 The Basic Hamiltonian Evolution

We start describing the evolution of a basic HMC Hamiltonian:

H =
1

2

∑

i,µ

tr(p2
i,µ) + Sg + φ†(M †M)−1φ , (6.2.1)

where the pi,µ are traceless hermitian matrices acting as conjugate momenta

to Ui,µ, φ are complex vectors (pseudofermions), M = M(U) is the fermion

matrix and Sg = Sg(U) is the gauge action. For the moment we assume that

the Dirac matrix acts directly on the thin link variables, the case of smearing

will be discussed later.
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Figure 6.1: The types of gauge loops of the Lüscher-Weisz gauge action. Top:

The plaquette; Bottom: The rectangle; Right: The twisted bent

6.2.1 The Equations of Motion

In this Section we derive the equations of motion for our Hamiltonian (6.2.1).

We will do this by generalizing the methods of [37] for our action. The

equation of motion for the link variables U is defined as

U̇j,µ = ipj,µUj,µ . (6.2.2)

We now formally write down the time derivative of our Hamiltonian

Ḣ =
∑

i,µ

tr( ˙pi,µpi,µ) + Ṡg + d
dt

(φ†(M †M)−1φ) . (6.2.3)

To derive the equation of motion for p is we demand that the time evo-

lution leaves H invariant.

Contributions from the Gauge Action

As our gauge action we choose the Lüscher-Weisz gauge action [56]. In

addition to the plaquette term from Wilson’s gauge action it contains a sum

over all plane 2 × 1 loops, which we call rectangle, and all closed loops of

length 6 along the edges of all 3-cubes, which we call twisted bent (see also

Fig. 6.1).
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Sg =β1

∑

pl

1
3
Re tr[1− Upl] + β2

∑

re

1
3
Re tr[1− U re]+

β3

∑

par

1
3
Re tr[1− Upar] ,

(6.2.4)

with three real coefficients β1, β2 and β3. To take the derivative we first

rewrite this as

Sg =β1

∑

pl

1
3

tr[1− Upl − (Upl)†] + β2

∑

re

1
3

tr[1− U re − (U re)†]+

β3

∑

par

1
3

tr[1− Upar − (Upar)†] .
(6.2.5)

For the time derivative Ṡg we have to generalize the notion of a staple for the

plaquette to the longer loops: The usual staples V pl
x,µ (for a link variable Ux,µ)

are defined as the sum over all open 3-loops starting at x+ µ̂ and ending at

x. We define V re
x,µ as sum over all open 5-loops starting at x + µ̂ and ending

at x which one gets by removing Ux,µ from the corresponding rectangle, and

V par
x,µ analogous. Using these definitions we get

Ṡg =β1

∑

x,µ

1
3

tr[U̇x,µV
pl
x,µ − U̇ †x,µ(V pl

x,µ)
†]+

β2

∑

x,µ

1
3

tr[U̇x,µV
re
x,µ − U̇ †x,µ(V re

x,µ)
†]+

β3

∑

x,µ

1
3

tr[U̇x,µV
par
x,µ − U̇ †x,µ(V par

x,µ )†] .

(6.2.6)

Using the relation (6.2.2), hermiticity of pj,µ, and reordering we get

Ṡg =
∑

x,µ

1
3
{ tr[ipj,µUj,µ(β1V

pl
x,µ + β2V

re
x,µ + β3V

par
x,µ )]+

tr[(−i)U †j,µpj,µ(β1(V pl
x,µ)

† + β2(V re
x,µ)†) + β3(V par

x,µ )†)]} .
(6.2.7)

Using the cyclicity of the trace we further rewrite this as

Ṡg =
∑

j,µ

1
3

tr pj,µ[iUj,µ(β1V
pl
j,µ + β2V

re
j,µ + β3V

par
j,µ )+

(β1(V pl
j,µ)† + β2(V re

j,µ)
† + β3(V par

j,µ )†)(−i)U †j,µ] .

(6.2.8)
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Contributions from the Fermionic Action

We want to get the time derivative of the fermionic part of our Hamiltonian

(6.2.1), which is

Sf = φ†(M †M)−1φ . (6.2.9)

We employ a standard trick to rewrite Ṁ−1 in terms of Ṁ :

d

dt
(M−1M) = 0 , (6.2.10)

and therefore

Ṁ−1 = −M−1ṀM−1 . (6.2.11)

Using this (and the analog for M †) we get

φ†
d

dt
(M †M)−1φ = −[X†M †ṀX +X†Ṁ †MX]

= −[X†M †ṀX + h.c.] ,
(6.2.12)

where X = (M †M)−1φ, and h.c. stands for hermitian conjugate (of the term

left of it). Defining P = XX† (exterior product) and using the cyclicity of

the trace we can further rewrite this as

φ†
d

dt
(M †M)−1φ = −tr[PM †Ṁ + h.c.] . (6.2.13)

Next we split off the mass term m from the Dirac matrix M

M(U) = D(U) +m . (6.2.14)

Of course the constant term gives no contribution to the derivative, therefore

Ṁ(U) = Ḋ(U) . (6.2.15)

The gauge dependent part D(U) of our generalized Dirac matrix can be

written as

D =
∑

n

cnδxn,yn ⊗ dn ⊗ un . (6.2.16)

Every of these blocks connects just two sites xn and yn. The dn ∈ {Γ1, . . . ,Γ16 }
are Clifford algebra elements (acting on the Dirac components of our vectors

only), un is a certain gauge path between xn and yn, and cn is a real coeffi-

cient (see also Fig. 6.2). We now write down the equations of motion for one
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Figure 6.2: A schematic representation of three arbitrary terms of a gener-

alized Dirac operator.

such element in the most general form. For the matter of illustration we will

for a moment assume that u = Uj1,µ1U
†
j2,µ2

Uj3,µ3. To get a time derivative for

our example u we use (6.2.2) obtaining

u̇ =ipj1,µ1Uj1,µ1U
†
j2,µ2

Uj3,µ3

+ Uj1,µ1U
†
j2,µ2

(−ipj2,µ2)Uj3,µ3

+ Uj1,µ1U
†
j2,µ2

(ipj3,µ3Uj3,µ3) .

(6.2.17)

We generalize this to an arbitrary u from (6.2.16), consisting of arbitrarily

many link variables. Its time derivative can always be written it the following

form:

u̇ =
∑

j,µ,k

Wj,µ,k,1(±ipj,µ)Wj,µ,k,2 , (6.2.18)

where Wj,µ,k,1 and Wj,µ,k,2 are again products of link variables. Using this we

get an expressions for Ṁ :

Ṁ =
∑

j,µ,k

cj,µ,kδxj,µ,k ,yj,µ,k ⊗ dj,µ,k ⊗Wj,µ,k,1(±ipj,µ)Wj,µ,k,2 . (6.2.19)

We have replaced the index n from (6.2.16= by the multi-index j, µ, k where

j and µ refer to the site and direction of p and k is an additional index which

we need because in general there are more than one term corresponding to

44



one p. For Ṡf we now get

Ṡf = φ† d
dt

(M †M)−1φ =

− tr

[
PM †

∑

j,µ,k

cj,µ,kδxj,µ,k,yj,µ,k ⊗ dj,µ,k ⊗Wj,µ,k,1(±ipj,µ)Wj,µ,k,2 + h.c.

]
.

(6.2.20)

Using the cyclicity of the trace we can collect the momenta (pj,µ) on the left

side:

Ṡf = −
∑

j,µ

trc

[
±ipj,µ

∑

k

[Wj,µ,k,2 trd,s(PM
†δxj,µ,k ,yj,µ,k ⊗ dj,µ,k ⊗Wj,µ,k,1)− h.c.]

]
.

(6.2.21)

Here we have introduced the notation trc for a trace over the color indices

only and trd,s for a trace over Dirac and site indices.

Putting the Contributions Together

We are now ready to derive our second equation of motion, which, together

with the first equation of motion (6.2.2) will define our Hamiltonian evolu-

tion. We have prepared all our derivative terms such that the momenta (pj,µ)

appear on the left side, we will now pull them out:

Ḣ =
∑

j,µ

trc (pj,µṗj,µ) + Ṡg + Ṡf =

=
∑

j,µ

trc{pj,µ[ṗj,µ − f gj,µ − f fj,µ]} ,
(6.2.22)

where we define the gauge force f gj,µ as

f gj,µ = −1
3
[iUj,µ(β1V

pl
j,µ + β2V

re
j,µ + β3V

par
j,µ )+

(β1(V pl
j,µ)
† + β2(V re

j,µ)† + β3(V par
j,µ )†)(−i)U †j,µ] ,

(6.2.23)

and the fermionic force f fj,µ as

f fj,µ = ±i
∑

k

[Wj,µ,k,2 trd,s(PM
†δxj,µ,k,yj,µ,k⊗dj,µ,k⊗Wj,µ,k,1)−h.c.] . (6.2.24)
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To get our second equation of motion we demand that the evolution conserves

energy, i.e., Ḣ = 0. Looking at (6.2.22) we see that for this condition to hold

it is sufficient that

ṗj,µ = f gj,µ + f fj,µ . (6.2.25)

To ensure that our evolution of the U field leaves it within the group of

SU(3) we have to make sure that p is traceless and hermitian during the whole

evolution. In order to ensure this we have to ensure that ṗ is always hermitian

and traceless. By construction our force term f gj,µ + f fj,µ is hermitian, but in

general it is not traceless. We have to make it traceless explicitly. We have

some freedom to do that. One simple choice doing this leads us to our second

equation of motion

ṗj,µ = f gj,µ + f fj,µ − 1
3

tr(f gj,µ + f fj,µ) . (6.2.26)

To see that this will still conserve energy we substitute ṗj,µ for the right hand

side of the above equation into (6.2.22):

Ḣ =
∑

j,µ

trc{pj,µ[f gj,µ + f fj,µ − 1
3

tr(f gj,µ + f fj,µ)− f gj,µ − f fj,µ]}

=
∑

j,µ

trc{pj,µ[−1
3

tr(f gj,µ + f fj,µ)]} = 0 .
(6.2.27)

That this expression is zero holds because pj,µ is a traceless matrix and

−1
3

tr(f gj,µ+f fj,µ) is just a constant. Therefore trc{pj,µ[−1
3

tr(f gj,µ+f fj,µ)]} = 0.

We summarize what we have achieved:

• We have derived our two equations of motion (equations (6.2.2) and

(6.2.26)), which we need for the Hamiltonian evolution. This evolution

conserves the energy (Ḣ = 0) and it evolves the U -field such that its

elements remain within the group of SU(3).

• The second equation of motion we have split into a part coming from

the gauge action f gj,µ and another coming from the fermionic action

f fj,µ. These terms we call fermionic force and gauge force, respectively.

• The relatively simple gauge force f gj,µ we have given explicitly.
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• The much more complicated fermionic force f fj,µ (which comes from our

generalized Dirac operator) we have not derived explicitly. Instead we

have split the Dirac operator into simple fragments (6.2.16) and written

down the derivative of these fragments in a standard form (6.2.18). We

can tabularize all the derivative terms in this standard form (using a

computer program). Equation (6.2.24) tells us how every one of these

terms contributes to the fermionic force f fj,µ, and therefore to our second

equation of motion (6.2.26).

6.3 Mass Preconditioning

In this Section we want to discuss a method introduced in [47] called Mass

Preconditioning, which is also referred to as Hasenbusch Trick. It has been

shown that this method can significantly speed up dynamical fermion simu-

lations using HMC [47, 46, 57].

Here we want to adapt this method for MCI and discuss technical issues

on how to employ this in an HMC simulation. To do that we need to have at

least approximate bounds for the eigenvalues of the operator. We will assume

the ideal case of the spectrum lying on the Ginsparg-Wilson circle (see Fig.

3.2), with the mass parameter µ defined as in (3.3.4). If MCI(0) denotes the

massless chirally improved operator then the massive one MCI(µ) is:

MCI(µ) = (1− µ)

[
MCI(0) +

µ

1− µ

]
, (6.3.1)

with a mass parameter 0 < µ < 1. The eigenvalues of MCI(µ) are bounded

by

λmin =µ ,

λmax =2− µ .
(6.3.2)

Therefore the condition number is

κ =
λmax
λmin

=
2− µ
µ

. (6.3.3)

In the partition function Z (5.1.4) only the determinant of the fermionic

matrix appears. Therefore we can safely replace the fermionic matrix, M =

MCI(µ) in our case, by any matrix with the same determinant.
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For instance one could replace it by a matrix of n × n blocks with n
√
M

in the diagonal and zeros everywhere else:

A =




n
√
M 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 n
√
M




. (6.3.4)

The condition number for this matrix A is the same as for one diagonal block,

in our case:

κ(A) = n
√
κ(M) = n

√
2− µ
µ

. (6.3.5)

In [57] it was proposed to approximate the n-th roots of M by a rational

approximation, theoretical arguments are given that using that in an HMC

setup can lead to a performance increase, the optimal choice of n, for the

two flavor case, was derived to be nopt = log(κ(M)2).

The original proposal of [47] avoids the need for taking (approximating)

roots of the fermionic matrix. The method is laid out for Wilson’s fermions

in [47]. Here we will work out an analog for a Ginsparg-Wilson operator, like

the CI operator. The case of n = 2 blocks will be discussed first. Define a

matrix B:

B =

(
M̃ 0

0 MM̃−1

)
, (6.3.6)

with

M̃ = M + a . (6.3.7)

This a is a real constant, its choice will be discussed next. The spectral

bounds and condition number for M̃ are

λmin(M̃) = µ+ a ,

λmax(M̃) = 2− µ+ a ,

κ(M̃) =
2− µ+ a

µ+ a
.

(6.3.8)
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Figure 6.3: The condition number κ(B) = max{κ(M̃), κ(R)} (6.3.10) takes

a minimum where κ(M̃) = κ(R). This holds for any 0 < µ < 1, for this plot

we have set µ = 0.02.

the spectral bounds for R = MM̃−1:

λmin(R) =
µ

µ+ a
,

λmax(R) =
2− µ

2− µ+ a
,

κ(R) =
(2− µ)(µ+ a)

(2− µ+ a)µ
.

(6.3.9)

We restrict the calculations to positive mass parameters, 0 < µ < 1. For

a + µ = 0 the matrix M̃ is singular, therefore we choose a + µ > 0. Under

these conditions κ(M̃) is monotonically decreasing with a and κ(R) is mono-

tonically increasing with a. Therefore the condition number for B which

is

κ(B) = max{κ(M̃), κ(R)} (6.3.10)

will take a minimum when κ(M̃) = κ(R) (see also Fig. 6.3). This equation

has one solution for a + µ > 0 at

aopt =

√
−µ3 + 3µ2 − 2µ√

µ− 1
=
√

2µ+O(µ
3
2 ) . (6.3.11)

For the condition numbers of R and M̃ we get

κopt(M̃) = κopt(R) =

√
2

µ
+O(µ

1
2 ) . (6.3.12)
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In leading order in µ this is the same as κ(A) (6.3.4) with n = 2.

To generalize this for n 6= 2 we define a matrix which we call B again as

B =




M̃1 0 · · · 0

0 M̃2M̃
−1
1

. . .
...

...
. . .

. . . 0

0 · · · 0 MM̃−1
n−1




, (6.3.13)

with

M̃i = M + ai . (6.3.14)

For the condition numbers of the different non-zero blocks we get

κ1 = κ(M̃1) =
2− µ+ a1

µ+ a1
,

κi = κ(M̃iM̃
−1
i−1) =

(2− µ)(ai + ai−1)

(2− µ+ ai−1)ai
(2 ≤ i ≤ n− 1) ,

κn = κ(MM̃−1
n−1) =

(2− µ)(µ+ an−1)

(2− µ+ an−1)µ
.

(6.3.15)

Next we will show that for small µ the ai can be chosen such that the con-

dition number of B, κ(B) = n
√
κ(M), the same as for A of (6.3.4). For the

ai we make an educated guess: From our prior experience with n = 2 we

assume that for small µ : µ� ai � 2. Then κ1 ≈ 2
a1

. Setting 2
a1

= n

√
2
µ

and

solving for a1 we get a1 = 2
n−1
n µ

1
n . We do the same for κn : κn ≈ an−1

µ
, set

an−1

µ
= n

√
2
µ

and get an−1 = 2
1
nµ

n−1
n .

For general 1 ≤ i ≤ n− 1 we try the ansatz:

ai = 2
n−i
n µ

i
n . (6.3.16)

For all different κi we then get

κi = n

√
2

µ
+O(µ0) (6.3.17)

(which has been tested using a computer algebra program). Thus we get

κ(B) = n

√
2

µ
+O(µ0) = n

√
κ(M) +O(µ0) . (6.3.18)
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Mass Preconditioning and HMC

Because det(B) = det(M) we can use B instead of M in our Hamiltonian

(6.2.1). The fermionic part of this Hamiltonian would then be

Sf = φ†(B†B)−1φ . (6.3.19)

This can be written as a sum:

Sf =φ†1(M̃ †
1M̃1)−1φ1

+
n−1∑

i=2

φ†i [(M̃iM̃
−1
i−1)†M̃iM̃

−1
i−1]−1φi

+ φ†n[(MM̃−1
n−1)†MM̃−1

n−1]−1φn .

(6.3.20)

Defining M̃n = M this can be written more compactly as

Sf = φ†1(M̃ †
1M̃1)−1φ1 +

n∑

i=2

φ†i [(M̃iM̃
−1
i−1)†M̃iM̃

−1
i−1]−1φi . (6.3.21)

We want to take the time derivative of this. For the first term we get, in

complete analogy to (6.2.12) :

φ†1
d
dt

(M̃ †
1M̃)−1φ1 = −[X†1M̃

†
1

˙̃M1X1 + h.c.] , (6.3.22)

where

X1 = (M̃ †
1M̃1)−1φ1 , (6.3.23)

and h.c. stands for hermitian conjugate (of the term left of it). The other

terms are more complicated :

φ†i
d
dt

[(M̃iM̃
−1
i−1)†M̃iM̃

−1
i−1]−1φi =

φ†i
d
dt

[M̃i−1M̃
−1
i (M̃ †

i )−1M̃ †
i−1]φi =

− [φ†iM̃i−1M̃
−1
i

˙̃MM̃−1
i (M̃ †

i )−1M̃ †
i−1φi + h.c.]+

+ [φ†i(
˙̃Mi−1M̃

−1
i (M̃ †

i )−1M̃ †
i−1)φi + h.c.] .

(6.3.24)

Because ai is just a constant, it does not contribute to the time derivative,

thus:
˙̃Mi = d

dt
(M + ai) = Ṁ . (6.3.25)
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Using this we can put the result of (6.3.24) into a much more compact form:

φ†i
d
dt

[(M̃iM̃
−1
i−1)†M̃iM̃

−1
i−1]−1φi =

− [φ†iM̃i−1M̃
−1
i ṀM̃−1

i (M̃ †
i )−1M̃ †

i−1φi + h.c.]+

+ [φ†iṀM̃−1
i (M̃ †

i )−1M̃ †
i−1φi + h.c.] =

− [X†i M̃
†
i ṀXi + h.c.]+

+ [φ†iṀXi + h.c.] =

− [(X†i M̃
†
i − φ†i)ṀXi + h.c.] ,

(6.3.26)

where

Xi = M̃−1
i (M̃ †

i )−1M̃ †
i−1φi . (6.3.27)

6.4 Smearing

Some sort of smearing is part of almost every non-perturbatively improved

fermionic action. In all mayor quenched calculations using the chirally im-

proved action the HYP smearing [58] has been used, i.e., the chirally im-

proved operator has been applied to HYP smeared link variables instead of

thin link variables. HYP smearing can be seen as extension of APE smearing

[59]. We want to discuss the case of isotropic four dimensional APE smearing

first. There, as a first step to every link variable U the sum of the associated

staples V times some factor ε is added:

Ũ ′x,µ = Ux,µ + εVx,µ , (6.4.1)

Vx,µ =
∑

ν 6=µ
[Ux,νUx+ν̂,µU

†
x+µ̂,ν + U †x−ν̂,νUx−ν̂,µUx−ν̂+µ̂,ν ] . (6.4.2)

In a second step this is projected into SU(3) (suppress indeces x and µ)

Ũ ′ → Ũ . In traditional APE smearing this projection is defined as Ũ ∈ SU(3)

which maximizes Re tr Ũ Ũ ′†. Technically this is done as an iterative process.

This iterative procedure renders the differentiation with respect to the thin

link variables, which is needed for HMC, difficult if not impossible. HYP

smearing consists of three steps of modified APE smearing, which are such

that every smeared link variable gets contributions only from link variables

within the same hypercube. It is therefore more local than three steps of
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usual APE smearing. In every of these three steps again the above described

projection procedure is used. HYP smearing therefore has the same problems

with differentiation as APE smearing.

The problems with the differentiation can be circumvented by replacing

the iterative projection procedure by something else. The first version of an

almost differentiable projection was proposed and successful used in an HMC

setup in [54].

In our project we used the method of stout smearing [55]. More precisely

we used four dimensional isotropic stout smearing: The first step is done as

described in (6.4.1). To get our smeared link variable Ũ (suppress indices

again)

Ũ = exp(iQ)U (6.4.3)

where

Q = 1
2
(Ω† − Ω)− 1

2×3
tr(Ω† − Ω) (6.4.4)

which is a traceless anti hermitian matrix by construction, and

Ω = εV (6.4.5)

The value of ε should be chosen such that the plaquette of the resulting

smeared link variables becomes a maximum (in this case the smearing takes

the maximal effect). After some testing we have chosen a value of ε = 0.165

for all our runs.

We now redefine our fermionic action to act on stout-smeared link vari-

ables instead of thin link variables. For our Hamiltonian evolution we have

then to reinterpret the derivative terms in (6.2.24) as derivatives terms of

the action with respect to the smeared link variables. We then need to get

the derivatives of these smeared link variables with respect to the thin link

variables (since the thin link variables are the ones we want to evolve). For

this we want to refer to [55] where these derivatives are worked out in detail

for a more general case than ours.
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Chapter 7

Simulating QCD with two

Dynamical Flavors of CI

Fermions

7.1 Introduction

In the last chapter the theoretical framework of dynamical chirally improved

fermion simulations with the Hybrid Monte Carlo algorithm has been dis-

cussed. After developing these techniques we have implemented them and

started to do simulations. The aim of this chapter is to discuss various as-

pects of these simulations. Some results have also been published in Ref.s

[12, 11, 10].

7.2 Overview

We want to start this chapter with an overview over the simulations per-

formed. Table 7.1 contains the simulation parameters and some basic mea-

sured quantities of all these simulations. The parameter determining each

simulation are the lattice size, the parameters β1, β2, β3 for the Lüscher-Weisz

gauge action, and the quark-mass parameter (in lattice units) am (for the

exact definition of the mass parameter see Section 7.4.1). Lattice sizes are

83 × 16 and 123 × 24.
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lattice size 123 × 24

# β1 β2 β3 am amAWI HMC 〈plaq〉 aS[fm]
time

a 5.2 -0.408 -0.00552 0.02 0.025(1) 463 0.490 0.115(6)

b 5.2 -0.408 -0.00552 0.03 0.037(1) 363 0.489 0.125(6)

c 5.3 -0.418 -0.00575 0.04 0.037(2) 438 0.496 0.120(4)

d 5.3 -0.419 -0.00576 0.05 0.050(1) 302 0.493 0.129(1)

e 4.7 -0.389 -0.00583 -0.05 0.023(2) 386 0.462 0.147(18)

lattice size 83 × 24

# β1 β2 β3 am HMC 〈plaq〉 aS[fm]
time

aa 5.3 -0.419 -0.00579 0.05 1245 0.493 0.135(3)

bb 5.4 -0.423 -0.00574 0.05 649 0.502 0.114(3)

cc 5.4 -0.427 -0.00427 0.08 776 0.497 0.138(3)

Table 7.1: Summary of the simulations performed

The statistics gathered is expressed via the total HMC time. The basic

measured quantities in Table 7.1 are the expectation value of the plaquette,

the lattice spacing (determined using the Sommer parameter [60]) and the

AWI quark mass (see also Section 7.4.1).

It is expected that, depending on the quark action used, dynamical quarks

renormalize the gauge, leading to an effectively smaller gauge coupling g

(see for instance [61]). The lattice spacing is expected to decrease when

going to smaller quark masses (keeping the parameters of the gauge coupling

constant). The dependence of the lattice spacing on gauge coupling and

quark mass for our runs is summarized as a diagram in Fig. 7.1.
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Figure 7.1: Change of the lattice spacing a (given in fm), as a function of the

AWI quark mass amAWI and the LW gauge action parameter β1, for lattices

of size 123 × 24.

7.3 Fixing the Parameters for the Tadpole

Improved Lüscher-Weisz Gauge Action

The chirally improved operator, as we are using it, has been optimized and

tested with quenched gauge configurations, generated with the tadpole im-

proved Lüscher-Weisz gauge action [62]. We decided to use this action for

our dynamical simulations too.

The Lüscher-Weisz action is discussed in Section 6.2.1, where also the

molecular dynamics equations of motion are derived. What is not discussed

there is how the coefficients β1, β2 and β3 of (6.2.4) are determined. For

this we follow the method of [62]: The coefficient β1 is chosen to be the

independent gauge coupling, and the other two, β2 and β3, are determined

from tadpole-improved perturbation theory. The idea is to calculate β2 and

β3 self-consistently from

u0 =

(
1

3
Re tr〈Upl〉

) 1
4

, α = − 1

3.06839
log
(
u4

0

)
, (7.3.1)
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as

β2 =
β1

20 u2
0

(1 + 0.4805α) , β3 =
β1

u2
0

0.03325α . (7.3.2)

At this point we want to distinguish between the assumed plaquette and the

measured plaquette : The assumed plaquette (the term plaquette is used as an

abbreviation for Re tr〈Upl〉) is what enters (7.3.1). The measured plaquette is

what is measured in an actual simulation. Self consistency is achieved if these

two match. For our further discussion it is very practical to parameterize the

LW action via β1 and the assumed plaquette. The demanded matching can

be achieved using an iterative procedure: One starts to simulate at some β1

and assumed plaquette and measures the plaquette for this simulation. Then

one does the simulation with the same β1 but with the assumed plaquette

set to the measured one of the previous simulation, and measures the pla-

quette again. This procedure has to be redone until assumed and measured

plaquette converge. In quenched simulations this has been done with high

precision for a range of β1 values [63].

For dynamical simulations such exact self-consistency is much more dif-

ficult to achieve than in the quenched case. In dynamical simulations the

re-determination of the assumed plaquette has to be done not only for every

β1 but also for every different am. This would mean that we would have to

redo the iterative procedure described above for each of our runs. Of course

the dynamical simulations are expensive and an iterative procedure to deter-

mine the values with a precision comparable to that achieved in the quenched

case ([63]) is not feasible for us: we can simply not afford to generate several

ensembles of dynamical configurations just for that.

It should also be mentioned here, that the amount of improvement one

expects from an improved gauge action is less than for a quenched simulation

anyway. Improved gauge actions like the tadpole improved Lüscher-Weisz

action start from Wilson’s gauge action which is formulated in terms of 1×
1 loops and longer loops to remove O(a2) artefacts (see also Section 2.5).

For these improvements, it is assumed that there are no other gauge loops

than the ones coming from the gauge action, which is the case in quenched

simulations. On the other hand, any fermionic action used in a dynamical

simulation will introduce gauge loops of various lengths. These longer loops
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lattice size 123 × 24

# β1 β2 β3 assumed measured difference
plaquette plaquette [% m. pl.]

a 5.2 -0.408 -0.00552 0.500 0.490 2.0 %

b 5.2 -0.408 -0.00552 0.500 0.489 2.2 %

c 5.3 -0.418 -0.00575 0.495 0.496 0.2 %

d 5.3 -0.419 -0.00576 0.494 0.493 0.2 %

e 4.7 -0.389 -0.00583 0.460 0.462 0.4 %

lattice size 83 × 24

# β1 β2 β3 assumed measured difference
plaquette plaquette [% m. pl.]

e 5.3 -0.419 -0.00579 0.493 0.493 0.0 %

f 5.4 -0.423 -0.00574 0.500 0.502 0.4 %

g 5.4 -0.427 -0.00427 0.493 0.497 0.8 %

Table 7.2: Adjustment of the parameters of the tadpole improved Lüscher-

Weisz gauge action. Ideally the values of the assumed plaquette and mea-

sured plaquette should match.

will certainly modify some of the improvement effects from the carefully

for the quenched case adjusted improved action. Therefore, in dynamical

simulations, one cannot expect as much from improved gauge actions, as one

would expect in quenched simulations.

Because of the points discussed above, we decided to adjust the assumed

plaquette only approximately, typically readjusting the assumed plaquette

once for each run. In Table 7.2 values of the assumed and measured plaquette,

and the values of β2 and β3 resulting from the quoted assumed plaquette,

for the various runs can be found. The assumed plaquette deviates from the

measured plaquette by maximally 2.2 % of the measured plaquette in all the

different runs.
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7.4 Quark Masses

7.4.1 Quark Mass Parameters

We want to start this Section by stressing a similarity between the mass

parameters of the chirally improved Dirac operator and Wilson’s Dirac op-

erator. For Wilson’s operator (2.3.11) one has to adjust the κ parameter

according to the underlying gauge configurations. For every ensemble of

gauge configurations (generated according to a quenched or full QCD par-

tition function) there is a critical κc at which the quarks get massless. If

one knows κc one can introduce a quark mass using the κ parameter via the

relation amq = 1
2κ
− 1

2κc
.

In the case of the chirally improved Dirac operator there exist two param-

eters called zs and zv (acting in the scalar and vector sectors of the operator)

which have to be adjusted according to the gauge ensemble in order to get

massless quarks [9]. If the z-parameters are properly adjusted the opera-

tor becomes massless. One can then introduce a finite quark mass via the

relation

MCI(µ) = (1− µ)

[
MCI(0) +

µ

1− µ

]
. (7.4.1)

For this work, however, we use a slightly different mass parameter which we

call am and which is introduced via the relation

MCI(am) = MCI(0) + am. (7.4.2)

To see how this corresponds to µ of (7.4.1) we scale M(µ) by a factor 1/(1−µ).

Such a scaling is always allowed, since this introduces factor to the fermionic

determinant which is the same for all gauge configurations and thus cancels

out of the partition function. We call this scaled operator M ′
CI(µ), and write

it down explicitly:

MCI(µ) = MCI(0) +
µ

1− µ . (7.4.3)

Comparing equations (7.4.3) and (7.4.2) we find the relation

am =
µ

1− µ = µ+O(µ2) . (7.4.4)

Through this relation the parameter am can always strictly be related to µ.

We also want to note that in the range of mass parameters we want to use
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the difference between am and µ is relatively small, for instance the smallest

am = 0.02 corresponds to µ = 0.0196 and the largest mass parameter used

in our calculations on 12× 24 lattices, am = 0.05 corresponds to µ = 0.047.

Let us return to the z parameters. Practically, the z-parameters can be

adjusted by inspecting the low-lying eigenvalues of the massless Dirac matrix.

These eigenvalues lie, more or less exactly, on a circle. The z-parameters are

adjusted such that this circle goes through the point 0. This can be done

relatively easily in the quenched case. Given an ensemble of configurations

the spectrum of MCI(0) for different z-parameters is calculated. Then the

z-parameters for which the circle goes most exactly through zero is used

for physical calculations. In the dynamical case, however, the adjustment

becomes a time consuming iterative procedure (like the self-consistent de-

termination of the parameters for the tadpole-improved LW gauge action,

discussed in Section 7.3). In this case the ensemble of gauge configurations

is not only dependent on the gauge action but also on the fermionic action

and thus implicitly on the z-parameters themselves. This is why it is not

sufficient to generate gauge configurations and adjust z afterwards.

Like in the case of the assumed plaquette which goes into the gauge action

we did this only approximately. This of course means that we accept to have

some additive quark mass correction. In all our dynamical simulations we

used zs = zv = 0.93. This has been adjusted such that there is only very

little additive mass correction for the runs c and d, which have been the first

runs on 12 × 24 lattices we performed. The additive mass correction can

be easily read off from Table 7.1, calculating the difference amAWI − a m

(the definition of mAWI can be found in Subsection 7.4.2). This turned out

to be relatively small for runs a – d, between -0.03 and 0.05. For run e we

find a significantly larger additive mass correction of about 0.07. We are

compensating this by using a negative mass parameter m = −0.05 to get an

AWI mass in the range of about 0.02 (it turned out to be 0.023(2) see Table

7.1).

Empirically we found a relatively simple, almost linear relation between

the plaquette of the stout smeared gauge configuration 〈P 〉smear and the

additive mass correction. This is useful for choosing the mass parameter

such that it compensates this additive mass correction, therfore it is plotted
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Figure 7.2: The additive mass correction for the CI operator with zs = zv =

0.93 for our runs a – e, plotted again the plaquette measured after stout

smearing the underlying configurations.

in Fig. 7.2.

7.4.2 AWI Quark Mass

The axial Ward identity (AWI) allows for a definition of the quark mass via

the asymptotic behavior of the relation

ZA
ZP

〈 ∂tA4(~p = ~0, t)X(0) 〉
〈P (~p = ~0, t)X(0) 〉

= 2Zmm = 2m(r) , (7.4.5)

where X is any interpolator coupling to the pion and ZA, ZP and Zm denote

the renormalization factors relating the MS-scheme at a scale of 2 GeV. The

meson interpolators P and A4 are defined in (7.5.1).

The renormalization factors have been calculated for the quenched case

at several values of the gauge coupling and came out close to unit value [64].

We do not know the values for the dynamical case but for the mass values

presented here we expect them to be close to unit value, like in the quenched
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case. We therefore compute the ratio

〈 ∂tA4(~p = ~0, t)P (0) 〉
〈P (~p = ~0, t)P (0) 〉

≡ 2mAWI , (7.4.6)

defining the so-called AWI-mass. What we do in practice is to calculate

〈A4(~p = 0, t)P (0)〉 , (7.4.7)

in order to construct

〈∂tA4(~p = 0, t)P (0)〉 . (7.4.8)

Ratios involving the lattice derivative ∂tA4 depend on the way the derivative

is taken. Numerical derivatives are always based on assumptions on the inter-

polating function. Usual simple 2- or 3-point formulas assume polynomials

as interpolating functions. We can do better by utilizing the information on

the expected sinh-dependence. In fact, we may use this function for local

3-point (t − 1, t, t + 1) interpolation and get the derivative at t therefrom.

We cannot use correlators like 〈X(t) ∂tA4(0)〉 since the source is fixed to the

time slice t = 0 and thus we cannot construct the lattice derivative there. To

improve the signal for our correlators we used the method of Jacobi Smear-

ing, which we discuss in Section 7.5. However, (7.4.6) assumes interpolating

fields with point quark sources and sinks. The smearing of the sinks intro-

duces a normalization factor relative to the point sinks. These factors have

therefore got to be calculated and taken into account. The factors can be

obtained from the ratios of, e.g.,

cP =
〈P (t)P 〉
〈Ps(t)P 〉

, cA =
〈A0(t)P 〉
〈A0,s(t)P 〉

, (7.4.9)

where the index s denotes the interpolator built from smeared sources. Tak-

ing this into account we find the AWI-mass from plateau values like that

shown in Fig. 7.3. The final average was taken in the same interval as

was used for the mass analysis and the error was computed using binned

jack-knife (see also Section 4.10).
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Figure 7.3: The ratio (7.4.6) for β = 5.2, am = .03. The plateau fit range is

indicated.

7.5 Mesons

We start this Section by defining the meson interpolators we want to use:

Pseudoscalar: P =d γ5 u ,

A4 =d γ5γ4 u ,

Vector: Vk =d γk u ,

(7.5.1)

where u and d denote the quark mass fields. A4 denotes the temporal com-

ponent of the axial vector, which couples to the pion, like P .

We computed the correlation functions

〈P (~p = 0, t)P (0)〉 , (7.5.2)

〈A4(~p = 0, t)A4(0)〉 , (7.5.3)

〈Vi(~p = 0, t)Vi(0)〉 . (7.5.4)

The results (see, e.g., Fig. 7.4) were then fitted to

C(t) = D(M)
(
e−M t ± e−M (T−t)) . (7.5.5)
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Figure 7.4: Correlation function for run (b), for the pseudoscalar (top) and

the vector (bottom) meson. The curves give the results of fits to the cosh-

behavior as discussed in the text.

To improve the signal we used the method of Jacobi smearing. This is a

method for creating extended quark sources which maintains gauge invari-

ance. Using extended quark sources for the interpolating functions above

can lead to improved overlap of these interpolators with wave function of a

particle one is interested in, in our case the π and ρ meson. Even though

one expects best results when smearing the source and the sink, one can get

significant improvement also when smearing only one of them. In our studies

we smeared only the sinks. Doing so is less expensive than smearing sources

and sinks in our case, because for some of our calculations we need point cor-

relators too (see subsection on the pion decay constant, later in this section

and Section 7.4.2). If one wants to use smeared sources and point sources,

one has to calculate quark propagators (i.e. inverses of the Dirac matrix) for

every different type of source one wants to use. By smearing only the sinks

we were able to use quark propagators calculated with point sources for all

our calculations. For the definitions and notation for the Jacobi smearing we

followed the (quenched) studies in [65, 64]. For the results presented here

the narrow smearing distribution was used.
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# aMπ aMρ Mπ/Mρ Mπ[MeV] Mρ[MeV]

a 0.292(10) 0.535(35) 0.55(5) 501(44) 918(109)

b 0.378(8) 0.619(30) 0.61(4) 597(42) 977(96)

c 0.326(18) 0.502(21) 0.65(6) 534(48) 823(62)

d 0.431(8) 0.626(18) 0.69(3) 657(16) 954(33)

e 0.349(3) 0.755(12) 0.46(1) 468(61) 1011(139)

Table 7.3: Meson masses

Meson Masses

The masses of the π and ρ are derived from the exponential decay of

〈P (~p = 0, t)P (0)〉 and 〈Vi(~p = 0, t)Vi(0)〉, the corresponding masses appear-

ing as M in the fit function (7.5.5).

Pion Decay Constant

The pion decay constant fπ is related to the coefficient of the 〈A4A4〉 corre-

lator with point source and sink via

Z2
A〈A4(~p = ~0, t)A4(0)〉 ∼Mπf

2
πe
−Mπt , (7.5.6)

and thus may be extracted from the asymptotic behavior.

Like we did for the AWI masses, again we assume ZA ≈ 1. In Fig. 7.5 we

show the results, which are compatible with the experimental values. Also

like in the case of the AWI mass in this case it is not possible to use smeared

sources directly (like we did in the case of the meson masses). If one wants to

use smeared sources, one would have to calculate factors similar to the ones

we had to calculate for the AWI masses (see (7.4.9)). For this measurement

we used the point - point correlation function only, thus avoiding the need

to calculate such factors. Table 7.4 summarizes our results in units of the

Sommer parameter.
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Figure 7.5: fπ vs pion mass squared in units of the Sommer parameter r0 for

all 4 data sets (a–e). The ∗ denotes the experimental value.

The Gell-Mann-Oakes-Renner Relation

In full, renormalized QCD the Gell-Mann-Oakes-Renner (GMOR) relation

relates the pion and quark masses:

f 2
πM

2
π = −2mq Σ . (7.5.7)

Here two flavor of degenerate-mass quarks are assumed. The quark mass

and the condensate (contribution per flavor d.f.) are renormalization scheme

dependent and have to be given in, e.g., the MS-scheme. Since the AWI-mass

mAWI is proportional to the renormalized quark mass mq, a linear relation-

ship like (7.5.7) between the M 2
π and mAWI may hold. Indeed, in lattice

calculations surprisingly linear behavior has been found.

In Fig. 7.6 we plot our results for M 2
π and mAWI for all four runs. Within

the errors the results are compatible with the expected linear dependence.

Neglecting the renormalization factors, and taking the experimental value of

92 MeV for the pion decay constant, the slope, via (7.5.7) corresponds to

a value for the condensate of Σ = −(288(8) MeV)3. The errors are purely

statistical, from the fit to the straight line, neglecting possible higher order
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# amAWI r2
0M

2
π r0 mAWI r0 fπ

a 0.025(1) 1.62(28) 0.103(9) 0.237(44)

b 0.037(1) 2.29(33) 0.147(10) 0.321(45)

c 0.037(2) 1.84(33) 0.154(13) 0.314(44)

d 0.050(1) 2.78(14) 0.195(6) 0.281(26)

e 0.023(2) 1.39(38) 0.080(17) 0.293(69)

Table 7.4: Results for the AWI-mass in lattice units, and the AWI-mass, Mπ

and the pion decay constant in units of the Sommer-parameter r0 (which is

usually assumed to be 0.5 fm).
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Figure 7.6: The pion mass squared vs. the AWI-mass in units of the Sommer

parameter r0 for all 4 data sets (a–e). The fitted line corresponds to the lowest

order chiral perturbation theory behavior, i.e., to the GMOR relation (7.5.7).

chiral perturbation theory contributions.

The GMOR relation also allows for a simple definition of an average light

quark mass mud using the experimental values for fπ and Mπ:

mud =
(92 MeV)2(140 MeV)2

−2Σ
. (7.5.8)

Using our value for Σ in this formula gives mud = 3.47(29) MeV.
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7.6 Eigenvalues of the Dirac Matrix

The spectrum of an exact lattice chiral Dirac operator fulfills certain proper-

ties, which have been discussed in Chapter 3. The chirally improved operator

is an approximate solution to the GW relation in the form of (3.3.1). Be-

cause it is only approximate, we have to expect the spectrum of the chirally

improved operator to lie on the Ginsparg-Wilson circle, as in Fig. 3.2, only

approximately. From the opposite side, we can learn about how well the

operator fulfills the GW relation by looking at its spectrum and compare it

to the ideal case of the exact GW circle of Fig. 3.2.

In Fig. 7.7 and 7.8 we plot the lowest eigenvalues, computed on 7 config-

urations each, from runs a and e. We plot them together with the GW circle

of Fig.3.2, where for the mass parameter µ we take the measured AWI mass.

Runs a and e have been chosen for this comparison because they have similar

AWI masses, but quite different lattice spacings. One can see, that for run

a, which has the smaller lattice spacing, the spectrum lies much closer to the

Ginsparg-Wilson circle.

There is one very direct and important consequence resulting from the

spectral properties of a GW operator which we want to stress in some more

detail. At any finite mass, a GW operator can never become singular, there

are no eigenvalues lower then µ (see again Fig. 3.2). On the other hand,

using lattice Dirac operators like Wilson’s operator or the chirally improved

operator one always has to deal with such singularities at finite masses. These

singularities can of course be avoided by choosing large enough quark masses.

On the other hand they also disappear in the continuum limit. In this respect

the singularities set a certain limit to how small masses can be simulated

with a certain action, lattice size and gauge parameters. The situation for

dynamical fermion simulations with Wilson’s operator and clover improved

Wilson’s operator at various lattice sizes and gauge couplings was recently

discussed in [66]. We want to do a similar discussion for our simulations.

We define a spectral gap for each gauge configuration and quark mass as the

smallest eigenvalue of MCI(am) (smallest in the sense of the absolute value):

γ = min{|λ| : λ eigenvalue of MCI(am)} (7.6.1)

We can use random matrix theory arguments to sketch the shape of this
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Figure 7.7: The lowest 40 eigenvalues of 7 configurations from run a, together

with the Ginsparg-Wilson circle corresponding to the AWI mass. The right

picture shows the same as the left picture, but on a larger scale.

distribution for the case of an exact Ginsparg-Wilson operator: For every

topologically nontrivial configuration one would get an eigenvalue on the

real axis at the mass parameter am. In our distribution this would give a

delta function at am (if we want to normalize it, we have to multiply this by

the fraction of topologically nontrivial configurations in our ensemble). For

every topologically trivial configuration γ would be larger than am. Together

this would give a distribution with a peak at am and a certain tail on the

right side of this peak.

In Fig. 7.9 and 7.10 we have plotted histograms and HMC-time evolutions

of the lowest eigenvalue for different configurations from our runs a – e. The

shape of the distribution shows a form like the one expected for an exact

Ginsparg-Wilson operator (see discussion above), but with some distortions.

Probably the most interesting aspect of this figure are the eigenvalues lying

on the left side of the respective AWI mass. One can see that for the runs

a, b and d they are not extending too far to the left of the AWI mass in
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Figure 7.8: The lowest 100 eigenvalues of 7 configurations from run e, to-

gether with the Ginsparg-Wilson circle corresponding to the AWI mass. The

right picture shows the same as the left picture, but on a larger scale.

all cases. Thus it can be expected that there is still some room for going

to smaller quark masses at similar lattice size and lattice spacing without

running into troubles with singular configurations. The situation looks a bit

different for run e which has a significantly larger lattice spacing than the

other runs. There one of the evaluated configurations gives an eigenvalue

close to the imaginary axis.

7.7 Topology

In continuum QCD the Atiyah-Singer Index theorem [67] relates the topolog-

ical charge of a gauge configuration to the null-space of the Dirac operator.

Operators obeying the Ginsparg-Wilson relation fulfill a lattice version of

the index theorem [68, 69]. A massless Ginsparg-Wilson operator possesses a

number of exact zero eigenmodes which have a chirality of either +1 or −1.

This means that for an eigenvector vλ to an eigenvalue λ = 0 the relation
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Figure 7.9: Histogram and evolution of the lowest eigenvalue, for runs a, and

e. The solid lines in the histograms and evolutions mark the measured AWI

masses, the dashed lines in the evolution separate different chains.

γ5vλ = ±vλ holds. We call the number of zero modes with positive chirality

n+ and the number of zero modes with negative chirality n−. Using that, it

is possible to define a lattice topological charge ν as

ν = n− − n+ (7.7.1)

which in the continuum limit converges to the continuum topological charge

of

ν =
1

32π2

∫
d4xεµνρσ(FµνFρσ) . (7.7.2)

For an approximate GW operator like the chirally improved operator, there

are no exact zero modes. There are exact real modes, though, which are close

to 0. These modes are the only ones with a non-vanishing chirality, which,

however, is not exactly ±1. We use these modes to define a topological
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Figure 7.10: Histogram and evolution of the lowest eigenvalue, for runs b, c

and d. The solid lines in the histograms and evolutions mark the measured

AWI masses, the dashed lines in the evolution separate different chains.

charge as in (7.7.1), where now n+ counts the number of such modes with

positive chirality and n− the ones with negative chirality. The distribution

of the topological charge is expected to be gaussian. In Fig. 7.11 normalized
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Figure 7.11: Normalized histograms of the topological charge for runs a – e.

histograms of the topological charge for runs a – e are shown.

The topological susceptibility is defined by

χtop = 〈ν2〉 /V (7.7.3)

where V is the physical volume of the system. This χtop is related to the

chiral condensate Σ, and number of dynamical quark flavors Nf of mass m

via [70, 71]

χtop = −mΣ

Nf
+O(m2) . (7.7.4)

The topological susceptibility for runs a – e can be found in Table 7.5. Ac-

cording to () the topological charge should depend linearly on the quark mass
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# mAWI[MeV] χtop

a 40.8(35) (147 MeV)4

b 57.9(41) (150 MeV)4

c 60.6(50) (156 MeV)4

d 76.8(23) (128 MeV)4

e 31.4(69) (147 MeV)4

Table 7.5: Topological susceptibilities and AWI masses for our runs a – e.

The topological susceptibility is expected to be linearly dependent on the

AWI mass (7.7).

up to order m2 corrections. Our data for χtop is too poor to verify such a be-

havior. Due to the very large autocorrelation length of the topological charge

(see Fig. ??) it is not even possible to estimate error bars. The only thing

that we can say that for all our runs the topological susceptibility seems to

be significantly smaller than the χtop ≈ (190 MeV)4 which was measured in

quenched simulations [72, 73, 74].

7.8 Equilibration and Autocorrelation

In Markov Chain Monte Carlo simulations like our the data obtained is al-

ways autocorrelated. A certain number of configurations which are correlated

to each other obviously contain less information than the same number of

uncorrelated configurations would contain. How to quantify this is discussed

in Section 4.10. A quantity which is closely related to the autocorrelation

time is the Monte Carlo time which is needed to drive the system into equi-

librium, starting at a certain point in the configuration space. This is of

course not only dependent on the autocorrelation time, but also on the point

in configuration space where the Markov Chain is started. We want to look

at autocorrelation and equilibration for our simulation in this Section.

In Fig. 7.12 the time histories for different observables from run b are

plotted. This run has been started from a a gauge configuration with all

link variables set to 1. Such a configuration is clearly far out of equilibrium.
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Figure 7.12: Time histories for different observables from run b: Mean plaque-

tte 〈P 〉, conjugate gradient iterations for the accept/reject step, the smallest

real part of any eigenvalue min(Re(λ), the topological charge ν. The quanti-

ties min(Re(λ) and ν have been calculated on every fifth configuration only.

Thus one can very well see how the system approaches equilibrium. In Fig.

7.12 we have chosen different observables which show significantly different

equilibration behavior and autocorrelation times (and of course also different

fluctuations). The plaquette, which is a very local quantity, equilibrates

quickly and shows the least autocorrelation of all. The other quantities are

all derived from the lower bound of the spectrum of the Dirac matrix which

reflects long-distance properties of the system. The number of iterations

needed to get convergence of the conjugate gradient procedure in the accept-
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reject step at the end of each trajectory depends on the condition number

of M †M , and thus on the smallest eigenvalue of M †M . By min(Re(λ)) we

denote the smallest real value of any eigenvalue for each configuration (the

distance of the spectrum from the imaginary axis). The topological charge

ν is defined as in (7.7.1).

Unfortunately we have not got enough statistics to reliably calculate au-

tocorrelation times. For the observables of Fig. 7.12 we can estimate the

order of magnitude by visual inspection. Looking at the periodicity of the

quantities plotted there we would estimate autocorrelation times between 10

and 50 for any of them, where the autocorrelation of the topological charge

seems to be the longest.

This analysis gives us a rough idea on the autocorrelation we have to

expect for the different physical quantities we want to measure. Based on

that we decided to measure on every 5-th configuration. Of course when

doing so one has still got to expect some autocorrelation, which has to be

taken into account when estimating statistical errors. For doing that we used

a binned jackknife method (see also Section 4.10).

Also looking at plots like Fig. 7.12 we decided to discard the first 100

configurations from every run as not equilibrated. This is indicated by a

dashed line in this figure.

We want to take a closer look at the topological charge. This quantity is

known to show long autocorrelation in dynamical fermion simulations with

various actions [75]. The problem is most severe for an exact Ginsparg-Wilson

operator, since for such an operator a change of the topological sector means

a discontinuity in the Dirac spectrum, and therefore in the fermionic action.

Such a discontinuity poses a severe problem for the HMC algorithm, which

in its usual form needs an action which is differentiable. For simulations with

the overlap operator a method has been developed to circumvent the problem

[76]. However, the need for dealing with this problem makes simulations

more expensive. For non Ginsparg-Wilson operators like the Wilson operator

there is no such discontinuity, but changing a topological sector corresponds

to a rather abrupt change of the spectrum of these operators too [77]. For

every action, however, the change of topological charge becomes more difficult

as the quark mass decreases, since lighter sea quark masses mean stronger
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contributions from dynamical fermions.

The chirally improved operator is an approximate Ginsparg-Wilson op-

erator. It can be seen as an intermediate between the overlap operator and

Wilson’s operator. For the problem of changing topological sectors in an

HMC simulation there is of course no strict discontinuity like in the case of

the overlap operator. On the other hand, it has to be expected, that the

change of the spectrum when changing topological sectors is more abrupt

than in the case of the Wilson Dirac operator. In Fig. ?? the history of the

topological charge is plotted again for run b, together with run a and run

e. For both runs b and a the same parameters for the gauge action, but a

different mass parameter has been used (am = 0.03 for run b and am = 0.02

for run a, see also Table 7.1). From these two runs we can thus study how the

frequency of the change of topological sectors changes when the quark mass

is decreased. It has to be expected, that the tunneling frequency decreases

when going to smaller quark masses. In this plot, however, one does not

observe a significant decrease in the frequency of the change of topological

sectors. In both case such a change occurs about once in 4 units of HMC

time on average.

For the two runs a and e the AWI mass in lattice units is very similar

(am = 0.025 for run a and am = 0.023 for run e), but the lattice spacing

is significancy larger for run e. While the topological susceptibility is signif-

icantly higher for run e, the tunneling frequency seems to be very similar in

both cases.

7.9 Performance

Most of the computer time needed for the program, like in other HMC codes

for dynamical fermions, is spent for the conjugate gradient solver that is

needed in every integration step during the molecular dynamics trajectory.

The time needed for this scales linearly with the conjugate gradient steps.

The cost for one of these steps is largely determined by the cost of the

matrix-vector multiplication. All the other operations that one has to do for

the conjugate gradient, are negligible in our case. For this reason we will

take the number of matrix-vector multiplications needed as a practical and
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Figure 7.13: Histories of the topological charge for runs a, b and e

machine independent measure for the cost of our algorithm. We tune the

parameters of our algorithm such that this number gets small.

The conjugate gradient solver for the molecular dynamics evolution takes

most of the computer time, but there are other parts of the program which

take a non negligible part of the computer time too. In our code a “Chrono-

logical Inverter by Minimal Residual Extrapolation” [78] is used, where 12

previous solutions are taken into account (see also discussion later in this

Section). This takes 12 matrix-vector multiplications per step, in addition

to the number of matrix-verctor multiplications needed for the conjugate

gradient inversion. There is one more conjugate gradient inversion in the

accept-reject step at the end of each trajectory. Because it is done only once

per trajectory it contributes little, typically about 2 % of the whole computer

time was needed for this in our runs on 123× 24 lattices. A bit more expen-

sive is the calculation of the force term according to (6.2.24) and (6.2.23),

where the cost of the fermionic force term dominates, and the smearing (see
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dynamics evolution plotted against the AWI mass for our runs a,b and e.

The blue line is a fitted curve proportional to 1/(amAWI)
2.

Section 6.4). In addition to that we need some time to initialize the chirally

improved Dirac operator. Initialization of the operator, force calculation and

smearing has to be done in every integration step, and it takes the amount

of time which about 90 matrix-vector multiplications would take, depending

slightly on the machines used and the level of parallelization.

How does the cost of the individual contributions depend on the simu-

lation parameters? The time needed for initialization, the force terms and

smearing is linearly dependent on the number of steps per trajectory. The

conjugate gradient solver in the molecular dynamics evolution is dependent

on the quark mass, the residual and the number of steps per trajectory. It is

supposed to grow with the quark mass like 1/(amAWI)
2. For our runs such

a behavior can be seen in Fig. 7.14. This figure contains only runs a,b and e

since the other runs use a different conjugate gradient residual and therefore

the cost is not directly comparable in this way. For a given quark mass one

tries to minimize it choosing the conjugate gradient residual and the number

of steps appropriately. In [78] one can find a detailed discussion on how to
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# steps/traj δt cg res amAWI acc. rate

a 120 0.008 10−7 0.025(1) 93 %

b 100 0.1 10−7 0.037(1) 94 %

c 100 0.1 10−8 0.037(2) 92 %

d 50 0.015 10−8 0.050(1) 89 %

e 120 0.008 10−7 0.023(2) 89 %

Table 7.6: Parameters for the molecular dynamics evolution, AWI mass and

acceptance rate for our runs a − e. The horizontal lines separate runs with

different parameters for the gauge action (see Table 7.1).

choose time step and residual. It is recommended to choose the time step

such that one gets acceptance rates close to one. The authors also discuss

that one should not choose the residual too large, in order to avoid violations

of the reversibility of the molecular dynamics evolution. In Table 7.6 we have

summarized the number of steps per trajectory, cg residual, AWI mass and

acceptance rate for our runs a – e. The conjugate gradient residual has been

10−8 for our first run performed on lattice size 123 × 24, run d. We have

reduced this down to 10−7 to reduce the cost for our later runs. This is the

only, historical, reason for the different choice of residuals.

In Table 7.7 the average cost per unit of HMC time for our runs a – e is

given in terms of matrix vector multiplications equivalent and CPU hours,

for a 2.2 GHz Opteron processor. The CPU hours are determined running

the program on a cluster of 16 Sun v20z nodes with 2 Opteron processors of

2.2 GHz, multiplying the wall-clock time needed by 32. These CPU hours

therefore include also the time for the MPI communication.

As a last point in this Section we want to discuss the choice of the number

of previous solutions used for the chronological inverter. For this one has to

find out how the number of conjugate gradient iterations falls with increasing

number of previous solutions. We have used 12 previous solutions in all

our runs. Looking at the figures 7.15 and 7.16 one does not expect any

improvement from using more than 12 previous solutions in any of the runs.

It actually seems that the optimal number would lie a bit below 12 for our
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# tot. cost tot. cost cg solver min. res. cg-solver init., force,

# Mv CPU h evol. extrapol. acc/rej smearing

a 57928 224 76.7 % 2.5 % 2.3 % 18.6 %

b 38210 148 70.2 % 3.1 % 3.1 % 23.6 %

c 45166 174 75.1 % 2.7 % 2.3 % 19.9 %

d 33034 128 66.5 % 3.7 % 2.5 % 27.2 %

e 76904 297 81.7 % 1.9 % 2.4 % 14.0 %

Table 7.7: Average cost per unit of HMC time for our runs a− e. The total

cost is given in number of matrix-vector multiplications equivalent and CPU

hours, for a 2.2 GHz Opteron processor. The horizontal lines separate runs

with different parameters for the gauge action (see Table 7.1) and different

cg residuals (see Table 7.6).

runs (the cost of the chronological inverter increases with the number of

previous solutions, taking less than 12 previous solutions one could maybe

save a small amount of computer time).
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Figure 7.15: The effect of the chronological inverter. The number of average

number of conjugate gradient iterations is plotted against the number of

previous solutions used. The cg residual taken was 10−7 for both runs taken

for this figure.
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Figure 7.16: The effect of the chronological inverter. The number of average

number of conjugate gradient iterations is plotted against the number of

previous solutions used. The cg residual taken was 10−8 for all three runs

taken for this figure.
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Chapter 8

Conclusions

This thesis resulted from work on a project with the goal to simulate lattice

QCD with light dynamical quarks. To achieve this goal we employ so-called

chirally improved fermions. We have discussed various aspects of such sim-

ulations in the Chapters 6 and 7. Here we want to summarize what we

consider the main conclusions from this work.

At the beginning of this project we had to decide for an algorithm to

be used for these simulations. The most successful algorithm in dynami-

cal simulations using various actions is the Hybrid Monte Carlo algorithm.

However, employing this for an action like the chirally improved action poses

serious technical problems. These problems are serious enough that in order

to avoid them a a special algorithm called Partial-Global Algorithm has been

suggested. Our experience with that is described in [79]. However, the per-

formance we were able to achieve with that approach was very dissatisfying.

For that reason we decided to employ the Hybrid-Monte-Carlo algorithm.

Therefore we had to solve the technical problems mentioned above.

One important conclusion we want to draw here therfore is that it is

possible to employ the HMC algorithm for an action like the chirally improved

action. Chapter 6 describes the various aspects of implementing HMC for an

action like that. We found a relatively elegant way of solving the technical

problems involved, which we describe in detail Chapter 6. We think that the

methods developed there could be useful for for simulations not only with

the chirally improved action, but with other, similar, actions too.
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After some initial studies on smaller lattices, we simulated lattice QCD

with two dynamical flavors of mass-degenerate chirally improved quarks on

lattices with 123 × 24 lattice sites (12 lattice points in the three space di-

mensions, and 24 in the time direction). These early calculations have been

restricted due computer resources. Again, our big goal was to simulate light

dynamical quarks. Therefore our discussion in Chapter 7 put a strong em-

phasis on quark and pion masses. On this lattice size and with the computer

resources at hand we reached quark masses down to about 30 MeV which

corresponded to a pion mass of about 460 MeV in our calculations. Our

calculations seem to indicate that quark masses of about 20 MeV can be

reached on lattices of this size. It can be expected that the quark masses can

be further reduced in simulations on larger lattices.

These numbers are promising and encouraging. Whether we will really

be able to reach these promised quark masses has to be seen in the future.
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[49] M. Lüscher, Schwarz-preconditioned HMC algorithm for two-flavour lat-

tice QCD, Comput. Phys. Commun. 165 (2005) 199–220.
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