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DISCUSSION 

O'NEILL : Have you had any trouble maintaining these 
fairly tight tolerances off the median plane of the machine? 
MARTIN : Maintaining the median plane (spacing) tolerances 

is the most difficult part of constructing the machine. Much 
of that work will be done by hand fitting. We hope to get 
the field accurate enough to get a beam through the machine 

even if at somewhat higher accelerating voltage then the lowest 
we plan to use. Then, by measuring the phase of the electron 
we will be able to make appropriate changes in the trimming 
coil currents to achieve the desired degree of isochronism. 
The tolerance requirements are considerably less stringent with 
respect to the azimuthal variations in the magnetic field. 
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I. INTRODUCTION 
The first ideas of the application, in circular accel­

erators, of the magnetic field space variation date 
back to 1938 when L. Thomas suggested a variation 
of the field with azimuth in a cyclotron1). At that 
time these ideas were not properly developed due to 
the fact that the restriction on energy for a cyclotron 
was caused by the ion phase motion, and this restric­

tion was removed by the suggested method only in 
a narrow energy region of accelerated ions. No less 
an essential obstacle to the development of this prob­
lem was the relatively low level of both measur­
ing and calculating techniques. The principle of 
phase-stable acceleration suggested in 1944-1945 by 
V. I. Veksler2) and McMillan3) made it possible to 

(*) See note on reports, p. 696. 
(**) Mention of the starting up of this accelerator has been made by Vasilevskaya et al. See the reference6) to their paper on p. 210. 
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remove the restrictions on maximum energy for circular 
accelerators with azimuthally symmetrical structure of 
the magnetic field. However, serious difficulties of 
technical and economical character arose in designing 
accelerators of 10-15 GeV and higher energies. These 
difficulties were partially overcome in alternating 
gradient accelerators4) where the magnetic field was 
needed in a quite smaller volume. 
For the time being, proton accelerators of this type 

are being designed and constructed in several 
countries5,6,7) for energies of up to a few 1010 eV. 
The pulsed operation of these accelerators limits 

the possible mean current of accelerated particles and 
considerably reduces the methodical possibilities of 
nuclear investigation. 
The suggestion of using intersecting particle beams 

for the analysis of nuclear reactions, the great im­
portance of investigation of nuclear reactions induced 
by secondary particles (π, μ, Κ, , Σ etc.), and the 
increasing requirements of experimental accuracy 
make it necessary to rise the intensity of particle 
beams obtained in accelerators. Due to this, it 
became quite necessary to study in detail all the new 
acceleration techniques8,9) which can be found in 
non-uniform structures of fixed fields(*) 

In 1955 it was suggested to use magnetic fields with 
azimuthal and radial periodic variations ol strength12). 
The theoretical analyses of particle motion in such 
fields show that they had considerable advantages 
over the magnetic fields structure suggested by 
L. Thomas. For circular accelerators, this means 
that the maximum energy of the accelerated particles 
increases and that the required flutter field considerably 
decreases. For accelerators of the synchro-cyclotron 
type, such field structures make it possible to obtain 
stable orbits during the whole accelerating cycle and 
to have momentum compaction in the narrow ring 
of magnetic field. 
In 1955-1958, at the Laboratory of Nuclear Prob­

lems of the Joint Institute for Nuclear Research, a 
circular accelerator has been designed and constructed 
on which investigations on two structures of magnetic 
field have been carried out. This model was used to 
test the linear theory of space stability developed in 

Dubna13,14,15) and Harwell16,17,18), to deter­
mine the limits of its applicability, to investigate some 
linear resonance effects and non-linear resonances in 
the centre of the accelerator. 
With this accelerator, the problems of ion phase 

motion were experimentally investigated and the 
methods of calculation and production of the required 
structures of the magnetic field were tested. 

II. LINEAR THEORY 

The equations describing the motion of a charged 
particle in a magnetic field, when written in cylindrical 
co-ordinates, have the form 

- r2 = 
e (rΦΗz - Η Φ), - r2 = mc (rΦΗz - Η Φ), 

rΦ + 2 = e (H r - H z), (1) rΦ + 2 = mc (H r - H z), (1) 

= — 
e (rΗr - Η Φ). = — mc (rΗr - Η Φ). 

Since for this system r2 + r 2 2 + 2 = ν2 = const, we 
can introduce an independent variable Φ: 

r" -2r'
2 
- r = 

e √r'2 + r2 + z'2 [rΗz - z'ΗΦ -r" - r - r = mc ν [rΗz - z'ΗΦ -

- z'r' Hr + 
r'2 Hz], - r Hr + r Hz], 

(2) 

z" -
2r'z' 

= -
e √r'2 + r2 + z'2 [rΉΦ - rΗr -z" -

r 
= -mc ν 

[rΉΦ - rΗr -

-
z'2 

Hr + 
z'r' Hz], - r Hr + r Hz], 

where r', z' denotes the derivatives with respect to 
Φ; Hz, Hr, ΗΦ are the corresponding components of 
the magnetic field, mv is the particle momentum. 
The frame of reference is chosen so that in the 

median plane the total magnetic field is directed along 
the axis. The function characterizing the distribu-

(*) We discuss here neither the problems of using the properties of relativistic plasma10) in accelerators nor the possibilities of coher­
ent acceleration11), as they definitely are out of the scope of this report. 
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tion of the magnetic field in this plane defines the 
particle motion. This function can be written : 

Ηz = Η(r)[1+εf(r, Φ)], (3) 

where ε is the field flutter parameter, f(r, Φ) is a 
periodic function with respect to both variables with 
mean value equal to zero. 

After substituting the function (3) in (2) we obtain 
the following set of equations which describes the 
motion of particles with momenta 

p = mν = e H(R)R (4) p = mν = c H(R)R (4) 

(In these equations, terms up to the third order 
have been retained) : 

ρ" + [1 + n + εR δf + (2 + n)εf]ρ + [ d + 3 + 2n + ε 
( 
3 + 2n + d )f+ε(2 + n) δf + εR δ

2f ]ρ2 -ρ" + [1 + n + εR δr + (2 + n)εf]ρ + [ R + 2R + R + R ( 2 + 2n + 2 )f+ε(2 + n) δr + 2 δr2 ]ρ2 -
-[ 1 - 3 ε f]ρ'2 + 1 [ d + d εf + 2nε δf + ε δ

2f + εR δ2f ]z2 -ε δf zz' + 1 (1+εf)z'2= - εRf, (5) -[ 2R - 2 R f]ρ'2 + 2 [ R + R εf + 2nε δr + R δΦ2 + εR δr2 ]z2 -R δΦ zz' + 2R (1+εf)z'
2= - εRf, (5) 

z" — [n + εnf + εR δf ]z -2 (n + d) + 2ε (n + d)f+2ε(1 + n) δf + εR δ
2f ]zρ + ε δf zρ' - [ 1 - ε f]z'ρ' = 0 z" — [n + εnf + εR 

δr ]z -R (n + d) + R (n + d)f+2ε(1 + n) δr + εR δr2 ]zρ + R δΦ zρ' - [ R - R f]z'ρ' = 0 

where ρ = r — R, n = R 
( 
dH(r) 

)r = R, d = 
1 R2 

( 
d2H(r) 

)r = R ρ = r — R, n = H(R) ( dr 
)r = R, d = 2H(R) ( dr2 )r = R 

the function f, and its partial derivatives being taken at r = R. 
It follows from the considsration of the first equation that in the chosen frame of reference, in the 

plane z = 0, there are forced oscillations which indicate the lack of closed circular orbits in the field under 
consideration. Therefore it is worthwhile for the analysis of the solutions of Eq. (5) to find a closed 
orbit and to consider free oscillations around this orbit. The equation of the closed orbit in a linear 
approximation has the form 

ρ-" + [1 + n + εR δf + (2 + n)εf] = - εRf. (6) ρ-" + [1 + n + εR δr + (2 + n)εf] = - εRf. (6) 

Denoting by a particular solution of the inhomogeneous equation (6) we obtain the following equations, 
in the linear approximation, for the oscillations around the closed orbit 

ρ" + [1 + n + εR ∂f + (2 + n)εf + 1 (3 + 4n + 2d) + 2ε(2 + n) ∂f + ε ∂
2f ]ρ -1 (1-3εf)-' ρ' = 0, (7) ρ" + [1 + n + εR ∂r + (2 + n)εf + R (3 + 4n + 2d) + 2ε(2 + n) ∂r + ε ∂r2 ]ρ -R (1-3εf)

-' ρ' = 0, (7) 

z" -[n + εnf + εR ∂f + 2 (n + d) + 2ε (n + d)f + 2ε(1 + n) ∂f + εR ∂
2f ε ∂f ,]z -1 (1-εf)-' z' = 0. z" -[n + εnf + εR ∂r + R (n + d) + R (n + d)f + 2ε(1 + n) ∂r + εR ∂r2 R ∂r ,]z -R (1-εf)

-' z' = 0. 

To determine the main possibilities of the cyclo­
tron method of acceleration in a magnetic field of the 
type in Eq. (3), we shall consider a practically realized 
case where the loci of the extremum values of Hz are 
Archimedes spirals 

f= sin ( r - ΝΦ), (8) f= sin ( - ΝΦ), (8) 

where 2 π is the radial pitch and Ν is the periodicity 
of the magnetic field structure. 

Since for the cyclotron (ω0 = const) the magnetic 
field parameter "n" must change as β

1 
, the field parameter "n" must change as 1 - β2 , the 

choice of a magnetic field structure in which extrem­
um values are located on logarithmic spirals16), 
is not reasonable. 
As will be shown below, the flutter factor for cyclo­

trons satisfies the condition ε<1; therefore, from 
Eq. (6), the closed orbit is described by the following 
function 
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ρ = 
εR sin ( 

R 
- ΝΦ) 

ε2R(2 + n) 
-
ε2R [( 

R 
)2 +(2 + n)2 

cos [2( 
R 
- Ν Φ ) + Φ0], (9) ρ = 

εR sin ( 
R 
- ΝΦ) 

ε2R(2 + n) 
-
ε2R [( )2 +(2 + n)2 

cos [2( 
R 
- Ν Φ ) + Φ0], (9) ρ = Ν 2 -(1 + n) 

sin ( - ΝΦ) 2[N2 - (1 + n)](1 + n) 
- 2[N2 - (1 + n)] 

cos [2( - Ν Φ ) + Φ0], (9) 

where tg Φ0 = 
R 

where tg Φ0 = (2 + n) 

After substituting Eq. (9) in Eq. (7) and changing the variables in order to suppress "periodical friction" 
terms (z', p'), each equation is transformed into the form 

ρ" + {1 + n -
ε2R2 

- ε2(2 + n) . 3 + 4n + 2d - ε2Ν2 
+ εR cos ( R - ΝΦ) + ρ" + {1 + n -2 2[N 2 - (1 + n)] - 2(1 + n) 

. 

N 2 - (1 + n) - 8[N2 - (1 + n)] + cos ( - ΝΦ) + 

+ [(2 + n)ε + ε(3 + 4n + 2d) -
1 ε2Ν2 

sin ( R - ΝΦ)}ρ = 0, (10) + [(2 + n)ε + Ν 2 - (1 + n) - 2[N2 - (1 + n)] 
sin ( - ΝΦ)}ρ = 0, (10) 

z" + {- n + ε2 [ Ν 2 
+ n + d ] + ε2R2 

-
ε2 Ν 2 

-
εR 

cos ( 
R 
- Ν Φ ) -z" + {- n + N 2 - (1 + n) 

[ 
2 + n + 1 ] + 2 2[N 2 - (1 + n) - 8[N2 - (1 + n)]2 - cos ( - Ν Φ ) -

- [εn + 
2εn + 1 εΝ2 

] sin ( R - ΝΦ)}z = 0 . - [εn + Ν 2 - (1 + n) 
+ 2 Ν 2 - (1 + n) 

] sin ( - ΝΦ)}z = 0 . 

For the cyclotron under consideration the main 
focusing effect is determined by terms containing the 
ratio R/, which, for a non-conservative choice of 
parameters19) exceeds unity for all radii except very 
close to the centre of the accelerator, where the 
linear theory is not applicable. 
Neglecting small terms the system in Eq. (10) can 

be written in the canonical form as 

ρ" + (ar + 2q cos 2ξ)ρ = 0 , 
z" + (az - 2q cos 2ξ)z = 0, (11) 

where 

ar = 
4 {1 + n - ε2R2 

}, ar = N 2 {1 + n -2 2[N 2 - (1 + n)] }, 
az = -

4 {n - ε2R2 

}, az = -N 2 {n -2 2[N 2 - (1 + n)] }, 
q = 

2 εR 
, 2ξ = 

R 
- ΝΦ. q = N 2 , 2ξ = - ΝΦ. 

From Eq. (11) it follows that for cyclotrons the 
initial coefficients of Mathieu's equation are respec­
tively equal to : ar = 4/N2, az = 0, q = 0 that is, 
the working point is in the first stable region20). The 
width of this region at q<1 is determined with an 
accuracy of some per cent by 

- 1 q2 ≤ ar,Z ≤ 1 - q -1 q2. (12) - 2 q
2 ≤ ar,Z ≤ 1 - q -8 q2. (12) 

From inequality, Eq. (12), it follows that for 
vertical oscillation the stability region has only a 
lower boundary - 1 q2 and for radial ones only lower boundary -

2 
q2 and for radial ones only 

an upper boundary 1 - q — 
1 
q2. an upper boundary 1 - q — 8 q
2. 

The first condition is written as 

ε ≥ N √n √ N2 -(1 + n) 
(13) ε ≥ 

R √n √ N 2 - ½(1 + n) (13) 

the second 

ε ≤ 
Ν 2 { 4[N2 - (1 + n)] - √ 16[N2 - (1 + n)]2 

-
8[N2 - (1 + n)] + 32(1 + n)[N

2 - (1 + n)] 
} (14) ε ≤ 2R { 3N2 + 1 + n - √ (3N2 + n + 1)2 

- 3N 2 + n + 1 + N2(3N2 + n + 1) } (14) 
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If one takes az = e, ar = 
4 

the neces-If one takes az = e, ar = N 2 the neces-

sary variation will be equal to 

ε = √2 eH(r) N. √1 -1 + n . (15) ε = √2 E0 N. √1 - N 2 . (15) 

From the equality of Eq. (13) and Eq. (14) for a 
given value N, one can determine the limiting values 
of n and consequently the maximum energy which 
can be obtained in a cyclotron with the magnetic 
field of the type in Eq. (8) 

Ekin = E0[√n + 1 - 1]. (16) 

The maximum energy increases with an increasing 
periodicity of the magnetic field (N) and for practically 
realized structures it is given in Table I. 

TABLE I 

N 4 6 8 

Ekin(MeV) 500 1130 1780 

However, for the accelerator under consideration 
and for the known types of accelerators, the frequency 
at which the acceleration process is limited is deter­
mined by resonant values of the betatron oscillation 
frequencies but not by the stability region boundaries. 
From Eq. (11) the frequency of natural oscillations 

is equal to 

Qz,r = 
Ν 
μz,r (17) Qz,r = 2 μz,r (17) 

where μz and μr for Mathieu's equation are deter­
mined from the expression 

cos μπ = cos π√α — 
π2 sin π√a . q2 

. (18) cos μπ = cos π√α — 4 π√a 

. 
1 - a . (18) 

This expression gives a satisfactory accuracy for 
practical calculations in all the region of free oscilla­
tions frequency variation. If q 1, then from 
Eqs. (11), (17) and (18) it follows that 

Qr = √1 + n + 
3 1 

( 
εR )2 1 -

3 1 + n 
, (19) Qr = √1 + n + 

3 1 
( 
εR )2 1 -4 N 2 

, (19) Qr = √1 + n + 4 Ν3 ( N )2 1 -1 + n 
, (19) Qr = √1 + n + 4 Ν3 ( N )2 1 - N2 
, (19) 

at N N 2 

Qz = √( εR 
)2 - n (20) Qz = √( Ν )2 - n (20) 

From Eqs. (19) and (20) it follows that in cyclotrons 
the initial frequencies of betatron oscillation are 

Qz = 0, Qr = 1. 
In the process of acceleration, these frequencies 

increase. If the resonant excitation of oscillations in 
the central region of the accelerator is not taken into 
account, the first linear resonant excitation of oscilla­
tions of the first and the third harmonics of the 
magnetic field is possible in areas where Qz = 0.5, 
Qr = 1.5, respectively. 
Let us consider a quasi-static method of amplitude 

estimation at the parametric resonance. If in the 
structure of the magnetic field the first harmonic 
exists, one has, in Eq. (3) 

f(r, Φ) = sin ( 2 - ΝΦ) + ε1 sin [α1(r) - Φ], (21) f(r, Φ) = sin ( - ΝΦ) + ε sin [α1(r) - Φ], (21) 

where ε1 is the amplitude of the first harmonic 
(ε1 ε). 
From Eq. (7) provided R | dα1(r) |r =R n for From Eq. (7) provided R | dr 

|r =R n for 

Qz = 0.5 we obtain 
z" + {0.25 + nε1 sin [α1(R) - Φ]}z = 0. (22) 

From Eq. (22), the resonance band is symmetric 
around the frequency Qz = 0.5 and its width is 

∆Qz = 
nε1 (23) ∆Qz = 2 (23) 

and the maximum index of exponential growth of the 
amplitude within this band is equal to 

µ m a x = nε1. (24) 

If R | dα 1 | n, in the expressions Eqs. (23) and If R | dr 
| n, in the expressions Eqs. (23) and 

(24) the value of "n" must be replaced by R | dα1 
|r = R 

(24) the value of "n" must be replaced by R | dr |r = R 

and the maximum index of the amplitude oscillation 
increase will be equal to 

µ m a x = ε1R | 
dα1 |r = R. (25) µ m a x = ε1R | dr 

|r = R. (25) 

The number of ion turns in the resonant bandwidth 
depends on the chosen regime of the working point 
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motion through the stability region. More detailed 
information on the passage through a parametric 
resonance is given in the paper by Kol'ga15). The 
calculation of the oscillation amplitude increase near 
the resonant regions Qr = 2 and Qz = I(*) indicates 
the possible restriction of the maximum energy 
Eq. (16) to the following values 

TABLE II 

Ν 4 6 8 CO 

Ekin (MeV) 500 790 850 938 

III. NON-LINEAR EFFECTS 
In analogy with systems considered in the paper 

by Bogolyubov and Mitropolskij21) one should 
expect the investigated system Eqs. (2), (3), (8) to be 
excited at frequencies Qr,z = Ρ Ν where p and q excited at frequencies Qr,z = 

q 
Ν where p and q 

are integers. Thus in the central region of the 
accelerator Qr = - 1, p = 1, q = N) there exists a 
possibility of non-linear resonant effect, if the initial 
amplitude is greater than a value which is determined 
by the parameters of the chosen magnetic field struc­
ture. To find this amplitude it is necessary to solve 
the Equation (2) at z = 0 

r"-2r'
2 
- r = -e (r'

2 + r2)3/2 Hz(r, Φ), (26) r"- r - r = -pc r Hz(r, Φ), (26) 

where 

Ηz(r, Φ) = H0(1 + αr2)[1 + ε sin ( 
r - ΝΦ)], Ηz(r, Φ) = H0(1 + αr2)[1 + ε sin ( - ΝΦ)], 

α = 1 , r∞ = 
E0 . α = 2r2∞ , r∞ = eH0 

. 

For the central region of the accelerator αr2 1 and 
ε 1; therefore one can take as a primary solution 
of Eq. (26) 

r = cos (Φ - Ψ) + √R2 - S2 sin2 (Φ - ψ), (27) 
where S, Ψ are the co-ordinates of the centre of 
curvature of the trajectory, whose radius of curvature 
is 

R = pc . (28) R = eH0 
. (28) 

Since the non-linear resonant effects at ε 1 are 
expressed as a shift of the instantaneous centre of 
curvature of the orbit it is natural to look for a solu­
tion of Eq. (26) in the form Eq. (27) where S = S(Φ) 
and Ψ = Ψ(Φ). 
The relation between the co-ordinates of a particle 

(r, Φ) and co-ordinates of the centre of curvature 
(S, Ψ) in the magnetic field Hz (r, Φ) can be written 
as 

dS 
= 
pc Hz' [r cos (Φ — Ψ) + r' sin (Φ — Ψ)], dΦ = e Hz2√r'2 + r2 

[r cos (Φ — Ψ) + r' sin (Φ — Ψ)], 

S 
dΨ = 

pc Hz' [r sin (Φ — Ψ) — r' cos (φ — Ψ)], 

(29) 
S dΦ = e Ηz2√r'2 + r2 

[r sin (Φ — Ψ) — r' cos (φ — Ψ)], 

(29) 
where H'z denotes the total derivative with respect 
to Φ. Substituting Eq. (27) in Eq. (29) and using 
the method21) of averaging over Φ provided 
Smax < R we obtain for even structures (N = 2k) 

dS = (- 1)N/2εR 1 

( 
S )N - 1 sin (NΨ — R 

), dΦ = (- 1)N/2εR (N - 1)!2N ( 
)N - 1 sin (NΨ — 

), 

dΨ 
= - αR2 + (- 1)N/2 

εR 1 
( 
S )N - 2 × dΦ = - αR

2 + (- 1)N/2 (N - 1)!2N ( )N - 2 × 
× cos (ΝΨ — R ). (30) × cos (ΝΨ — ). (30) 

From the analysis of Eq. (30), it follows that the 
boundary between the precession regime of the 
centre of curvature and the regime at which the azimuthal 
motion of the centre of curvature is limited 
by an angle π/N is characterised by the inequality 

αR2 > 
ε R 

( 
S m a x )N - 2 . (31) αR2 > 2N(N - 1)! ( )N - 2 . (31) 

Experimental investigations of non-linear resonance 
were carried out on a model having the following 
parameters : Ν = 4, = 1.34 cm, ε = 0.02. The 
observed shift of instantaneous orbit centres for 
different radii is seen on Fig. 1. Here, the points 
denote the orbit centres and the figures are the radii 

(*) The resonance Qr = 1 and resonances of linear interaction Qr + Qz = 1, Qr + Qz = 2 take place only in the case of violation of the magnetic field smoothness. 
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Fig. 1 Position of the orbits centres for Ν = 4. 

of curvature. The theoretically calculated maximum 
deviations of the centres for the case s > are in 
agreement with the experiment. 
For a proper choice of the parameters of the 

magnetic field structure for which the non-linear 
resonant effects will not be present, it is sufficient to 
use the expression Eq. (31) where instead of Smax 
one must insert the maximum initial oscillation 
amplitude for the given accelerator. 
On the basis of the above analysis, a structure of 

the magnetic field corresponding to the following 
parameters has been realized : Ν = 6, = 2.7cm, 
ε = 0.066. 
Using these parameters, one can see that inequality 

Eq. (31) is satisfied beginning with a radius R = 2 cm. 
The experimental determination of the orbit centres 
of curvature for this case show that the orbit shift 
does not exceed the deviations due to lower harmonics 
in the magnetic field structure; in absolute value 
these shifts do not exceed 2 cm. 
The motion of the working point through the 

stability region characterizing the change in frequen­
cies of the free oscillations in the acceleration process 
are given in Fig. 2. 
In designing an accelerator of this type for synchro­

cyclotron energies, the choice of the regime of the 
motion of the working point through the stability 
region will essentially depend upon the results of the 
investigation of particle motion through non-linear 
resonance regions N 

, 
Ν ,... to Ν = 2 resonance regions Ν - 1 , N - 2 

,... to N - 0.5N = 2 

tor radial oscillations, as well as through the area of 
coupled oscillations. 

IV. PHASE SHIFT 

If the average magnetic field strength changes 
according to the law 

H(r) = H0 , (32) H(r) = √1 - ( r 
)2 

, (32) H(r) = √1 - ( r∞ )2 

, (32) 

where 
r∞ = 

E0 . r∞ = eH0 
. 

then for particles of momentum Eq. (4) on the orbit 
R + (Φ) the phase shift can be due to two reasons : 
a) deviations of the magnetic field from the law, 

Eq. (32), connected with an insufficient accuracy of 
shimming and stabilization; 
b) deviations of the closed orbit form from the 

circle. 
The required stabilization of the magnetic field 

must be better than 
ΔΗ 

= 
1 , (33) H = 4A , (33) 

where A is the number of turns of an ion during the 
acceleration period. 
Errors of the magnetic field measurements should 

also be less than this value22). 

Fig. 2 Motion of the representing point through the stability 
region, I—for vertical oscillations, II—for radial oscillations. 
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The phase shift due to the change of the particle 
revolution period on a closed orbit (Eq. (9)) when the 
energy changes, can be calculated: 

Δω = V 2πν (34) Δω = R 2π √r'2+r2dØ 
(34) Δω = R ∫ √r'2+r2dØ 
(34) Δω = R 

0 
√r'2+r2dØ 

(34) 

Using Eq. (9) we obtain 
Δω 
= 

ε2 
{ 

2+n - Ν2 }. (35) ω = 2 { (1+n)[N2-(1+n)] 
-
2[N2-(1+n)]2 }. (35) ω = 2 { (1+n)[N2-(1+n)] 

-
2[N2-(1+n)]2 }. (35) 

From Eq. (35) it follows that the correction to the 
law, (Eq. (32)) is of the order of (ε/Ν)2. For ε > 0.1 
one should introduce corrections to the law, Eq. (32). 
The phase shift regime in the cyclotron was tested 

with the above six-spirals structure of the magnetic 
field when deuterons were accelerated to 13 MeV. 
The minimum accelerating voltage on the dee for a 
magnetic field Η(r) given in Fig. 3, was found to be 
5 kV. The ions make approximately 2 500 turns. 
The accelerated particle energy on the maximum 

radius (54 cm) was measured by two methods: 
a) by measuring the mean radius of curvature of 

the orbit by means of three probes, 
b) by measuring the accelerated deuteron ranges 

in aluminium foils. 
The experiments were carried out when the intensity 

of the internal beam did not exceed 1μA. Due to 
this, a low activity only was induced in the chamber. 
Fig. 4 represents the internal beam intensity as a 

function of accelerator radius when the accelerating 
voltage on the dee is 11 kV. The beam at all the 
radii is well focused and the halfwidth of its vertical 
distribution is less than 1 cm. 

Fig. 3 Average magnetic field vs. radius for Ν = 6. 

Fig. 4 Beam current at different radii (V0 = 11 kV). 

V. CALCULATION AND SHIMMING OF THE 
MAGNETIC FIELD 
A magnetic field of the type Eq. (3) was formed in 

the middle plane of the electromagnet (diameter 
120 cm, aperture 2hM = 22 cm) with the aid of shims of rectangular cross-section having the form 
of Archimedes spirals r = ΝØ, and a system of 
ring-shaped shims. The parameters of the spiral 
shims (the ratio between width and height) were 
taken in the assumption that the iron of the shims is 
close to saturation along the axis z, since in the 
useful region of the gap HzHr. Then the obtaining of the necessary magnetic field law can be divided 
into two practically independent problems. The 
first consists in forming the necessary field variation 
(ε), the second involves the formation of the azimuthally-symmetrical 
part of the field. 
The field components of shims of arbitrary configuration 

are found from 

Ψ = μ ∂ ∫ 
1 dV', (36) Ψ = μ ∂z ∫ Pi 
dV', (36) Ψ = μ ∂z 

V, 
Pi 
dV', (36) 

= - gradψ, 
where Ø is the scalar magnetic potential, μ = μz is the mean magnetization of a pattern along the axis z, 
pi is the distance from the observation point in the field (r, Ø, z) to a variable point (r', Ø', z') of elementary 
volume dV'. 
From Eq. (36) using the known integral representation 23) 
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be equal to the amplitudes of the harmonics in the 
field series of an unlimited system of straight shims of 
infinite length having the same cross-section. 
The field of such shims, in a co-ordinate system 

indicated in Fig. 5, can be represented provided 
δ/h1 1 in the plane z = 0, in the form 

Hz(y) = 2μh1δ 
∞ 
[ 

1 Hz(y) = 2μh1δ Σ [ 
1 Hz(y) = (2π)2 Σ [ ( 

h1 
)2+( 

y 
+s)2 

Hz(y) = (2π)2 
s=-∞ [ ( 2π )2+( 2π +s)2 

1 
]. (46) 

( 
h1+2b 

)2+( 
y 
+s)2 

]. (46) 
( 2π )2+( 2π +s)2 

]. (46) 

Summing Eq. (46) over s and expanding the 
obtained result into Fourier series, we shall find the 
following expression for the amplitudes26) of the 
harmonic 

Ηκ
* = 4 μ 

δ 
e -

Kh1 

[1-e 
- κ 

2b 

]. (47) Ηκ
* = 4 μ e - y 

[1-e 
- κ y ]. (47) 

The formula Eq. (47) is convenient for a preliminary 
choice of the parameters of spiral shims systems. 
The effect of a pole piece on a shim field was taken 

into account assuming an infinite dimension of the 
magnet poles on the basis of reflection theory27). 
If the permeability of the magnet poles μ1, one 

obtains for the amplitudes of the harmonics 

Ηκ*=4μ δ e -κ 
h1 1-e-k 4b (48) Ηκ*=4μ δ e -κ 
h1 1-e-k (48) Ηκ*=4μ δ e -κ y 1-e

-k 
(48) Ηκ*=4μ e 

1-e-k 2hμ 
(48) Ηκ*=4μ e 

1-e-k 
(48) 

where hμ=(h1+2b). 
It is seen from Eq. (48) that if hμ > 2π It is seen from Eq. (48) that if hμ > 

4 
It is possible to compute with a sufficient practical 
accuracy the harmonic amplitudes of a field without 
taking into account the pole piece effect, considering 
that the shims are infinite in height. This reduces 
considerably the calculations involved by the formulas 
Eq. (41). 
It should be noted that these conclusions do not 

refer to the calculation of the average field of a spiral 
shims system for which, in order to reach the necessary 
accuracy, one must take into account the effect of 
pole pieces. 

Fig. 7 a) Amplitude of the fourth harmonic of the magnetic field vs. radius, b) Deviation of the 4th harmonic phase from the spiral. 

The investigated structures of the magnetic field 
were made out of spiral shims having the following 
parameters: 
1) Ν = 4, = 1.34 cm, δ = 1.2 cm, 

h1 = 4 cm, 2b = 4 cm; 
2) Ν = 6, = 2,7 cm, δ = 2.5 cm, 

h1 = 4 cm, 2b = 3 cm. 
The pole piece for Ν = 4 is shown in Fig. 6. The 

calculated and experimental values of the amplitude 
of the main harmonic for this version are represented 
in Fig. 7. It is seen from this dependence that the 
amplitude starts from zero at the centre and increases 
with radius, reaching already 90% of the maximum 
amplitude at r ≈ 15 cm. In the same figure the 
deviations of the main harmonic phase β4 from the 

Fig. 8 Amplitude and phase of the 6th harmonic vs. radius. a) Amplitude of the magnetic field 6th harmonic H6vs. radius; 
b) The 6th harmonic phase vs. radius. 
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1 eλ(z-z')J0(λr)∙J0(λr')dλ+ 1 = ∫ e
λ(z-z')J0(λr)∙J0(λr')dλ+ ρi = ∫ e
λ(z-z')J0(λr)∙J0(λr')dλ+ ρi 0 
eλ(z-z')J0(λr)∙J0(λr')dλ+ 

+2 cos m(Ø—Ø') 
X e-λ(z-z')Jm(λr')dλ, (37) +2 cos m(Ø—Ø') ∫ e-

λ(z-z')Jm(λr')dλ, (37) +2 Σ cos m(Ø—Ø') ∫ e-
λ(z-z')Jm(λr')dλ, (37) +2 

=1 
cos m(Ø—Ø') ∫ e-

λ(z-z')Jm(λr')dλ, (37) +2 
=1 
cos m(Ø—Ø') 

0 
e-λ(z-z')Jm(λr')dλ, (37) 

one can find the magnetic field given by an arbitrary 
system of curvilinear shims in the form of a Fourier 
series: 
Hz(r,Ø,z) = Hz(r,z)+ 

+ X HmN(r,z) sin [βmN(r,z)-mNØ]. (38) + Σ HmN(r,z) sin [βmN(r,z)-mNØ]. (38) + 
m=1 
HmN(r,z) sin [βmN(r,z)-mNØ]. (38) 

Here 2π/Ν is the period of the field structure, 
HN = εH(r) is the amplitude of the main harmonic, which is chosen in accordance with conditions 
Eqs. (13), (14). It should be noted that if the amplitude 
of higher harmonics in the magnetic field is not great, 
the conditions of stability are not violated 24). 
The system of shims giving a distribution of Hz corresponding to Eq. (38) consists of 2N identical 

shims located symmetrically with respect to the mean 
plane of the electromagnetic gap (z = 0) and shifted 
with respect to each other by an angle 2π/Ν. For a 
system of spiral shims of infinite height whose thickness 
is small compared to any other dimensions, the 
average field and the harmonic amplitudes in series 
Eq. (38) at z = 0 can be represented25) from Eqs. (36) 
and (37), by 

H(r)= 2μδΝh1 Ø √ 
1+Ø'2 

[-
d Q-½(x)]dØ', (39) H(r)= 2μδΝh1 ∫ √ 

1+Ø'2 
[-

d Q-½(x)]dØ', (39) H(r)= πr√rλN ∫ √ Ø'3 [-dx Q-½(x)]dØ', (39) H(r)= πr√rλN 
Ø 
√ Ø'3 [-dx Q-½(x)]dØ', (39) 

HK(z) = √[HKc(r)]2+[HKs(r)]2, (40) 
where Κ = mN (m = 1,2,3, ...), 

HKc(r)= 4μδNh1 
Øκ 
√ 
1+Ø'2 cos ΚØ'[— d QK-½(x)]dØ',  

(41) 
HKc(r)= 4μδNh1 ∫ √ 

1+Ø'2 cos ΚØ'[— d QK-½(x)]dØ',  
(41) 

HKc(r)= πr√rλN ∫ √ Ø'3 cos ΚØ'[— dx QK-½(x)]dØ',  
(41) 

HKc(r)= πr√rλN 
ØH 
√ Ø'3 cos ΚØ'[— dx QK-½(x)]dØ',  

(41) 

HKs(r)= 4μδNh1 
Øk 
√ 
1+Ø'2 sin ΚØ'[-d QK-½(x)]dØ'. HKs(r)= 4μδNh1 ∫ √ 
1+Ø'2 sin ΚØ'[-d QK-½(x)]dØ'. HKs(r)= πr√rλN ∫ √ Ø'3 sin ΚØ'[-dx QK-½(x)]dØ'. HKs(r)= πr√rλN 

ØH 
√ Ø'3 sin ΚØ'[-dx QK-½(x)]dØ'. 

Qk-½ (X) is the spherical Legendre function of the 
second type of argument x= h1

2+r2+λ2Ν2Ø'2 , second type of argument x= 2rλΝØ' , 

ØΚ-ØΗ is the azimuthal d îmension, δ is the shim 
thickness, 2 h1 is the vertical gap between shims, and 
μ= 21000 Oe. μ= 4π Oe. 
The phases of the harmonics are found from the 

relation 
βK(r) = are tg Hk

s(r) . (42) βK(r) = are tg HKc(r) . (42) 
The field of a system of shims limited in height is 
easily obtained from Eqs. (39) and (40) as the difference 
of the fields produced by 2 systems of shims of infinite 
height with h1 and h2 (the shim height 2b = h2—h1). Here the amplitudes and phases of the harmonics are 
found from 
H(r,2b) = H(r,h1)-H(r,h2), (43) 
HK(r,2b) = (44) 
= √[HKc(r,h1)-HKs(r,h2)]2+[HKs(r,h1)-HKs(r,h2)]2, 

(βK(r,2b) = are tg HK
s(r,h1)-HKs(r,h2) , (45) (βK(r,2b) = are tg Hkc(r,h1)-Hkc(r,h2) , (45) 

where H(r,h), Hkc(r,h), Hks(r,h) are determined from Eqs. (39) and (41). From the analysis of 
Eq. (40) it is seen that the amplitudes of the harmonics 
are equal to zero at r = 0 and increase with the radius 
according to the law 

where γ2n(k) are coefficients depending upon the shim parameters. 
If the spiral shim curvature Κ = 1 Ø'

2+2 If the spiral shim curvature Κ = λN (Ø'2+1)3/2 
vanishes, the amplitudes of the harmonic Eq. (38) reach 
their maximum values. These maximum values will 

Fig. 5 The system of straight shims. 



Fig . 6 Pole piece w i th spiral 
shims for Ν = 4. 

F ig . 11 General view of the 
accelerator on the side of the 
resonant line. 

F ig. 12 General view of the 
accelerator on the side of the 
ion source. 
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ideal phase r/ are shown. The variations of these 
deviations lead to an effective increase of ; this 
locally increases the amplitude at these radii. For 
the optimum (under the condition of amplitude 
maximum) this effect appreciably increases. This is 
seen from the analysis of the data given in Fig. 8 
which shows the dependence of the amplitude and 
phase of the main harmonic upon the radius for 
Ν = 6, being taken close to the optimum. The 
diagram of the pole piece with spiral shims for Ν = 6 
is given in Fig. 9. The ratios of the harmonics amplitudes 
in the field series corresponds, in the radius 
interval 20-50 cm, to that calculated from relation 
Eq. (47). 

Fig. 9 Pole piece with spiral shims for Ν = 6 (diagram). 

The most complicated problem in realizing the 
magnetic field of the cyclotron was the production of 
the average field, Eq. (32). The average magnetic 
field was produced by the ring shims; the magnetic 
field was calculated on the assumption of uniform 
axial magnetization from the expression (36). The 
magnetic field component from thin ring shims of 

radial dimension ∆R = R2 - R1 and height ∆h is 
described, if ∆h 1, by28) h1 1, by

28) 

Hz(r) = 4πμ∙∆h{ψ(r,h1,R2)-ψ(r,h1,R1)}, (49) 
where 

ψ(r,h1,R) = 1 1 F0(α)+ ψ(r,h1,R) = 2 √(R+r)2+h12 F0(α)+ 

+ R2-r2-h12 E0(α)], + (R-r)2+h12 E0(α)], 
F0 and E0 are normalized total elliptical integrals of the first and the second type; 

α = arc sin √ 4Rr . α = arc sin √ (R+r)2+h12 
. 

The numerical value of the magnetization μ of 
the ring shims was found from the magnetization 
curves of the substance 29) and from the demagnetization 
factor which is determined by 28) 

Nv = 1 ∫ fz(r,z,∆h,R1,R2)rdr∙dØ∙dz, Nv = V ∫ fz(r,z,∆h,R1,R2)rdr∙dØ∙dz, Nv = V V 
fz(r,z,∆h,R1,R2)rdr∙dØ∙dz, 

where fz = Hz/M is a function describing the distribution 
of the vertical magnetic field component inside 
the pattern considered. The demagnetization factor 
is a dimensionless function of shim parameters and 
it changes from 0 (at ∆h → ∞) to 4 π (at ∆h →0). (at ∆R → ∞) to 4 π (at ∆R →0). 
Preliminary experiments carried out with thin ring 

shims show that the difference between the calculated 
and experimental curves does not exceed 10% of the 
maximum shim field and that the principle of super-position 
of fields produced by single shims is valid 
within this precision. 
Steel cylinders of small diameter (0.8 cm) were 

used for more accurate shimming of the average 
magnetic field. Re-distribution of cylinders in azimuth 
was used to reduce the amplitudes of the first 
and second harmonics, the appearance of which in 
the field series can be explained by errors in the geometry 
of the shims which are equal to 0.01 cm in the 
manufactured set of spiral shims, and by the distortion 
of the pole pieces which did not exceed 0.05 cm. The 
amplitudes of the lower harmonics as a function of 
radius are given in Fig. 10. The amplitudes of the 
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Fig. 10 Amplitudes of the low harmonics of the magnetic field vs. radius for Ν — 6 (—ο—ο— first harmonic, —×—×— second one). 

first and second harmonics for 0<r<50 cm do not 
exceed 15 Οe. 
To improve the conditions of the initial beam formation 

in the central region of the accelerator, the 
average field has been slightly increased. In the 
radius interval 8-52 cm, the deviation of the average 
field from the resonant one does not exceed 2×10-2% 
(see Fig. 3, where the experimental average field is 
given by the dotted curve). 
VI. MEASUREMENT AND STABILIZATION OF 
THE MAGNETIC FIELD 
The absolute value of the inhomogeneous magnetic 

field of the accelerator was measured by a specially 
developed magnetometer based on the Hall effect30) 
and nuclear magnetic resonance31,32). 
By means of the above nuclear magnetometer, the 

absolute value of the magnetic field can be measured 
within 250-24000 Oe, the gradient of H0 being smaller than 10%, with an accuracy of ±0.01%. These 
measurements are practically "dotted" as the sample 
volume in which the magnetic resonance is observed 
at the mean value of the magnetic field, is equal to 
2×10-4 cm3. Simultaneously, the gradient of the 
magnetic field at the measuring point and its direction 
can be determined with an accuracy of ±1%. 
To measure the magnetic field in the magnet gap, 

the probes were mounted on a special device which 
permitted them to be shifted along the radius, vertically 
and in azimuth with an accuracy of +0.01 cm, 
±0.01 cm and ±0.1° respectively. 
In the nuclear magnetometer, one used a system 

of remote tuning of the oscillating circuit of the 
regenerative detector of the nuclear magnetic resonance 

signal, and a system of semi-automatic remote 
control of the probe azimuth shifting. This permitted 
the time necessary for measuring the magnetic field in 
the shimming process to be reduced. 
The required stability of the magnetic field (0.01 %) 

can be obtained only by means of a device which 
directly responds to the magnetic field change in 
the electromagnetic gap. The method based on 
nuclear magnetic resonance is the most accurate and 
convenient. The stability of the resonant magnetic 
field is determined practically only by the frequency 
stability of the RF excitation field. The use of 
generators stabilized by quartz makes it possible 
to stabilize the magnetic field with an accuracy of 
0.01 to 0.001%. 
In the cyclotron, the magnetic field was stabilized 

with an accuracy of 0.005% by a nuclear stabilizer 
in which the resonant signal was observed by the 
method of nuclear induction 33). 

VII. HIGH FREQUENCY SYSTEM 
The RF system of the cyclotron is a co-axial quarter 

wavelength resonant line (W = 64 Ω), closed at one 
side by a movable shorting plug and loaded at the 
other side by the capacity of the dee 34). 
By moving the shorting plug, the system can be 

tuned in the region 7.6 to 12 mc/s. The working 
frequency is 10.5 mc/s. 
The characteristic feature of the RF system is the 

presence of only one dee and of small gaps between 
the dee and the chamber (1.5—2 cm). High-frequency 
breakdown between the dee and the chamber limits 
the maximum possible accelerating voltage to 40 kV. 
A considerable detuning of the system is caused by 
heating due to the small gaps; this leads to the necessity 
of taking special care for keeping the natural frequency 
unchanged. 
A general view of the resonant line is given in 

Fig. 11. The outside conductor of the line is the 
steel vacuum tank covered inside with copper sheets. 
The diameters of the outer and inner electrodes are 
equal to 58.4 and 20.0 cm, respectively. 
The radius of the dee is 57.5 cm, the aperture 

4 cm. To increase the working aperture, the cooling 
tubes are placed along the side edge of the dee, outside 
the working radius. 
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The RF system is fed by a seven stage generator. 
The master oscillator uses a triode 6 with grounded 
anode and capacitive feedback; to guarantee a high 
frequency stability, thermocompensated condensers 
are used, the anode supply is stabilized and the 
inductances are wound on ceramic formers. The 
frequency stability of such a generator is 4×10-5 
(after two hours of operation). 
The output stage uses two lamps Γ-12Α in parallel. 

In order to suppress auto-oscillations, the tubes 
were mounted with grounded grid. The power stage 
is placed near the resonant line (Fig. 11). The 
RF system is linked to the anode of the power stage 
by means of a short co-axial feeder having a characteristic 
impedance of 64 Ω. The accelerating voltage 
can change due to a drift of the oscillating frequency 
of the RF system as a result of heating. The frequency 
is kept constant (and so the amplitude of the 
accelerating voltage) by means of an automatic system 
of stabilization which changes the capacity between 
the dee and the additional electrode inserted into the 
accelerator chamber. The stabilizing system keeps 
the amplitude of the accelerating voltage constant 
with an accuracy of 1.5%. 
VIII. VACUUM CHAMBER AND ION SOURCE 
The vacuum chamber having the form of a rectangular 

parallelepiped of 158×154×33.5 cm was 
designed so that it might provide experimental conveniences, 
simplicity and reliability of exploitation. 
The chamber, apart from cylindrical steel covers, is 
made out of an alloy of the "avial" type to reduce 
the harmful radioactive background of long-lived 
isotopes accumulated in the chamber. The chamber 
and the outer tube of the resonant line form a common 
vacuum volume pumped out by three oil diffusion 
pumps of the H-5T type. The pumps give an operating 
vacuum of (1-2)×10-5 mm Hg when admission of 
gas into the source is about 2-5 cm3/min. 
Fore-vacuum pumping out of the chamber and of the 

diffusion pumps is provided by two mechanical 
pumps BH-I. 
The use of a Penning discharge as an ion source 

made it possible to avoid considerable constructional 
difficulties connected with heating the cathode and 
cooling other parts of the ion source. The ion source 
is constructed in such a way that is is possible to move 
it in all directions while in vacuum. The chamber is 

supplied by three probes with quartz targets as beam 
indicators. A thin tungsten wire wound around the 
quartz targets makes it possible to measure the current 
of the accelerated particle beam simultaneously with 
visual observation. 
A general view of the accelerator is given in Fig. 12. 

IX. CONCLUSION 
From an investigation of accelerators with space 

variation of the magnetic field, it is possible to draw 
the following conclusions: 
a) the linear theory of space stability developed 

for these accelerators was experimentally confirmed; 
b) non-linear resonance effects in the centre of the 

accelerator were theoretically and experimentally 
investigated and regions of the magnetic field parameters 
were found for which these effects are practically 
absent; 
c) the methods of computation of the magnetic 

field provide the necessary practical accuracy and can 
be applied in constructing accelerators of this type; 
d) all the indicated theoretical and experimental 

investigations as well as the equipment developed 
for measuring and stabilizing the magnetic fields of 
complicated configuration and the methods of shimming 
the average field, allow the design of cyclotrons 
of energies comparable to those obtained in synchrocyclotrons, 
producing beam intensities of the order 
of 100 μA. 
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DISCUSSION 

KHOE KONG TAT: Is the 5 kV on the dee the lowest voltage at which the machine will work, or is it a working voltage? 
DMITRIEVSKIJ: This is the threshold voltage below which the machine does not work. It corresponds to the shims we have used. 
MARTIN: I should like to ask what is the magnetic gap at the centre of your machine ? 
DMITRIEVSKIJ: 8 cm. 
LAWSON: I should like to ask what the maximum current is, and what is the dee voltage under these circumstances? 
DMITRIEVSKIJ: In order to avoid the radioactivation of the chamber, the machine was operated at a current of 1-5 μΑ, implying a source power of about 7 W. The dee voltage was then 11 kV, and the current depended on the radius. At the voltage of 25-30 kV this dependence was rather weak. 

WELTON: I have been curious as to why the number of sectors, N, was chosen as 6. The vertical stability can be achieved much more easily with a lower sector number. At first sight the resonance might be a problem. Was this the reason for the choice? 
DMITRIEVSKIJ: Yes, it was. The value Ν = 6 was chosen because there would be a non-linear resonance at Ν = 4, and so we have to take large , and so the R/ factor tends to zero and one attains the normal Thomas machine. 
KHOE KONG TAT: I should like to ask what is the first harmonic content in the azimuthal variation of the magnetic field? 
DMITRIEVSKIJ: In order to overcome the Qz = ½ resonance, it was necessary to have 1.5 Oe in the first harmonic. The amplitude of the first harmonic on the mean radii was between 5 and 10 Oe. 

1.5 METRE CYCLOTRON WITH AZIMUTHALLY VARYING MAGNETIC FIELD 

J. A. Zavenyagin, R. A. Metschcherov, E. S. Mironov, L. M. Nemenov and J. A. Kholmovskij 
(presented by B. j. Zamolodchikov) 

INTRODUCTION 
Considerable difficulties are met in an attempt 

to accelerate ions to energies above 22-24 MeV in 
the conventional cyclotron because of an increase 
in the mass of ions as the resonance condition between 
the revolution frequency of a particle and the acceleration 
voltage frequency is violated. Frequency 
modulation of the dee voltage permits an increase 

in the attainment of higher energies though the intensity 
is unavoidably lowered. 
Another method of compensating the relativistic 

mass increase is to produce a magnetic field increasing 
with orbital radius. This method would lead to 
defocusing and as a result to the loss of all accelerated 
particles in a conventional cyclotron. In 


