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Abstract An upper bound on the parameter that provides
a generalized uncertainty principle (GUP) is obtained from
the black hole shadow. With the aid of a recent constraint
between regular black holes and the GUP parameter, it is
indicated a relation between this parameter and the deviation
from circularity of the black hole shadow. In the case of
the recent announcement of the M87* results from the Event
Horizon Telescope collaboration, a deviation from circularity
< 10% imposes a GUP parameter By < 100,

1 Introduction

The Event Horizon Telescope collaboration announced the
first black hole image ever captured [1,2]. By using interfer-
ometry, the collaboration built the shadow of the supermas-
sive black hole (M87%) at the center of the Messier 87 galaxy.
As pointed out by the collaboration, the black hole shadow is
well-described by general relativity by adopting the Kerr met-
ricin order to interpret the phenomenon. Moreover, the super-
massive M87* — whose mass is M = (6.5 +0.7) x 109M@
and is ryps = (16.8 £ 0.8)Mpc distant from us — presents an
almost circular shadow. Accordingly, the shadow of M&7*
indicates a deviation < 10% from circularity. Even with the
good agreement with the Kerr metric, options are not totally
ruled out. Due to the uncertainty on both the rotation param-
eter and observation angle, options to Kerr metric are still
candidates for M87* shadow [3]. This article explores that
avenue and applies the M87* parameters to Kerr-like objects,
like rotating regular black holes.

Shadows of black holes have been studied since the pio-
neer work of Synge [4], in which the shadow of the Schwarz-
schild black hole was obtained. Bardeen [5] built the first
shadow for a rotating black hole, namely, for the Kerr met-
ric. Since then, whether in the general relativity context or
beyond, shadows of different black holes have been pub-
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lished, like shadows for the Reissner—Nordstrom black hole
[6], the Kerr—Newman black hole [7], black holes with a cos-
mological constant [8], Kerr—Newman-NUT black hole [9],
Kerr—Newman—Kasuya black hole [10], braneworld black
holes [11,12], rotating wormholes [13] and for regular black
holes [14—-16], which are focused on this article. It is worth
emphasizing that the results exposed here do not consider an
accretion disk around the black hole. Accretion disks modify
the shadow’s silhouette, and models that consider such influ-
ences are being developed [17-19]. The results presented
in this article can be used in future researches that include
accretion disks, whether made of plasma or dark matter.

As an alternative to singular black holes, regular black
holes are solutions of the gravitational field equations without
a singularity inside the event horizon. Once again, Bardeen
was pionner when constructed the very first regular met-
ric that describes a regular black hole [20]. The Bardeen
black hole is spherical, i.e., a nonrotating black hole, and is
described by a mass function that depends on the radial coor-
dinate. Inside the event horizon, the Bardeen metric hides a
de Sitter core instead of a Schwarzschild singularity. A de
Sitter core inside the event horizon avoids either the point
singularity of spherical black holes [21-29] or the ring sin-
gularity in geometries with axial symmetry [30-35]. As is
well-known, the de Sitter core provides energy conditions
violations in order to avoid consequences of the singularities
theorems.! Then, the Bardeen regular black hole violates the
strong energy condition, and, according to our work [35],
those with rotation ignore the weak energy condition.

Besides a mass function that depends on the radial coordi-
nate, regular black holes possess a mass function that depends
on the parameter related directly to the regular geometry or
the absence of a singularity. In Ay6n-Beato and Garcia’s
work [37], such a parameter is a charge, and the Bardeen
regular black hole is conceived of as a solution of general
relativity coupled to a nonlinear electrodynamics for those

I See Wald’s book [36] for detailed studies on the theorems.
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authors. However, recently, our work [38] suggested another
interpretation to the Bardeen metric. By using a generalized
uncertainty principle (GUP), we computed quantum correc-
tions to the Hawking temperature for the Schwarzschild black
hole. Thus, we pointed out that, at second order, Bardeen’s
regular black hole may be view as a quantum-corrected
Schwarzschild black hole. This new interpretation led to a
constraint between a metric parameter, namely, the parame-
ter in the mass function that produces regularity, and the GUP
parameter. With the aid of such a relation, the GUP parameter
will be estimated using the black hole shadow. The regular
black holes used in this shadow calculation come from a class
of rotating regular black holes with a cosmological constant
published in our article [35].

GUPs appear, for example, in candidates for quantum
gravity theories and in the deformed quantum mechanics,
where the canonical commutation relations are modified in
order to provide a minimal length scale and, consequently,
its contribution to empirical results, like in the modified
hydrogen-atom spectrum [39], Lamb shift, Landau Levels
and in the scanning tunneling microscope [40,41].> The
dimensionless GUP parameter (also called quantum grav-
ity parameter) deforms the Heisenberg relation, and with
Bo = 0, where By is the mentioned parameter, Heisenberg’s
uncertainty relation is recovered. There is a debate on the
value of the GUP parameter [40,43,44]. Assuming that the
GUP parameter is fo ~ 1 implies that effects of Sy are
hard or too small to be detected. But without such an a pri-
ori assumption, it is possible to obtain upper bounds on the
GUP parameter by using recent experiments. Like Ref. [43],
where the upper bounds were built with the aid of the light
deflection and perihelion precession, and Ref. [44], where
gravitational waves were adopted, in this work an option in
the strong gravitational field regime (the shadow of M87%) is
used in order to obtain an upper bound on fBy. In general, as
we will see, gravitational systems offer worse upper bounds
than quantum options, like the Lamb shift, Landau Levels or
the scanning tunneling microscope used in Ref. [40].

As I said, the deviation from circularity, reported by the
collaboration, will be used in order to estimate the GUP
parameter. It is worth emphasizing that the class of rotat-
ing regular black holes used here and presented in Ref. [35]
generalizes earlier Kerr-like regular solutions because it pos-
sesses a general mass function m (r) and a cosmological con-
stant. The shadow of that class has its silhouette presented
here for the first time in the literature. With the M87* param-
eters, by assuming that the angle between the black hole
rotation axis and the observer is 6,5 = 17° (in agreement
with observed jets supposedly aligned with the rotation axis
[1,45]), it is indicated the By < 10%9 as upper bound on the
GUP parameter.

2 See Ref. [42] for a review on GUPs.
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The structure of this paper is as follows: in Sect. 2, the
geodesic equations for the class of rotating regular black
holes and equations that provide the shadow’s silhouette were
derived. In Sect. 3, two shadow’s observables are indicated,
oblateness and root-mean-square distance from the average
radius of the shadow, which gives the deviation from circu-
larity, such that the latter was computed in order to provide
an upper bound on the GUP parameter in Sect. 4. In Sect. 5,
the final remarks are made.>

2 The shadow of rotating regular black holes

Let us obtain the shadow of rotating regular black holes with
a cosmological constant in this section. Firstly, the space-
time metric and its geodesic equations are shown, then the
silhouette equations are computed.

2.1 Spacetime metric and geodesic equations

In this article, shadows are obtained from a class of rotating
regular black holes developed in Ref. [35]. The spacetime
metric of that class — using the Boyer—Lindquist coordinates
—is given by

1
ds* = —— (4, = Ava*sin®6) ar®

2a By 2 .5

“Ey [(i’ +a”)Ap — Ar] sin“ Odtd¢
b)) b))
dr* + - d6?

+Ar r +A0
sin% 0 By 2.2 s .o )
=55 [(V +a“)*Ap — Ara” sin Q]dq) , (1)

where

A
Ag =1+ gaz 00520,

> =2 +a2 cosze,

2 =1+ 242 @
== 30,
and
2 2 A 2
Ar=0"+a )(1—;}” ) —2m(r)r. 3)

The constant A is the cosmological constant, a is the rotation
parameter and, for the class of regular black holes studied
here, the black hole mass depends on the radial coordinate r,

3 In this work, I adopted geometric units such that G = ¢ = 1, where
G is the gravitational constant, and c is the speed of light in vacuum.
For the evaluation of the GUP parameter, the M87* data were used,
and, consequently, G and ¢ were restored.
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3
ro\9\ ¢
m(r):M(1+(—) ) . o
r

The mass function (4) provides black holes without a singu-
larity.* For different values of the integer ¢, we have well-
known regular black holes. For example, for the spherical
case, g = 2 provides the Bardeen black hole [20], and ¢ = 3
produces the Hayward regular metric [27], but the mass func-
tion also gives axisymmetric regular black holes or Kerr-like
black holes. The parameter M is the mass parameter (for
large values of r, m(r) ~ M), and rq is a length parameter
that provides regular metrics, parameter conceived of as a
microscopical constant related to both the GUP parameter
and the Planck length according to our work Ref. [38] (in
Sect. 4 such a parameter will be briefly discussed).

Due to cosmological observations [49], I will focus on the
positive cosmological constant in this article. In this case,
regarding ro < M, the function A, provides three roots: the
inner horizon r_, the event horizon r., and the cosmological
horizon r4 4. Then, the spacetime structure reads

F_ <rp <Tyg. 5)

In order to construct the black hole shadows of the class
of rotating regular black holes given by Eq. (1), the geodesic
equations are needed. Geodesics for the Kerr metric were
obtained by Carter [50], who showed the separability of the
geodesic equations. Carter argued that a test particle in the
Kerr spacetime possesses four constants of motion along
geodesics. Accordingly, one has the two Killing vector fields
& and &y with their respective constants, the mass of the
test particle and the fourth constant, which is called Carter
constant (indicated by K). Both the Kerr-anti-de Sitter and
Kerr-de Sitter spacetimes present those same four constants
for test particles along geodesics, whether in the general rel-
ativity realm [51] or in the brane world, as we indicated in
Ref. [52]. The class of rotating regular black holes given by
(1) also presents these constants.

The geodesic equations for the spacetime (1) are obtained
from the Hamilton—Jacobi equation:

9s 1 ,, 08 3S
9o 2°  9xt gxv’

where o is a parameter related to the affine parameter 7 (i.e.,
T = Jo, with § playing the role of mass of the test parti-
cle along the geodesic). The function S is the Jacobi action,
which is related to the generalized momentum through

aS

Pu= o @)

(6)

4 Aspects of regular black holes with the mass function (4) were studied:
thermodynamics in Ref. [46], accretion of perfect fluids in Ref. [47],
and cosmic strings in Ref. [48].

From the two Killing vector fields &; and &, given by the
geometry with axial symmetry (1), we have the particle’s
constants of motion E and L, namely, energy and angular
momentum, respectively,

pr=—E and pg=1L. (8)

Following Carter, it is assumed that S may be written as
1
S=:|:§820—Et—i—qu—i—Sg(G)—i—S,(r), C)]

where plus and minus mean the de Sitter and anti-de Sit-
ter cases, respectively,” and expressions for Sy and S, will
be omitted here. As is known in general relativity, from
the Lagrangian ., the generalized momentum is defined
as p, = gx—% = g,wXx", where dot means ordinary derivative
with respect to the parameter o. Therefore, from that defini-
tion and Eq. (9), substituted into Eq. (7), one has the geodesic
equations for the metric (1), which in the coordinate basis are

2 2
. P A
pi= TP panze (14 2a2) L),
Ay Ap 3
Xr=~V9%Z,
>6 =0,
so="L_ Ll (1142 20L], (10)
=— - — - —a” ) cosec ,
A, 2 ¢ 3¢

where X' is given by Eq. (2). The functions P, Z and © are
written as

A
p— (r2+a2)E—<l+§a2)aL, (11)
% =P A, (:|:52r2 + K) , (12)
®=0- 00520|:a2 (iAeaz — E2)
A \2
+ (1 + §a2> cosec?d L21|. (13)
As I said, the parameter § represents the mass of the particle

along the geodesic, so § = 0 in the case studied here. The
constant Q is related to Carter’s constant K, that is to say,

A, 2
0= ApK — 1+§a L—aE| ., (14)
which vanishes for equatorial orbits.
2.2 The shadow’s silhouette
In particular, for the shadow phenomenon, only photons
orbits, or null geodesics, will be adopted (6 = 0). And as

the cosmological context is considered in this article, the

5 From the condition guvihx¥ = +62, the signal plus and minus are
due to the norm of timelike vectors in de Sitter and anti-de Sitter space-
times, respectively.

@ Springer
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cosmological constant will be assumed positive, i.e., A > 0.
Following [9], two new parameters are defined as
L d 15

§= 7 ad n=—7, (15)
which are constants in the shadow’s silhouette. Such a sil-
houette is given by unstable photon orbits with » = r,, con-
stant outside the event horizon, i.e., r,, > . In such orbits,
photons may either fall into the black hole or escape to the
observer position. Thus, according to geodesic equation 7,
we have Z(r,) = #'(r,) = 0 in order to provide the unsta-
ble orbits (the symbol ' means derivative with respect to
r). Typically, for a black hole with rotation r, = r,_ and
rp =71py (Withr,_ <7,4),1i.e., there are both a minimum
and a maximum value for 7, and the edge of the black hole
shadow should be built for those values of rj,. That is, as
we will see, the left and the right sides of the shadow can
be different for rotating black holes due to the spacetime
dragging. On the other hand, for the Schwarzschild black
hole r,— = rpy = 3M (in the Schwarzschild case, M is
the black hole mass or the Arnowitt—-Deser—Misner mass),
and the shadow is perfectly symmetrical. The equations that
involve Z(r,) and its derivative lead to

16r2 A (rp)
_ p—r\p
n(rp) = A (16)
and
) = (1 + A A rp) = 4rp Ay ). -

EaA(rp)

As we will see, these conserved quantities are part of the
equations that “draw” the shadow.

It is worth emphasizing that the metric (1) is not neces-
sarily asymptotically flat, it is either asymptotically de Sitter
or anti-de Sitter for A # 0. Thus, a given observer is not at
infinity describing the black hole shadow, indeed he/she is
in the domain of outer communication, which is the region
defined in between the event horizon r and the cosmological
horizon r ; in the de Sitter case. Therefore, the observer will
be located at the point with coordinates (ryps, 8, ), according
to Fig. 1. In terms of the observer position, because of the
axial symmetry, the black hole shadow depends only on the
radial and polar coordinates. The coordinate 6, stands for the
observer angle, which is the position in which the shadow is
observed in relation to the rotation axis, and the parame-
ter rops 1s the distance from the black hole. Following [9],
it is adopted the orthonormal tetrad el = (eg , ef , e’; , eé‘ )
in order to describe the shadow silhouette. That is, the null
congruences coming from r,_ < r < r,4 reaches the
observer and are projected onto the tetrad, then the shadow
phenomenon is described by using e/, . Such a tetrad is written
with the aid of the coordinate basis vectors (9;, dy, g, 0g),

@ Springer
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Fig. 1 The shadow phenomenon observed by O at r = r,, using the
tetrad e (on the top). The celestial coordinates o and S describe the
null congruence y from the shadow’s silhouette (on the bottom)

therefore we have

2 2 =
) o)
=" + a0 +agdy , (18)
VALY (Fobs:00)
A
e1 = =y , (19)
2 (robs+00)
oF) in269
e = _¢+a—SII.1; , (20)
v AQE Slne (robs»60)
A
e3 = —) —0, ) 2D
2 (rabsﬂo)

According to Grenzebach et al. [9], the direction of e3 points
toward the black hole (see Fig. 1), and eq is the observer’s
four-velocity, then in this case the observer is not necessarily
at rest. The tetrad is chosen such that eg & e3 is tangential to
the principal null congruence direction for a metric like (1).

The null congruence, that is to say, the light rays that come
from the region defined by r,, are conceived of as curves y
such that their tangent vectors are given by

Y =10 + 70 + 603 + ddy (22)
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Fig. 2 Shadows for the class of rotating regular black holes given by Eq. (1). Different values of ¢ in the mass function (4) produce tiny differences
in the silhouettes. For ¢ = 1, we have smaller shadows. The parameters A = 1073M, ro = 1072M, robs = 35M, and M = 1 are adopted in these

graphics

in the coordinate basis. According to Ref. [9], at the observer
position, y is described by the tetrad e/, i.e.,

y = ¢ (—ep + sina cos ey + sina sin Bey + cos wez) (23)

where the new angles o and S are celestial coordinates as
indicated in Fig. 1. The description of the black hole shadow
is made by using these coordinates. The factor ¢ is obtained
from Eqs. (22)—(23) and the tetrad equations, such that

(r2 + az)E —a&L
VALY

From the factor ¢, by comparing terms in Eqgs. (22) and (23)
with the aid of the equations for the tetrad, the celestial coor-
dinates are straightforwardly written as

¢ = (24)

(Tobs»00)

Xr

CoOSq = —————— s (25)
(r?+a)E —aBL|(,, g,
Ag sinf A D¢
sinf = HSI? < T2 ? =7 aE) (26)
VA Esina \ (72 +a*)E —aEL (Fobs-00)

Then, using the geodesic equations for / and ¢, substituting
them into Egs. (25)—(26), we obtain simple expressions for

a and B, namely,

VAmn(ry) 27)
(2 4+a2) —a Eé%(rp) (rabsﬁo)’
(350526 — a)sin

vV AQ’I(rp)

As we can see, the equations that describe the celestial coor-
dinates depend on the observer position (s, 0,) and param-
eters of the photon orbits, also known as photon “sphere”.

In order to describe the shadow’s silhouette it is appropri-
ate to define the Cartesian coordinates

x(rp) = —2tan (a(;p)> sin (B(rp))

sinae =

sin 8 = (28)

(Fobs»00)

(29)

y(rp) = —2tan (“Z’”) cos (B(rp)) - (30)
Therefore, the parametric equations (29) and (30) draw the
shadow’s silhouette. According to Fig. 2, the shadow is sym-
metrical to the x-axis. For a Kerr black hole with mass M,
the silhouette depends on the rotation parameter a and the
observer polar angle 6,, considering an observer at infinity.

@ Springer
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Fig. 3 Shadows for the class of rotating regular black holes given by
Eq. (1) with different values of (. In the second and third figures (from
left to right), the influence of large values of ro decreases and distorts

On the other hand, for the de Sitter case, the observer is in the
domain of outer communication (r = rp;), but still far away
from the black hole, and the silhouette depends on the cos-
mological constant as well. In particular, according to Fig. 3,
the shadow will depend on the parameters of the mass func-
tion (4) for regular black holes as well. As we will see, the
parameter rp, which generates regular metrics, can increase
the distortion or the deviation from circularity and decrease
the size of the shadow.

As is known from the Kerr metric, the black hole shadow
(its form or silhouette) is strongly sensible to the parameters
a and 6,,. However, for the class of regular black holes given
by (1), we have two new parameters that modify the shadow:
q and rg. Here it is shown just cases in which the rotation
parameter is smaller than the black hole mass, i.e., a’ < M2,
and, in order to produce shadows compatible with M87%, it
is adopted ro < M, which, alongside a’ < M2, provides the
spacetime structure with three horizons indicated by (5). As
we can see from Fig. 2 and Fig. 3, for 6, # 0, the more rota-
tion, the more moved in the positive x-direction the shadow
is. Such a motion points toward the rotation direction. In par-
ticular, the silhouette is deformed on the left (assuming that
the rotation is from left to right) for large values of a, 6, and
for rp. This difference between the left and the right sides is
due to the photon orbits and the spacetime dragging. On the
left, photons travel in the same direction of the black hole
rotation, on the right they travel in the opposite direction.
Points on the left and on the right in the shadow’s silhouette
are given by r,_ and r ), respectively. In Fig. 3, we see the
parameter ro can increase the shadow deformation for large
values of 6,. On the other hand, small values of 6, can pro-
duce highly symmetrical shadows even for large values of
a. Assuming that the M87* is observed at 17°, we note that

@ Springer

clearly the shadow. The parameters A = 1073M, rops = 35M, and
ro=025M,rg = 107'M, ro = 1072M and M = 1 are adopted in
these graphics

Ym

(xe, Ye)

Fig. 4 A schematic representation of the black hole shadow. The dis-
tances x7, and xr indicate the celestial coordinate x of the most negative
and most positive values assumed by that coordinate. +y,, are extremal
points in the y-axis. The new point (x., y.) is constructed in order to
define the shadow’s radius /(r),) and calculate the deviation from cir-
cularity

the deviation from circularity is small, and, for large values
of 0,, interestingly large values of ry decrease the shadow
size, according to Fig. 3 (see the second and the third shad-
owS).
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Fig. 5 Oblateness D and deviation from circularity AC for the class of
rotating regular black holes given by Eq. (1). As we can see, the parame-
ter ro, that which generates regular metrics, decreases the oblateness and

3 Oblateness and deviation from circularity

In this section, two observables are built, oblateness and devi-
ation from circularity. But following the Event Horizon Tele-
scope collaboration, I will use the latter in order to compute
an upper bound on the GUP parameter.

3.1 Oblateness

Following Refs. [3,53-55], let us construct two observ-
ables for the black hole shadow. The first one indicates
the difference between the x and y axes. Such a differ-
ence D is the oblateness. The second one, which was used
for the Event Horizon Telescope collaboration, provides the
shadow’s deviation from circularity using the root-mean-
square of the shadow’s radius.

In order to evaluate D, one adopts an approximation for
the Cartesian celestial coordinates x and y due to the large
distance of the observer, ryps = (16.8 £ 0.8)Mpc, which
turns the value of « into a small quantity. Thus, Egs. (29) and

6, = 90

1.00~

0.95

Q 0.90

—rg=10"M
0.85

—rg=107°M

—rp=10°M

0806 0.2 04 0.6 0.8 1.0

a/M

0, = 90°
0.05- 7

0.04 _ry=10°M

AC

0.0 0.2 0.4 0.6 0.8 1.0
a/M

increases the deviation from circularity. The parameters A = 1073 M,
Fobs = 10M, rg = 1073 M, and M = 1 are adopted in these graphics

(30) are rewritten as

x(rp) = —sin (oc(rp)) sin (,B(rp)), 31
y(rp) = —sin (a(rp)) cos (B(rp)) . (32)
The oblateness is simply defined as

Ax XR — XL

D=—= ) (33)
Ay 2ym

in which

xp = —sina(rp—) and xg =sina(rps), (34)

where 7, is solution of sin = 1, and rp is given by

sin B = —1. According to Fig. 4, the values x;, and xg (left

and right) indicate maximum and minimum values assumed
by the shadow silhouette on the x-axis. On the other hand,

Vm 1S obtained from (32) and its maximum, i.e., %r:) =0
leads to
. d d .
sinoe—— cos B + cos B— sina = 0. (35)
drp drp

@ Springer
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And the roots of Eq. (35) provide the value of r at which

Ym = y(rp). (36)

The parameter r = ry (rp— < rpy < rpy) indicates the
silhouette’s maximum value on the y-axis. And, as we can see
in all shadows shown here, +y,, are maximum and minimum
values of y due to axial symmetry. Moreover, as we will see,
the parameters xy, xg, and y, will be useful in order to
construct the deviation from circularity using the root-mean-
square of the shadow’s radius.

By using Eq. (33) for members of the class of rotating reg-
ular black holes studied here, Fig. 5 indicates a strong depen-
dence between oblateness and the rotation parameter a. The
more rotation, the more deformed the shadow is. Moreover,
the parameter rg, which is related to the GUP parameter,
modifies D, decreasing the oblateness.

3.2 Deviation from circularity

According to the Event Horizon Telescope collaboration [1],
a measure for the shadow deformation is provided by the
deviation from circularity, which is conceived of as devia-
tion from the root-mean-square of the radius /(r,). Follow-
ing Bambi et al. [3] (but here another parameterization is
adopted6), the shadow radius /(r) is defined as

1rp) = =202 + (v = 302, (37)

with x, = x(r),/) and y. = O (see Fig. 4). The average radius
(root-mean-square) is given by

1 "pt

lrRMS = \/(f l(rp)2drp. (38)
p+ r p—) rp—

According to the cited authors, who follow the report from

the collaboration, the deviation from circularity is conceived

of as the root-mean-square distance from the average radius

IrMms, that is to say,

ac= |— 1 [T Iems)d 39
= (xR—xL),/;, (1(rp) — Irms)” drp. (39)

However, as I said, another parametrization is adopted and
suggested here, demanding that (xg — x ) is in the denom-
inator of (39). Like the oblateness, AC increases with the
black hole rotation and the observation angle (see Fig. 5).
The Event Horizon Telescope reported AC < 0.1 assum-
ing a Kerr metric as the geometry of M87%*. Here Kerr-like
objects are adopted, and using the M87* parameters the devi-
ation from circularity given by Eq. (39) will provide an upper
bound on the GUP parameter.

6 Bambi et al. [3] use the angle defined by / and the x-axis in order to
parameterize the shadow radius.

@ Springer

—a. =095

—a. =0.99

2.x10% 3.x10% 4.x10% 5.x10%

Bo

1.x10%°  1.x10%

Fig. 6 Deviation from circularity AC, given by Eq. (39), for a rotating
regular black hole with M87* parameters (M = (6.540.7) x 10° M,
6, = 17° and ryps = (16.8 £ 0.8)Mpc) over the GUP parameter fy.
The reported deviation from circularity < 10%, assuming the interval
ax < 0.99, imposes an upper bound on the GUP parameter, i.e., By <
10%0. In this graphic, it is adopted ¢ = 1 in the mass function (4), which
renders the best upper bound on By, and A ~ 1.1 x 107?m

4 Estimating the quantum gravity parameter

In order to constrain the GUP parameter, it is necessary to
relate it to the spacetime metric. In Ref. [38], it is applied a
GUP in order to calculate quantum corrections to the black
hole temperature. From the GUP

Bol
AxAp > (1 + ﬁ—Q”Apz , (40)
where [, = ,/ 2—36 ~ 10™% m is the Planck length, and Sy

is the so-called GUP parameter or the dimensionless quan-
tum gravity parameter (as we can see, it is straightforward
that for B9 — O we have the standard uncertainty rela-
tion), we derived the quantum-corrected temperature for the
Schwarzschild black hole and, interestingly, such a tempera-
ture is the Hawking temperature for the Bardeen regular black
hole (up to second order approximation in /,/ry). Thus,
the Bardeen metric was interpreted as a quantum-corrected
Schwarzschild black hole under the assumption that the GUP
parameter could be related to a metric parameter (rg, the
parameter that generates regular black holes introduced in
Sect. 2), namely,

1
_ Bty
=—5
Assuming that the relation (41) is valid for the entire class
of regular black holes, for any ¢ in Eq. (4), whether spher-
ical or axisymmetric black holes, then the shadow of M87*
can provide an upper bound on r¢ and, consequently, on Sy.
That is to say, the deviation from circularity (39) depends
on the spacetime metric and its parameters like rg, thus, by
using the relation (41), AC will depend on By as well. Con-
sequently, the upper bound on the GUP parameter can be

o 41
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Table 1 Upper bounds on the GUP parameter Sy according to some
approaches. Scanning tunneling microscope, Lamb shift and Landau
Levels results are found in Ref. [40]. Gravitational waves result is found
in Ref. [44], and the upper bounds from the light deflection, pulsar PRS
B 1913+16 and perihelion precession were obtained in Ref. [43]. It is
worth mentioning that the work on gravitational waves [44] obtained
an even better upper bound when a different GUP was applied (< 10?°,
result comparable to upper bounds from quantum mechanics options)

Bo
Scanning tunneling microscope < 102!
Lamb shift < 10%
Landau levels <10
Gravitational waves < 10%
Perihelion precession < 109
Pulsar (PRS B 1913+16) < 10™
Light deflection <107
Black hole shadow < 10%

obtained by using AC(Bp) and the constraint provided by
the Event Horizon Telescope Collaboration for the deviation
from circularity.

Therefore, by using AC(Bp), given by Eq. (39), and
assuming the M87* parameters, i.e., M = (6.5 £ 0.7) x
109M@ and rops = (16.8 = 0.8)Mpc, the deviation from
circularity reported by the Collaboration, AC(fy) < 0.1,
imposes

Bo < 10%, (42)

for a, < 0.99 (with a, = a/M) and 6, = 17°, for g =
1,2 or ¢ = 3 in the mass function (4). As we can see in
Fig. 6, the constraint on the deviation from circularity gives
an upper bound on the GUP parameter, i.e., curves that satisfy
AC(Bp) < 0.1 with a, < 0.99 are possible only for values
given by Eq. (42). On the other hand, for a, > 0.99, the
deviation from circularity is always AC(Bp) > 0.1. Thus,
for 6, = 17°, the parameter a,, > 0.99 is ruled out according
to M87* shadow. As I pointed out in Introduction, the value
0, = 17° is conceived of as the angle between the jet and the
observer, assuming that the jet direction is orthogonal to the
MS8T7* equatorial plane. The range for the rotation parameter
presented here is in agreement with studies like [3], where the
Kerr metric is adopted in order to describe the M87* shadow.

As we can see in Table 1, By < 10% is the worst
value compared to other upper bounds provided by different
approaches, like the Lamb shift, Landau levels and scanning
tunneling microscope in Ref. [40], or using light deflection,
pulsar PRS B 1913+16 and perihelion precession in Ref.
[43], or from the gravitational waves in Ref. [44]. According
to Das and Vagenas [40], the scanning tunneling microscope
delivers the best one, By < 102!, On the other hand, like the
present work, the authors of Refs. [43] and [44] present upper

bounds based on gravitational phenomena, which rendered
worse values than those provided by quantum systems. Quan-
tum approaches have provided more stringent upper bounds
on the GUP parameter.

5 Final remarks

The Event Horizon Telescope announced the first image of
a black hole. According to the collaboration, the black hole
shadow is well-described by the Kerr metric. However, it is
argued that other options are still possible within the M87*
parameters. Bambi et al. [3], for example, did not rule out
a superspinar as a candidate for the geometry that produces
the M87* shadow. In this article, a class of rotating regular
black holes (thought of as a slight deviation from the Kerr
metric) is adopted in order to describe the reported shadow.
The class of rotating regular black holes studied here
presents a parameter according to which regular geometries
or black holes without a singularity are generated. In our work
[38], such a parameter from the spacetime metric was linked
to the GUP parameter. GUPs appear in theories of quantum
gravity and their parameters, which deform or generalize the
Heisenberg principle, have been estimated. From a reported
deviation from circularity of the M87* shadow (< 10%), an
upper bound on the GUP parameter was computed. Along-
side gravitational approaches adopted in order to obtain an
upper bound on the GUP parameter, the value obtained
here, By < 10°°, indicates that quantum options to estimate
such a parameter are better alternatives than the gravitational
options like gravitational waves, light deflection, pulsar PRS
B 1913+16, perihelion precession, and the black hole shadow
studied here. In general, quantum approaches provide more
stringent upper bounds on the GUP parameter to date.
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