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Abstract of the Dissertation

Anomalous Transport in Chiral Systems

by

Gustavo Machado Monteiro

Doctor of Philosophy

in

Physics

Stony Brook University

2016

The experimental realization of Dirac and Weyl semimetals in 2014
and 2015 respectively has increased the interest in the topic. Sim-
ilarly to graphene, the discovered materials are characterized by
massless quasiparticles. In three dimensions these quasiparticles
can be described by the Weyl Hamiltonian which exhibits so-called
chiral anomaly at low energies. The chiral anomaly has a transport
signature, namely, the enhancement of longitudinal conductivity
along the direction of external magnetic field. This e↵ect in new
materials is the condensed matter version of the chiral magnetic
e↵ect (CME) predicted to happen in heavy ion collisions. Due to
its topological nature the chiral anomaly it is believed to be robust
with respect to the interaction strength and anomalous contribu-
tion to transport is believed to be universal and independent of the
interaction.

This thesis is devoted to the study of magnetotransport in Dirac
and Weyl metals. For that, we use the chiral kinetic theory to
describe within the same framework both the negative magnetore-
sistance caused by chiral magnetic e↵ect and quantum oscillations
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in the magnetoresistance due to the existence of the Fermi sur-
face. In the second part, we refer to the hydrodynamics with gauge
anomaly and study the non-dissipative transport using variational
principle as a main tool. In the last part of the Thesis we also apply
variational approach to study the Hall viscosity in two-dimensional
systems.
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Chapter 1

Introduction

1.1 Thesis Outline

This thesis is organized in a way that one chapter is completely independent
of each other. The underlying connection between them is traced in the intro-
duction, where the di↵erent topics are tied together, even though the actual
pieces of the work may seem distinct.

At chapter 2, we will study the longitudinal magnetoconductivity of Dirac
and Weyl metals by analytically computing the Boltzmann equation. Mo-
tivated by the experiments on Cd

3

As
2

, we will study the interplay between
the Shubnikov-de Haas e↵ect with the negative magnetoresistance due to the
chiral anomaly at low energies. This chapter allows for a direct comparison
to the experimental data and is based on the published work [3] of the PhD
candidate.

Chapter 3 is more formal and has no direct connection to experiments. We
will construct the variational principle for the hydrodynamic equations with
gauge anomaly, focusing on the symmetry properties and the mathematical
structure of the problem. This chapter corresponds to the work done by the
PhD candidate in [6]. At chapter 4, we will study Hall viscosity terms in the
hydrodynamics from a variation principle. We will fix any ambiguity in defin-
ing conserved currents by introducing background fields from Newton-Cartan
geometry. Both chapters 3 and 4 rely on the so-called Clebsch parametrization,
which will be explained in the section 1.5.

In the last chapter, about other ongoing projects, we will present a conver-
gence point between both published pieces of work [3] and [6]. Such connection
rely on the transport properties of topologically protected surface states in
both kinetic theory and hydrodynamics. In the section 5.2, we will discuss the
existence of hydrodynamic surface modes, which can have some implication
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on the study of Fermi arcs in Weyl and Dirac semimetals.

1.2 Weyl and Dirac Semimetals

Throughout the last decade, we have succeeded in including the adjective
topological to various states of matter. Two ground states are topologically
equivalent if and only if we can adiabatically deform one into the other without
breaking any of the underlying symmetries. As an example, any conventional
insulator can be continuously connected to non-interacting atoms arranged in
a lattice. In a particular tight-binding model, this can be done by setting
the hopping parameter to zero. This definition relies on validity of the adi-
abatic theorem and is thus restricted to gapped systems. In general, gapless
phases occur in the quantum phase transition between two distinct topolog-
ical phases, where the adiabatic theorem breaks down. They are said to be
unstable when the gap closes only at the quantum critical point and stable
when gap remains closed for a finite interval in the parameter space [7]. Dirac
semimetals can be seen as an intermediate phase in between the trivial and
the topological insulator phases of the same material, where the gap closes at
isolated points in the Brillouin zone. The most well-known example is the com-
pound ZrTe

5

which was predicted to be a 3D quantum spin Hall insulator [8],
though transport and ARPES measurements have shown that it behaves in-
stead as a Dirac semimetal [9]. The e↵ective low-energy Hamiltonian for Dirac
semimetals is invariant under time-reversal and inversion symmetry, and its
quasiparticle excitations form a Kramer’s doublet. Weyl semimetals can be
obtained from Dirac semimetals by breaking either time reversal or inversion
symmetry, which splits the Dirac point into two band-touching (Weyl) points
with opposite chiralities.

Dirac semimetals were only experimentally realized in 2014, and the first
synthesized compounds were Cd

3

As
2

[10–12], Na
3

Bi [13] and ZrTe
5

[9]. Ex-
perimental data have shown that these materials are characterized by large
mobility and high magnetoresistance, which are mostly but not fully under-
stood. Although proposed before the Dirac semimetals, Weyl semimetals have
proven to be more challenging to be realized experimentally, being synthe-
sized only in 2015. There are only four Weyl semimetals known to date, these
are TaAs [14, 15], TaP [16], NbAs [17] and NbP. In addition to that, Weyl
semimetals are characterized by topologically protected surface states, called
Fermi arcs [16–19]. Fermi arcs connect two disjoint pieces of Fermi surface
with opposite chirality. In the case of Dirac semimetals, such Fermi arcs are
not topologically protected and can hybridize into a closed Fermi loop on the
surface [20].
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For the sake of simplicity, we will describe Weyl semimetals in the next
subsection in terms of a two-band model system. Dirac semimetals can be
understood as two copies of Weyl semimetals connected by time-reversal sym-
metry.

1.2.1 Two-band System: An Example

The most general two-band system Hamiltonian can be written as:

H(k) = b
0

(k) I
2⇥2

+ b(k) · �, (1.1)

where (b
0

, b) are real functions of the crystal quasimomentum k and � is the
vector whose components are the Pauli matrices. The symmetries of such
Bloch Hamiltonian can be extracted from the microscopics1:

T : H⇤(k) = H(�k), (1.2)

I : H(k) = H(�k), (1.3)

where T is the time-reversal operator and I is the lattice inversion. A two-
band system is only IT-invariant when b

2

(k) = 0, and the other real functions
are even in k. Band-touching points occur when b

1

(k0) = b
3

(k0) = 0, for
some k0 in the Brillouin zone. Since b

1,3(k) = 0 correspond to surfaces on
the three-dimensional Brillouin zone, their intersection defines either lines or
kissing points. Therefore, one cannot obtain a Weyl semimetal from a IT-
invariant system2. For systems with broken IT, the Bloch Hamiltonian (1.1)
becomes non-real and the Weyl points occur when the equation

b
1

(k
a

) = b
2

(k
a

) = b
3

(k
a

) = 0

admits solutions for a discrete set of points {k
a

} in the Brillouin zone. When
the Fermi energy lies near the energy of a Weyl point k0 2 {k

a

}, we can
linearize the Hamiltonian around such point. If we set the Weyl point energy
to be zero, the e↵ective Hamiltonian can be written as:

H(k) = (I
2⇥2

⌫j + �ivij) (�k)j, (1.4)

1The equation (1.2) is only true when the quasiparticle does not belong to a Kramer’s
doublet, i.e., it is a singlet under T.

2The quasiparticle dispersion relation will be flat in at least one direction. More sys-
tematically, one can show that Berry phase of Bloch states away from the band-touching
points vanishes for a IT-invariant system.
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where

⌫j =
@b

0

@kj

�

�

�

�

k0

, (1.5)

vij =
@bi
@kj

�

�

�

�

k0

, (1.6)

�k = k � k0. (1.7)

The zero-energy solutions of the Hamiltonian (1.4) fall into two classes: a
single Weyl point at k = k0; or a band-touching point at k = k0 connecting
two disjoint pieces of Fermi surface, one filled by hole states and the other by
electron quasiparticles. The former is a characteristic of type-I Weyl semimet-
als and the latter describes the recently discovered type-II Weyl semimetals
[1]. The dispersion relations for both cases is represented in Fig. 1.1.

Figure 1.1: Examples of dispersion relations for a) type-I and b) type-II Weyl
semimetals. These plots were extracted from [1].

Let us ignore the time-reversal symmetry for now and impose only the in-
version symmetry. If b(k) vanishes for some k0 in the Brillouin zone, equation
(1.3) imposes that necessarily b(�k0) = 0 and that both Weyl points are at
the same energy. Assuming that there are only two band touching points, the
low-energy e↵ective Hamiltonian becomes:

Heff (k) = H
+

(k) � H�(k), (1.8)

where H±(k) are the linearized Hamiltonians expanded at ±k0. They can be
expressed as:

H±(k) = ± (I
2⇥2

⌫j + �ivij) [kj ⌥ (k
0

)j]. (1.9)

4



We have again set the Weyl points to be at zero energy. The chirality of the

Weyl quasiparticle is defined by the sign of det
⇣

@bi
@kj

⌘

evaluated at the Weyl

point. Invariance over I imposes that the Weyl points have opposite chirality,
since:

det (�vij) = � det vij.

Let us repeat the analysis for a system with broken inversion symmetry,
yet invariant under time-reversal. If there is a Weyl point at k0, so will there
be another one at �k0. However, equation (1.2) show us that the Weyl points
have the same chirality. Nielsen-Ninomiya theorem states that the existence of
only Weyl points of the same chirality is inconsistent with lattice symmetries
[21]. In other words, Weyl point must come in pairs of opposite chirality as
it will be shown in the next section. Therefore the smallest number of Weyl
points in a T-invariant system with broken I is four.

1.2.2 Nielsen-Ninomiya Theorem

In this section, we will review the Nielsen-Ninomiya theorem, also known as
lattice doubling theorem. It was first introduced in [21], where the authors
considered a system of Weyl fermions on a lattice coupled to a gauge field.
The Nielsen-Ninomiya theorem states that Weyl points must come in pairs
and with opposite chiralities. In a more modern jargon, the total Berry flux
across all disjoint pieces of Fermi surface must vanish.

Let us consider the Hamiltonian (1.1) and assume that band-touching
points form discrete set of points {k

a

} in the Brillouin zone, BZ. For all
other points in the Brillouin zone, there is a gap between bands3. Neither the
gap nor the positions of the Weyl points depend on the the function b

0

(k).
Therefore, the bands can be labeled by eigenstates of:

h(k) = � · b(k)

|b(k)| , (1.10)

Obviously, this operator is not defined for the points {k
a

}. Away from
these points the eigenvalues of such operator are ±1, where �1 corresponds to
the “valence band” and +1 labels the “conduction band”. The domain of such
operation is the reduced Brillouin zone BZ 0 with such bad points removed.

3One can view this two-band system as a two-level system at each point in the Brillouin
zone.
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Formally, this reduced Brillouin zone is defined as:

BZ 0 = BZ \
[

↵

U↵,

where each U↵ is a small open set around the Weyl point k↵. The equation

h(k)|u±
k

i = ±|u±
k

i, (1.11)

defines what we call line bundles. In principle, a general state can be viewed
as a C2-vector at each point in BZ 0. The Hilbert space4 for states that satisfy
equation (1.11) are split into a direct sum H

k

⇠= C�C. If we restrict ourselves
to positive eigenvalue states of (1.11), we define a line bundle5 over BZ 0, since
↵|u±

k

i, with ↵ 2 C, is still a positive eigenvalue state of h(k).
The normalization condition fixes the modulus of |u+

k

i, however its phase
cannot be fixed by any of these arguments. This reduces the line bundle to a
U(1) principal bundle over the Brillouin zone. In physical terms, this means
that we can always multiply the state by a local phase, that is,

|u+

k

i ! ei'(k)|u+

k

i. (1.12)

Let us consider now a path on the Brillouin zone. The normalization
condition imposes that along the path:

hu+

k

| d
ds

u+

k

i = 0. (1.13)

This defines how the phase is parallel transported on the U(1) principle
bundle. In other words,

d

ds
|u+

k

i ⌘ dk

ds
· [r

k

+ iA(k)] |u+

k

i, (1.14)

where A(k) is the Berry connection over the U(1)-bundle. Contracting this
equation with hu+

k

|, we obtain:

A(k) = ihu+

k

|r
k

u+

k

i. (1.15)

Under the “gauge” transformation (1.12), the Berry connection transforms
as:

A ! A+r
k

' . (1.16)

4The total Hilbert space should be understood as H ⇠=
R �

BZ Hk dµ(k).
5A manifold which is locally isomorphic to C ⇥ U , where U is an open set of BZ 0
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In analogy with the electromagnetism, the gauge invariant quantity is the
Berry curvature, defined as:

⌦ ⌘ r
k

⇥ A . (1.17)

Thus,
r

k

· ⌦ = 0, 8k 2 BZ 0. (1.18)

Integrating (1.18) over the whole domain and using the Stokes theorem,
we find that:

X

↵

Z

@ U↵

⌦ · dS =
X

↵

c
1

(@ U↵) = 0, (1.19)

Therefore, Weyl points correspond to monopole solutions of the Berry cur-
vature and the total monopole charge (Chern number) must vanish. The
general proof for a many-band system can be found at [22].

1.2.3 Fermi Arcs

Fermi arcs are fingerprints of Weyl semimetals. They consist of topologically
protected surface states that connect two disjoint pieces of Fermi surface with
opposite Chern numbers. In this section, we will review on how Fermi arcs
occur in a simple two-band system.

In the case of Na
3

Bi and Cd
3

As
2

, the single-particle Hamiltonian near
the �-point can be described by the Kane model [23, 24]. The most general
Hamiltonian respecting crystal symmetries reads:

H
�

(k) = C(k) +

0

B

B

@

M(k) Ak
+

0 B⇤(k)
Ak� �M(k) B⇤(k) 0
0 B(k) M(k) �Ak�

B(k) 0 �Ak
+

�M(k)

1

C

C

A

, (1.20)

where k± = kx ± iky and

M(k) = �m
0

+m
1

k2

z +m
2

k
+

k�, (1.21)

C(k) = c
0

k2

z + c
1

k
+

k�, (1.22)

B(k) = Dkzk
2

+

. (1.23)

Dirac points occur at kD = (0, 0,±
p

m
0

/m
1

). If we neglect B(k), the
Hamiltonian exhibits an emergent Z

2

-symmetry and can be split into two
copies of two-band Hamiltonians:

H
�

= H+

�

� H�
�

, (1.24)
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where,
H±

�

= C(k)I
2⇥2

± Akx�x � Aky�y +M(k)�z. (1.25)

According to Peierls substitution, the crystal momentum should be re-
placed by k ! �ir + e

~A(x, t) in the e↵ective Hamiltonian. For simplicity,
let us consider the material to be confined in the half space, with y 2 [0,1),
and c

1

= m
2

= 0, so that higher orders of the ky can be neglected at low en-
ergies. The self-adjoint condition on the Hamiltonian operator requires that:

h�|H i � hH�| i = iA

Z

R2

dx dz
�

�†�y 
�

|y=0

= 0. (1.26)

Let us set the vector potential to zero for simplicity and Fourier trans-
form the eigenstate equation in (x, z)-directions. The equation for the Fourier
components is given by:

H±
�



kx,�i
d

dy
, kz

�

u±
k

(y) = " u±
k

(y). (1.27)

The boundary condition (1.26) can be imposed by assuming that, for given
Hermitian projectors P±, such that

P� + P
+

= I
2⇥2

and P� �y = �y P
+

,

the boundary conditions can be written as P� |y=0

= 0. As an example, let
us consider the following projectors:

P± =
1

2
[I

2⇥2

± �x].

The corresponding boundary condition becomes:

u±
k

(0) =

✓

1
1

◆

f±
k

, (1.28)

where f±
k

must be determined by the normalization condition. Boundary states
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exist for M(kz) > 0,6 that is, when

u±
k

(y) =

✓

1
1

◆

s

A

M(kz)
e�

M(kz)y
A (1.29)

is normalizable. The energies of surface states are given by:

"± = C(kz) ± Akx. (1.30)

Hence it easy to see that surface states start in one Weyl Fermi surface and
terminate at the opposite chirality Weyl Fermi surface, forming an arc instead
of a loop in the surface Brillouin zone.

1.3 Anomalous Hydrodynamics

So far, we have neglected the Coulomb interaction between electrons. All the
previous discussion is restricted to single-particle Hamiltonians or to weakly-
interacting systems that can be perturbatively connected to non-interacting
particles. In fact, to account for the electron-electron interaction, one may
consider the Fermi liquid theory developed by Landau. One the subtleties of
the Fermi liquid theory is the concept of quasiparticles. Roughly speaking,
quasiparticles are approximate eigenstates of the full electron Hamiltonian.
For excitations near the Fermi surface, the quasiparticle decay rate is given by
the inelastic scattering rate between electrons, which can be estimated solely
from kinematic arguments as:

1

⌧ee
⇠ k2

BT
2

~µ .

Hence, the Fermi liquid theory is justified for systems which µ � kBT .
Coulomb interactions in metals are e↵ectively short-ranged due to screen-
ing. In low-disorder Dirac and type-I Weyl semimetals, the Fermi energy lies
near the band-touching points throughout the whole sample, what makes the
Coulomb interaction much less screened and essentially long-ranged. There-
fore, the quasiparticle picture becomes meaningless and one may hope that
the electronic transport can still be described by a phenomenological hydrody-
namic theory which captures the non-trivial topology of Weyl/Dirac semimet-

6This is valid for m0, m1 < 0, otherwise we should have chosen the boundary conditions
to be P+ |y=0 = 0. For m0, m1 > 0, and P� |y=0 = 0, the Fermi arcs connect the
Weyl point through the Brillouin zone periodicity and the approximation (1.25) is not valid
anymore.
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als. If justified, this collective behavior can also give some insights about the
dynamics of quark-gluon plasma (QGP).

Since quarks up and down are states of approximately massless particles,
one should expect that at certain conditions7 they behave similarly to quasi-
particles in Dirac semimetals. However, such conditions are inaccessible in
collision experiments. On the other hand, QGP is a state of matter which
quarks and gluons coexist in a strongly interacting “soup” and can be pro-
duced for very short time in highly energetic hadronic collisions such as in
RHIC and LHC. Experimental data from RHIC have shown that QGP is best
described as a fluid. Therefore, strongly interacting Weyl/Dirac semimetals
might be condensed matter analogs of quark-gluon plasma under the condi-
tions previously discussed.

Hydrodynamics is a long-wavelength e↵ective description of interacting sys-
tems based on the assumption of local equilibrium. Hydrodynamic equations
are essentially local conservation laws supplemented by the constitutive rela-
tions between conserved densities. In the case of massless quark matter, there
are two species of fluid particles to each flavor, which are labeled by their
chirality. Although the charge of each fluid component is not conserved sep-
arately, the total fluid charge is indeed conserved. In a quantum field theory
jargon it means that the chiral current is anomalous. One of the signatures of
the chiral anomaly in hydrodynamics is the chiral magnetic e↵ect (CME) [25],
which corresponds to a non-dissipative current along and external magnetic
for a chirality unbalanced system.

1.3.1 The Chiral Magnetic E↵ect (CME)

In this section, we will review some of the arguments in [25] about the chiral
magnetic e↵ect in a condensed matter context. Although the hydrodynamic
behavior of Weyl/Dirac materials could potentially appear only at high tem-
peratures and small chemical potential, one can still obtain the linear response
transport from hydrostatics. Let us consider a two-component Dirac/Weyl
fluid, such that the total fluid charge is conserved, but the charge of each
specie is not. The conservation laws in the presence of an external electromag-

7For extremely high temperatures, the QCD coupling becomes small and quarks behave
almost as free particles, which is called asymptotic freedom.
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netic field is given by:

@n

@t
+r · j = 0, (1.31)

@Pi

@t
+ rjT

j
i = nEi + (j ⇥ B)i , (1.32)

@E
@t

+r · J
E

= j · E, (1.33)

@n
5

@t
+r · j5 =

e3

2⇡2

E · B. (1.34)

From the first law of thermodynamics in its local form, one obtains:

@E
@t

= T
@s

@t
+ µ

@n

@t
+ µ

5

@n
5

@t
+ v · @P

@t
. (1.35)

Assuming that the external fields are homogenous, let us seek for homoge-
neous solutions of eqs. (1.31) to (1.34):

T
@s

@t
+

e3µ
5

2⇡2

E · B + v · (nE + j ⇥ B) = j · E. (1.36)

At zero temperature, it implies that:

j = nv +
e3µ

5

2⇡2

B. (1.37)

The second term in (1.37) is the CME current. Such term is non-dissipative
and vanishes at equilibrium, since µ

5

= 0 in absence of electric field. Let us now
introduce both momentum and chirality dissipation to eqs. (1.31) to (1.34).
The origin of this dissipation can be either impurity scattering at low temper-
ature or phonon scattering at high temperature. Let us denote the momentum
and chirality characteristic relaxation times by ⌧ and ⌧v respectively. For ho-
mogenous and stationary field configurations, we are left with the following
equations:

nE + j ⇥ B � P

⌧
= 0, (1.38)

e2

2⇡2

E · B � n
5

⌧v
= 0. (1.39)

The chiral density for an isotropic type-I Weyl/Dirac semimetal at zero
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temperature and finite chemical potential can be written as:

n
5

=
eµ

5

⇡2v3F

✓

µ2 +
µ2

5

3

◆

⇡ eµ2

⇡2v3F
µ
5

By definition, we can express the momentum density8 as e
m⇤P ⌘ nv.

Therefore, the equation (1.38) becomes:

nE + j ⇥ B � m⇤

e⌧



j � e4v3F ⌧v
4⇡2µ2

(E · B)B

�

= 0. (1.40)

Solving for the resistivity tensor, we find:

⇢ij = ⇢
0

�ij � ✏ijkB
k

n
� C⇢2

0

1 + C⇢
0

B2

BiBj, (1.41)

where ⇢
0

= m⇤

ne⌧
is the Drude conductivity and C is CME coe�cient, given by:

C =
e4v3F ⌧v
4⇡2µ2

. (1.42)

For uniform magnetic field in z-direction, that is, B = Bẑ, we obtain an
enhancement of the conductivity along the magnetic field.

⇢zz =
⇢
0

1 + C⇢
0

B2

. (1.43)

As we will see in the next chapter, this result agrees with the one calculated
from kinetic theory by solving the Boltzmann equation.

1.4 Hall Fluid

As already mentioned, hydrodynamics is a powerful tool to study strongly
interacting systems, including for example the fractional quantum Hall e↵ect
(FQHE). One of the attempts to model fractional quantum Hall states relies on
the Landau-Ginsburg theory, also referred as Chern-Simons-Landau-Ginzburg
theory. Such theory can be rewritten in terms of hydrodynamic-type equa-
tions describing the dynamics of FQH liquid [26]. The main features of this
approach are the incompressibility of the electron flow, due to the gap sepa-
ration between the FQH ground state and the excited ones9, and the relation

8The quantity m⇤ is called e↵ective mass, which is a function of µ, µ5 and T .
9The gap refers to FQH states with the same filling factor.
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between the density of the fluid and its vorticity. Although the hydrodynamic
model in [26] captures many features of FQHE states, it fails to give the cor-
rect value for the Hall viscosity. A refinement of this model which accounts
for the correct value of Hall viscosity for Laughlin states was proposed in [27].

Throughout this thesis, we will reserve the term Hall viscosity for fluids
which the density-vorticity constraint is imposed. In the absence of such con-
straint, we will adopt the term odd viscosity instead. Odd viscosity is the
dissipationless and parity-odd part of response to strain and shear. It is part
of the viscosity tensor, though it performs no work on the fluid. From elastic-
ity theory, first-order gradient corrections to the stress tensor can be written
as

⌧ ij =
1

2
�ijkl (@kul + @luk) +

1

2
⌘ijkl (@ku̇l + @lu̇k) , (1.44)

where ui is the displacement field. The coe�cients �ijkl form the elastic mod-
ulus tensor and ⌘ijkl is the viscosity tensor, since u̇i for a fluid gives the flow
velocity vi. Usually viscosity is associated to dissipation, however only the
symmetric part of the viscosity tensor, i.e., ⌘ijkl = ⌘klij contributes to it.

By Onsager relation, the antisymmetric part of ⌘ijkl must vanish in a
time reversal system. It must also vanish in three dimensions if the tensor
is isotropic. Nevertheless, in two dimensions the odd viscosity is compatible
with isotropy [28]:

⌘ijkl = ⌘H
�

✏ik�jl + ✏jl�ik
�

. (1.45)

The odd viscosity part of the stress tensor can be written as:

⌧ ikH = ⌘H
�

✏ij@jv
k + ✏kj@jv

i + �ik✏jl@jvl
�

, (1.46)

= ⌘H
�

✏ij@jv
k + ✏kl�ij@jvl

�

. (1.47)

For FQH states [29, 30], ⌘H = 1

2

n̄s̄~, where n̄ average particle density and
s̄ is the average orbital spin per particle. In fact, as we will describe in the
chapter 4, the odd viscosity is also closely related to the existence of the fluid
intrinsic angular momentum (spin).

1.5 Clebsch Parametrization

In this section, we will present the variational formalism for hydrodynamic
equations of a perfect fluid. It contains the basic tools we will use in chapters
3 and 4. To write the hydrodynamic action, it requires the parametrization
of hydrodynamic variables in terms of unphysical auxiliary variables, called
Clebsch potentials. They were first introduced in 1859 by Clebsch himself. He
has shown that velocity flows which satisfy the non-relativistic Euler equation
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in 3 spatial dimensions can be parametrized by 3 scalar functions, that is,

v = r✓ + ↵r�. (1.48)

The use of the Clebsch parametrization enlarges the phase space and re-
moves the degeneracy of the Poisson algebra. The latter degeneracy of the
Poisson structure makes impossible to write a symplectic form and conse-
quently the full action only in terms of hydrodynamic quantities. To illustrate
this fact, let us construct the Poisson algebra for hydrodynamic variables only
by symmetry arguments.

From classical mechanics, the total momentum of a system is the canon-
ical generator of translations. The same way, the momentum density P of
a fluid corresponds to the canonical generator of local translations (spatial
di↵eomorphisms). This fixes the Poisson bracket between components of the
momentum density to be:

{Pi(x), Pk(x
0)} = [Pk(x)@i + Pi(x

0)@k] �(x � x

0). (1.49)

This can be derived by imposing that:
Z

dDx ⇣ i(x){Pi(x), Pk(x
0)} ⌘ L

⇣

0Pk(x
0),

where L
⇣

denotes the Lie derivative with respect to the vector field ⇣

10. From
the same argument, the particle density should transform as a tensor density
under di↵ermorphisms, what gives us:

{Pi(x), ⇢(x
0)} = ⇢(x)@i�(x � x

0). (1.50)

The last bracket to be determined is between the particle density with itself.
Since the particle number conservation follows from the gauge invariance, we
can view the particle density as the generator of local gauge transformations.
Because it does not transform under gauge transformation, we find this last
bracket to be:

{⇢(x), ⇢(x0)} = 0. (1.51)

The algebra (1.49 - 1.51) is known as Lie-Poisson algebra. It is important
to point out that this algebra is based only symmetry analysis and does not
rely on the form of the fluid Hamiltonian.

Given the Poisson brackets and the Hamiltonian, we can only write down

10Notice that the bracket (1.49) does not depend on the number of dimensions
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an action if and only if the Poisson structure admits inverse11. The Poisson
algebra is only invertible if it admits no Casimirs, that is, if there exist no
functional F such that:

{F, Pi(x)} = {F, ⇢(x)} = 0. (1.52)

However, the algebra (1.49-1.51) admits Casimirs in all dimensions, making
the variational principle solely in terms of hydrodynamic variables impossible.
As mentioned in the beginning of this section, we can view this algebra as some
sort of reduction from a canonical Poisson algebra, which can be inverted. The
goal of the next sections is to obtain the hydrodynamic action in terms of these
canonical variables.

1.5.1 Non-relativistic Hydrodynamic Action

In this section, we will construct the variational principle for the non-relativistic
hydrodynamics in 2 and 3 spatial dimensions at zero temperature. We will
discuss the finite temperature case in the following section. Intuitively, let us
start from the following action:

S =

Z

⇢

1

2
⇢v2 � "(⇢) + ✓

h

@t⇢+r · (⇢v)
i

�

dDx dt, (1.53)

where the first term is the kinetic energy density of the fluid and the second
term is the internal energy density12. In the last term, we have imposed the
continuity equation as a constraint in the action.

In order to obtain the equations of motion, let us vary the action with
respect to ⇢, ✓ and v:

✓ : @t⇢+r · (⇢v) = 0 , (1.54)

v : v � r✓ = 0 , (1.55)

⇢ : @t✓ � v ·
⇣

v

2
� r✓

⌘

+ "0(⇢) = 0 . (1.56)

We can combine equations (1.54 - 1.56) into the form of momentum con-
servation:

@t(⇢vi) = �@k
⇥

⇢ �jkvivj + �ki (" � ⇢"0)
⇤

, (1.57)

where vi is given in (1.55). From thermodynamic identities, we find that "�⇢"0

gives the fluid pressure P (⇢).

11The inverse of the Poisson structure is called symplectic form.
12The potential energy of a fluid is given by its internal energy.
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Although the action (1.53) reproduces the continuity equation and the
momentum conservation, equation (1.55) imposes that the flow is irrotational.
We already know from (1.48) that it is necessary 3 scalar fields to parametrize
a general flow in 3 dimensions. We could impose this condition directly into
the action, however a more consistent way to do so is to introduce a passive
scalar field �, that is, a scalar field which is transported by the flow:

@t� + v · r� = 0.

Therefore, we can rewrite the hydrodynamic action as:

S =

Z

⇢

1

2
⇢v2 � "(⇢) � ⇢

h

@t✓ + ↵ @t� + v · (r✓ + ↵r�)
i

�

dDx dt. (1.58)

The introduction of the new passive scalar � automatically provide us
(1.48) as the equation of motion for v. Equation (1.54) is unchanged and the
other equations of motion are given by:

� : @t(↵⇢) +r · (↵⇢v) = 0 , (1.59)

↵ : @t� + v · r� = 0 , (1.60)

⇢ : @t✓ + ↵ @t� � v ·
⇣

v

2
� r✓ + ↵r�

⌘

+ "0(⇢) = 0 . (1.61)

One can check that equation (1.57) is still valid if we write the velocity
field as

v = r✓ + ↵r�.

In the action (1.58), v is a Lagrange multiplier and can be “integrated
out”, giving us an action that depends only on ⇢, ✓, ↵ and �. These are the
canonical variables for hydrodynamics. We recover the Poisson algebra (1.49-
1.51) as a reduction of the canonical Poisson structure, given in terms of ⇢, ✓,
↵ and �.

1.5.2 Entropy Conservation

In the previous section, we have considered the hydrodynamic action given in
terms of 4 variables. It turns out that the action (1.58) is valid for both 2
and 3 dimensions at zero temperature. The reason is that the total number
of conservation laws is given by D + 1, that is, D equations for (1.57) and
one for (1.54). It is not hard to show that for the action (1.58), the energy
conservation follows from the other D + 1 equations. However, this is not
true for flows at finite temperature, since the energy conservation must also
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account for the entropy conservation. Therefore, for finite temperature, the
total number of conservation laws is D + 2.

For D = 2, the number of equations match the number of variables, and
we need not add another passive scalar to the problem. However, for D = 3,
the number of equations exceeds the number of variables and we must add
another pair of Clebsch potentials. The entropy flow can be introduced in 2
dimensions by promoting the passive scalar � to be the entropy per particle
�. On the other hand, in 3 dimension, we must add the entropy per particle
� in the same way we have added � in the action (1.58). The energy density
now becomes a function of ⇢ and �. The action of a perfect fluid at finite
temperature can be written as:

S =

Z



1

2
⇢v2 � "(⇢, �) � ⇢

�

⇠
0

+ vi⇠i
�

�

dDx dt, (1.62)

where ⇠
0

and ⇠i are defined as:

⇠
0

= @t✓ + ↵ @t� + � @t�, (1.63)

⇠i = @i✓ + ↵ @i� + � @i�, (1.64)

in 3 dimensions and in 2 dimensions as:

⇠
0

= @t✓ + ↵ @t�, (1.65)

⇠i = @i✓ + ↵ @i�. (1.66)

1.5.3 Relativistic Hydrodynamic Action

Let us now consider the variation principle for relativistic hydrodynamics. We
will discuss only the zero temperature case, however the generalization for
finite temperatures is straightforward. We will also restrict ourselves to 3 + 1
dimensions. Let us define ⇠⌫ = @⌫✓+ ↵ @⌫� and denote the components of the
charge current by J⌫ . Here we have used the covariant notation with ⌫ runs
for 0 to 3.

The charge density at the rest frame is given by:

n =
p

�g⌫�J⌫J�,

where g⌫� = diag(�1, 1, 1, 1) is the Minkowski metric. At zero temperature,
the energy density at the rest frame, ", is function of n only. Thus, we can
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write the perfect fluid action as:

S = �
Z

[J⌫⇠⌫ + "(n)] d4x. (1.67)

The full set of variational equations is obtained by varying (1.67) over J�,
✓, ↵ and �:

�S

�J�
= "0(n)

J�
n

� ⇠� = 0 , (1.68)

�S

�✓
= @�J

� = 0 , (1.69)

�S

�↵
= J�@�� = 0 , (1.70)

�S

��
= @�

�

↵J�
�

= J�@�↵ = 0 . (1.71)

In order to derive the energy-momentum conservation, let us consider the
following identity:

J�



@�

✓

�S

�J⌫

◆

� @⌫

✓

�S

�J�

◆�

= 0. (1.72)

After some manipulations, equation (1.72) becomes:

@�

✓

"0
J�J⌫
n

◆

� n2@⌫

✓

"0

n

◆

� "0

2n
@⌫(n

2) = J� (@�↵ @⌫� � @⌫↵ @��) . (1.73)

Using equations (1.70) and (1.71), we can see that the right hand side of
the equation above vanishes. Here, it is convenient to rewrite the 4-current J�

as:
J� ⌘ nu� , such that u�u� = �1 .

In addition to that, from thermodynamics, the chemical potential is defined
as "0(n) ⌘ µ(n) and the pressure variation is given by dP = ndµ. Therefore,
we can write the energy-momentum conservation as:

@�
�

µnu⌫u
� + ��⌫P

�

= 0. (1.74)

The coupling with an external gauge field is given by

S ! S +

Z

J⌫A⌫ d
4x.
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Chapter 2

Magnetotransport in Dirac and
Weyl Metals

The CME has been observed in the Dirac semimetals Na
3

Bi [13], ZrTe
5

[9]
and in the type-I Weyl semimetals TaAs [31], NbP [32] and TaP [4, 5]. A
weak, yet not conclusive, indication of negative magnetoresistance was found
in [2] for Cd

3

As
2

, though no signature of such has been observed in [33]. Both
experiments however have observed Shubnikov-de Haas (SdH) oscillations, in-
ferring the presence of a large Fermi surface1. Therefore, this metallic behavior
allow us to study transport within the semiclassical regime. The framework to
study responses in Weyl/Dirac metals is the chiral kinetic theory, developed
in [34, 35]. In this chapter, we will consider the interplay between CME and
SdH e↵ect by analytically computing the longitudinal magnetoresistance [3].

2.1 Semiclassical Dynamics

Kinetic theory is a powerful tool to study metallic transport. It relies on
the semiclassical approximation to the dynamics of quasiparticle wave-packets
near the Fermi surface2. In this section, we will study the dynamics of Weyl
quasiparticles by focusing on its phase space structure. This allows for the
introduction of quantum e↵ects such as the discreteness of the density of states
in the presence of magnetic field (Landau levels), which is responsible for the
SdH e↵ect.

1Large Fermi surface in comparison to other energy scales of the problem, namely tem-
perature and the gap between Landau levels.

2Quasiparticles away from the Fermi surface decay too fast and cannot be captured
by the semiclassical approach. However, in the Fermi liquid theory only states near Fermi
surface contribute to transport.
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The semiclassical action that accounts for the Berry curvature contribution
in the electron quasiparticle trajectory was derived in [36].

S =

Z tf

ti

h

(~k � eA) · ẋ+A · ~k̇ � "
0

(k) +m(k) · B + e�
i

dt, (2.1)

where A is the Berry connection, A the vector potential, � the electric po-
tential, "

0

(k) is the band dispersion relation and m(k) is the wave-packet
magnetization given by:

m(k) = � ie

2~hr
k

u
k

| ⇥ [H(k) � "
0

(k)]|r
k

u
k

i. (2.2)

For the two-band system (1.1), the magnetization simplifies:

m(k) =
e

~ |b(k)|⌦(k). (2.3)

From now on, let us denote " = "
0

� m · B for short. The equations of
motion for the quasiparticle trajectories are given by3:

ẋ = v

k

� k̇ ⇥ ⌦(k), (2.4)

~k̇ = �eE � e ẋ ⇥ B, (2.5)

In the equation (2.4), we have introduced the group velocity vector v
k

=
1

~rk

". These equations decouple and can be rewritten as:

⇣

1 +
e

~B · ⌦
⌘

ẋ = v

k

+
e

~B (v
k

· ⌦) +
e

~E ⇥ ⌦, (2.6)

⇣

1 +
e

~B · ⌦
⌘

k̇ = � e

~E � e

~ v

k

⇥ B � e2

~2⌦ (E · B). (2.7)

The presence of a non-vanishing Berry curvature modifies the phase space
volume. To illustrate this, let us introduce the phase-space coordinates ⇠A =
(ka, xb). In this new notation, the action (2.1) has the following general form:

S =

Z tf

ti

h

⇣A (⇠, t) ⇠̇A � H(⇠, t)
i

dt. (2.8)

3The last term in (2.4) is sometimes referred as anomalous velocity in allusion to the
work of Karplus and Luttinger in 1954.
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Equations of motion are:

!AB ⇠̇
B +

@⇣A
@t

+ @AH = 0, (2.9)

where !AB = @A⇣B � @B⇣A are the symplectic form components. The inverse
of the symplectic matrix defines the Poisson structure, that is,

�

!�1

�AB ⌘ {⇠A, ⇠B} .

Hence, equation (2.9) becomes:

⇠̇A = {⇠A, ⇠B}
✓

@⇣B
@t

+
@H

@⇠B

◆

. (2.10)

Poisson brackets for this system are given by:

{xa, xb} =
✏abc⌦c

~⌥ , (2.11)

{ka, kb} = �e ✏abc B
c

~2⌥ , (2.12)

{xa, kb} =
~ �ab + eBa⌦b

~2⌥ , (2.13)

with
⌥ = 1 +

e

~B · ⌦(k). (2.14)

From equations (2.11-2.13), one can notice that the semiclassical approxi-
mation is only justified for

eB

~ |⌦| ⌧ 1. (2.15)

Since the Berry curvature is a function of the crystal quasimomentum,
the inequality (2.15) can be viewed as defining the values of the quasiparticle
momenta which the semiclassical approximation is valid. The region Q, where

{(x,k) 2 Q, if
eB(x, t)

~ |⌦(k)| > 1},

is called quantum region and reflects the existence of chiral modes in the
lowest Landau level. Nevertheless, only quasiparticles near the Fermi surface
contribute to transport and such region of the phase space will be inaccessible
for most of transport quantities.
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The phase space measure is defined as:

p

| det!AB| d
3xd3k

(2⇡)3
= |⌥| d

3xd3k

(2⇡)3
.

We are only interested in the region of the phase space where semiclassical
regime holds, therefore we can drop the modulus sign of ⌥. Formally this can
be done by removing these quantum regions from the phase space:

{(x,k) 2 R3 ⇥ BZ \ Q}.

For uniform magnetic field, the reduced phase space becomes simply R3 ⇥
BZ 0, where the radius of each open set is defined by the implicit equation
|⌦(k)| = `2B. In the presence of magnetic field, not every point in the phase
space correspond to an allowed state. In fact, the density of states becomes dis-
crete due to the existence of Landau levels. We can introduce quantum e↵ects
to this framework by accounting for the discreteness of Landau levels. To do
so, we will use the Bohr-Sommerfeld quantization condition. The prescription
here is the same one used in the old quantum theory; given a classical system,
we introduce quantum e↵ects by imposing that canonical variables satisfy:

I

�

pi dqi = 2⇡~ (ni +
1

4

ind�),

where � is a loop in phase space in which the Hamiltonian is constant, and
ind� is the Maslov index of �.

However, in the presence of a nonvanishing Berry curvature the perpen-
dicular components of k, with respect to B, fail to be canonically conjugated,
vide (2.12). Following the same recipe and assuming a uniform magnetic field
B = Bẑ, the discreteness of Landau levels can be imposed by setting:

1

2

I

�

⇣

1 +
e

~⌦ · B
⌘

ẑ · k ⇥ dk =
2⇡

`2B
(⌫ + 1

4

ind�) . (2.16)

Equation (2.16) implies the area quantization for the section of the Brillouin
zone with kz constant, in terms of the magnetic length

`B =

r

~
eB

. (2.17)

As an example, let us consider the isotropic version of the e↵ective Hamil-
tonian (1.8), with ⌫i = 0 and vij = vF �ij. For clean systems, we can treat
each chirality independently. Therefore, the Berry curvature for each chirality
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� has the monopole form:

⌦�(k) = �
k̂

2k2

. (2.18)

The semiclassical assumption (2.15) translates into k2`2B � 1

2

. This condi-
tion is equivalent to the weak field limit where many Landau level are filled. In
this limit one can still think about Fermi sphere albeit stratified into Landau
level “cylinders”, see Figure 2.1.

Figure 2.1: Semiclassical picture of Fermi surface for right and left chiral modes
is shown in the presence of the magnetic field. For the linear dispersion, the
support of Hamiltonian eigenstates is a collection of cylinders corresponding
to eigenvalues "⌫(kz) = ~vF

p

k2

z + k2

?, where k2

? = 2eB⌫ with ⌫ 2 Z
+

. The
state with ⌫ = 0 is chiral and exists only for kz > 0 (parallel to B) for the
right chirality and for kz < 0 for the left one.

We can find the surfaces with constant ⌫ in k-space by solving equation
(2.16):

⌫ +
1

4
ind� =

`2B
2

 

k2

? � �kz

`2B
p

k2

? + k2

z

!

, (2.19)

=
1

2

�

k2`2B sin2 ✓ � � cos ✓
�

. (2.20)

If we impose that ⌫ = 0 is the smallest possible integer solution of (2.20)
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and use the fact that ind� 2 Z; the only possible values of the Maslov index
are {�2,�1, 0}. In addition to that, the area of any cross-section in the BZ
must be positive. These conditions necessarily fix ind� = 0.

2.2 Chiral Kinetic Theory

In this section, we will review the chiral kinetic theory developed in [34, 35].
Let us restrict ourselves to the reduced phase space. For uniform magnetic
field, the phase space measure is transported by the Hamiltonian flow4, that
is:

@⌥

@t
+r

x

· (⌥ẋ) +r
k

·
⇣

⌥k̇
⌘

= 0, (2.21)

Here, we have used that r
k

· ⌦ = 0 to (x,k) 2 R3 ⇥ BZ 0. The phase
space measure refers to the density of states on a region in phase space. On
the other hand, the distribution function f(x,k, t) indicates the probability of
such state to be occupied. The distribution function satisfies the Boltzmann
equation:

@f

@t
+ ẋ · r

x

f + k̇ · r
k

f = I[f ], (2.22)

where I[f ] is the collision integral. At low temperatures, the impurity scat-
tering is the leading contribution to conductivity tensor. In this and in the
following sections, we will restrict ourselves to collision integrals that corre-
spond impurity scattering. Given the transition rate w

k

0!k

from an initial
state k

0 to a final state k, the collision integral can be written as:

I[f ] =
Z

BZ
[f(k0) � f(k)]w

k

0!k

⌥0 d
3k0

(2⇡)3
. (2.23)

We have assumed the elastic scattering probability to be invariant under
time reversal, i.e. w

k

0!k

= w
k!k

0 . In addition to that, we have used that

[f 0 (1 � f) � f (1 � f 0)] = f(k0) � f(k).

The prime quantities denote functions of momentum k

0. Multiplying equation

4This is not true for non-uniform magnetic field. For that, equation (2.21) does not
equate to zero and one must be careful on the choice of the phase space domain, either by
defining Q which satisfies the Liouville theorem, or by accounting for the discreteness of
Landau levels.
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(2.22) by ⌥ and integrating over the BZ 0, we end up with:

@n

@t
+r

x

· j = �e2

~
X

↵

Z

@ U↵

f
h

E + v

k

⇥ B +
e

~⌦ (E · B)
i

· dS

(2⇡)3
, (2.24)

where we have defined:

n(x, t) = �e

Z

BZ
f
⇣

1 +
e

~⌦ · B
⌘ d3k

(2⇡)3
, (2.25)

j(x, t) = �e

Z

BZ
f
h

v

k

+
e

~ (v
k

· ⌦)B +
e

~E ⇥ ⌦
i d3k

(2⇡)3
. (2.26)

The distribution function is assumed to vary slowly inside the open sets
U↵ (small quantum region). Therefore, we can approximate f(x,k, t) in the
right hand side of equation (2.24) to its value at the Weyl point:

@n

@t
+r

x

· j = � e3

4⇡2~2E · B
X

↵

f(x,k↵, t)c1(@ U↵). (2.27)

Charge conservation imposes that

X

↵

f(x,k↵, t)c1(@ U↵) = 0.

If the Weyl/Dirac metal is composed by several disjoint pieces of Fermi
surface and if we neglect the scattering between them, equation (2.27) shows
that the charge of each piece of Fermi surface is not conserved. Let us consider
again the e↵ective Hamiltonian (1.8), with ⌫i = 0 and vij = vF �ij. The total
density is given by

n =
X

�=±
n�,

where

n�(x, t) = �e

Z

BZ

f�

⇣

1 +
�e

2~k2

k̂ · B
⌘ d3k

(2⇡)3
. (2.28)

Neglecting the inter-chirality scattering (clean samples), the charge density
for each chirality satisfies the following equation:

@n�

@t
+r

x

· j� = ��
e3

4⇡2~2E · B f�(x,�k0

, t). (2.29)

If we also account for the holes, the Fermi-Dirac distribution at each Weyl
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point is given by:

f�(x,�k0

, t) =
1

e�["(�k0)�µ] + 1
� 1

e�["(�k0)+µ] + 1
= 1,

since "(�k
0

) = 0. In fact, by imposing that f(x,k↵, t) = 1 for all Weyl points5

k↵, the charge conservation (2.27) is automatically satisfied. Let us define the
axial density to be

n
5

= �
X

�=±
�n�.

This way, we will recover the equations (1.31) and (1.34).

2.3 Boltzmann Equation

In this section, we will solve the Boltzmann equation for a system with Weyl
quasiparticles in the regime when we can treat each chirality independently.
Although Dirac/Weyl metals are usually characterized by linear dispersion of
quasiparticles "(k) = ~vF |k � k

0

|, the assumption of linear spectrum will be
absent in this section. Yet, we will restrict ourselves to an isotropic system
and neglect magnetization e↵ects. The chemical potential or Fermi energy
define the size of Fermi surface "F = "(kF ), where the Fermi momentum
is related to the density of conduction electrons (per chirality) by standard
formula kF = (6⇡2n�)1/3.

The impurity scattering introduces another scale into the problem, the scat-
tering rate. The system is called clean when the quasiparticle performs many
cyclotron orbits before colliding or, equivalently, when the mean-free-path is
much larger than the cyclotron radius, vF ⌧ � kF `

2

B. We will restrict ourselves
to single-impurity scattering approximation and neglect interference and lo-
calization e↵ects. This approximation is valid when the density of impurities
is low. Thus, the regime of interest in this work is defined by

1 ⌧ (kF `B)
2 ⌧ kFvF ⌧ , (2.30)

where for the linear spectrum the last term correspond to "F ⌧/~.
The distribution function is obtained by solving the Boltzmann equation.

Since we are interested in linear response, we must expand f(x,k, t) around
the equilibrium (Fermi-Dirac) distribution function f

0

("):

f(x,k, t) = f
0

(") + e
@f

0

@"
E · g + O(E2) . (2.31)

5This can be viewed as a particular boundary condition on the distribution function.
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Having g(x,k, t), the solution of the linearized Boltzmann equation, and
substituting the ansatz (2.31) into (2.26), the conductivity tensor reads:

�ab = � e2
Z

@f
0

@"
gb

⇣

v

k

+
e

~ (v
k

· ⌦)B
⌘

a

d3k

(2⇡)3
+

+
e2

~ "abc

Z

⌦c(k)f0(")
d3k

(2⇡)3
, (2.32)

= � e2
X

�=±

Z

@f
0

@"
gb vk

⇣

k̂ + �⇣kẑ
⌘

a

d3k

(2⇡)3
. (2.33)

Here and in the following all the expressions will refer to a single pair of
Weyl quasiparticles with opposite chirality. The assumption that the Weyl
points can be treated independently is valid when they are far apart in the
Brillouin zone6, so that the quasiparticle scattering from one Weyl cone to the
other requires a large momentum transfer. The last term in equation (2.32)
vanishes for isotropic dispersion relations. The last equality is obtained with
the use of (2.18) assuming that the system is isotropic and that the integral
is dominated by a vicinity to the Fermi surface due to the factor @f

0

/@". We
have also introduced the small parameter ⇣k = 1/(2k2`2B) and considered that
the magnetic field is along the z-direction.

For Dirac metals, the Z
2

-symmetry holds at low energies and interaction
terms that break this symmetry are sub-leading in comparison to the Chern
number-preserving ones. In this limit, the Boltzmann equations for di↵erent
chiralities decouple and the collision integral accounts only for intra-chirality
scattering. Using the equations of motions (2.6) and (2.7), the Boltzmann
equation for g(t,k) in the linearized regime becomes:

h

⌥(@t + i!) � e

~(vk

⇥ B) · r
k

i

g = (2.34)

= v

k

+
e

~(vk

· ⌦)B +

Z

BZ

d3k0

(2⇡)3
(⌥0w

k

0!k

⌥) [g0 � g] .

In equation (2.34), we have assumed that the system is uniform and the
electric field oscillates with the frequency !, i.e., E = E

0

ei!t. It is straight-
forward to observe that this equation does not admit any stationary solution7

when ! = 0. This is the manifestation of the chiral anomaly in kinetic theory,
the constant parallel electric and magnetic field continue to pump chirality
into the system. However, a stationary solution does exist in the presence of

6In comparison to the Fermi momentum of each disjoint piece of Fermi surface.
7This can be seen by integrating (2.34) over the solid angle.
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a chirality relaxation mechanism.
To determine w

k

0!k

, we assume that the elastic scattering occurs on weak
and short-range impurity potential and the concentration of impurities is very
dilute. We thus model the single-impurity scattering by

w
k

0!k

=
3

2⌫(")⌧(")
(1 + k̂

0 · k̂) �(" � "0) , (2.35)

where ⌫(") is the density of states – in the absence of magnetic field – at the
energy ". We assumed that the scattering is elastic and averaged over impurity
positions. All microscopic details are absorbed into the transport scattering
time ⌧ . One must notice that although we focused on the small wave vector
limit, the scattering rate from equation (2.35) is not isotropic. This is because
the Weyl-particle spins are always polarized along their momenta, producing
a universal factor (1+ k̂

0 · k̂), which suppresses the backscattering of particles
by impurities. For example, for massless Dirac quasiparticles one can find at
leading order in the partial-wave expansion of scattering amplitude8:

1

⌧
= nimp

2vF
3⇡2k2

sin2 �
1

.

The scattering phase �
1

in the general case should also depend on the
magnitude of magnetic field since the screening of the impurity potential might
be modified by B.

Rewriting equation (2.34) in spherical coordinates and plugging the formula
for scattering rate (2.35) into it, we obtain:

✓

i!⌥+ 2k⇣kvk
@

@�

◆

g(k) � vkk̂ = (2.36)

= vk�⇣kẑ +
3⌥

16⇡3

Z

d3k0⌥0(g0 � g)
(1 + k̂

0 · k̂)
⌫(")⌧(")

�(" � "0).

Integrating equation (2.36) over the solid angle, we obtain:

Z

S2
d� d(cos ✓)⌥(k)g(k) =

4⇡�⇣kẑ

i!
. (2.37)

8Although the magnetic field breaks the 3D rotation invariance, the assumption of adia-
batic evolution allows us to write the eigenbasis in terms of Bloch functions or plane waves.
The e↵ect of magnetic field is absorbed into the trajectory in k-space and in the measure. A
solution of the Dirac scattering problem can be found, e.g., in [37] and gives for scattering

amplitude A(k̂0 · k̂) = ~vF
2i"

P1
l=1 l

�

e2i�l � 1
�

h

Pl(k̂0 · k̂) + Pl�1(k̂0 · k̂)
i

.
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Since B = Bẑ, the azimuthal symmetry along the z-direction allows us to
find solutions to (2.36) that are independent of �. After the integration over
(k0,�0), we end up with:

i!⌥gz = vk(cos ✓ + �⇣k) +

Z

1

�1

d(cos ✓0)⌥0(g0z � gz)⌥

⇥ 3

4⌧
(1 + cos ✓ cos ✓0) . (2.38)

The easiest way to solve this equation is to expand ⌥gz in terms of Legendre
polynomials and use their orthogonality conditions. Thus,

⌥gz =
1
X

l=0

(2l + 1)al(k)Pl(cos ✓),

=
�⇣kvk
i!

+



⇣2k
i!

+
(1 � ⇣2k)

i! + ⌧�1

�

vk cos ✓, (2.39)

where a
0

is obtained through (2.37). Therefore, the expression for gz(k, ✓)
becomes:

gz(k, ✓) =
�⇣kvk
i! + ⌘

+
1 � ⇣2k

1 + �⇣k cos ✓

vk cos ✓

i! + 1/⌧
, (2.40)

where ⌘ ! +0 in the absence of chirality flipping and will be replaced by 1/⌧v
if the chirality flipping processes are taken into account.

2.4 Interplay Between CME and SdH E↵ect

In this section, we will present the expression for �zz which accounts for both
CME and SdH oscillation. If we take into account the discreteness of Landau
levels given by (2.20) into (2.33), the conductivity per chirality becomes:

�(�)
zz = � e2

4⇡2

1
X

⌫=0

Z

dk

1

Z

�1

d(cos ✓) k2

@f
0

@"
vk(cos ✓ + �⇣k)

⇥ �

✓

⌫ � 1 � cos2 ✓ � 2�⇣k cos ✓

4⇣k

◆

gz(k, ✓) . (2.41)

Since the argument of the delta function has no real roots when ⌫ 2 Z�, we
can consider the sum starting from ⌫ = �1 and use the Poisson summation
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formula. Thus,

�(�)
zz = �(0)

zz + 2
1
X

l=1

�(l)
zz cos

✓

⇡l

2⇣F
+

⇡

4

◆

, (2.42)

where we have used that

⇣F ⌘ ⇣k|k=kF =
1

2k2

F l
2

B

=
eB

2~k2

F

. (2.43)

For details of the calculation, vide appendices A and B. The non-oscillating
part of (2.42) is given by

�(0)

zz =
n�e

2vF
~kF

✓

1 � 12

5

⇣2F
i! + 1/⌧

+
3⇣2F

i! + ⌘

◆

, (2.44)

where n� = k3

F/(6⇡
2) is the total density of electrons per chirality. And, for

the oscillating part we have

�(l)
zz =

n�e
2vF

~kF
1

i! + 1/⌧

3

2⇡

�l

sinh�l

✓

2⇣F
l

◆

3/2

, (2.45)

where � = ⇡2T/(~kFvF ⇣F ). In the DC limit and in the absence of magnetic
field, ⇣F = 0, equations (2.42-2.45) are reduced to a standard Drude formula
appropriately modified for Dirac spectrum:

�
0

=
n�e

2⌧

~kF/vF
. (2.46)

In finite magnetic field the second term of (2.44) describes an ideal conduc-
tivity. In the absence of chirality flipping this conductivity diverges in static
limit ! ! 0. In more realistic models, processes of chirality flipping are always
present and one should replace ⌘ ! 1/⌧v, where ⌧v is a mean chirality lifetime.
As the scattering with and without changes of chirality are due to very di↵er-
ent processes one should expect the ratio ⌧v/⌧ to be significant. Both ⌧ and
⌧v can in principle be extracted from optical conductivity measurements.

There are two small parameters in the regime of interest of this work. One
is ⇣F , i.e., the weakness of the magnetic field compared to the Fermi scale.
The other is the smallness of temperature compared to the Fermi energy. We
do not, however, make any assumptions on the relative size � of these small
parameters. In deriving (2.42-2.45) we kept the leading (B-independent) and
next to the leading terms of the expansion in ⇣F but restricted the expansion
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only to the leading term in T/"F . This is why the only temperature depen-
dence in (2.42-2.45) is through the parameter �. This means that we omitted
all corrections proportional to T/"F which could be comparable to the ones
proportional to ⇣F . The former corrections, however, are not universal and do
not a↵ect the magnetic field dependence of the conductivity.

A very convenient way to exclude the non-universal temperature correc-
tions is to study the ratio �zz(B)/�

0

. In DC limit (! ! 0), it is given by

�zz(B)

�
0

= 1 + 3

✓

⌧v
⌧

� 4

5

◆

⇣2F +
3

⇡

1
X

l=1

e��Dl �l

sinh�l

✓

2⇣F
l

◆

3
2

cos

✓

⇡l

2⇣F
+

⇡

4

◆

.

(2.47)
In the last equation, we introduced the Dingle factor �D = ⇡�/(~vFkF ⇣F ),

which accounts for the smearing of LLs due to impurities. In the case of a
homogeneous sample, � = ~/⌧Q, with the “quantum time” ⌧Q determined by
impurity scattering and equal to the quasiparticle lifetime. If either � � 1
or �D � 1, i.e., the temperature or smearing of Landau levels is larger than
the gap between Landau levels, the oscillations in (2.47) disappear and the
conductivity is given by the first two terms in (2.47). For smaller tempera-
tures and Landau level smearing, oscillations appear and become less and less
harmonic with a further decrease of both � and �D.

�Q = 0

�Q = 8 ⇥ 10�13s

�Q = 5 ⇥ 10�14s

⇢zz

⇢0

B(T )

Figure 2.2: Longitudinal magnetoresistance as a function of the magnetic field.
On the left: the results of experiment [2] on Cd

3

As
2

. On the right: the
results of computation [3] with numerical parameters kF = 3.8 ⇥ 108m�1,
vF = 9.3 ⇥ 105m/s, ⌧ = 8 ⇥ 10�13s, T = 2.5K. The plots are made for three
values of the quantum lifetime ⌧Q/⌧ = 0, 1, 16 and for the chirality relation
time ⌧v = 10⌧ .
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On the right panel of Fig. 2.2 we have plotted the magnetoresisitivity
given by the inverse of expression in equation (2.47) for parameters consis-
tent with the recent experiment on Cd

3

As
2

[2]. Comparison with the exper-
imental plot on the left panel shows that the approach to magnetotransport
in Dirac semimetals developed here describes qualitatively the emergence of
quantum SdH oscillations and the tendency to negative magnetoresistance at
strong magnetic fields (but still small ⇣F ) observed experimentally in Cd

3

As
2

[2]. Unfortunately, the direct comparison with experimental data of [2] is dif-
ficult due to the large positive magnetoresistance (MR) typical for Cd

3

As
2

.
The latter has a very complicated unit cell structure and is prone to various
defects and the cause of positive MR is still unknown. The more thorough
comparison of our theory with experimental data requires an explanation of
the positive magnetoresistance. Magnetic field dependent Coulomb screening
might be one of the reasons for positive MR (see, e.g., [38]) as well as the influ-
ence of Zeeman e↵ects on band structure and possible spatial inhomogeneity
of samples. On the other hand, our the computation shows a good qualitative
agreement with the data from TaP [4], vide Fig. 2.3.

b)a)

Figure 2.3: Magnetoresistence in TaP, the plot in a) was extracted from [4],
whereas the plot in b) was taken from [5].

A much weaker positive MR has also been observed in the weak magnetic
field region in Dirac semimetals ZrTe

5

and Na
3

Bi and it is believed to be due
to the weak antilocalization.
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Chapter 3

Hydrodynamics with Gauge
Anomaly

The goal of this chapter is to develop variational and Hamiltonian formula-
tions of the hydrodynamics with gauge anomaly1. Di↵erently from the pre-
vious chapter, this one will be more formal, without a direct connection to
experiments. Yet, one may hope to use some of these ideas to model surface
states in strongly interacting Weyl materials.

The possibility of an universal hydrodynamic description with additional
hydrodynamic terms taking anomalies into account was noticed initially in
AdS/CFT systems [39, 40], and then in genuine relativistic hydrodynamic for-
mulation in [41], for a particular case of Abelian gauge anomaly. Together
with the CME, the constitutive relations obtained in [41] predict the exis-
tence of the chiral vortical e↵ect (CVE), where the current acquires a term
proportional to the flow vorticity.

The Hamiltonian formalism is appropriate to study wavelike excitations
and instabilities near the fixed point, through the linear analysis of the eigen-
modes, and provides the most appropriate framework to study perturbation
theory and symmetries of the system. We will show how the quantum anomaly
a↵ects the canonical generators of gauge transformations and di↵eomorphisms
as well as their semidirect product algebra. Our approach will be entirely
3+1 dimensional, providing a minimal generalization of the standard action
principle for fluid dynamics to accommodate anomalies.

The variational problem for hydrodynamics with gauge anomaly in 1+1
dimensions was successfully developed in [42], however it cannot be trivially
generalized to 3+1 dimensions. The most successful attempt so far in finding

1The set of equations (1.31-1.34) can be viewed as two copies of a system with gauge
anomaly.
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an e↵ective action for equations (3.1-3.4) was given in [43], but the obtained
action contained unphysical hydrodynamic excitations propagating in a fourth
auxiliary spatial dimension. All these approaches rely on an e↵ective action for
the Lagrangian specification of fluid variables [44, 45]. On the other hand, the
action principle for non-abelian hydrodynamics was presented in [46], where
the authors introduced the idea of coarse graining the coadjoint orbit action.
A similar approach to fluid dynamics for spinning particles has been recently
developed in [47]. An action that includes anomalies in the standard model
of particle physics within the framework of the coadjoint orbit method was
given in [48]. The anomaly structure in the standard model is di↵erent from
what is given in (3.1-3.4) and so the e↵ective action for anomalies in [48] is
not immediately applicable to the present problem.

In the next sections, we will use the so-called Clebsch potentials to parametrize
the Eulerian variables and to write down a variational principle that produces
the anomalous hydrodynamic equations at zero temperature. We will restrict
ourselves to the flat Minkowski spacetime, though the generalization to more
general geometric backgrounds is straightforward. Unless otherwise specified,
we will use the Cartesian orthonormal frame, where the pseudo-metric can be
chosen as g�⌫ = diag(�1, 1, 1, 1).

The variational principle and the symmetries are analyzed in sections 3.2
and 3.3. Using the obtained action, we will derive the corresponding Hamil-
tonian formulation specifying the form of the relativistic Hamiltonian and the
Poisson brackets. We will emphasize the symmetries of the system and their
manifestations in Hamiltonian formalism, pointing out the special feature of
one of the Clebsch potentials appearing separately and not via the combina-
tion in the dynamic velocity field. This feature is commented on in section
3.6. This chapter refers to the work [6]. In the following sections, we will use
the covariant notation and we will set ~ = c = 1 for simplicity.

3.1 Constitutive Relations

Let us start with equations of anomalous hydrodynamics of [41]. The current
and energy-momentum conservation laws for anomalous QFT in the back-
ground gauge field can be written as:

@�j
� = �C

8
✏�⌫�⌧F�⌫F�⌧ , (3.1)

@�T
�⌫ = F ⌫�j� . (3.2)

The right hand side of the equation (3.2) is the Lorentz force, while the

34



right hand side of (3.1) is the gauge anomaly term, fully characterized by a
single dimensionless constant C. Here and in the following we will drop the
angular brackets denoting expectation values, e.g., hji ! j, so that j� and T �⌫

are classical fields representing the current and the energy-momentum tensor.
Assuming local equilibrium and imposing the local form of the second law

of thermodynamics, the authors in [41] were able to constrain the form of
constitutive relations. In this chapter we are interested in the case of zero
temperature and absence of dissipation. Thus, we will use a particular form
of these constitutive relations, which is given by:

j� = nu� +
C

12
✏�⌫�⌧ µu⌫ (2µ @�u⌧ + 3F�⌧ ) , (3.3)

T �⌫ = nµu�u⌫ + P (µ) g�⌫ . (3.4)

We have introduced the equation of state of the fluid P (µ) which gives the
fluid pressure P as a function of the chemical potential µ. The charge density
in the fluid rest frame is given by n = P 0(µ). The fluid 4-velocity u� satisfies
u�u� = �1 and, therefore, has only three independent components. In this
case, the zeroth component of the equation (3.2) – the energy conservation –
is not independent, but can be viewed as a consequence of the other four equa-
tions (3.1) and (3.2). The latter four independent equations fully determine
the evolution of n and three independent components of 4-velocity u�.

Equations (3.1-3.4) constitute the first-order hydrodynamics equations writ-
ten in Landau frame. Namely, the constitutive relations (3.3) and (3.4) are first
order in derivatives and the ambiguity in the definition of 4-velocity is resolved
by defining it as an eigenvector of the energy-momentum tensor. Landau frame
was used in [49] and was adopted in [41] to construct the hydrodynamics with
gauge anomaly.

3.2 Hydrodynamic Action

The variational principle for perfect relativistic fluid dynamics is well known
and goes back to [50, 51]. The key point in finding a hydrodynamic action is the
introduction of a set of variables appropriate to the canonical framework, the
so-called Clebsch potentials. For a review on the Clebsch parametrization and
variational principle for relativistic as well as non-relativistic hydrodynamics,
vide section 1.5.

The field content of the hydrodynamic action is given by 4 components
of the 4-current J� and 3 scalar Clebsch potentials (✓,↵, �) parametrizing
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dynamic velocity ⇠�:

⇠� = @�✓ + ↵@�� . (3.5)

One of the main results of this work is that the action generating equations
(3.1-3.4) is given by:

S = �
Z



J� (⇠� � A�) + "(n) � C

6
✏�⌫⌘�A� ⇠⌫ @⌘ (⇠� + A�)

�

d4x. (3.6)

Here, "(n) is the proper energy density of the fluid which is assumed to be
a known function of the proper charge density n. The latter is given by an
absolute value of the 4-current J� as n ⌘

p

�g�⌫J�J⌫ . The second term on
the right hand side of (3.6) describes the anomaly. Taking C = 0 in (3.6) we
recover the action for a relativistic perfect fluid without anomaly [50, 51].

The full set of variational equations is obtained by varying (3.6) over
J�, ✓,↵, �. Let us start with equations of motion for J�:

�S

�J�
= � (⇠� � A�) + "0(n)

J�
n

= 0 . (3.7)

It is convenient to introduce a complete parametrization of the 4-current
J� in terms of its absolute value n and its direction given by 4-velocity u� as:

J� ⌘ nu� , u�u� = �1 . (3.8)

Then equation (3.7) can be viewed as a relation between the dynamic
velocity, density and the 4-velocity2:

⇠� � A� = µu� , (3.9)

where the chemical potential µ(n) is given by the derivative of the energy
density as:

µ(n) ⌘ "0(n) . (3.10)

Clebsch potentials ✓,↵, � enter (3.6) only through ⇠� given by (3.5). The

2For the case of irrotational flows, such as superfluids, the dynamic velocity can be fully
characterized by @�✓ and equation (3.9) corresponds to Josephson condition.
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corresponding variations give the following equations of motion:

�S

�✓
= @�

✓

�S

�⇠�

◆

= 0 , (3.11)

�S

�↵
=

�S

�⇠�
@�� = 0 , (3.12)

�S

��
= @�

✓

↵
�S

�⇠�

◆

=
�S

�⇠�
@�↵ = 0 , (3.13)

with

� �S

�⇠�
= nu� +

C

6
✏�⌫⌘� [2A⌫@⌘⇠� � (⇠⌫ � A⌫)@⌘A�] . (3.14)

Introducing the charge current:

j� = � �S

�⇠�
+

C

6
✏�⌫⌘� [3 @⌫(A⌘⇠�) � 3A⌫@⌘A� + ⇠⌫@⌘⇠�] , (3.15)

we obtain (3.1) from (3.11) and (3.5). The relations (3.15) and (3.14) give the
constitutive relation (3.3).

Defining the energy-momentum tensor by (3.4), one can derive the conser-
vation law (3.2) from (3.9) and (3.11-3.13) after some tedious but straightfor-
ward manipulations3. We will not go through this derivation in more detail,
since, in the section 3.3, we will derive equations (3.1-3.4) more straightfor-
wardly from symmetries of the action (3.6).

In the absence of the gauge field background A⌫ = 0 the action (3.6)
becomes the conventional action for relativistic perfect fluid dynamics [50,
51]. The only manifestation of the gauge anomaly in this case is the non-
conventional relation between current and 4-velocity. Namely, the relation
(3.3) becomes j� = nu� + C

3

µ2!� with relativistic vorticity defined as !� =
1

2

✏�⌫�⌧u⌫@�u⌧ . This current is conserved @�j
� = 0 because both relations

@�(nu�) = 0 and @�(µ2!�) = 0 follow from (3.6) in the absence of the gauge
background4 — this consequence can be observed directly from [41] by setting
the temperature and the external fields to zero. Such “removal” of the anomaly
responses by current redefinition is not possible though when a non-trivial
gauge field background is present.

3Technical remark: it is convenient to start this derivation with an obvious equation
�S
�⇠�

⇥

@�

�

�S
�J⌫

�

� @⌫

�

�S
�J�

�⇤

= 0.
4One can think of the second relation as a consequence of (3.1) and (3.2). The second

conserved quantity µ2!� can be identified as a density of the Casimir (helicity) of the
relativistic perfect fluid dynamics.
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3.3 Symmetries

In this section we will show explicitly that the equations (3.1) and (3.2) can
be obtained as consequences of (anomalous) gauge symmetry and space-time
translational symmetry of the action (3.6), respectively.

The first two terms in (3.6) are symmetric with respect to the gauge trans-
formation with the gauge parameter ⇤(x)

�
⇤

A� = @�⇤ , �
⇤

✓ = ⇤ . (3.16)

From (3.5) and (3.16), we obtain �
⇤

⇠� = @�⇤, such that, the combination
⇠� � A� in (3.6) is gauge invariant. This gauge invariance, however, is bro-
ken by the anomalous part of the action. Up to boundary terms, the gauge
transformation of the action is given by

�
⇤

S =

Z

@�⇤

✓

�S

�⇠�
+

�S

�A�

◆

d4x =
C

6

Z

⇤ ✏�⌫⌘� @�A⌫ @⌘A�d
4x. (3.17)

Unlike the case of a general breaking of a symmetry, the loss of symmetry
due to anomalies is rather special. The gauge variation of the action depends
only on the background gauge field and has a very specific form, the latter
being determined by the densities of certain topological invariants5. For field
configurations that satisfy the equation of motion (3.11), the variation of (3.17)
over ⇤ gives the charge conservation law modulo the anomaly as

@�

✓

�S

�A�

◆

= �C

24
✏�⌫�⌧F�⌫F�⌧ . (3.18)

The quantity �S/�A� is known as the consistent current versus the covari-
ant current j� defined in (3.3). A quick calculation shows that

j� =
�S

�A�

� C

6
✏�⌫�⌧A⌫F�⌧ . (3.19)

Taking the divergence of (3.19), we obtain (3.1). We will now turn to the
energy-momentum conservation (3.4). The standard way of deriving this law is
to gauge space-time translational symmetries by introducing the background

5It is easy to see that the action can be made fully gauge invariant by supplementing it
with the Chern-Simons term �C

6

R

M5
A^dA^dA. The integral in this term is taken over an

auxiliary 5-dimensional space M5 which boundary coincides with the physical space-time.
This gives an elegant interpretation of the anomaly of the 4-dimensional theory as being
due to the inflow of charge from the fifth dimension, a set-up known as anomaly inflow ; this
is standard and well known in QFT with quantum anomalies.
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metric and study the invariance of the action under di↵eomorphisms x� !
x� + ⇣�(x).

Let us consider (3.6) in an arbitrary background metric by replacing the
measure d4x by the invariant one

p�g d4x and by introducing the metric
into all scalar products. Notice that ⇠� is naturally a covariant vector, being
derivatives of the scalar Clebsch potentials, and thus J� ⇠� being an invariant
scalar product does not require additional metric factors. However, a scalar
product like J2 will become JµJ⌫ gµ⌫ . The resulting action is invariant under
di↵eomorphisms, i.e., �⇣S = 0, and on equations of motion we have

Z



(L⇣g)⌫�
�S

�g⌫�
+ (L⇣A)�

�S

�A�

�

d4x = 0 , (3.20)

since the terms corresponding to the variations of the fields vanish by the
equations of motion. Here L⇣ denotes the Lie derivative with respect to the
vector field ⇣. Explicitly

(L⇣g)⌫� = @⌫⇣� + @�⇣⌫ , (3.21)

(L⇣A)� = ⇣⌫F⌫� + @�(⇣
⌫A⌫) . (3.22)

Using these formulas and setting the coe�cient of ⇣⌫ in (3.20) to zero we
obtain6

@�T
�
⌫ = F⌫�

�S

�A�

� C

6
F⌫� ✏

�⌘�⌧A⌘F�⌧ , (3.23)

with

T �⌫ ⌘ � 2p�g

�S

�g�⌫
, (3.24)

A quick calculation shows that the energy-momentum tensor (3.24) is the
same as (3.4). This is expected since the last term of (3.6) is the integral
of a 4-form — which is metric-independent — and gives no contribution to
the energy-momentum tensor. Therefore, (3.4) is identical in form to the
energy-momentum tensor for conventional perfect fluid dynamics. The metric
independence of the anomalous contribution to (3.6) is an essential feature of
the analysis in the hydrodynamic Landau frame where the energy-momentum
tensor is not modified by corrections which are of the first order in gradients
of the velocity.

Finally, it is easy to see that the equation (3.23) with the relation (3.19)
is equivalent to (3.2). This completes the demonstration that the action (3.6)
does indeed reproduce equations (3.1-3.4).

6The identity A⌫ ✏�⌘�⌧F�⌘F�⌧ = �4F⌫� ✏�⌘�⌧A⌘F�⌧ can be useful.

39



3.4 Hamiltonian Formalism

In this section we will set up the Hamiltonian formulation of equations (3.1-
3.4) starting with the action (3.6). Let us start by reducing the 7 independent
variational fields of (3.6) to 4, given by J0 and by the Clebsch parameters
✓,↵, �. The spatial components of (3.8) and (3.9) combine to

Ji =
n

µ
(⇠i � Ai). (3.25)

We can thus eliminate the spatial components of the current J i using (3.25).
The definition of n, namely (J0)2 � (J i)2 = n2, gives us

J0 ⌘ ⇢ =
n

µ

p

µ2 + (⇠i � Ai)2 . (3.26)

Here and in the following we will use ⇢ to denote J0. We can regard ⇢
as the independent variable, with n given implicitly as a function of ⇢ by
(3.26)7. Substituting (3.25) and (3.26) into (3.6) we obtain the action which is
linear in the time-derivatives and depends only on fields ⇢, ✓,↵, �. After some
integrations by parts, it can be brought to the following form:

S =

Z

⇣

h⇡✓ , ✓̇i + h⇡� , �̇i � H
⌘

dt , (3.27)

where hf, gi ⌘
R

f(x)g(x) d3x denotes the L2-inner product in the space of real
functions, H is the Hamiltonian, ⇡✓ and ⇡� are the canonical field momenta
conjugate to ✓ and �, respectively. The explicit formulas for the canonical
momenta are:

⇡✓ = �


⇢+
C

6
(Ai + ↵ @i�)B

i

�

, (3.28)

⇡� = �↵



⇢+
C

6
(Ai � @i✓)B

i

�

. (3.29)

The Hamiltonian H in (3.27) is given by

H =

Z

h

⇢
p

µ2 + (⇠i � Ai)2 � P (µ) � ⇢A
0

i

d3x

� C

6

Z

⇥

⇠iB
iA

0

+ ✏ijk(@i✓ � Ai) ⇠jEk

⇤

d3x . (3.30)

7As µ(n) is assumed to be a known function of n (3.10) the equation (3.26) can in
principle be solved to obtain n(⇢, ⇠i), µ(⇢, ⇠i) etc.
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The pressure P (µ) is related to the energy density by the Legendre trans-
form "(n) = nµ�P (µ), with P 0(µ) = n and we have also introduced the mag-
netic and electric fields Bi = ✏ijk@jAk and Ei = @iA0

� @
0

Ai with ✏ijk ⌘ ✏0ijk.
Although the equations of motion (3.1) and (3.4) still do not contain the

Clebsch potentials explicitly, the Hamiltonian (3.30) depends on Clebsch po-
tentials not only through ⇠i anymore8. We shall comment on the the meaning
of this explicit dependence on ✓ in the following sections. Here we will just
point out that the coe�cient of Ek in the last term of (3.30) may be inter-
preted as an intrinsic fluid electric polarization. It is worth recalling that one
of the main predictions of the anomaly for fluids is the chiral magnetic e↵ect
which leads to charge separation in a magnetic field. An electric dipole mo-
ment obviously suggest a charge separation and we may regard the last term
of equation (3.30) as a reflection of this feature in the Hamiltonian framework.

So far we have considered the background gauge field as space and time-
dependent. An interesting special case is when the magnetic field is time-
independent. It is then possible to choose a vector potential Ai which is
independent of time as well. Then the last term of (3.30) can be integrated
by parts and the Hamiltonian takes the form

H =

Z

h

⇢
p

µ2 + (⇠i � Ai)2 � P (µ) � A
0

⇢
i

d3x

� C

6

Z

A
0

⇥

2 ⇠iB
i + ✏ijk(⇠i � Ai)@j⇠k

⇤

d3x (3.31)

In this case, the explicit dependence on ✓ has disappeared and the Cleb-
sch potentials only appear in the combination ⇠i. It is straightforward to
observe that, for a time-independent gauge field, the potential term is simply
R

A
0

j0d3x, as one should expect.

3.5 Poisson Brackets

In the this section we will discuss the e↵ect of the anomaly on the Poisson
structure of the Hamiltonian formulation derived in this section. The varia-
tional principle (3.27) which is linear in time-derivatives immediately provides
us with the canonically conjugate pairs ✓, ⇡✓ and �, ⇡�. The Poisson brackets
of all fields follow then from the canonical ones for the above fields

{✓, ⇡0
✓} = {�, ⇡0

�} = �(x � x

0) , (3.32)

8This reduction on equations of motion happens because the Hamiltonian (3.30) is still
invariant under transformations on the Clebsch potentials which leave ⇠i unchanged.
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where we have listed only the non-vanishing Poisson brackets. We have used
a concise notation omitting the spatial arguments of the fields so that, e.g., �
means �(x), ⇡0

✓ means ⇡✓(x0) etc.
The hydrodynamic equations of motion (3.1-3.4) can be formulated as

equations written entirely in terms of ⇢ and ⇠i without an explicit dependence
on the Clebsch parameters. Therefore, we shall look for the possible Hamil-
tonian reduction of (3.30) and (3.32). The reduction consists of the dynamic
reduction, i.e., the Hamiltonian should be expressible only in terms of the den-
sity ⇢ and dynamic velocity ⇠i, and the kinematic reduction, i.e., the closure
of Poisson brackets of ⇢ and ⇠i without the use of the Clebsch parameters.

As pointed out before, with the inclusion of the anomaly, the dynamic
reduction is only partially successful. Namely, the Hamiltonian (3.30) does
depend on @i✓ in the case of general time-dependent gauge field background.
In the case of time-independent background the dynamic reduction is complete
and the Hamiltonian (3.31) depends on the Clebsch parameters only through
⇠i.

Remarkably, the Poisson algebra of ⇢ and ⇠i is closed for any gauge field
background so that the kinematic reduction is achieved. Indeed, after some
straightforward calculations, we derive from (3.32) and the definition (3.5) the
following set of Poisson brackets closed with respect to the fields ⇢ and ⇠i,

�

⇢
+

, ⇢0
+

 

=
C

3
Bi@i �(x � x

0) , (3.33)
n

e⇠i, ⇢
0
+

o

= @i �(x � x

0) , (3.34)

n

e⇠i, e⇠
0
j

o

= �@ie⇠j � @je⇠i � ✏jikB
k

⇢�
�(x � x

0) . (3.35)

For the sake of brevity, we have introduced the following compact notation,

e⇠i ⌘ ⇠i � Ai , (3.36)

⇢± ⌘ ⇢ ± C

6
e⇠i B

i . (3.37)

A comment on the first of these equations, namely (3.33), is appropriate
at this point. It is well known that the [j0, j00] commutator will be modi-
fied by a Schwinger term in the presence of an anomaly for the corresponding
symmetry. This can be shown by explicit computation of the corrections to
commutators via Feynman diagrams, the triangle diagram leading to the spe-
cific form given.9 It can also be seen from a 2-cocycle constructed in terms

9The computation of modified commutators follows a procedure known as the Bjorken-
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of the descent equations which lead to the anomalies. Our action e↵ectively
reproduces this in the Poisson brackets. We may also point out that an ex-
pression analogous to (3.33) has appeared in [52].

The dynamic velocity e⇠i and the modified densities ⇢± are invariant under
the transformations (3.16), therefore, the Poisson algebra (3.33-3.35) is writ-
ten in terms of explicitly gauge-invariant quantities. However, as it is well
known generator of gauge transformations cannot be realized canonically in
the presence of anomaly (see Sec. 3.6).

The algebra (3.33-3.35) is obtained as a result of Hamiltonian reduction
and is degenerate. It admits two Casimirs — the quantities having vanishing
Poisson brackets with fields entering Poisson algebra. They are given by

C
1

=

Z

⇢
+

d3x , (3.38)

C
2

=

Z

✏ijk e⇠i @j

⇣

e⇠k + 2Ak

⌘

d3x . (3.39)

The charge density j0 defined in (3.3) is given by

j0 = ⇢
+

+
C

6
✏ijk e⇠i @j

⇣

e⇠k + 2Ak

⌘

. (3.40)

It is a combination of densities of two Casimirs of the algebra. It is worth
to point out that when the gauge field is time-independent the anomaly term
can be written as a total derivative, i.e., EiB

i = @i(A0

Bi), what automatically
implies that the total charge is indeed conserved.

In the absence of anomaly C = 0, all expressions (3.30, 3.33-3.40) become
the known formulas for perfect fluid dynamics [46, 53]. Even when the anomaly
is present, i.e., C 6= 0, if we consider the case of the background gauge field
being absent, we obtain again the formulas of anomaly-free hydrodynamics
with a single exception. Namely, the definition of the charge density (3.40)
still di↵ers from ⇢ by the density of Casimir (3.39). The latter is known as the
helicity of the hydrodynamic flow.

Having Hamiltonian and Poisson brackets, one can obtain equations of
motion for any quantity Q as Q̇ = @Q/@t + {H,Q}, where @Q/@t denotes
the “explicit” time-derivative. In our case this explicit derivative acts only on
the time varying external gauge field. The dynamical fields ⇠i and ⇢ do not
depend on time explicitly. For example, the equation of motion for ⇠i will read
ė⇠i = �@tAi + {H, e⇠i}, etc.

Johnson-Low method where correlators of currents at slightly unequal times are calculated
and a suitable equal-time limit is taken.
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While the Clebsch variables appear in the algebra (3.33-3.35) only via
⇠i, we should note that, in the presence of the time-dependent gauge field
background, the Hamiltonian (3.30) contains @i✓ in addition to the density
and the dynamic velocity fields. Thus the algebra (3.33-3.35) is not adequate
for a complete Hamiltonian description, and it should be supplemented by
Poisson brackets involving the ✓ field. We will list these brackets here for
completeness:

{⇢
+

, @k✓
0} = @k�(x � x

0) , (3.41)

{e⇠i, @k✓0} =
e⇠i + Ai � @i✓

⇢�
@k�(x � x

0) . (3.42)

3.6 Symmetry generators

The Poisson algebra (3.33-3.35) is closed and, in the case of the time-independent
background, produces the hydrodynamic equations with the use of the Hamil-
tonian (3.31). However, the brackets (3.33-3.35) are nonlinear and therefore
do not have the Lie-Poisson form. For the symmetry analysis it is preferable
to find an equivalent set of Poisson brackets corresponding to the algebra of
symmetry generators of the system.

It is easy to see from (3.27) that the momentum densities can be defined
as:

⇥
0i = �⇡✓@i✓ � ⇡�@i� . (3.43)

The momentum densities ⇥
0i satisfy the di↵eomosphism algebra and act

as local translations in the absence of background field. However, one cannot
express (3.43) only in terms of the density ⇢ and the dynamic velocity in
the background of nonvanishing magnetic field. More precisely, the canonical
energy-momentum tensor acquires an explicit ✓ dependence:

⇥
0i =

✓

⇢+
C

6
AkB

k

◆

⇠i +
C

6
Bk(⇠k@i✓ � ⇠i@k✓) . (3.44)

Let us now turn to gauge transformations which can be viewed as shifts
in the field ✓. The naive canonical gauge generator for this symmetry is �⇡✓.
Using (3.28,3.5) we can write it as

� ⇡✓ = ⇢+
C

6
(Ai + ⇠i � @i✓)B

i (3.45)

and notice that it also depends explicitly on @i✓.
It is straightforward to check that the Poisson structure (3.33-3.35) can be
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put in a semidirect product Lie-Poisson algebra [54] in terms of (3.44) and
(3.45). The gauge transformation of an arbitrary functional F of basic fields
generated by �⇡✓ is given by:

�
⇤

F ⌘
Z

✓

�⇤(x0){⇡0
✓, F} +

�F

�Ai(x0)
@0
i⇤

◆

d3x0 , (3.46)

where the transformation of the gauge potential has also been added.
However, it is easy to see that (3.46) gives �

⇤

↵ 6= 0, as well as �
⇤

⇢ 6= 0
in obvious discrepancy with gauge invariance of ↵ and ⇢. In fact, we will
prove by contradiction that the gauge symmetry (3.16) cannot be canonically
realizable. Let us assume that there exists a generator Q

⇤

, such that,

{Q
⇤

, ✓(x)} = ⇤(x), (3.47)

{Q
⇤

,↵(x)} = {Q
⇤

, ⇢(x)} = {Q
⇤

, �(x)} = 0. (3.48)

From the Jacobi identity, we obtain:

{⇢(x0), {Q
⇤

,↵(x)}} � {↵(x), {Q
⇤

, ⇢(x0)}} = {Q
⇤

, {↵(x), ⇢(x0)}}. (3.49)

The right hand side can be evaluated using equation (C.9):

{Q
⇤

, {↵(x), ⇢(x0)}} = �C2
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Bi@i↵

⇢2�
(Bk@k⇤)�(x � x

0). (3.50)

On the other hand, using the definition (3.48), we find that the left hand
side vanishes, which concludes the proof.

Let us now consider ⇢
+

given by (3.37) as a generator of gauge transfor-
mations instead of �⇡✓. We easily check that �

⇤

↵ = �
⇤

� = 0 and �
⇤

✓ ⌘ ⇤.
Moreover, under the modified gauge transformations generated by ⇢

+

the den-
sity ⇢ transforms as:

�
⇤

⇢ = �C

6
Bi@i⇤ , (3.51)

and there exists the gauge invariant quantity ⇢+ C
6

BiAi.
While ⇢

+

can be considered as a modified generator of gauge transforma-
tions two subsequent gauge transformations generated by ⇢

+

do not commute
and the commutative algebra of gauge transformations has acquired a cen-
tral extension (3.33). This is, of course, a classical manifestation of a well
known phenomenon in studies of quantum anomalies. At this point it is not
clear whether similar modifications can be made for di↵eomorphism generators
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(3.43)10.

10The variables ↵ and ⇢ do not transform nicely under these generators.
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Chapter 4

Odd Viscosity from Variational
Principle

Odd viscosity e↵ects in incompressible fluids cannot be observed in flat space
without the introduction of a boundary. For the compressible case, on the
other hand, we can always get rid of the odd viscosity term by some momentum
redefinition. It would be convenient to have a frame independent way to
define odd viscosity without such ambiguities. Since the odd viscosity term is
dissipationless, one may hope to capture it in the hydrodynamic action. Once
we have the variational principle, coupling with a geometrical background
uniquely defines the momentum density and stress tensor. Thus, we will be
able to lift the ambiguity in the odd viscosity definition.

The work presented in this chapter has not been published yet.

4.1 Odd Viscosity Ambiguity

In this section, we will show that, in a compressible fluid with conserved charge,
the odd viscosity term (1.47) can be introduced or removed by a momentum
redefinition. The possibility of such redefinition is a direct consequence of the
continuity equation on the density of the conserved charge.

In the case of FQH fluid, the odd viscosity ⌘H is called Hall viscosity 1.4
and it is proportional to the average orbital spin per particle [29, 30, 55]. As we
will show in this section, this relation also holds for general two-dimensional
fluids. Let us consider a compressible fluid on the plane with intrinsic angular
momentum. If s̄ is the average spin per particle, the expression for the total
angular momentum can be written as:

L =

Z

d2x
�

✏ikxiPk + s̄⇢
�

, (4.1)
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where Pi is the momentum density. Let us assume for simplicity that total
intrinsic angular momentum of the fluid is extensive, that is, s̄ is a constant.
Thus, we can rewrite the equation (4.1) as:

L =

Z

d2x ✏ijxi

⇣

Pj +
s̄

2
�jk✏

kl@l⇢
⌘

=

Z

d2x ✏ijxi⇧j, (4.2)

where ⇧i is the modified momentum density. Equations (4.1) and (4.2) di↵er
by boundary terms. Let us consider for simplicity the system with Galilean
symmetry, that is, momentum and current are the same1. As a consequence
of the continuity equation, we find:

@t

⇣

✏ij@j⇢
⌘

= �@k

⇣

✏ij@j⇧
k + �ij✏kl�lm@j⇧

m
⌘

+ @k

⇣

�ik✏jl@j⇧l

⌘

. (4.3)

This identity will play a central role here and in the following section. To
derive the equation (4.3), we have used that @kjk = @kP

k = @k⇧k and that the
last two terms on the right hand side add up to zero. If we define the velocity
flow as vi = ⇧i/⇢, equation (4.3) becomes:

@t

⇣

✏ij@j⇢
⌘

= �@k

h

⇢ �ij⌘
�1

H ⌧ jkH +
�

�il✏
ljvk + �ji ✏

klvl
�

@j⇢ � �ki ✏
jl@j(⇢vl)

i

, (4.4)

where ⌧ ikH is the odd viscosity term defined in (1.47), i.e.,

⌧ ikH = ⌘H
�

✏ij@jv
k + ✏kl�ij@jvl

�

.

Therefore, the addition of 1

2

s̄ �jk✏
kl@l⇢ to the perfect fluid momentum den-

sity will automatically introduce the odd viscosity to the system, with:

⌘H =
1

2
⇢s̄ . (4.5)

Equivalently, if we start with a system with non-vanishing odd viscosity
term, the momentum redefinition:

Pi ! Pi + ��jk✏
kl@l⇢,

with always shift the value of the odd viscosity by

⌘H ! ⌘H + �⇢.

From this argument, we obtain that the Hall viscosity is only defined mod-

1This assumption is not necessary though.
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ulo a real constant times the fluid density. Since � can be associated to the
average internal angular momentum per fluid particle, we could fix such am-
biguity by knowing about the microscopic details of system. In terms of a
phenomenological hydrodynamic model, the parameter � can only be deter-
mined for a charged fluid. For a charged fluid, the spin density couples to the
magnetic field and its e↵ect can be probed through non-uniform configurations
of the external field. However, for a neutral fluid in flat space, the spin density
can only be obtained by knowing the microscopic detail of the system.

The question we will address throughout this chapter is whether we can
lift this ambiguity by fixing � in a phenomenological hydrodynamic model.

4.2 Gradient Corrections to the Perfect Fluid
Action

In this section, we will formulate the variational principle for the hydrodynam-
ics with odd-parity terms. We will show how the ambiguity in the definition of
the odd viscosity is manifested in this formulation and propose a phenomeno-
logical way to resolve this ambiguity. The odd viscosity term in the stress
tensor is dissipationless and is of first order in derivative expansion. Let us
thus assume that it can be reproduced by adding first order derivative terms
in the hydrodynamic action:

S =

Z

h

⇢ ⇠
0

+
⇢

2
�ik⇠i⇠k � "(⇢) + ✏ikf(⇢) @i⇠k

i

dt d2x, (4.6)

where ⇠
0

and ⇠i are defined in (3.5), "(⇢) is the internal energy density and f(⇢)
is a general function of the particle density ⇢. Di↵erently from the previous
chapter, ⇠i now denotes the flow velocity vi and not the dynamic velocity µui.

Notice, that we can add another parity odd term to the hydrodynamic
action:

Z

g(⇢)✏ik⇠i@j⇢ dt d
2x.

However, integrating this term by parts, one sees that it only redefines the
function f(⇢) by:

f(⇢) ! f(⇢) +

Z

g(⇢)d⇢.
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Equations of motion for the action (4.6) are given by:

✓ : @t⇢+ @i
�

⇢⇠i
�

= 0 , (4.7)

� : @t↵ +

✓

⇠i +
✏ik

⇢
@kf

◆

@i↵ = 0 , (4.8)

↵ : @t� +

✓

⇠i +
✏ik

⇢
@kf

◆

@i� = 0 , (4.9)

⇢ : ⇠
0

+
⇠i⇠i
2

� "0(⇢) + ✏ikf 0(⇢) @i⇠k = 0 . (4.10)

Momentum conservation2 follows from equations (4.7-4.10):

@t (⇢⇠i) = �@k
�

⇢⇠k⇠i + �ki P
�

, (4.11)

where we have defined the modified pressure P as:

P ⌘ " � ⇢"0 + ⇢f 0✏jl@j⇠l . (4.12)

The expression (4.11) does not have any odd viscosity contribution, but
instead has a parity odd term in the expression for pressure (4.12). As we have
seen in the previous section, by redefining momentum and using the identity
(4.3) one can trade the odd contribution to the pressure for odd viscosity.
Here we will present a heuristic way to resolve the ambiguity by requiring the
odd contribution to the pressure vanish. Let us consider a fluid configuration
with constant density ⇢ = ⇢̄ slowly rotating as a rigid body with fixed angular
velocity. On one hand the corresponding displacement field does not change
any interparticle distances in a fluid. On the other hand the odd correction
to the pressure is non-vanishing. We argue that this is unnatural and means
that our definition of the velocity of the fluid (more precisely the relation of
the velocity with the linear momentum) is incorrect and should be corrected
so that the odd term in the pressure disappears.

We can then modify the momentum density in the same way as described
in the last section, i.e.,

⇧i = ⇢⇠i + ��ij✏
jk@k⇢.

2In the equation (4.11), we have used the following identity:

✏jk (@if@j⇠k + @jf@k⇠i � @jf@i⇠k) = 0.

.
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The new momentum density satisfies the following conservation equation:

@t⇧i = �@k



⇧i⇧k

⇢
+ �ki P + ⇢�

�

�il✏
lj@j⇠

k + ✏kj@i⇠j
�

+ O(@2)

�

, (4.13)

where
P = " � ⇢"0 + ⇢(f 0 � �)✏jl@j⇠l . (4.14)

In principle, we can assign any real value to �, given that it cannot be fixed
by any symmetry arguments. Therefore, there is a family of stress tensors
labeled by a parameter �. Although in terms of equations all values of �
are possible, its value should be fixed by the microscopic theory. The only
information about the microscopic details of the system is encoded into the
phenomenological function f(⇢). Using the argument which odd contribution
to pressure must vanish at constant density, we obtain:

� = f 0(⇢̄). (4.15)

And the odd viscosity is given by ⌘H = f(⇢̄)⇢. It would be ideal to have
a more precise mathematical formulation of this argument. In the following
sections, we will show that the knowledge of how the fluid couples to an ex-
ternal geometric background (c.f. section 3.3) allows one to fix definitions
of stress and momentum unambiguously. As the considered hydrodynamic
system is non-relativistic, the proper geometric background is the so-called
Newton-Cartan geometry, which will be discussed in the following section.

4.3 Newton-Cartan Geometry

In this section, we will review the main features of the Newton-Cartan (NC)
geometry. For reviews, check [56–58]. We will restrict our discussion to (2+1)-
dimensional spacetimes. In Newtonian physics, time and space are separate
concepts, all observers measure the same time. Thus, the non-relativistic or
Galilean spacetime is simply given by the cartesian product3 R⇥E2, where R
“labels the time” and E2 ⇠= (R2, �) is the Euclidean plane, i.e., the plane R2

endowed with the Euclidean metric �.
In complete analogy to the Riemannian geometry, a NC manifold M is

a spacetime that locally resembles the Galilean spacetime R ⇥ E2. In fact,
the tangent space TxM at any point x 2 M is isomorphic to R ⇥ E2. The
development of the NC geometry in (2 + 1) dimensions is out of the scope

3In mathematical jargon, this defines a trivial bundle, where time is base manifold and
the space is the fiber.
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of this section. Therefore, we will assume some knowledge about di↵erential
geometry. Let us introduce the set of vielbeins {Eµ

a } and their inverses {eaµ},
such that,

Eµ
a e

b
µ = �ba, (4.16)

Eµ
a e

a
⌫ = �µ⌫ . (4.17)

Here, all indices run from 0 to 2 and one can think of Latin indices living
on the tangent space and Greek ones on the spacetime M. The metric struc-
ture on each tangent space induces the metric structure on the corresponding
point on spacetime. Since the tangent-space metric is defined solely to spatial
sections, it induces a degenerate metric on M, given by:

�AB eAµ e
B
⌫ = hµ⌫ . (4.18)

Indices A and B in equation (4.18) label spatial components on TxM and
assume only values 1 and 2. The lower-index metric hµ⌫ is degenerate and
admits no inverse. However, we can still define an upper-index metric tensor
as:

�ABEµ
AE

⌫
B = hµ⌫ . (4.19)

Since the time direction is special in TxM, let us denote Eµ
0

and e0µ by vµ

and nµ respectively. Using the definitions (4.16 - 4.19), we obtain the following
constraints among NC background fields:

nµv
µ = 1, (4.20)

nµh
µ⌫ = n⌫h

µ⌫ = 0, (4.21)

vµhµ⌫ = v⌫hµ⌫ = 0, (4.22)

h�µh
µ⌫ = �⌫� � n�v

⌫ . (4.23)

Using the symmetry of hµ⌫ and hµ⌫ , we find the total number of geometrical
variables4 to be 18. However, not all of them are independent; in fact, equation
(4.23) states for example that hµ⌫ can be expressed in terms of hµ⌫ , vµ and
nµ. Out of the 12 components left, equations (4.21) and (4.20) reduces the
total number of independent ones by 8. This will be important in the next
section where we will study the invariance of the hydrodynamic action under
di↵eomorphisms.

The spin connection and the a�ne connection are defined by imposing that

4They are 6 from hµ⌫ , 6 from hµ⌫ , 3 from vµ and 3 from nµ.
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nµ and eAµ are covariantly constant5, that is:

rµe
A
⌫ ⌘ @µe

A
⌫ + �AB✏BC !µe

C
⌫ � �

µ⌫ e
A
 = 0, (4.24)

rµn⌫ ⌘ @µn⌫ � �
µ⌫n = 0. (4.25)

Notice that in equation (4.24) we have completely stripped o↵ the depen-
dence on tangent-space indices from the spin connection, i.e.,

(!µ)
A
B = �AC✏CB !µ.

Since the spin connection !µ depends only on spacetime indices, it can
appear explicitly on the hydrodynamic action as part of the NC geometrical
background. This is only possible in (2+ 1) dimensions and will be important
in the definition of odd viscosity.

Under local frame rotation the spin connection transforms as:

!µ ! !µ + @µ', (4.26)

where ' is the angle of rotation. The gauge invariant quantity made out from
the spin connection is curvature 2-form, defined as:

Rµ⌫ = @µ!⌫ � @⌫!µ. (4.27)

The curvature 2-form is related to the Riemann curvature through the
following expression:

Rµ⌫ = n✏
��h�⌧R

⌧
�µ⌫ = n✏

��hµ⌧R
⌧
⌫��. (4.28)

4.4 Hydrodynamics in Newton-Cartan Back-
ground

In section 3.3 we have derived momentum and energy conservations from the
general covariance of the the action, that is, �⇣S = 0. However, the action
(4.6) is not invariant under general coordinate transformation. Because time
is a special coordinate in Newtonian physics, non-relativistic actions are usu-
ally written separating time and spatial coordinates. In order to write them

5In absence of torsion, the a�ne connection can be written as:

�µ
⌫⇢ = vµ@⇢n⌫ + 1

2hµ�(@⌫h⇢� + @⇢h⌫� � @�h⌫⇢).
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covariantly, we need to introduce the NC geometric background discussed in
the previous section. For example, let us focus on the action (4.6). Since ⇠

0

corresponds to the time component of a spacetime one-form, we can rewrite it
as the projection of ⇠µ onto a “unit vector” that points towards the direction
of time:

⇠
0

! vµ⇠µ .

Equivalently, the Euclidean metric and the spatial Levi-Civita tensor must
be replaced by:

�ik ! hµ⌫ ,

✏ik ⌘ ✏0ik ! nµ✏
µ⌫� .

To derive the covariant version of the volume form d2x dt, we must use
that the volume in 3 dimensions can be obtained from the triple product of
the basis vectors, that is,

d2x dt ! ✏µ⌫� nµe
1

⌫e
2

� d
2x dt.

It is not hard to see that:

✏µ⌫� nµe
1

⌫e
2

� =
q

det (hµ⌫ + nµn⌫). (4.29)

Therefore, the naive covariant version of the action (4.6) can be written as:

S =

Z

M



⇢ vµ⇠µ +
1

2
⇢hµ⌫⇠µ⇠⌫ � "(⇢) + f(⇢)✏µ⌫� nµ@⌫⇠�

�

dV, (4.30)

where dV ⌘
p

det (hµ⌫ + nµn⌫) d
2x dt. However, we can always add to the

action (4.30) terms which vanish when we set the NC background to be flat,
such as terms proportional to the curvature of M. In fact, there is no unique
way to make the action (4.6) covariant.

As we pointed out in the previous section, the spin connection can appear
explicitly on the hydrodynamic action. For a flat background we have Rµ⌫ =
0, and !µ becomes pure gauge. The gauge transformation (4.26) restricts
the possible appearance of the spin connection in the action. If the frame
rotation a↵ects no hydrodynamic variables, !µ can only appear6 in the form
Rµ⌫ . However, Rµ⌫ can be fully expressed in terms of hµ⌫ , hµ⌫ , vµ and nµ,
and the introduction of the !µ in the action is indeed spurious.

6Technically, it could also appear in terms of the form
R

✏µ⌫�!µ@⌫a�dV , however they
can be expressed in terms of Rµ⌫ after integration by parts.
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In analogy to (3.16), let us consider the case where ✓ transform under frame
rotation:

✓ ! ✓ � s̄'. (4.31)

We have introduced the constant s̄, so that the invariant quantity is given
by ⇠µ + s̄!µ.

4.5 Symmetries in Newton-Cartan Geometry

Here, we will repeat the steps from section 3.3 to derive momentum, energy
and spin conservation laws for a non-relativistic 2-dimensional fluid. Let us
start from spin conservation. Since only ✓ and !µ transforms under frame
rotation:

�'S = �
Z

M
@�'

✓

s̄
�S

�⇠�
� �S

�!�

◆

d2x dt. (4.32)

If we restrict ourselves to field configurations that satisfy equation of mo-
tion, we obtain:

@µ

✓

1p
h

�S

�!µ

◆

= 0. (4.33)

In the last equation, we have denoted h ⌘ det (hµ⌫ + nµn⌫). Equation
(4.33) shows that the spin current is conserved, as a consequence of local
frame rotations.

Let us now turn our attention to di↵eomorphisms. As we have already
discussed, not all the NC fields are independent and the variation of hµ⌫ and
n⌫ can be expressed in terms of variation of hµ⌫ and vµ:

�nµ = �nµn⌫�v
⌫ � 1

2
(hµ�n⌫ + h⌫µn�) �h

⌫�, (4.34)

�hµ⌫ = � (h⌫�nµ + hµ�n⌫) �v
� � hµh⌫� �h

�. (4.35)

Therefore, on solutions of the equations of motion, the variation of the
action with respect to di↵eomorphisms is given by:

�⇣S =

Z

M

⇢

�S

�vµ
� nµn⌫

�S

�n⌫

� (h⌫µn� + hµ�n⌫)
�S

�h⌫�

�

(L⇣v)
µ +

�S

�!µ

(L⇣!)µ+



�S

�hµ⌫
� 1

2
(hµ�n⌫ + h⌫�nµ)

�S

�n�

� hµh⌫�
�S

�h�

�

(L⇣h)
µ⌫

�

d2x dt.

(4.36)
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The Lie derivative L⇣ acting on the background fields gives us:

(L⇣v)
µ ⌘ ⇣⌫r⌫v

µ � v⌫r⌫⇣
µ = �v⌫r⌫⇣

µ, (4.37)

(L⇣!)µ = ⇣⌫R⌫µ + rµ(⇣
⌫!⌫), (4.38)

(L⇣h)
µ⌫ = �h⌫�r�⇣

µ � hµ�r�⇣
⌫ . (4.39)

Imposing that �⇣S = 0 and using equation (4.33), we find:

Z

M
⇣µ
✓

r⌫T
⌫
µ +

1p
h
Rµ⌫

�S

�!⌫

◆

dV = 0, (4.40)

where

T ⌫
µ =

1p
h

✓

v⌫
�S

�vµ
+ 2h⌫ �S

�hµ
� nµ

�S

�n⌫

� 2hµ
�S

�h⌫�

◆

. (4.41)

The curvature 2-form appears in the equation for the momentum conser-
vation in the same way as the Lorentz force for a charged fluid. However,
di↵erently from the latter, the second term in (4.40) can be rewritten as total
divergence. For that, let us consider the equation (4.28):

1p
h
Rµ⌫

�S

�!⌫

= n✏
��hµ⌧R

⌧
⌫��

1p
h

�S

�!⌫

,

1p
h
Rµ⌫

�S

�!⌫

= n✏
��hµ⌫

h

r� ,r�

i

✓

1p
h

�S

�!⌫

◆

. (4.42)

In the last line, we have used the definition of the Riemann tensor. There-
fore, equation (4.40) becomes:

r⌫



T ⌫
µ + 2n✏

⌫�hµ�r�

✓

1p
h

�S

�!�

◆�

= 0. (4.43)
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Chapter 5

Future Directions: Transport
Properties of Topological
Surface States

The fingerprint of topological materials is the existence of protected surface
states. In addition to the fundamental interest in states from Fermi arcs,
their signature in the magnetotransport appears in small size samples. For
example, surface modes in the SdH oscillations were observed in [33]. The
Fermi arc contribution to quantum oscillations depends on the sample size and
was estimated in [59], using semiclassical arguments. The surface contribution
to the conductivity was estimated as:

�� ⇠ cos



2kF

✓

k
0

eB

~ cos ✓ + L

◆

± �⇡

�

, (5.1)

where k
0

is the Fermi arc length in k-space, � is a phase shift and ✓ is the
angle between the magnetic field and the surface normal vector. In addition
to that, in very clean samples the states at Fermi arcs may serve as the main
chirality relaxation mechanism.

5.1 Chiral Kinetic Theory with Fermi Arcs

For usual metals, boundary e↵ects are washed out by the bulk properties of the
materials. Therefore, one should expect to see transport signatures of surface
states only for very thin samples. In this spirit, the Fermi arc contribution for
the SdH oscillations was proposed and estimated in [59]. Their prediction was
qualitatively confirmed later in samples of Cd

3

As
2

[33]. To develop a quanti-
tative theory of an interplay between bulk anomaly in Weyl/Dirac metals and
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contributions from surface Fermi arc states the chiral kinetic theory should be
modified by respective boundary terms. This generalized chiral kinetic the-
ory with surface states should also account for the chirality relaxation due to
Fermi arcs.

Our goal is to extend the analysis developed in the chapter 2 to account
for the surface states discussed in the section 1.2.3. This extension will in
highlight the connection between Fermi arcs and the Atiyah-Patodi-Singer
index theorem, as suggested in [60], and will serve as a basis for the chiral
kinetic theory with Fermi arcs.

5.2 Boundary Modes in Anomalous Hydrody-
namics

As an alternative approach to kinetic theory we also propose to consider the
regime of strong interactions where hydrodynamics can be applicable. The fun-
damental question is how to impose realistic boundary conditions on anoma-
lous hydrodynamic equations. Due to the topological nature of such surface
states, we expect that it is possible to impose boundary conditions consistently
so that the strongly interacting physics corresponding to Fermi arcs would ap-
pear as hydrodynamic surface modes derivable from anomalous hydrodynamics
in the bulk with correspondent boundary conditions.

In order to account for surface modes, it is convenient to start from an
e↵ective action for anomalous hydrodynamics. In the presence of a boundary,
the gauge transformation of the action (3.17) acquires edge contributions:

�
⇤

S =
C

24

Z

M
⇤ ✏�⌫⌘� F�⌫ F⌘� d

4x (5.2)

+
C

6

Z

@M
⇤ ✏�⌫⌘� (⇠⌫ � A⌫) @⌘ (⇠� + A�) d⌃�.

We notice that the field ✓ appears explicitly in the hydrodynamic action
even for static (time-independent) background gauge fields. This means that
this field becomes physical and correspond to physical degrees of freedom of
the fluid. Therefore, terms containing ⇠i in second line of (5.2) have to be
canceled by the gauge variation of a boundary action. This boundary action
has to be of the form:

S@M =
C

6

Z

@M
✏�⌫⌘� @⌫✓A⌘ ⇠� d⌃� + gauge invariant terms, (5.3)
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since

�
⇤

(S + S@M) =
C

24

Z

M
⇤ ✏�⌫⌘� F�⌫ F⌘� d

4x� C

6

Z

@M
⇤ ✏�⌫⌘�A⌫@⌘A�d⌃�. (5.4)

The field ✓ becomes physical even for time-independent gauge fields and
appears explicitly in the action. Nevertheless, the full action is still invariant
to reparametrizations of Clebsch potentials which leave ⇠i invariant.

Let us focus on anomaly terms in the expression for the consistent current:

�S

�A�

= . . .+
C

6
✏�⌫⌘�



⇠⌫ @⌘⇠� +
1

2
⇠⌫ F⌘� + @⌫ (A⌘ ⇠�)

�

+ �@M(x)
C

6
✏�⌫⌘�n⌫ (@⌘✓ � A⌘) ⇠�. (5.5)

In the second line of (5.5), �@M(x) denotes the delta function on the mani-
fold boundary. If we compare the consistent charge density, �S/�A

0

, with the
last term in (3.30), we find that the surface charge density is given by the
normal component of the fluid electric polarization.

The extension of this model to two coexistent chiralities and surface hydro-
dynamic modes can in principle model the transport in type-I Weyl semimetals
with Fermi arcs. Since the Coulomb interaction breaks the emergent Lorentz
symmetry and hydrodynamic behavior is expected at large temperatures, the
non-relativistic generalization of the e↵ective action for finite temperature
might become necessary to allow for comparisons with experiments1.

1This is true for e↵ects beyond linear response, where the non-linear nature of hydro-
dynamics becomes important.
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Appendix A

Poisson Summation Formula
and SdH E↵ect

In this section, we will apply the Bohr-Sommerfeld quantization prescription
to introduce quantum e↵ects in the conductivity. Assuming that the only
contribution to transport comes from the discrete levels, the conductivity per
chirality becomes:

�(�)
zz = � e2

4⇡2

1
X

⌫=�1

Z

dk

1

Z

�1

d(cos ✓) k2
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0
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⇥ �[⌫ � 1

4

�

sin2 ✓/⇣k � 2� cos ✓
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]vk gz, (A.1)

where gz is given in (2.40). We have used that there is no real solution for
(2.20) when ⌫ 2 Z�. Therefore, all surfaces for negative integer ⌫ are outside
of the integration range. The integral over k is performed near Fermi surface.

Using the Poisson formula,

1
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the conductivity can be rewritten as:
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where,
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The integral in equation (A.3) accounts for the intervalley scattering and
can be easily calculated:
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In the equation above, we have used that

@f
0
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⇡ ��(k � kF )

~vF
.

The terms with l 6= 0 vanish since the chirality relaxation mechanism that
we have considered only accounts for the scattering between the zero-modes.

Let us now consider the contribution for the intravalley scattering coming
from equation (A.4). For l = 0 the integral can be performed analytically,
however, we are only interested in the range where the semiclassical picture is
valid. If we restrict ourselves terms up to O(⇣2F ), we end up with:
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In order to calculate I(l)
2

for l 6= 0, it is convenient to define x = cos ✓+�⇣k.
Expanding the integrand up to O(⇣2k), we find that:
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where
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Solving for odd values of m:
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However, ⇣kQ3

= O(⇣3k) and such term can be neglected. Let us now focus
on m even. They can all be obtained through Q

0

as follows:
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where l is set to be a non-zero integer at the end of the calculation. Clearly,
Q

4

= O(⇣3k) and we only need to calculate Q
2

. The integral Q
0

can be written
as:

Q
0

=

1+�⇣k
Z

0

dx e
�i ⇡l

2⇣k
x2

+

1��⇣k
Z

0

dx e
�i ⇡l

2⇣k
x2

. (A.9)

Let us focus on the right hand side of equation (A.9). Thus,
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where we have defined:
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Since we are restricting ourselves to terms up to O(⇣2k), we obtain:
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Plugging all determined values for Qm into (A.7):
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Here we have used that we can invert the dispersion relation and write k(").
The energy integral is performed at the vicinity of the Fermi surface. Since we
assume that T/"F ⌧ 1, all the integrand besides the oscillating exponential is
consider to vary slowly in the temperature range. In addition to that, we must
expand the exponent near the Fermi energy. Keeping only linear deviations in
the exponent, we are left with:
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In the equation (A.11), we have defined t = ("�µ)/T and � = ⇡2T/(~vFkF ⇣F ).
The integral can be solved using the residue theorem, and its value is given
by:
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Therefore, the conductivity can be expressed as:
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Appendix B

Dingle Factor

In the treatment of quantum oscillations, the Dingle factor in equation (2.47)
comes from the smearing of LLs due to impurity scattering. In the previous
section, we assumed that the density of states have sharp peaks at each Landau
level. However, this is not true in a more realistic scenario. The presence of
impurities breaks the energy degeneracy of the Landau levels and as a net
result they get smeared by the presence of impurities.

The assumption that kF `2B/(vF ⌧) ⌧ 1, allows us to disregard corrections
to the plane-wave scattering due to the magnetic field1. Within this approxi-
mation, the density of states is still isotropic, however, it gets a contribution
coming from the smearing of energy levels, namely:
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In the limit when � ! 0, we recover the well-know result
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In fact, the smearing of the energy levels can be introduced by following
replacement:

�(⇠ � "(k)) ! 1

⇡

�(⇠, k)

[⇠ � "(k)]2 + �2(⇠, k)
.

1Otherwise, we must consider the whole matrix elements of the impurity potential in
the presence of magnetic field.
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We can thus rewrite equation (A.10) in a more convenient way:
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The choice of the lower limit of integration is for later convenience. As
previously mentioned, the smearing can be taken into account by replacing the
delta function in the integral above by a Lorentzian distribution. Therefore,
let us focus on:
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The cuto↵ 1/(
p
2`B) guarantees the integral convergence. One can solve

equation (B.3) using the steepest descent approximation. For that, let us

analytically continue the integrand and define z ⌘ ⇣
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k . Hence,
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Expanding the exponent near z = 1, we obtain:
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The contour C is defined by <[(z � 1)2] = 0 together with =[(z � 1)2] � 0
and |z| � 1. Let us assume for simplicity that �(⇠, k) = �(⇠). Using that only
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, we find that:
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where
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and k is taken to be k(⇠ + i�). Plugging it into I(l)
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, we end up with:

I(l)
2

= �2k2

FvF ⇣F
~⇡l (�1)l

✓

i+
2⇣F
⇡l

◆

+
k3

Fv
2

0

�⇣3/2F ei
⇡
4

⇡2l2"2F

� e
i ⇡l
2⇣F

+i⇡4��Dl

2~⇡ k2

FvF

✓

2⇣F
l

◆

3/2
1
Z

�1

dt
e(1+i�l/⇡)t

(et + 1)2
.

Here, we have defined �D = ⇡�/(~kFvF ⇣F ) and neglected terms of O(�e��Dl).
However, from (2.30),

�/"F ⇠ �/(~vFkF ) ⌧ ⇣F

and consequently ⇣
3/2
F �/" ⌧ ⇣2F . Therefore, the second term in I(l)

2

can also
be neglected within our approximation.

The only modification in the conductivity expression coming from the
smearing of LLs occurs in equation (B.6), which must be replaced by:

�(l)
zz =

n�e
2vF

~kF
e��Dl

i! + 1/⌧

3

2⇡

�l

sinh�l

✓

2⇣F
l

◆

3/2

. (B.6)
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Appendix C

Sympletic Form and Poisson
Structure

We can think of the space of functions as an infinite dimensional vector space
which can be endowed with a metric structure. Let us define the inner product
between two functions f and g as

hf, gi ⌘
Z

R3

f(x)g(x) d3x.

This inner product defines the so-called L2 metric. Clearly, the convergence
of this integral imposes some conditions on f(x) and g(x), although let us not
bother about that for now. Under this, we can understand functions the same
way we understand vectors. Thus, let us rewrite the action in a generic form:

S =

Z tf

ti

⇣

h⇡I , �̇
Ii � H

⌘

dt . (C.1)

Variation of the action gives us:

�S =

Z tf

ti

✓

h⇡I , @t��
Ii �

⌧

�H

��I
, ��I

�◆

dt+

+

Z tf

ti

⌧

�⇡I , �̇
I � �H

�⇡I

�

dt ,

�S = h⇡I ,��
Ii|tfti +

Z tf

ti

⌧

�⇡I , �̇
I � �H

�⇡I

�

dt+

�
Z tf

ti

⌧

⇡̇I +
�H

��I
, ��I

�

dt .
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The last two terms give the equations of motion in the Hamiltonian form
and the first term introduces the sympletic form. When the momentum vari-
ables depend only the fields �I and not on their time derivative, we can express
the sympletic form as an anti-symmetric bilinear map in space of functions.

⌦ =
1

2

Z Z

⌦IJ(x, x
0)��I(x) ^ ��J(x0) d3x d3x0, (C.2)

⌦IJ(x, x
0) =

✓

�⇡I(x)

��J(x0)
� �⇡J(x0)

��I(x)

◆

. (C.3)

In our case, the sympletic form becomes diagonal in position space and can
be written as:

⌦ = �
Z

R3



↵ �⇢ ^ �� +
C

6
@i↵Bi �✓ ^ ��

�

d3x+

�
Z

R3



�⇢ ^ �✓ +
C

6
@i�Bi �↵ ^ �✓

�

d3x+

�
Z

R3

✓

⇢+
C

6
(Ai � @i✓)B

i

◆

�↵ ^ �� d3x . (C.4)

Poisson brackets are obtained by inverting the sympletic form (C.4), what
gives us:

{↵(x), ✓(x0)} = � ↵

⇢�
�3(x � x0) , (C.5)

{↵(x), �(x0)} =
1

⇢�
�3(x � x0) , (C.6)

{⇢(x), ✓(x0)} = � ⇡�

↵⇢�
�3(x � x0) , (C.7)

{⇢(x), �(x0)} =
C @i�Bi

6⇢�
�3(x � x0) , (C.8)

{⇢(x),↵(x0)} =
C @i↵Bi

6⇢�
�3(x � x0) , (C.9)

where,

⇢� = ⇢ � C

6
(⇠i � Ai)B

i . (C.10)

For the time time dependent Hamiltonian, we need to specify Poisson
bracket between (⇠i, ⇢, ✓). The hydrodynamical Poisson brackets then become:
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{⇢(x), ⇢(x0)} = 0 , (C.11)

{⇠i(x), ✓(x0)} =
@i✓ � ⇠i

⇢�
�3(x � x0) , (C.12)

{⇠i(x), ⇠j(x0)} =
@i⇠j � @j⇠i

⇢�
�3(x � x0) , (C.13)

{⇢(x), ✓(x0)} =
⇢+ C

6

(Ai � @i✓)Bi

⇢�
�3(x � x0) , (C.14)

{⇠i(x), ⇢(x0)} =



C

6
Bk (@i⇠k � @k⇠i)

⇢�
� @i

�

�3(x � x0) . (C.15)

They simplify if we write the Poisson structure in terms of the free charge
density ⇢

+

= ⇢+ C
6

⇠iB
i.

{⇢
+

(x), ✓(x0)} = �3(x � x0) , (C.16)

{⇠i(x), ⇢+(x0)} = �@i �
3(x � x0) , (C.17)

{⇠i(x), ✓(x0)} =
@i✓ � ⇠i

⇢�
�3(x � x0) , (C.18)

{⇢
+

(x), ⇢
+

(x0)} = �C

3
Bi@i �

3(x � x0) , (C.19)

{⇠i(x), ⇠j(x0)} =
@i⇠j � @j⇠i

⇢�
�3(x � x0) . (C.20)
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Appendix D

Hamiltonian Equations for
Hydrodynamic with Anomalies

The Hamiltonian (3.31) in terms of ⇢
+

and e⇠i reads:

H =

Z

R3

✓

⇢
+

� C

6
e⇠iB

i

◆

q

µ2 + e⇠ke⇠k � P (µ)

�

d3x +

+

Z

R3

�



⇢
+

+
C

6

⇣

✏ijke⇠i @je⇠k + 2(e⇠i + Ai)B
i
⌘

�

d3x . (D.1)

The last term depends only on the external fields and it gives no contribu-
tion to Hamiltonian equations.

The time evolution of ⇢
+

is given by:

⇢̇
+

= {H, ⇢
+

} ,

⇢̇
+

= �@i

✓

C

3
Bi �H

�⇢
+

+
�H

�e⇠i

◆

,

and for e⇠i:

ė⇠i = {H, e⇠i} ,

ė⇠i = �@i

✓

�H

�⇢
+

◆

+
�H

�e⇠j

1

⇢�

⇣

@ie⇠j � @je⇠i + ✏ijkB
k
⌘

.
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The variation of Hamiltonian (D.1) provides us:

�H

�e⇠i
= J i +

C

6
(2�� �µ)Bi +

C

6
✏ijk

⇣

2�@je⇠k + e⇠jEk

⌘

,

�H

�⇢
+

= �+ �µ ,

where J i is defined in (??) and,

Ek = �@k�,

�µ =

q

µ2 + e⇠ie⇠i.

The free charge conservation is given by:

⇢̇
+

+ @i



J i +
C

6

⇣

�µBi � ✏ijke⇠jEk

⌘

�

=
2

3
CEiB

i , (D.2)

where we reproduce (3.11). The relativistic Euler equation in the presence of
anomalies becomes:

ė⇠i = � vk@ke⇠i � 1

⇢
@iP + Ei + ✏ijkv

jBk +
C

6

µ�

⇢�
✏ijk⇥

⇥ ✏jlm @le⇠m Bk +
C

6⇢�

⇣

e⇠lB
l vj � ✏jlm e⇠lEm

⌘

⇥

⇥
⇣

@ie⇠j � @je⇠i + ✏ijkB
k
⌘

. (D.3)
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