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Abstract

The topic of the present thesis is the study of some examples in gauge/string duality.

We carefully study the orbifold gauge theory and orbifold string theory and show

that the known integrability in AdS/CFT extends to the general supersymmetric

orbifolds of AdS5 × S5. There is an interesting interplay between the two descrip-

tions of the orbifold gauge theory. Another interesting example is the Klebanov-

Strassler (KS) background. We find the exhaustive list of the supergravity excita-

tions in the I-odd sector of the KS theory. These comprise the three j = 1
2

massive

supermultiplets each consisting of a (possibly pseudo) scalar, two fermions and a

vector, and the two j = 1 supermultiplets whose bosonic content is a vector and a

pseudovector. Surprisingly, the spectrum of the excitations which fit into the pure

gauge sector strongly resembles the results obtained from the numeric studies in

lattice gauge theory.
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Chapter 1

Introduction

The theory of strings made its appearance in physics as a result of an attempt to

understand the strong interactions. However, the discovery of asymptotic freedom

and emergence of QCD as well as the lack of any significant progress in string theory

of strong interactions led to a shift of intrest of string theory. From the point of

view of QCD, the modern theory of strong interactions, hadronic strings would be

interpreted as color electric flux tubes between quarks. The main emphasis of string

theory therefore shifted to the Planck scale in a hope of finding the unified theory

of interactions.

Nevertheless, the interest in the web of dualities between gauge theory and string

theory never ceased existing. A concrete version of gauge/string correspondence was

proposed by ’t Hooft in [1] (see also [2],[3],[4]) in the form of the 1/N -expansion.

The idea was to generalize the gauge group of QCD SU(3) to SU(N) and study the

limit of large N . The central idea of 1/N -expansion is that each Feynman graph of

a non-Abelian gauge theory can be naturally drawn on some Riemann surface, and

these surfaces are to represent some closed string worldsheets. Indeed, taking the

large N limit while keeping the ’t Hooft coupling λ = g2
YMN fixed results in a genus g

graph acquiring the topological factor Nχ ≡ N2−2g. Then the 1/N -expansion could

be thought of as a perturbative expansion of some closed string theory with the

string coupling via gS = 1/N . However, there was never a worldsheet description of

1
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the string theory dual to large N QCD.

The gauge theory/closed string duality is expected to be a limit of a more general

open/closed string correspondence, which should hold at the world sheet level. In

particular, in terms of the Matrix Theory proposal [5] non-Abelian gauge degrees of

freedom are just a part of a more general theory; and thus they naturally incorporate

into the web of dualities.

Open string diagrams are equivalent to closed string world sheets with holes. The

idea behind the open/closed string correspondence is that the holes can be replaced

by closed string vertex operators, and absorbed into an adjustment of the sigma

model that governs the motion of the closed string. From the perspective of the

low energy effective field theory, this relation between open and closed strings gives

rise to the famous duality between gauge theory and gravity, the central example

of which is the celebrated AdS/CFT correspondence [6],[7],[8],[9]. The key physical

insight that spurred this development was the discovery of D-branes [10], followed

by understanding of the geometrical nature of the non-Abelian Chan-Paton factors

in terms of stacks of coincident branes [11].

From the point of view of the perturbative open string theory D(irichlet)-branes

are surfaces where open strings are allowed to end. Such a string with its end

attached to a Dp-brane obeys Dirichlet boundary conditions in the 9− p directions

transverse to the brane and Neumann boundary conditions in the p spatial directions

along the brane. In this setup a stack of parallel D-branes naturally leads to the

emergence of non-Abelian degrees of freedom: Chan-Paton factors label the branes

a string is attached to. VEVs of the adjoint scalars in the low-energy effective gauge

theory on the brane worldvolume are determined by the relative positions of the

N D-branes. The full unbroken SU(N) gauge group is attained for the stack of

N coincident branes. In this context the gauge degrees of freedom in the simplest

form are the low energy excitations of open strings attached to a stack of N parallel

D-branes.



3

On the other hand, D-branes can be viewed as solitons in the closed sting theory.

Their appearance on the closed string side is not surprising since from the RR sector

of the closed string theory there originate the p-form fields Cp; and there are no

objects in perturbative string theory for these forms to couple to. D-branes serve

as sources for these RR fields, and their interaction is constructed the same way

as that of charged particles with the electromagnetic field. Namely, the coupling of

a Dp-brane to a RR p + 1-form is determined by the integral of the form over the

brane’s worldvolume:

Sint ∼
∫

Vp+1

Cp+1 . (1.1)

Since D-branes serve as the sources for the RR-fields as well, we expect the super-

gravity background to acquire some non-zero RR field strength. It turned out that

the supergravity solutions describing the backreaction of D-branes had been known

for a long time. In particular, of especial importance is the one describing a stack

of N coincident D3-branes in a ten-dimensional flat space:

ds2
10 = h(r)−1/2(−dx2

0 + d~x2) + h(r)1/2(dr2 + dΩ2
5) ; (1.2)

where the factor h(r) is

h(r) = 1 +
R4

r4
; R4 = 4πgSα

′2N . (1.3)

The induced RR flux is

C4 = h−1 dx0 ∧ . . . ∧ dx4 . (1.4)

A major breakthrough in understanding the duality was made when Maldacena

pointed out that the key region for understanding the dynamics of the dual gauge

theory was the throat, where r ≪ L. In this limit the metric (1.2) simplifies:

ds2
10 =

R2

z2
(−dx2

0 + d~x2 + dz2) +R2dΩ2
5 ; (1.5)
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where we have introduced z = R2/r. The limitting metric (1.5) describes the direct

product of a 5-sphere S5 and an Anti-de Sitter space AdS5, both having the same

curvature. This background is believed to be an exact string theory solution at the

quantum level. The AdS/CFT conjecture suggested that the N = 4 SYM at large

N and fixed ’t Hooft coupling λ was dual to the IIB String Theory on AdS5 × S5

with radius

R4 = 4πα′2λ . (1.6)

A mere symmetry counting reveals the exact match between the isometries of the

AdS5 × S5 background (1.5) and the (super)symmetry group SU(2, 2|4) of N =

4 SYM theory. The bosonic part of this group is SU(2, 2) × SU(4). The first

factor SU(2, 2) is the conformal group in four dimensions, and it corresponds to

the isometry group of the AdS5 space SO(4, 2). The SO(6) isometry group of the

5-sphere S5 matches the SU(4) R-symmetry group of N =4 supersymmetry. This

is obvious since the action of the N =4 SYM theory in four dimensions is obtained

from that of N = 1 SYM in ten dimesions by performing dimensional reduction

along the six dimensions. The SO(6) subgroup acting along these six dimensions

becomes the R-symmetry group of the resulting N =4 SYM theory.

The identity of the conformal group in four dimensions and the isometry group of

the AdS5 is not an accidental coincidence as well. The reason is that the boundary of

the AdSd+1 space is a conformal compactification of a Minkowski space Md. Indeed,

the Anti de Sitter space AdSd+1 can be embedded into a flat d+2-dimensional space

R2,d as a hyperboloid:

−X2
0 +

d∑

i=1

X2
i −X2

d+1 = −R2 . (1.7)

In addition, there is to be imposed an equivalence X i → −X i . This equation can

be rewritten as

UV −
d−1∑

i,j=0

ηijX
iXj = R2 . (1.8)
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Taking the limit U = αu, V = αV , X i = αxi, α→ +∞; it becomes

uv − ηijx
ixj = 0 ; (1.9)

where u, v and xi are determined only up to an overall scaling factor: (u, v, xi) ∼
(su, sv, sxi). In the patch where v 6= 0 one can use the scaling equivalence and set

v = 1; then u is determined from the Minkowski space coordinates xi. It is obvious

that the SO(d, 2) group naturally acts on the “quadric” (1.9), and this action is

conformal. Therefore, equation (1.9) gives the conformal compactification of the

Minkowski space Md as a boundary of the Anti de Sitter space AdSd+1.

At the level of algebra the identification of these groups is as follows. The

algebra of the conformal group in a space of d dimensions (d ≥ 3) consists of the

following generators: translations Pµ, Lorentz transformations (spatial rotations

and boosts) Mµν , dilatation D and special conformal transformations Kµ. The

algebra can be written in the standard form of the SO(d, 2) algebra with signature

(−,+,+, · · · ,+,−); generators of the latter being

Jµν = Mµν , (1.10)

Jµ,d =
1

2
(Kµ − Pµ) , (1.11)

Jµ,d+1 =
1

2
(Kµ + Pµ) , (1.12)

Jd+1,d = D . (1.13)

In the works [7], [8] there was introduced the idea of holography which made fur-

ther progress towards understanding the correspondence. It was suggested that the

AdS background (1.5) was related to a non-critical string theory. Recall that in the

conformal gauge the worldsheet action of the string theory contains the fields Xµ(σ)

and the Liouville field ϕ; the former serving as the Weyl factor in the worldsheet

metric:

gij = eϕ(σ) δij . (1.14)
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The criticality condition implies the vanishing of the central charge c of the Virasoro

algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n . (1.15)

In this case one can identify Ln = −zn+1 ∂
∂z

, and the Virasoro algebra reduces to

the that of the two-dimensional conformal group. In this case by a gauge fixing

one can get rid of the Weyl factor and field ϕ. In particular, the non-criticality

condition fixes the number of the target space dimensions to be 26 for a bosonic

string theory and 10 for superstrings. However, in a non-critical string theory the

central charge c (“conformal anomaly”) does not vanish, and the Liouville field ϕ

cannot be gauged away. In fact, it becomes an effective extra coordinate in the

target space. It was proposed in [7] that the AdS coordinate z used in eq. (1.5) is

nothing but the Liouville field:

z = Re−ϕ/R . (1.16)

Note that in these notations the regime z ≪ R is “far from the brane,” and z ≫ R

is “near the brane.” The idea of holography is to identify the generating functional

of the field gauge theory with the minimum of the supergravity action subject to

some boundary conditions at z = R and z = 0. The proposal was illustrated with

an example of a massless scalar field.

Yet another idea was that of considering the semiclassical limit of the AdS/CFT

correspondence [12]. It amounts to considering the dynamics of the classical strings

in AdS. The gauge duals of such regime are the operators with a very high bare

dimension. Conformal dimensions of such operators can be identified by virtue of

the mentioned identity between the isometry group of AdS5 and the conformal group

of the four dimensional Minkowski space. In particular, in the global coordinates

on AdS5 the metric is

ds2
AdS5

= R2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3

)
; (1.17)
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and the conformal dimension of the dual operator is merely the energy of a spinning

string.

However, there are some difficulties in studying the AdS/CFT conjecture. One of

them is the fact that weak coupling on the gravity side (closed strings) corresponds

to the strong coupling regime on the gauge theory side (open strings); and this

prevents one from performing simple perturbative checks. Indeed, given that the

gauge theory coupling λ is small; the curvature radius of AdS5 × S5 R given by

(1.6) becomes small as well, and there appears a need for quantum corrections on

the string side. It was major breakthrough when it was realized that some integrable

structures were present in the scalar subsector of N = 4 SYM [13], and this result

was extended to the complete set of operators in [14],[15],[16]. At the same time

there was investigated the integrability of the closed string motion in [12] and the

subsequent works. This opened new opportunities for understanding the AdS/CFT

duality beyond perturbation theory.

Another disappointing fact about the pure AdS/CFT is that N =4 SYM theory

is maximally supersymmetric and conformally invariant at both a classical and a

quantum level, and this fact prevents it from being a good prototype of the models

encountered in particle physics, such as QCD. That is why there is a need to study

some examples with fewer supersymmetries. Indeed, there exists a way of reducing

the number of supersymmetries. In order to do it one can consider a more general

background of the form AdS5 ×X5; where X5 is a compact Einstein manifold:

Rab = Λ gab , Λ > 0 . (1.18)

A common way of achieving such supersymmetry reduction is known as “orbifold-

ing” [17]; i.e., taking the factor X5 as a quotient of a 5-sphere w.r.t. a discrete

group: X5 ≃ S5/Γ. Such theories were shown to be conformal in the planar (large

N) limit [18]. It is also possible to construct the gauge theory duals to some spaces

X5 which are not locally equivalent to a sphere. Given that the AdS5 part of the
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background remains unaltered, the dual gauge theory still has the full conformal

group SO(4, 2); but the number of supersymmetries gets reduced compared to the

pure AdS/CFT. A broad class of such backgrounds can be obtained by placing a

large number N of D3 branes at the apex of a six-dimensional cone Y6; then the

near-horizon geometry is known to be that of AdS5 ×X5, where X5 is the base of

the cone Y6.

A prominent example of such a background is the Klebanov-Witten (KW) so-

lution [19] AdS5 × T 1,1. The five-dimensional space T 1,1 is the base of the conifold

given by the following equation in the four complex variables:

4∑

a=1

z2
a = 1 . (1.19)

The metric of T 1,1 can be described in terms of the five angular variables [20]:

ds2
T 1,1 =

1

9

(
dψ +

2∑

i=1

cos θi dφi

)2

+
1

6

2∑

i=1

(
dθ2

i + sin2 θi dφ
2
i

)
. (1.20)

After introducing the following basis one-forms,

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

,

g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

,

g5 = e5 , (1.21)

where

e1 ≡ − sin θ1dφ1 , e2 ≡ dθ1 ,

e3 ≡ cosψ sin θ2dφ2 − sinψdθ2 ,

e4 ≡ sinψ sin θ2dφ2 + cosψdθ2 ,

e5 ≡ dψ + cos θ1dφ1 + cos θ2dφ2 ; (1.22)

the metric on T 1,1 takes the form

ds2
T 1,1 =

1

9
(g5)2 +

1

6

4∑

i=1

(gi)2 . (1.23)
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The dual gauge theory is is an SU(N) × SU(N) gauge theory coupled to the two

chiral superfields Ai in the (N, N̄) representation and the two chiral superfields Bi

in the (N̄,N) representation. Let us stress that in spite of the reduced number

of supersymmetries (N = 1), the KW gauge theory is conformal. Indeed, it is the

S5 factor that gets replaced by the T 1,1 on the gravity side; while the AdS5 factor

responsible for the conformal group SO(2, 4) remains unchanged.

During the subsequent studies there were constructed gravity duals for some

gauge theories which were not conformal. These supergravity backgrounds no longer

contain the AdS5 factor. One such example is the Klebanov-Strassler solution,

which established a duality between the cascading SU(k(M + 1))×SU(kM) gauge

theory and type IIB strings on the warped deformed conifold [21]. It generalizes

the duality between the superconformal SU(N) × SU(N) gauge theory with bi-

fundamentals and string theory on AdS5 × T 1,1 [19]. Adding extra colors to one

of the gauge groups breaks the conformal symmetry [22, 23, 24] and leads to the

cascade behavior [21, 25, 26]. The gauge group SU(k(M + 1))× SU(kM) shrinks to

SU(M) at the bottom of the cascade and the KS theory reduces to the pure gauge

N = 1 SYM [21]. Unfortunately such a limit requires small gsM , which makes the

supergravity approximation invalid. Nevertheless this connection between the KS

solution and the pure super-Yang-Mills theory strongly motivates the studies of the

bi-fundamental free sector of the SU(k(M + 1))× SU(kM) theory that survives at

the bottom of the cascade.

1.1 Outline

The layout of the present thesis is as follows. In the second chapter we introduce

the orbifold string theory. We review the integrability of the semi-classical closed

string motion on the orbifolds. Then we introduce the orbifold gauge theory and

discuss its different descriptions. In the third chapter we formulate the extension of
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the known one-loop integrability in AdS/CFT to the case of the general orbifolds

and discuss a possible extension to the higher loop calculations. These results were

published in [27] The main goal of the fourth chapter is the study of the I-odd

sector of the Klebanov-Strassler theory. It is based on the works [28], [29]. Together

these constitute some interesting examples in the gauge/string duality. Appendices

deal with some detailed calculations.



Chapter 2

Classical Aspects of Orbifold

String Theory and Orbifold Gauge

Theory

Besides exploring the integrability of the orbifold gauge theories, an important part

of the present thesis is to test the correspondence between large N gauge theory and

closed string theory. This chapter deals mainly with the classical aspects of orbifold

string theory and orbifold gauge theory. The closed string dual to the orbifold

gauge theories follows from the AdS/CFT dictionary. The stack of N D3-branes,

located on the fixed point of the orbifold space C3/Γ, induce via their gravitational

backreaction a near-horizon geometry that is given by

AdS5 × S5/Γ. (2.1)

The AdS/CFT correspondence states that the planar diagrams of the orbifold gauge

theory span the worldsheet of closed strings propagating on this near-horizon geom-

etry.

The orbifold group Γ can be an arbitrary finite subgroup of SO(6), the isometry

group of the sphere S5. In general, the finite group does not commute with super-

symmetry, and the resulting orbifold string theory is therefore non-supersymmetric.

11



2.1. Closed Strings on Orbifolds: Semiclassical Treatment 12

It can be shown, however, that all such non-supersymmetric orbifolds of AdS5 × S5

are unstable, due to the presence of localized tachyonic modes. For this reason

we will restrict ourselves to supersymmetric orbifolds, for which Γ defines a finite

subgroup of SU(3). Let us parametrize S5 as a sphere of radius R inside C
3, with

coordinates (Z1, Z2, Z3): ∑

I

ZIZI = R2 . (2.2)

SU(3) naturally acts on C3 and on the S5. In the special case that the finite

group Γ fits inside an SU(2) subgroup of SU(3), the orbifold theory is N = 2

supersymmetric.1(See Fig. 2.1 for an illustration.)

2.1 Closed Strings on Orbifolds: Semiclassical Treat-

ment

In this section we will summarize the semiclassical treatment of closed strings moving

on AdS5×S5/Γ. We will mostly focus on string configurations in the twisted sectors,

since the properties of untwisted states simply follow from the parent theory on

AdS5×S5. Twisted sector strings connect two different points on S5 that are related

1Finite subgroups of SU(2) have a well-known classification: they organize into an ADE series.
The A-type subgroups are Abelian, while the D-type and exceptional type subgroups are non-
Abelian. Under the McKay correspondence these correspond to the cyclic groups, the double covers
of the dihedral groups, and the double covers of the rotational symmetry groups of the tetrahedron,
cube/octahedron, and dodecahedron/octahedron, respectively. The finite subgroups of SU(3) are
less familiar, but have a similar classification. Finite subgroups of SU(3) other than SU(2) and
direct products of Abelian phase groups fall into 2 series: analogues of dihedral subgroups, denoted
by ∆(3n2) with n a positive integer, and ∆(6n2) with n a positive even integer, and analogues of
exceptional subgroups, denoted by Σ(60), Σ(168), Σ(360k), Σ(36k), Σ(72k), Σ(216k) with k = 1,
3. The number in braces is the order of the group. As an example, the discrete SU(3) subgroup

∆(3n2) has 3n2 elements, generated by the three Z3 transformations (here ω = e
2πi

n )

g1 : (Z1, Z2, Z3) −→ (ω Z1 , ω2 Z2, Z3) ,

g2 : (Z1, Z2, Z3) −→ (Z1, ω Z2 , ω2 Z3) , (2.3)

g3 : (Z1, Z2, Z3) −→ ( Z1, Z2 , Z3 ) .
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Figure 2.1: Finite group transformations acting on S5 may have fixed points or act freely.
In the former case the group action looks similar to the isometries that act on the sphere on
the left. In the free case, the group element can be viewed as a combination of commuting
Abelian isometries, analogous to the isometries that act on the torus on the right. For
supersymmetric orbifolds, transformations with fixed points are contained inside an SU(2)
subgroup. (The above pattern on the sphere has icosahedral symmetry, which is one of
the exceptional subgroups of SU(2).)

via some element g ∈ Γ. Since the finite group still acts on the twist g by conjugation,

twisted sectors are labeled by conjugacy classes in Γ.

To characterize the twisted string states, we note that the S5 metric allows for

three commuting Abelian isometries. In general, these are broken by the orbifold

group. For a given twist element g, however, we can orient things such that g acts

by a combination of the three isometries, and thus preserves all three of them. So

to specify a given twisted sector, we are free to assume that the twist g acts via a

diagonal matrix on the ZI . If g is an element of order S inside Γ, gS = 1, we can

write

g : (Z1, Z2, Z3) → (ωs1Z1, ω
s2Z2, ω

s3Z3) , (2.4)

ω = e2πi/S ,
∑

I

sI = 0 . (2.5)

We see that, in this given twisted sector, the string is free to move along three circle

directions, and one can define corresponding conserved angular momenta JI , with

I = 1, 2, 3. We further observe that in general, the group element g acts freely on
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S5. The corresponding twisted sector strings thus have a minimal length. However,

when one of the three integers sI, say s1, vanishes — so when g in fact fits inside

SU(2) — the action of g on S5 has an obvious fixed point at (Z1, Z2, Z3) = (R, 0, 0).

Next we summarize some relevant results on the classical motion of strings along

the S5 having in mind the future comparison with the gauge theory side. The more

general calculations can be found in [30] and references therein; in particular, [31],

[32] and [33]. We restrict ourselves to the strings moving in S5 directions only and

trivially embedded into AdS5. This motion is governed by the sigma model action

(restricted to the bosonic string coordinates)

S ∼
∫
dτdσ

(
1

2
∂at ∂at − ∂aZI∂

aZI + Λ(ZIZI −R2)

)
. (2.6)

Here t denotes the AdS time coordinate, and Λ is a Lagrange multiplier field. This

action is obtained as a reduction of the string worldsheet action in the conformal

gauge; thus the equations of motion derived from this action must be supplemented

by the corresponding Virasoro constraints:

ṫ2 = ŻI
˙̄ZI + Z ′

I
Z̄ ′

I
, (2.7)

0 = ŻIZ̄
′
I . (2.8)

We want to solve for the motion of the string in the twisted sector defined by

the twist element (2.4). As it was emphasized in [34], the closedness requirement

then allows for the fractional winding numbers,

Z
I
(σ + 2π) = e2πim̃IZ

I
(σ) , m̃I = mI +

sI

S
. (2.9)

The S5 metric has three commuting isometries. In general, these are broken by the

orbifold group. However, from the explicit form of the twist element given in (2.4),

we see that in this given twisted sector, the string is free to move along three circle

directions. It is therefore natural to choose the following Ansatz,

t = κτ , ZI = z
I
(σ) eiωIτ . (2.10)
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Inserting this Ansatz, the Lagrangian governing the dependence zI(σ) becomes

L =
1

2

∑

I

(z̄′
I
z′

I
− ω2

I
z̄

I
z

I
)− 1

2
Λ(
∑

I

z̄
I
z

I
−R2) . (2.11)

The Virasoro constraints simplify to

κ2 =
∑

I

(z̄′
I
z′

I
+ ω2

I
z̄

I
z

I
) , (2.12)

0 =
∑

I

ωI(z̄
′
IzI − z′I z̄I) . (2.13)

Note that both Lagrangian and Virasoro constraints have a U(1)3-invariance w.r.t.

the multiplication by a phase,

zI → eiαIzI , z̄I → e−iαI z̄I . (2.14)

This invariance leads to the three integrals of motion,

ℓI =
i

2
(z̄′

I
z

I
− z′

I
z̄

I
) . (2.15)

This allows us to eliminate the angular variables. Then denoting r2
I

= zI z̄I and

substituting this back into the action we get the following effective Lagrangian:

L =
1

2

∑

I

(
r′2I − w2

I r
2
I +

ℓ2
I

r2
I

)
− 1

2
Λ
( 3∑

I

r2
I − 1

)
. (2.16)

This system is called the Neumann-Rosochatius (NR) integrable system (e.g., [35]);

and its detailed analysis in the context of the closed string dynamics is given in [30].

Here we restrict ourselves to the simplest example, the circular strings. These solu-

tions take the following forms:

zI = aI eim̃Iσ , Λ = const. (2.17)

With this ansatz the integrals are ℓI = m̃Ia
2
I
; while the dynamical equations yield

w2
I

= −Λ− m̃2
I
,

3∑

I=1

a2
I

= 1 ; (2.18)
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κ2 =
3∑

I=1

a2
I
(w2

I
+ m̃2

I
) ,

3∑

I=1

a2
I
wIm̃I = 0 . (2.19)

The space-time energy for the circular string configuration is

E =
√

8π2λ

∫ 2π

0

dσ

2π
ṫ =
√

8π2λκ ; (2.20)

while the spins are

JI =
√

8π2λwI

∫ 2π

0

dσ

2π
r2

I
(σ) =

√
8π2λwIa

2
I
. (2.21)

One can define the total spin L =
∑3

I=1 |JI|. The relations (2.18) and (2.19) can be

rewritten in terms of the energy and the spins. Eqs. (2.19) read

E2

8π2λ
= −Λ ,

3∑

I=1

m̃IJI = 0 ; (2.22)

while (2.18) becomes
3∑

I=1

|JI|√
−Λ − m̃2

I

=
√

8π2λ . (2.23)

We will consider the two spin solution with J3 = 0. Then in the large L limit

one can solve these equations and find the following expansion for the energy:

E = L+
4π2λ

L
|m̃1| |m̃2| . (2.24)

Given that J1, J2 > 0, one must have m̃1m̃2 < 0. Recalling the definition of the

fractional winding numbers m̃2, m̃2 one can write the string energy as

E = L+
4π2λ

L

(
m− s1

S

)(
m′ +

s2

S

)
; (2.25)

m and m′ being some positive integers. After the formulation of the Bethe Ansatz

Equations for the orbifold gauge theory in Section 3.3 we will see that this expres-

sion matches the one-loop anomalous dimensions for the corresponding su2 subsector

formed by the two scalars in the field theory.
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2.2 Orbifold Gauge Theory

We now turn to the study of the class of quiver gauge theories obtained by taking an

arbitrary (Abelian or non-Abelian) orbifold of N = 4 supersymmetric U(N) gauge

theory. Our motivation is to investigate to what extent the recently uncovered large

N integrability of N =4 SYM can be extended to this general class of orbifold gauge

theories. In this section we will summarize some of their relevant properties. The

relevant references are [36],[37],[38],[39],[18],[40].

It will be convenient to think of the quiver gauge theory as the low energy

limit of the open string theory on a stack of N D3-branes located near an orbifold

singularity. Before taking the orbifold quotient, the transverse space of the D3-

branes is R6 ≃ C3. The low energy field theory on the D3-branes is N = 4 SYM,

with its field content (in N =1 superfield notation): a vector multiplet A and three

chiral multiplets ΦI , with I = 1, 2, 3, that parametrize the three complex transverse

positions of the D3-branes along C3.

Let Γ be some finite group of order |Γ|, that acts on C3. The orbifold space is

obtained by dividing out the action of the discrete group Γ. The transverse space to

the D3-branes thus becomes C3/Γ. When viewed from the covering space, the stack

of N D3-branes in the orbifold space give rise to the total of |Γ|N image D3-branes.

It is convenient to label the image D3-branes by a pair of Chan-Paton indices (i, h)

with i = 1, . . . , N and h ∈ Γ, so that the brane labeled by (i, h) is the image of the

i-th brane inside the D3-stack under the group element h ∈ Γ. The group Γ thus

acts on the Chan-Paton indices as

g : (i, h) → (i, gh) . (2.26)

When the N coincident D-branes all approach the orbifold fixed point, the image

branes all coincide and the strings stretched between them have massless ground

states. The vector multiplet A has a separate matrix entry for each open string

stretching between two image branes, and thus defines an |Γ|N×|Γ|N matrix. Before
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imposing invariance under the orbifold group Γ, the full collection of image branes

thus supports an U(|Γ|N) gauge symmetry. The orbifold projection, however, selects

only those fields that are invariant under the discrete group Γ. The discrete group

acts on the vector multiplet A only via the Chan-Paton indices and on the chiral

multiplets ΦI via both the Chan-Paton and transverse indices.

This projection operator does not commute with the full N =4 superconformal

invariance, but in the special case that Γ forms a subgroup of SU(3), the orbifold

quotient preserves N =1 superconformal invariance. More generally, one could con-

sider orbifolds with Γ some subgroup of SO(6). However, it has been shown that

for non-supersymmetric orbifolds, the quantum theory has non-zero β-functions for

certain double-trace operators and is therefore not conformally invariant. The renor-

malized Hamiltonian of non-supersymmetric orbifolds thus contains extra terms that

do not descend from the N = 4 Hamiltonian [41]. For this reason we will restrict

ourselves to the supersymmetric subclass.

Although the orbifold theories all have less supersymmetry, their action is as-

sumed to be identical to that of the parent N =4 theory, which in N =1 superfield

notation reads

L =

∫
d4θ Tr

(
WαWα + eAΦ†

I
e−AΦI

)
+

∫
d2θ ǫIJK Tr (ΦI [ΦJ ,ΦK ]) + c.c.(2.27)

Here the trace Tr is over the adjoint representation of the full U(|Γ|N) gauge group

of the N = 4 theory. The fields (A,Φ) of the orbifold theory, however, have to be

Γ-invariant. This invariance condition can be solved as

Ah,hg = A(g) , (2.28)

ΦI

h,hg = R(h)I

Jφ
J(g) . (2.29)

We see that after the projection, the Γ valued left and right Chan-Paton indices

have collapsed to a single group valued index. The gauge and matter fields can thus

be thought of as group algebra valued N×N matrices. We will refer to the above
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basis of orbifold projected fields as the orbit basis (as distinguished from the quiver

basis, that will be introduced later).

Note that the orbifold projection does not commute with the full U(|Γ|N), the

gauge symmetry gets broken to a subgroup. This unbroken gauge group is identified

as follows. Recall that the orbifold group acts on the Chan-Paton indices of the

gauge field via the regular representation, and the latter decomposes into irreducible

representations ρλ via

γreg(g) =
⊕

λ

ρλ(g)
⊕Nλ , Nλ = dim ρλ . (2.30)

In words, each irreducible representation ρλ occurs Nλ times in the decomposition

of the regular representation. In explicit matrix notation, we have

γreg =




ρ1 ⊗ 1N1
0 . . . 0

0 ρ2 ⊗ 1N2
. . . 0

...
...

. . .
...

0 0 . . . ρr ⊗ 1Nr



, (2.31)

where each ρλ denotes an Nλ×Nλ matrix. By inspecting the explicit form (2.31)

of γreg, it is not difficult to derive that the orbifold gauge group, defined as the

subgroup of U(|Γ|N) transformations that commutes with γ(g) for all g ∈ Γ, takes

the product form
⊗

λ

U(NNλ) . (2.32)

Here the product runs over all representations of Γ and each factor U(NNλ) is the

subgroup that rearranges the NNλ copies of the representation space Vλ of ρλ — it

therefore obviously commutes with Γ. Using Schur’s lemma, one proves that (2.32)

indeed defines the maximal unbroken gauge group: physical operators need only be

gauge invariant under this group.
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2.2.1 Construction of Observables

The novel feature of the orbifold gauge theory is the emergence of the twisted states,

which are new compared to the parent theory. The untwisted sector is the subclass

of operators that come directly from the parent N = 4 theory. In the open string

language, the untwisted operators can be thought of as arrays of concatenated open

strings attached to several image D3-branes, as indicated on the left in the Fig 2.2.

Such an operator is written as

Figure 2.2: An untwisted state (left) and twisted state (right). Both are concatenated
arrays of open strings (lines) stretched between D3-branes (dots). The end-point brane
of the twisted state is the image under a finite group transformation g on its begin-point
brane.

O = Tr
(
W

A1
W

A2
. . .W

AL

)
. (2.33)

HereW
A

stands for a (multiple) covariant derivative of one of the fields of the theory,

in N =1 notation:

W
A
∈
{
DnΦI , DmWα

}
; (2.34)

and each operator WA corresponds to a ground state of one of the open strings.

The gauge invariant trace implies that the array is closed: it begins and ends on the

same D3-brane, and thus represents a proper closed string state in the unorbifolded

theory.
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A twisted sector state, on the other hand, corresponds to a concatenated array

of open strings that ends on a different D3-brane, related via a finite group trans-

formation g ∈ Γ to the D3-brane where it begins. This configuration looks like an

open string on the covering space, but it represents a closed string on the orbifold

space. Correspondingly, it is associated with an operator that is not gauge invariant

under the full U(|Γ|N) symmetry of the cover theory, but that is invariant under

the gauge group (2.32) of the orbifold theory. In the gauge theory, the twisted states

are represented as single trace expressions

O(g) = Tr
(
γ(g)W

A1
W

A1
. . .W

AL

)
, (2.35)

where we introduced a twist operator γ(g), defined as follows. When γ(g) acts from

the left on a matrix-valued operator WA , it acts via the group action (2.26) — the

regular representation γreg(g) — on the left Chan-Paton index. When γ(g) acts

from the right, it acts via the complex conjugate group action γreg(g) on the right

Chan-Paton index. The actions from the left and from the right are not identical;

instead, the operators WA of the orbifold theory satisfy a relation of the form

γ(g)W
A

= R(g−1)B

A
W

B
γ(g) , (2.36)

where R(g)B
A denotes a matrix representation of the finite group Γ, acting on the C3

index of W
A
.2

As a consequence of the orbifold projection, some of the physical operators (2.35)

vanish identically. Using equation (2.36) to commute γ(g) past all the fields in the

operator shows that a necessary condition for non-vanishing operators is that the

total single trace operator must be invariant under the simultaneous action of R(g)B

A

on all the spins. However, while necessary, this is not sufficient. More generally,

2Here R(g) = 1 in caseWA has no C3 index. Note further that inserting multiple twist operators
in the trace does not introduce a new class of operators, since by using the exchange relation (2.36)
and the property γ(g1)γ(g2) = γ(g1g2), one can always reduce any number of twist operators to
a single overall twist. This is as one would have expected from the string interpretation.
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physical operators are of the form

OK(g) = KA1 A2 ˙˙˙AL Tr
(
γ(g)W

A1
W

A1
. . .W

AL

)
, (2.37)

where K must be an invariant tensor under the complete stabilizer subgroup Sg

of g, defined as the subgroup within Γ of all elements that commute with g.3 In

the untwisted case, where g is the identity element in Γ, the stabilizer subgroup is

the whole group Γ and indeed, as we saw before, untwisted operators are in one-

to-one correspondence with Γ-invariant tensors. It is important to note that the

basis (2.37) of operators is a complete basis, in the sense that any operator of the

seemingly more general class given in (2.35), that is not of the form (2.37), vanishes

identically. Detailed construction of twisted operators as well as the proof of their

gauge invariance is given in Appendix A.1.1.

An extremely important fact is that the insertion of a single twist field γ(g)

suffices to produce all the operators within the twist class [g] (cf. [42]). In this context

the untwisted operators can naturally be viewed as those belonging to the sector

with the conjugacy class of the unit element [e]. Then any single representative

g ∈ [g] can be diagonalized; and then one can apply the tools used for the Abelian

orbifolds to the general non-Abelian case. If g is an element of order S in Γ, then

its eigenvalues are some phase factors of the form exp(2πisk/S). This observation

will be heavily exploited in Section 3.2 where we study the Bethe Ansatz Equations

for the orbifold gauge theory.

2.3 Quiver Gauge Theory

In this section, we will make a comparison between the above group theoretic de-

scription of the physical operators with the quiver representation of the orbifold

3It can be the case that even for some Sg-invariant tensor K(g) the corresponding operator OK

vanishes identically due to some symmetry reasons — for instance, this is the case in the Z6 quiver
we consider in Section 3.3.
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gauge theory. It is the quiver gauge theory representation that makes the physical

field content of orbifold gauge theories most manifest. As discussed, the unbroken

gauge group of the orbifold theory takes the product form

⊗

λ

U(NNλ) , (2.38)

where the product runs over all representations ρλ of the finite group Γ, and Nλ =

dimVλ. Notice that, even in the case that N =1, i.e, for the world-brane theory of

a single D3-brane near an orbifold singularity, this gauge group contains several, in

general non-Abelian, factors. In the string theoretic construction, each gauge factor

is associated to a stack on NNλ so-called fractional D3-branes. There is one type

of fractional brane for each representation ρλ of the finite group.

The vector multiplets A arise as the ground states of open strings attached to a

given fractional brane. Let us denote by Aλ the vector multiplet of the fractional

brane associated to ρλ. Hence Aλ is an U(NNλ) gauge multiplet. In terms of the

orbit basis A(g) defined in (2.28), the quiver basis Aλ is obtained via the Fourier-like

transformation (see Appendix A.1):

Aλ =
∑

g

ρλ(g)A(g) (2.39)

Setting up the quiver terminology, we will refer to each gauge factor and its associ-

ated stack of fractional branes, as a node of the quiver diagram. There is one quiver

node for each irreducible representation of Γ.

In a quiver diagram, the nodes are connected by oriented lines: these represent

the chiral matter fields. In the string theory construction, the chiral matter fields

ΦI arise as the ground states of open strings that may have end-points on two

different fractional branes. Correspondingly, they transform as bi-fundamental fields

under the product gauge group (2.38). Algebraically the chiral matter fields Φλµ

correspond to the invariant tensors (C3 ⊗ Vλ ⊗ V µ)Γ. The number nλµ̄ of chiral

matter fields between two given nodes λ and µ is determined by the multiplicity of
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ρµ in the decomposition of the tensor product between the defining representation

R and ρλ:

R⊗ ρλ =
⊕

µ

nλµ̄ ρµ . (2.40)

In the string construction, the number nλµ̄ is the intersection number between

the two fractional branes. The fields Φλµ̄ thus transform in the (NNλ, NNµ) bi-

fundamental representation of the gauge group (2.38).4 This quiver basis Φλµ̄ is

related to the orbit basis ΦI(g) given in (2.29) via the linear transformation

Φλµ̄ =
∑

g,I

K I

λµ̄ ρµ(g) Φ
I
(g) , (2.41)

where Kλµ̄ denotes one of the nλµ̄ basis elements that spans the space of invariant

tensors in C3 ⊗ Vλ ⊗ V µ.

In the quiver basis, it is now easy to specify all possible single trace operators

of the orbifold gauge theory. For this, it is useful to introduce the notion of the

path algebra of the quiver diagram. A path is a concatenated array of arrows that

connect quiver nodes connected by oriented lines. The arrows are allowed to point

back to the same node. We can multiply two paths if one ends at the same node as

where the other begins. We can then connect them head to tail to produce a single

longer path. In the quiver gauge theory, each arrow of the path represents a gauge

or matter operatorW
A

of the general form (2.34), transforming in the corresponding

representation of the quiver gauge group. Connecting two arrows amounts to taking

their gauge invariant product at the corresponding quiver node. To write gauge

invariant operators, we now simply choose arbitrary closed paths along the quiver,

pick a corresponding array of operators, and in the end take the trace.

How does this description of gauge invariant single trace operators compare with

that in terms of twisted sector states (2.37)? Let us pick some closed path Cλ, that

4As a check, let us count the number of independent components of the chiral matter field Φ. For
each arrow there are N2NλNµ components, and each node therefore connects to N2Nλ

∑
{µ} dimVµ

independent components. Since R ⊗ Vλ = ⊕{µ}Vµ, dimension counting gives
∑

{µ} dimVµ =

3 dimVλ . Therefore, the total number of independent components of Φ is 3N2
∑

λ N2
λ = 3 |G| N2 .

This is the expected result.
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starts and ends at a given node λ but along the way visits the following sequence of

quiver nodes

Cλ : λ ← µ ← ν ← . . . ← σ ← λ . (2.42)

For each arrow along this path, we pick the corresponding field and multiply them

together, and take the trace at the λ node

OCλ
= Trλ

(
Wλµ̄Wµν̄ · · ·Wσλ̄

)
. (2.43)

This is a manifestly gauge invariant operator of the quiver gauge theory. The equiv-

alence with the group algebraic description of the orbifold theory implies that this

operator must be a linear combination of twisted state operators OK(g) defined

in Eqn. (2.37). A straightforward calculation, described in Appendix A.1, indeed

shows that

OCλ
=
∑

g

K(g)
A1A2...AL Tr

(
γ(g)WA1 . . .WAL

)
, (2.44)

where the Sg-invariant tensor K(g) is given by

K(g)
A1A2...AL = Trλ

(
ρλ(g)K

A1

λµ̄K
A2

µν̄ · · ·K
AL

σλ̄

)
. (2.45)

The class of operators associated to closed loops on the quiver diagram span a

complete basis of twisted sector operators, and vice versa.



Chapter 3

Bethe Ansatz Equations for

General Orbifolds

This chapter is devoted to the study of some aspects of integrability of the orbifold

gauge theories in the context of the AdS/CFT correspondence. Even though there

are some works studying integrability in the context of these dualities for some

special orbifolds or some special limits [43],[44],[45],[46],[34],[47],[48],[49],[50], they

mainly deal with the Abelian orbifolds and the corresponding quiver gauge theories.

We extend some of these studies to the generic orbifolds with an arbitrary non-

Abelian orbifold group. Organization of the chapter is as follows. First we introduce

the orbifold gauge theory which is the low-energy limit of the corresponding open

string theory. There is a very simple description of the orbifold gauge theory, where

the orbifoldization procedure requires an introduction of an extra field, the twist field

in addition to the dynamic fields. Except for the appearance of the twisted sectors,

the orbifolded theory very closely resembles the original one. However, some of the

operators of the original theory are projected out by the orbifoldization procedure.

There is no mixing between the different twisted sectors; and this superselection

rule simplifies diagonalization of the matrix of anomalous dimensions. There exists

an alternative description of the orbifold gauge theory, the one using the quiver

diagram. We explain how to make a transition between these two descriptions. We

26
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formulate the Bethe Ansatz Equations (BAE) at the one-loop level for a general

orbifold gauge theory. The key idea is the fact that one can diagonalize the twist

field in a given twisted sector, after which the setup reduces to the Abelian case

modulo some subtleties. It allows one to apply the techniques used for the Abelian

orbifolds in the general case. Indeed, it turns out that the methods of studying the

Abelian orbifold gauge theories can be extended to arbitrary non-Abelian setups

with minor modifications.

3.1 Feynman Rules

As an example we go through the derivation of the Feynman rules for the scalar field

φI; the other fields are treated in a similar way. We can parametrize the invariant

configurations of the scalar field φI

ig,jh in terms of this group algebra valued object

φI

ij(g), and this group algebra valued field φ is to be integrated over in the path

integral. Using the parametrization (2.29) and the orthogonality of the defining

representation R : Γ → SO(6), we get the kinetic term for the scalar field in the

form

Lφφ =
1

2

∑

I

Tr ∂µφ
I ∂µφI =

1

2
|Γ|
∑

g

∑

I,J

R(g)I

J
∂µ TrφI (g) ∂µφJ (g−1) . (3.1)

Then for the quadratic propagator the only modification compared to the original

theory is “conservation of the group index” and renormalization:

〈
φI

ij,g φ
J

kl,h

〉
= |Γ|−1R(g)I

J

p2
δgh,e δil δjk , (3.2)

In terms of the original N =4 fields (we omit the obvious Latin part of the Chan-

Paton indices)

〈
φI

h,g φ
J

f−1g, f−1h

〉
=

R(f)I

J

|Γ| p2
. (3.3)
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Figure 3.1: (a) When a line of the Feynman graph crosses the cut the Wick contraction
〈W

A
W

B
〉 is non-diagonal, and proportional to the matrix element R

AB (f). (b) The twist
lines can be deformed and moved through interaction vertices. (c) In the notation using
the group valued fields untwisted vertices obey the conservation condition, similar to the
conservation of momentum: for the vertex shown the product g1g2g3g4 = 1.

Generally, for elementary fields (or their derivatives) W
A

there takes place the

following replacement in the propagator:1

〈W
A
W

B
〉N=4 = G(p) δAB → 〈W

A
W

B
〉 =

1

|Γ|
G(p) R

AB (f) . (3.4)

The factor of 1/|Γ| compensates for the overcounting of fields. The propagator is

not simply diagonal on the group valued Chan-Paton indices (g, h), but there can be

a twist by some group element f , that acts simultaneously on both the left and right

index. The advantage of this (redundant) double line notation is that the interaction

vertices coincide with those of the original theory, and the only modification is the

introduction of these twists along the propagators.

Equivalently, we can think of the twist as the assignment of a group element f

to each line of the dual graph to the Feynman diagram. We will call these lines

on the dual graph ‘cuts’. When a propagator crosses a cut, the propagator 〈φI φJ〉
is non-diagonal: the conventional factor δIJ gets replaced by the matrix element

RIJ(f−1) with f the twist along the cut. Vertices of the dual graph correspond to

loops of the original Feynman graph. The product of the group elements that meet

1We ignore the ghost fields. Gauge fixing is easy to do via the Feynman gauge. Since the gauge
field A can be treated as a group algebra valued, the gauge fixing and Faddeev-Popov ghosts can
also be treated as group algebra valued.
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at a dual vertex must multiply to the identity element in Γ. (Unless the amplitude

involves the insertion of some twist operator at this dual vertex, see below.)

3.2 Integrability: Orbifolding the Bethe Ansatz

The field theoretic problem we are trying to solve on the gauge theory side is diag-

onalization of the matrix of anomalous dimensions in the large N (planar diagram)

limit. It is convenient to represent the field theory operators as the spin chain states,

OA1 A2 ...AL [g] ≡ Tr
(
γ(g)W

A1
W

A2
. . .W

AL

)
= |A1A2 . . . AL〉g . (3.5)

Using this terminology, the matrix of anomalous dimensions is represented as some

spin chain Hamiltonian H. Note that the basis (3.5) is overcomplete — some of

the states are projected out. Another subtlety is that one can perform a cyclic

permutation in the trace leading to a seemingly different spin chain representation.

In the untwisted case this results in an extra requirement on the physical spin chain

state (i.e., one emerging from some gauge theory operator) — invariance w.r.t. the

translation operator, the zero momentum condition. This particular choice of a

representative makes the form of the Hamiltonian the most simple. When a non-

trivial twist field γ(g) is introduced, the zero momentum constraint gets modified.

Since all the terms in the action are untwisted, in the planar limit there should

be no mixing between the sectors with different twists. A twisted sector is therefore

a superselection sector: the twist [g] is preserved under time-evolution defined by

H. This way we can restrict ourselves to the operators O[g] with a fixed class [g].

However, the representation of H as a spin chain Hamiltonian does depend on the

twist sector. This dependence can be derived based on the form of the Feynman

rules. The sum over the twist factors locally decouples from the remainder of the

Feynman integral. In particular, the Γ-invariance of the interaction vertices of the

original N =4 Feynman diagram ensures that the cuts can be deformed and moved



3.2. Integrability: Orbifolding the Bethe Ansatz 30

through the vertices, as it is indicated in Fig. 3.1. Following this procedure one can

move the cuts, and translate them along the worldsheet spanned by the Feynman

diagram. Evidently, we can merge cuts that are along homologous cycles on the

worldsheet; the group element associated with the merged cut is the product of the

original twists.2 Proceeding this way, we can merge all the cuts and reduce the

sum over the twist factors to a single set of twists associated to a generating set of

non-contractible loops of the worldsheet spanned by the Feynman diagram.

Note that each operator insertion corresponds to a hole (puncture) on the graph

surface, and a planar diagram that describes the leading order large N limit of

amplitudes of some operators of the orbifold gauge theory (3.5), can be drawn on

a cylinder (or a sphere with the two punctures). In the untwisted sector there is

only one non-contractible loop wrapping the cylinder. Summation over this twist

leads to projection onto the Γ-invariant states. Hence in this case, the amplitudes of

the orbifold coincide with those of the N =4 theory, as advocated. The miraculous

integrability of the N = 4 theory therefore directly carries over to the untwisted

sector of the orbifold gauge theory, provided it is supersymmetric.

The story with the twisted sectors is slightly more complicated. In terms of the

dual graph each twist field can be represented as a tadpole ending in the corre-

sponding puncture. A direct consequence is the fact that the standard form of the

dual graph consists of one horizontal cut wrapping the cylinder and one vertical cut

corresponding to the twist (Fig. 3.2). However, the extra cut can be moved away

from the interaction region using the commutation relation (2.36). After this trans-

formation the graph coincides with that of the N =4 theory modulo renormalization

N → |Γ|N and projection onto the Sg-invariant states in (3.5). Unfortunately, this

equivalence extends only up to the ℓ < L loops. The reason for this restriction

is that the ℓ-loop gauge theory Hamiltonian translates into a semi-local spin chain

2Summation over the different configurations leading to the same overall cut results in renor-
malization N → |Γ|N in the 1/N expansion; cf. [40].
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σB(g)
−1σA(g)=

g−1h−1h

A

B

h

g

g−1h−1h

A

B

h

g

g−1h−1h

h

g

( ) ( )

(a) (b)

Figure 3.2: (a) A planar diagram on a cylinder. Introduction of the twist field causes
appearance of an extra vertical cut in the dual graph (dotted lines). Should this cut be
located in the interaction region it can be shifted away using the interchange relation
(2.36). Representation matrix R(g) being diagonalized, this shift results in a mere phase
factor σA(g)σB(g)−1. Note that the twist field gets conjugated, g → hgh−1, and this does
not change its class. Then the summation over the cut h results in the projection onto the
Sg-invariant subspace. (b) Diagrams with high number of loops can contain the wrapping
interactions which do not reduce to the untwisted case. The diagram shown would be
multiplied by an extra factor, the character Tr R(g) as a result of the horizontal loop
wrapping the cylinder.

Hamiltonian that connects ℓ + 1 adjacent spins. So when ℓ ≥ L, the Hamiltonian

becomes fully delocalized, and includes the so-called wrapping terms, non-local in-

teractions that wrap around the full length of the spin chain. When this is the

case, the extra cut emerging from insertion of the twist field γ(g) can no longer be

shifted away from the interaction region, and some propagators inevitably cross it

(Fig. 3.2b).

The conclusion is that locally, on any nearest neighbor set of spins, the interaction

terms inH all act identically to the local interaction terms of theN =4 Hamiltonian,

as long as the local set of spins does not contain the twist operator γ(g). If the

twist generator is present in the interaction region, one could shift the twist operator

to either side, until it is outside the interaction region. In this way we derive, for

example, that the nearest neighbor interaction term, when acting on two spins
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separated by a twist γ(g), gets modified via

H[12]WA
γ(g)W

B
= H̃CD

AB
W

C
γ(g)W

D
, (3.6)

where

H̃CD

AB
= HCD′

AB′
R(g)B

′

B
R(g)D

D′
. (3.7)

This relation (and analogous relations for the higher order terms) expresses the Γ-

invariance of the local interaction terms of H — the twist field can be moved either

to the left or to the right, which results in the same phase factor.

It is important that in each given twisted sector [g] one can diagonalize the twist

field γ(g) and apply the methods that are used for the Abelian orbifolds to the

general case.

3.2.1 Bethe Equations: A Brief Introduction

We will start with the simplest example, the periodic Heisenberg su2 spin chain of

length L. Each of the L spins has a two-dimensional space of states C2 with the basis

vectors |↓〉 and |↑〉 corresponding to the spin being oriented downward or upward.

On the field theory side this picture corresponds to the su2 subsector consisting of

the two scalar fields Z and W . Our goal is to diagonalize the Hamiltonian

H =

L∑

i=1

(
1−Pi,i+1

)
, (3.8)

where Pi,i+1 is the interchange operator acting between the i-th and the i + 1-th

sites. We choose a vacuum state |↓ ↓ . . . ↓〉 with all spins pointing down. (TrZL

operator in field theory.) The next step is to consider states with one excitation,

|n〉 = |↓ ↓ . . . ↓ ↑n ↓ . . . ↓〉 (3.9)

with the spin up being at the n-th position. One can try to find a plane wave

solution in the form

|k〉 =
L∑

n=1

eikn |n〉 . (3.10)
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Acting with the Hamiltonian, we get for the eigenvalue ǫ(k) = 1 − cos k. One still

has to identify |0〉 ≡ |L〉, and this leads to the periodicity condition

eikL = 1 . (3.11)

Physically such a solution corresponds to a standing wave. The next step is to

consider a solution with several waves. A remarkable feature of this system is its

integrability. It manifests itself in the fact that the scattering reduces to the two-

particle scattering, and the two-particle scattering is a mere exchange of quantum

numbers. The state with the l interacting waves writes as

|k1, k2, . . . kl〉 =
∑

1≤n1<...<nl≤L

an1,n2,...nl
(k1, k2, . . . kl) |n1, n2, . . . nl〉 . (3.12)

The corresponding coefficients

an1,n2,...nl
(k1, k2, . . . kl) =

∑

σ∈Sl

S(σ, k) exp i[kσ(1)n1 + · · ·+ kσ(l)nl] . (3.13)

Here Sl is the group of permutations, and the phase factor S(σ, k) obeys the group

property

S(σ1σ2, k) = S(σ2, k)S(σ1, σ2k) . (3.14)

For the interchange of the two neighboring excitations σi,i+1 the phase factor

S(σi,i+1, k) = S(ki, ki+1) = −ei(ki+ki+1) + 1− 2eiki+1

ei(ki+ki+1) + 1− 2eiki
(3.15)

reduces to the two-particle scattering phase. Then the periodicity condition reads

eik1L
∏

j 6=1

S(k1, kj) = 1 . (3.16)

The set of equations (3.16) is known as the Bethe ansatz equations (BAE).

These equations get modified for the orbifold gauge theory. After the diagonal-

ization the action of the twist field γ(g) on the fields Z and W can be brought to

the form

g :


 Z

W


 →


 ωsZ 0

0 ωsW




 Z

W


 , (3.17)
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where ω = e2πi/S ; S being the order of the element g, gS = 1. As it was argued,

interaction terms are unaffected by the orbifoldization procedure except for the

interaction between the first and the L-th site. As it was emphasized in [51], one

can use the same bulk solution (3.12), though the periodicity condition as well as

the zero momentum constraint will both acquire an extra phase factor. The simplest

way to find these phases is to consider the plane wave solution.

Bethe Ansatz Equations can be generalized to the chains with an arbitrary un-

derlying symmetry (super)algebra [52],[53],[54],[55],[56]. It is convenient to use the

rapidities λ to describe the excitations. There exist the r types of excitations,

corresponding to the r simple roots. Since there can be multiple excitations of the

same type it is convenient to number the corresponding spectral parameters as λj,k;

where j = 1, 2, . . . r and k = 1, 2, . . .Kj , Kj being the number of excitations of type

j. The set of the BAE becomes

eiPj,kL =
∏

(j′,k′)6=(j,k)

Sjj′(λj,k, λj′,k′) ; (3.18)

where the scattering matrix and momenta are given by

Sjj′ =
λj,k − λj′,k′ + i

2
aj,j′

λj,k − λj′,k′ − i
2
aj,j′

, eiPj,k =
λj,k + i

2
Vj

λj,k − i
2
Vj

. (3.19)

(Here Vj are the Dynkin labels of the representation via which the algebra acts on

each site — twice the spin in the su2 case; and ajj′ are the elements of the Cartan

matrix.) The total energy of the corresponding eigenstate is

ǫ =

r∑

j=1

Kj∑

k=1

ǫj(λj,k) , ǫj(λj,k) =
Vj

λ2
j,k + 1

4
V 2

j

. (3.20)

The algebra behind the N =4 supersymmetry is the su2,2|4 superalgebra. Thus

generic operators of the field theory get identified with some states of the su2,2|4-

symmetric spin chain. The whole N = 4 theory was proved to be integrable

in [14],[15],[16]. The energy eigenvalues EO of H are related to the anomalous
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dimensions ∆O of local single trace operators O by

∆O = λEO, (3.21)

with λ =
g2
YM

N

8π2 the ’t Hooft coupling.

Note that the spin chains with the different representations of su2,2|4 correspond

to different subclasses of operators in field theory. The two bosonic subalgebrae su2,2

and su4 of su2,2|4 are nothing but the algebra of the conformal group in four dimen-

sions and the R-symmetry algebra. Unlike the bosonic semisimple Lie algebrae, the

Dynkin diagram of a superalgebra is not unique. For the su2,2|4 there exist the two

distinguished choices of the root system, the so-called “Beauty” and the “Beast”;

and they are discussed in [57]. Though the “Beast” is the most obvious system with

one fermionic root, the “Beauty” root system proves useful in the context of N =4

supersymmetry.

3.2.2 General Orbifolds

As it was argued, there is no mixing between the different twisted sectors. Further-

more, in each given twisted sector [g] one can construct all the states inserting one

twist field γ(g), g being any fixed representative of the conjugacy class [g]. In con-

junction with the fact that one can diagonalize the action of any given element g ∈ Γ

— the problem reduces to the Abelian case modulo some subtleties. In particular,

the Sg-invariance does not completely incorporate into Bethe equations; and it is to

be imposed by hand — that is why some of the Bethe eigenstates may be projected

out.

Therefore, one can apply techniques similar to those used in [49] for the study

of Abelian orbifolds. Then each given element g ∈ Γ ⊂ SU4 can be brought to the
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diagonal form so that in SU(4) it becomes

R(g) =




e−2πit1/S 0

e2πi(t1−t2)/S

e2πi(t2−t3)/S

0 e2πit3/S



. (3.22)

Here S is the order of the element g, i.e., gS = 1. For supersymmetric orbifolds that

we consider the group Γ embeds into SU(3), and this imposes the extra restrictions

on the weights ti. Even though we need only the two independent parameters in

order to describe embedding Γ ⊂ SU(3), it may be convenient to keep all the three

parameters t1, t2 and t3 in the calculations. In particular, it may account for different

embeddings SU(3) ⊂ SU(4) or different choices of the vacuum state.

The Bethe equations for the complete su2,2|4 algebra acquire some extra phases:

(λj,k + i
2
Vj

λj,k − i
2
Vj

)L

= Rj(g)
∏

(j′.k′)6=(j,k)

λj,k − λj′,k′ + i
2
aj,j′

λj,k − λj′,k′ − i
2
aj,j′

. (3.23)

Similarly, the momentum constraint reads

R0(g)
7∏

j=1

Kj∏

k=0

λj,k + i
2
Vj

λj,k − i
2
Vj

= 1 . (3.24)

The phase factors

Rj(g) = e2πiqj/S , (3.25)

where the integers qj depend on the choice of the root system:

“Beauty” :
−t2⊙

0
⊖

−t1⊗
2t1−t2⊕

2t2−t1−t3⊕
2t3−t2⊕

t3⊗
0
⊖(3.26)

“Beast” :
0
⊙

0
⊕

0
⊕

0
⊕

t1⊗
t2−2t1⊖

t1−2t2+t3⊖
t2−2t3⊖(3.27)

(The leftmost “root” corresponds to the phase R0(g) = e2πiq0/S.) Let us stress that

this structure is the direct generalization of that in the su2 subsector: the bulk
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ansatz remains unaltered, while the boundary conditions get modified. Recall that

in the su2 case there is a single root γ1 = α12, and the weight q1 = sW − sZ ≡
s2−s1. Analogously, for an excitation associated with some simple root γ = αij the

corresponding weight qγ = sj−si is the difference of the two corresponding charges.

The number q0 is determined by the choice of the Bethe vacuum.

There is an elegant way to summarize all the Bethe equation and momentum

constraint together. In order to do this one introduces the two new types of exci-

tations to the existing seven types (j = 1, . . . , rk su2,2|4 = 7). The quasi-excitation

of type j = 0 corresponds to the insertion of a new spin chain site. In order to

have a length L chain one is to insert exactly the K0 = L excitations of type 0.

The quasi-excitation of type j = −1 corresponds to the twist field. The scattering

phases of the excitations are3

Sj,j′ =
λj,k − λj′,k′ + i

2
aj,j′

λj,k − λj′,k′ − i
2
aj,j′

, (3.28)

Sj,0 =
λj,k − i

2
Vj

λj,k + i
2
Vj

, Sj,−1 = Rj(g) ; (3.29)

S0,0 = 1 , S0,−1 = R0(g) . (3.30)

Type 0 excitation do not have an associated spectral parameter, while type −1

excitations can have different twist classes [g]. Excitations of both type 0 and −1

do not contribute to the total energy.

With these notations we can therefore summarize all the Bethe equations as

J∏

j′=−1

Kj′∏

k′=1

(j′,k′)6=(j,k)

Sj,j′(λj,k, λj′,k′) = 1 . (3.31)

The equations for j = 1, . . . , 7 give the BAE (3.23), equation for j = 0 gives the

3Note that the scattering phase S−1,−1 is not needed as we restrict ourselves to one excitation of
type −1. Even though one may introduce several such excitations it would cause some unnecessary
technical difficulties. As it was shown, insertion of a single twist field suffices to produce all the
orbifold states.
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momentum constraint (3.24),4 and equation for j = −1 gives the “zero charge

condition”

R0(g)
L

7∏

j′=1

Rj′(g)
Kj′ . (3.32)

It implies the g-invariance of the corresponding state in the field theory. Again, let

us stress that for a generic orbifold this condition is not sufficient, and there should

be imposed a more restrictive invariance condition w.r.t. the full stabilizer Sg. As a

result, some of the Bethe eigenstates may be projected out in field theory.

3.3 The Two Example Quivers

Here we study application of the Bethe equations to the two example quivers, ones

with both Abelian and non-Abelian orbifold group. For these simple examples one

can easily determine the anomalous dimensions of operators in the twisted sectors.

Then these operators can be recast into the quiver notation. Generally operators

corresponding to the closed paths in the quiver are not the eigenvectors of the

matrix of anomalous dimensions. In other words, an operator corresponding to a

closed loop in the quiver is typically a mix of operators with different conformal

dimensions; neither does it belong to a given twisted sector.

3.3.1 Abelian Z6 Quiver

Here we consider a simple example, Z6 quiver (see Fig. 3.3). We restrict ourselves

to the su2 subsector formed by the two scalars, Z with charge sZ = 1 and W with

charge sW = −2. We will study the twisted sector with the twist γn, n = 0, . . . , 5; γ

being the generating element of Z6. Let us choose the length of the spin chain L = 3;

then the vacuum can be chosen as Tr
[
γZZZ

]
— note that it will be projected out.

4Although there are L quasi-excitations of type 0, there is only one corresponding Bethe equa-
tion, because all of these quasi-excitations are equivalent, and they have no spectral parameter
which might distinguish them.
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There also exist the excited states with one or three W ’s, while the states with the

two excitations will also be projected out. Our goal will be to describe these Bethe

03

4 5
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~
0

1

2

0

(a) (b)

Figure 3.3: (a) The Z6 quiver. There are the six nodes corresponding to the six repre-
sentations of Z6. We show only the scalar lines corresponding to the fields Z (blue lines)
transforming in RZ ≃ ρ1 and W (red lines) transforming in RW ≃ ρ4 ≃ ρ−2. (b) The
D5 quiver with the two-dimensional defining representation R ≃ ρ1. Note that for these
two quivers we show only the lines corresponding to the su2 subsector; i.e., the two scalar
fields.

vectors in terms of the quiver notation. By Oijki ≡ Tr Φi
jΦ

j
kΦ

k
i we will denote the

quiver gauge theory operator corresponding to the closed cycle between the three

nodes k → j → i in the quiver.

Note that the state with the three excitations is unique in each given twisted

sector, and it corresponds to the field theory operator Tr
[
γnWWW

]
. Commuting

the twist field γn with one of the fields W we find that

Tr
[
γnWWW

]
= e2πinsW /6 Tr

[
γnWWW

]
; (3.33)

i.e., this state is projected out in all sectors except for n = 0 and n = 3. The reason

for this is the extra symmetry: it is sufficient to commute the twist field with only

one of the three W fields. Note that the total charge of the three fields W is zero,

and normally one would expect Tr
[
γWWW

]
to be a non-trivial operator.
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Using the formula (2.44) we find that

O0420 = Tr
[
WWW

]
+ Tr

[
γ3WWW

]
, (3.34)

O1531 = Tr
[
WWW

]
− Tr

[
γ3WWW

]
; (3.35)

or

Tr
[
WWW

]
=

1

2
O0420 +

1

2
O1531 , (3.36)

Tr
[
γ3WWW

]
=

1

2
O0420 −

1

2
O1531 . (3.37)

Graphically the operators O042 and O153 correspond to the two closed triangles

formed by the red lines. Applying the Hamiltonian we find the anomalous dimen-

sions

∆Tr [γ3WWW ] = ∆Tr [γ3WWW ] = 0 . (3.38)

The states with one excitation have the form Tr
[
γnZZW

]
, and there is one

such state in each given twisted sector. These operators correspond to the triangles

with the two blue (field Z) and one red (field W ) line. There are six such triangles

and there are six different operators with n = 1, . . . , 5 — these numbers coincide as

we expect. The transition formula between these two descriptions is

Ol, l+1, l+2, l =

5∑

n=0

e−2πi ln
6 Tr

[
γnZZW

]
; (3.39)

performing the Fourier transform yields

Tr
[
γnZZW

]
=

1

6

5∑

l=0

e2πi ln
6 Ol, l+1, l+2, l . (3.40)

These operators diagonalize the matrix of anomalous dimensions. Direct application

of the Hamiltonian shows that the corresponding eigenvalues are

∆Tr [γnZZW ] = 4λ sin2 πn

6
. (3.41)

This simple example illustrates the interrelation of the two descriptions in the orb-

ifold gauge theory. First, the quiver description gives a very clear understanding
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of what the physical fields and gauge invariant operators are, while in the “orbit”

description using the twist fields some of the operators may be projected out. On

the other hand, the description using the twist fields proves to be more robust for

studying the field theory dynamics (the matrix of anomalous dimensions). In order

to illustrate this let us write the part of the action responsible for the non-trivial

part of the interaction Hamiltonian, Tr
[
ZWZ†W † + WZW †Z†]. In terms of the

quiver notation

Tr
[
ZWZ†W † +WZW †Z†] =

∑

l

[
Ol,l+1,l−1,l−2,l +Ol,l−2,l−1,l+1,l

]
=

=
∑

l

Tr
[
Z l

l+1W
l+1
l−1 Z

l−2 †
l−1 W l−2 †

l +W l
l−2 Z

l−2
l−1 W

l+1 †
l−1 Z l †

l+1

]
. (3.42)

Here Zk
l denotes the field corresponding to the quiver arrow going from node l to

node k. Note that the conjugation changes the direction of the corresponding arrow;

e.g., Z1 †
2 is an arrow going from node 1 to node 2. Indeed, as we see, studying the

matrix of anomalous dimensions using the quiver notation would have been more

complicated.

3.3.2 Non-Abelian D5 Quiver

Next we consider a simple orbifold with a non-Abelian discrete group D5 (the facts

about the dihedral group DS as well as its representation ring are given in Ap-

pendix A.2.) The corresponding quiver is shown in Fig. 3.3. Again, we study the

su2 sector, and the scalar field ΦI transforms in the two-dimensional representation

R ≃ ρ1. From the quiver representation it is clear that there are the four different

operators of length L = 2; namely, those are

O010 , O0̃10̃ , O121 , O222 . (3.43)

On the other hand, there are the four different twist classes, {[e], [r], [r2], [σ]}.
Applying the definitions of the operators (A.28), we see that in each twist class
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there is exactly one non-trivial operator; thus there are the total of four operators

of length two:

Oe = Tr
[
ZW

]
, Or = Tr

[
γ(r)ZW

]
, Or2 = Tr

[
γ(r2)ZW

]
, Oσ = Tr

[
γ(σ)ZZ

]
.

(3.44)

Here Z and W denote the first and second components of the field ΦI . Note that

the product of the two fields ZZ has transforms non-trivially under the action of

r; nevertheless, in the sector with twist [σ] the operator Oσ = Tr
[
γ(σ)ZZ

]
is non-

trivial as r 6∈Sσ. The absence of mixing between the different twist classes ensures

that the set of operators {Oe, Or, Or2 , Oσ} diagonalize the matrix of anomalous

dimensions. Acting with the Hamiltonian we find the corresponding anomalous

dimensions as

∆Oe = 0 , ∆Or = 4λ sin2 π

5
=

5−
√

5

2
λ ,

∆Or2
= 4λ sin2 2π

5
=

5 +
√

5

2
λ , ∆Oσ = 0 . (3.45)

The same eigenvalues can be obtained solving the Bethe equations. In this

formalism the three operators Oe, Or and Or2 are the states with one excitation.

Diagonalizing the twist field as

γ(g) =


 eiα 0

0 e−iα


 , g = e, r, r2 ; (3.46)

we find that the Bethe equation and the momentum constraint reduce to

λ+ i
2

λ− i
2

= eiα , ǫ =
1

λ2 + 1
4

. (3.47)

This gives

λ =
1

2
cot

α

2
, ǫ = 4 sinh2 α

2
. (3.48)

For the twist element g = e, r, r2 we have α = 0, 2π/5, 4π/5 correspondingly.

This reproduces the correct result. The twist field γ(g) is non-diagonal. After the
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diagonalization of γ(σ) operator Oσ maps to the vacuum state, and that is why

∆Oσ = 0.

The next step is to find the dictionary between the two notations. In order

to do this one can start with the quiver notation and rewrite the corresponding

operators using the transition rules (A.21) and (A.22) from Appendix A.1. The

two operators O010 and O0̃10̃ correspond to the closed paths ρ0 ← ρ1 ← ρ0 and

ρ0̃ ← ρ1 ← ρ0̃. Since the representations ρ0 and ρ0̃ are one-dimensional, the

corresponding invariant tensors

KAB
1
1 = KAB (3.49)

(the indices A, B belong to the defining representation R ≃ ρ1.) The non-zero

components are

K12 = K21 =
1√
2

(3.50)

(note that the normalization respects the unitarity condition.) Then

KAB(g) = KAB ρλ(g) , λ = 0, 0̃ . (3.51)

This gives

O010 =
√

2Tr
[
ZW + (1 + ω)γ(r)ZW + (1 + ω2)γ(r2)ZW + 5γ(σ)ZZ

]

=
√

2
[
Oe + (1 + ω)Or + (1 + ω2)Or2 + 5Oσ

]
; (3.52)

O0̃10̃ =
√

2Tr
[
ZW + (1 + ω)γ(r)ZW + (1 + ω2)γ(r2)ZW − 5γ(σ)ZZ

]

=
√

2
[
Oe + (1 + ω)Or + (1 + ω2)Or2 − 5Oσ

]
. (3.53)

(We have used the permutation relation (A.31).)

Next, O121 corresponds to the product of the two tensors,

KAB
k
l =

∑

p∈ρ2

Kp
AlKk

Bp , k, l ∈ ρ1 . (3.54)
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The non-trivial coefficients corresponding to the decomposition R ⊗ ρ1 → ρ2 are

K1
11 = K2

22 = 1, while those corresponding to the decomposition R ⊗ ρ2 → ρ1 are

K1
21 = K2

12 = 1. This gives the corresponding invariant tensor in (3.54):

K12
1
1 = K21

2
2 = 1 . (3.55)

Therefore, one identifies

O121 = 2
[
Oe + (ω2 + ω4)Or + (ω3 + ω4)Or2

]
. (3.56)

Similarly, for the operator O222 we need to find the decomposition R⊗ ρ2 → ρ2.

The non-trivial coefficients are K2
11 = K1

22 = 1. Consequently,

K12
1
1 = K21

2
2 = 1 (3.57)

and

O222 = 2
[
Oe + 2ω3Or + (1 + ω)Or2

]
. (3.58)

These formulae give the transition between the two bases in the operator space.

3.4 Discussion

Integrability of the AdS5 × S5 duality extends to the orbifold theories with minor

modifications. In particular, in a given twisted sector [g] the BAE reduce to those

in the Abelian theory; though some of the states may still be projected out. As

a general rule, which states survive the projection is determined by the invariant

tensors of the stabilizer subgroup Sg; although there can be present extra symmetries

projecting out some of the conceivably non-trivial states. Exactly as in the Abelian

case, orbifoldization amounts to appearance of the fractional mode numbers, on

both the closed string and the Bethe equations side [34]. Given the well established

full one-loop agreement between the classical energies and anomalous dimensions
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as functions of the mode numbers in [58],[59],[60], the correspondence holds for

the arbitrary orbifold at one loop. On the other hand, in the quiver gauge theory

notation problems with some states being projected out do not appear, but the

matrix of anomalous dimensions becomes more complicated. We demonstrate the

equivalence of the two approaches using some example orbifolds. The higher loop

techniques described in [49], [61] are likely to apply to the non-Abelian case as

well. This would open a possibility of applying the existing powerful integrability

techniques to the quiver gauge theories with reduced supersymmetry. One of the

things to be verified is that the duality relations between the roots of different types

are not violated (e.g., by some states being projected out).



Chapter 4

I-odd Sector of the KS Theory

Klebanov-Strassler solution provides a rich yet solvable example of gauge/string

correspondence. For earlier work leading up to this duality, see [19, 22, 23, 24], and

for reviews [62, 63]. This background demonstrates in a geometrical language such

features of the SU(M) supersymmetric gluodynamics as color confinement and the

breaking of the Z2M chiral R-symmetry down to Z2 via gluino condensation [21].

In fact, it has been argued [21] that by reducing the continuous parameter gsM one

can interpolate between the cascading theory solvable in the supergravity limit and

N = 1 supersymmetric SU(M) gauge theory.

An important aspect of the low-energy dynamics is that the baryonic U(1)B

symmetry is broken spontaneously by the condensates of baryonic operators A and

B, whose explicit expressions in the infrared SU(2M)× SU(M) gauge theory are

A ∼ ǫα1α2...α2M
(A1)

α1

1 (A1)
α2

2 . . . (A1)
αM
M (A2)

αM+1

1 (A2)
αM+2

2 . . . (A1)
α2M
M ,

B ∼ ǫα1α2...α2M
(B1)

α1

1 (B1)
α2

2 . . . (B1)
αM
M (B2)

αM+1

1 (B2)
αM+2

2 . . . (B1)
α2M
M . (4.1)

This phenomenon, anticipated in the cascading gauge theory in [21, 64], was later

demonstrated on the supergravity side where the fluctuations corresponding to

the pseudoscalar Goldstone boson and its scalar superpartner [65], as well as the

fermionic superpartner [66], were identified. Furthermore, finite deformations along

the scalar direction give rise to a continuous family of supergravity solutions [67,

68, 69] dual to the baryonic branch, AB = const, of the gauge theory moduli space.

46
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The main goal of the present chapter is to find an exhaustive list of bound states

in the KS theory which are singlet w.r.t. the global SU(2) × SU(2) symmetry and

odd w.r.t. the Z2 I-symmetry. In particular, this would give a deeper understanding

of the GHK scalar fluctuations (U, a) [65] and their radial excitations as well as

their supermultiplet structure. On the other, we would like to shed new light on

the normal modes of the warped deformed conifold throat embedded into a string

compactification, which has played a role in models of moduli stabilization [70] and

D-brane inflation [71, 72].

The problem of finding the spectra of bound states at large gsM can be mapped

to finding normalizable fluctuations around the supergravity background. This prob-

lem is complicated by the presence of 3-form and 5-form fluxes, but some results

on the spectra are already available in the literature [73, 74, 65, 75, 76, 66, 77].

A particularly impressive effort was made by Berg, Haack and Mück (BHM) who

used a generalized PT ansatz [78] to derive and numerically solve a system of seven

coupled scalar equations [75, 76]. Each of the resulting glueballs is even under the

charge conjugation I-symmetry preserved by the KS solution, and therefore has

JPC = 0++. In the present thesis we study some other families of glueballs, those

which are odd under the I-symmetry. We find several scalar and vector excitations

which organize into the four-dimensional supersymmetry multiplets. Recall that a

massive multiplet of the supersymmetry algebra in four dimensions consists of the

members with spin (j , j + 1
2
, j − 1

2
, j) (e.g., [79]). We find three multiplets with

j = 1
2

and two multiplets with j = 1. The j = 1
2

multiplets generalize the zero

momentum case studied in [65].

The chapter is structured as follows. In the next two sections we write down

the exhaustive list of the I-odd SU(2)×SU(2)-singlet excitations over the KS back-

ground and discuss their behavior in the conformal KW limit. In Section 4.4 we

study a generalization of the ansatz for the NSNS 2-form and metric perturbations

that allows us to study radial excitations of the GHK scalar mode. We derive a
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system of coupled radial equations with the mass of the excitation as a spectral

parameter. In Section 4.5 we show that a similar ansatz for the RR 2-form per-

turbation decouples from the metric giving rise to a single decoupled equation for

pseudoscalar glueballs. In Sections 4.6 and 4.7 we write the equations of motion for

the most general vector ansatz and disentangle them. The resulting glueballs give

the vector superpartners of the scalars found in Section 4.4 and 4.5, thus complet-

ing the bosonic content of the three j = 1
2

multiplets. In addition to these there

are found the two j = 1 multiplets, bosonic content of each of them being the two

vectors. In Section 4.8 we find the mass spectra of the members of the multiplets

we have found. This is done using either the shooting method or its generalization,

the determinant method. Section 4.9 discusses some subtleties related to the non-

uniqueness of the equations of motion. In Section 4.10 we construct the operators

of the dual gauge theory. Section 4.11 discusses the effects of compactification and

possible cosmological applications. We give a perturbative treatment of the coupled

equations for small mass that allows us to study the scalar mass in models where

the length of the throat is finite.

4.1 Geometry of the KS Solution

The Klebanov-Strassler supergravity solution, which corresponds to a certain vac-

uum of the SU(k(M + 1))× SU(kM) gauge theory [21], provides an interesting and

rich example of the gauge/string duality.

The ten dimensional metric for the KS solution is

ds2
10 = h(τ)−1/2(−dt2 + dx2 + dy2 + dz2) + h(τ)1/2ds2

6 , (4.2)

where

ds2
6 =

ǫ4/3K

2

[
1

3K3
(dτ 2 + (g5)

2) (4.3)

+ cosh2
(τ

2

)
((g3)2 + (g4)2) + sinh2

(τ
2

)
((g1)2 + (g2)2)

]
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is the usual warped deformed conifold metric. The volume form is

vol =
ǫ4

96
h1/2 sinh2 τdt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 . (4.4)

Here the auxiliary function K(τ) is

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh τ
, (4.5)

and the warp factor h is

h(τ) = (gsMα′)222/3ε−8/3I(τ) ; (4.6)

where

I(τ) ≡
∫ ∞

τ

dx
x coth x− 1

sinh2 x
(sinh(2x)− 2x)1/3 . (4.7)

The NSNS two-form field and corresponding field strength are

B2 =
gsMα′

2
[f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4] , (4.8)

H3 = dB2 =
gsMα′

2

[
dτ ∧ (f ′g1 ∧ g2 + k′g3 ∧ g4)

+
1

2
(k − f)g5 ∧ (g1 ∧ g3 + g2 ∧ g4)

]
; (4.9)

while the RR three-form field strength is

F3 =
Mα′

2

[
g5 ∧ g3 ∧ g4 + d[F (τ)(g1 ∧ g3 + g2 ∧ g4)]

]
(4.10)

=
Mα′

2

[
g5 ∧ g3 ∧ g4(1− F ) + g5 ∧ g1 ∧ g2F + F ′dτ ∧ (g1 ∧ g3 + g2 ∧ g4)

]
.

The auxiliary functions in these forms are

F (τ) =
sinh τ − τ
2 sinh τ

,

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) , (4.11)

k(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ + 1) .
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The five-form field strength is given by

F5 = (1 + ∗)B2 ∧ F3 ≡ (1 + ∗) ℓ(τ)ω2 ∧ ω3 . (4.12)

The forms ω2 and ω3 are

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4) , (4.13)

ω3 = ω2 ∧ g5 . (4.14)

The auxiliary function ℓ can be expressed as

ℓ(τ) = 2f + 4FF ′ ≡ 2f(1− F ) + 2kF . (4.15)

Note that in the KT (large τ) limit [24] one has

H3 =
gSMα′

2
dτ ∧ ω2 , (4.16)

F3 =
Mα′

2
ω3 . (4.17)

The KS solution is invariant under the Z2 symmetry I, which acts by exchanging

the two two-spheres of the deformed conifold accompanied by the inversion of sign

of the 3-form flux H3 and F3. On the field theory side this symmetry exchanges and

conjugates the bi-fundamental fields A and B. Thus the KS solution corresponds

to one particular I-invariant vacuum |A|2 = |B|2. The latter spontaneously breaks

U(1)Baryon symmetry A → Aeia, B → Be−ia. The corresponding massless Gold-

stone pseudoscalar a combines with the scalar U ∼ |A|2 − |B|2 into a I-odd scalar

supermultiplet [65]. While a corresponds to the longitudinal part of the U(1)Baryon

current Jµ = ∂µa, the fluctuation of U changes the expectation values of the baryon

operators A, B and moves the theory along the baryonic branch of the moduli space

[65, 67, 68, 69]. Out of the SU(2) × SU(2)-invariant forms on T 1,1, g5 and dg5 are

I-even; while g1 ∧ g2, g3 ∧ g4 and g1 ∧ g3 + g2 ∧ g4 are I-odd.
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4.2 General Ansatz for I-odd Excitations

We consider the I-odd supergravity excitations over the KS background which are

singlets w.r.t. the action of the global SU(2) × SU(2) symmetry group. The I-
symmetry of the KS solution acts on the conifold geometry by interchanging the two

spheres (θ1, φ1) and (θ2, φ2), simultaneously changing the sign of F3 and H3. Hence

we are looking for the perturbations of B2 and C2 invariant under the exchange of

the two-spheres and the perturbations of metric and C4 which are odd under the

interchange (θ1, φ1)↔ (θ2, φ2).

The list of SU(2)× SU(2)-invariant forms on the conifold includes the one-form

dτ along the radius and invariant forms on the “base” of the deformed conifold T 1,1.

There is a unique invariant one-form g5, which is I-even. It satisfies

⋆ d ⋆ dg5 = 8g5. (4.18)

(Below ⋆ will denote the Hodge operation on T 1,1, while ∗ and ∗4 will refer to the

same operation in the ten-dimensional or four-dimensional spaces respectively.)

There are the three I-odd SU(2) × SU(2)-invariant two-forms: g1 ∧ g2, g3 ∧ g4

and g1 ∧ g3 + g2 ∧ g4. In addition there are the two I-even two-forms dg5 =

−(g1∧g4 + g3∧g2) and dτ ∧g5, which are not independent. Indeed, any fluctuation

including dg5 can be transformed into the fluctuation with g5 or dτ ∧ g5 with the

help of a suitable gauge transformation.

The invariant two-forms mentioned above can be combined into two eigenvectors

of the Laplace-Beltrami operator on T 1,1 as follows:

ω2 = g1 ∧ g2 + g3 ∧ g4 , (4.19)

Y2 = (g1 ∧ g2 − g3 ∧ g4) + i(g1 ∧ g3 + g2 ∧ g4) . (4.20)

They satisfy

d ⋆ ω2 = 0 , dω2 = 0 , (4.21)

d ⋆ Y2 = 0 , ⋆ dY2 = 3i Y2 . (4.22)
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There are also three and four-forms on T 1,1 invariant under SU(2)×SU(2), but they

all can be obtained from the forms above using the exterior differentiation and the

Hodge transformation. The only I-odd SU(2)× SU(2)-invariant metric fluctuation

is g1 · g2 + g3 · g4.

The Hodge duality in Minkowski space allows one to relate the p- and (4 − p)-
forms to each other. That is why the general ansatz can be written in terms of zero,

one and two-forms in Minkowski space. It is also known that any form has a Hodge

decomposition into the sum of an exact, co-exact and harmonic parts. The field

theory in the Z2-symmetric vacuum dual to the KS background does not have any

spontaneously broken symmetries besides U(1)Baryon. Therefore we do not expect

any SU(2) × SU(2) singlet massless particles in addition to those associated with

the baryonic branch of the moduli space. The latter were studied in [65, 66]. That

is why we are looking only for massive excitations; i.e., all four-dimensional forms

Pk in our ansatz satisfy

�4Pk = m2Pk (4.23)

with some non-zero m2. It means that the harmonic part is absent from the decom-

position (which is not generally the case for the four-dimensional massless modes).

Therefore, any two-form P2 can be written using the two vectors (one-forms) M and

N:1

P2 = d4M + ∗4d4N . (4.24)

Similarly, any vector N can be represented as a sum of an exact and a co-closed

parts:

N = d4χ + Ñ , (4.25)

where

d4 ∗4 Ñ = 0 . (4.26)

1We use the boldface notation for the spin 1 excitations (vectors) in four dimensions.
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This consideration shows that all the I-odd excitations over the KS background

reduce to some ansatz involving vectors and scalars. At this point we do not make a

distinction between the particles with different behavior with respect to parity; i.e.,

vectors and axial vectors, scalars and axial scalars. For the sake of simplicity we call

all states of spin 1 “vectors” and all states of spin 0 “scalars”. The quantum numbers

of the physical states, including parity, will be given in Figure 4.1 in Section 4.8.

The most general scalar ansatz consists of the two decoupled systems of excita-

tions:

δB2 = χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 ,

δG13 = δG24 = U(x, τ) ;
(4.27)

and

δC2 = χ̃(x, τ) dg5 + ∂µσ̃(x, τ) dxµ ∧ g5 . (4.28)

As it was explained, the terms proportional to dτ ∧ g5 are absent since they can be

transformed into the form of (4.27) and (4.28) with the help of a gauge transforma-

tion. One could seemingly add the I-odd scalar excitations of F5,

δF5 = (1 + ∗)
[
dτ ∧ (d4a ∧ g1 ∧ g2 + d4b ∧ g3 ∧ g4) ∧ g5

]
; (4.29)

or

δF5 = (1 + ∗)
[
d4c ∧ dτ(g1 ∧ g3 + g2 ∧ g4) ∧ g5

]
. (4.30)

However, equations of motion would require the functions a, b and c to vanish

identically.2

The most general SU(2)× SU(2)-singlet I-odd vector excitation of the 3-forms

is as follows:

δF3 , δH3 = C(1) ∧ dτ + C(2) ∧ g5 + ∗4d4C
(3) . (4.31)

2This is not the case for the massless particles [65].
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For the 5-form the most general vector perturbation is

δF5 = (1 + ∗)
[
F(1) ∧ dτ ∧ g5 ∧ g1 ∧ g2 + F(2) ∧ dτ ∧ g5 ∧ g3 ∧ g4 +

+ F(3) ∧ dτ ∧ g5 ∧ (g1 ∧ g3 + g2 ∧ g4) + (d4F
(4) + ∗4d4F

(5)) ∧ g5 ∧ g1 ∧ g2 +

+ (d4F
(6) + ∗4d4F

(7)) ∧ g5 ∧ g3 ∧ g4 +

+ (d4F
(8) + ∗4d4F

(9)) ∧ g5 ∧ (g1 ∧ g3 + g2 ∧ g4)
]
. (4.32)

It turns out that not all fifteen (3+3+9) real vectors introduced here are inde-

pendent. The ansatz has only seven independent vector degrees of freedom. We

illustrate this in the next section by considering the conformal KW case.

4.3 Supermultiplet Structure in the Conformal

Case

We start our analysis with the scalar U of [65] dual to the operator Tr (|A|2 − |B|2) of

dimension 2 [68]. In the conformal case this operator is responsible for the resolution

of the conifold. The corresponding state belongs to the Betti multiplet [80]. The

latter also contains a 5d-massless gauge vector of dimension 3 dual to the baryonic

current. Its presence on the gravity side is guaranteed by the nontrivial harmonic

three-form w3 = ⋆ w2 on T 1,1. The Betti multiplet is a “massless” Vector Multiplet I

according to the classification of the superconformal multiplets given in [81, 82]. It

is a short version of the Vector Multiplet I, which contains just two bosonic states

of dimensions 2 and 3.

In the table 4.1 we match the components of the five-dimensional superconformal

multiplets of [81] to the four-dimensional fluctuations considered in the previous

section. The identification of U as φ from the table 4.1 is straightforward. The

Betti vector φµ,

δC4 = φµ ∧ ω3 , (4.33)
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Table 4.1: Shortened Gravitino Multiplets II, IV and Vector Multiplet I [81, 82]. Field
notations are inherited from [83].

Shortened Gravitino Multiplets II, IV

Field reps ∆ R Mode

aµ (1/2, 1/2) 5 0 C(2), (χ, χ̃)

b±µν (1, 0), (0, 1) 5 ∓2 F(1) − F(2), F(3)

aµν (1, 0), (0, 1) 6 0 C(3)

Vector Multiplet I

Field reps ∆ R Mode

φµ (1/2, 1/2) 3 0 F(1) + F(2)

φ (0, 0) 2 0 U

is contained in (4.32). The combination F(1) + F(2) is identified with the derivative

of φµ with respect to τ and the remaining functions F(3), ..,F(9) are dependent on

F(1) + F(2).

The scalars χ, χ̃ have dimension 5 = 2 +
√

1 + 8 as it follows from (4.18). The

same result follows from the large τ behavior of their equations of motion. Conse-

quently χ, χ̃ are the longitudinal modes of the five-dimensional vectors aµ from the

Gravitino Multiplets of type II and IV. It is convenient to consider these multiplets

together combining the modes into the complex combinations like

δB2 + i δC2 = aµ ∧ g5 . (4.34)

Similarly the complex vector C(2) from (4.31) corresponds to the vector part

of aµ. It has dimension 5 in the KW case as well. The complex vectors C(1),C(3)

correspond to the antisymmetric tensor aµν and have dimension 6. Only one of them

is independent on-shell.

Although the fluctuations of the RR four-formC4 are real they can be parametrized
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with help of complex bµν ,

δC4 = bµν ∧ Y2 + c.c. . (4.35)

By comparing (4.35) to (4.32) we identify the real components of bµν with F(1) −
F(2) and F(3). All other vectors F(4), ..,F(9) are not independent on-shell. These

fluctuations have dimension 5 = 2+|3| due to (4.22) and also belong to the Gravitino

Multiplets II and IV.

In the SU(2) × SU(2) invariant sector only shortened version of the Gravitino

Multiplets II and IV appear. Thus we do not expect any other massive bosonic

states in the I-odd sector. This agrees with our study of the ansatz (4.31), (4.32)

in the following section.

There are two ways one can look at the system given by the vector ansatz (4.31),

(4.32) and the scalar ansatz (4.27), (4.28). First, one can classify the states accord-

ing to the complex representation of the superconformal symmetry. Second, one

can look for the states of definite parity. The second approach is more straightfor-

ward. In particular, as it is demonstrated in [28] the definite parity R-R and NS-NS

sectors decouple from each other, although they are a mixture of states from the su-

perconformal Gravitino Multiplets. Therefore instead of dealing with the Gravitino

Multiplets II and IV independently we will refer to the combination of the Gravitino

Multiplets II and IV just as to the “Gravitino Multiplets” and specify the parity

where appropriate. That is why we combined the Gravitino Multiplets II and IV

together in the table 4.1.

More precisely, the study of the equations of motion for the full KS case reveals

the following. The scalar U from the Vector Multiplet I mixes with the scalar χ

from NS-NS sector of the Gravitino Multiplets, while the pseudoscalar χ̃ from the

R-R sector decouples. At the same time the calculation done there in the large τ

approximation shows that the Betti pseudovector mixes with the pseudovector part

of aµ from the R-R sector, though both decouple from the vector part of aµ from
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the NS-NS sector. This suggests that the vector excitations from the Gravitino

Multiplets and the Vector Multiplet I split into the following two non-interacting

systems. One includes the spin 1 states of positive parity from aµ, aµν (NS-NS

sector) and one of the bµν modes. Another consists of the spin 1 states of negative

parity and includes the vectors from aµ, aµν (R-R sector) and another bµν mode

together with the Betti pseudovector.

4.4 Radial Excitations of the GHK Scalar

The ansatz that produced a normalizable scalar mode independent of the four-

dimensional coordinates xµ was [65]

δB2 = χ(τ) dg5 , δG13 = δG24 = ψ(τ) . (4.36)

We find a generalization of this ansatz that will allow us to study the radial exci-

tations of this massless scalar; i.e., the series of modes that exist at non-vanishing

k2
µ = −m2

4. Thus, we must include the dependence of all fields on xµ. Such an

ansatz that decouples from other fields at linear order is

δF3 = 0 ,

δF5 = 0 ,

δB2 = χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 ,

δH3 ≡ dδB2 = χ′ dτ ∧ dg5 + ∂µ(χ− σ) dxµ ∧ dg5 + ∂µσ
′ dτ ∧ dxµ ∧ g5 ,

δG13 = δG24 = ψ(x, τ) .

(4.37)

The ansatz for δB2 originates from the longitudinal component of a 5-d vector:

δB2 = (Aτdτ + Aµdx
µ) ∧ g5 . (4.38)

Requiring the 4-d field strength to vanish, Fµν = 0, restricts Aµ to be of the form

∂µ acting on a function. Then, choosing

Aτ = −χ′ , Aµ = ∂µ(σ − χ) , (4.39)
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we recover the ansatz (4.37) up to a gauge transformation. Yet another gauge

equivalent way of writing (4.37) is

δB2 = (χ− σ) dg5 − σ′ dτ ∧ g5 . (4.40)

The new feature of our ansatz compared to the generalized PT ansatz used in

[75, 76] is the presence of the second function in δB2 which multiplies dτ∧g5. Terms

of this type, which are allowed by the 4-d Lorentz symmetry, turn out to be crucial

for studying the modes that are odd under the I-symmetry. While the functions

χ and ψ are contained in the general PT ansatz, they were forced to vanish by the

constraints imposed on the modes studied in [75, 76], which as a result were even

under the I-symmetry. It turns out that the closure of our ansatz for an odd mode

requires the addition of the term involving σ, which is not contained in the PT

ansatz.

In order to find the dynamic equations for the functions ψ, χ and σ in (4.37) we

study the linearized supergravity equations.

It turns out that all the Bianchi identities as well as the self-duality equation for

F5 and the dynamic equations for ∗F3 are automatically satisfied with the ansatz

(4.37). The only non-trivial equation is that for ∗H3. When written in terms of the

form components it reduces to the two equations (see Appendix B.1):

2(gsMα′)
K(τ)2

ǫ4/3
√
h(τ)

ψ + χ′ =
3

16
ǫ4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ ,

(4.41)

∂µ(χ− σ) +
9

8
K(τ)2 ∂τ

{
K4 sinh2 τ ∂µσ

′
}

= 0 . (4.42)

The first order perturbation of the Ricci curvature tensor is given by

δRij =
1

2

(
−δGa

a
;ij − δGij;a

a + δGai;j
a + δGaj;i

a
)
, (4.43)

where covariant derivatives and contractions of indices are performed using the

unperturbed metric. The first term in this expression vanishes for our case because
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the metric perturbation is traceless. The remaining three terms combine to give the

only non-zero perturbations δR13 = δR24:

δR13 = − 3

ǫ4/3
K3 sinh(τ)z

[
K ′′

K
+

1

2

h′′

h
+
z′′

z
+

(K ′)2

K2
− 1

2

(h′)2

h2
+
K ′

K

h′

h
+

+ 2
K ′

K

z′

z
+ coth τ

(
h′

h
+ 4

K ′

K
+ 2

z′

z

)
+ 2− 1

sinh(τ)2
− 4

9

1

sinh(τ)2K6

]
−

−1

2
h(τ)K sinh(τ) �4z

= − 3

ǫ4/3
K3 sinh τz

[
1

2

(
(K sinh(τ))2 (lnh)′

)′

(K sinh(τ))2
+

(
(K sinh(τ))2 z′

)′

(K sinh(τ))2z

− 2

sinh(τ)2
− 8

9

1

K6 sinh(τ)2
+

4

3

cosh(τ)

K3 sinh(τ)2

]
− 1

2
h(τ)K sinh τ �4z ;(4.44)

where z(x, τ) is defined by

ψ(x, τ) = h1/2K sinh(τ) z(x, τ) = 2−1/3[sinh(2τ)− 2τ ]1/3h1/2z(x, τ) . (4.45)

The source terms Tij on the right hand side of the Einstein equation Rij = Tij are

due to the deformations of the metric and B2 form. The only nontrivial deformations

of sources are those with indices 13 or 24, and δT13 = δT24. As it is explained in

Appendix B.1, these deformations can be written as

δT13 =
[
A1(τ) + A2(τ)

]
ψ(x, τ) +B(τ)χ′(x, τ) (4.46)

with some auxiliary functions A1, A2 and B. Then eliminating χ′ with the help of

(4.41) yields

δT13 =
3

22/3

(gsMα′)4

ǫ20/3h2

(τ coth τ − 1)2[sinh 2τ − 2τ ]5/3

sinh6 τ
z(τ) +

+
3

8 · 21/3

(gsMα′)2

ǫ4h

(sinh(2τ)− 2τ)1/3

sinh6(τ)

[
cosh(4τ) + 8(1 + τ 2) cosh(2τ)−

−24τ sinh(2τ) + 16τ 2 − 9
]
z(x, τ) − 9

16

gsMα′

ǫ4/3

sinh 2τ − 2τ

sinh τ
K5

�4σ
′(x, τ)

= − 3

ǫ4/3
K3 sinh τ

[
−1

2

(h′)2

h2
+

1

2

h′′

h
+
K ′

K

h′

h
+ coth τ

h′

h

]
z −

− 9

16

gsMα′

ǫ4/3

sinh 2τ − 2τ

sinh τ
K5

�4σ
′ . (4.47)
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As it was mentioned, the perturbations δT13 = δT24 are the only non-zero compo-

nents of δTij. Equating (4.44) and (4.47) we obtain the final form of the linearized

Einstein equations.

Combining the equations for the field strengths and the Einstein equations we

obtain the following system:

(gsMα′)
sinh 2τ − 2τ

ǫ4/3 sinh2 τ
z + χ′ =

3

16
ǫ4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ , (4.48)

∂µ(χ− σ) = −9

8
K(τ)2 ∂τ

{
K4 sinh2 τ ∂µσ

′
}
, (4.49)

(
(K sinh τ)2 z′

)′

(K sinh τ)2
+
ǫ4/3h

6K2
�4z =

(
2

sinh2 τ
+

8

9

1

K6 sinh2 τ
− 4

3

cosh τ

K3 sinh2 τ

)
z

+
3

16
(gsMα′)

sinh 2τ − 2τ

sinh2 τ
K2

�4σ
′ . (4.50)

Note that χ can be eliminated between (4.48) and (4.49). Further, a change of

variables

z̃ = zK sinh(τ) , (4.51)

w̃ =
ǫ4/3

gsMα′K
5 sinh(τ)2σ′ , (4.52)

leads to a more symmetric pair of equations:

z̃′′ − 2

sinh2 τ
z̃ +

ǫ4/3h

6K2
�4z̃ =

3(gsMα′)2

16ǫ4/3

sinh 2τ − 2τ

K2 sinh3 τ
�4w̃ , (4.53)

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ +

ǫ4/3h

6K2
�4w̃ =

8

9

sinh 2τ − 2τ

K2 sinh3 τ
z̃ . (4.54)

Introducing the dimensionless mass-squared m̃2 according to (here we explicitly

restore the parameters gs, M and α′)

m̃2 = m2
4

22/3(gsMα′)2

6 ǫ4/3
, (4.55)

we can rewrite the equations for z̃ and w̃ as

z̃′′ − 2

sinh2 τ
z̃ + m̃2 I(τ)

K2(τ)
z̃ = m̃2 9

4 · 22/3
K(τ) w̃ , (4.56)

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K2(τ)
w̃ =

16

9
K(τ) z̃ . (4.57)
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This is a system of coupled equations which defines the mass spectrum of certain

scalar glueballs with positive 4-d parity. The natural charge conjugation symme-

try of the KS background is the I-symmetry, under which these modes are odd.

Therefore, we assign JPC = 0+− to this family of glueballs.3

In the massless case these equations lead to the GHK solution [65]. If we assume

�4 = −k2
µ = m2

4 = 0, then there are two solutions [65], z̃1 = coth τ and z̃2 =

τ coth τ−1. The solution for z̃ which is non-singular at the origin is z̃ = τ coth τ−1.

Substituting it into the second equation, we find

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ =

16

9
K(τ) (τ coth τ − 1) ≡ − 22/3 8

9
I ′(τ) sinh τ . (4.58)

The two solutions of the homogeneous equation are w̃1 = 1/ sinh τ and w̃2 =

(sinh 2τ − 2τ)/ sinh τ ; both of them are singular either at zero or at infinity. This

means that the regular solution of the inhomogeneous equation is uniquely fixed.

With the Wronskian W (w̃1, w̃2) = w̃1w̃
′
2 − w̃′

1w̃2 = 4, we can find a general solution

w̃(τ) = − 22/3 8

9

{
w̃1(τ)

[
C1 −

∫ τ

dx
w̃2(x)

W (x)
I ′(x) sinh x

]
+

+w̃2(τ)
[
C2 +

∫ τ

dx
w̃1(x)

W (x)
I ′(x) sinh x

]}
. (4.59)

Integrating by parts and choosing the particular homogeneous solution to make w̃

well behaved at both zero and infinity we get

w̃(τ) = − 22/3 8

9

1

sinh τ

∫ τ

0

dx I(x) sinh2 x . (4.60)

Let us also note that the non-zero w̃ in the zero momentum case kµ = 0 is not in

contradiction with the GHK solution. This is because w̃ enters (4.37) only through

∂µσ which is zero as long as the momentum vanishes.

3For comparison, the glueballs found in [75, 76] are 0++. The glueballs whose spectrum comes
from the minimal scalar equation [73] resulting from the analysis of graviton fluctuations are 2++.
The axial vector U(1)R fluctuations [77] give rise to 1++ glueballs whose masses are also determined
by the minimal scalar equation.
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4.5 Pseudoscalar Modes from the RR Sector

The type of ansatz used in section 4.4 works even more simply for the RR 2-form

field:

δH3 = 0 ,

δF5 = 0 ,

δC2 = χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 ,

δF3 ≡ dδC2 = χ′ dτ ∧ dg5 + ∂µ(χ− σ) dxµ ∧ dg5 + ∂µσ
′ dτ ∧ dxµ ∧ g5 .

(4.61)

This ansatz is odd under the I-symmetry. It is similar to, but somewhat simpler

than the GHK pseudoscalar ansatz [65] which involved mixing with δF5. Since

δF3 ∧ H3 = 0, now it is consistent to set δF5 = 0. We also have F5 ∧ δF3 = 0, so

it is consistent to take δH3 = 0. Finally, one needs to study mixing with metric

fluctuations. At a first glance it seems that δG12 and δG34 might need to be turned

on, but a more detailed analysis shows that their sources vanish:

δT12 = F13τδF2
3τ + δF14τF2

4τ =
Mα′

2
G33G55

[
F ′χ′ − F ′χ′] = 0 , (4.62)

δT34 = F31τδF4
1τ + δF32τF4

2τ = 0 . (4.63)

Thus, the perturbation (4.61) decouples from all other modes, and the only non-

trivial linearized equation of motion is

d ∗ δF3 = 0 . (4.64)

The calculation we need to perform is the same as in Section 4.4, except we now set

ψ = 0 and find

χ′ =
3

16
ǫ4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ , (4.65)

0 = ∂µ(χ− σ) +
9

8
K(τ)2 ∂τ

{
K4 sinh2 τ ∂µσ

′
}
. (4.66)

Eliminating χ and changing variables,

w̃ =
ǫ4/3

gsMα′K
5 sinh(τ)2σ′ , (4.67)
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we find

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ +

ǫ4/3h

6K2
�4w̃ = 0 . (4.68)

Again, after introducing the dimensionless mass as in (4.55), we get a non-minimal

scalar equation

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K(τ)2
w̃ = 0 . (4.69)

Since the 4-d parity operation includes sign reversal of RR fields, we identify the

family of glueballs coming from this eigenvalue problem as pseudoscalars whose JPC

quantum numbers are 0−−.

If we set m̃ = 0 the solution regular at small τ is (sinh 2τ − 2τ)/ sinh τ . Since

this blows up at large τ we conclude that this equation does not contain a massless

glueball. A simple numerical analysis using the shooting method would allow one

to find the mass spectrum.

4.6 Triplet of Vectors from the Gravitino Multi-

plets

This section analyzes the vector fluctuations from the Gravitino Multiplets, more

precisely a combination of the Gravitino Multiplets II and IV with negative parity.

The system of the linearized equations in this subsector reduces to three coupled

equations, which can be disentangled.

We start with writing down a general ansatz for the spin 1 excitations in the

“NS-NS sector” of the Gravitino Multiplets and show that they decouple from the

other vectors. The deformations of the three and five-forms are:

δB2 = ∗4d4H + A ∧ g5 , (4.70)

δC2 = E ∧ dτ ; (4.71)
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δF5 = (1 + ∗)
[
d4K ∧ dτ ∧ g1 ∧ g2 + d4L ∧ dτ ∧ g3 ∧ g4 (4.72)

+d4M ∧ (g1 ∧ g3 + g2 ∧ g4) ∧ g5 + N ∧ dτ ∧ (g1 ∧ g3 + g2 ∧ g4) ∧ g5
]
.

As it was discussed in Section 4.3, vector A corresponds to aµ, vectors E and H

to aµν and K, L, M, N to bµν of the conformal case. The equations of motion are

analyzed in detail in the Appendix B.2, and they show that E, K, L and M depend

on the A, H, N algebraically. The latter describe the physical degrees of freedom.

After redefining N and A,

G55

√
h

N = �4Ñ , (4.73)

K2 sinh τ A = Ã ; (4.74)

the resulting equations take the form:

Ñ′′ −
(

cosh2 τ + 1

sinh2 τ
+

4 · 21/3(F ′)2

IK2 sinh2 τ

)
Ñ + m̃2 I

K2
Ñ+

+ F ′H′ − 21/3F ′ℓ

IK2 sinh2 τ
H +

F ′

K2 sinh τ
Ã = 0 , (4.75)

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã + m̃2 4 · 21/3F ′

K2 sinh τ
Ñ = 0 , (4.76)

H′′ +

(
2

(
K sinh τ

)′

K sinh τ
+
I ′

I

)
H′ −

(
21/3ℓ′

IK2 sinh2 τ
+

22/3ℓ2

I2K4 sinh4 τ

)
H + m̃2 I

K2
H−

− 4 · 21/3

IK2 sinh2 τ

(
F ′Ñ

)′ − 4 · 22/3F ′ℓ

I2K4 sinh4 τ
Ñ = 0 . (4.77)

One can diagonalize this system. In particular, we expect to identify the massive

vector superpartner of the scalar (4.28). Although the equations (4.75)-(4.77) look

bulky it is quite easy to split them into the three independent equations. First we

notice that the constraint Ñ = 0 implies

H =
(sinh τÃ)′

m̃2I sinh2 τ
, (4.78)
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and it reduces the system (4.75)-(4.77) to one equation

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã = 0 . (4.79)

This equation coincides with the one for the scalar χ̃ (4.68). Hence the vector

mode above and the scalar (4.68) form a massive vector j = 1/2 multiplet.4 It is

interesting to notice that Ñ = 0 does not imply δF5 = 0 as it would in the conformal

case. Rather F5 = (1 + ∗) d4H ∧H3 with H being related to Ã by (4.78).

To find the two remaining modes we impose a constraint

H̃ = −K(sinh τÃ)′

m̃2
√
I sinh τ

, (4.80)

where H̃ =
√
IK sinh τ H. This constraint guarantees that the two remaining modes

are orthogonal to the vector mode from above. The disentanglement procedure is

described in detail in Appendix B.2. Eliminating H̃ from the above equations one

obtains

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã− 2m̃2I ′

K3 sinh τ
Ñ = 0 , (4.81)

Ñ′′ − cosh2 τ + 1

sinh2 τ
Ñ + m̃2 I

K2
Ñ− 2−1/3I ′

K3 sinh τ
Ã = 0 . (4.82)

After a trivial rescaling and change of variables X± = Ã ± 22/3m̃Ñ these two

equations decouple,

X′′
± −

cosh2 τ + 1

sinh2 τ
X± + m̃2 I

K2
X± ∓

25/3m̃F ′

K2 sinh τ
X± = 0 . (4.83)

These particles are members of the two j = 1 gravitino multiplets. We are going to

identify their superpartners as a part of the analysis performed in the next section.

4.7 Betti Vector and Axial Vector Triplet

In this section we consider the vector excitations in the parity even “R-R sector” of

the combination of the Gravitino Multiplets and the axial Betti vector from Vector

4We use spin j to characterize the massive supermultiplets (j − 1/2)⊕ j ⊕ j ⊕ (j + 1/2).
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Multiplet I. We expect this system of four vectors to contain the superpartners of

the scalar excitations (4.27) and the two vectors X± from Section 4.6.

We consider the following deformations of the 3-form potentials:

δB2 = J ∧ dτ , (4.84)

δC2 = C ∧ g5 + ∗4d4D ; (4.85)

and the 5-form:

δF5 = (1 + ∗)
[
F ∧ dτ ∧ g1 ∧ g2 ∧ g5 + G ∧ dτ ∧ g3 ∧ g4 ∧ g5

+ d4P ∧ g1 ∧ g2 ∧ g5 + d4Q ∧ g3 ∧ g4 ∧ g5 + d4R ∧ dτ ∧ (g1 ∧ g3 + g2 ∧ g4)
]
.

(4.86)

Clearly in the conformal limit C corresponds to aµ, while J and D correspond to

aµν . The fluctuations of F5 correspond to both bµν and φµ.

Detailed analysis of the supergravity equations for this system is given in Ap-

pendix B.3. Choosing C,D,F,and G as independent variables we end up with the

following system of the four coupled equations:

B′′
+ −

2

sinh2 τ
B+ + m̃2 I

K2
B+ +K3 sinh τ(D′ − J)−KC̃ = 0 ,

(4.87)

B′′
− −

cosh2 τ + 1

sinh2 τ
B− + m̃2 I

K2
B− + 2−1/3 I

′

K
(D′ − J) +

2−1/3I ′

K3 sinh τ
C̃ = 0 ,

(4.88)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃− 21/3m̃2KB+ + m̃2 I ′

K3 sinh τ
B− = 0,

(4.89)

D′′ +
(
log(IK2 sinh2 τ)

)′
D′ + m̃2 I

K2
D +

(I ′K2 sinh2 τ)′

IK2 sinh2 τ
D +

+
I ′

I
J− 1

IK2 sinh2 τ

(
21/3K3 sinh τ B+ +

I ′

K
B−

)′
= 0 ;

(4.90)

where

J = −I
′

I
D +

21/3K

I sinh τ
B+ +

I ′

IK3 sinh2 τ
B− . (4.91)



4.7. Betti Vector and Axial Vector Triplet 67

Here we introduced the new variables as follows:

G55

√
h

coth2 τ

2
F = coth

τ

2
�4F̃ , (4.92)

G55

√
h

tanh2 τ

2
G = tanh

τ

2
�4G̃ , (4.93)

B± = F̃± G̃ , (4.94)

C̃ = K2 sinh τC . (4.95)

The system of the equations (4.87)-(4.90) can be further reduced. The hint is

to consider a conformal limit when the Betti vector decouples from the Gravitino

Multiplet states. The former is associated with F = G while the perturbation bµν

from the Gravitino Multiplet corresponds to F = −G. We put

B− = 0 (4.96)

in order to “turn of” the excitation of bµν in the system (4.87)-(4.90). This implies

for D:

D =
(sinh τ C̃)′

m̃2I sinh2 τ
. (4.97)

The remaining equations form a self-consistent subsystem of two equations:

B′′
+ −

2

sinh2 τ
B+ + m̃2 I

K2
B+ = 2KC̃ , (4.98)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = 21/3m̃2KB+ . (4.99)

After a trivial rescaling of variables it reproduces the scalar equations (4.56) and

(4.57). Thus these modes represent the mixing of the Betti vector with the vector

part of aµ. They are the vector superpartners of the scalar excitations z and w of

Section 4.4.

To extract the remaining degrees of freedom we “turn off” the Betti vector by

choosing

B+ = 0 . (4.100)
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Using this equation one can eliminate D from the remaining equations as follows:

D = − (sinh τ C̃)′

m̃2I sinh2 τ
. (4.101)

The remaining self-consistent subsystem of the two equations for B− and C̃ is

B′′
− −

cosh2 τ + 1

sinh2 τ
B− + m̃2 I

K2
B− = − 22/3I ′

K3 sinh τ
C̃ , (4.102)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = −m̃2 I ′

K3 sinh τ
B− . (4.103)

After a trivial rescaling and change of variables Y± = 2−1/3m̃B−∓ C̃ the equations

become

Y′′
± −

cosh2 τ + 1

sinh2 τ
Y± + m̃2 I

K2
Y± ∓

25/3m̃F ′

K2 sinh τ
Y± = 0 . (4.104)

These equations exactly coincide with the system (4.83), which suggests that we have

found the members of the same supermultiplets. Namely, we have the two j = 1

supermultiplets each containing a vector X, an axial vector Y and two fermions of

spin 1/2 and 3/2.

4.8 Numerical Analysis: Finding the Spectra

As a result of our analysis we have identified all the I-odd excitations of the KS

solution invariant w.r.t. the global SU(2) × SU(2)-symmetry and organized them

into the supermultiplets.

First, there is a system of the radial excitations of the GHK scalar (4.56), (4.57)

and their vector superpartners (4.98), (4.99). These glueballs are the members of

the j = 1
2

supermultiplet. There is another j = 1
2

multiplet consisting of a scalar

(4.68) and a vector (4.79). In addition to these there are the two j = 1 multiplets

X± (4.83) and Y± (4.104).

To determine the spectrum of glueballs in the field theory, we need to solve

the eigenvalue problem for m̃2 in the infinite throat limit. None of the mentioned
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Table 4.2: Non-zero eigenvalues with m̃2 < 100. There are the two distinct spectra. Both
spectra can be fitted by quadratic polynomials in the eigenvalue number n (the red line
in the plots).

Spectrum I Quadratic Fit

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 4.53 5 19.1 9 43.3 13 76.9
2 7.30 6 24.4 10 50.8 14 86.7
3 10.7 7 30.1 11 58.9 15 97.1
4 14.6 8 36.4 12 67.6

5 10 15
n

20

40

60

80

100

m2

Spectrum II Quadratic Fit

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 0.129 6 8.06 11 30.1 16 65.1
2 0.703 7 11.2 12 35.5 17 73.9
3 1.76 8 15.0 13 42.1 18 83.3
4 3.33 9 19.3 14 49.2 19 93.3
5 5.43 10 24.1 15 56.9

5 10 15
n

20

40

60

80

100
m2

equations seems amenable to analytical solution and we have to employ a numerical

approach to find the spectrum of normalizable solutions. In most of the cases the

spectrum can be found using the shooting method. However, the system of the two

coupled equations (4.56) and (4.57) requires the use of the determinant method,

which generalizes the standard shooting technique to a system of several equations

(see, e.g.,[76]). The detailed description of the determinant method as well as the

subtleties specific to the system (4.56), (4.57) is given in Appendix B.4.

The result is that the spectrum of (4.56), (4.57) consists of the two distinct series,

each one with a quadratic growth of m̃2
n for large n. These series are interpreted as

the radial excitation spectra of the two different particles. The lowest eigenvalues

(m̃2 < 100) for these spectra are shown in Table 4.2. The quadratic fit for spectrum



4.8. Numerical Analysis: Finding the Spectra 70

I is

m̃2
In = 2.31 + 1.91n+ 0.294n2 . (4.105)

For spectrum II (we drop the lowest eigenvalue when doing the fit)

m̃2
IIn = 0.36 + 0.14n+ 0.279n2 . (4.106)

It is interesting to compare these results with those found for the 0++ modes by Berg,

Haack and Mück (BHM) [76]. The conventions of [76] correspond to a particular

choice of the KS parameters (see Appendix B.5), and the relation between the masses

is

m2
BHM = (3/2)2/3I(0) m̃2 ≈ 0.9409 m̃2 . (4.107)

Using this relation one can convert the mass eigenvalues to the BHM normalization.

We note that the lightest glueball we find, the first entry from spectrum II in Ta-

ble 4.2, has m2
BHM ≈ 0.121. For comparison, the lightest 0++ eigenvalue found in

[76] has m2
BHM ≈ 0.185. The fact that the 0+− sector has the lightest glueballs may

be qualitatively understood as follows. Roughly speaking, glueball masses increase

with the dimensions of the operators that create them. The lowest dimension op-

erator from the 0++ sector is the gluino bilinear Trλλ of dimension three, but the

0+− sector contains an operator of dimension two, namely Tr(ĀA− B̄B).

Converting the asymptotics of the two spectra to BHM units, we find

m2
I BHM ≈ 2.17 + 1.79n+ 0.277n2 , (4.108)

m2
II BHM ≈ 0.34 + 0.13n+ 0.262n2 . (4.109)

The coefficients of the quadratic terms are close to those found in [76]. The quadratic

dependence on n, which is characteristic of Kaluza-Klein theory, is a special feature

of strongly coupled gauge theories that have weakly curved gravity duals (see [84]

for a discussion). Note that m2
4 is obtained from m̃2 through multiplying by a factor

∼ Ts/(gsM), where Ts is the confining string tension. Thus, for n ≪ √gsM these
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modes are much lighter than the string tension scale, and therefore much lighter

than all glueballs with spin greater than two. Such anomalously light bound states

appear to be special to gauge theories that stay very strongly coupled in the UV,

such as the cascading gauge theory; they do not appear in asymptotically free gauge

theories. Therefore, the anomalously light glueballs could perhaps be used as a

‘special signature’ of gauge theories with gravity duals if they are realized in nature.

One may be puzzled why the spectrum in Table 4.2 does not include the GHK

massless mode. This is because in solving the coupled equations (4.56), (4.57) we

required that both wave-functions z̃ and w̃ vanish as τ → ∞. This excludes the

GHK zero mode which grows as z̃ ∼ τ . On the other hand, this growth is a lot

slower than the exponential growth found for generic solutions. The meaning of the

GHK mode as the baryonic branch modulus seems to be well established since even

the solutions at finite distance along this modulus are available [67, 68]. Thus, the

GHK scalar zero-mode should be normalizable with a proper definition of norm.

In fact, the GHK pseudoscalar and its fermionic superpartner are normalizable [65,

66]; therefore, the supersymmetry of the problem implies that the GHK scalar is

normalizable as well and is part of the spectrum.

One can use the shooting method in order to find the spectrum of the scalar

(4.68) and its superpartner (4.79). The lowest eigenvalues (m̃2 < 100) are listed in

Table 4.3. The quadratic fit is

m̃2
IIIn = 0.994 + 1.16n+ 0.288n2 ; (4.110)

and in the BHM normalization it is given by

m2
III BHM = 0.935 + 1.09n+ 0.271n2 . (4.111)

The shooting method for X± (4.83) and their superpartners gives the two spec-

tra, listed in the table 4.4. These spectra can be fitted by the following quadratic
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Table 4.3: Non-zero eigenvalues with m̃2 < 100 in the RR sector. This spectrum can also
be fitted by a quadratic polynomial (red line).

Spectrum III Quadratic Fit

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 2.41 5 14.0 9 34.8 13 64.7
2 4.47 6 18.3 10 41.4 14 73.7
3 7.08 7 23.2 11 48.6 15 83.2
4 10.3 8 28.7 12 56.4 16 93.3
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n
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80

100
m2

polynomials:

m̃2
− = 0.633 + 1.02n+ 0.287n2 , (4.112)

m̃2
+ = 1.44 + 1.31n+ 0.288n2 . (4.113)

In the units used by Berg et.al. [75] the lowest states have masses

m2
BHM − = 1.78 , (4.114)

m2
BHM + = 2.83 . (4.115)

In Figure 4.1 we collected the information about the spectrum of the I-odd

sector. It contains two massless scalars [65], the lightest massive scalars from massive

vector multiplets [28], and lightest vectors from the seven vector towers discovered

in this work. We have also added to the figure two I-even bosonic states from the

lightest graviton multiplet, a tensor 2++ state [85] and a vector 1++ dual to the

U(1)R current [86]. These states share the spectrum of the “minimal” scalar and

hence the lowest mass of their spectrum is a natural reference point. More I-even
scalar glueballs were found in the works [75, 76].

The quantum numbers of the I-odd scalars from Figure 4.1 were identified in [28].

The massless states are a scalar and a pseudoscalar; 0+− and 0−−. The corresponding
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Table 4.4: Lowest values of m̃2 and quadratic fit for the j = 1 multiplets described by
(4.83), (4.104).

Spectrum IV (X−) Quadratic Fit

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 1.89 5 12.9 9 33.1 13 62.4
2 3.83 6 17.1 10 39.5 14 71.2
3 6.31 7 21.9 11 46.6 15 80.6
4 9.34 8 27.2 12 54.2 16 90.5

5 10 15
n

20

40

60

80

m2

Spectrum V (X+) Quadratic Fit

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 3.01 5 15.2 9 36.5 13 67.1
2 5.20 6 19.7 10 43.3 14 76.2
3 7.96 7 24.7 11 50.7 15 85.9
4 11.3 8 30.3 12 58.6 16 96.1

5 10 15
n

20

40
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80

100

m2

tower of massive states is described by a vector multiplet, which contains a scalar

0+− and a pseudovector 1+−. The latter mixes with another massive vector multiplet

from the ansatz (4.84), (4.85) and (4.86). Hence both of them should have the same

quantum numbers from above 1+−. The vector state from the vector multiplet

described by (4.70), (4.71) and (4.72) have opposite parity transformations and

therefore describes the 1−− vector state. One can draw the same conclusion by

looking at the supermultiplet structure: this vector lies in the same supermultiplet

with the pseudoscalar 0−−. The quantum numbers of the remaining four vectors are

straightforward. The ones described by (4.84)-(4.86) are pseudovectors 1+− and the

other two from (4.70)-(4.72) are vectors 1−−.

Two mixing vector multiplets consisting of the 0+− scalar and the 1+− vector

correspond to the operators of different dimensions. Therefore their spectra are

significantly different. To identify the spectra we associate the lighter modes with
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Figure 4.1: Values of m̃2 and JPC quantum numbers of the states from the SU(2)×SU(2)
invariant I-odd sector. Each infinite tower is represented by it’s lightest massive mode.
Also in the figure: the massless scalar multiplet and the lightest states of the I-even
Graviton multiplet 1++, 2++.

the operators of lower dimensions. Thus following [28], we identify the lightest

massive multiplet in the figure 4.1 to correspond to the U(1)Baryon current (Betti)

multiplet, which contains a scalar and a vector of dimensions 2 and 3 respectively.

As seen from the figure 4.1, the states from the Betti multiplet are much lighter

than the other glueballs from the I-odd sector and the known states from the I-even
sector. It would be interesting to compare the mass of the lightest state from the

Betti Multiplet with the mass of the lightest glueball created by the chiral operator

Tr(AB). Despite a charge under the SU(2) × SU(2) symmetry, the latter has the

lowest dimension in the KS theory; ∆ = 3/2. Therefore the corresponding state is

a natural candidate to be the lightest massive mode in the KS spectrum.

4.9 Scaling Dimensions and SQM

The KS solution explicitly breaks both conformal and U(1)R symmetries. Therefore

the fluctuations with different scaling dimensions and R-charges can mix with each
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other. Indeed we saw earlier in section 4.7 that the uncharged Betti vector mixes

with the perturbation of the R-R four-form which carries U(1)R-charge ±2. Simi-

larly the scalar of dimension 2 mixes with the scalar of dimension 5 in (4.56)-(4.57).

The mixing between different multiplets of different dimensions can confuse the

dimension analysis. Namely one cannot derive the dimension of the mode by merely

analyzing the corresponding equations of motion in the large τ limit as it is usually

done in the conformal case. A proper choice of basis fluctuations may be required

to identify the corresponding multiplet structure and the dimensions. To illustrate

this point we consider an example of the decoupled vector multiplet.

In Section 4.5 the scalar particle χ̃ described by (4.69) was found to be degenerate

with the vector fluctuation Ã that satisfies the same equation (4.79). Clearly both

states must belong to the same j = 1/2 multiplet. As they satisfy the same equation

the naive large τ analysis implies that they have the same dimension ∆ = 5. This

must be wrong as the bosonic states from the j = 1/2 multiplet have the dimensions

∆1,∆0 that differ by ∆1 −∆0 = 1.

To resolve the puzzle we notice that the vector Ã mixes with other degrees of

freedom, namely H and Ñ. In section 3 we chose Ã to be an independent variable,

but we can choose H to be an independent variable instead (Ñ cannot be chosen

as an independent variable as it vanishes in this case). After eliminating Ã and

redefining H̃ =
√
IK sinh τ H the system (4.75)-(4.77) reduces to the equation

H̃′′ +

(
1

2

I ′′

I
− (K sinh τ)′′

K sinh τ
+
I ′

I

(K sinh τ)′

K sinh τ
− 3

4

I ′2

I2

)
H̃ + m̃2 I

K2
H̃ = 0 .(4.116)

At the large τ limit this equation behave as

H̃′′ − 16

9
H̃ ≃ 0 , (4.117)

which indicates that H has dimension ∆ = 6, in accordance with the j = 1/2

multiplet structure. This is exactly what we expected since H corresponds to the

fluctuation aµν from table 1. The later indeed has dimension six.
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Let us note that one cannot favor (4.116) over (4.79) without knowledge of the

supermultiplet structure. In fact both equations (4.79) and (4.116) possess the same

spectrum as they can be related to each other by the Supersymmetric Quantum

Mechanics (SQM) transformation. More precisely this means that there are two

first order differential operators Q+ and Q−, such that Q+Q−ψ = m2ψ gives the

equation (4.79), while Q−Q+ψ = m2ψ leads to (4.116). The SQM transformation

ψ → Qψ which turns the solution of one equation into the solution of another

changes the dimension of the corresponding mode. For the multiplets with half-

integer j the bosonic states should have different dimensions |∆+− −∆−+| = 1 and

the SQM transformation is a five-dimensional truncation of the ten-dimensional

supersymmetry transformation. Among explicit examples there are the j = 1/2

multiplet considered in this paper and the graviton multiplet studied in [86]. The

latter contains two bosonic states of dimension 3 and 4, and the corresponding

equations are also related by a SQM transformation.

Our logic also suggests that in addition to the equations (4.98)-(4.99) there

should be a SQM-related system of equations governing the dynamics of the vectors

B+, C̃ with the same spectrum and with the large τ behavior that corresponds to

the correct dimensions 3 and 6. It would be interesting to find this system explicitly

by choosing D as an independent variable instead of C.

The bosonic states from the multiplets with integer j have the same dimensions

and hence should be described by the same equation. Thus each j = 1 multiplet

containing vector X and axial vector Y is described by a single equation governing

both particles.

These ideas can be nicely illustrated on the example of the scalar of Section 4.5.

The effective potential in (4.69) is singular at τ = 0 which does not allow us to use

the conventional semiclassical (WKB) approximation. Yet we can cast the equation

(4.69) in the form Q1Q2w̃ = m2w̃, where Qi are first-order differential operators

and then consider an equation Q2Q1
˜̃w = m2 ˜̃w, which must give rise to the same
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spectrum up to a zero mode. Namely, in our case this means that for A such that

A2 + A′ =
cosh2 τ + 1

sinh2 τ
, (4.118)

equation (4.69) shares the spectrum with an equation

˜̃w′′ − (B2 +B′) ˜̃w + m̃2 I(τ)

K(τ)2
˜̃w = 0 , (4.119)

B = −A− 1

2

d

dτ
log

I(τ)

K(τ)2
. (4.120)

A general solution of (4.118) reads

A = − coth τ +
2 sinh2 τ

cosh τ sinh τ − τ + C
. (4.121)

For (4.119) to be non-singular at the origin C has to be non-zero. For a finite C the

potential is regular everywhere but not monotonic and (4.119) admits a zero mode.

A most convenient choice is to take infinite C, which reduces A to A = − coth τ .

In this case the WKB approximation is applicable in it simplest form (see [73] for

similar considerations) and yields the same result as the shooting method up to the

third digit.

4.10 Operators of the Dual Gauge Theory

In section 4.3 we explained how the four-dimensional massive multiplets discussed

above are embedded in the structure of the superconformal multiplets of the KW

theory [81]. Namely they exhaustively match the spectrum of the shortened SU(2)×
SU(2) singlet multiplets of Vector type I and Gravitino types II and IV. Let us re-

mind the reader of the operators that correspond to those superconformal multiplets.

The Betti multiplet, which is the “massless” type I Vector Multiplet (here quotes

indicate that massless refer to the five-dimensional mass), corresponds to the oper-

ator

U = TrAeV Āe−V − TrBeV B̄e−V . (4.122)
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The lowest component of this operator Tr
(
AĀ− BB̄

)
is dual to the scalar U [68]

and has dimension ∆ = 2.

The complex type IV Gravitino multiplet corresponds to the operator

L̄2k
α̇ = Tr eV W̄α̇e

−VW 2(AB)k , (4.123)

where k labels representations of the R-symmetry group. The lowest (spin 1/2)

component of this operator has dimension ∆ = 3/2 k + 9/2. The SU(2) × SU(2)

invariant sector corresponds to k = 0. In this case the dependence on the bi-

fundamental fields A and B vanishes

O = Tr eV W̄α̇e
−VW 2 . (4.124)

This is very interesting as this operator belongs to the pure gauge N = 1 SYM

sector of the dual field theory. For k = 0 the Gravitino multiplets of types II and

IV are similar to each other. In particular, the type II multiplet corresponds to the

complex conjugate of the operator L20
α (4.124).

The five-dimensional superconformal multiplets split into the irreducible repre-

sentations of the superalgebra in four dimensions. We saw that the Gravitino II

and Gravitino IV multiplets split into four towers of massive supermultiplets, from

which the lightest ones are presented in Figure 4.1. Down the throat they mix with

the Betti multiplet and with each other. This means that the dual operators mix

with each other at low energies. It would be interesting to understand how this

mixing affects the masses of the corresponding glueballs from the field theory point

of view.

4.11 Effects of Compactification

Now we will embed the KS throat into a flux compactification, along the lines of

[87], and estimate the mass of the Higgs scalar. Generally, glueballs are dual to
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the normalizable modes localized near the bottom of the throat, and one does not

expect them to be strongly affected by the bulk of the Calabi-Yau. This is indeed

the case for all the massive radial excitations found in sections 4.4 and 4.5. We will

see, however, that the case of the GHK scalar is more subtle and exhibits some UV

sensitivity.

To model a compactification, we will introduce a UV cut-off on the radial coordi-

nate, τmax. We also need to include a deformation of the KS solution introduced by

bulk effects. On the field theory side this corresponds to perturbing the Lagrangian

of the cascading gauge theory by some irrelevant operators. Here we are not inter-

ested in classifying all of them but rather model the compactification effects in the

simplest way by considering one perturbation which simulates the main features of

the compactified solution. We consider a shift of the warp factor δh = const which

corresponds to the dimension 8 operator on the field theory side [88, 89]. This also

has a simple geometrical meaning: the warp factor of the compactified solution is a

finite constant in the bulk of the Calabi-Yau and therefore should not drop below a

certain value along the throat.

Let us introduce a small parameter δ which shifts the rescaled warp factor,

I(τ)→ I(τ) + δ, and consider the system (4.56)-(4.57) in perturbation theory near

m̃2 = 0:

z̃ = z̃0 + m̃2z̃1 , (4.125)

w̃ = w̃0 + m̃2w̃1 , (4.126)

z̃0 = τ coth τ − 1 , (4.127)

w̃0(τ) = − 22/3 8

9

1

sinh τ

∫ τ

0

dx I(x) sinh2 x . (4.128)
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At the leading order in m̃2

z̃1 = (τ coth τ − 1)

∫ τ

0

dx u(x) cothx− coth τ

∫ τ

0

dx u(x) (x cothx− 1) ,

(4.129)

w̃1 = − 1

4 sinh τ

∫ τ

0

dx v(x)
sinh 2x− 2x

sinh x
− sinh 2τ − 2τ

4 sinh τ

∫ ∞

τ

dx v(x)
1

sinh x
;

(4.130)

where

u(τ) = − I(τ)

K2(τ)
z̃0 +

9

4 · 22/3
K(τ) w̃0 −

δ

K2
z̃0 , (4.131)

v(τ) = − I(τ)

K2(τ)
w̃0 +

16

9
K(τ) z̃1 −

δ

K2
w̃0 . (4.132)

Keeping in mind that for large τ , u ≃ −2−2/3δτ e2τ/3, one finds the following asymp-

totic behavior:

z̃1(τ) ≃ −2−2/3δ

∫ τ

0

dx (τ − x)xe2x/3 ≃ − 9 δ

4 22/3
τe2τ/3 . (4.133)

This yields v ≃ −22/3δτ eτ/3 and

w̃1 = − 1

4 sinh τ

∫ τ

0

dx v0(x)
sinh 2x− 2x

sinh x
− sinh 2τ − 2τ

4 sinh τ

∫ ∞

τ

dx v0(x)
1

sinh x

≃ 9 · 22/3δ

8
τeτ/3 . (4.134)

Finally, up the first order in the mass squared and δ:

z̃ ≃ τ

[
1− 9 δm̃2

4 · 22/3
e2τ/3

]
, (4.135)

w̃ ≃ −24/3τe−τ/3

[
1− 9 δm̃2

8 · 22/3
e2τ/3

]
. (4.136)

This suggests that for generic boundary conditions the cut-off value is

τmax ≃ − log δ3/2m̃3 . (4.137)

This prediction can be tested numerically. In order to do this one can specify some
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Figure 4.2: The dependence of log m̃ on τmax is linear with the slope equal to -1/3. The
three lines shown correspond to δ = 1, δ = 0.01 and δ = 0.0001.

small m̃ and plot the determinant

det


 z̃1(τ) z̃2(τ)

w̃1(τ) w̃2(τ)


 , (4.138)

of the two linearly independent solutions regular at τ = 0 as a function of τ . The

first zero marks the point τmax such that there is a regular solution with z(τmax) =

w(τmax) = 0. Hence τmax is the corresponding cut-off value. As Fig. 4.2 shows, the

relation (4.137) holds for τmax large enough so that

m̃2 ∼ δ−1e−2τmax/3 ≪ 1 (4.139)

is small.

Let us consider a simple model of compactification where the throat is embedded

into an asymptotically conical space that terminates at some large cut-off value τmax.

To calculate the mass from (4.139) we need to know δ as well as τmax. The former is

the asymptotic value of the (rescaled) warp factor. The point where the field theory
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warp factor approaches δ marks the UV cutoff of the field theory

I(τUV ) ∼ τUV e
−4τUV /3 ≃ δ . (4.140)

Using this in (4.139) we find m̃2 ∼ e(4τUV −2τmax)/3. This shows that the Higgs mass

becomes parametrically small only for τmax ≫ 2τUV . This is not satisfied in general;

the geometry requires only that τmax > τUV because τUV is the length of the throat

embedded into a CY space. With the ratio between the UV and IR scales of the

field theory around 4 · 103 [71] we estimate that τUV ≃ 25 [68]. The cut-off τmax

can be related to the warped volume of the Calabi-Yau which, in a singular conifold

approximation, is

V w
6 = Vol(T 1,1)

∫ rmax

0

drh(r)

√
det g6

det gT 1,1

, (4.141)

where r ∼ ǫ2/3eτ/3. The integral from zero to rUV is the warped volume of the throat,

and from rUV to rmax is the bulk volume. Assuming that the latter dominates,

V w
6 ≃

16π3

27
ǫ4/3(gsMα′)2

[
r6
max − r6

UV

]
r−4
UV . (4.142)

Requiring τmax ≫ 50 leads to an enormous V w
6 , far larger than, for example, V w

6 ≃
56α′3 in [71].

Thus, while for τmax ≫ 2τUV the Higgs scalar becomes parametrically lighter

than the other normal modes, in compactifications with realistic parameters it may

actually be heavier. This is due to the special feature of its wave function z̃ which

grows linearly with τ in the throat. The only conclusion we can draw from our

simplified model of compactification is that this mode is rather UV sensitive, so to

determine its mass we need to know the details of the compactification.

4.12 Discussion

We have found all the I-odd SU(2)× SU(2) invariant bosonic supergravity excita-

tions over the KS solution. At the massless level there are two spin 0 zero states:
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a Goldstone pseudoscalar that corresponds to the spontaneously broken U(1)Baryon

and a scalar related to the expectation value of the baryon operators. Together

with fermions these states form a j = 1
2

scalar supermultiplet. At the massive level

the supersymmetry representation changes so that the pseudoscalar is eaten by the

Betti pseudovector giving rise to a tower of j = 1
2

vector supermultiplets. In the con-

formal case the j = 1
2

multiplets are embedded into the “massless” Vector Multiplet

of type I [81].

There are two more towers of massive spin 0 modes (scalar and pseudoscalar)

and six more massive spin 1 towers (3 vector and 3 axial vector). In the conformal

case they belong to a combination of the shortened Gravitino Multiplets II and IV.

The two massive scalar excitations mix with each other while the massive pseu-

doscalar excitation decouples. Similarly the seven massive (pseudo)vectors split into

two non-interacting subsystems of three vectors and four axial vectors. The system

of three vectors contains the superpartner of the only massive pseudoscalar and two

vectors X±. The system of four axial vectors contains two superpartners of the

two coupled massive scalars and the two axial vectors Y±. The states X+,Y+ and

X−,Y− are degenerate in pairs and form two j = 1 “gravitino” multiplets that

consist of a vector, an axial vector and the spin 1/2 and 3/2 fermions.

We identify the the spin 0 massive modes from the I-odd along with their vector

superpartners together with the remaining I-odd vector states and compute numer-

ically the spectra of these multiplets. The results for the lightest states together

with their JPC quantum numbers are presented in the Figure 4.1.

An interesting task for the future would be to generalize our analysis to the

I-even sector and identify all SU(2) × SU(2) invariant bosonic modes of the KS

theory. Some I-even states are already known. Among them are the vector and

the spin two states from the Graviton multiplet (the lightest modes are shown in

figure 4.1). In fact these states are likely to be the only bosonic non-scalar states

in the SU(2) × SU(2) invariant I-even sector. Indeed there are no spin 1 I-even



4.12. Discussion 84

excitations of B2 and C2 and the only possible spin 1 fluctuations of the metric were

considered in [75] and [85]. Some of the scalar states, namely a system of seven 0++

excitations were studied by M. Berg et al. in [75, 76]. They calculated the spectra

of the particles but did not identify the corresponding operators. Besides an obvious

task to find the corresponding pseudoscalar superpartners it would be interesting to

match the resulting supermultiplets to the superconformal multiplets of [81].

Comparing our results with those for a pure gauge non-supersymmetric theory

may give a sensible prediction for the masses of some of the lightest I-even scalars.

As we observed above, some of the fluctuations considered in this paper are dual to

the operators that do not contain the bi-fundamental fields A and B. In particular,

the graviton multiplet, which contains 1++ and 2++ states, is dual to the “super-

current” operator Vαα̇ = TrWαe
V W̄α̇e

−V [90]. Also the states of the Gravitino

Multiplets correspond to the components of the superfield O = Tr eV W̄α̇e
−VW 2 in

the conformal case. In the KS theory however, the latter mix with the states from

the Betti multiplet, dual to A and B dependent operators. Below we plot the light-

est states from the pure gauge sector of the KS theory (Figure 4.3.a) and compare

them with those of the pure SU(3) theory (Figure 4.3.b). In Figure 4.3.a we employ

a qualitative approach, ignoring the mixing between the states from the pure gauge

sector (i.e. A and B independent) and from the KK sector (with A or B).

In Figure 4.3.a we present only those states from Figure 4.1 that belong to the

pure gauge sector of the KS theory. The masses of the states are normalized to

the mass of the 2++ state. We have also plotted two light I-even scalar multiplets,

which we expect to see in the spectrum. These two multiplets should correspond

to a mixture of the following pure N = 1 SYM operators: the gluino bilinear λλ

of dimension 3 and the dimension 4 operators TrFµνF
µν and TrFµνF̃

µν . These

multiplets have not been identified yet and we mark their position with dashed

lines. Their masses in figure 2.a are conjectured based on the comparison with the

pure glue SU(3) theory. It is also possible that some of the two 0++ particles in
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Figure 4.3: (a) Pure gauge sector of the KS theory. Conjectured positions of 0++ and
0−+ states are marked by dashed lines. (b) Spectrum of non-supersymmetric pure glue
SU(3) theory [91]. Both spectra are normalized to the mass of 2++ state.

question is a part of the seven scalar system of [75, 76].

In Figure 4.3.b we plot the lattice results of Morningstar and Peardon [91] for

spectrum of the pure glue SU(3) theory, which we also normalize to the mass of

the 2++ state. We shade the irrelevant high spin states, which cannot be described

in the supergravity approximation. Although the two theories are very different,

the relative masses of the states are surprisingly similar. Indeed each state from

the pure glue SU(3) theory has a counterpart with the same quantum numbers

and a similar mass (measured in the units of 2++ mass) in the pure gauge sector

of the KS theory. Besides the counterparts of the pure glue SU(3) theory states,

Figure 4.3.a also contains their superpartners and even one “extra” vector multiplet

(a 0−− scalar and a 1−− vector). In general the additional states are attributed to

the fermionic degrees of freedom which are absent from the pure glue SU(3) theory.

Let us emphasize that the reason for the similarity between Figure 4.3.a and 4.3.b

is not immediately clear and could be coincidental. To examine this issue in more

detail is an interesting problem for the future.



Appendix A

Orbifolds: a Detailed Construction

A.1 Quiver vs Orbit Description

We show that the two descriptions of the quiver gauge theory field content are equiv-

alent and develop explicit transition formulae between them. First we introduce the

basis in the field space of the parent N =4 theory. As we saw in Section 2.2, Chan-

Paton indices of the fields transform in the regular representation of the orbifold

group Γ. Namely, the fields belong to

V ⊥ ⊗ V ⊕N
reg ⊗ V̄ ⊕N

reg ≃ V ⊥ ⊗ Vreg ⊗ V̄reg ⊗ C
N ⊗ C

∗N (A.1)

V ⊥ being the representation corresponding to the transverse indices. We are going

to use the two orthonormal bases in the group algebra Vreg ≃ C[Γ],

{eg = g} (A.2)

and

{Eλ
mn =

1√
Sλ

∑

g

ρλ
nm(g) g} , Sλ =

|Γ|
dimVλ

. (A.3)

The group acts on them according to

h : eg → ehg , (A.4)

h : Eλ
mn →

∑

k

ρλ
nk(h

−1) Eλ
mk =

∑

k

Eλ
mk ρ

λ
kn(h) . (A.5)

86
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The relation between these bases is

eg =
∑

λ

1√
Sλ

∑

mn

ρλ
nm(g) Eλ

mn , (A.6)

Eλ
mn =

1√
Sλ

∑

g

ρλ
nm(g) eg . (A.7)

The dual bases are introduced according to e∗g(eh) = δgh and Eλ∗
kl (E

µ
mn) = δλµ δkm δln.

Next we construct the two bases in the field space. These basis vectors are to label

the invariant configurations in the field space, thus we need to find the invariant

configurations

(
V ⊥ ⊗ V ⊕N

reg ⊗ V̄ ⊕N
reg

)Γ

≃
(
V ⊥ ⊗ Vreg ⊗ V̄reg

)Γ

⊗ C
N ⊗ C

∗N . (A.8)

In what follows we are going to drop the trivial CN ⊗ C∗N factor

Let us start with the gauge field. The “orbit” basis

tg =
∑

h

eh ⊗ e∗hg (A.9)

has a natural interpretation in terms of invariant combinations of strings stretching

between image branes. Similarly, the product tg ◦ th = tgh has a natural interpreta-

tion in terms of gluing the ends of open strings. Note that the hermitian conjugate

t†g = tg−1. In order to build the “quiver” basis we note that Eλ
mn do not transform in

the first index (recall that each representation Rλ enters Rreg with multiplicity equal

to Nλ = dimVλ — and this is the first index of Eλ
mn that numbers these copies).

Therefore, the combination

Tλ
mn =

∑

k

Eλ
mk ⊗ Eλ∗

nk (A.10)

is Γ-invariant. The multiplication rule is Tλ
mn ◦ T

µ
kl = δλµ δkn Tλ

ml. Hermitian con-

jugate Tλ†
mn = Tλ

nm. Here we recognize the matrix algebra
⊕

λ gl(vλ) ≃ C[Γ]. Thus,

in these two calculations we get the same answer; i.e., the algebrae of tg and Tλ
mn
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are both isomorphic to the group algebra. A straightforward calculation shows that

the two bases are related by a discrete Fourier transform,

tg =
∑

λ

∑

km

ρλ
mk(g)Tλ

mk . (A.11)

Now we can do a similar calculation for the scalar and spinor fields which have

transverse indices with non-trivial transformation rules. In this case we have to

find the invariant subspace
(
V ⊥ ⊗ Vreg ⊗ V̄reg

)Γ

. Denote the basis of the transverse

representation V ⊥ as {fA ≡ eα,A}. Then the “orbit” basis has the form

tA,g =
∑

h

(h ⊲ fA)⊗ eh ⊗ e∗hg ; (A.12)

where in terms of components the action is h ⊲ fA =
∑

B ρ
α
BA(h) fB. Since the repre-

sentation Rα is real, hermitian conjugation acts according to t
†
A,g =

∑
B ρBA(g−1)tB,g−1.

To find the “quiver” basis we will need to find the invariant tensors in the product

(
V ⊥ ⊗ Vreg ⊗ V̄reg

)Γ

≃
⊕

λ,µ

(
Vα ⊗ Vλ ⊗ V ∗

µ

)Γ

⊗ C
Nλ ⊗ C

∗Nµ .

To do it we decompose the product of representations Rα and Rλ into a direct sum

of irreducible representations. In particular, in terms of basis vectors

eαA ⊗ eλl =
∑

µm

Kµm
αA,λl eµm and eµm =

∑

A,l

Kµm
αA,λl eαA ⊗ eλl .

Therefore, the invariant configuration is

∑

m

eµm ⊗ e∗µm =
∑

A,l,m

Kµm
αA,λl eαA ⊗ eλl ⊗ e∗µm .

(The field components of the invariant configuration are given by the invariant

tensor, ΦAl
m ∼ Kµm

αA,λl.) This gives

T
λµ
lm =

∑

A,i,j

Kµj
αI,λi fA ⊗ Eλ

li ⊗ Eµ∗
mj . (A.13)

Note that here the indices l and m are the indices of the gauge groups at the

corresponding nodes Rλ and Rµ. These indices appear owing to the fact that each
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representation Rλ enters the decomposition of the regular representation Rreg with

multiplicity Nλ. A calculation similar to that for the gauge field gives

tA,g =
∑

λ,l

∑

µ,km

dimVλ

dimVµ
Kµk

A,λl ρ
µ
km(g)T

λµ
lm . (A.14)

The presence of the factor Kµ·
A,λ· restricts the sum over (λ, µ) only to those pairs

which are connected by a line in the quiver. Using (A.14), we can find the relation

between the field components in the two notations,

φλµ
lm =

∑

g

∑

k

Nλ

Nµ
Kµk

A,λl ρ
µ
km(g)φA

g . (A.15)

The matrix product of the quiver gauge theory gives rise to the (modified) convolu-

tion in terms of the group algebra. Particularly, the product of the two fields φ and

ψ with the transverse indices transforming in the representations Rα and Rβ is

∑

m

φλµ
lm ψ

µν
mn =

Nλ

Nν

∑

g,h

Kνr
αA,βB,λl ρν

nr(h
−1g−1) ρβ

BC(g)φA
g ψ

C
h . (A.16)

Here Kνr
αA,βB,λl =

∑
pKµp

αA,λlKνr
βB,µp is (one of) the invariant tensors corresponding to

the decomposition Rα ⊗ Rβ ⊗ Rλ → Rν . Note that (A.16) has the same structure

as (A.15), the product φ ◦ ψ having the defining representation Rα ⊗ Rβ. The

convolution rule is

(φ ◦ ψ)AB
g =

∑

h

φA
h ρBC(h)ψC

h−1g . (A.17)

Both formulae (A.16) and (A.17) are also valid for the gauge fields which have no

transverse indices (trivial representation). In this case some matrix elements and

decomposition tensors become degenerate. Let us stress that the multiplication rule

(A.17) naturally corresponds to the standard matrix multiplication in the parent

SU(|Γ|N) theory. This means that

∑

f

φA
hf ψ

B
fg = ρα

AA′(h) ρβ
BB′(h) (φ ◦ ψ)A′B′

h−1g . (A.18)

This way of multiplication is induced from the original theory, and that is why it

respects the gauge transformations. Another nice feature of the formula (A.16) is
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that when there exist several arrows going between different nodes the choice of a

given arrow affects only the choice of the invariant tensors and does not affect the

convolution product (A.17). It means that all the operators corresponding to the

different paths (not necessarily closed) in the quiver formed by L consequent scalar

lines λ1 → λ2 → · · · → λL+1 are contained in the product φA1 . . . φAL.

We can summarize these results as follows. An operator formed in the quiver

notation as the product φλν1 φν1ν2 . . . φνL−1µ can be recast as

(
φ ◦ · · · ◦ φ

)λµ

lm
=

∑

g

∑

k

Nλ

Nµ
KA1 ...AL

µk

λl ρµ
km(g)

(
φ ◦ · · · ◦ φ

)A1 ...AL

g
; (A.19)

where the invariant tensor K is the one corresponding to the decomposition Rλ ⊗
Rν1
⊗ · · · ⊗RνL−1

→ Rµ. The product of fields in the r.h.s. is calculated according

to (A.17). In its turn it is related to the product of the fields of the original N = 4

theory as

(
φ

A1 , . . . φ
AL
)

h,hg
=

∑

B1 ,...,BL

ρA1 B1
(h) . . . ρAL BL

(h)
(
φ ◦ · · · ◦ φ

)B1 ...BL

g
.(A.20)

These formulae will be of crucial importance for constructing the gauge invariant

observables.

A.1.1 Construction of Observables

In order to construct gauge invariant observables it is convenient to use the quiver

notation. Taking a closed loop in the quiver and using (A.19) one can write the

corresponding operator as

Tr λ1
φλ1λ2 φλ2λ3 . . . φλLλ1 =

∑

g

∑

k, l

K
A1,...AL

λ1k

λ1l
ρλ

kl(g)
(
φ ◦ . . . ◦ φ

)A1,...AL

g
;

(A.21)

where the invariant tensor

K
A1,...AL

λ1k

λ1l
=

∑

l2,..., lL

Kλ2l2

A1 λ1l
Kλ3l3

A2 λ2l2
. . .KλLlL

AL−1 λL−1lL−1

Kλ1k

AL λLlL
(A.22)
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corresponds to the closed path λ1 → λL → · · · → λ2 → λ1. Note that the l.h.s.

is explicitly symmetric w.r.t. the cyclic permutations of the fields under the trace.

There also exists a different way to construct gauge invariant operators. Namely,

let us start with the ansatz

O[K] =
∑

g

∑

A1 ,... AL

KA1 ... AL
(g)
(
φ ◦ . . . ◦ φ

)A1,...Ak

g
. (A.23)

Generally such an expression represents a sum of operators corresponding to some

paths in the quiver, not necessarily closed. That is why the gauge invariance condi-

tion has to be imposed separately, and it yields

KB1 ···BL
(h−1gh) =

∑

A1 ···AL

KA1 ···AL
(g) ρA1 B1

(h) . . . ρAL BL
(h) . (A.24)

A straightforward consequence of this result is that K[g] has to be an invariant

tensor w.r.t. the stabilizer subgroup Sg. Note that in (A.21) we had

KA1...AL
(g) =

∑

k,l

KA1,...AL

λk
λl ρλ

kl(g) , (A.25)

and it obviously satisfies (A.24). On the other side, tensor K(g) can be expanded

in Fourier series as a function on the group,

KA1...AL
(g) =

∑

λ

∑

k,l

K̃(λ)
A1,...AL

λk
λl ρλ

kl(g) ; (A.26)

and then the condition (A.24) translates into the requirement that the coefficients

K̃(λ)
A1,...AL

λk
λl are invariant tensors. These considerations provide a dictionary between

the two notations in the quiver gauge theory.

It is very important that the gauge invariance condition (A.24) relates the values

of the tensor K(g) within the same conjugacy class, and there is no relation between

the values of K on the different conjugacy classes. That is why one can build a

gauge invariant operator with K(g) 6= 0 only on a given conjugacy class [g]. Such

operators are said to belong to the twisted sector with the twist [g] (determined
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only up to a conjugation). One can choose a reference element g in the conjugacy

class [hgh−1] and set KA1...AL
(g) = KA1...AL

, KA1...AL
being some Sg-invariant tensor.

Then (A.24) determines the values of K(h−1gh) on all the elements of the conjugacy

class. The corresponding operator is

O[K] =
∑

g,h

∑

A1 ···AL

∑

B1 ···BL

KA1 ···AL
ρA1 B1

(h) . . . ρAL BL
(h)
(
φ ◦ · · ·φ

)B1 ···BL

h−1gh
;

(A.27)

and it rewrites in terms of the fields of the parent N = 4 theory as

O[K] =
∑

g,h

∑

A1 ···AL

KA1 ···AL
Tr
[
γ(g)φ

A1 . . . φ
AL
]
. (A.28)

The twist field γ(g) acts on the dynamical fields as follows,

(
φA γ(g)

)
h1,h2

= φA
h1,gh2

, (A.29)
(
γ(g)φA

)
h1,h2

= φA
g−1h1,h2

. (A.30)

Invariance condition imposed by the orbifold projection on the fields implies the

interchange relation
(
γ(g)φA

)
= ρAB(g−1)

(
φB γ(g)

)
. (A.31)

A.2 Representation Ring of the Dihedral Group

The dihedral groupDS is generated by the two elements, r and σ, with the additional

relations

rS = σ2 = 1 , rσ = σr−1 . (A.32)

The order of the group |DS| = 2S. We will restrict ourselves to the odd S =

2n + 1. Then there are the n + 2 conjugacy classes, O1 = {e}, O2 = {r, r2n},. . . ,
On+1 = {rn, rn+1}, On+2 = {σ, σr, . . . , σr2n}. Thus there exist the n+2 irreducible
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representations. Among them there are the n two-dimensional representations ρm:

ρm(r) =



 ωm 0

0 ω−m



 , ρm(σ) =



 0 1

1 0



 , m = 1, 2, . . . n . (A.33)

Here ω = e2πi/S There are also the two one-dimensional representations ρ0 and ρ0̃:

ρ0(r) = 1 , ρ0(σ) = 1 ; ρ0̃(r) = 1 , ρ0̃(σ) = −1 . (A.34)

The table of characters as well as the representation ring and the stabilizer subgroups

of each element of the group D2n+1 are shown in Table A.1.

Table A.1: Table of characters and representation ring (multiplication table) of the dihe-
dral group DS=2n+1. Stabilizer subgroups Sg for a representative of each conjugacy class
of the group D5.

[e] [rm] [σ]
χ0 1 1 1
χ0̃ 1 1 −1

χl 2 2 cos
(
2π lm

S

)
0

⊗ ρ0 ρ0̃ ρk

ρ0 ρ0 ρ0̃ ρk

ρ0̃ ρ0̃ ρ0 ρk

ρl ρl ρl

{
ρk+l ⊕ ρk−l , k 6= l
ρ2l ⊕ ρ0 ⊕ ρ0̃ , k = l

g e r r2 [σ]

Sg D5 {e, r, . . . , r4} ≃ Z5 {e, r, . . . , r4} ≃ Z5 {e, σ}
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Specific Calculations for the KS

Background

Here we succinctly list the supergravity equations of motion required to study the

perturbations of the forms H3, F3, F5 and the metric tensor. Since the dilaton and

RR scalar do not enter at linear order, we set them to zero.

Bianchi identities:

dF3 = 0 ,

dH3 = 0 ,

dF5 = H3 ∧ F3 .

(B.1)

Dynamic equations:

d ⋆ H3 = −g2
sF5 ∧ F3 ,

d ⋆ F3 = F5 ∧H3 ,

F5 = ⋆F5 .

(B.2)

Einstein equation:

Rij = Tij =
g2

s

96
FiabcdF

abcd
j +

1

4
HiabH

ab
j −

1

48
GijHabcH

abc+
g2

s

4
FiabF

ab
j −

g2
s

48
GijFabcF

abc .

(B.3)

Let us make a small digression about our conventions. The 1-forms (vectors)

are shown in boldface. We work with the (−+ ++) Minkowski signature. The four

dimensional operations such as the Hodge star ∗4 and Laplacian �4 are performed

94
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w.r.t. the standard Minkowski metric (without the warp factor). As it was explained,

the four dimensional one-forms are all divergence free:

d4 ∗4 F = 0 . (B.4)

The eigenvalue of the 4-Laplacian �4 is m2
4; however, for compactness we shall

express all our formulae in terms of the dimensionless combination m̃2:

m2
4 =

3 ǫ4/3

2 · 22/3
m̃2 . (B.5)

Below we present some technical details related to the derivation of the equations

of motion for different subsectors of our ansätze.

B.1 Scalar Glueballs

Here we present the details of the calculation for the scalar system (4.37). The r.h.s.

of the equation for ∗H3 vanishes identically. The variation

δ ∗H3 = ∗δH3 + δG ∗H3 (B.6)

consists of two parts: ∗δH3 accounting for the deformation of the form H3 itself,

and δG ∗ H3 arising from the deformation of the Hodge star. Explicit calculation

shows that

∗δH3 = −
√
−GG11 G33G55 χ′ d4x ∧ dg5 ∧ g5

−
√
−GG11 G33 |Gµµ| ∂µ(χ− σ) ∗4 dxµ ∧ dτ ∧ dg5 ∧ g5

+1
2

√
−G (G55)2 |Gµµ| ∂µσ

′ ∗4 dxµ ∧ dg5 ∧ dg5 ,

δG ∗H3 = −gsMα′

2

√
−GG11 G33G55

[
f ′G11 + k′G33

]
ψ d4x ∧ dg5 ∧ g5 .

(B.7)

Here the four-dimensional Hodge star ∗4 is taken w.r.t. the standard Minkowski

metric. Differentiating this expression for δ∗H3 and equating to zero the coefficients
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multiplying linearly independent forms gives the following three equations:

2G11G33

[
gsMα′

2

[
f ′G11 + k′G33

]
ψ + χ′

]
= G55 h

1

2 �4σ
′ , (B.8)

∂τ

{√
−GG11G33G55

[
gsMα′

2

[
f ′G11 + k′G33

]
ψ + χ′

]}
+

+
√
−GG11 G33 h

1

2 �4(χ− σ) = 0 , (B.9)

2
√
−GG11 G33 h

1

2 ∂µ(χ− σ) + ∂τ

{√
−G (G55)2 h

1

2 ∂µσ
′
}

= 0 , (B.10)

where we have substituted for the warp factor |Gµµ| = h
1

2 (no summation over µ is

implied). Not all of these equations are independent. Indeed, using (B.8) equation

(B.9) simplifies to

∂τ

{√
−G (G55)2 h

1

2 �4σ
′
}

+ 2
√
−GG11G33 h

1

2 �4(χ− σ) = 0 . (B.11)

This is exactly what we obtain by acting on (B.10) with ∂µ and contracting indices.

Thus only (B.8) and (B.10) are independent. When written in terms of the auxiliary

functions K and h, these two equations reproduce (4.41) and (4.42).

The source terms on the right hand side of the Einstein equation Rij = Tij

(B.3) are due to the deformations of the metric and B2 form. The only nontrivial

deformations are those with indices 13 or 24, and they are equal: δT13 = δT24. Say,

for the 13 component δT13 we have the following contributions:

1

4
δB(H1ab H3

ab) =
1

4
[H1ab δH3

ab + δH1abH3
ab
]

=
1

2

[
G11 H12τ δH32τ +G33 δH14τ H34τ

]
G55

= −1

4
(gsMα′)G55

[
G11 f ′ +G33 k′

]
χ′ , (B.12)

g2
s

96
δG(F1abcdF3

abcd) =
g2

s

4
(G11)2 (G33)2G55 (F12345)

2 ψ , (B.13)

1

4
δG(H1abH3

ab) =
1

2

[
H135 H315 δG

13G55 +H12τ H34τ δG
24 Gττ

]

=
1

2

[
(H135)

2 −H12τ H34τ

]
G11 G33G55 ψ

=
1

8
(gsMα′)2

[
1

4
(k − f)2 − f ′k′

]
G11G33G55 ψ ,(B.14)
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g2
s

4
δG(F1abF3

ab) =
g2

s

2

[
F125 F345 δG

24G55 + F13τ F31τ δG
31Gττ

]

=
g2

s

2

[
(F13τ )

2 − F125 F345

]
G11G33 G55 ψ

=
1

8
(gsMα′)2

[
F ′2 − F (1− F )

]
G11G33G55 ψ ,(B.15)

− 1

48
δG
[
G13(HabcH

abc + g2
sFabcF

abc)
]

= −1

8
(H2 + g2

sF
2)ψ

= − 1

32
(gsMα′)2G55

[
(G11)2 f ′2 + (G33)2 k′2

+
1

2
G11G33 (k − f)2 + (G11)2 F 2 + (G33)2 (1− F )2

+2G11G33 F ′2]ψ . (B.16)

Denoting

δT13 =
[
A1(τ) + A2(τ)

]
ψ(x, τ) +B(τ)χ′(x, τ) , (B.17)

where A1 stands for the contribution from F5, we get

A1(τ) =
3(gsMα′)4

21/3ǫ20/3h5/2

(τ coth τ − 1)2[sinh(2τ)− 2τ ]4/3

sinh6(τ)
, (B.18)

A2(τ) = − 3 (gsMα′)2

8ǫ4h3/2 sinh6 τ

[
3 cosh 4τ − 8τ sinh 2τ (B.19)

−8τ 2 cosh 2τ − 8 cosh 2τ + 16τ 2 + 5
]
,

B(τ) = −3 (gsMα′)
(sinh 2τ − 2τ)K(τ)

ǫ8/3 h(τ) sinh3 τ
. (B.20)

B.2 3-Vector System

With the ansatz (4.70), (4.71) and (4.72), Bianchi identity for F5 at the linear order

in perturbation leads to four independent equations when written in components.

Those are

1

2
K− 1

2
L + M′ + N = −F ′(A + E) , (B.21)

h
√
−GG55

(
(G11)2K + (G33)2L

)
= H , (B.22)

h
√
−G(G33)2G55

�4L− h1/2
√
−GG11G33(G55)2N = F�4H , (B.23)

[
h
√
−G(G33)2G55L

]′
− h
√
−GG11G33G55M = FH′ . (B.24)
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Equations of motion for F3 give the two equations:

−2h
√
−GG55

�4E = 2(k − f)h1/2
√
−GG11G33(G55)2N + ℓ�4H , (B.25)

[
2h
√
−GG55E

]′
= −2h

√
−GG55

(
f ′(G11)2K + k′(G33)2L

)
−

−2(k − f)h
√
−GG11G33G55M− ℓH′ .(B.26)

Another pair of equations appear from H3 equation of motion:

[
h1/2
√
−G(G55)2A′

]′
− 2h1/2

√
−GG11G33A + h

√
−GG55

�4A =

= −2F ′h1/2
√
−GG11G33(G55)2N , (B.27)

[
2h
√
−GG55H′

]′
+ 2h3/2

√
−G�4H = 2(1− F )K + 2FL + 4F ′M− ℓE .

(B.28)

No other supergravity equations contribute. In fact, some equations in the sys-

tem (B.21)-(B.28) are algebraic and can be solved for the functions E, K, L, M

in terms of the functions N and H. After doing so and redefining N according

to (4.73), one can notice that equation (B.26) becomes an identity. Thus, there

are only three independent second order differential equations for three unknown

functions Ñ, H and A. Introducing Ã = K2 sinh τ A, those reduce to the system

(4.75), (4.76), (4.77).

As mentioned in the section 4.6, to separate the eigenmodes one can first impose

Ñ = 0. Then the remaining equations for H and Ã are equivalent. After setting

Ñ = 0, the equation (4.75) becomes the first order equation (4.78). Using it, one

can eliminate the first and second derivatives of H from (4.77) and express H in

terms of Ã and its derivative. This reduces the system to just one equation (4.79).

Let us stress that in this case the ansatz for δF5 simplifies,

δF5 = (1 + ∗) d4H ∧H3 ; (B.29)
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which gives a natural generalization of the KT limit ansatz in [28] to the complete

KS background (recall that in the KT limit H3 ∼ dτ ∧ ω2).

To extract the remaining two modes the equations (4.75)-(4.77) can be written

in the following form (we have done the trivial rescaling H̃→ 27/6H̃, Ã→ 27/6m̃Ã):

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã− 2−1/6m̃I ′

K3 sinh τ
Ñ = 0,(B.30)

H̃′′ +

(
1

2

I ′′

I
− (K sinh τ)′′

K sinh τ
+
I ′

I

(K sinh τ)′

K sinh τ
− 3

4

I ′2

I2

)
H̃ + m̃2 I

K2
H̃+

+
2−1/6

√
I

K sinh τ

(
I ′Ñ

IK

)′

= 0,(B.31)

Ñ′′ −
(

cosh2 τ + 1

sinh2 τ
+

2−1/3I ′
2

IK4 sinh2 τ

)
Ñ + m̃2 I

K2
Ñ− 2−1/6I ′

IK

( √
IH̃

K sinh τ

)′

−

− 2−1/6m̃I ′

K3 sinh τ
Ã = 0.(B.32)

It follows from above that the three vectors Ã, H̃, Ñ are collinear. Therefore it

suffices to consider the three scalar equations for the three variables A, H , N . The

problem reduces to finding the spectrum of the Hamiltonian H,

−H




A

H

N


 =




A′′ − cosh2 τ+1
sinh2 τ

A− 2−1/6m̃I′

K3 sinh τ
N

H ′′ +
(

1
2

I′′

I
− (K sinh τ)′′

K sinh τ
+ I′

I
(K sinh τ)′

K sinh τ
− 3

4
I′2

I2

)
H + 2−1/6

√
I

K sinh τ

(
I′N
IK

)′

N ′′ −
(

cosh2 τ+1
sinh2 τ

+ 2−1/3I′
2

IK4 sinh2 τ

)
N − 2−1/6I′

IK

( √
IH

K sinh τ

)′
− 2−1/6m̃I′

K3 sinh τ
A


 .

Let us stress that this Hamiltonian is Hermitian w.r.t. the inner product

〈1|2〉 =

∫ ∞

0

dτ
I

K2

(
A1A2 +H1H2 +N1N2

)
, (B.33)

and the mass eigenvalues are found from the equation

H




A

H

N


 = m̃2 I

K2




A

H

N


 . (B.34)

As a consequence, different eigenvectors are orthogonal with the weight I/K2.
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We have found the decoupled mode which corresponds to setting N ≡ 0. This

corresponds to the subspace of the form (see equation (B.32)):

(A ,H ,N) =

(
−K

2 sinh τ

m̃I

( √
IH

K sinh τ

)′

, H , 0

)
. (B.35)

It is natural to suggest that the two remaining modes (Â, Ĥ, N̂) belong to the

orthogonal complement of this subspace. Namely,

∫
dτ

I

K2

(
−ÂK

2 sinh τ

m̃I

( √
IH

K sinh τ

)′

+ Ĥ H

)
=

∫
dτ

( √
I

K sinh τ

(
Â sinh τ

m̃

)′

+
I

K2
Ĥ

)
H = 0. (B.36)

The latter is satisfied by

m̃Ĥ = − K√
I sinh τ

(
Â sinh τ

)′
, (B.37)

or

Â′ = −m̃
√
I

K
Ĥ − coth τ Â. (B.38)

Using this expression one can eliminate all the derivatives of A from (B.30) and

obtain another first order relation,

Ĥ ′ = −
(

log

√
I

K sinh τ

)′

Ĥ + m̃

√
I

K
Â− 2−1/6I ′√

IK2 sinh τ
N̂. (B.39)

Differentiating (B.39) and eliminating Â and Â′ using (B.38) and (B.39) one recovers

the equation (B.31) for Ĥ. Thus the equation (B.31) can be omitted from the system,

and Ĥ can be expressed via Â using (B.38). After the elimination of Ĥ the system

of the two equations (B.30) and (B.32) for Â and N̂ reproduces the system (4.81),

(4.82). As it is shown in the main text, these two equations decouple giving rise to

the two modes X±.
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B.3 4-Vector System

Similarly to the previous example the excitations (4.84), (4.85) and (4.86) lead to

the following linearized equations. The Bianchi identity gives five equations

−1

2
h
√
−GG55

(
(G11)2P− (G33)2Q

)
+
(
h
√
−GG11G33G55R

)′
= F ′D′ , (B.40)

−
(
h1/2
√
−G(G33)2(G55)2G

)′
+ h
√
−G(G33)2G55

�4Q = f ′
�4D , (B.41)

−
(
h1/2
√
−G(G11)2(G55)2F

)′
+ h
√
−G(G11)2G55

�4P = k′�4D , (B.42)

F + P′ −R = FJ + f ′C , (B.43)

G + Q′ + R = (1− F )J + k′C . (B.44)

A pair of equations come from the F3 equation of motion:

[
h1/2
√
−G(G55)2C′

]′
− 2h1/2

√
−GG11G33C+

+ h
√
−GG55

�4C = h1/2
√
−G(G55)2

(
f ′(G11)2F + k′(G33)2G

)
, (B.45)

[
2h
√
−GG55D′

]′
+ 2h3/2

√
−G�4D = 2k′P + 2f ′Q + 4F ′R + ℓJ ; (B.46)

and a pair of equations from the equation of motion for H3:

2h
√
−GG55

�4J = 2h1/2
√
−G(G55)2

(
F (G11)2F + (1− F )(G33)2G

)
+ ℓ�4D,(B.47)

[
2h
√
−GG55J

]′
= 2h

√
−GG55

(
F (G11)2P + (1− F )(G33)2Q

)
+

+4F ′h
√
−GG11G33G55R + ℓD′ .(B.48)

As in the case of the previous ansatz, one of the equations is not independent and

it is easy to demonstrate that any of the equations (B.40)-(B.42) or (B.47)-(B.48)

can be eliminated. Thus, we obtain a system of eight equations for eight unknown

forms. To write it in a more convenient form we introduce F̃ and G̃ as in (4.92)

and (4.93).

We solve the algebraic equations for ansatz functions P, Q, R and J, which we

express in terms of the functions F̃ and G̃. The remaining four coupled second order
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differential equations are most conveniently written in terms of the functions I, K,

sinh τ and their derivatives. This way we obtain a system

F̃′′ −
[

2

sinh2 τ
+

1

2

]
F̃ + m̃2 I

K2
F̃ +

1

2
G̃ +

(
1

2
K3 sinh τ + 2−4/3 I

′

K

)
(D′ − J) =

=
1

2
KC̃− 2−4/3I ′

K3 sinh τ
C̃ , (B.49)

G̃′′ −
[

2

sinh2 τ
+

1

2

]
G̃ + m̃2 I

K2
G̃ +

1

2
F̃ +

(
1

2
K3 sinh τ − 2−4/3 I

′

K

)
(D′ − J) =

=
1

2
KC̃ +

2−4/3I ′

K3 sinh τ
C̃ . (B.50)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = 21/3 m̃2K(F̃ + G̃) − m̃2 I ′

K3 sinh τ
(F̃ − G̃) ,

(B.51)

D′′ +
(
log(IK2 sinh2 τ)

)′
D′ + m̃2 I

K2
D +

(I ′K2 sinh2 τ)′

IK2 sinh2 τ
D =

= −I
′

I
J +

1

IK2 sinh2 τ

(
21/3K3 sinh τ(F̃ + G̃) +

I ′

K
(F̃− G̃)

)′
; (B.52)

where C̃ = K2 sinh τ C, and m̃ is defined in (B.5). J is expressed in terms of given

functions as follows:

J = −I
′

I
D +

21/3K

I sinh τ
(F̃ + G̃) +

I ′

IK3 sinh2 τ
(F̃− G̃) . (B.53)

The form of the equations in (B.49)-(B.52) suggests that we introduce B± =

F̃± G̃, so that the equations take the form (4.87), (4.88), (4.89), (4.90) and (4.91).

The system of the equations (4.87)-(4.90) can be further reduced. We show

that it can be split into the two decoupled pairs of equations by imposing the two

different constraints, B± = 0; each of them leading to a consistent reduction.

First, we set

B− = 0 ; (B.54)
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then (4.88) implies

D′ − J = − 1

K2 sinh τ
C̃. (B.55)

Differentiating this equation, using (4.91) and plugging it into the equation (4.90),

one gets, after eliminating D′ via (B.55), a simple relation

C̃′ = m̃2I sinh τ D− coth τ C̃. (B.56)

Note that differentiating (B.56) and then eliminating the derivatives of C̃ from (4.89)

we recover (B.55) (and therefore (4.90) as well). Thus, the constraint (B.54) singles

out a consistent subsystem of the two equations:

B′′
+ −

2

sinh2 τ
B+ + m̃2 I

K2
B+ = 2KC̃ , (B.57)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = 21/3m̃2KB+ . (B.58)

After a trivial rescaling of variables it reproduces the scalar equations (4.56) and

(4.57).

To find the complementary pair of equations, one can instead set

B+ = 0 . (B.59)

Equation (4.87) implies a first order constraint

D′ = − I ′

I
D +

I ′

IK3 sinh2 τ
B− +

1

K2 sinh τ
C̃ . (B.60)

Using this equation one can eliminate the derivatives of D from (4.90) and get the

relation

C̃′ = −m̃2I sinh τ D− coth τ C̃. (B.61)

Note that after eliminating the C̃ derivatives from (4.89) using this equation we

recover (B.60) (and thus (4.87) and (4.90)). There remains a consistent subsystem

of the two equations for B− and C̃, (4.102) and (4.103). As it is shown in the main

text, they can be further decoupled, yielding the two equations identical to (4.83).
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B.4 Numerics: Determinant Methood

A standard method of finding the spectrum of a single second-order differential

equation is the shooting technique. For a system of several coupled linear equations

the shooting method has to be generalized [76]. Here we will focus on the subtleties

specific to the system of equations (4.56) and (4.57). The idea of the calculation

(called the determinant method [76]) is to set the initial conditions at infinity corre-

sponding to the two solutions regular at infinity,


 z̃1(τ)

w̃1(τ)


 and


 z̃2(τ)

w̃2(τ)


, and

extend them numerically to small τ . Then the matrix

 z̃1(0) z̃2(0)

w̃1(0) w̃2(0)


 (B.62)

becomes degenerate at the critical points (eigenvalues) in the spectral parameter

space.

Let us find the asymptotic behavior of regular and singular solutions near both

zero and infinity. At small τ equations (4.56) and (4.57) decouple,

z̃′′ − 2

τ 2
z̃ = 0 , (B.63)

w̃′′ − 2

τ 2
w̃ = 0 . (B.64)

There are the two regular solutions with z̃, w̃ ∼ τ 2 and the two singular solutions

with z̃, w̃ ∼ 1/τ . For large τ we have

z̃′′ = m̃2 9

4 · 21/3
e−τ/3w̃ , (B.65)

w̃′′ − w̃ =
16 · 21/3

9
e−τ/3z̃ . (B.66)

The asymptotic behavior of the two regular solutions is


 z̃1

w̃1



 =



 1

−24/3 e−τ/3



 ,



 z̃2

w̃2



 =




81

64·21/3 m̃
2e−4τ/3

e−τ



 ;

(B.67)
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and the singular solutions are



 z̃3

w̃3



 =



 τ

−24/3
(
τ − 3

4

)
e−τ/3



 ,



 z̃4

w̃4



 =




81

16·21/3 m̃
2e2τ/3

eτ



 .

(B.68)

A particular subtlety of this setup is that at large τ the two singular solutions

don’t diverge equally fast: one of them grows exponentially while the other is only

linear in τ . This makes it difficult to start shooting from zero: imposing the regu-

larity condition at infinity would require vanishing of both linear and exponential

terms. To cancel the linear term in the presence of the exponential one is difficult

to do numerically. That is why for this particular system it is convenient to start

shooting from large τ , since both singular solutions at zero share the same behavior

(∼ 1/τ).

B.5 BHM Normalization

Here we show how to find the conversion factor between the dimensionless mass

squared m̃2 and the mass in the normalization of Berg, Haack and Mück [76]. We

note that the BHM conventions correspond to the KS solution with an extra relation

between ǫ and M . The authors of [76] use the notations of the general PT ansatz

(as given in Eq. (3.8) of [75]):

ds2 = e2p−xds2
5 + (ex+g + a2ex−g)(e21 + e22) + ex−g[e23 + e24 − 2a(e1e3 + e2e4)] + e−6p−xe25 ,(B.69)

ds2
5 = dr2 + e2A(r)ηijdx

idxj . (B.70)

After setting1

a = tanh y =
1

cosh τ
, e−g = cosh y = coth τ ; (B.71)

1The Papadopoulos-Tseytlin [78] variables are (x, p, y,Φ, b, h1, h2).



B.5. BHM Normalization 106

it reduces to the KS form

ds2 = e2A+2p−xηijdx
idxj +

ex

sinh τ

[
coth τ(e21 + e22 + e23 + e24) (B.72)

+
2

sinh τ
(e1e3 + e2e4) + e−6p−2x(dτ 2 + e25)

]
.

The radial KS coordinate τ is introduced according to

∂τ = e−4p∂r . (B.73)

Note that in the KS notation the conifold metric (4.3) can be rewritten as

ds2
6 =

ǫ4/3K(τ)

2

[
1

3K3
(dτ 2 + (e5)

2) +
1

2
cosh τ(e21 + e2

2 + e23 + e24) + e1e3 + e2e4

]
.

(B.74)

In terms of τ , the PT variables necessary to describe the metric for the KS

background solution take the form

Φ = Φ0 , (B.75)

ey = tanh(τ/2) , (B.76)

2

3
e6p+2x = coth τ − τ

sinh2 τ
, (B.77)

e2x/3−4p = 6−2/3M2eΦ0I(τ) sinh4/3 τ . (B.78)

In the BHM normalization

e−2A−8p =
(
e−6p−2x sinh τ

)2/3 I(τ)

I0
, I0 ≡ I(0) . (B.79)

These equations give for the coefficients

e6p+2x =
3

2
K3 sinh τ , (B.80)

ex = 2−2/3eΦ0/2MK(τ) sinh τ
√
I(τ) , (B.81)

e2A+2p−x =
√

e2x/3−4p sinh−2τ/3 I0
I

= 6−1/3eΦ0/2M
I0√
I
. (B.82)

Comparing these coefficients with those of the KS solution we find2

ǫ4/3

M2
= 3−1/3eΦ0/2I0 , (B.83)

eΦ0/2 =
1

2
. (B.84)

2We set gs = α′ = 1 according to [76].
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This yields ǫ4/3/M2 = 3−1/3I0/2. Then using (4.55) we get for the four-dimensional

mass in the BHM normalization

m2
BHM = m2

4 = m̃2 6

22/3

ǫ4/3

M2
= (3/2)2/3I0 m̃

2 . (B.85)
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