
 

Resisting collapse: How matter inside a black hole can withstand gravity
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How can a Schwarzschild-sized matter system avoid a fate of gravitational collapse? To address this
question, we critically reexamine the arguments that led to the “Buchdahl bound,” which implies that the
minimal size of a stable, compact object must be larger than nine eighths of its own Schwarzschild radius.
Following Mazur and Mottola, and in line with other counterexamples to the singularity theorems, we
identify large negative radial pressure extending to the gravitational radius as the essential ingredient for
evading the Buchdahl bound. Our results are novel although consistent with many other investigations of
models of nonsingular black holes. It is shown in particular that a large negative pressure in the framework
of classical GR translates into a large positive pressure once quantum physics is incorporated. In this way, a
Schwarzschild-sized bound state of closed, interacting fundamental strings in its high-temperature
Hagedorn phase can appear to have negative pressure and thus the ability to resist gravitational collapse.
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I. INTRODUCTION

The tension between black hole (BH) evaporation and
the rules of quantum mechanics [1–7], as well as the recent
discovery of gravitational waves being emitted from
colliding BHs and neutron stars, has reignited interest in
the following question: What is the final state of matter
after it collapses to form a BH?
The singularity theorems of Hawking and Penrose [8,9]

decree that the final state of collapsing matter, when
considered within the purview of classical general relativity
(GR), must be singular. An elegant discussion which
preceded these theorems was provided in a simplified
context by Buchdahl [10] (and later by Chandrasekhar
[11,12] and Bondi [13]). Buchdahl was able to show that a
“conventional” matter system cannot be stable within its
own Schwarzschild radius. In fact, the “Buchdahl bound”
on the outermost radius of a stable fluid sphere R is
somewhat larger than the Schwarzschild limit, R ≥ 9

8
RS

[10]. This result puts a damper on the idea that an
ultracompact object could play the role of a BH while
being fundamentally different from the BHs of GR.

Buchdahl invoked the usual assumptions that lead to a
Schwarzschild geometry. He further assumed both causal-
ity and a classical energy condition (the strong energy
condition), as similarly required by the singularity theo-
rems. These assumption were implemented by requiring
that both the energy density and the pressure are positive.
Regarding the matter distribution, Buchdahl made three
additional assumptions. As more recently discussed in [14],
these are (I) the isotropy and positivity of the pressure,
(II) the monotonic dilution of the matter distribution when
moving outward from the center, and (III) the continuity of
the time–time component of the Schwarzschild metric and
its first derivative across the boundary of the matter sphere.
The rest of the proof relies only upon the Einstein field
equations of GR.
The conclusion is that any reasonable BH substitute—

meaning an ultracompact object which resembles a BH—
has to evade the Buchdahl bound by invalidating at least
one of its assumptions.
Following to some extent [14], our description of matter

that can avoid gravitational collapse begins with a dis-
cussion about its pressure. We will, in particular, argue that
(at least) the radial component of the pressure needs to be
negative and large in magnitude throughout the entire
interior. Such matter has to be perceived to have a solid
composition and be under severe tension, as noticed long
ago by Bondi [13]. Matter with negative pressure is
important on three fronts: (a) It can explain why a system
under collapse does not have to comply with the singularity
theorems. This follows in analogy to the negative pressure of
the cosmological dark energy. (b) Any negative component
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of pressure would lower an object’s gravitational or Komar
mass density [15] and thus can impede collapse by weak-
ening the gravitational field. (c) A negative radial pressure
invalidates not only assumption (I) from the prior list but also
Buchdahl’s assumption in (III) regarding the continuity of
the first derivative of the metric.
We will be discussing a new model for the BH interior

but eventually reveal its “true” identity; namely, our
recently proposed “collapsed polymer” model [16] as
viewed from a classical perspective. But some other models
which similarly utilize a large negative pressure as means
for inhibiting collapse were proposed. The typical phe-
nomenological description of a non-singular BH uses a
classical metric and introduces a new length-scale param-
eter, say L. It is assumed that the metric deviates from that
of classical GR when the curvatures becomes of order 1=L2

in the core of the regular BH. The deviations are supposed
to imitate some quantum-gravity corrections to classical
GR and should result in a singularity-free solution. The first
model of a nonsingular BH was proposed by Bardeen [17],
who considered a charged matter core inside the BH instead
of a singularity. A model of a nonsingular evaporating BH
was later discussed in [18,19]. Many more references and
detailed reviews of additional models of regular BHs can be
found in [20,21]. The “gravastar” model [22] introduces
negative pressure in terms of a de Sitter interior, with a
suitable outer layer of matter to ensure stability. The “black
star” model [23] is based on the notion that high-energy
physics could provide a mechanism for delaying gravita-
tional collapse until the backreaction effects of the matter
fields have had sufficient time to modify the semiclassical
picture. Recently, Carballo-Rubio implemented the effects
of the backreaction and obtained a nonperturbative (but still
semiclassical) solution that shares some features in
common with both the gravastar and black star [24]. In
[25,26], it was shown, generically, that regular BH sol-
utions are not self-consistent, as the energy emitted by them
during evaporation can be much larger than their original
mass. Our current model of interest (and therefore the
polymer BH) can be viewed as a limiting case of the black
star model. The essential difference is that, in our case, the
outermost surface of the collapsing matter reaches the
Schwarzschild radius before stabilizing. Our model is also
consistent with the recent discussion in [27].
Let us now call upon an analysis in [28]. There it was

established that the radial pressure pr of any static matter
just outside of a Schwarzschild horizon has to satisfy the
condition pr ¼ −ρ, with ρ being the energy density. This
condition is necessary to ensure the near-horizon regularity
of curvature invariants like the Kretschmann scalar and, by
continuity, has to hold all the way up to and including the
horizon. The transverse components of pressure p⊥, on the
other hand, cannot be similarly constrained by appealing to
regularity, as was also clarified in [28]. One way to enforce
the condition pr ¼ −ρ at the horizon is to insist that it be

true throughout the interior; for instance, by replacing the
GR description of the BH interior with a ball composed of
some matter under tension. But what type of matter can
satisfy pr ¼ −ρ and, moreover, find its way into the
interiors of BH-like, ultracompact objects? The answers
to these puzzles will be presented later on in the paper when
we consider a different perspective of the very same model.

II. EVADING THE BUCHDAHL BOUND
WITH NEGATIVE PRESSURE

Let us start by specifying the geometry and matter
for the inside of a spherical, ultracompact object of
radius R. We assume a “Schwarzschild-like” geometry
for the interior (whereas that of the exterior is precisely
Schwarzschild), [29]

ds2 ¼ −fðrÞdt2 þ 1

f̃ðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð1Þ

It is further assumed that pr ¼ −ρ, as motivated in the
previous section,which translates into an energy-momentum-
stress (EMS) tensor of the form

Tμ
ν ¼

0
BBBB@

−ρ 0 0 0

0 −ρ 0 0

0 0 p⊥ 0

0 0 0 p⊥

1
CCCCA
: ð2Þ

For this setup, the Einstein equations

ðrf̃Þ0 ¼ 1 − 8πGr2ρ; ð3Þ

ðrfÞ00 ¼ 16πGrp⊥; ð4Þ

can be combined into

ðρr2Þ0 ¼ −2rp⊥; ð5Þ

which is guaranteed by the covariant conservation of the
EMS tensor.
Defining

mðrÞ ¼ 4π

Z
r

0

dxx2ρðxÞ ð6Þ

and taking into account that mðRÞ ¼ M is the total mass of
the ultracompact object, one finds that solving Eqs. (3) and
(4) leads to

fðrÞ ¼ f̃ðrÞ ¼ 1 −
2GmðrÞ

r
: ð7Þ

The value of p⊥ is determined by the function mðrÞ, which
is determined in turn by ρðrÞ. Additionally, ρ (and likewise
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for pr and p⊥) has to vanish for r ≥ R. According to
Buchdahl, the function fðrÞ and its first derivative are
supposed to be continuous across r ¼ R.
It is instructive to consider some explicit examples that

satisfy pr ¼ −ρ. To this end, let us then parametrize
ρ ¼ Brα, where B is a dimensional constant. Awell-known
example is the gravastar solution [22], for which α ¼ 0 or
ρ ¼ const. In this case, p⊥ ¼ −ρ, so that the interior of the
ultracompact object, r ≤ R, is part of a de Sitter spacetime.
It follows that fðrÞ ¼ 1 − r2=R2 on the inside, whereas
fðrÞ ¼ 1 − 2GM=r withM ¼ 4

3
πBR3 is the outer solution.

It is clear that the function fðrÞ is continuous across the
outermost surface but its derivative is not. In [14], this issue
was resolved by adding a surface layer of matter with a
surface tension that is determined by the continuity con-
dition on f0ðrÞ.
Another solution of this sort is found by setting α ¼ −2.

Although a novel choice, it will be shown later that this is
really an alternative description of our “collapsed polymer”
model [16,30,31]. In this case and for r ≤ R, then f ¼ 0
and

r2ρ ¼ 1

8πG
; ð8Þ

r2pr ¼ −
1

8πG
; ð9Þ

p⊥ ¼ 0; ð10Þ

with [32] the units chosen to yield mðrÞ ¼ 1
2G r. This

solution differs qualitatively from all other regular BH
solutions by being null throughout the interior and was
obtained previously but in an entirely different context
[33,34]. Continuity across the outer surface then requires ρ
and pr to vanish as r → R. This ensures that the function
mðrÞ approaches a constant at the surface, which then
allows f0ðrÞjr→R ∼ 1=R2 on the inside to be matched to its
outer Schwarzschild value of 2MG=R2. Consistency fur-
ther requires the energy density of the interior matter to
transition from a power law to zero in a smooth way as
r → R. This is accompanied by some positive transverse
pressure which also vanishes smoothly in the same limit
[cf. Eq. (5)] but, unlike the gravastar, no additional layer of
matter is needed.
The vanishing of the metric function f everywhere inside

is not a problem because the Einstein equations, curvature
tensors, curvature invariants and metric determinant are all
as regular as they would be at the horizon of a conventional
Schwarzschild BH. However, as far as solutions of GR go,
this one does seem rather peculiar. A heuristic way of
understanding this solution goes as follows: Let us recall
that the radial pressure of any form of matter just outside a
Schwarzschild horizon has to satisfy the condition pr ¼ −ρ
[28]. A subtle consequence of this constraint is that each

spherical slice of the solution has to behave just like a
horizon if its outer “skin” is peeled away. And yet, by
Gauss’ Law along with spherical symmetry, the presence of
the outer skin is irrelevant to the inside. It can then be
concluded that pr ¼ −ρ has to be the physical radial
pressure throughout the interior matter. The vanishing of
the transverse pressure and the metric function then follow
from the Einstein equations.

III. HYDRODYNAMIC EQUILIBRIUM
AND STABILITY

In the previous section, it was shown that the
solution in Eqs. (8)–(10) can describe a Schwarzschild-
sized, spherical mass distribution. We will now show,
following Chandrasekhar [11,12], that such a distribution
can be both in hydrodynamic equilibrium and stable against
radial oscillations. In fact, it will be further shown that these
oscillations are completely absent in the equilibrium state.
The relativistic hydrodynamic equations can be cast in

the form of conservation equations,

∂μð
ffiffiffiffiffiffi
−g

p
ρuμÞ ¼ 0; ð11Þ

∂μð
ffiffiffiffiffiffi
−g

p
Tμ
νÞ ¼ 0; ð12Þ

where uμ ¼ ðγ; γv⃗Þ is the 4-velocity of the fluid, v⃗ is the
3-velocity and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
.

In our case, Eqs. (11), (12) lead to three more equations,

∂tðr2ργÞ þ ∂rðr2ργvrÞ ¼ 0; ð13Þ

∂tðr2ρÞ ¼ 0; ð14Þ

∂rðr2ρÞ ¼ 0: ð15Þ
Hydrodynamic equilibrium requires that the 4-velocity

remains constant, from which γ; vr ¼ const follows as well.
Amazingly, each of the terms in Eqs. (13)–(15) then
vanishes for hydrodynamic equilibrium simply because
r2ρ in Eq. (8) is a temporal and radial constant.
The stability analysis proceeds by perturbing the metric,

the velocity and the EMS tensor by small perturbations that
depend on r and t. The expansion parameter can be

regarded as δρðr;tÞ
ρ0

. The full process is described explicitly
by Chandrasekhar in Sec. IV of [12]. This analysis is
straightforward but quite long and technical and will not be
repeated here. Rather, we will briefly explain our results
while referring to some expressions in [11], which is a
shorter companion paper to [12].
For our case with pr þ ρ ¼ 0 and gtt ¼ grr ¼ 0 for the

background solution, the perturbations to the off-diagonal
elements of the EMS tensor are trivially vanishing at linear
order, whereas the linear perturbations δρ, δgrr and δpr
vanish according to Eqs. (10), (6) and (7) in [11],
respectively. Let us recall these expressions,
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δρ ¼ −½r2ðpr0 þ ρ0Þξ�0=r2; ð16Þ

ðrgrr0 δλÞ0 ¼ −r2δρ; ð17Þ

r2δpr ¼ grr0 ð1þ rν00Þδλ − rgrr0 δν
0; ð18Þ

where grr ¼ eλ, gtt ¼ −eν, a subscript 0 indicates a back-
ground quantity and ξ is defined implicitly through vr ¼ ∂ξ

∂t.
The vanishing of δgtt is more subtle as δν is always

accompanied by a factor of eitherpr0 þ ρ0 or grr0 . The easiest
way to see that δgtt similarly vanishes is to impose that the
determinant of the perturbed metric is regular, which
necessitates that gtt ¼ −grr to all orders. Alternatively,
one could regularize the leading-order components by
regarding grr0 and gtt0 as small constants and take them to
zero at the end.One then finds that δgtt vanishes given that all
the other perturbations do.
Now, since the perturbations are all vanishing and the

velocity must be constant, there is no opportunity for radial
oscillations to occur. One can further verify this result by
inspecting some additional equations in [11]. We conclude
that the equilibrium configuration of a spherical matter
distribution with pr ¼ −ρ is indeed stable, at least to linear
order. A second-order perturbative analysis could, in
principle, go either way. However, as will be made clear
in the section to follow, we have reason to believe that this
stability would persist even at higher orders.

IV. MATTER WITH NEGATIVE PRESSURE:
THE INSIDE STORY

We have presented arguments supporting the idea that
matter with large negative radial pressure can resist
gravitational collapse, even when it is confined to a
Schwarzschild-sized region. In light of these arguments,
it is worth recalling the earlier-posed questions: What type
of matter can satisfy pr ¼ −ρ and how can such matter find
its way inside of BH-like, ultracompact objects?
Our proposed answer to either query is to suggest that

such matter is something of an illusion and to rather
consider a different form of matter: A bound state of
fundamental closed, interacting strings, excited to temper-
atures just above the Hagedorn temperature; what we have
been calling the collapsed polymer model [16]. The model
is described in detail in [31] and we will review its main
ingredients here for completeness. This proposal was
inspired in part by [35,36] and motivated by the observation
that the BH interior has to be in a strongly non-classical
state [30,37,38], even at times well before the Page time
[39]. Fundamental strings could be produced out of what-
ever form of matter that collapses into a BH-like object, as
long as the resulting string state is entropically favored.
This answers the latter of the above questions, but address-
ing the former (i.e., explaining how this form of matter

connects back to the negative-pressure solution) will
require some additional work.
The high-temperature phase of fundamental strings is

called the Hagedorn phase [40–45]. In this phase, the
spectrum consists of an exponentially large number of
closely packed states and its canonical ensemble is subject
to large fluctuations that diverge at the Hagedorn temper-
ature. For such a state, the entropy S is equal to the total
length of the strings L in units of the string scale ls,
S ¼ L=ls, and the spatial configuration of the strings can be
viewed as an N-step random walk with N ∼ S. Free strings
occupy a region in space whose linear size R is the random-
walk scale, R ∼

ffiffiffiffi
N

p
, but attractive interactions result in a

smaller value of R [45,46]. And so, for (attractively)
interacting strings, one can expect that R ∼ Nν with ν ≤
1=2 and, for an area law (as in the case of BHs), the
condition becomes ν ¼ 1=ðd − 1Þ in D ¼ dþ 1 dimen-
sions. This may be ν ¼ 1=2whenD ¼ 4, but the size of the
random walk is still parametrically smaller than that of the
free-string case, as now one finds R ∼ g

ffiffiffiffi
N

p
with g < 1

being the strength of the string coupling.
The equation of state for this high-temperature string

phase is famously p ¼ ρ. In such a phase, in string units,
s ¼ ffiffiffi

ρ
p

and 1=T ¼ ds=dρ ¼ s=2ρ which are, of course,
consistent with the thermodynamic relation sT ¼ pþ ρ.
Here, s is the entropy density. Thus, s is as large as it can be
in comparison to ρ, implying entropic dominance [47].
How can the positive pressure pr ¼ þρ of stringy matter

be reconciled with the requirement that pr ¼ −ρ? Negative
normal pressure, or tension, is a common phenomenon in
solid matter and especially in polymers. It is then a natural
tendency to expect the collapse-resistant matter to be
composed of tensile material. The purpose of this section
is to explain that this tendency is unwarranted. If one
ignores the entropy of matter, the relation 0 ¼ sT ¼ pþ ρ
leads to p ¼ −ρ. Whereas, if the entropy is maximal and
sT ¼ 2ρ is taken into account, then 2ρ ¼ sT ¼ pþ ρ
implying p ¼ þρ. In short, what one perceives as being
matter under tension turns out to be a completely different
form of matter.
In classical GR, for pr ¼ −ρ, the collapse is avoided

mechanically, while if pr ¼ þρ with maximal entropy, the
collapse is avoided due to the following entropic consid-
eration: The only way that the strings can collapse further
and occupy a smaller region in space is by splitting up into
a collection of parametrically smaller strings. However, a
configuration of many smaller strings is strongly disfavored
in comparison to one long string because the entropy of the
latter is substantially larger.
The stringy perspective also provides us with an under-

standing of why the negative-pressure solution can be
expected to be stable. The polymer model is completely
stable in the absence of string interactions, which is itself an
ℏ effect. Hence, the negative-pressure model, which is
strictly classical by design, should be similarly stable.
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Let us briefly summarize the calculation of the radial
pressure pr from the polymer model perspective. (We
assume p⊥ ¼ 0 on the basis of spherical symmetry.) At
equilibrium, the energy density ρ and entropy density s in
the collapsed polymer are, for a certain choice of units,
expressible as [16,30,31] ρ ¼ 1

2
1

g2r2 and s ¼ 1
g2r, with neither

of the relations depending on D. Note that, here, r is the
radial coordinate for a fiducial coordinate system.
Writing the entropy density as a function of the energy

density, g2s ¼
ffiffiffiffiffiffiffiffiffi
2g2ρ

p
, 1T ¼ ∂s

∂ρ ¼ s
2ρ follows, which leads, as

previously discussed, to sT ¼ 2ρ. The pressure can now be
directly evaluated, pr ¼ sT − ρ ¼ þρ.
And so pr ¼ þρ, as could have been anticipated [40].

This “internal” equation of state reveals that signals
propagate at the speed of light along a closed string. It
is not, however, a statement about the interior geometry, as
a semiclassical description of the metric is invalidated by
strong quantum fluctuations [30,38].
It should be reemphasized that our negative-pressure

solution and the positive-pressure polymer model are meant
to be different perspectives of the very same system. The
source of this dichotomy is simple: To avoid the fate of
gravitational collapse, one must reject either a classical
geometry or a large entropy for the BH interior. On the other
hand, the negative-pressure solution is not meant to be a
low-entropy or a low-temperature description of a string
state. It is rather the picture of the interior according to an
external observer who insists on a noncollapsing, regular
geometry under the rules of strictly classical GR. This
picture is necessarily different from that of another external
observer who attributes the regularity and stability against
collapse to exotic, maximally entropic matter. The fact that
two external observers can disagree in this way can be
traced to the inaccessibility of the interior region and can be
viewed as a consequence of Hawking’s so-called principle
of ignorance [1]. This disagreement might also be viewed as
a novel form of observer complementarity [48].

V. CONCLUSION

The moral of this paper is as follows: If one considers
classical GR, large negative pressure is, in all likelihood,
a necessary condition for avoiding gravitational collapse.

A similar conclusion was reached (and then abandoned)
long ago by Bondi [13] and more recently revisited in [14]
and many additional works reviewed in [20,21]. We
illustrated the idea with our model for the BH as a bound
state of closed strings in the Hagedorn phase.
We have seen, however, that if the entropy of the stringy

bound state is taken into account, the pressure is positive.
Given this discrepancy, how does one know that both
descriptions apply to the same matter system? The answer
is simple: These are both describing a compact object
whose every spherically concentric layer behaves just like a
BH horizon. This follows from the GR perspective from the
perceived form of the inside metric, gtt ¼ grr ¼ 0, and from
the stringy perspective by virtue of the area law for entropy
being saturated throughout, sðrÞrd ∼ rd−1, and radial
propagation at the speed of light.
The observation that negative pressure need not be

associated with a tensile material could have far-reaching
implications, as the meaning of p < 0 in a solution to
Einstein’s equations is no longer certain. For instance, the
accelerated expansion of the Universe may not be due to a
negative-pressure fluid—the so-called dark energy—after
all. The identity p ¼ −ρ may instead be a relation that is
used if only classical GR is allowed to explain the
accelerated expansion. On the other hand, if some con-
tribution to the entropy is ignored, there might be others
who attribute the expansion of spacetime to matter with a
positive pressure.
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