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Abstract. Dark energy accounts for about 70% of the content of our Universe.
Perhaps the best candidate to parametrize the dark energy is a scalar field with
only gravitational interactions called quintessence.

We first present a generic theoretical approach to quintessence. We show that if
the minimum of the scalar potential is at V |min = 0 (i.e. there is no arbitrary scale)
then the behavior of scalar fields can be determined in a model independent way. Its
equation of state parameter wφ takes most of the time the values wφ = 1, −1, wφo.
The size of the different regions can also be calculated in a model independent way.
The number of free parameters for quintessence models is therefore quite limited.

We show that late time phase transition models are good candidates for quint-
essence and they could explain why the acceleration of the Universe is at such a
late time. We show how these models can be obtained from particle physics and
in particular from non-abelian gauge dynamics. The only free parameter for these
gauge models is its particle content as it is the case for the standard model of
particle physics.

In the second part, we show how a phenomenological approach to the CMB can
be implemented. We show that with only four parameters we cover a great number
of theoretical models, including quintessence. By varying these parameters and
comparing with the CMB we can, in principle, determine the relevant cosmological
quantities such as the phase transition scale (when the quintessence field appears)
and the present equation of state parameter wφo.

1 Introduction

In recent time the cosmological observations on the cosmic microwave back-
ground radiation (“CMB”) [1] and the supernova project SN1a [2] have lead
to conclude that the universe is flat and it is expanding with an accelera-
ting velocity. These conclusions show that the universe is now dominated
by an energy density with negative pressure with ΩDE = 0.7 ± 0.1 and
wDE ≡ pDE/ρDE < −0.78 [1]. This energy is generically called the dark
energy. Structure formation also favors a non-vanishing dark energy [3]. Be-
sides dark energy we also have baryonic matter Ωb � 0.05 and dark matter
ΩDM = 0.25±0.1, necessary for structure formation, but we still do not know
its origin. So, we have a universe which contains only 5% of particles of the
well known Standard Model (“SM”) of particle physics and 95% of matter
unknown to us on earth.
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It is not clear yet what the dark energy is. It could be a true cosmological
constant, quintessence (scalar field with gravitationally interaction) [9] or
some other kind of exotic energy density. Perhaps the best way of determining
the nature of dark energy is trough its equation of state parameter wDE .
The survey of redshifts of the different objects should in principle allow as to
determine the value of wDEo (o subscript referees to present day quantities)
but only at small redshifts z ≤ 2 with zo = 0. The result from the SN1A
project [2] sets an upper limit to wφo < −2/3 but does not distinguish a
true cosmological constant with wΛ ≡ −1, quintessence or any other form of
exotic energy with wφo < −2/3. It would be very interesting if in the future
the SN1a survey could constrain better the value of wφo. On the other hand,
the CMB could give us information not only on the value of wDEo but also
on its evolution during matter domination era, i.e. for a redshift z ≤ 8.

Energy density of elementary particles of the Standard Model (e.g. quarks,
leptons and bosons) have a non-negative pressure p = wρ with w = 1/3
for relativistic and w = 0 non-relativistic particles. Therefore, an energy
density with negative pressure, the “dark energy”, has to be explain from a
particle physics point via particles that are not contained in the SM. The
only particles that can give a negative pressure are particles with a non
trivial self potential V and since fermions and bosons cannot have a vacuum
expectation value (these particles transform non-trivially under the Lorentz
transformation) the only possibility left are scalar fields. The scalar fields can
be fundamental fields, as the Higgs field or the supersymmetric partners of
the SM fermion particles, or they could be composite fields as meson fields
in QCD.

In order to determine what the nature of the dark energy is we can pro-
ceed with two different approaches. On the one hand we can propose models
derived from particle physics and see if these models give the correct obser-
vable data. On the other hand we could set a model independent analysis
on the evolution of the equation of state parameter wDE and determine its
impact on the observed CMB spectrum and compare it with the data in order
to infer the type of dark energy density.

In Sect. 2 we will discuss the theoretical approaches to obtain a dark
energy from field theory. In Sect. 3 we introduce a particle physics model,
based on gauge dynamics, that gives a dark energy field in a natural way. In
Sect. 4 we study the possibility that the gauge group responsible for giving
the dark energy gives at the same time the missing dark matter. In Sect. 5
we analyze a model independent phenomenological approach to dark energy
and in Sect. 6 we present our conclusions.
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2 Theoretical Approach

2.1 Cosmological Evolution of Quintessence

We will now determine the cosmological evolution of a scalar field φ with
arbitrary potential V (φ) and with only gravitational interaction with all other
fields. This field is called quintessence.

The cosmological evolution of φ with an arbitrary potential V (φ) can be
determined from a system of differential equations describing a spatially flat
Friedmann–Robertson–Walker universe in the presence of a barotropic fluid
energy density ρb that can be either radiation or matter. The equations are

Ḣ = −1
2
(ρb + pb + φ̇2),

ρ̇ = −3H(ρ+ p), (1)

φ̈ = −3Hφ̇− dV (φ)
dφ

,

where H is the Hubble parameter, φ̇ = dφ/dt, ρ (p) is the total energy density
(pressure). We will be working in a flat universe so that H2 = ρ/3 and we
use natural units m2

p = G/8π ≡ 1. If is useful to make a change of variables

x ≡ φ̇√
6H

and y ≡
√
V√
3H

and the equations (1) take the following form [27, 26]:

xN = −3x+

√
3
2
λ y2 +

3
2
x[2x2 + γb(1− x2 − y2)]

yN = −
√

3
2
λx y +

3
2
y[2x2 + γb(1− x2 − y2)] (2)

HN = −3
2
H[2x2 + γb(1− x2 − y2)]

where N is the logarithm of the scale factor a, N ≡ Log(a); fN ≡ df/dN for
f = x, y,H; γb = 1 + wb and λ(N) ≡ −V ′/V with V ′ = dV/dφ. In terms
of x, y the energy density parameter is Ωφ = x2 + y2 while the equation of
state parameter is given by γφ − 1 = wφ ≡ pφ/ρφ = x2−y2

x2+y2 . It is clear that
0 ≤ x2, y2 ≤ 1.

The Friedmann or constraint equation for a flat universe Ωb + Ωφ = 1
must supplement equations (2) which are valid for any scalar potential as long
as the interaction between the scalar field and matter or radiation is gravita-
tional only. This set of differential equations is non-linear and for most cases
has no analytical solutions. A general analysis for arbitrary potentials is per-
formed in [25, 26]. All model dependence falls on two quantities: λ(N) and
the constant parameter γb = 1, 4/3 for matter or radiation, respectively. We
will be interested in studying scalar fields that lead to a late time accelerated
universe, i.e. to quintessence, and in this case we will have a decreasing λ(N)
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[26] and a late time behavior λ(N)→ 0. For constant λ(N) (exponential po-
tential) one can have an accelerating universe if λ(N) <

√
6 but its dynamics

would lead to an accelerating universe too rapidly, i.e. not at a late time as
ours, unless we fine tune the initial conditions.

It is also useful to have the evolution of Ωφ = ρφ/3H2 = x2 + y2 and
γφ = 1 + wφ (0 ≤ γφ ≤ 2) derived from (2), [21]

(Ωφ)N = 3(γb − γφ)Ωφ(1−Ωφ) (3)

(γφ)N = 3γφ(2− γφ)
(
λ

√
Ωφ
3γφ
− 1

)
. (4)

2.2 Evolution of x, y, and H

We are interested in studying scalar potentials that lead to quintessence, i.e. a
late time (present day) acceleration period of the universe. For this to happen
one needs λ = −mplV

′/V → 0 in the asymptotic limit (or to a constant less
then one). An accelerating universe (slow roll conditions) requires |λ| < 1
and we want this period to be at a late time. We will consider potentials
with V ≥ 0 and since the φ field evolves to its minimum V ′ < 0 and λ ≥ 0
where we are assuming, without loss of generality, models with φ ≥ 0. We
will define the phase transition scale Λc in terms of the potential by [35]

Λc = V (φi)1/4 (5)

where V (φi) ≡ Vi is the initial value of the potential and we will consider
models that have an initial value

λi = −mpl
V ′(φi)
V (φi)

	 1. (6)

From now on the subscript i stands for initial conditions, i.e. at the con-
densation Λc when V appears. From dimensional analysis we expect λi =
O(mpl/Λc) 	 1. If we have a phase transition at a scale Λc which leads to
the appearance of the φ field (e.g. composite field) then we would also expect
φi � Λc since Λc is the relevant scale of the process. We will be working
with a late time phase transition but Λc could be as large as 1016GeV and
we would still have λi 	 1. An interesting general property of these mo-
dels is the presence of a many e-folds scaling period in which λ is practically
constant and Ωφ � 1.

A semi-analytic approach [18] is useful to study some properties of the
differential equation system given by (2). To do this we initially consider
only the terms that are proportional to λ, since λi 	 1, then we follow the
evolution of x, y and H so every period has a characteristic set of simplified
differential equations. We see from (2) that the leading terms in x and y, for

λ 	 1, are xN =
√

3
2λ y

2 and yN = −
√

3
2λx y. Combining these equations

we have
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xNx = −yNy (7)

with a constant circular solution [18]

Ωφ ≡ x2 + y2 = x2
i (Ni) + y2

i (Ni) ≡ Ωφi(Ni). (8)

Since xN is positive x will grow while yN is negative giving a decreasing y.
This initial period ends at a scale Nmin with x2(Nmin) � Ωφi(Ni) 	 y2

min.
Since λi 	 1, the x and y derivatives are quite large and the amount of e-
folds between the initial value yi until y reaches its minimal value ymin is very
short. An easy estimate can be derived from yN/y = −cλ 	 1, c =

√
3/2x

giving 1 	 Nmin − Ni = Log[ymin/yi]/cλi = O(1/λi), in the assumption
cλi = cte.

The minimal value of y, given at Nmin, can be obtained from (2) with
yN = 0. At his point we have [35]

λ(Nmin) = −
√

2
3
HN

Hx
=

√
3
2

[γb +Ωφi(2− γb)]√
Ωφi

� 1√
Ωφi

(9)

where we have taken x2(Nmin) � Ωφi and HN/H = −3/2(γb +Ωφi(2− γb))
since y2

min � 1. We see that λ in (9) is of order 1/
√
Ωφi and we have

λi/λ(Nmin)	 1.
The value of ymin depends on the functional form of V (φ), which sets the

functional form of λ = −V ′/V . In general we have y2
min = V (φmin)/(3H2

min)
but without specifying V (φ) it is not possible to determine ymin. For an
inverse power law potential with V = Λ4+n

c φ−n = 3y2H2 one has

ymin =
Λ

4+n
2

c φ
−n/2
min√

3Hmin

(10)

= yi

(
φi
φmin

)n
2

= yi

(
1

λi
√
Ωφi

)n
2

where we have approximated H2
min � H2

i = Vi/3y2
i = Λ4+n

c φ−n
i /3y2

i in (10)
since Nmin −Ni � 1 and we have taken from (9) φmin = n/λmin � n

√
Ωφi

and φi = n/λi. Taking the initial value of φi = n/λi = nΛc then (10) gives

ymin = yi

(
Λc√
Ωφi

)n/2
. (11)

We see that ymin = O(λ−n/2
i ) � O(Λn/2c )� yi if Ωφi is not too small. At the

end of the initial period we have y2 � 1 and λx = O(1). Since xN/x is now
negative

xN � (−3 + 3/2γb)x (12)

|x| decreases as
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x(N) = x(Nmin)e(−3+ 3
2γb)(N−Nmin). (13)

leading to the scaling period. The transition between the initial period
and the second (scaling) period is short because x decreases rapidly (for
x(N)/x(Nmin) = 1/10 one has N −Nmin � 1.5) and we get 1	 x	 y. The
scaling period is defined by the validity of the equation

yN
y

= −HN

H
. (14)

This period takes place when λx � 1 as seen from (2). During the scaling
period one has yH = Hminymin = cte which leads to a constant Hy and
potential since V = 3H2y2. Therefore, λ and φ will also be constant during
this scaling period [35], i.e.

λ(Nmin) � λ(N2) (15)

where we have defined the scaleN2 as the end of the scaling period. Neglecting
the quadratic terms on x and y in the third equation of system (2) we get
the expressions

H = Hmine
− 3

2γb(N−Nmin)

y = ymine
3
2γb(N−Nmin). (16)

We can take in (16) Nmin � Ni and Hmin � Hi as discussed above, but
ymin � yi.

Since during the scaling period y increases as seen from (16) and λ is
constant the term λy2 in xN will eventually dominate and lead to an increase
of x. The end of the scaling period will happen when λx is again of order
one and (14) is no longer valid. At this point we have λx ∼ 1 and x ∼ λy2

which leads to an x of the same order of y, i.e. γφ will be significant larger
then zero (say γφ ∼ 0.1). At the end of the scaling period we have 1/x2 ∼
λ(N2) = λ(Nmin) and [35]

Ωφ(N2) = y2(N2) + x2(N2) ∼ λ(Nmin)−2 ∼ Ωφi (17)

as seen from (9) and (15). The value of Ωφ(N2) depends on the initial Ωφi and
can be much smaller than one. After the end of the scaling period Ωφ(N2)
grows to its present day value Ωφo = 0.7± 0.1. If Ωφ(N2) � 1 then there is
enough time for γφ to grow to its tracker value γφtr = λ2Ωφ/n

2. However,
when Ωφ(N2) is of the order 0.1 then there is not enough time to allow γφ to
grow to its tracker value and one has at present day 0 < γφo ≤ γφtr. Finally,
the late time behavior has λ→ 0 and Ωφ ∼ y2 → 1 with γφ → 0.

2.3 Parameters and Summary

There are only four independent parameters that fix the cosmological evolu-
tion of the models from its initial value to present day. These parameters are
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Ωφi, Λc, ymin and the value of γφo today. All other quantities can be derived
from them.

Let us summarize the evolution of x and y obtained in the previous section
[35]
1) Regardless of the value of xi, yi we have a very short period (Nmin−Ni �
1) with increasing x and decreasing y ending with x(Nmin)2 � Ωφi and with
ymin � 1 model dependent.
2) Shortly afterwards the scaling period starts with x(Nmin)2 	 y2

min and
γφ � 2. During this period x decreases while y increases and it finishes when
x ∼ y � 1. The size of the period γφ = 2 depends on how small ymin is.
3) After having x ∼ y � 1, we still have a decreasing x and increasing y
and the period with γφ = 0 (with 1	 y 	 x) starts. When λy2 becomes of
order of x, xN becomes positive and x increases until λx ∼ 1 making (14) no
longer valid and ending the period with γφ � 0 and the scaling period at N2.
The value of λ remains (almost) constant during all the scaling period which
starts at Nmin and finishes at N2.
4) The tracking period starts with a increasing γφ → γφo and Ωφ.

3 Late Time Phase Transition as Dark Energy

The evolution of the scalar field φ depends on the functional form of its
potential V (φ) and a late time accelerating universe constrains the form
of the potential and when it appears [18, 30]. A late time appearance of
a scalar field is a signal that a phase transition took place and that the
scalar field is probably not a fundamental but a composite field. Here, we
will present a model where quintessence field appears as a consequence of
a phase transition due to a strong gauge coupling constant. This is a very
physical assumption since it only requires to have an extra gauge group to
the already known gauge groups of the SM. It is well known that the gauge
coupling constant of a non-abelian asymptotically free gauge group increases
with decreasing energy and the free elementary fields will eventually condense
due to the strong interaction, e.g. mesons and baryons in QCD. The scale
where the coupling constant becomes strong is called the condensation scale
Λc and below it there are no more free elementary fields. These condensates,
e.g. “mesons”, develop a non trivial potential which can be calculated using
Affleck’s potential [22]. The potential is of the form V = Λ4+n

c φ−n, where φ
represents the “mesons”, and depending on the value of n the potential V may
lead to an acceptable phenomenology. The final value of wφo (from now on
the subscript “o” refers to present day quantities) depends n and the initial
condition Ωφi [18]. A wφo < −2/3, which is the upper limit of [6], requires
n < 2.74 for Ωφi ≥ 0.25 [18]. For smaller Ωφi one obtains a larger wφo for a
fixe n. The position of the third CMBR peak favors models with n < 1 [7]
and for some class of models with V = M4+nφ−neφ

β/2, with n ≥ 1, β ≥ 0,
the constraint on the equation of state is even stricter −1 ≤ wφo ≤ −0.93
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[8]. In this kind of inverse power potential models (i.e. n < 2) the tracker
solution is not a good approximation to the numerical solution because the
scalar field has not reached its tracker value by present day.

Here we focus on a non-abelian asymptotically free gauge group whose
gauge coupling constant is unified with the couplings of the standard model
(“SM”) ones [17, 18]. We will call this group the dark group (“DG”). The
cosmological picture in this case is very pleasing. We assume gauge coupling
unification at the unification scale Λgut for all gauge groups (as predicted by
string theory) and then let all fields evolve. At the beginning all fields, SM
and DG model, are massless and red shift as radiation until we reach the
condensation scale Λc of DG. Below this scale the fields of the quintessence
gauge group will dynamically condense and we use Affleck’s potential to study
its cosmological evolution. The energy density of the quintessence field Ωφ
drops quickly, independently of its initial conditions, and it is close to zero
for a long period of time, which includes nucleosynthesis (NS) if Λc is larger
than the NS energy ΛNS (or temperature TNS = 0.1−10MeV ), and becomes
relevant only until very recently. On the other hand, if Λc < ΛNS than the
NS bounds on relativistic degrees of freedom must be imposed on the models.
Finally, the energy density of φ grows and it dominates at present time the
total energy density with the Ωφo � 0.7 and a negative pressure wφo < −2/3
leading to an accelerating universe [5].

The initial conditions at the unification scale and at the condensation scale
are fixed by the number of degrees of freedom of the models given in terms
of Nc, Nf . Imposing gauge coupling unification fixes Nc, Nf and we do not
have any free parameters in the models (but for the susy breaking mechanism
which we will comment in Sect. 2). It is surprising that such a simple model
works fine. As we will see the restriction on Nc, Nf by gauge unification rules
out models with a condensation energy scale between 2 × 10−2GeV < Λc <
6×103GeV or for models with 2 < n < 4.27 (the scale Λc is given in terms of
Ho and n by Λc � H

2/(4+n)
o [23],[18]). Since wφo < −2/3 requires n < 2.74 all

models must then have Λc < 2×10−2GeV . The number of models that satisfy
gauge coupling unification with a wφo < −2/3 is quite limited and in fact
there are only three different models [18]. All acceptable models have n ≤ 2/3
which implies that the condensation scale is smaller than the NS scale. The
preferred model has Nc = 3, Nf = 6, n = 2/3 and it gives wφo = −0.90 with
an average value weff = −0.93 agreeing with recent CMBR analysis [6, 7].

3.1 Condensation Scale and Scalar Potential

We start be assuming that the universe has a matter content of the supersym-
metric gauge groups SU(1)×SU(2)×SU(3)×SU(DG) where the first three
are the SM gauge groups while the last one corresponds to the dark group
and that the couplings are unified at Λgut with g1 = g2 = g3 = gDG = ggut.

The condensation scale Λc of a gauge group SU(Nc) with Nf (chiral +
antichiral) matter fields has in N = 1 susy a one-loop renormalization group
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equation given by

Λc = Λgute
− 8π2

bog2
gut (18)

where bo = 3Nc−Nf is the one-loop beta function and Λgut, ggut are the unifi-
cation energy scale and coupling constant, respectively. From gauge coupling
unification we know that Λgut � 1016GeV and ggut �

√
4π/25.7 [33].

A phase transition takes place at the condensation scale Λc, since the
elementary fields are free fields above Λc and condense at Λc. In order to
study the cosmological evolution of these condensates, which we will call φ,
we use Affleck’s potential [22]. This potential is non-perturbative and exact
[36].

The superpotential for a non-abelian SU(Nc) gauge group with Nf (chiral
+ antichiral) massless matter fields is [22]

W = (Nc −Nf )(
Λbo
c

det < QQ̃ >
)1/(Nc−Nf ) (19)

where bo is the one-loop beta function coefficient. Taking det < QQ̃ >=
Π
Nf

j=1φ
2
j one has W = (Nc − Nf )(Λbo

c φ
−2Nf )1/(Nc−Nf ). The scalar potential

in global supersymmetry is V = |Wφ|2, with Wφ = ∂W/∂φ, giving [23, 24,
17, 30]

V = c2Λ4+n
c φ−n (20)

with c = 2Nf , n = 2+4 Nf

Nc−Nf
and Λc is the condensation scale of the gauge

group SU(Nc). The natural initial value for the condensate is φi = Λc since
it is precisely Λc the relevant scale of the physical process of the field binding.

In (20) we have taken φ canonically normalized, however the full Kahler
potential K is not known and for φ � 1 other terms may become relevant
[23] and could spoil the runaway and quintessence behavior of φ. Expanding
the Kahler potential as a series power K = |φ|2 +Σiai|φ|2i/2i the canonically
normalized field φ′ can be approximated1 by φ′ = (Kφ

φ )1/2φ and (20) would
be given by V = (Kφ

φ )−1|Wφ|2 = (2Nf )2Λ4+n
c φ−n(Kφ

φ )(n/2−1). For n < 2 the
exponent term of Kφ

φ is negative so it would not spoil the runaway behavior
of φ [17, 18].

If we wish to study models with 0 < n < 2, which are cosmologically fa-
vored [18] we need to consider the possibility that not all Nf condensates φi
become dynamical but only a fraction ν are (with Nf ≥ ν ≥ 1) and we also
need Nf > Nc [17, 18]. It is important to point out that even though it has
been argued that for Nf > Nc there is no non-perturbative superpotential
W generated [22], because the determinant of QQ̃ in (19) vanishes, this is
not necessarily the case [29]. If we consider the elementary quarks Qαi , Q̃

α
i

(i, j = 1, 2, ..., Nf , α = 1, 2, ..., Nc) to be the relevant degrees of freedom,
1 The canonically normalized field φ′ is defined as φ′ = g(φ, φ̄)φ with Kφ

φ = (g +
φgφ + φ̄gφ̄)2
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then for Nc < Nf the quantity det(QiαQ̃
α
j ) vanishes since, being the sum of

dyadics, always has zero eigenvalues. However, we are interested in studying
the effective action for the “meson” fields φij =< QiαQ̃

α
j >, and the determi-

nant of φij , i.e. det < QiαQ̃
α
j >, being the product of expectation values does

not need to vanish when Nc < Nf (the expectation of a product of operators
is not equal to the product of the expectations of each operator).

One can have ν 
= Nf with a gauge group with unmatching number of
chiral and anti-chiral fields or if some of the chiral fields are also charged under
another gauge group. In this case we have c = 2ν, n = 2+4 ν

Nc−Nf
and Nf−ν

condensates fixed at their v.e.v. < QQ̃ >= Λ2
c [17]. Another possibility is by

giving a mass term to Nf −ν condensates ϕ =< Q̄kQk >, (k = 1, ..., Nf −ν)
while leaving ν condensates φ2 =< Q̄jQj >, (j = 1, ..., ν) massless. Notice
that we have chosen a different parameterization for ϕ and φ. The mass
dimension for ϕ is 2 while for φ it is 1. The superpotential now reads [30]

W = (Nc −Nf )(
Λbo
c

φ2νϕNf −ν )1/(Nc−Nf ) +mϕ (21)

with m the mass of Q̄kQk. If we take the natural choice φi = Λc, as discussed
above, and m = Λc [17] and we integrate out the condensates ϕ using

∂W

∂ϕ
= ϕ−1

(
(ν −Nf )Λ(bo−2ν)/(Nc−Nf )

c ϕ−(Nf −ν)/(Nc−Nf ) +mϕ
)

= 0 (22)

we obtain ϕ = (Nf − ν)(Nc−Nf )/(Nc−ν)Λ2
c . By integrating out the ϕ field

the second terms in (21), which is proportional to the first term, can be
eliminated. Substituting the solution of (22) into (21) one finds

W = (Nc − ν)(Nf − ν)(Nf −ν)/(Nc−ν)Λ3+a
c φ−a (23)

with a = 2ν/(Nc −Nf ).
The scalar potential V = |∂W |2 is now given by [30]

V = c′2Λ4+n′
c φ−n′

(24)

with c′2 = 4ν2( Nc−ν
Nc−Nf

)2(Nf − ν)(Nf −ν)/(Nc−ν) and n′ = 2 + 4ν/(Nc − Nf ).
Notice that for ν = Nf we recover (20). From now on we will work with (24)
and we will drop the quotation on n′.

The radiative corrections to the scalar potential (24) are V ∼ Λ4+n
c φ−n(1+

O(Λ2
cφ

−2)) [28]. They are not important because we have φ ≥ Λc and are
negligible at late times when φ	 Λc.

3.2 Gauge Unification Condition

In order to have a model with gauge coupling unification the scale Λc given
in (20) or (24) must be identified with the energy scale in (18). However,
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Table 1. We show the matter content for the three different models and we give
the number of degrees of freedom for the susy and non susy Q group in the last two
columns, respectively. Notice that the condensation scale and bo is the same for all
models.

Num Nc Nf ν n bo Λc(eV ) gQs

I 3 6 1 2/3 3 42 97.5
II 6 15 3 2/3 3 42 468.5
III 7 18 4 6/11 3 42 652.5

not all values of Λc will give an acceptable cosmology. The correct values of
Λc depend on the cosmological evolution of the scalar condensate φ which is
determined by the power n in (24). The Λc scale can be expressed in terms
of present day quantities from (20) by [18, 30]

Λc =
(
3H2

oyo
2φno c

−2) 1
4+n

�
(
3H2

oΩφo
) 1

4+n (25)

where y2 ≡ V/3H2 � Ωφ, with Ωφo = 0.7. A rough estimate of (25) gives
Λc � H

2/(4+n)
o since we also expect φo = O(1) [18] today (we are living at the

beginning of an accelerating universe). The number of models that satisfy the
unification and cosmological constraints of having Ωφo = 0.7, ho = 0.7 (with
the Hubble constant given by Ho = 100ho km/Mpc sec) and wφo < −2/3
[5] is quite limited [18]. In fact there are only three models given in Table 1.
These models are obtained by equating Λc from (18), which is a function of
Nc, Nf through bo, and (24), which is also a function of Nc, Nf , ν through n.
The exact value of yo, φo must be determined by the cosmological evolution
of φ (c.f. (1)) starting at Λc until present day. For an acceptable model the
parameters Nc, Nf and ν must take integer values. We consider an acceptable
model when Λc in (18) and (25) do not differ by more than 50%. With this
assumption there are only 3 models, given in Table 1, that have (almost)
integer values for Nf . In all these models one has n ≤ 2/3 and the quantum
corrections to the Kahler potential are, therefore, not dangerous. All other
combinations of Nc, Nf , ν do not lead to an acceptable cosmological model.
From (25) one has for n ≤ 4.27 a scale Λc ≤ 6.5 × 103GeV and from (18)
this implies that bo ≤ 5.7. Since bo = 3Nc −Nf = 2Nc + 4ν/(n− 2) and the
minimum acceptable value for Nc is two one finds bo ≥ 4+4ν/(n−2). Taking
2 < n ≤ 4.27 gives a value of bo ≥ 5.7. The value of n = 4.27 gives the upper
limiting value for which we can find a solution of (18) and (25). We see that
it is not possible to have quintessence models with gauge coupling unification
with 2 < n < 4.27. In terms of the condensation scale the restriction for
models with 2× 10−2GeV < Λc < 6× 103GeV .

Using n = 2 + 4ν/(Nc − Nf ) or equivalently Nf = Nc + 4ν/(n − 2)
with bo = 3Nc − Nf = 2Nc + 4ν/(n − 2) we can write from (18) as bo =
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8π2/g2
gut(Log(

Λgut

Λc
))−1 and Nc [30]

Nc =
1
2
bo +

2ν
2− n

=
4π2

g2
gut

(Log[
Λgut
Λc

])−1 +
2ν

2− n (26)

From (25) we have Λc as a function of n (with the approximation of y2
oφ

n
o = 1)

and Nc in (26) becomes a function of n and ν only. For 2×10−2GeV < Λc <
6.5 × 103GeV we have a Nc < 2 and therefore are ruled out. In terms of n
the condition is that models with 2 < n < 4.27 are not viable. In deriving
these conditions, we have taken ν = 1 which gives the smallest constraint to
Nc as seen from (26).

The upper limit Λc > 6.5×103GeV has n > 4.27 (c.f. (25)). As mentioned
in the introduction, the value of wφo depends on the initial condition Ωφi and
on n [18]. The larger n the larger wφo will be (same is true for the tracker value
wtr = −2/(2+n)). It has been shown that assuming an initial value of Ωφi no
smaller than 0.25 then the value of wφo will be less then wφo < −2/3 only if
n < 2.74 [18]. Therefore, the models with n > 4.27 are not phenomenological
acceptable and since 4.27 > n > 2 are also ruled out by the constraint on
gauge coupling unification, we are left with models with [30]

Λc < 2× 10−2GeV or n < 2. (27)

So, only models with a cosmological late time phase transition are allowed.

3.3 Thermodynamics, Nucleosynthesis Bounds,
and Initial Conditions

Before determining the evolution of φ we must analyze the initial conditi-
ons for the SU(DG) gauge group. The general picture is the following: The
“DG” gauge group is by hypothesis, unified with the SM gauge groups at
the unification energy Λgut. For energies scales between the unification and
condensation scale, i.e. Λc < Λ < Λgut, the elementary fields of SU(DG) are
massless and weakly coupled and interact with the SM only gravitationally.
The DG gauge interaction becomes strong at Λc and condense the elementary
fields leading to the potential in (24).

Since for energies above Λgut we have a single gauge group it is naturally
to assume that all fields (SM and DG) are in thermal equilibrium. However,
at temperatures T < Tgut the gauge group DG is decoupled since it interacts
with the SM only via gravity.

The energy density at the unification scale is given by ρTot = π2

30 gTotT
4,

where gTot = ΣBosons + 7/8ΣFermions is the total number of degrees of
freedom at the temperature T . The minimal models have gTot = gsmi+gDGi,
with gsmi = 228.75 and gDGi = (1+7/8)(2(N2

c −1)+2NfNc) for the minimal
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supersymmetric standard model MSSM and for the SU(DG) supersymmetric
gauge group with Nc colors and Nf (chiral + antichiral) massless fields,
respectively. The initial energy density at the unification scale for each group
is simply given in terms of number of degrees of freedom, Ω = ρ/ρc,

ΩDGi(Λgut) =
gDGi
gTot

, Ωsmi(Λgut) =
gsmi
gTot

(28)

with Ω = ΩDG+Ωsm = 1. Since the SM and DG gauge groups are decoupled
below Λgut, their respective entropy, Sk = gka

3T 3 with gk the degrees of
freedom of the k group and a the scale factor of the universe (see (2)), will
be independently conserved. The total energy density ρ as a function of the
photon’s temperature T above Λc (i.e. Λc < Λ < Λgut), with the DG fields
still massless and redshifting as radiation, is given by

ρ =
π2

30
g∗T 4 (29)

with

g∗ = gsmf + gDGf

(
TDG
T

)4

= gsmf + gDGf

(
gsmfgDGi
gsmigDGf

)4/3

(30)

and gsmi, gsmf , gDGi, gDGf are the initial (i.e. at decoupling) and final stan-
dard model and DG model relativistic degrees of freedom, respectively. From
the entropy conservation, we know that the relative temperature between the
standard model and the DG model is given by

TDG
T

=
(
gsmfgDGdec
gsmdecgDGf

)1/3

(31)

where gsmdec stands for the degrees of freedom when the DG-particle decouple
from the SM. It is clear that the energy density for the DG model ρDG =
π2/30gDGT 4

DG in terms of the photon’s temperature T is fixed by the number
of degrees of freedom,

ΩDGf =
gDGfT

4
DG

g∗T 4

=
gDGf (TDG/T )4/3

gsmf + gDGf (TDG/T )4/3
. (32)

Equation (32) permits us to determine the energy density of the DG group
at any temperature above the condensation scale.

3.4 Energy Density at the Condensation Scale

We would like now to determine the energy density at the condensation scale
which will set the initial energy density for the scalar composite field φ.



238 A. de la Macorra

Just above the condensation scale Λc we take, for simplicity of argument,
that all particles in the DG group are still massless and we can use (32) to
determine the ΩDG(Λc) with gDGi = gDGf giving [30]

ΩDGf =
gDGf (TDG/T )4/3

gsmf + gDGf (TDG/T )4/3
. (33)

If the decoupling of DG particles is above neutrino decoupling (around
1MeV ) then for temperatures below 1MeV one has TDG/T = (43/11/
gsmdec)1/3. At Λc we have a phase transition and we no longer have ele-
mentary free particles in the DG group. They are bind together through the
strong gauge interaction and the acquire a non-perturbative potential and
mass given by (24). In other words, below the condensation scale there are
no free “quarks” DG and we have “meson” and “baryon” fields.

If we consider only the SM and the DG group, the energy density within
the particles of the DG group must be conserved since they are decoupled
from the SM (the interaction is by hypothesis only gravitational). All the
energy density of the DG group is transmitted into dark energy (and possible
dark matter, see Sect. 4) at the condensation scale Λc. This is a natural
assumption from a particle point of view but is not crucial from a cosmological
point of view, in the sense that any “reasonable” fraction of the energy density
in the DG group would give a correct cosmological evolution of the φ field.
We would like to stress out that the initial condition for φ is no longer a free
parameter but it is given in terms of the degrees of freedom of the MSSM
and the DG group.

3.5 Nucleosynthesis Constraint on the Energy Density

The big-bang nucleosynthesis (NS) bound on the energy density from non
SM fields, relativistic or non-relativistic, is quite stringent ΩDG < 0.1 − 0.2
[31, 32].

If the DG gauge group condense at temperatures much higher than NS
then, the evolution of the condensates will be given by (2) with the potential
of (20) and we must check that ΩDG at NS is no larger than 0.1-0.2. This will
be, in general, no problem since it was shown that even for a large initial ΩDG
at the condensation scale the evolution of φ is such that ΩDG decreases quite
rapidly and remains small for a long period of time (see figure 2) [17, 18].

On the other hand, if the gauge group condenses after NS we must de-
termine if the DG energy density is smaller than ΩDG < 0.1 − 0.2 at NS.
Since the condensations scale Λc is smaller than the NS scale, all fields in
the DG group are still massless and the energy density is given in terms of
the relativistic degrees of freedom and from (32) to set a limit on gDGf and
gDGi,

∆gDG ≡ g
−1/3
DGf g

4/3
DGi =

ΩDG
1−ΩDG

g
−1/3
smf g

4/3
smi (34)
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and for gDGf = gDGi = gDG

∆gDG = gDG =
ΩDG

1−ΩDG
g

−1/3
smf g

4/3
smi (35)

where we should take gsmf = 10.75 at the final stage (i.e. NS scale) and
gsmi = 228.75 at the initial stage (i.e. at unification) for the minimal super-
symmetric standard model MSSM. For ΩDG ≤ 0.1, 0.2 (34) gives un upper
limit on the number of relativistic degrees of freedom ∆gDG ≤ 70, 158 res-
pectively (or gDG ≤ 70, 158 if gDGf = gDGi = gDG).

The l.h.s. of (34) depends on the initial (i.e. at unification) and final
(at NS) number of degrees of freedom of the gauge group DG. The smaller
(larger) the initial (final) degrees of freedom of DG the smaller ∆gDG and
ΩDG will be.

4 Dark Matter

We would like to see now if the dark group responsible for giving the dark
energy through its scalar condensates can at the same time account for the
missing dark matter [34].

The restrictions on DM is that it must have ΩDM = 0.25 ± 0.1 and it
should allow for structure formation at scales larger than Mpc. As we will
see later our models have a warm DM with a mass of the order of keV .
There are still problems with cold and warm DM models. Cold DM have
an overproduction of substructure of galactic halos which a warm DM model
does not have [11]. On the other hand, recent observations on the reionization
redshift [1] seem to indicate that warm dark matter is not a good candidate.
However, the value of the parameters used are still not well established which
makes the conclusion not definite [10]. So, we believe that further studies need
to be done in order to fully set the nature of dark matter.

If we have a dark gauge group with Nc < Nf then on top of the gauge
singlet meson fields we can have gauge singlet dark baryons Bi,...,Nc =∏Nc

i Qi and anti–baryons. These particles get a non-vanishing mass due to
non-perturbative effects (like protons and neutrons in QCD). These baryons
could be degenerated in mass or there could be a lightest massive stable
baryon. The order of magnitude of the mass of the DM particle can be esti-
mated by dimensional analysis and it must be given by the condensation
scale

m = k Λc (36)

with k = O(1) a constant. In this picture we have at high energies E > Λc a
DG with massless particles. At Λc non-perturbative effects, due to a strong
coupling, generate a mass for dark baryons and a scalar potential for dark
meson. The DM is the massive stable particle with mass given by (36) while
the quintessence with potential (20) gives the DE.
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Before studying the dynamics of the DG let us determine the constraint
on the temperature and mass for DM in order to agree with structure for-
mation. The relative temperature of the decoupled particle compared to
the photon temperature T is given by (31). For a neutrino one has at
decoupling gsmdec = 11/2, gsmf = 2 and with gDGf = gDGdec one has
Tν = T (4/11)1/3 = (1/1.76)T . However, if the decoupling is at a high energy
scale, say T 	 103GeV , then all particles of the standard model are still
relativistic and gdec = 106.75, 228.75 for the non-susy and susy standard
model respectively giving a temperature TD = T (43/11/gsmdec)1/3 (below 1
MeV with gsmf = 43/11 that takes into account neutrino decoupling) with
TD � (1/3)T for non-susy SM and TD � (1/3.88)T for the susy-SM. The
temperature of DG is in these cases 3 − 4 times smaller then the photon
temperature and 2 − 3 times smaller then Tν . If there are more relativistic
degrees of freedom coupled to the susy-SM (could be Kaluza-Klein states or
other gauge groups, e.g. gauge group responsible for susy breaking [30]) at
decoupling then TD would be even smaller.

We can set an upper and lower limit to ΩDG. The smallest number of
degrees of freedom would be for a gauge group with Nc = 2, Nf = 1 gi-
ving gDG = 18.75. While the upper limit on gDG comes from Nucleosyn-
thesis “NS” bounds which requires an upper limit to any extra energy den-
sity. This limit is ΩDG(NS) ≤ 0.1 − 0.2 [31]. Since from (34) gDG/g

4/3
dec =

(10.75)−1/3ΩDG(NS)/(1 − ΩDG(NS)) the NS bound sets un upper limit
gDG ≤ 0.05g4/3

dec , 0.113g4/3
dec for ΩDG(NS) ≤ 0.1, 0.2, respectively. Taking

gDG ≤ 0.113g4/3
dec ∼ 158(gdec/228.75)4/3 we obtain un upper limit ΩDGc ≤

0.17 at any condensation scale below 1MeV .
The free streaming scale λfs gives the minimum size at which perturbati-

ons survive. For scales smaller than the λfs the perturbations are wiped out.
For structure formation it is required that λfs ≤ O(1)Mpc. One has [12]

λfs � 0.2(ΩDMh2)1/3(1.5/g′
DM )1/3(keV/m)4/3 (37)

= 0.079(ΩDMh2)−1(g′
DM/1.5)(228.75/gdec)4/3

where g′
DM = gbDM + 3/4gfDM with gbDM the bosonic, gbfDM the fermion

degrees of freedom of DM and we used (38) in the second equality of (37).
The energy density of the DG will be divided in DE (quintessence) and

DM. For DM the entropy conservation gives nDM/nγ = (g′
DM/2)(TD/T )3

where nDM , nγ = 2(ζ(3)/π2)T 3 are the number density for DM and photon
respectively. Since the energy density for matter is ρm = nm and using ργ =
nγ(π4/30ζ(3))T we can write ΩDMo = Ωγo(ζ(3)30/π4)(nDM/nγ)(m/Tγo) =
Ωγo(ζ(3)30/π4)(g′

DM/2)(m/Tγo)(TD/T )3 giving [34]

ΩDMo = 0.25
(

0.71
ho

)2 (
g′
DMm

gdec1.66 eV

)
(38)

where we have used in the last equation the present day quantities h2
oΩγ =

2.47× 10−5, Tγo = 2.37× 10−13GeV . Equation (38) is valid for all DM that
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decouples at temperature Ti 	 103GeV from the susy-SM. Taking the central
values of wmap [1] ΩDMoh

2
o = 0.135−0.0224 = 0.1126 (where Ωbh2 = 0.0224)

one gets a neutrino mass m = 12 eV and λfs = 36Mpc giving the usual hot
DM problem. It cannot form structure at small scales. For a model that
decouples from the susy-SM at T 	 103GeV one has TD/T ≤ 1/3.88 with
gdec ≥ 228.75, a mass m ≥ 381(254) eV for g′

DM = 1(1.5), respectively, and
(37) gives λfs � 0.62(0.41)Mpc. Allowing for a more conservative variation
of ΩDMo = 0.25±0.1 and ho = 0.7±0.05 the constraint on g′

DM m/gdec from
(38) is 0.83gdeceV ≤ g′

DM m ≤ 2.59gdeceV . The number of degrees of freedom
g′
DM is not arbitrary since 0.113g4/3

dec ≥ gDG > g′
DM ≥ 1, as discussed above.

This bound implies that the mass of the DM particle must be [34]

1.2(228.75/gdec)1/3 eV ≤ m ≤ 593(gdec/228.75) eV. (39)

For gdec ≤ 228.75 one has m ≤ 593 eV while for m ≥ 750 eV, 1keV one
requires gdec ≥ 450(676), 600(901) for g′

DM = 1(1.5), respectively.
If we do not want to relay on having the same initial temperature between

the SM and DG we can estimate the amount of DM by the backward evolution
of DM from present day to the phase transition scale Λc where the particles
acquire a mass. The evolution of the DM is ρDMo = ρDM (a/ao)3 where a(t)
is the scale factor. In terms of ΩDM = 3H2ρDM (we have taken 8πG =
1/m2

pl = 1) we can write the DM energy density as

ΩDMo = ΩDMc(Ωro/Ωrc)
3
4 (H2

c /H
2
o )

1
4 (40)

where we have expressed ac/ao = (ΩroH2
o/ΩrcH

2
c )

1/4. The evolution of the
DE depends on the specific potential. However, the non-abelian gauge dyna-
mics leads to an inverse power potential of the form [23, 17, 30]

V = Λ4+n
c φ−n (41)

where φ =< Q̄Q > is the condensate of the elementary fields. Here we will
treat n as a free parameter but it can be related to Nc, Nf by n = 2 +
4ν/(Nc −Nf ) and ν counts the number of light condensates [17, 30]. When
the kinetic term is much smaller than the potential energy one has ΩDE �
Λ4+n
c φ−n/3H2. This is certainly valid for present day since we require ρDE

to accelerate the universe and the slow roll condition Ek � V must be
satisfied. Since the beginning of an accelerated epoch is very recently one has
φo � 1 [23]. Of course, a numerical analysis must be performed [17, 30] in
order to obtain the precise values of φo, wφo but the analytic solution is a
reasonable approximation. At the condensation scale Λc the initial value of
the condensate φc must be giving by Λc and taking φc = Λc [17] we have

ΩDEc =
Λ4
c

3H2
c

, ΩDEo =
Λn+4
c

3H2
o

. (42)

Using (40) and (25) we can write [34]
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ΩDMo = ΩDMc(Ωro/Ωrc)
3
4 (ΩDEo/ΩDEc)

1
4Λ

− n
4

c (43)

where we have used H2
o/H

2
c = (ΩDEc/ΩDEo)Λnc . Using Λc = (3ΩDEoH2

o )
1

4+n

in (43) we can determine the allowed range of values of n and Λc. The al-
lowed range is quite limited. Taking the central wmap values ho = 0.71,
ΩDMo = 0.25 [1] with g′

DM = 1.5 (i.e. gDM = 7/4) and taking as examples
gDG = 97.5(160) we get for gdec = 228.75, 676, 901 an inverse power n =
0.78(0.79), 0.87(0.88), 0.90(0.91) and Λc = 189(214), 559(634), 745(845) eV ,
respectively. If we allow for a conservative variation ΩDMo = 0.25± 0.1 and
ho = 0.7±0.05 and taking gDGc = 97.5 and the upper value gDGc = 0.113g4/3

dec

(results in parenthesis) then the range for n and Λc for gdec = 228.75, 676, 901
is 0.34, 0.42, 0.44 (0.31, 0.29, 0.28) ≤ n ≤ 0.87,0.96,0.98 (0.88, 1.0, 1.04) and
0.55, 1.63, 2.17 (0.34, 0.23, 0.21) eV ≤ Λc ≤518, 1530, 2040 (585, 2484,
3645) eV , respectively, where the lower limit has gDMc = gDGc − 1, ho =
0.65, ΩDMo = 0.15 and the upper limit has gDMc = 1, ho = 0.75, ΩDMo =
0.35. We see that the allowed range is [34]

0.28 ≤ n ≤ 1.04 ⇔ 0.21 eV ≤ Λc ≤ 3645 eV (44)

given for gdec ≤ 901. Increasing gdec would enlarge the range of n,Λc but
not significantly. In Fig. 1 we show the behavior of ΩDMo as a function
of n for different values of gDGc = 0.113g4/3

dec with gdec = 228.75, 676, 901
(solid,dashed and dotted lines, respectively) for the extreme values of gDMc

given by gDG−1 ≥ gDMc ≥ 1. The allowed region is in between the horizontal
lines ΩDMo = 0.15−0.35. From (44) we see that there is only a limited range
of condensation energy scales and IPL parameter n that allows for a gauge
group to give the correct DM and DE densities. It is also interesting to note
that the lower limit on Λc is very similar to the one obtain by CMB analysis
[30] where the minimum scale was Λc = 0.2 eV . On the other hand, the
evolution of quintessence requires for ΩDEc < 0.17 an IPL parameter n to
be smaller than n ≤ 1.6 for wDEo ≤ −0.78 which is the upper value of
wmap. For smaller ΩDEc we will need a smaller n, e.g. ΩDEc = 0.05 requires
n ≤ 1.05. So, once again there is a consistency within the acceptable values
of n coming form different considerations (amount of DM and observable
wDEo). The constraint on Λc is very similar to the constraint obtained for
the DM particle mass m obtained in (39). The similarity m ∼ Λc is required
by non-abelian gauge dynamics and it is indeed satisfied as can be verified
using (38), (25) and (43) [34]

k ≡ m

Λc
=

π4

ζ(3)30
gDMc

g
1/4
DEcg

′
DM

(45)

with π4/(ζ(3)30) � 2.7. Equation (36) should be compared with (45). There
is a subtle point on the values of gDMc, gDEc, g

′
DM . The “true” degrees of

freedom of the dark matter particles (i.e. the lightest field of the dark gauge
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Fig. 1. We plot ΩDMo as a function of the IPL parameter n. The allowed region is
the one between the horizontal lines ΩDMo = 0.15 − 0.35 and the curves with the
limiting values of gDM = 1.5 and gDG − 1 for gdec = 228.75, 676, 901 (solid,dashed
and dotted lines, respectively).

group) are given by g′
DM while gDMc and gDEc represent the proportion of

energy density that goes intoΩDMc andΩDEc. It is reasonable to assume that
the particles of the dark group will decay into the lightest state. Therefore
we expect gDMc > g′

DM and m > Λc.

5 Phenomenological Approach

The best way to determine what kind of energy is the dark energy is trough
the equation of state parameter wDE we and through its imprint on the CMB.
This presentation is based on [35]. We will analyze the contribution to the
CMB from a dark energy with a γDE = wDE + 1 that takes four different
values [35]. It will have a wDE = 1/3 for energies above a certain scale Λc,
which we will call the phase transition scale. Starting at Λc we will have a
region with wDE = 1 and duration ∆N1, where N is the logarithm of the
scale factor a (N = Log[a]). Thirdly we will have wDE = −1 for almost the
same amount of time as in the previous period, ∆N2 � ∆N1, and finally we
will end up in a region with −1 ≤ wDEo = cte ≤ −2/3 for a duration of
∆No. The cosmological evolution and the resulting CMB will have only four
new parameters ∆N1, ∆N2, ∆No and wDEo. By varying these parameters we
will cover a wide range of models. In particular we will cover all quintessence
models.

The analysis of the CMB with this kind of dark energy does not depend
on its nature, it could be a scalar field (quintessence) or any other form of
dark energy that gives the four sectors described above. In Fig 2 we show
an example with an IPL potential with n = 1 and ΩDEi = 0.05 and we see
that the w = 1/3, 1,−1, wtr = cte approximation fits well with the numerical
wDE . The strategy is to analyze the spectra of CMB, using a modified version
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Fig. 2. We show the evolution of wDE and ΩDE , solid and dashed lines respectively
for an IPL potential with n = 1 and ΩDEi = 0.05 as a function of N = Log[a],
where a is the scale factor. The dotted line represents the theoretical approximation
wDE and we see that it makes a good fit to the numerical solution. Ni is given at the
initial scale Λc and N1, N2 give the end of the regions with wDE = 1, −1 respectively
while the solid vertical line at No denotes present day. Notice that for N < Ni we
are assuming that the energy density ρDE redshifts as radiation with wDE = 1/3.

[13, 14] of CMBFAST [15] to include an energy density with a varying w, in a
model independent way and see from its result if we can distinguish between
different quintessence models, tracker, cosmological constant or other kinds
of exotic energy densities.

In the case of a scalar field, we will assume that the scalar field appears
at a scale Λc with an energy density ΩDE(Λc). The late time appearance of
the φ field suggests that a phase transition takes place creating the scalar
field. We are not concern with the precise mechanism of its appearance (see
[17, 30]). However, energy conservation would suggest that the energy density
of the φ field after the phase transition would be given in terms of the energy
density of the system before the phase transition and we will take them to
be equal. It is natural to assume that all the energy density before the phase
transition, in this sector, was relativistic. If the phase transition takes place
after nucleosynthesis “NS” then the primordial creation of nuclei puts an
upper limit to the relativistic energy density to be less than 0.1-0.2 of the
critical energy density [31, 32]. If Λc is larger than the NS scale then we do
not need to worry about the NS bound since independent of its initial value,
ΩDE will drop rapidly and remain small for a long period of time (covering
NS).

In a chronological order, we would start with a universe filled with the
SM particles and a DG sector (could be another gauge group) and with
gravitational interaction between the two sectors only. In both sectors all
fields start massless, i.e. they redshift as radiation. The evolution of the SM
is the standard one and we have nothing new to say. However, the DG sector
will have a phase transition at Λc leading to the appearance of a scalar field
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φ with a potential V (φ), the quintessence field. Above Λc the fields in this
sector behave as radiation. The evolution of φ for energies below Λc is that
of a scalar field with given potential V . However, the precise form of V is
unknown. In Table 1 we show the different model independent regions that
we consider. The model dependence lies only on the size of these different
periods and on the value of γDE in the last region.

From a cosmological point of view we have only 4 free parameters ∆N1 =
Ni − N1, ∆N2 = N1 − N2, ∆No = N2 − No and γDEo (the value of γDE
during the third period), where N ≡ log[a] with a the scale factor. With
these parameters we cover all models. The cosmological parameters can be
expressed in terms of the field theoretical parameters ΩDEi, Λc, ymin and
γDEo.

Table 2. We show the different regions, its duration and the value of γDE in each
region with N = Log[a] and No is at present day.

Sector Energy Duration γDE = wDE + 1
Radiation E > Λc Ni < N 4/3

First E1 < Λc Ni < N < N1 2
Second E2 < E1 N1 < N < N2 0
Third E3 < E2 No < N < N2 λ2ΩDE/3

5.1 Evolution of w

We have seen the evolution of x, y,H in the preceding subsection and we
would like now to show how wDE evolves in a general framework.

The evolution of the equation of state parameter, γDE = 1+wDE , as given
by (4) has a generic behavior for all scalar fields independent of its potential.
We see that (γDE)N = 0 has three solutions, γDE = 2, 0 and λ2ΩDE/3 [35] (or
wDE = 1,−1 and λ2ΩDE/3−1). The parameter γDE will be most of the time
in either of the three critical points. Independent of its initial value it will go
quite rapidly to γDE = 2 and remain there for a long period of time. The fast
increase in γDE is because λi 	 1. This stage represents a scalar field whose
kinetic energy density dominates (Ek 	 V ), it is called the kinetic region,
and the energy density redshifts as ρDE ∼ a−6 = e−6N . Afterwards it will
sharply go to γDE = 0 and stay there during almost the same amount of time
as in the first stage. This second period is valid when the potential energy
dominates (Ek � V ) and the energy density redshifts as a cosmological
constant with ρDE ∼ a0 ∼ cte. Finally it will go to its last period given
by the tracker value γtr = λ2ΩDE/3 where it will remain. This last critical
value γtr = λ2ΩDE/3 is not necessarily constant (λ,ΩDE evolve in time).
The energy density redshifts as a tracker field ρDE ∼ a−3γtr = e−3Nγtr .

Let us define the quantity
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A ≡ λ

√
ΩDE
3γDE

. (46)

We see from (4) that the sign of γφN depends if A > 1 or A < 1. For A > 1 we
have γφN ≥ 0 and the value γφmax = 2 or wDE = 1, which is the maximum
value for γDE , is a stable point. For A < 1 we have γφN ≤ 0 and the value
γDE = wDE + 1 = 0 will be a stable point also.

We will denote the beginning of the kinetic term by Ni and the end by
N1. The second period (γDE = 0) starts at N1 and finishes at N2 while
the last period starts at N2 and lasts until present day No. We have then,
∆N1 ≡ N1 − Ni and ∆N2 ≡ N2 − N1, the amount of e-folds during the
γDE = 2 and γDE = 0 periods, respectively, and ∆No ≡ No −N2 the size of
the tracking period.

First Period, w=1

At the initial time since λi 	 1 we have A > λ
√
ΩDEi/6	 1 since γDE ≤ 2.

From (4) we see that the derivative (γDE)N 	 1 and γDE will rapidly go
to its maximum value 2. The period of γDE � 2 remains valid for a long
period of time since for x(Nmin)2 = ΩDEi 	 y2

min one has γDE(Nmin) =
2x(Nmin)2/(x(Nmin)2 + y2

min) � 2(1 − y2
min/x(Nmin)2) � 1. So we expect

γDE to be close to two until y ∼ x. We will have at the end of the period
N = N1, γDE ∼ 2 and ΩDE(N1) = r1/(1 + r1)� 1 with

r1 ≡
ρDE(N1)
ρb(N1)

=
ρDE(Ni)
ρb(Ni)

e−3(N1−Ni)(2−γb). (47)

Second Period, w=-1

The second stage starts when 1 	 x ∼ y and γDE ∼ 0. The transition time
between γDE = 1.9 and γDE = 0.1 is quite short, about ∆N = 1− 1.5, so we
do not take it into account. In this second region we are still in the scaling
regime with yH = cte and since we have ΩDE � 1 we have A � 1 and
(γDE)N < 0. The quantity γDE has been decreasing and it will arrive at its
minimum possible value γDE � 0 or wDE � −1. As long as A < 1 the value
of γDE ∼ 0 will remain constant.

During the second period we have, γDE ∼ 0, φ ∼ cte, λ = λmin and the
evolution of ΩDE(N2) = r2/(1 + r2) is given by

r2 ≡
ρDE(N2)
ρb(N2)

=
ρDE(N1)
ρb(N1)

e3(N2−N1)γb . (48)

Since in this period ρDE redshifts much slower than radiation or matter,
ΩDE will increase and A will eventually become larger than one again. The
second period ends (as the scaling period) when (14) is no longer valid and
the first term in the equation yN of (2) cannot be neglected. This happens
for x(N2) ∼ λ(N2)−1 (c.f. discussion below (16)).
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Third Period, w=wtr

The third period starts when γDE is not too small (i.e. x is comparable
to y and γDE = O(1/10)). During this region we will have A > 1 and a
growing γDE . However, in this case γDE will not arrive at the maximum
value γDE = 2 since λ is not very large and γDE will be stabilized at the
critical point γφN � 0 with

γtr = λ2ΩDE/3. (49)

We will have ΩDE(No) = r3/(1 + r3) with

r3 ≡
ρDE(No)
ρb(No)

=
ρDE(N2)
ρb(N2)

e−3(No−N2)(γtr−γb) (50)

If γtr < γb then ΩDE → 1. While λ2ΩDE remains constant we have the
constant tracker value for γDE or wDE . A constant γDE is possible when
ΩDE � 1. However, at late times the attractor value will be γtr → 0 and
ΩDE → 1 since ΩDE is constrained to be smaller than one and λ → 0.
But, even for γtr not constant the evolution of γtr in (49) is valid and the
value generalizes the tracker behavior. For an inverse power law potential
V = Voφ

−n we have λ = n/φ and γtr = n2ΩDE/3φ2 which is the valued
obtained by [9],[18].

5.2 Duration of the Periods and Relation to the Field Parameters

In order to know the relative size of the different periods we can use (47) and
(48). Combining both (47) and (48) we have

r2
ri

=
ρDE(N2)ρb(Ni)
ρb(N2)ρDE(Ni)

= e−3∆N1(2−γb)+3∆N2γb (51)

Solving for ∆N2 in (51) we obtain [35]

∆N2 = ∆N1

(
2
γb
− 1

)
+

1
3γb

Log

[
r2
ri

]
(52)

If we use the result of quintessence evolution at the beginning and end of
the scaling period ΩDE(N2) = ΩDEi(Ni) given in (17) we have r2 = ri. For
matter, γb = 1, and (52) gives ∆N2 = ∆N1 while for radiation, γb = 4/3,
and ∆N2 = ∆N1/2. The universe has been dominated by matter for a period
of No − Nrm � 8, where No stands for present day value and Nrm for the
scale at radiation-matter equivalence.

Including the third period we have from (47), (48) and (50) [35]

r3
ri

=
ρDE(No)ρb(Ni)
ρb(No)ρDE(Ni)

= e−3∆N1(2−γb(N1))+3∆N2γb(N2)−3∆No(γtr−1)

=
r2
ri

e−3∆No(γtr−1), (53)
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∆No =
3

1− γtr
Log

[
r3
r2

]
=

3
1− γtr

Log

[
ΩDEo

1−ΩDEo
1−ΩDE(N2)
ΩDE(N2)

]
(54)

where we have assumed that the third period is already at the matter domina-
ted epoch, γb(No) = 1. If we take in (54) the equality ΩDEi(Ni) = ΩDE(N2)
the size ∆No and the value of γtr will set the initial energy density ΩDEi. Of
course, on the other hand, if we know ΩDEi then we can determine ∆Noγtr.

Let us now relate the four field parameters Λc, ΩDEi, ymin, γDEo to the
size of the different periods. The amount of e-folds between the initial time
Ni at Λc and N1, the scale where w goes from w = 1 to w = −1 is set by the
condition x ∼ y � 1. We use the evolution of x from (16) and (13) to get

∆N1 ≡ N1 −Ni =
1
3
Log

[
x(Nmin)
ymin

]
(55)

were we have assumed Ni � Nmin. Equation (55) is independent of γb. We
can take x(Nmin) =

√
ΩDEi, yi �

√
ΩDEi and for an IPL model we have

ymin � yi(Λc/
√
ΩDEi)n/2 and (55) gives

∆N1 =
n

6
Log

[√
ΩDEi
Λc

]
. (56)

The amount of e-folds between the initial time Ni at Λc and the end of the
scaling period N2 is given by (16), (9) and (17) with y ∼ x but this time we
have with x = 1/λ(Nmin) ∼

√
ΩDEi, yi ∼

√
ΩDEi giving

∆N1 +∆N2 = N2 −Ni =
2

3γb
Log

[
y2
ymin

]
=

n

3γb
Log[

√
ΩDEi
Λc

]. (57)

Notice that (57) minus (56) gives ∆N2 in (52). Summing (57) and (54) we
have [35]

∆NT ≡ No −Ni =
n

3γb
Log[

√
ΩDEi
Λc

] +
3

1− γtr
Log

[
ΩDEo

1−ΩDEo
1−ΩDEi
ΩDEi

]

(58)
which gives the total scale∆NT between the initial time at Λc and present day
and we taken ΩDEi = ΩDE(N2) in (58). Alternatively we can estimate the
magnitude of the phase transition scale Λc. From Λc ≡ V

1/4
i = (3ΩDEiH2

i )
1/4

and using the approximation that ΩDE � 1 during almost all the time
between present day and initial time (at Λc) we have

Hi = Ho e
3γb∆NT /2 (59)

giving a scale
Λc = (3ΩDEiH2

o )
1/4 e3γb∆NT /4. (60)

The scale Λc increases with larger ∆NT . From (58) and (60) we can derive
the order of magnitude for Λc in terms of n and Ho giving Λc � H

2/(4+n)
o
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which is the well known result for IPL potentials [18]. If we know ∆NT then
we can determine Λc and the power n for IPL models. We see that the size of
the different regions can be determine by the four parameters Λc, ΩDEi, ymin
and γDEo.

How long do the periods last depends on the models and by vary-
ing the size of ∆N2, ∆No and γtr we cover all models. If ∆No = 0 and
∆N2 > ∆Nrm = No − Nrm then the model would be undistinguishable
from a true cosmological constant γDE = wDE + 1 = 0 since during all the
matter domination era the equation of state would be γDE = 0. If we have
∆No > ∆Nrm then the model reduces to tracker models with a constant γDEo
during all the matter domination era. So, our model contains the tracker and
cosmological constant as limiting cases.

More interesting is to see if we can determine the nature and scale of the
dark energy. For this to happen a late time phase transition must take place
such that Λc is at ∆NT = O(∆Nrm).

5.3 Analysis of CMB spectra

We will now analyze the generic behavior of a fluid with equation of state
divided in four different regions with wDE = 1/3, 1,−1, wDEo [35]. We will
vary the sizes of the regions and we will determine the effect of having regions
with wDE = 1/3 or wDE = 1 in contrast to a cosmological constant or
a tracker field (with −1 < wDEo = cte < −2/3). We compare the CMB
spectra with the data given in RADPACK [16]. This analysis is valid for all
kinds of fluids with the specific equation of state and it is also the generic
behavior of scalar fields. We will compare to the model wtr = −0.82 which
was found to be a better fit to CMB than a true cosmological constant [6].

5.4 Effect of Radiation Period, w=1/3

The first section we have wDE = 1/3 and the fluid (scalar field) redshifts
as radiation. As long as the fluid has wDE = 1/3 its energy density will
remain the same compared to radiation. If during nucleosynthesis the fluid
has wDE = 1/3 then the BBNS bound requires the ΩDE(NS) < 0.1 − 0.2
[31, 32].

In Fig. 3 we show the different CMB for wDE = 1/3, 0,−1 for ∆NT =
No − Ni = 9, ∆N2 = N2 − N1 = 4.5 and ∆No = No − N2 = 0. We have
chosen ∆NT = 9 because it is the smallest value satisfying the condition
∆N1 = ∆N2, ∆No = 0 and giving the correct CMB spectrum. We have
taken wDE = 1,−1 for Ni < N < N1 and N1 < N < N2 = No, respectively.

We see that the first and second peaks are suppressed for wDE = 1/3
compared to wDE = −1 while the third peak is enhanced. The positions of
the first two peaks is basically the same and the position of the third peak is
moved from 868 to 864 (0.4%), for w = 1/3,−1 respectively. For smaller Ni,
i.e. more distant from present day, the effect is suppressed. It is not surprising
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Fig. 3. We show the effect of the radiation on the CMB era for N < Ni by
changing wDE = 1/3, 0, −1 with ∆NT = ∆N1/2∆N2/2 = 9. The vertical axes is
l(l + 1)cl/2π(µK2).

since the Ni would be further way from energy-matter equality and its effect
on CMB would be less important. The total χ2 obtained by comparing the
CMB spectrum with the data [16] gives χ2 = 75, 74, 80 for wDE = 1/3, 0,−1
respectively.

5.5 Effect of First Period, w=1

In Fig. 4 we show the CMB for different values of wDE = 1, 0,−1 during Ni <
N < N1 and take w = 1/3 for N < Ni while wDE = −1 for N1 < N2 = No.
The effect of having a kinetic period enhances the first three peaks and shifts
the spectrum to higher modes, i.e. higher l. The curve for wDE = 0 is indi-
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Fig. 4. We show the effect of the kinetic era with Ni < N < N1 by varying
wDE = 1, 0, −1 with ∆NT = ∆N1/2 = ∆N2/2 = 9. The curves with wDE = 0 and
wDE = −1 cannot be distinguished. The vertical axes is l(l + 1)cl/2π(µK2).
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stinguishable from the wDE = −1 one. The position and height of the peaks
are p1 = (227, 5275), p2 = (559, 2605), p3 = (868, 2240) for wDE = 1 while
for wDE = −1 we have p1 = (224, 5138), p2 = (545, 2310), p3 = (832, 2165)
giving a percentage difference p1 = (1.3%, 2.6%), p2 = (2.5%, 12.7%), p3 =
(4.3%, 3.4%). We see that the largest discrepancy is the altitude of the se-
cond peak. The total χ2 gives 75, 78, 78 for w = 1, 0,−1 respectively.

The difference in height and positions may in principle distinguish bet-
ween a cosmological constant and a scalar field, or any fluid with the specific
equation of state behavior.

5.6 Equal Length Periods

We have studied the case with ∆N1 = ∆N2, ∆No = 0. In Fig. 5 we show the
behavior for different values of ∆NT = 2∆N2 = 6, 8, 9, 12, 16 giving a total
χ2 of 1685, 465, 75, 75, 78, respectively.

There is a lower limit of ∆NT that gives an acceptable CMB spectrum.
The lower limit is ∆NT ≥ 9. For smaller ∆NT the peaks move to the right of
the spectrum and the height increases giving a spectrum not consistent with
the CMB data.

For larger ∆NT > 9 the curves tend to the cosmological constant. It is not
surprising since for large ∆NT = 2∆N2 it means that we have a larger time
with w = −1 and in the case that ∆N2 > No − Nrm the universe content,
after matter radiation equality, would have been given by matter and a fluid
with wDE = −1, i.e. a cosmological constant.
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Fig. 5. We show the effect on the CMB by varying the ∆NT = ∆N1/2 = ∆N2/2 =
6, 8, 9, 12, 16 with ∆No = 0. The curves with ∆NT = 12, 16 cannot be easily distin-
guished. The vertical axes is l(l + 1)cl/2π(µK2).
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Fig. 6. We show the effect on the CMB by varying the ∆NT = No − Ni =
5, 7.1, 9.5, 12.5, with the constraint ΩDEi(Ni) = ΩDE(N2) = 0.1 and wDEo =
−1, ∆N2 = 1.03 and we include the cosmological constant wtr ≡ −1, for compa-
rison. The curves with ∆NT = 9.5, 12.5 cannot be easily distinguished from the
cosmological constant. The vertical axes is l(l + 1)cl/2π(µK2).

5.7 Scaling Condition

Following the discussion in Sect. 2.2, we now that a scalar field will end up
its scaling period with a ΩDE equal to its starting value, i.e. ΩDE(Ni) =
ΩDE(N2) = 0.1. We have taken this value of ΩDE since for N > Ni the
energy density behaved as radiation and we have to impose the nucleosyn-
thesis bound on relativistic degrees of freedom ΩDE(NS) ≤ 0.1− 0.2. Impo-
sing this condition we have determined the evolution of the CMB for three
different values of wDEo = −1,−0.82,−0.7. We have chosen to analyze the
wDEo = −0.82 because it was found to be the best fit tracker model by [6]
and we take the other two cases as the extreme ones. We have wDE = 1/3
for N ≤ Ni, w = 1 for Ni ≤ N ≤ N1, wDE = −1 for N1 ≤ N ≤ N2
and wDEo = wtr for N2 ≤ N ≤ No. The value of N2 is determined so
that the energy density grows from ΩDE(N2) = 0.1 to ΩDE = 0.7 today.
This conditions sets the range of the period to No −N2 = 1.03, 1.25, 1.47 for
wDEo = −1,−0.82,−0.7 respectively.

In Figs. 6 and 7 we show the curves for different values of Ni with the
restriction that ΩDE(Ni) = ΩDE(N2) = 0.1 and for wDEo = −1,−0.82,
respectively. In the case of wDEo = −1 we have ∆No = 1.03 and that the
smallest acceptable model has ∆NT = 8.5, ∆N2 = 3.6, see Fig. 6. The best
model has ∆NT = 8.88, N1 − No = 3.7 and peaks p1 = (224, 5133), p2 =
(549, 2363), p3 = (840, 2178) with χ2 = 75. The total χ2 obtained gives
697, 597, 77.3, 75.3 for ∆NT = 5, 7.1, 9.5, 12.5, respectively, and χ2 = 78 for a
cosmological constant.

For wDEo = −0.82, Fig. 7 we have ∆No = No − N2 = 1.25 and the
minimum acceptable distance is ∆NT = Ni −No = 7.19, ∆N2 = 3.9. Smal-
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Fig. 7. We show the effect on the CMB by varying the ∆NT = No − Ni =
5.3, 7, 7.2, 7.4, with the constraint ΩDEi(Ni) = ΩDE(N2) = 0.1 and wDEo =
−0.82, ∆N2 = 1.25. We also include the tracker with constant wtr ≡ −0.82. The
curves with ∆N1 = 7.2, 7.4 cannot be distinguished from the tracker one. The
vertical axes is l(l + 1)cl/2π(µK2).

ler values of ∆NT give a spectrum with peaks too large and second and
third peaks moved to the right (high l modes). For large ∆NT the spectrum
tends to the tracker spectrum wtr = −0.82. The total χ2 obtained gives
1004, 1285, 78, 75 for ∆NT = 5.3, 7, 7.2, 7.4, respectively, and χ2 = 98 for the
tracker wtr = −0.82.

The best model has ∆NT = N1 − No = 7.4, ∆N2 = 3 with peaks and
position p1 = (225, 5101), p2 = (555, 2493), p3 = (860, 2110) and it has a
better fit than the tracker model with constant wtr = −0.82 which was found
to be the best tracker fit [6]. We see that having a dynamical wDE is not only
more reasonable from a theoretical point of view but it fits the data better.

Finally, we consider wDEo = −0.7 for N > N2. In this case we have
∆No = No − N2 = 1.47 and the minimum acceptable model has ∆NT =
6.8, ∆N2 = 3.6, while the best model has ∆NT = 7.3, ∆N2 = 3.8 with peaks
p1 = (222, 4954), p2 = (550, 2422), p3 = (853, 2035). The total χ2 obtained
gives 711, 218, 82 for ∆NT = 5.5, 6.8, 7.3, respectively, and χ2 = 144 for the
tracker wtr = −0.7

We see that in all three cases wDEo = −1,−0.82,−0.7, with condition
ΩDE(Ni) = ΩDE(N2) = 0.1 we have a minimum acceptable value of ∆NT
and for smaller ∆NT the peaks move to the right of the spectrum and the
height of the peaks increases considerably. This conclusion is generic and
sets a lower limit to ∆NT , the distance to the phase transition scale Λc, or
equivalently it sets a lower limit to Λc.

The smallest ∆NT is set by the largest acceptable wDEo (here we have
taken it to be wDEo = −0.7) giving in our case a ∆NT = 6.8 for ΩDEi = 0.1.
This result puts a constraint on how late the phase transition can take place.
In terms of the energy Λc = ρ

1/4
DEi = [ΩDEi3H2

i ]
1/4 we can set a lower value

for the transition scale. Using (60) with ΩDEi = 0.1 and∆NT = 6.82 we get
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Λc = ρ
1/4
DEi = 2× 10−10GeV = 0.2 eV (61)

i.e. for models with a phase transition below (61) the CMB will not agree
with the observations. This result is independent of the type of potential.

Furthermore, we now that for inverse power potential there is an up-
per limit to Λc coming by requiring that wDEo < −2/3. The limiting value
assuming ΩDEi ≤ 0.1, for V = Λ4+nφ−n, is n < 1.8 giving Λc = 4MeV �
H

2/(4+n)
o . Therefore, for IPL potentials the only acceptable models have phase

transition scale
4 MeV > Λc > 0.2 eV. (62)

6 Conclusions

We have studied the dark energy necessary for explaining the positive accele-
ration and flatness of the universe and structure formation. We have derived
the model independent evolution of quintessence,i.e. a scalar field with only
gravitational coupling with the SM particles.

We proposed a quintessence model based on a non-abelian asymptotically
free gauge group. This group forms dynamically gauge invariant particles
below the condensation scale (as mesons and baryons in QCD) and it is these
scalar condensates that acquire a non trivial potential V and parameterize
the quintessence field. We have shown that an unification scheme, where
all coupling constants are unified, as predicted by string theory, leads to
an acceptable dark energy parameterized in terms of the condensates of a
non-abelian gauge group. Above the unification scale we have all fields in
thermal equilibrium and the number of degrees of freedom for the SM and
DG model determines the initial conditions for each group. Below Λgut the
DG group decouples, since it interacts with the SM only through gravity.
For temperatures above the condensation scale of the DG group its fields are
relativistic and redshift as radiation. Below Λc we have the gauge invariant
condensates.

We have also studied the possibility that the dark gauge group contains
the dark matter and energy. The allowed values of the different parameters are
severely restricted by different considerations. However, the constraints on the
dark energy and dark matter overlap allowing for the possibility of having a
gauge group containing both dark energy and dark matter. The NS constraint
on gDG sets a limit to the dark energy density at Λc of ΩDGc ≤ 0.17. The
evolution and acceptable values of DM and DE leads to a constraint of Λc
and n giving 0.21 eV ≤ Λc ≤ 3645 eV and 0.24 ≤ n ≤ 0.104 for gdec ≤ 901.
The evolution of the quintessence field requires also a small n in order to
have a small wDEo. For ΩDE ≤ 0.17 and wDEo ≤ −0.78 one needs n < 1.6.
On the other hand, the analysis of the CMB spectrum sets also a lower
scale for the condensation scale Λc > 0.2 eV with n > 0.27. So, from three
different analysis (quintessence, dark matter and CMB spectrum) we are led
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to conclude that the most acceptable models have a low condensation scale
Λc of the order of 1− 103 eV . The fact that the condensation is low explains
why the acceleration of the universe is at such a late time.

Finally, we have analyzed the CMB spectra for a fluid with an equation
of state that takes different values. The values are wDE = 1/3, 1,−1, wDEo
for N in the regions Ni −NPlanck, N1 −Ni, N2 −N1, No −N2, respectively.
The results are independent of the type of fluid we have. The cosmological
constant and the tracker models are special cases of our general set up.

We have shown that the evolution of a scalar field, for any potential
that leads to an accelerating universe at late times, has exactly the kind of
behavior described above. It starts at the condensation scale Λc and enters a
period with wDE = 1, then it undergoes a period with wDE = −1 and finally
ends up in a region with −1 ≤ wDEo ≤ −2/3. We have shown that the energy
density at the end of the scaling period (end of wDE = −1 region) has the
same energy ratio as in the beginning, i.e. ΩDE(Ni) = ΩDE(N2). The time
it spends on the last region depends on the value of ΩDE(N2) and on wDEo
during this time. Before the phase transition scale Λc we are assuming that
all particles were at thermal equilibrium and massless in the quintessence
sector. At the phase transition scale Λc the particles acquire a mass and a
non trivial potential.

We have shown that models with wDE = 1/3, 1,−1, wDEo have a better
fit to the data then tracker or cosmological constant. Furthermore, we have
determined the effect on the CMB of the first two periods wDE = 1/3 and
wDE = 1 compared to a cosmological constant and even though the effect is
small it is nonetheless observable.

In general, the CMB spectrum sets a lower limit to ∆NT , which implies a
lower limit to the phase transition scale Λc. For smaller ∆NT the CMB peaks
are moved to the right of the spectrum and the height increases considerably.
For any ΩDEi the CMB sets a lower limit to the phase transition scale. In the
case of ΩDEi(Ni) = 0.1 the limit is Λc = 0.2eV for any scalar potential. We
do not take ΩDEi much larger because we should comply with the NS bound
on relativistic degrees of freedom ΩDEi ≤ 0.1 − 0.2. If we take ΩDEi � 0.1
then the constraint on the phase transition scale will be less stringent since
the effect of the scalar field is only relevant recently (ΩDE � 1 during all the
time before present time). For inverse power law potentials we can also set
an upper limit to Λc and for ΩDEi ≤ 0.1 it gives an inverse power n ≤ 1.8
and Λc ≤ 4 × MeV . In this class of potentials only models with 4MeV >
Λc > 0.2 eV would give the correct wDEo and CMB spectrum.

This work allows for the possibility of distinguishing the kind of physical
process that gives rise to the dark energy.
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