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Abstract 
Sp(2)-cova[iant BRST-approach to general closed g~uge algebra theories is de- 

veloped. Ordinary and supersymmetric Yang-Mills theories, quantum gravity and 
Chapline-Manton model are considered as examples. In the first three cases Landau 
gauge properties are analysed. It is shown that conformal Ward identities for Yang- 
Mills theory are essentially simplified in Sp(2)-symmetric gauges. 

BRST-symmetry produced powerful method of the covariant quantization of the dynamical 
systems with constraints (see reviews [1,2]). Usually this approach considers ghost and 
anti-ghost fields in the asymmetrical manner. In some gauges, however, these fields t ~  
out to be on equal rights and form doublet of the Sp(2,  R)-group [3-5]. Then BP~ST and 
anti-BRST charges also form doublet of this group. Such situation holds e.g. for the 
Landau gauge condition. This paper is devoted to the Sp(2) -symmetr ic  realization of 
the ghost spectrum for the general closed gauge algebras. Applications to the (super') 
Yang-Mills theory, quantum gravity, Chapline-Manton model are considered. 

Let's denote gauge fields 9p, generators of gauge transformations RPa(¢); 
R P a ~ c l / ~ P p  ---= 0 ,  Sd-classical action. For the sake of simplicity we assume that ~p 
are bosonic fields and R~ are not degenerated (no "ghosts for ghosts"). The closure of the 
gauge algebra is expressed by the condition 

Rq~RPb,q - RqbRP~,q = f f  ~bRP¢, 

where R q = 6R/g~q .  In general case Jacobi identities look like 

fdaefebc -I- RP,~fa~,p + (abcperm) : 0. 

The ghost and anti-ghost fields will be denoted ca(z), where i = 1,2-index of SP( 2)' 
Basic requirement for the extended BRST-transformations si = i[Qi,...]~: (Qi-BRST 
charges) is [1] 

sis~ + sks i  = 0 (1) 

Then we easily find 

si~p RPac~, s , c ~ = e i k B a  1 .~  b c ( 0 1 )  = - 3 !  t~c~ck ' e = - 1  0 

1 r a  n b  c ] a b a p d e e 
si Ba = ~1 bc ~ ci - ~ ( f  bey dc "4- 2 f  dc,pR e)cicn¢,mc,, n. 

(5) 
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]?he field B ~ is auxiliary and it will be used as Lagrange multiplier for gauge condition. 
hue to (I) there is only slelksk-variations of the fields 

SeStpp = 2BaRPa  + RqaRPb,qcaecb , (3) 

SeSC a = - 4 s ~ B  a, s e s B  q = O. 

Gauge fixing and ghost parts of the action can be written as Sq,, = ses f (~ ,  c, B). Landau 
gauge condition corresponds to f -~ ~ and for ordinary Yang-Mills fields we have 

1 2 
Stot = sd  + squ, so~ - ~ F ~ ,  (4) 

1 a ab b 

With the hermiticity assigmnent: A + = Au~c + = c i , B  + = - B .  Action Stot is invariant 
Uader the following global transformations [3,6] 

1. gauge transformation (generators G a) 

¢ ~ ¢ +  f°b~o~¢, ~ = (A~,, c~, B )  (5)  

2. Sp(2)_rotation s (generators J~)  

1 a ci --* c~ + ~O¢,aikck, A u ~ Au ,  B ~ B ,  (6) 

for the simplicity we put cr = equal to Pauli matrices 

~" extended BRST-transformations (2) (generators Q~) 

4. shifts of the auxiliary field (generators P~) 

B a ~ B a + 13a, fla = const, (7) 

5' shifts of the ghost and auxiliary fields (generators S~i) 
a t l  

C i ----* C i + ~ a l ,  o a i  = c o n s t ,  

~_fob¢cb~O ~ (8)  Ba ~ Ba  + 2 

Oae can verify that  symmetries (5)-(8) uniquely pick out the Landau gauge from the 
ren°rrnalizable covariant gauges. 

Ward identities for the effective action P coming from (8) are found in [6] and look like 

f d 4 z - ~ c ~ i ~ ( F -  Stot) = 0, (9) 

i.e. ghost fields enter F via combination Ouci beginning from l-loop order. That  is why in 
the Landau gauge ghost-ghost-gluon vertex need no renormalization. 

l a  t3i p a  ~ 1 ~ .  l Cormnutation relations of the conserved charges G ~, ~ , .~ , , , are 

[G a , G b] = i f'~S¢G ~, 

[ao, phi = iiob¢p~, 

[a °, S~] = i IoS~ S~,  

[a °, Q~] = o, 

[j~, jt3] = eat3,rj'v 

[ J ° ,  s ° d  = ~ . o~ ~ t r i k ~  k~ 

l cra r'~ [J'~,Qi] = ~ iktek,  

[g~, G ~] = [g~  pc,] = 0, 

(Io) 
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[p,  pb] = [p~,sb ] = {Q~,Qk} = o, (11) 

{s,~ , sb } : i(~kfabcpc, [pa Q{] = iS~ , (12) 

{Q~, S~k} = ie~kG ~. (13) 

This superalgebra will be denoted sym.  All the surface terms ~ f d3xc~)¢~(~) in (10)- 
(13) are dropped and their relevance will be discussed elsewhere. What  is the structure of 
sym?  First of all there is nilpotent subalgebra of shift symmetries generated by P~ and 
S~i. Denote it sh. It is easy to see that  sp(2) subalgebra enters s y m  via the seIvddirect sum 
with ideal I1 = (G ~, Qi, P~, S~i) • I1 is also splitted into the semidirect sum of subalgebra 
of BRST-charges q and 12 = (G ~, P~, S~i). Therefore we have 

s y m  = sp(2)~I1,  I1 = q@I2, I :  = g_~sh, (14) 

where g_ is gauge subalgebra. It should be noted that  due to (13) sh isn't an ideal of s y m  
in contrast with 11 and /2 .  Untrivial unification of BRST and gauge Mgebras (14) allows 
to suppose that  there must be geometrical interpretation of the ghost fields different from 
that based on supergronp OSp(4, 2), which unifies Lorentz group with Sp(2) [4,7}. 

Physical states are defined by the condition [8,9] 

Q~]phys} = 0, (phys [phys} ~ 0. (15) 

If all charges are well defined then from (13) we have 

ieikG a Iphys) Q~ k [phys) 0, II Qi l¢)  II (¢IQ~ i¢) 0. 

This is Kogu-Ojima confinement criteria [8], but we cannot say that  it is really justified. 
The fact is that  symmetries from sh are spontaneously broken in the infinite space volume 
and charges pa and sai are defined badly. Goldstone modes appear in the fields B, ci and 
in the longitudinal part of gauge field. For QED these modes coincide with the fields. For 
example, the same phenomena occurs with a free scalar massless field. If we neglect sh 
then superalgebra of symmetries is reduced to g ~  (sp(2)@q), which is much less interesting 
than (14). 

Sp(2)-synu:netric treatment of ghost fields has interesting conformal properties. Infi- 
nitesimal dilatational and special conformal transformations are 

liD, ~a] = (d~ + x,Ou)~, (17) 

liKe, ~] = (x~O~ - 2x~x,O~ - 2d~x~)~ + 2xuA~ - 2gu~x~A~, (18) 

where d~-canonica] dimensions of the fields, dan = dc~ = 1, dB = 2. The last term in (18) 
is present only for A u. If we neglect conformal anomaly then action (4) is invariant under 
(17) and under (18) transforms as follows 

(~Stot : [ia;~K~,Stot] = -4ia~ / d4xBaA~ = -2ia~ / d4xse(cA~). (19) 

Two remarks are in order. First, due to the condition (15) physical states will not su ffer 
from conformal symmetry breaking (19). Second, ghost part of the action appeared to 
be conformally invariant and non-invariant gauge fixing part produces only term bilinear 
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in fields. In the gauges without Sp(2)-symmetry there will appear interaction term and 
conformal Ward identities will be essentially complicated. In our case term (19) can easily 
be taken into account by the redefinition of the gauge field propagator 

(TA (z)Ab(y)) - i(2z )a p2 + iO - p2 + iO " (20 )  

Therefore effective action calculated with (20) will not depend on a~, after the conformal 
transformation of the effective fields (if conformal anomaly is absent). In general a-gauge, 
Where ghosts ~a and c ~ are inequivalent, conformal non-invariance can be compensated 
by non-local BRST-transformation only if de = 2, dc = 0 (10 I. Here we have shown 
that when a = 0 one can choose another prescription dr = d¢ = 1. It can be checked 
that (19) is compensated by noulocal extended BRST-transformations with parameters 
ei ~- a~ f d4x ciA~,. 

Let's consider N = 1 supersymmetric Yang-MiUs theory in the superfield formulation. 
Ghost part of the action in the Landau gauge is similar to (4) 

( 2 1 )  
where z = (z,0,~),  L A B  = [A,B], V-vector superfield, cl and B-chiral superfields. Addi- 
tional shift syrmnetry analogous to (8) 

ci ~ ei + Oi, B --, B + ½~ik[c~,Ok], Oi + = 0~, 
cl --* ci + 0i, B ~ B + lel/~[~i, 0k] (22) 

gives the following Ward identity [6] 

fd4zd20  + fd4zd 0Z  - 0 (23) 

As a result of (23) superfietd ghost-ghost-gluon vertex should not be renormalized in 
Parallel with the ordinary Yang-Mills case. Analogous result for the lowest orders of 
Perturbation series was obtained earlier in [11] by means of the explicit resolution of 
BRST and anti-BRST Slavnov-Taylor identities. 

In quantum gravity Landau gauge corresponds to the harmonic gauge 

1 - ( 2 4 )  Squ = ~s~s f d4zT?~,~g ~'~ = + 

where surface terms are omitted, ~,v = v/-2-~g~,~, rh, v.fla t metric. In Ref.[12] global 
symmetries of the harmonic gauge were analysed but not in a Sp(2)-symmetric manner. 
The use of d '  and ~, ghosts with contravadant and covariant indices allowed to preserve 

~' and B"  have flat indices c~,i -- rh,~,c ~, B ,  = rl,~B ~ and there GL(4) invariance. Here c~ 
GL(4) is manifestly broken by Eq~ to Lorentz-invariance. 

Action (24) is invariant under the various c,i and B~, constant shift symmetries. The 
¢°asequences of the corresponding Ward identities were formulated in [13] before the 
explicit description of thesesymmetries in [12]. 
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Next example concerns Chapline-Manton model [14]. Classical action is invariant under 
the mixed abelian and non-abelian gauge transformations 

where B~,, is skew tensor entering supergravity multiplet. In this case gauge generators 
RP~ are degenerated and "ghosts for ghosts" appear. Correct ghost spectrum was fomad 
in f15]. Let's represent it in a more compact Sp(2)-way. For the fields Ao all looks 
standartly (2), for B.~ we need ghosts cgi and auxiliary fields B.~, ~l~k = Mk~ (bosonic) 
and N~ (fermionic) 

8iB, , ,  = O[~,c,,~ 1 + c'~O[,A:], 

1 

S ~ B * , = O u N i + I - : ~ " ~ a " ( B ~ ' c ' -  6 ) 

bd d c 

0 

SiMkj  = .-ei~Nj - c l ink  + l fabc ca c~c~, 
6 

The simplest Sp(2)-symmetric not degenerated action Squ is rather cumbersome and we 
omit it. 

Instead of the Lagrangian formalism used hitherto one may work within the HamJl" 
tonian BRST-approach [2,16]. In the latter main problem lies in the construction of the 
conserved nilpotent BRST-charge. Let's look for the Sp(2)-covariant case. Let ¢~ be 
bosonic constraints of the first class i[¢a,~bb] = UC:s¢~, v:-Lagrange multipliers for the 
constraints and 79:-corresponding conjugated momenta, Iv ~, 79hI = i6 ~b. Ghost fields alad 
their canonical momenta are doublets c~ and re :i, {c~, r bk} = - i ~ : b ~ .  If structure coef" 
ficients U:b~ are independent of fields (first range theories) then extended BRST-chargeS 
are written in such a way 

a 1 n r r a  b ¢ Q~ --- ¢~c~ - ~Tr. ~ b¢c.c~ + ~.~r27 ~ 

They satisfy basic relation {Q~,Qa} = 0. Generalization to the higher rang theories als0 
can be done but then Qi involve much more complicated structures. 

To conclude, in this paper Sp(2, R)-covariant realization of the ghost spectrum for tlae 
general closed gauge algebra theories is considered. Extended BRST-transformations are 

• " " t ,sed described. Properties of the simplest Sp(2)-symmetric Landau gauge are ormny ana y . 
for the (super-) Yang-Mills theory and quantum gravity. In this gauge there are additio~a~l 
constant shift symmetries with interesting Ward identities. For the ordinary Yang,2Vlills 
theory conformal properties of the ghost fields are investigated. Essential simplificati°~ 
of the conformal Ward identities is achieved in Sp(2)-syrrrrnetric gauges. In summary we 
can say that  Sp(2)-symmetry is useful additional tool in quantizing of gauge theories. 
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