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Abstract A study is presented for the non linear evolution of a self gravitating
distribution of matter coupled to a massless scalar field. The characteristic for-
mulation for numerical relativity is used to follow the evolution by a sequence of
light cones open to the future. Bondian frames are used to endow physical mean-
ing to the matter variables and to the massless scalar field. Asymptotic approaches
to the origin and to infinity are achieved; at the boundary surface interior and
exterior solutions are matched guaranteeing the Darmois–Lichnerowicz condi-
tions. To show how the scheme works some numerical models are discussed.
We exemplify evolving scalar waves on the following fixed backgrounds: (a) an
atmosphere between the boundary surface of an incompressible mixtured fluid
and infinity; (b) a polytropic distribution matched to a Schwarzschild exterior;
(c) a Schwarzschild–Schwarzschild spacetime. The conservation of energy, the
Newman–Penrose constant preservation and other expected features are observed.

Keywords Characteristic formulation, Matter evolution, Einstein–Klein–Gordon
system

1 Introduction

Numerical relativity has reached high sophistication levels to advance in the study
of realistic solutions to the Einstein equations. [1]. Particularly, to simulate grav-
itational radiation from collapsing sources [2] and binary black hole mergers [3].
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Núcleo de Sucre
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Almost all the investigations have been done in the ADM 3+1 formulation [4],
although the characteristic formulation offers a myriad of valuable advantages [5].

This work is motivated by the possibility of simulating gravitational radia-
tion from axisymmetric matter sources, as part of a longer project [6; 7]. We met
that purpose beginning with the most simplified and concomitant problem under
spherical symmetry, that is, the self-gravitating massless scalar field. In the same
vein we deal with the problem of matter coupled to radiation which eventually
will lead us to get gravitational signals from bounded sources. As far as we can
see, this problem stands alone as an important one in the field. Here we report a
study in the aforementioned direction, limiting ourselves to spherical symmetry
to follow the evolution of a massless scalar field interacting with a perfect fluid
distribution of matter. This model problem offers a number of advantageous com-
putational and geometrical features. It is well known that the scalar field mimics
gravitational radiation and it has been used to study the global properties of the
spacetime, black hole threshold and radiative signals [8; 9; 10; 11; 12].

The framework for computing a complete spacetime within the characteristic
approach has been laid out by Tamburino and Winicour [13] and explicitly in [14],
where is explored the production of gravitational waves for axially symmetric dis-
tribution of matter (for a complete review see [5] and references therein). Some
years later, fundamental studies in 1D and 3D [8; 15; 16] were followed by a
3D code able to treat matter by Bishop et al. [17]. A relatively simpler system is
a spherically symmetric distribution of a perfect fluid coupled with scalar radia-
tion [18]. For other symmetries other than spherical, the mathematical problem
has a very similar structure [2]. In these contexts we can take full advantage of
the characteristic approach to treat matter and radiation. The first example of the
use of characteristic numerical relativity for the study of dynamical neutron star
spacetime, collapse and radiative signals was reported in [18]. Few investigations
consider the scalar field interaction with fluid stellar distributions [19; 20].

We have recently discovered an unexpected unity in the treatment of matter in
numerical relativity [21], using explicit Bondian observers [22]. These observers
offer an Eulerian (noncomoving) description (global) with the spirit of Lagrangian
observers (local and comoving). Following this line also we reported a disclosure
of a central equation of state (CEoS), which is unique for all evolutions; it emerges
as a conserved quantity from the field equations [23].

Authors commonly refer to the scalar field as a model of matter distribution
that simplifies the treatment of the hydrodynamic issues. This approach has been
useful to study non linear physics and asymptotic behaviors, especially for central
regions [24]. Scalar field models have been extended to realistic situations such
as gravitational radiation [15]. However, cases where the scalar field is coupled
with radiation require a different approach due to both the confinement effect of
matter and the dispersive nature of radiation. When a scalar field is coupled to
matter it can be easily interpreted as an anisotropic fluid if we use Bondian frames
explicitly.

We develop a numerical framework to deal with matter coupled to scalar radi-
ation. We perform a detailed study of the central world line at r = 0, leading to a
conformally flat spacetime in that region. We assume that the radial dependence
of the geometrical and physical variables keep the same dependence as the static
variables near the coordinate-origin.
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We formulate in this work the characteristic evolution in terms of Bondian
observers [21; 23]. The Eulerian formulations of numerical relativity [18; 25] actu-
ally use Bondian observers in the mathematical treatment of matter. We also match
the interior solution with the exterior one in a clear and precise treatment of the
boundary distribution of matter without the use of artificial atmosphere. Infinity is
treated as usual in literature.

In what follows we write the field equations for Bondian observers when mat-
ter is coupled to scalar radiation, which makes the fluid manifestly anisotropic.
Section 3 is devoted to the regularization and matching. In Sect. 4 we show how
the scheme works by means of numerical test models. Finally we summarize with
some remarks in Sect. 5.

2 Field equations for Bondian frames

Bondi’s metric in the spherical form reads [22]

ds2 = e2β

(
V
r

du2 +2dudr
)
− r2(dθ

2 + sinθ
2dφ

2), (1)

where β = β (u,r) and V = V (u,r). In these coordinates the components of the
energy-momentum tensor are distinguished by a bar. In spherical symmetry there
exists a well defined notion of quasilocal energy, the Misner–Sharp mass function,
m̃(u,r) [26; 27; 28] introduced by means of

m̃ =
1
2
(r−Ve−2β ), (2)

which measures the energy content in the sphere of radius r and it reduces to the
Arnowitt–Deser–Misner and Bondi masses in the appropriate limits.

Consider a stress-energy tensor for a perfect fluid and a massless scalar field

T̄µν = T̄ M
µν + T̄ Φ

µν . (3)

One can follow the Tamburino–Winicour formalism [13], in particular as applied
in regular spacetimes, where the foliation of light cones emanates from a freely
falling central observer [14; 15; 16; 17; 18]. But following Bondi, local Minkowski
coordinates (t,x,y,z) are introduced by

dt = e2β (1−2m̃/r)1/2du+(1−2m̃/r)−1/2dr, (4a)
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dx = (1−2m̃/r)−1/2dr, (4b)
dy = rdθ , (4c)
dz = r sinθdφ . (4d)

Denoting the Minkowski components of the energy-momentum tensor by a caret
we have

T̄00 = T̂00e4β (1−2m̃/r), (5a)

T̄01 = (T̂00 + T̂01)e2β , (5b)

T̄11 = (1−2m̃/r)−1(T̂00 + T̂11 +2T̂01), (5c)

T̄ 2
2 = T̄ 3

3 = T̂ 3
3 = T̂ 2

2 . (5d)

Next one assumes that for an observer moving relative to these coordinates with
velocity ω in the radial direction, the space contains an isotropic fluid with pres-
sure p and energy density ρ .

For this Bondian observer, the covariant energy-momentum tensor of matter
is:

T̂ M
µν =

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (6)

Then a Lorentz transformation readily shows that

T̄00 = e4β (1−2m̃/r)
(

ρ + pω2

1−ω2

)
, (7a)

T̄01 = e2β

(
ρ−ω p
1+ω

)
, (7b)

T̄11 = (1−2m̃/r)−1(ρ + p)
(

1−ω

1+ω

)
, (7c)

T̄ 2
2 = T̄ 3

3 =−p. (7d)

The energy-momentum tensor for the massless scalar field minimally coupled with
gravity

T̄ Φ
µν = ∇̄µ Φ∇̄ν Φ− 1

2
gµν ∇̄

α
Φ∇̄α Φ , (8)

can be read by an observer at rest in the frame of (1).
It can be shown that the Einstein–Klein–Gordon equations can be written as

ρ +ω2 p
1−ω2 +ρ

Φ + ε
Φ =

1
4πr

(
−

m̃,ue−2β

r−2m̃
+

m̃,r

r

)
, (9)
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ρ−ω p
1+ω

+ρ
Φ =

m̃,r

4πr2 , (10)

1−ω

1+ω
(ρ + p)+ρ

Φ + pΦ = (1−2m̃/r)
β,r

2πr
, (11)

p+pΦ
t =− 1

4π
β,ure−2β +

1
8π

(1−2m̃/r)(2β,rr+4β
2
,r−β,r/r)

+
1

8πr
[3β,r(1−2m̃,r)− m̃,rr] (12)

and

2(rΦ),ur = r−1[re2β (r−2m̃)Φ,r],r, (13)

where the comma denotes partial differentiation respect to the indicated coordi-
nate, and the scalar energy flux εΦ , the scalar energy density ρΦ , the scalar radial
pressure pΦ , the scalar tangential pressure pΦ

t , respectively are defined by

ε
Φ = e−2β [e−2β (1−2m̃/r)−1

Φ
2
,u−Φ,uΦ,r], (14)

ρ
Φ = pΦ = (1−2m̃/r)Φ2

,r/2, (15)

pΦ
t = Φ,uΦ,re−2β − pΦ . (16)

From this point of view the scalar field can be interpreted as a radiating and
anisotropic fluid [29] whose energy-momentum tensor can be written as

T Φ
µν = (ρΦ + pΦ

t )uµ uν + ε
Φ lµ lν − pΦ

t gµν +(pΦ − pΦ
t )χµ χν , (17)

with uµ uµ = 1, lµ lµ = 0, χµ χµ = −1, if we identify the four velocity for an
observer at rest in the frame of (1), the null and the space-like vectors as

uµ = (1−2m̃/r)−1/2e−2β
δ

µ

0 , (18)

lµ = (1−2m̃/r)1/2e2β
δ

0
µ , (19)

χµ = (1−2m̃/r)−1/2
δ

1
µ . (20)

Note that Bondian observers can be purely Lagrangian when we deal only with
radiation [21].

The conservation equation T µ

1;µ = 0, or Eqs. (10)–(12), lead us to the gen-
eralized Tolman–Oppenheimer–Volkoff (TOV) equation for non static radiative
situations

p̃,r−e−2β

(
ρ̃+ p̃

1−2m̃/r

)
,u
+
(

ρ̃+ p̃
1−2m̃/r

)[
4πr(p̃+ pΦ

r )+ m̃/r2]=
2
r
(p− p̃),

(21)

where

ρ̃ =
ρ−ω p
1+ω

, (22)

p̃ =
p−ωρ

1+ω
, (23)
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are the named effective variables [30],
From the field equation (9) is straightforward that

dm̃
du

=−4πr2
[
(p− pΦ)

dr
du

+(1−2m̃/r)e2β
ε

Φ

]
, (24)

where

dr
du

= e2β (1−2m̃/r)
ω

1−ω
, (25)

is the matter velocity. Integrating the wave equation (13) we obtain

2rΦ,u = e2β (r−2m̃)Φ,r +
r∫

0

e2β (1−2m̃/r)Φ,rdr, (26)

which combined with (24) lead us to

dm̃
du

= −4πe2β N2−4πr2 dr
du

p

+2πr2(1−2m̃/r)
(

1+ω

1−ω

)
e2β

ρ
Φ , (27)

where

N =
1
2

e−2β

r∫
0

e2β (1−2m̃/r)Φ,rdr.

In absence of matter, ρ = p = 0, for the exterior region the field equations reduce
to

Rµν =−8πΦ,µ Φ,ν , (28)

or explicitly to the hypersurface equations

β,r = 2πrΦ
2
,r, (29)

m̃,r = 2πr(r−2m̃)Φ2
,r, (30)

and to the wave equation (13) [8].



Bondian frames to couple matter with radiation 7

Table 1 Coefficients for the physical variables expansion as a power of r near the center

Oπρ π p ω

0 3
4 m3− 1

2 πΦ2
1 β2− 3

4 m3− 1
2 πΦ2

1 0

1 ω1(β2−πΦ2
1 )+πΦ1Φ2ω1(β2−πΦ2

1 )−2πΦ1Φ2ω1

3 Regularization and matching

Some previous investigations consider regularization near r = 0 [18; 25; 31; 32;
33]. The conditions for the scalar field, as a matter model, do not necessarily
apply to distributions of matter. Depending on gauge conditions each procedure to
get regular spacetimes may be cumbersome and tricky, even in vacuum. Initially
regular spacetimes can eventually develop singularities [24; 34]. We show a simple
way to construct regular spacetimes, near the coordinate-origin, when the inner
spacetime corresponds to a spherical distribution of baryonic matter coupled to a
massless scalar field. To construct regular and general enough spacetimes, which
eventually recover equilibria, collapse, form singularities and horizons, we do an
asymptotic study close to the special regions: r = 0 and r → ∞. The treatment is
basically the same for these two zones, that is, power expansions of r and r−1,
respectively. For r = R(u), the boundary surface, the Darmois–Lichnerowicz [35;
36; 37] conditions are guaranteed to match the interior and exterior solutions on a
moving boundary. Integrating from r = 0 no additional conditions are required at
the surface to describe its evolution.

3.1 Close to the origin

Consider the following asymptotic expansions for the metric functions near r = 0,
which represents a regularly and conformally flat spacetime [23]:

m̃ = m3(u)r3 +O(r5), (31)

β = β0(u)+β2(u)r2 +O(r4), (32)

and for the scalar field

Φ = Φ0(u)+Φ1(u)r +Φ2(u)r2 +O(r3). (33)

Using the field equations we get the physical variables expansion as a function of
r as showed in Table 1.

From the evolution equation (13) we get

e−2β0
dΦ0

du
= Φ1, (34)

and

e−2β0
dΦ1

du
=

3
2

Φ2. (35)
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From the field equation (12)

e−2β0
dβ2

du
= [πΦ1Φ2−2ω1(β2−πΦ

2
1 )], (36)

and from (9)

dm3

du
= 2

dβ2

du
. (37)

This last equation, together with expansions showed in Table 1, is readily inte-
grated to give

ρc +3pc = constant, (38)

where ρc = ρ0 +ρΦ
0 and pc = p0 + pΦ

0 .
The lapse of the coordinate time du is related to the corresponding lapse of

time dτ measured by a central observer as

dτ = e2β0du. (39)

We have preference for the central time τ to describe the studied system. The
reason is mainly numerical: proceeding with the radial integration from r = 0,
where the world line is therefore geodesic, in consistence with the conformally
flat result as a consequence of regularity. Therefore, the replacements β → β −
β0 and u → τ left invariant the field equations (9)–(13). The same situation will
be analog for the matching surface, which behaves asymptotically as Vaidya or
Schwarzschild, and for the asymptotically flat infinity.

3.2 Matching at the surface

Boundary conditions at the surface r = R(u) are needed for β and m̃ in order to
perform radial integrations. We match the interior solution with the exterior at
r = R by means of the Darmois–Lichnerowicz conditions. These conditions are
equivalent to the continuity of the functions β and m̃ across the boundary, and to
the continuity of the spin coefficient [37]

γ = (1−2m̃/r)β,r−
m̃,r

2r
−β,ue−2β . (40)

Considering the expansion of β around the surface, we have

β
±
,u =

dB
du

− dR
du

β
±
,r , (41)

where the superscript ± indicates the evaluation of the function at r = R + 0 or
r = R−0, and B = β (u,r = R). Therefore, γ+ = γ− leads us to

ωR = 1−2RF
δβ,r

δ m̃,r
, (42)
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where F = 1−2M/R, M = m̃R, the subscript R indicates that the quantity is evalu-
ated at the surface, and δΨ =Ψ+−Ψ− represents the jump of the indicated func-
tion across the boundary. Observe that δ Ṙ = 0, where over dot indicates derivative
respect to time. Thus, we get

p̃R +ωRρ̃R = (1+ωR)δρ
Φ , (43)

which leads us directly to

pR =
(

1+ωR

1−ωR

)
δρ

Φ . (44)

If the scalar field gradient is continuous across the boundary r = R we have a
pressureless surface, which can be expressed as p̃R =−ωRρ̃R or equivalently

ωR =
m̃−

,r −2RFβ−,r +4πR2ρΦ
R

m̃−
,r −4πR2ρΦ

R
. (45)

When ρR = 0, we solve as usual the indetermination taking the limit

ωR =− lim
r→R

p̃
ρ̃

= −
p̃,r

ρ̃,r

∣∣∣∣
R
, (46)

where

p̃,r =
2
r
(ρ̃ +ρ

Φ)−
m̃,rr

4πr2 +
β,rr

2πr2 (r−2m̃)

+
β,r

2πr2 (4m̃−2m̃,r−1)−ρ
Φ
,r (47)

and

ρ̃,r =
m̃,rr

4πr2 −
2
r
(ρ̃ +ρ

Φ)−ρ
Φ
,r . (48)

Two comments are in order here. First, (46) can be obtained from the continuity of
the spin coefficient gradient γ+

,r = γ−,r . Second, exactly the same result is obtained
from the field equations, that is, Eq. (46) proceed from (21) evaluated at the surface
[30].

Once satisfied the matching conditions across the boundary r = R we need
surface equations to follow the radius evolution and the exchange of energy on it.
Evaluating (27) at the surface and defining

Ω = (1−ωR)−1

and

RΦ = 4πR2
ρ

Φ
R ,

we get

e−2B dM
du

=−4πN2
R +

1
2
RΦ(2Ω −1)F, (49)
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which clearly establishes the transfer of energy at the boundary of the matter dis-
tribution. Additionally, evaluating (25) at the surface we get

e−2B dR
du

= F(Ω −1), (50)

which conforms together with (45) and (49) the system of equations at the surface
for ρR 6= 0. These equations determine completely the evolution at the surface
distribution.

3.3 Close to infinity

This section is standard in literature but we include here a résumé for the sake of
completeness. Assuming that the scalar field has an asymptotic expansion [8]

Φ =
Q1(u)

r
+

Q2

r2 +O(r−3), (51)

the metric functions read

β = H(u)− πQ2
1

r2 +O(r−3), (52)

m̃ = M (u)− 2πQ2
1

r
+

2πQ1(M Q1−2Q2)
r2 +O(r−3). (53)

The coefficient Q1 is the scalar monopole moment and Q2 the Newman–Penrose
constant. The asymptotic Bondi mass M also can be expressed globally as

M (u) = 4π

R∫
0

r2
ρ̃dr +4π

∞∫
0

r2
ρ

Φ dr = m̃|J + , (54)

and the scalar news function [8]

N (u) =
1
2

e−2H
∞∫

0

e2β (1−2m̃/r)Φ,rdr. (55)

The Bondi mass loss equation is

e−2H dM

du
=−4πN 2. (56)

With these definitions, the total radiated energy can be established

∆ ≡M (u)−M (u0) =−J(u), (57)

where

J = 4π

u∫
u0

N 2e2Hdu. (58)



Bondian frames to couple matter with radiation 11

It is easy to check from (54) that the most general Killing propagator to get the
energy conservation in the spherical context is

ξ
µ = e−2β

δ
µ

0 . (59)

As a matter of fact, we get (59) when the Linkage [13], a finite representation of
the Bondi–Metzner–Sachs asymptotic group,

C =
∫

T ν
µ ξ

µ dΣν , (60)

is compared with (54).
Up to now the system has been described with enough generality to proceed

with the hydrodynamical solver developing, which was not planted as a goal in
this paper. However to show how the scheme works some numerical models are
discussed.

4 Models

4.1 Ghost scalar fluid

This model exemplifies the junction conditions, the scalar field energetics and the
preservation of the Newman–Penrose constant.

Consider a mixture of two components fluid of pressure p + pΦ → p and
energy density ρ +ρΦ → ρ which is incompressible and remains static if a layout
outer scalar field guarantee the Darmois–Lichnerowiczs conditions. Clearly from
(45) these conditions reduce to

m̃−
,r −2RFβ

−
,r +4πR2

ρ
Φ
R = 0, (61)

which is satisfied if

Fβ
+
,r = 2πRρR. (62)

Under this scenario ω = 0 everywhere, and derivatives respect to the timelike
coordinate dropping to zero. The set of Eqs. (9)–(12) simplify considerably to get
the well known interior solution [30]

m̃ = M(r/R)3, (63)

e2β =
1
2

{
3
(

F
ζ

)1/2

−1

}
, (64)

p = ρ

{
F1/2−ζ 1/2

ζ 1/2−3F1/2

}
, (65)

where

ζ = [1− (1−F)(r/R)2] (66)
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Table 2 Exterior/initial data set for the massless scalar field

Φ FamilyParameters
λ/(R+ r) (a) λ , R
λ (ra− r)4(rb− r)4/[(rb− ra)/2]8(b) λ , ra, rb
λ exp(r− r0)2/σ2 (c) λ , σ , r0

Fig. 1 Mass as a function of the normalized amplitude χ = πλ 2/(6R2 + πλ 2), for the exterior
datum (a). If the datum is (b) the amplitude is λ → 13.46λ ; if the datum is (c) λ → πλ . For any
choice of the initial datum and any choice of parameters ra, rb, σ and r0—which leave partially
immersed the scalar field in the fluid distribution—the overlapping is true finding the appropriate
rescaling in the amplitude

and

ρ =
3(1−F)

8πR2 =
3M

4πR3 . (67)

Observe that βR = 0, Fβ−,r = 4πRρR = 3M/R2 and pR = 0. In this way we have
constructed a “fixed” background of a incompressible perfect fluid coupled to an
exterior scalar field which remains “frozen” in some hydrodynamic characteristic
time scale.

Three different families of exterior/initial scalar fields are showed in Table 2.
All them are specified in such a way that smooth metric functions across the
matching surface r = R are assured. For each set and any R, it is obtained M as
a function of the scalar field amplitude. Taking as a reference the data set (a), for
instance, it can be fitted the two others to it simply doing the appropriate rescaling
in amplitude, as is showed in Fig. 1. The limit mass for the background is R/2;
this feature seems to be general. The limit mass to keep the incompressible static
fluid is the well known Buchdhal mass limit 4R/9. Therefore, if a black hole form
it occurs by means of scalar radiation accretion.

The exterior spacetime is determined integrating the field equations (29) and
(30). To evolve the scalar wave on the specified background we have the set of
ordinary differential equations at r = 0 for the scalar field (34) and (35). This
system requires only initial conditions for Φ0, Φ1 and Φ2, which are fitted from
the initial condition for the scalar field. Besides M and R are given as parameters,
to define the matter distribution.

The wave equation can be integrated following the null parallelogram method
[38]. Note that, as is required by the used method, writing down (13)

2g,ur− [e2β (1−2m̃/r)g,r],r =−[e2β (1−2m̃/r)],rg/r, (68)

where g = rΦ , we have to take care considering the RHS. To avoid the numerical
derivative, that term is replaced by −Λg, where

Λ =
e2β

r2

{
4πr2(p−ρ)+2m̃/r

}
. (69)

A subtle issue of this model is the Killing propagator to get the energy conser-
vation as showed in Fig. 2. Because the spacetime is fixed as a background, the
right propagator is
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Fig. 2 Energy conservation (multiplied by 105) as a function of the Bondi time for the exte-
rior/initial datum (a). The parameters and conditions of integration are: M = 1.6921, R = 5, λ =
10 and 103 radial points. The evolution corresponds to a relativistic case with F = 0.3232. The
descending curve corresponds to ∆ with M calculated by Eq. (54). The ascending curve cor-
responds to the energy radiated to infinity given by Eq. (58) with N calculated by means of
Eq. (55). Thus, in accordance with Eq. (57), the horizontal curve represents the global conser-
vation of energy

Fig. 3 Decay of the scalar field (multiplied by 103) preserving the Newman–Penrose constant,
that is, g,x|J + = constant, any time of the evolution. The compactified coordinate x is related
with r by means of r = 15Rx/[8(1− x4)]. The initial datum, the parameters and conditions are
the same as for Fig. 2

ξ
µ = e−2H

δ
µ

0 . (70)

Figure 3 displays the evolution of the initial data (a); it is evident that the Newman–
Penrose constant is conserved.

4.2 Scattering off a polytrope

In the case of a static polytrope

p = Kρ
Γ , (71)

where K is the polytropic constant and Γ is the adiabatic exponent, related with
the adiabatic index n by Γ = 1 + 1/n, the pressure and the energy density vanish
at r = R. Again, we integrate numerically the system (10), (11) and (21) for any
choice of K and Γ , typically 100 and 2 respectively. However, it is interesting to
note that (21) written as

p,r

ρ + p
+
[

1
2

ln(1−2m̃/r)+2β

]
,r

= 0, (72)

can be integrated to get

e2β =
F1/2(1−2m̃/r)−1/2

(1+ p/ρ)n+1 . (73)

This result let us to conclude that no limit appears for the total mass distribution
except the black hole mass limit R/2. It clearly connects the surface with the center
of the distribution by means of e2β0(1+ p0/ρ0)n+1 = F1/2.

In this model, a polytrope with a vacuum Schwarzschild exterior as a back-
ground, the scalar field is scattered off and radiated to infinity. Figure 4 shows the
energy conservation in this case. It should be stressed here that the scalar field gra-
dient of the initial datum has to be zero at r = R and the scalar field itself partially
immersed in the distribution.
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Fig. 4 Energy conservation (multiplied by 103) as a function of the Bondi time for the initial
datum (c). In this case the matter fluid corresponds to a polytrope with ρ0 = 4×10−3, K = 100
and Γ = 2. The parameters and conditions of integration are: M = 0.774, R = 11.512, λ =
10−2, σ = R, r0 = R and 103 radial points; the evolution corresponds to a F = 0.865. The
descending curve corresponds to ∆ with M calculated by Eq. (54). The ascending curve cor-
responds to the energy radiated to infinity given by Eq. (58) with N calculated by means of
Eq. (55). Thus, in accordance with Eq. (57), the horizontal curve represents the global conser-
vation of energy

Fig. 5 Quasinormal mode and tail decaying as a function of the Bondi time for the initial
datum (b). In this case the matter distribution corresponds to an incompressible fluid, that is,
a Schwarzschild interior; the exterior is a Schwarzschild vacuum. The parameters and condi-
tions of integration are: M = 1, R = 2.857, λ = 1, ra = 0, rb = 10, and 103 radial points; the
evolution corresponds to a F = 0.3. The late time behavior of the signal decays as an inverse
power law. In the window of time [200,245] the power of the tail decay is approximately −2.1,
which corresponds to a 5% deviation from the expected value of −2 [39; 10]

Fig. 6 Energy conservation as a function of the Bondi time for the initial datum (b). In this case
the matter distribution corresponds to an incompressible fluid, that is, a Schwarzschild interior;
the exterior is a Schwarzschild vacuum. The parameters and conditions of integration are: M =
1, R = 2.857, λ = 1, ra = 0, rb = 10, and 103 radial points; the evolution corresponds to a F =
0.3. The descending curve corresponds to ∆ with M calculated by Eq. (54). The ascending
curve corresponds to the energy radiated to infinity given by Eq. (58) with N calculated by
means of Eq. (55). Thus, in accordance with Eq. (57), the horizontal curve represents the global
conservation of energy

4.3 Quasinormal mode and late time tail decay

For a Schwarzschild–Schwarzschild background an expected feature is showed
when an initial compact support scalar field (b) is evolved. In this case the distri-
bution of matter corresponds to an incompressible fluid, that is, a Schwarzschild
interior spacetime; the exterior is a Schwarzschild vacuum. Figure 5 display the
quasinormal mode ringing and the final tail decay. The energy conservation is
displayed in Fig. 6.

5 Concluding remarks

We have used corner stones in the characteristic formulation of general and numer-
ical relativity to present in this paper a framework which couples matter with radi-
ation [13; 22; 40]. The old point of view of Bondian observers are mistakenly
considered as Eulerian in numerical relativity for the mathematical treatment of
matter [21].

Although we only explored toy models, we believe they deserve future atten-
tion at least as initial conditions. The partially immersed scalar field in the fluid is
hidden. This mixture constitutes a fixed and well behaved background to evolve
a cloned scalar field. The face value of model A is its usefulness as a playground
to study asymptotic and matching regions. It is striking how the matching leads
us to a connection between the mass distribution and the amplitude of the initial
scalar field, and how the limit mass of R/2 does not depend apparently upon the
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initial data. The energy conservation and the Newman–Penrose constant tests give
confidence on the possible physical consequences of this simple model. The other
two models represent simple tests which are in agreement with expectations.

We stress that this paper does not develop a general code, it just reports how
Bondian observers are plausible in Numerical Relativity. Numerics is simplified
to show how these observers are consistent with previous results. The underlaying
problem, gravitational radiation coupled to matter, is in fact difficult. We show
that even in the spherical case we have to consider special regions, center and
boundary surface carefully as well. We are currently developing a general code
based on Sect. 3, which considers regularization and matching regions in a clearer
manner.

The most simple axisymmetric case from the Bondian point of view is out of
scope of the present investigation. There is a unique geometrical way to define
Bondian observers in the absence of spherical symmetry: (i) choose a tetrad to
get the local Minkowskian frame; (ii) make a double Lorentz boost to go to the
frame comoving with the fluid. In this sense could be interesting to revise results
from [2] to consider gravitational radiation considering explicitly Bondian frames
and regularization on special regions such as the axis of symmetry and boundary
surface.

An advanced study of incompressible-like fluids and polytropic matter indi-
cates the relevance of central equation of state at the center of the star. This moti-
vated us to prepare a hydrodynamic solver which will be reported elsewhere for
an adiabatic situation. A more general study of matter coupled to radiation within
this framework is in progress.
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8. R. Gómez J. Winicour (1992) J. Math. Phys. 33 1445
9. R.L. Marsa M.W. Choptuik (1996) Phys. Rev. D 54 4929



16 W. Barreto et al.

10. Gundlach, C., Price, H., Pullin, J.: Phys. Rev. D 49, 883, 890 (1994)
11. P. Papadopoulos P. Laguna (1997) Phys. Rev. D 55 2038
12. Price, R.H.: Phys. Rev. D 5, 2419, 2429 (1972)
13. L. Tamburino J. Winicour (1966) Phys. Rev. 150 1039
14. R. Isaacson J. Welling J. Winicour (1983) J. Math. Phys. 24 1824
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37. L. Herrera J. Jiménez (1983) Phys. Rev. D 28 2987
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