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- ... and what did you say your objection with string theory is again?

- It’s rather simple. These days theoretical physicists dream of a theory of everything that

will describe nothing.

-So?

-Well, string theory is something.

ii
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Abstract

In this thesis we examine smooth supergravity solutions known as ”microstate geometries”.

These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic

structure and conserved charges as black holes. Specifically we study supersymmetric and

extremal non-supersymmetric solutions. The goal of this program is to construct enough

microstates to account for the correct scaling behavior of the black hole entropy with respect

to the charges within the supergravity approximation. For supersymmetric systems that are

1
8
-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ∼ Q3/2,

while for non-supersymmetric systems the known microstate geometries are sporadic.

For the supersymmetric case we construct solutions with three and four charges. Five-

dimensional systems with three and four charges are 1
8
-BPS. Thus they admit macroscopic

horizons making the supergravity approximation valid. For the three-charge case we present

some steps towards the construction of the superstratum, a microstate geometry depending

on arbitrary functions of two variables, which is expected to provide the necessary entropy

for this class of solutions. Specifically we construct multiple concentric solutions with three

electric and two dipole magnetic charges which depend on arbitrary functions of two variables

and examine their properties. These solutions have no KKM charge and thus are singular.
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For the four-charge case we construct microstate geometries by extending results available

in the literature for three charges. We find smooth solutions in terms of bubbled geometries

with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes.

In the non-supersymmetric case we work with a three-charge system of extremal black

holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry.

By using supertubes we construct the first systematic example of a family of almost-BPS

microstate geometries and examine the moduli space of solutions. Furthermore by using

brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS

solutions receive no quantum corrections and thus must be subject to some kind of non-

renormalization theorem.
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Chapter 1

Introduction

In addition to attracting the eye, light has always captured the interest of human mind and

perception. Necessarily then, objects so massive from which “not even light can escape”

concentrate even more interest. That was actually the very first inception of black holes

by John Michell already from 1783. Quite astonishingly, by considering an object with an

escape velocity the speed of light, at the surface of a planet of mass “M” and by using the

non-relativistic laws for kinetic and gravitational potential energy, we find that the radius

of the planet is equal to the Schwarzschild radius, that is the radius of the horizon of a

relativistic black hole of mass “M”! These early thoughts, although provocative, didn’t gain

much ground as the idea of a massless particle like light interacting gravitationally didn’t

make much sense in the context of classical mechanics. General Relativity on the other

hand provided the appropriate theoretical framework for the study of black holes. It was

within this theoretical framework that the first black hole solution was discovered by Karl

Schwarzschild [1] in the trenches of the first world war.
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Since then, the systematic study of black holes has produced many remarkable results

which even led to contradictions and paradoxes. These combined with the fact that black

holes are objects where the gravitational force is extremely strong, point to the direction

that the study of black holes takes us out of the regime of validity of general relativity and a

more fundamental theory of gravity is needed. String theory, as a theory of quantum gravity,

should provide answers to these puzzles.

In general relativity black holes are realized as objects with infinite mass density. The

whole mass of the object is concentrated at a region of spacetime, which forms a curvature

singularity. This singularity is surrounded by an event horizon, which is broadly defined

as the spacetime boundary beyond which an outside observer can not be affected by events

within the horizon. In more folklore terms it is the area beyond which “not even light can

escape”. The spacetime between the horizon and the singularity is empty and an infalling

observer would not notice anything special while crossing the horizon. In four dimensions

a black hole is specified by its asymptotic charges, that is its mass “M”, charge “Q” and

angular momentum “J”. Actually there are uniqueness theorems [2] (also known as no hair

theorems) which state that in four dimensional asymptotically flat spacetimes, black holes

are uniquely specified by their asymptotic charges M, J, Q and that for specific values of

these charges there is a single solution in general relativity that describes them. Later it was

realized [3], [4], [5, 6] that black holes have thermodynamic properties and their asymptotic

charges should be realized as macroscopic variables of a thermodynamic system. Admitting

a microscopic origin of black holes thermodynamic properties means that black holes should

have a set of microstates that give rise to a specific macrostate, which can not be realized

anymore by a single solution. The latter is obviously in contradiction with uniqueness.
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Realizing how enormous the set of microstates of a black hole is makes the contradiction

even more striking. A solar mass black hole has entropy 1060erg ·K−1 which means it consists

of about e1076 states!

From the thermodynamic properties of black holes the Bekenstein-Hawking entropy law

states that the entropy of a black hole is proportional to the area of its horizon. Entropy

in general is an extensive quantity and thus proportional to the volume of the system. The

fact that for black holes the entropy is proportional to the area instead of the volume implies

that the degrees of freedom of a black hole are encoded in one dimension less than that of

the actual spacetime.

Another mystery that arises from black holes physics is the information paradox. By

considering quantum fields at the vicinity of the horizon, Hawking showed [5] that black holes

evaporate by emitting thermal radiation and thus promoted the thermodynamic laws of black

holes from a mathematical analogy to actual physical laws requiring physical interpretation.

The fact that Hawking radiation is purely thermal leads to the loss of unitarity (a cornerstone

of quantum mechanics), as a pure state that is thrown inside a black hole will eventually be

emitted as a mixed state while the black hole evaporates. In other words the information

about anything that falls inside the black hole is irreversibly lost. This occurs because the

black hole horizon is simply empty space and thus there is a unique vacuum state at the

horizon (Unruh vacuum). As a result the two particles of the particle-antiparticle pairs

nucleated at the horizon are maximally entangled and carry no information about the black

hole.

String theory has taken great strides in providing intuition and shedding light in some

of the puzzles of black holes. As we mentioned earlier the Bekenstein-Hawking entropy law
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suggests that the degrees of freedom of a black hole are encoded in the surface of the horizon,

which has one dimension less than the actual spacetime. The AdS/CFT correspondence [7],

[8], [9] provided a precise connection between a theory of gravity and a field theory at the

boundary with no gravity. This implies that since the theory at the boundary is unitary

then information has to be preserved.

In [10] Strominger and Vafa made an important step towards understanding the statistical

nature of the black hole entropy. They studied a class of supersymmetric black holes in string

theory which consist of D-brane bound states. While at strong gravitational coupling the

D-branes collapse to a singularity and form a black hole, at zero gravitational coupling

they form a system of free objects which can be combined in a specific number of ways.

It was then found that the counting of the possible combinations of the D-branes at zero

gravitational coupling, matches the number of microstates obtained from the Bekenstein-

Hawking entropy law at strong gravitational coupling. The above result was made possible

because supersymmetry guarantees that the states persist as one varies the coupling. The

result was rederived and generalized to black holes with mildly broken supersymmetry by

Callan and Maldacena [11]. Although these calculations reveal the origin of the microscopic

structure of black holes, they do not provide us with a picture of those microstates at strong

gravitational coupling.

The fuzzball proposal of Mathur [12] offers a suggestion of how these microstates might

actually look. According to the fuzzball proposal, the traditional macroscopic picture of a

black hole should be replaced with that of a fuzzball, a horizonless superposition of strings

and branes extending all the way up to the area of spacetime where there would be a horizon.

It basically says that black holes should be thought as string stars. This picture is quite
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revolutionary compared to the classical idea of black holes and comes in contrast with other

considerations which support that string theory resolves the singularity with string scale

corrections to the singularity behind the horizon. The advantage of the fuzzball proposal is

that in addition to resolving the singularity it allows information to be preserved since we

don’t have a horizon from which information can not escape. Instead of empty space in the

area of a horizon we have structure made of string states which allow for unitary scattering.

The radiation emanating from a fuzzball doesn’t pop out of the vacuum, but has been in

contact with the object. Then the radiation is not exactly thermal anymore since by being

correlated with the object carries information to the outside.

Fuzzballs are a drastic departure from the traditional picture of black holes but there

seems to be an accumulation of evidence in favor of them. In [13] Mathur proved that one

needs O(1) corrections at the level of the horizon in order to resolve the information paradox.

This is based on Page’s argument [14] according to which when we have a macroscopically

large burning system in a typical state, the von Neumann entropy of the radiation emitted

from the system starts increasing from zero, reaches a maximum when half of the system has

evaporated and then decreases until it becomes zero again when all the information has been

released. Based on that Mathur shows that when black holes evaporate through the Hawking

process or with small corrections to it, the von Neumann entropy of the radiation increases

monotonically over time and never becomes zero again. Thus preservation of information

and unitarity require O(1) corrections to the Unruh vacuum, which means that black holes

should have non-trivial structure at the horizon. Also in [15], [16] the authors provided

further support to the idea that there must be some horizon-scale structure by finding that

an infalling observer won’t be able to freely cross the horizon, but just before he will encounter
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a firewall that will crisp him to death.

In this thesis we are going to examine the fate of the black hole microstates at strong

gravitational coupling. In particular we are going to look for microstates with a geometric

description within the regime of validity of supergravity (i.e. we take the limit where the

string length is arbitrarily small). These microstate geometries are a semiclassical approxi-

mation and offer a coarse grained description of the full set of microstates of a black hole.

The goal of this program is to construct enough microstate geometries to account for the cor-

rect scaling of the black hole entropy with respect to its charges. The microstate geometries

we will describe correspond to smooth horizonless configurations with the same asymptotic

structures as a black hole and thus are in agreement with the physical description of black

holes as fuzzballs. In that sense these geometries represent different shades, with huge levels

of detailed structure, of black holes. Specifically we are going to describe aspects of super-

symmetric and extremal non-supersymmetric microstate geometries, offer specific examples

and examine their physical properties as well as the moduli space of solutions.

Chapters 2 and 3 contain material available in the literature. Chapters 4, 5, 6, 7 contain

work I did in collaboration with Iosif Bena, Ben Niehoff, Andrea Puhm and Nick Warner

[17–21].

In chapter 2 we introduce some key concepts to understand the contents of this disser-

tation. We provide a short review of black holes as well as their thermodynamics and stress

the similarities of the extremal Reissner-Nordström black hole with the black holes examined

in this thesis. We also discuss some aspects of string theory and supergravity and the origin

of black hole entropy in string theory.

In chapter 3 we present material available in the literature [22] and set up the formalism
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for what will be presented in the rest of the thesis. We discuss the brane content of three-

charge solutions from the point of view of eleven-dimensional supergravity and write down

the BPS equations. Then we display smooth horizonless solutions in a Gibbons-Hawking

base and examine their regularity. In the end we move on to supertubes, which are the

archetype microstate solutions for two-charge black holes.

In chapter 4 we provide the microstate description in terms of topological bubbles and

supertubes of BPS geometries with four electric and four dipole magnetic charges [18]. These

geometries have been explicitly constructed and uplifted in eleven-dimensional supergravity

in [23]. These solutions were found to belong to a CFT with central charge different compared

to the one of the three-charge model. The fourth charge results in an additional flux through

the topological cycles that resolve the brane singularities. The analog of these solutions in

the IIB frame yield a generalized regular supertube with three electric charges and one dipole

charge. Direct comparison is also made with the with the smooth solutions of chapter 3.

In chapter 5 we set up the formalism for “almost-BPS” solutions, a specific class of five-

dimensional three-charge solutions with broken supersymmetry, and present the material of

[17, 21]. The supersymmetry is broken in a very controlled manner using holonomy and

this enables a close comparison with a scaling, BPS microstate geometry. For a flat base

metric we obtain a new relation between BPS and almost-BPS systems. Furthermore we use

a multi-species supertube solution to construct an example of a scaling microstate geometry

for non-BPS black rings in five dimensions. Requiring that there are no closed time-like

curves near the supertubes places additional restrictions on the moduli space of physical,

non-BPS solutions when compared to their BPS analogs. For large holonomy the scaling

non-BPS solution always has closed time-like curves while for smaller holonomy there is a
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“gap” in the non-BPS moduli space relative to the BPS counterpart. Certain details of this

chapter including the asymptotic charges of the microstate geometry and how the solution

is related to the corresponding non-BPS black ring and relegated to appendix B.

In chapter 6 we continue our investigation of almost-BPS geometries [21]. A key fea-

ture of BPS multi-center solutions is that the equations controlling the positions of these

centers are not renormalized as one goes from weak to strong coupling. In particular, this

means that brane probes can capture the same information as the fully back-reacted super-

gravity solution. We investigate this non-renormalization property for non-supersymmetric,

extremal almost-BPS solutions at intermediate coupling when one of the centers is consid-

ered as a probe in the background created by the other centers. We find that despite the lack

of supersymmetry, the probe action reproduces exactly the equations underlying the fully

back-reacted solution, which indicates that these equations also do not receive quantum

corrections. In the course of our investigation we uncover the relation between the charge

parameters of almost-BPS supergravity solutions and their quantized charges, which solves

an old puzzle about the quantization of the charges of almost-BPS solutions.

In chapter 7, based on [19, 20], we obtain new BPS solutions of six-dimensional, N = 1

supergravity coupled to a tensor multiplet. These solutions are sourced by multiple “su-

perthreads” carrying D1-D5-P charges and two magnetic dipole charges. These new solu-

tions are sourced by multiple threads with independent and arbitrary shapes and include

new shape-shape interaction terms. Because the individual superthreads can be given inde-

pendent profiles, the new solutions can be smeared together into continuous “supersheets,”

described by arbitrary functions of two variables. The supersheet solutions have singularities

like those of the three-charge, two dipole-charge generalized supertube in five dimensions and
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we show how such five-dimensional solutions emerge from a very simple choice of profiles.

We lay down the formalism to construct multiple supersheets with arbitrary and indepen-

dent profiles. For a more general choice of profiles we construct multi-supersheet solutions

that after smearing still are genuinely six-dimensional. We also derive the conditions under

which different supersheets can touch, or even intersect through each other. The solutions

are by construction free of Dirac strings in contrast to the five-dimensional construction

where one has to separately solve integrability conditions. The new solutions obtained here

also represent an important step in finding superstrata, which are expected to play a role

in the description of black-hole microstates, due to their ability to store a large amount of

entropy in their two-dimensional profile.

Finally conclude in chapter 8 by summarizing the main results and discussing the some

of the directions the investigation of black hole microstate geometries has to follow in the

future.
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Chapter 2

Black holes in general relativity and

string theory

The solutions we will be describing in this thesis will be microstate geometries of extremal

black holes in supergravity. The purpose of this chapter is to briefly present some of the

notions of black holes, string theory and supergravity that we will be referring to.

2.1 Black Holes

2.1.1 Schwarzschild black hole

The Schwarzschild solution [1, 24] is the simplest spherically symmetric solution of Einstein

equations in vacuum after flat spacetime. The metric describing the spacetime geometry
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refers to a point source of mass M and is

ds2 = −
(

1− 2G4M

r

)
dt2 +

(
1− 2G4M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.1)

The above metric looks like it has singularities at r = 0 and at r = 2G4M . The locus

r = rH ≡ 2G4M is merely a coordinate singularity since by going to Kruskal-Szekeres

coordinates one finds the metric to be completely regular at r = rH . The surface r = rH is

null and satisfies grr = 0. Thus it is the horizon of the black hole. By calculating some of

the curvature invariants of the metric we get

R = 0 , RµνρσR
µνρσ =

12G2
4M

2

r6
, (2.2)

which blow up only at r = 0. Thus r = 0 is a true singularity of the solution and at this

point the curvature of the spacetime becomes infinite. The latter means that near the black

hole singularity we out of the regime of validity of general relativity.

2.1.2 Reissner-Nordström black hole

The Reissner-Nordström (RN) solution [25, 26], [24] is the simplest example of a black hole

with electromagnetic charges. Thus in terms of macroscopic parameters, in addition to the

mass M, the solution carries an electric charge q and magnetic charge p. RN has an extremal

limit and thus it serves as an important case study for the extremal solutions we will be

studying later on. This black hole is a solution of the Einstein-Maxwell equations and has
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the following metric

ds2 = −∆dt2 + ∆−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (2.3)

where

∆ = 1− 2G4M

r
+
G4 (q2 + p2)

r2
. (2.4)

It also has gauge field strength

F = − q

r2
dt ∧ dr + p sin θdθ ∧ dφ . (2.5)

By setting q = p = 0 we see that we get the Schwarzschild solution (2.1) described above.

To find the horizon once again we look for the points at which the metric looks singular and

grr = ∆ = 0. We find two such points given by

r± = G4M ±
√
G2

4M
2 −G4 (q2 + p2). (2.6)

As in the Schwarzschild case the loci r = r± are simply coordinate singularities and by

examining curvature invariants we see that r = 0 is a curvature singularity . Then, based

on the values of the macroscopic parameters M , q, p, there are three distinct cases we can

consider.

• G2
4M

2 < G4 (q2 + p2):

Then the equation ∆ = 0 has no real solutions and ∆ > 0 always. Consequently

there are no horizons and the only singularity of the metric is at r = 0 and is called a
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“naked singularity”. Naked singularities are considered unphysical and to avoid them

the cosmic censorship conjecture has been introduced. According to this conjecture

naked singularities can not be the product of the gravitational collapse.

• G2
4M

2 > G4 (q2 + p2):

This case corresponds to a physical solution and is the non-extremal Reissner-Nordström

black hole. The equation ∆ = 0 has two real solutions at r = r±, which correspond to

null surfaces and thus are event horizons of the black hole.

• G2
4M

2 = G4 (q2 + p2):

This is the extremal Reissner-Nordström black hole. For a given mass it has the

maximum amount of charge allowed by the cosmic censorship conjecture. Apart from

the curvature singularity at r = 0 the metric has only one coordinate singularity at

r = r+ = r− which is the event horizon.

2.1.3 Extremal Reissner-Nordström

At this point let us study the extremal RN solution in greater detail. Because of the ex-

tremality condition the electromagnetic force balances that of gravity and the non-linearities

of the gravitational equations cancel. Thus one can easily generalize to multiple black hole

solutions. For simplicity let us set G4 = 1 1. The metric is

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.7)

1G4 can easily be restored by making the substitution M → G4M .
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To further analyze the properties of (2.7) it is useful to rewrite the metric in isotropic

coordinates by making the change ρ = r −M . Then the metric becomes

ds2 = −H−2dt2 +H2
(
dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2

)
, (2.8)

where

H = 1 +
M

ρ
. (2.9)

Also by setting the magnetic charge p = 0 we have M2 = q2 and

A = −H−1dt . (2.10)

In this coordinate system the last factor in the metric is simply flat R3 and the horizon is at

ρ = 0. In these coordinates the spacetime is not geodesically complete as for the part of the

spacetime behind the horizon one would need to consider ρ < 0. Taking the near horizon

limit ρ→ 0, and changing coordinates to ρ = M2/z the metric becomes

ds2 = M2

(
−dt2 + dz2

z2

)
+M2dΩ2

2 . (2.11)

The latter spacetime is AdS2 × S2 with electromagnetic flux F on it. This is also known

as the Robinson-Bertotti solution [27, 28]. Both AdS2 and S2 have radius M and S2 is the

shape of the black hole’s event horizon. A spacetime of the type AdSp × Sq is a general

characteristic of the near horizon region of extremal black holes even in higher dimensions.

Now let us note that in (2.8), (2.10) both the metric and the gauge potential are expressed

15



in terms of the function H. H is the function of the electric potential of a point particle in

R3 and is also harmonic, that is it satisfies the Laplace equation on R3

∇2H = 0 . (2.12)

This equation is linear and thus we can immediately generalize to a solution containing

multiple sources located at points ~yj of R3

H = 1 +
N∑
j=1

qj
|~y − ~yj|

. (2.13)

This is known as the Majumdar-Papapetrou solution [29, 30] which describes a system of

N extremal RN black holes. The balancing between gravity and the electromagnetic force

due to the extremality condition M2
j = q2

J , is necessary in establishing the above result as

it reduces the equations of the system to a linear one (2.12) which in turn allows us to

superimpose solutions.

It can be shown that the extremal RN black hole and its multi-centered generalizations

are supersymmetric solutions of N = 2 supergravity in four dimensions [31]. Actually the

fields of the Einstein-Maxwell system (the metric gµν and the gauge field A) are the bosonic

matter content of the gravity multiplet of this supergravity. A characteristic of the states of

supersymmetric theories is the BPS bound, M ≥ |Z|, where Z is the central charge of the

supersymmetry algebra. Supersymmetric solutions saturate the BPS bound and preserve

half the supersymmetries. Thus they are also called BPS or sometimes 1
2
-BPS. The extremal

RN black hole is indeed BPS with central charge Z = q + ip and saturates the BPS bound
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M =
√
q2 + p2, which is identified with the extremality condition.

2.1.4 Black hole thermodynamics

By studying various physical processes one can derive laws about the behavior of black

holes. Some of these laws look like the four laws of thermodynamics and suggest there is an

analogy between black holes and thermodynamic systems[3, 4, 32] 2. In the classical context

of general relativity, that these laws are being derived, they can be nothing more than a

mathematical analogy since black holes have zero temperature and uniqueness theorems

dictate that black holes are described by a single state rather than a set of microstates.

However by a studying quantum fields at the vicinity of the horizon Hawking showed that

black holes emit thermal radiation [5, 6]. As a result the analogy has a physical meaning

and black holes are thermodynamical systems. At this point let us write down the four laws

of black hole thermodynamics and comment on their implications in black hole physics.

• Zeroth law:

The surface gravity 3, κ, on the event horizon of a stationary black hole is constant.

The relevant thermodynamical law states that the temperature of a physical system in

thermal equilibrium is constant. This suggests that the surface gravity on the horizon

is proportional to the temperature of the black hole κ ∼ T .

• First law:

For a process that results in an infinitesimal change of the parameters of the black hole

2A review can be found in [33].
3Surface gravity is the acceleration, as exerted at infinity, required to keep an object on the horizon of a

black hole
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when it is perturbed we have

dM =
κ

8π
dA+ ΩHdJ + ΦHdQ , (2.14)

where M , Q, J are the mass, charge and angular momentum of the black hole, A is

the area of the event horizon, ΩH is the angular velocity of the horizon and ΦH is the

electrostatic potential at the horizon. This resembles the first law of thermodynamics

according to which

dE = TdS + Work terms . (2.15)

The mass is the energy of the black hole and since from the zeroth law we have that

κ ∼ T then from then first law we deduce S ∼ A.

• Second law: There is no physical process under which the area of the black hole

decreases, thus δA ≥ 0. This is reminiscent of the second law of thermodynamics

which states that in all physically allowed processes δS ≥ 0. This law argues in favor

of the entropy of the black hole being proportional to the area of its event horizon.

Their relation is given by the Bekenstein-Hawking formula

S =
A

4G
(2.16)

Consequently from (2.14) we have

T =
κ

2π
. (2.17)
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and E = M .

When a thermodynamic system falls into a black hole its entropy is invisible to an

external observer who will thus realize the entropy being reduced, in violation of the

second law of thermodynamics. To rectify that one has to take into account the

black hole entropy as well. The latter is expressed with the generalized second law of

thermodynamics (GSL). GSL states that there are no physical processes such that the

sum of ordinary entropy So outside black holes and the total black hole entropy SBH

decreases.

δSo + δSBH ≥ 0 . (2.18)

• Third law:

Reaching the limit κ = 0 requires and infinite number of physical processes. After

replacing κ with T the last sentence is the unattainablility statement of the third law

of thermodynamics. For thermodynamical systems the third law comes also in the

Planck-Nernst form which states that S → 0 as T → 0. This fails for extremal black

holes as they have κ = 0 with finite horizon area and thus entropy. However apart

from black holes, there are other quantum systems that violate the Planck-Nernst form

of the third law [34, 35].

For the Schwarzschild black hole then we have

TSch =
1

4πrH
, SSch =

πr2
H

G4

, (2.19)

with rH = 2G4M .
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For the Reissner-Nordström we have

TRN =
r+ − r−

4πr2
+

, SRN =
πr2

+

G4

. (2.20)

At the extremal limit we have r+ = r− and thus we get zero temperature TRN = 0 but finite

entropy SRN = πG4M
2 in violation of the Planck-Nernst statement of the third law.

The laws of black hole thermodynamics suggest that black holes are truly thermodynamic

systems whose macroscopic parameters should have a statistical origin. To explain black

hole entropy there should be N = eSBH microstates with the same asymptotic charges. This

description comes in contrast with uniqueness theorems of general relativity stating that in

four-dimensional asymptotically flat spacetime there is only one solution for a given set of

asymptotic charges. Also general relativity does not provide an explanation as to why the

entropy of a black hole is proportional to the area of its event horizon. Consequently the

study of black holes takes us out of the regime of validity of general relativity. To truly

understand their microscopic nature and evade uniqueness theorems we need a quantum

theory of gravity and more than four spacetime dimensions. String theory is such a theory

and so far has provided substantial evidence about the origin of black hole entropy.

2.2 Black holes in string theory

In general relativity black holes occur when matter collapses under its own gravity and there

is no other phase of matter to withhold the collapse. The matter that forms the black hole

consists of the well known collection of fundamental particles. The black holes we will be
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examining in this thesis are bosonic solutions of string and M-theory. For this reason let us

briefly review the bosonic matter content of these theories.

2.2.1 Matter content of string & M-theory

Instead of particles in string theory and M-theory the fundamental objects are one-dimensional

strings and other higher dimensional objects called branes [36–38]. In the same way that

zero-dimensional particles couple to an electromagnetic field given by a vector gauge poten-

tial, these higher dimensional objects of string theory couple to electromagnetic fields given

by higher rank tensors. Specific kinds of black holes that carry electromagnetic charges and

angular momentum thus occur from particular arrangements of strings and branes.

M-theory lives in eleven spacetime dimensions and is still unknown in detail. Its low

energy limit is N = 1 eleven-dimensional supergravity, which is unique. The bosonic matter

content of the low energy theory consists the metric gµν and a three-form gauge potential

A3, which in total accounts for 128 bosonic degrees of freedom. The presence of A3 suggests

that M-theory has two fundamental objects, M2 and M5 branes which respectively couple

electrically and magnetically to the field strength.

Superstring theory lives in ten dimensions. We will be looking for solutions of IIA and

IIB supergravity theories which are the low energy limit of IIA and IIB string theory. The

bosonic excitations of the closed superstring in these two theories comes in two sectors NS-NS

and R-R. The massless part of those excitations forms the matter content of the supergravity

theories and gives 128 bosonic degrees of freedom. For the NS-NS sector we have the metric

gµν the dilaton φ and the two-form potential B2. The R-R sector contains several p-form

gauge potentials Cp with p = 0, ..., 4. The NS-NS sector is the same for both theories while
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in the R-R sector the IIA theory has odd p and the IIB theory has even p. The gauge

potentials are again sourced by extended objects. The potential B2 in the NS-NS sector

couples electrically to a F1 strings and magnetically to a NS5 brane. In the R-R sector the

IIA theory contains D0, D2, D4, D6 and D8 branes and the IIB theory has D1, D3, D5 and

D7 branes.

The above theories are related by dimensional reduction and dualities. By reducing M-

theory on a circle we get IIA superstring theory in ten dimensions. Also one can go from IIA

to IIB superstring theory and back by performing a string theory duality known as T-duality.

Thus although in various chapters of this thesis we will discussing solutions at the IIA, IIB

or M-theory frame, we will always be referring to the same system and the choice of frame

is mostly based on convenience.

2.2.2 A black hole in string theory and its entropy

Different combinations of strings and branes correspond to different solutions of string the-

ory. At strong gravitational coupling these objects collapse and form black holes with the

same charges as the original brane configuration. At zero gravitational coupling these con-

figurations as simply a stack of branes and by counting the degeneracy of their quantum

states Strominger and Vafa were able to count their entropy and show that it matches the

Bekenstein-Hawking entropy of the relevant black hole [10]. A similar analysis was performed

by Callan and Maldacena [11] which we will review here.

We use the IIB frame compactified on T 4×S1 to describe a three charge black hole in five

dimensions. To that end we consider D5 branes wrapped on T 4 × S1 and D1 branes on S1.

There are also strings stretching between the D1 and D5 branes which are given momentum
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P along one direction in S1. Each D-brane is a BPS solution of string theory and thus cuts

the supersymmetries in half. It can also be shown that momentum along one direction also

cuts the supersymmetries by half 4. Thus a solution with charges D1, D5 and P is 1
8
-BPS.

After compactifying down to five dimensions the solution is simply the generalization of

the extremal RN black hole (2.7) in five dimensions with U(1)3 gauge symmetry. The metric

is

ds2 = − (Z1Z2Z3)−2/3 dt2 + (Z1Z2Z3)1/3 (dρ2 + ρ2dΩ2
3

)
, (2.21)

and the gauge potentials

AI = Z−1
I dt , I = 1, 2, 3 , (2.22)

where

ZI = 1 +
QI

ρ2
, (2.23)

are harmonic functions representing pointlike electric sources on R4. The solution is super-

symmetric and saturates the BPS bound

M = Q1 +Q2 +Q3 . (2.24)

The near horizon region is AdS3 × S3 and the horizon has topology S3. By taking the near

horizon limit ρ << 1 and setting ρ, t to be constant we find the horizon area to be

A = 2π2
√
Q1Q2Q3 , (2.25)

4Momentum along opposite directions of S1 would result in a non-extremal solution.
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which after using the conventions of appendix A and the relation between the supergravity

charges QI and the brane charges NI gives us the entropy

SBH =
A

4G5

= 2π
√
N1N2N3 . (2.26)

Since the solution is supersymmetric the existence of the states of the configuration (like their

degeneracy) should be protected from quantum correction while varying the coupling. Thus

the states are not renormalized. Consequently we should be able to reproduce (2.26) at zero

gravitational coupling by examining the degeneracy of the ground states of the conformal

field theory (CFT) living on the branes. The supersymmetric massless modes of the D1D5

CFT are living on the worldvolume of the strings stretching between D1 and D5 branes (

(1, 5) and (5, 1) strings) along the common direction S1. Thus the field theory lives on the

cylinder (t, S1). For each momentum mode the D1D5 CFT has 4N1N2 bosons and 4N1N2

fermions. Thus the central charge is

c =
3

2
4N1N2 = 6N1N2 , (2.27)

and the degeneracy of states of level N3 with large momentum P (N3 >> 1) in the CFT is

given by the Cardy formula [39]

d(N3) ∼ e2π
√
cN3
6 . (2.28)

After combining (2.27) with (2.28) and taking the logarithm of the latter we find the entropy

of the D1D5P system to be

SCFT = 2π
√
N1N2N3 (2.29)
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which exactly matches the Bekenstein-Hawking entropy (2.26).

This is one of the most remarkable results of string theory and reveals the statistical origin

of the black hole entropy. However the result is established at zero gravitational coupling and

does not provide information about the microscopic structure of black holes when gravity is

present. Our purpose in the rest of this thesis is to move towards this direction and advance

our understanding by providing relevant solutions.
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Chapter 3

BPS microstates in five dimensions

In this chapter we will review results already available in the literature, which will form the

backbone for the material presented in the rest of the thesis. Specifically we are going to

set up the formalism for the study of three charge solutions in five-dimensional supergravity.

We will also describe two and three charge microstate geometries with the same asymptotic

charges as a black hole. A review for BPS solutions and microstate geometries in five

dimensions can be found in [22] and the contents of this section are mostly taken from

there. Microstate geometries are smooth, horizonless solutions that have the same asymptotic

structure as black holes. We choose to present the material in inverse chronological order

and present first the three-charge solutions. After having set the three-charge formalism one

can easily go to the two-charge one by setting one of the charges to zero.

These microstate geometries provide examples of non-uniqueness in string theory and

thus are important in understanding the mechanisms by which uniqueness can be violated.

They resolve the black hole singularity through the mechanism of geometric transition, where
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the originally singular brane sources are replaced by charges dissolved in fluxes supported by

non-trivial topology. The topological nature of the solutions is crucial in evading certain ’No-

go’ theorems which completely exclude non-singular soliton solutions that are regular in four

spacetime dimensions [40]. We will see that, at least classically, there are infinite-dimensional

families of such geometries and thus it is important to understand their implications to black

hole physics.

These results indicate that microstate geometries reflect to the structure of black hole

microstates at strong gravitational coupling and that the traditional black hole picture is

an artifact of symmetry. They also in agreement with the fuzzball proposal and the idea

that one needs O(1) corrections to the black hole geometry to resolved the information

paradox. Under that light microstate geometries, although classical, imply that quantum

gravity effects can extend all the way up to the black hole horizon instead of a Planck

scale region around the singularity. For such an interpretation to be correct one would

need to construct enough microstates to account for the black hole entropy. In general

these microstates are not expected to have a geometric interpretation and thus microstate

geometries offer a coarse-grained semiclassical description of the black hole phase space. The

hope is that they adequately sample the phase space and provide at least the correct scaling

behavior of the entropy with respect to the black hole charges.

For two-charge black holes we need S ∼ Q and the above goal has actually been achieved

[12], [41], [42]. Supertubes , which we present at section 3.4, are smooth supergravity

solutions and it has been shown that by quantizing all possible oscillation modes one can

reconstruct the black hole entropy. However the issue with two-charge systems is that they

have Planck scale horizon area and thus it is not clear that the supergravity approximation
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can be trusted. Also one can not clearly separate between the picture of microstates being

horizonless configurations extending all the way up to where would be a horizon or Planck

size corrections around the singularity [43].

Three-charge black holes have macroscopic horizons and thus the study of three-charge

systems is of crucial importance in the support of the ideas of this program. As we mentioned

earlier various microstate solutions have been constructed for BPS three-charge black holes

and we present some of them in this chapter in section 3.3. However the counting is far

from complete. For three charge systems one needs S ∼ Q3/2. The microstate geometries

constructed so far account only for Q5/4 [44, 45]. The entropy counting is expected to be

completed by a conjectured object, the superstratum, which seems to provide the dominant

semiclassical contribution to the entropy of three-charge systems [46]. The superstratum is

a generalization of the supertube for three-charge geometries and some first steps towards

its construction are the topic of chapter 7.

3.1 The view from eleven dimensions

Black hole systems in five dimensions can be better understood from eleven-dimensional

supergravity compactified on a T 6. So the spacetime splits as M4,1 × T 6. For the three

charge system we consider three sets of M2 branes wrapping three orthogonal T 2’s inside the

T 6. While preserving the same supersymmetries one can add three more sets of M5 branes

such that they wrap a T 4 orthogonal to the T 2 of each of the M2 branes and they also form

a closed curve yµ(λ) inside the spatial part of the five-dimensional spacetime. The curve

yµ(λ) is the same for all of the three sets of M5 branes. The above are summarized in Table
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Brane 0 1 2 3 4 5 6 7 8 9 10
M2 l ? ? ? ? l l ↔ ↔ ↔ ↔
M2 l ? ? ? ? ↔ ↔ l l ↔ ↔
M2 l ? ? ? ? ↔ ↔ ↔ ↔ l l
M5 l yµ(λ) ↔ ↔ l l l l
M5 l yµ(λ) l l ↔ ↔ l l
M5 l yµ(λ) l l l l ↔ ↔

Table 3.1: M-theory brane configuration for three charges. Branes are extended along the
↔ directions and smeared along l. The M5 branes also extend along a closed curve yµ(λ) in
the 4d spatial part of spacetime. A star, ?, means that a brane is smeared along the yµ(λ)
profile and is pointlike on the other three directions. Table taken from [22].

3.1. The M2 branes contribute to the electric charges of the system. The M5 branes as

magnetic duals of M2 branes provide magnetic charges, but since they form a closed curve

in the five-dimensional spacetime they generate magnetic dipoles and higher moments. The

metric corresponding to this brane configuration can be written as

ds2
11 = ds2

5 +
(
Z2Z3Z

−2
1

) 1
3 (dx2

5 + dx2
6)

+
(
Z1Z3Z

−2
2

) 1
3 (dx2

7 + dx2
8) +

(
Z1Z2Z

−2
3

) 1
3 (dx2

9 + dx2
10) , (3.1)

where the five-dimensional space-time metric has the form:

ds2
5 ≡ − (Z1Z2Z3)−

2
3 (dt+ k)2 + (Z1Z2Z3)

1
3 hµνdy

µdyν , (3.2)

for some one-form field, k, defined upon the spatial section of this metric. Also the Maxwell

three-form potential is given by

C(3) = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 + A(3) ∧ dx9 ∧ dx10 . (3.3)
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Since we want the metric to be locally asymptotic to flat R4,1 × T 6, we require

ds2
4 ≡ hµνdy

µdyν , (3.4)

to limit to an asymptotically flat metric at spatial infinity and we require the warp factors,

ZI , to limit to constants at infinity.

Since we have three sets of M2 branes the system is 1/8-BPS and the supersymmetry, ε

should be annihilated by the following three projection conditions

(
1l − Γ056) ε =

(
1l − Γ078) ε =

(
1l − Γ09 10) ε = 0 . (3.5)

For the Clifford algebra in eleven dimensions we also have

Γ0123456789 10 = 1l . (3.6)

Then the conditions (3.5) imply that

(
1l − Γ1234

)
ε = 0 . (3.7)

Spinors are also related to the holonomy of the metric

[∇µ , ∇ν ] ε = 1
4
R

(4)
µνcd Γcd ε , (3.8)

where R
(4)
µνcd is the Riemann tensor of the four-dimensional base metric.

The holonomy of a general Euclidean four-metric is SU(2) × SU(2). If the holonomy lies
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only in one of those SU(2) factors 1 the metric is hyper-Kähler. Then the Riemann tensor

can be either self-dual or anti-self-dual depending on which of the two SU(2)s the holonomy

lies. We have

R
(4)
abcd = ± 1

2
εcd

ef R
(4)
abef . (3.9)

If the Riemann tensor is self-dual then (3.8) vanishes identically as a consequence of (3.7).

This implies that because of (3.7) all the components of supersymmetry on which the non-

trivial holonomy would act, vanish. As we will discuss in chapter 5, choosing an anti-self-dual

Riemann tensor leads to a specific class of extremal non-supersymmetric solutions known as

“almost-BPS”. The main point is that, in addition to the three sets of M2 branes, the base

metric is also 1
2
-BPS and for the system to be supersymmetric there should be a common

subset of supersymmetries preserved by all four objects.

Upon reducing eleven dimensional supergravity on T 6, for the specific brane configuration

we obtain five dimensional N = 2 ungauged supergravity coupled to two vector multiplets.

The bosonic sector of this theory has three U(1) gauge fields 2 A(I) and two scalar fields.

The action is given by

S =
1

2κ5

∫ √
−g d5x

(
R− 1

2
QIJF

I
µνF

Jµν −QIJ∂µX
I∂µXJ − 1

24
CIJKF

I
µνF

J
ρσA

K
λ ε̄

µνρσλ
)
,(3.10)

with I, J = 1, 2, 3. The scalars, XI , satisfy the constraint X1X2X3 = 1 and are related to

1such metrics are called “half-flat”
2one gauge field is the graviphoton which together with the metric form the gravity multiplet. The vector

multiplets contain one gauge field and one scalar
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ZI via:

X1 =

(
Z2 Z3

Z2
1

)1/3

, X2 =

(
Z1 Z3

Z2
2

)1/3

, X3 =

(
Z1 Z2

Z2
3

)1/3

. (3.11)

The matrix that defines the kinetic terms can be written as:

QIJ =
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (3.12)

The F I = dAI are the field strengths and CIJK = |εIJK | are the intersection numbers of (1, 1)

forms defined on the compactification manifold (T 6 in our case). From (3.1) and (3.11) we

see that the XI ’s represent the volume of the each of the three T 2’s and that the constraint

between the XI , which can more generally be written as

1

6
CIJKX

IXJXK = 1 , (3.13)

states that the volume of the compactification manifold (that is T 6 in our case) remains fixed.

It is also important to observe that the action has a Chern-Simons term and thus can support

solutions of non-trivial topology. It has actually been shown in [40] that solutions with non

trivial topology are the only way to circumvent “no-go” theorems of general relativity about

the existence of non-singular soliton solutions. 3. The microstate solutions we will display

later in this chapter will be exactly of that type. For the gauge fields we adopt the floating

brane ansatz [48]

A(I) = − Z−1
I (dt+ k) +B(I) . (3.14)

This ansatz relates the M2 brane electrostatic potentials with the metric functions ZI and

3for a similar construction in eleven dimensions check [47].
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guarantees extremality. Thus the electrostatic repulsion balances the gravitational attraction

and the M2 branes float without feeling any force. The B(I) are one-forms on the four-

dimensional base space and carry the dipole magnetic charges of the M5 branes. We further

define the magnetic field strengths as

Θ(I) ≡ dB(I) . (3.15)

The most general supersymmetric configuration is then obtained by solving the BPS equa-

tions [49]:

Θ(I) = ?4 Θ(I) , (3.16)

∇2ZI =
1

2
CIJK ?4 (Θ(J) ∧Θ(K)) , (3.17)

dk + ?4 dk = ZI Θ(I) , (3.18)

where ?4 is the Hodge dual taken with respect to the four-dimensional metric hµν and

∇2 is the four-dimensional Laplacian. These equations solve the equations of motion of

eleven-dimensional supergravity and are sequentially linear. The latter means that the above

equations are a linear system if solved in the order presented above. Then the non-linear

term of one equation can be realized as a source term by using the solution of the previous

equation.
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3.2 Gibbons-Hawking metrics

As we discussed in section 3.1 supersymmetry requires the four-dimensional base metric to

be hyper-Kähler. Gibbons-Hawking metrics are the most general hyper-Kähler metrics with

a tri-holomorphic U(1) isometry, which means that the U(1) preserves all three complex

structures of the hyper-Kähler metric. These metrics provide examples of asymptotically

locally Euclidean (ALE) and asymptotically locally flat (ALF) spaces which are asymptotic

to R4/Zn and R3× S1 respectively. ALF metrics, because of the compact direction, provide

a smooth way to transition between a five-dimensional and a four-dimensional interpretation

of the solutions. The general form of Gibbons-Hawking metrics is

hµνdx
µdxν = V −1

(
dψ + ~A · d~y

)2
+ V (dx2 + dy2 + dz2) , (3.19)

where we write ~y = (x, y, z). The latter is a U(1) fibration over a flat R3 base. The functions

V and A depend only on the R3 coordinates. The function V is harmonic and is related to

A by

~∇× ~A = ~∇V . (3.20)

It is also convenient to introduce a set of frames

ê1 = V −
1
2 (dψ + A) , êa+1 = V

1
2 dya , a = 1, 2, 3 , (3.21)

from which we construct two sets of two-forms:

Ω
(a)
± ≡ ê1 ∧ êa+1 ± 1

2
εabc ê

b+1 ∧ êc+1 , a = 1, 2, 3 . (3.22)
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The two-forms, Ω
(a)
− , are anti-self-dual, closed and non-normalizable and are the three Kähler

forms of the base. The forms, Ω
(a)
+ , are self-dual and we will use them later.

The general form of V for multiple sources located on R3 at ~yj is

V = h +
N∑
j=1

qj
rj
, (3.23)

where rj = |~y − ~yj|. If we consider an axisymmetric configuation of charges located on the

z-axis at ~yj = (0, 0, aj) we find

A =
N∑
j=1

(
qj
r cos θ − aj

rj
+ cj

)
dφ , (3.24)

where (θ, φ) are spherical polar coordinates and cj is a constant related to the position of

Dirac strings. By choosing cj we can cancel the string along the positive or negative z-axis.

The constant cj can be absorbed in the dψ part of the metric (3.19). Usually one takes

qj ≥ 0 so that the metric is always positive definite, but in a bit we will see that we can

relax this condition.

Before we go any further it is useful to mention two very common metrics in their

Gibbons-Hawking form. For V = 1
r

the metric is that of flat R4 and for V = h + q
r

the

metric is Taub-NUT. In general when h = 0 the metric is asymptotic to R4/ZqT , with

qT =
∑N

j=1 qj and when h 6= 0 it is asymptotic to R3 × S1. For qT = 1 and h = 0 the metric

at infinity goes to R4.

When we approach one of the singular points ~yi we have V ∼ qi
ri

which looks like it is

becoming singular. However at the vicinity of this point and after changing coordinates to
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r2 = ρ2

4
the metric becomes

ds2
4 ∼ dρ2 + ρ2 dΩ2

3 , (3.25)

where dΩ2
3 is the metric on S3/Z|qj |. This means that qj ∈ Z. If |qj| = 1 the space looks

locally like R4 but if |qj| 6= 1 there is an orbifold singularity. These are benign in string

theory and thus, we will consider such backgrounds as regular. Thus we see that at each

point the ψ-fiber pinches off smoothly giving a non-singular metric.

We can now see that Gibbons-Hawking metrics are ideal for creating spacetime foam

free of singularities and thus are good candidates as base metrics for microstate geometries.

However if we want asymptotically the metric to be R4 the constraints we have imposed on

the charges qi are too stringent. Specifically we asked that qi ≥ 0, qi ∈ Z and that qT = 1.

Obviously the only way that these conditions can be satisfied is if we have only one center

with charge q = 1, that is if our space was R4 from the beginning. There is actually a

theorem that states that any a regular, Riemannian, hyper-Kähler metric that is asymptotic

to flat R4 is necessarily flat R4 globally. The way to go around this theorem is to allow

the charges qi to be negative so that the metric is ambipolar i.e. it can change signature

from (+,+,+,+) to (−,−,−,−). The latter may seem unphysical, but we have to keep in

mind that the Gibbons-Hawking metric is a base metric and not our spacetime metric. The

complete spacetime metric (3.2) has warp factors ZI which as we will see guarantee that the

signature of the spacetime metric does not change.

As we discussed the ψ-fiber pinches off smoothly at each point ~yi of the metric thus

creating a series of homological two-cycles ∆ij. This is depicted in Fig. 3.1. Because of
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y(i)

y(j)

y(k)

Δij
Δjk

R3

Figure 3.1: This figure is taken from [22]. It shows two non-trivial two- cycles of the Gibbons-
Hawking geometry. The U(1) fiber pinches off at the sources of the potential V and while
sweeping across them creates homological two-cycles.

these homological two-spheres we can construct dual cohomological fluxes as

Θ ≡
3∑

a=1

(
∂a
(
V −1K

))
Ω

(a)
+ . (3.26)

This is a self-dual two-form (because of Ω
(a)
+ ) and in order for it to be closed we need the

function K to be harmonic, that is ∇2K = 0. Thus a general solution for K is

K = k∞ +
N∑
j=1

kj
rj
. (3.27)

In general one can distribute the sources kj anywhere in the R3 base and that would corre-

spond to generic solutions of black holes and black rings. However for non-singular solutions

we need the fluxes Θ to be regular. Thus the positions of the charges of V should match

with those of K and if h = 0 then one must also impose k∞ = 0 for Θ to remain finite at

infinity. The two-form Θ is also square integrable, that is it satisfies
∫

Θ ∧Θ <∞.

A local potential B such that Θ = dB is given by

B ≡ V −1K (dψ + A) + ~ξ · d~y , (3.28)
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with ~ξ being a vector potential for magnetic monopoles located at the singular points of K.

Thus it satisfies

~∇× ~ξ = − ~∇K . (3.29)

In a similar fashion as in A we have

ξ = −
N∑
j=1

(
kj
r cos θ − aj

rj
+ cj

)
dφ , (3.30)

and it has Dirac strings. To complete expression for B (3.28) however should be free of

Dirac-strings. To check that we consider what happens to B as we approach ~yi. Then the

circles swept by ψ and φ are shrinking to zero size and the string singularities near ~yi are of

the form

B ∼ hi
qi

(
dψ + qi

((z − a)

ri
+ ci

)
dφ
)
− hi

((z − a)

ri
+ ci

)
dφ ∼ hi

qi
dψ . (3.31)

Hence the vector, ~ξ, in (3.28) cancels the string singularities in the R3 and the singular

components of B point along the U(1) fiber of the Gibbons-Hawking metric. The magnetic

flux through a cycle is given by

Πij ≡
1

4 π

∫
∆ij

Θ =

(
kj
qj
− ki

qi

)
. (3.32)

We see that we have constructed fluxes with non singular sources which yet amount to a

non-zero total flux through a Gaussian surface along a homological two-cycle. When we have

singular sources, integrating over a small sphere S2
ε ⊂ R3 around the singular point ~yj we
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get ∫
ε2

Θ = − 4πkj . (3.33)

3.3 Solutions on a Gibbons-Hawking base

As we saw with a Gibbons-Hawking base there is a natural way to write down self-dual

two-forms Θ that satisfy (3.16). Thus the BPS equations admit the following solution

Θ(I) = ∂α
(
V −1KI

)
Ω

(α)
+ , (3.34)

ZI =
1

2
CIJK

KJKK

V
+ LI , (3.35)

k = µ (dψ + A) + ω , (3.36)

µ =
1

6
CIJK

KIKJKK

V 2
+

1

2V

∑
I

KILI +M , (3.37)

with the one-form ω satisfying the equation

~∇× ~ω = (V ~∇µ − µ~∇V ) − V
3∑
I=1

ZI ~∇
(
KI

V

)
, (3.38)

which can also be written as

~∇× ~ω = V ~∇M − M~∇V + 1
2

(KI ~∇LI − LI ~∇KI) . (3.39)

Consequently the solution is specified in terms of the eight harmonic functions KI , LI , V

and M . The integrability condition for (3.39) is the fact that the divergence of both sides

vanish, because the functions KI , LI ,M and V are harmonic on R3. The solution is also
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invariant under the following gauge transformations

KI → KI + cI V ,

LI → LI − CIJK c
J KK − 1

2
CIJK c

J cK V ,

M → M − 1
2
cI LI +

1

12
CIJK

(
V cI cJ cK + 3 cI cJ KK

)
, (3.40)

where the cI are three arbitrary constants. This gauge invariance exists for any CIJK , not

only for those coming from reducing M-theory on T 6 and we will present a generalization of

that for four charges in Chapter 4.

3.3.1 Regularity of the solution

To guarantee the physical content of the solution one has to make sure it is free of pathologies

like closed timelike curves (CTCs). One takes t to be constant and examines spacelike slices

of the metric. From the compact T 6 directions we get the condition ZIZJ > 0. The rest of

the metric can be arranged as

ds2
5|t=ct. =

I4

W 4V 2

(
dψ+A−µV

2

I4

ω
)2

+W 2V
(
r2 sin2 θdφ2−ω

2

I4

)
+W 2V (dr2+r2dθ2) , (3.41)

where

I4 ≡ Z1Z2Z3V − µ2 V 2 , W ≡ (Z1Z2Z3)1/6 . (3.42)

Thus the absence of CTCs requires that the following conditions must be globally satisfied

I4 ≥ 0 , W 2V ≥ 0 , I4r
2 sin2 θdφ2 ≥ ω2. (3.43)
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In general one would have to numerically check the above conditions over the whole range

of coordinates. From the last condition one it can be seen that at the poles θ = 0, π there

is a danger for closed timelike curves unless ω vanishes at these points.

3.3.2 Smooth solutions

In this section we are going to examine smooth solutions with an ambipolar multi-centered

Gibbons-Hawking metric. As we discussed these metrics allow us to write down multi-

centered metrics with R4 asymptotics as well as non-zero fluxes sourced by non-singular

sources. These constructions are examples of a geometric transition, a mechanism in string

theory that allows singularities to be resolved. The main idea behind geometric transition

is that if we consider a stack of branes that wraps a circle at weak coupling, as we increase

the coupling the circle collapses but instead of forming a singularity the brane sources are

replaced by topological cycles which now source the charges. In our construction the M5

branes wrap a closed curve y(λ) inside R4 which is topologically a circle. These are replaced

by fluxes on topological two-cycles (also known as bubbles), which in turn occur by nucleating

additional centers with opposite charges ±q in the base metric. This for the case of a black

ring is depicted in Fig. 3.2

For the functions Θ, ZI and µ to be regular as we approach one of the centers (rj → 0)

we need the sources of the harmonic functions KI , LI and M to coincide with those of V .

That is

KI = kI∞ +
N∑
j=1

kIj
rj
, LI = lI∞ +

N∑
j=1

lIj
rj
, M = m∞ +

N∑
j=1

mj

rj
. (3.44)
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Resolved SolutionNaive Solution

OO ring ba

Figure 3.2: Geometric transition for a black ring: The singular black ring geometry is dis-
played on the left. This is resolved through a geometric transition by the geometry on the
right where two bubbles occur by a pair of Gibbons-Hawking centers nucleated at a and b.
The ring and the bubbles wrap the ψ-fiber of the base metric which in this picture is sup-
pressed. Thus the ring looks like a point and the bubbles flat in the R3 part of base metric
depicted here.

The total flux of Θ(I), through the two-cycle ∆ij is

Π
(I)
ij =

(
kIj
qj
− kIi

qi

)
, 1 ≤ i, j ≤ N . (3.45)

To have asymptotically five-dimensional Minkowski spacetime we need h = 0 and thus

kI∞ = 0 as well. Also we want (Z1Z2Z3)−1 → 1 and µ→ 0 as r →∞. So,

l1∞l
2
∞l

3
∞ = 1 , m∞ = −1

2
q−1
T

N∑
j=1

3∑
I=1

kIj . (3.46)

Regularity at the centers

Furthermore canceling the singularities of ZI and µ near the centers requires

lIj = −1
2
CIJK

kJj k
K
j

qj
, j = 1, . . . , N , (3.47)

mj = 1
12
CIJK

kIj k
J
j k

K
j

q2
j

= 1
2

k1
j k

2
j k

3
j

q2
j

, j = 1, . . . , N . (3.48)
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Since ZI and µ are regular near the centers, as can be seen from (3.2) the absence of closed

timelike curves requires µ → 0 at rj → 0. The same condition guarantees the absence of

Dirac-strings from ω. The latter can be seen from (3.38) since µ, ZI and KI/V go to finite

values at the limit rj → 0, the only term that can lead to Dirac strings is µdV . Thus from the

requirement µ→ 0 as rj → 0 we take the bubble equations which are necessary integrability

conditions for the regularity of the solution.

N∑
j=1
j 6=i

Π
(1)
ij Π

(2)
ij Π

(3)
ij

qi qj
rij

= − 2
(
m∞ qi + 1

2

3∑
I=1

kIi

)
, (3.49)

where rij = |~yi − ~yj| is the distance between two centers.

Regularity at the critical surfaces

Since the solution is ambipolar there are regions where V < 0 and V = 0 surfaces. Thus we

have to check the metric and the fields of the solution in the neighborhood of V = 0. The

tori warp factors contain the same power of ZI s in the numerator and the denominator and

thus are regular at V = 0. It is also easy to check from (3.41) that the five-dimensional part

of the metric is regular at V = 0 since I4, (Z1Z2Z3)1/3V and µV 2 remain finite. Thus the

metric and its inverse are regular at V = 0. For V < 0 we need again I4 ≥ 0 and W 2V ≥ 0.

That is satisfied since if we focus near V = 0 the warp factor W 2V is (K2
1K

2
2K

2
3)

1/3
which

is positive. Regarding the other fields of the solution it is simple to see that no pathologies

are hidden in AI and ω as V = 0. Actually for the gauge fields near V = 0 we get AI ∼ 0

for I = 1, 2, 3, 4.
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3.4 Supertubes

In the previous section we set up the formalism that describes three-charge solutions. Here

we are going to discuss about supertubes, which being a particular category of two-charge

solutions can be described by the previous formalism by setting one of the charges to zero. In

their original inception [50], [51] supertubes are realized as D-brane bound states in the IIA

frame. The electric charges correspond to F1 strings and D0 branes dissolved into a tubular

D2 brane with the support of angular momentum. The brane can form and arbitrary closed

curve ~F (σ) in the target space and thus it gives rise to a dipole charge. Locally a supertube

looks like a flat D2-brane and is 1/2-BPS. However globally the supersymmetry projectors

depend on the direction of the curve ~F (σ) wrapped by the D2-brane and they have only

1/4-BPS supersymmetries in common.

Supertubes are smooth supergravity solutions at D1D5 frame [52, 53]. The have D1,

D5 electric charges and a Kaluza Klein monopole (KKM) dipole magnetic charge. For this

reason supertubes have been used to account for the entropy of two charge black holes. The

entropy comes by counting the possible shapes ~F (σ) of the supertube profile and all other

oscillation modes after quantization [12], [41], [42].

From the M-theory point of view (as shown in Table 3.1) the electric charges come from

two M2 branes wrapping two orthogonal T 2’s and the dipole charge from an M5 brane

wrapping both of the previous T 2’s. Also from the three gauge fields A(I) we keep only the

one that appears in the three-form potential C(3) (3.3) with legs on the T 2 orthogonal to the

other two T 2’s of the M2 branes. Thus one can see that by choosing different combinations

of T 2’s one can construct three different species of supertubes. For example the harmonic
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functions for a supertube with an A(3) gauge field located at position ~R inside R3 are

L1 = l1∞ +
Q1

4rR
, L2 = l1∞ +

Q2

4rR
, L3 = l3∞ ,

K1 = K2 = 0 , K3 =
k3

rR
, M = m∞ +

m

rR
,

(3.50)

where rR = |~y − ~R|. Let us also assume that the supertube is in a Taub-NUT base space

and thus V = h+ q
R

where R = |~R|. Then the above functions describe a circular supertube

which wraps the ψ-fiber.

To have I4 ≥ 0, since the electric potentials ZI are not sourced at the origin we need

µ→ 0 as r → 0. Thus

m∞ = −m
R
. (3.51)

Also be requiring that ω has no Dirac strings we get

2mVR = l3∞k3 , (3.52)

where VR =
(
h+ q

R

)
.

As we see the supertube solution is singular in five dimensions as we approach the limit

rR → 0. Thus with a series of U-dualities let us switch to the IIB frame where the solution

is regular 4.

The electric charges of the solution correspond to D1, D5 branes and momentum wrapping

4A display of the three charge system in various frames and of the appropriate U-dualities can be found
in [44]
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the following directions.

N1 : D1(z) N2 : D5(5678z) N3 : P (z) , (3.53)

and the dipole magnetic charges come from D1, D5 branes and KKM’s as follows

n1 : D5(y5678) n2 : D1(y) N3 : KKM(y5678z) , (3.54)

where z ≡ x10 and we compactified from eleven dimensions down to ten along the direction

x9. The metric is

ds2 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

Z3√
Z1Z2

(
dz + A(3)

)2

+

√
Z1

Z2

(
dx2

5 + dx2
6 + dx2

7 + dx2
8

)
.

(3.55)

As we can see we have a compactification on T 4 and thus the solution is essentially six-

dimensional. The direction z is an additional S1 compared to the five-dimensional metric

(3.2) and the gauge field A(3) fibered on it resolves the five-dimensional singularity. To estab-

lish regularity near the supertube we examine for potential singularities along the direction

it wraps, that is the ψ-fiber. Thus collecting the (dψ + A)2 from (3.55) we get

1

V 2
√
Z1Z2

(
Z1Z2V − 2µV K3 + Z3K

2
3

)
, (3.56)
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which in combination with (3.52) for regularity as rR → 0 gives

m =
Q1Q2

32k3

. (3.57)

Equation (3.57) together with (3.52) fixes the location of the supertube in terms of its electric

and dipole magnetic charges.

Finally it should be mentioned that supertubes in Taub-NUT are related to smooth multi-

centered solutions in Taub-NUT through a spectral flow transformation [54]. Spectral flow

from the six-dimensional perspective is nothing else but a coordinate transformation that

mixes the periodic coordinate in the base ( ψ in our case) with the Kaluza-Klein coordinate

z. From the five-dimensional perspective this amounts to exchanging a singular two-charge

solution (i.e. a supertube) with a smooth three-charge ambipolar one.

By using several spectral flows one can transform a singular five-dimensional solution

consisting of multiple supertubes of different species, to a smooth, horizonless ambipolar one.

A multiple species supertube solution is not smooth in six dimensions since by oxidizing the

five-dimensional metric one can promote only one the gauge fields A(I) to a KKM (3.55).

Thus only one species of supertubes can be regular at a time. However one can use spectral

flow to transform this particular species to a smooth ambipolar solution. Then after a series

of T-dualities one can uplift to M-theory, then reduce to IIA along a different circle and

after another series of T-dualities end up in a D1D5P frame where now a different field

A(J) acts as a KKM. As a result in this frame a different species of supertube becomes a

smooth solution. Supertubes of the previous species are not affected by this process as they

have become smooth ambipolar geometries. By repeating this process one can transform a
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solution with any species of supertubes into a smooth one. The cost of this procedure is

that with every spectral flow the four-dimensional base metric becomes more complicated as

one nucleates pairs of charges ±q. For BPS solutions the base metric resulting after spectral

flow is always of the Gibbons-Hawking type. For the almost-BPS solutions we will examine

in chapter 5 one ends up with a more general electro-vac background [48, 55] .
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Chapter 4

BPS geometries with four charges

The content of this chapter comes from [18] which is one of my sole author papers and is

based on the results of [23].

4.1 Motivation

In the previous chapter we examined the three charged system and the relevant microstate

geometries. Here, following similar steps, we are going to present the four charge system and

the relevant smooth geometries associated with it. In addition to constructing microstate

geometries with ambipolar Gibbons-Hawking spaces we examine a new regular supertube

solution with three electric and one dipole magnetic charge that seems to exist in this frame-

work.

The eleven-dimensional supergravity description of the four-charge system and its reduc-

tion to N = 2 five-dimensional supergravity coupled to three vector multiplets was given
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in [23]. The authors motivated by the CFT analysis of [56] present a black ring solution

with four charges1. The solution has more hair and, although it has four electric and four

dipole magnetic charges, it is still 1/8-BPS. The similarity of the equations and the black

ring solution between [23] and [22] makes it natural to provide a microstate description by

using ambipolar Gibbons-Hawking metrics. As it was mentioned in [23], these microstates

are dual to states of CFT with central charge different from the one of the D1-D5 CFT which

is dual to the three-charge system. Finding the subset of microstates within the current for-

malism, that are dual to D1-D5 CFT might provide a hint for the additional required states

to account for the black ring entropy.

4.2 The hairier BPS solution

4.2.1 General form of the solution

Once again we start be describing the system from eleven dimensions. The additional charge

is encoded in the function Z4. The eleven-dimensional metric is

ds2
11 = −

(
α

Z1Z2Z3

)2/3

(dt+ k)2 +

(
Z1Z2Z3

α

)1/3

ds2
4

+ α2/3 (Z1Z2Z3)1/3

[
dw1dw̄1

Z1

+
dw2dw̄2

Z2

+
dw3dw̄3

αZ3

+
Z4

Z1Z2

(dw1dw̄2 + dw2dw̄1)

]
,

(4.1)

where α =
(

1− Z2
4

Z1Z2

)−1

and ds2
4 is a hyper-Kahler base metric.

1A general description of a black rings in N = 2 supergravity with n vector multiplets has been given in
[57, 58].
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The three-form potential is as follows

A =

(
− α

Z1

(dt+ k) +B1

)
∧ dw1 ∧ dw̄1

−2i
+

(
− α

Z2

(dt+ k) +B2

)
∧ dw2 ∧ dw̄2

−2i
+(

− 1

Z3

(dt+ k) +B3

)
∧ dw3 ∧ dw̄3

−2i
+

(
− αZ4

Z1Z2

(dt+ k) +B4

)
∧ dw1 ∧ dw̄2 + dw2 ∧ dw̄1

−2i
.

(4.2)

Alternatively we can write

A = A1∧dw1 ∧ dw̄1

−2i
+A2∧dw2 ∧ dw̄2

−2i
+A3∧dw3 ∧ dw̄3

−2i
+A4∧dw1 ∧ dw̄2 + dw2 ∧ dw̄1

−2i
, (4.3)

with the obvious definition of the gauge fields AI , I = 1, 2, 3, 4. Also

w1 = x5 − ix6 , w2 = x7 + ix8 , w3 = x10 + ix9 , (4.4)

are the complex torus coordinates. In terms of brane content, compared to the three-charge

case presented in Table 3.1, we have an additional M2 brane along the directions x6 and x7

and an additional M5 brane on the T 4 orthogonal to those directions. The BPS equations

that need to be solved are

ΘI = ∗4ΘI , I = 1, 2, 3, 4 ,

d ∗4 dZ1 = −Θ2 ∧Θ3 , d ∗4 dZ2 = −Θ1 ∧Θ3 ,

d ∗4 dZ3 = −Θ1 ∧Θ2 + Θ4 ∧Θ4 , d ∗4 dZ4 = −Θ3 ∧Θ4 ,

dk + ∗4dk = Z1Θ1 + Z2Θ2 + Z3Θ3 − 2Z4Θ4 ,

(4.5)
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where ΘI = dBI . As in the three-charge system the equations are sequentially linear.

By choosing a Gibbons-Hawking base metric the general form of the solution [23] is

Z1 = L1 +
K2K3

V
, Z2 = L2 +

K1K3

V
,

Z3 = L3 +
K1K2 −K2

4

V
, Z4 = L4 +

K3K4

V
,

k =

(
M +

L1K1 + L2K2 + L3K3 − 2L4K4

2V
+

(K1K2 −K2
4)K3

V 2

)
(dψ + A) + ω ,

∗3 dω = V dM −MdV +
1

2

(
3∑
i=1

KidLi − LidKi

)
− (K4dL4 − L4dK4) ,

(4.6)

where we expanded k = µ(dψ + A) + ω. Also

ΘI =
3∑

a=1

∂a

(
KI

V

)
Ωa

+ , I = 1, 2, 3, 4 , (4.7)

where Ωa
+ are the Gibbons-Hawking self dual two-forms (3.22). Closure of the Maxwell fields,

dΘI = 0, implies that the functions, KI are harmonic

∇2KI = 0 . (4.8)

Thus for the local potential BI we find

BI =
KI

V
(dψ + A) + ~ξI · ~y , (4.9)

where ~∇× ~ξI = −~∇KI , ~y = (x, y, z) and ~∇ is with respect to R3.

54



The solution displayed above remains invariant under the following gauge transformations

KI → KI + cIV , I = 1, 2, 3, 4 ,

LI → LI − CIJKcJKK − 1

2
CIJKc

JcKV + δI,3
(
2c4K4 + c2

4V
)
, I, J,K = 1, 2, 3 ,

L4 → L4 − c3c4V −K3c4 − c3K4 ,

M →M − 1

2
cILI +

1

12
CIJK

(
cIcJcKV + 3cIcJKK

)
+ c4L4 − c3c4K4 −

1

2
c2

4K3 −
1

2
c2

4c3V , I, J,K = 1, 2, 3 ,

(4.10)

where CIJK = |εIJK | and cI are constants.

4.2.2 Regularity

Regularity of the metric (4.1) from the tori gives

Z2Z3 > 0 , Z1Z3 > 0 , Z1Z2 > Z2
4 , Z4Z3 > 0 . (4.11)

These conditions guarantee that α > 0.

By completing the square with respect to dψ the five-dimensional part of the metric

becomes

ds2
5 =

(
α

Z1Z2Z3

)2/3
I4

V 2

(
dψ + A− µV 2

I4

(dt+ ω)

)2

+

(
α

Z1Z2Z3

)−1/3
V

I4

(
I4ds

2
3 − (dt+ ω)2

)
,

(4.12)
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where

I4 = α−1Z1Z2Z3V − µ2V 2 ⇒

I4 =
1

2

3∑
I<J=1

KIKJLILJ −
1

4

3∑
I=1

K2
IL

2
I + V

(
L1L2 − L2

4

)
L3

+ (K1L1 +K2L2 −K3L3)K4L4 −K2
4L1L2 −K1K2L

2
4

− 2M
(
K1K2 −K2

4

)
K3 −MV

(
3∑
I=1

KILI − 2K4L4

)
−M2V 2 .

(4.13)

The function I4 is invariant under the gauge transformations (4.10).

The absence of CTC’s requires

(Z1Z2Z3)1/3V ≥ 0 , I4 ≥ 0 . (4.14)

Writing ds2
3 = dr2 + r2dθ2 + r2sin2θdφ2 it can be seen from (4.12) that at the poles θ = 0, π

there is the additional danger of closed timelike curves unless ω vanishes at these points.

4.3 Bubbling

Our purpose is to resolve the singularity and construct smooth microstate geometries by

allowing the multi-centered Gibbons-Hawking metric to be ambipolar. For the functions
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characterizing the solution we write the ansatz

V = h+
N∑
j=0

qj
rj
, LI = lI∞ +

N∑
j=0

lIj
rj
,

KI = kI∞ +
N∑
j=0

kIj
rj
, M = m∞ +

N∑
j=0

mj

rj
,

(4.15)

with I = 1, 2, 3, 4. We also set as rj = |~y − ~yj| the distance from the jth center located at

~yj. The charges qj can be positive or negative integers with the requirement that
∑N

j=0 qj =

qtot = 1, for the space to be asymptotically Minkowski.

4.3.1 Flat asymptotics

To have five-dimensional Minkowski spacetime at infinity we need h = 0, which means that

kI∞ = 0 as well. Also from the metric we see we must required that α
Z1Z2Z3

→ 1 and µ → 0

as r →∞. So,

l3∞
(
l1∞l

2
∞ − (l4∞)2

)
= 1 , m∞ = −

∑N
j=0

(∑3
I=1 l

I
∞k

I
j − 2l4∞k

4
j

)
2qtot

. (4.16)

An obvious choice for flat asymptotics is l2∞ = l3∞ = l4∞ = 1 and l1∞ = 2. The choice

l1∞ = l2∞ = l∞4 = 1 and l4∞ = 0 might be interesting since it resembles the three-charge case

(3.46), but as it can be seen from (4.16) and (4.20) it may also disentangle some interesting

physical sectors which involve the fourth dipole charge k4.
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4.3.2 Regularity at the critical surfaces

Since the solution is ambipolar there are regions where V < 0 and V = 0 surfaces. Thus we

have to check the metric and the fields of the solution in the neighborhood of V = 0.

The tori warp factors and the function α contain the same power of ZI ’s in the numerator

and the denominator and thus are regular at V = 0. It is also easy to check from (4.12) that

the five-dimensional part of the metric is regular at V = 0 since I4 , (Z1Z2Z3)1/3V and µV 2

remain finite. Thus the metric and its inverse are regular at V = 0.

For V < 0 we need again I4 ≥ 0. That can be seen from (4.12), since if we focus near V = 0

the warp factor
(

α
Z1Z2Z3

)−1/3

V is ((K1K2 −K2
4)2K2

3)
1/3

which is positive.

Regarding the other fields of the solution from (4.2) and (4.6) it is simple to see that no

pathologies are hidden in AI and ω as V = 0. Actually for the gauge fields we get AI ∼ 0

for I = 1, 2, 3, 4 in the same manner as the previous chapter.

4.3.3 Regularity at the centers

We also have to check that the solution is regular as one approaches the Gibbons-Hawking

centers rj → 0. In order to cancel the singularities in the functions ZI we require

l1j = −
k2
jk

3
j

qj
, l2j = −

k1
jk

3
j

qj
,

l3j =
(k4
j )

2 − k1
jk

2
j

qj
, l4j = −

k3
jk

4
j

qj
,

(4.17)
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and cancelling the singularities in µ requires,

mj =
k3
j

2q2
j

(
k1
jk

2
j − (k4

j )
2
)
. (4.18)

The magnetic fields strengths ΘI are regular since the singularities of the functions V and

KI coincide. This suggests that if h = 0 and our base space is flat R4 for ΘI to be regular

we should also have kI∞ = 0 , I = 1, 2, 3, 4.

Since ZI and µ are finite as rj → 0, then from (4.1) the absence of closed timelike curves

requires µ→ 0 at this limit. Also from (4.5) there is the danger of Dirac-strings in ω as there

are d 1
rj

terms in the right hand side of the equation. Another way to write the equation for

ω is:

∗3 dω = V dµ− µdV − V

(
3∑
I=1

ZId

(
KI

V

)
− 2Z4d

(
K4

V

))
. (4.19)

Also, because µ, ZI and KI/V go to finite values at the limit rj → 0 the only term that can

lead to Dirac strings in (4.19) is µdV . Thus the absence of both Dirac strings and closed

timelike curves requires that µ → 0 as rj → 0. From this requirement we take the bubble

equations which are necessary integrability conditions for the regularity of the solution.

N∑
j=0,j 6=i

(((
Π1
ijΠ

2
ij − (Π4

ij)
2
)

Π3
ij

) qiqj
rij

)
= −2m∞qi −

3∑
I=1

lI∞k
I
i + 2l4∞k

4
i . (4.20)

where ΠI
ij =

kIj
qj
− kIi

qi
are the magnetic fluxes running through the two-cycle formed between

the centers i and j and rij = |~yi − ~yj| the distance between them.
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4.3.4 Solving for ω

For ω we find

~ω =
1

4

N∑
i,j=0

qiqj
(
Π1
ijΠ

2
ij − (Π4

ij)
2
)

Π3
ij~ωij , (4.21)

where

ωij = −x
2 + y2 + (z − a+ ri)(z − b− rj)

(a− b)rirj
dφij , (4.22)

and we have set the z-axis along the two points i and j so that ~yi = (0, 0, a) , ~yj = (0, 0, b)

and a > b. The angle φij is the azimuthal angle of the (i, j) coordinate system with z-axis

passing through the points i and j. The functions ωij vanish along the z-axis and thus have

no dirac string singularities. They satisfy the equation,

~∇× ~ωij =
1

ri
~∇ 1

rj
− 1

rj
~∇ 1

ri
+

1

rij

(
~∇ 1

ri
− ~∇ 1

rj

)
. (4.23)

Taking ~∇ × ~ω and using (4.21) together with (4.23) and the regularity equations (4.20),

(4.17), (4.18) we obtain the right hand side of the last equation in (4.6).

4.3.5 Asymptotic charges

The electric charges Q̃I are given by the asymptotic behaviour of the electric potentials ZI

at infinity as follows

ZI ∼ lI∞ +
Q̃I

4r
+O

(
1

r2

)
, r →∞ . (4.24)
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Thus by expanding ZI and making use of (4.15) and (4.17) we get

Q̃1 = −4
N∑
j=0

k̃2
j k̃

3
j

qj
, Q̃2 = −4

N∑
j=0

k̃1
j k̃

3
j

qj
,

Q̃3 = −4
N∑
j=0

k̃1
j k̃

2
j − (k̃4

j )
2

qj
, Q̃4 = −4

N∑
j=0

k̃3
j k̃

4
j

qj
,

(4.25)

where the quantities k̃Ij are invariant under the gauge transformations (4.10),

k̃Ij = kIj − qj
N∑
i=0

kIi , I = 1, 2, 3, 4 . (4.26)

As it was mentioned in [23] the D1-D5 CFT can be obtained by setting Q̃4 = 0. It can be seen

from (4.25) there is a variety of possibilities of achieving that without setting k4
j = 0. Each

one of these choices though should be checked for consistency with the regularity constraints

of the solution. Studies of the bubbled equations of the STU model suggest when one of

the asymptotic charges is being set to zero the solution becomes pathological. However, the

extra freedom of parameters of this model may allow such a choice.

The angular momentum can be derived from the expansion

k ∼ 1

16r
((J1 + J2) + (J1 − J2)cosθ) dψ , (4.27)

and we get

JR = J1 + J2 = 8
N∑
j=0

(k1
jk

2
j − (k4

j )
2)k3

j

q2
j

, (4.28)
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~JL = ~J1 − ~J2 =
N∑

i,j=0,j 6=i

JLij , (4.29)

where

JLij = −8

(((
Π1
ijΠ

2
ij − (Π4

ij)
2
)

Π3
ij

)
qiqj

(~yi − ~yj)
rij

)
, (4.30)

is the angular momentum flux vector associated with the ijth bubble and in the derivation

of it we used (4.20). Comparing with the already known bubbled geometries [22, 59] we

see that most our results can be obtained from the old ones by making the substitution

Π1
ijΠ

2
ij → Π1

ijΠ
2
ij−(Π4

ij)
2 and k1k2 → k1k2−k2

4. There is no need so make such a substitution

for the electric charges as they have been dissolved into the magnetic fluxes (4.17).

4.4 A three charge supertube in IIB

We start with a solution with three electric charges Q1, Q2, Q4 and one dipole magnetic

charge k3 which we call a three charge supertube. The solution has a tubular shape since

it wraps around the Gibbons-Hawking fiber ψ. It can be directly obtained from the one in

[23] by setting Q3 = 0 and k1 = k2 = k4 = 0. For more generality we are going to assume

V = h+ q
r
. The functions describing the solution are as follows

L1 = l1∞ +
Q1

4rR
, L2 = l2∞ +

Q2

4rR
, L3 = l3∞ , L4 = l1∞ +

Q4

4rR
,

K1 = K2 = K4 = 0 , K3 =
k3

rR
, M = m∞ +

m

rR
,

(4.31)

where rR =
√
r2 +R2 − 2rRcosθ and the supertube is positioned at distance R from the

origin along the positive z-axis.
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Since the electric potentials ZI are not sourced at the origin, to keep I4 ≥ 0 as r → 0 we

need µ→ 0 at this limit. Consequently

m∞ = −m
R
. (4.32)

By canceling the remaining terms in the right hand side of the ω equation in (4.6) so that it

looks like (4.23) we get the condition for the absence of closed timelike curves

2mVR = l3∞k3 , (4.33)

where VR =
(
h+ q

R

)
.

Once again the supertube solution is singular in five dimensions. However it is smooth in

six dimensions. Under a series of U-dualities [23] we can go to the IIB frame 2. The metric

in the IIB frame is

ds2 =
α√
Z1Z2

(
− 1

Z3

(dt+ k)2 + Z3

(
dz − dt+ k

Z3

+B3

)2
)

+
√
Z1Z2ds

2
4 +

√
Z1

Z2

ds2
T 4 ,

(4.34)

where z ≡ x10.

The ten-dimensional metric is split between between a six-dimensional part and four

dimensions compactified in T 4. The six-dimensional metric can be obtained from the five-

dimensional one by promoting one of the gauge fields to a Kaluza-Klein coordinate. This

field is A3 in our case and when (4.36) holds, resolves the singularity in five dimensions. To

2The U-dualities that take us from a nice M-theory frame to a D1D5 frame are different compared to the
three charge case [44].
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examine regularity along the supertube as rR → 0 we look for potential singularities along

the fiber. Thus collecting all the (dψ + A)2 terms from (4.34) we obtain

α

V 2
√
Z1Z2

(
Z1Z2V

α
− 2µV K3 + Z3K

2
3

)
. (4.35)

Thus for regularity as rR → 0 and from 4.33 we need

m =
Q1Q2 −Q2

4

32k3

. (4.36)

Equation (4.36) together with (4.33) guarantees the regularity of the solution and fixes the

location of the supertube in terms of its electric and dipole magnetic charges. Once again, by

substituting in (4.36) the combination Q1Q2−Q2
4 → Q1Q2 we get the regularity condition the

STU model supertube. Since we have already set k4 = 0, to get a supertube dual to a D1-D5

CFT state we need Q4 = 0 which takes us back to the STU model supertube. Supertubes

correspond to unbound states in the dual CFT. Thus probably only bound states in the new

CFT may lead us back to the D1-D5 sector. It would be interesting to find the combinations

of generalized supertubes that achieve the latter.

4.5 Concluding remarks

Using the M-theory framework we have obtained microstate geometries corresponding to the

black rings presented in [23]. The off-diagonal term in the supergravity gauge field gives an

additional flux, Π4
ij, in the bubble equations, which dissolves the fourth electric charge and

resolves the singularity associated with it. A smooth supertube solution with three electric
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charges and one dipole magnetic charge has been shown to exist in this framework as well.

Most of the old regularity equations of the three-charge system can be rewritten for the case

of four charges by replacing the quadratic X1X2 → X1X2−X2
4 where XI some parameters of

the solution. It is interesting that the fourth flux, Π4
ij, couples only to Π3

ij. This reflects the

fact that even in the M-theory frame the extra U(1) gauge field is not in equal footing with

the previous three. This should be related to the geometry being 1/8-BPS in spite of having

four charges. The quadratic QX ≡ X1X2 − X2
4 also appears in [23] and originates from

the intersection numbers CIJK which occur after truncating eleven-dimensional supergravity

down to five dimensions. We have,

CIJK = |εIJK | , I, J,K = 1, 2, 3 , C344 = −2 (4.37)

with all the rest being zero. The cubic invariant factorizes into the quadratic QX as:

1

6
CIJKX

IXJXK =
(
X1X2 − (X4)2

)
X3 = QXX

3 (4.38)

The latter constraint defines the symmetric space SO(1, 1)⊗ (SO(1, 2)/SO(2)), which is the

scalar manifold of N = 2 supergravity coupled to three vector multiplets . This space is

one of the many possible scalar manifolds that occur after truncating eleven dimensional

supergravity to five dimensions with N = 2 supersymmetry [60, 61]. By exploring further

down this road, there may be more general families of 1/8-BPS black hole hair which allow

further generalizations of the quadratic in terms of cubic and other symplectic invariants.

The algebraic similarities with the three-charge case are so many that it would be straight-

forward to perform the analysis done for the BPS case in [54, 62] and for the non-BPS case
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and in [17, 63]. The three charge supertube solution we presented makes use of the field A3 as

a Kaluza-Klein coordinate to oxidize the five-dimensional metric. Because of the symmetry

that exists in the three-charge model it is trivial to oxidize the metric with any of the gauge

fields AI . We can try doing the same in this case and then find a connection between general-

ized supertubes and bubbled geometries by using spectral flow transformations [54] or some

generalized version of them. This could lead to a larger family of microstate geometries being

constructed. Then one can see how much entropy these solutions take by putting supertubes

in ambipolar base spaces and exploring the entropy enhancement mechanism [62]. For the

non-BPS case we can break supersymmetry by reversing the holonomy of the background

with respect to the duality of the magnetic field strengths ΘI and construct multicenter

non-BPS solutions [63]. Then in the spirit of [17] it would be interesting to examine how

the fourth charge affects the tolerance of the non-BPS microstate solution to supersymmetry

breaking. There might be the case that one can use the fourth dipole charge to dilute the

holonomy of the background, which breaks the supersymmetry, while keeping the values of

the other electric and magnetic charges in a region that was previously excluded.

Finally, exploring the work of [56] it would be interesting to make the connection between

the microstates at strong gravitational coupling and the states of the dual CFT. The four

charge solutions are dual to a CFT with central charge [23] :

c ∼ Q̃1Q̃2 − Q̃2
4 (4.39)

This CFT is still unknown and we believe that this and subsequent work may shed more

light towards its nature.
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Chapter 5

Almost-BPS vs. BPS

In this chapter we present the material of [17] and some parts of [21] which refer to the

generic structure of almost-BPS solutions. [17] is work I did together with Nicholas Warner.

5.1 Motivation

Much of the progress on microstate geometries has also centered around BPS solutions

because the supersymmetry of such backgrounds greatly simplifies the equations of motion.

However, there has also been significant progress in constructing large families of non-BPS

extremal solutions using “Almost-BPS” and “floating-brane” techniques [48, 63–65]. These

constructions use the simplifications provided by supersymmetric systems and yet break the

supersymmetry in a very controlled manner, typically using the holonomy of a background

metric. By using this approach one can readily reproduce, and then dramatically extend,

the known extremal families of black-hole and black-ring solutions and one can find whole
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new families of solutions.

As yet, there are still rather few known non-BPS microstate geometries (some examples

can be found in [66–68]). However, we believe that the systematic construction of non-BPS

microstate geometries is, at present, primarily limited by the technical complexity of such

solutions rather than by some strong physical limitation on their existence. On the other

hand, it is a very interesting and important physical question to investigate whether the

breaking of supersymmetry does lead to limitations on the solutions, or on the moduli space

of such solutions. One of the purposes of this chapter is to study precisely this phenomenon

for a very simple microstate geometry corresponding to an “Almost-BPS” black ring.

The simplicity of the supersymmetry-breaking mechanism in “Almost-BPS” solutions

provides an ideal laboratory for studying this problem because one can start with super-

symmetric configurations and then turn on the supersymmetry breaking very slowly. The

microstate geometry that we will consider here will be a simple example of a “bubbled

black ring,” in which the original, singular charge sources have been replaced by smooth,

cohomological fluxes supported on non-trivial cycles, or bubbles. This results in a smooth,

horizonless geometry that looks exactly like a black ring until one gets very close to the

would-be horizon where the geometry caps off smoothly. The bubbling process is, by it-

self, 1
8
-BPS, preserving four supersymmetries locally, but in the Almost-BPS solution these

supersymmetries are broken by the holonomy of the background. We find that, as the su-

persymmetry breaking holonomy gets stronger in the vicinity of the bubbled black ring, the

possible locations of the bubbles becomes progressively more limited and, in our simple ex-

ample, one of the bubbles is required to become progressively smaller. We also see that if

the supersymmetry-breaking holonomy becomes too large then a physical solution ceases to
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exist1. We also contrast this with the corresponding supersymmetric, BPS bubbled black

ring and see that no such restrictions occur.

Thus we find that, compared to the BPS solution, the Almost-BPS object has a “gap”

in its configuration space and the size of the gap increases with the strength of the super-

symmetry breaking to a point where no physical solution exists.

While we are studying an extremely simple example in this chapter, there are broader

conclusions for microstate geometries. The first and most evident is that supersymmetry

breaking can restrict the configuration and moduli spaces. Second, the restriction emerges

from a competition between the supersymmetry breaking scale, which manifests itself, in our

example, through the curvature scale and the scale of the fluxes in the bubbled geometries.

We find that the bubbles persist if the fluxes are large enough. Conversely, one might expect

that if one could “dilute” the supersymmetry breaking scale then bubbles with smaller fluxes

would persist. In our example, the supersymmetry breaking is generated by the holonomy

of a Taub-NUT space and this supersymmetry breaking curvature can be diluted by passing

to a multi-Taub-NUT. The requirement that some bubbles have to be small might also be

interpreted as requiring a solution to form “locally supersymmetric” clusters of bubbles.

The latter conclusions are rather speculative given the simplicity of our example but it does

suggest some very interesting generalizations of our work here.

In Section 5.2 we outline the supergravity theory that we will study and give the equations

that define a BPS and non-BPS systems of interest. In Section 5.3 we specialize to a Taub-

NUT background with three supertubes and we discuss why and how this represents a

1Specifically, there is no solution that does not have closed time-like curves in the neighborhood of the
bubbles.
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geometric microstate of a black hole in four dimensions. We examine the regularity conditions

and the requirements that there are no closed time-like curves (CTC’s) and obtain the

“bubble equations” or “integrability conditions” that constrain the supertube locations for

both BPS and non-BPS solutions. In Section 5.4 we examine the scaling solutions in which

the supertubes come very close together in the base geometry. This limit corresponds to

the opening of a deep black-hole, or black-ring, throat in the physical geometry and as a

result, in this limit the microstate geometry looks more and more like a black object. To

clarify the differences between the BPS and non-BPS systems and analyze the moduli space

of solutions in more detail, we make some further simplifications to the system of charges

in the later parts of Section 5.4. We also solve the bubble equations in a flat space limit

and exhibit two branches of solutions that will be part of our analysis of the more general

solutions.

Sections 5.5 and 5.6 contain a careful analysis of the families of BPS and non-BPS

solutions. We first linearize the bubble equations around the coincidence limit of the points

and show how the two branches of solutions persist in both the BPS and non-BPS solutions.

To find the additional restrictions imposed by the non-BPS system it is easier to reverse

the usual approach and, instead of fixing charges, we fix the positions of the supertubes and

solve the bubble equations for the charges. We find that there are always physically sensible

charges that solve the BPS bubble equations for any supertube location. However, the non-

BPS system has a non-trivial discriminant that restricts the locations of the supertubes: We

find a “forbidden region,” or “gap,” in the non-BPS moduli space.

Section 5.7 contains our conclusions and discussion of the implications of our work. Some

technical aspects as well as the asymptotic structure and charges of our solutions have been
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relegated to appendix B.

5.2 The supergravity equations

In this section we will describe the almost-BPS together with the BPS system. For the BPS

case we are going to use a slightly different notation compared to Chapter 3 in order to be

able to compare and differentiate with the almost-BPS case.

The simplest way to describe the solutions of interest is to work in M-theory, with the

metric

ds2
11 = − (Z1Z2Z3)−

2
3 (dt+ k)2 + (Z1Z2Z3)

1
3 ds2

4

+
(
Z2Z3Z

−2
1

) 1
3 (dx2

5 + dx2
6) +

(
Z1Z3Z

−2
2

) 1
3 (dx2

7 + dx2
8) +

(
Z1Z2Z

−2
3

) 1
3 (dx2

9 + dx2
10) , (5.1)

where ds2
4 is a four-dimensional hyper-Kähler metric. The three-form potential is given by:

A = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 + A(3) ∧ dx9 ∧ dx10 , (5.2)

where the Maxwell fields are required to obey the “floating brane Ansatz” [48]:

AI = − εZ−1
I (dt+ k) +B(I) , (5.3)

and where ε = ±1 and B(I) is a “magnetic” vector potential on the base, ds4. We further

define the field strengths:

Θ(I) ≡ dB(I) . (5.4)
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It was shown in [48] that if one chooses the base to be merely Ricci-flat and solves the

linear system of equations (for a fixed choice of ε = ±1):

Θ(I) = ε ∗4 Θ(I) , (5.5)

∇̂2ZI = 1
2
εCIJK ∗4 [Θ(J) ∧Θ(K)] , (5.6)

dk + ε ∗4 dk = εZIΘI , (5.7)

then one obtains solutions to the complete equations of motion of M-theory. In particular

one obtains a BPS solution [49, 69, 70] by requiring that the duality structure of the Θ(I)

matches that of the Riemann tensor of the base. That is, one obtains BPS solutions by taking

ε = +1 and choosing the base metric to be self-dual hyper-Kähler, or by taking ε = −1

and choosing the base metric to be anti-self-dual hyper-Kähler. Almost-BPS solutions [63–

65] are also obtained by using hyper-Kähler base metrics but supersymmetry is broken by

mismatching the duality structure of the Θ(I) and that of the Riemann tensor of the base.

Here we will work with the Taub-NUT metric:

ds2
4 = V −1(dψ + A)2 + V (dx2 + dy2 + dz2) , (5.8)

with

V = h +
q

r
, (5.9)

where r2 ≡ ~y · ~y with ~y ≡ (x, y, z). We will also frequently use polar coordinates: x =
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r sin θ cosφ, y = r sin θ sinφ and z = r cos θ. The metric (5.8) is hyper-Kähler if

~∇V = ± ~∇× ~A , (5.10)

where ∇ denotes the flat derivative of R3. For (5.9) we get

A = ± q cos θ dφ , (5.11)

where we chose the integration constant to vanish. We use the orientation with ε1234 = +1

and then choosing the positive sign in (5.10) results in a the Riemann tensor that is self-dual

while choosing the negative sign makes the Riemann tensor anti-self-dual.

Henceforth within this chapter, we will follow the conventions of [17] and take

ε = + 1 , (5.12)

and then the BPS solutions and almost-BPS solutions correspond to choosing the + or −

sign, respectively, in (5.10) and (5.11).

The Riemann-squared invariant for this metric is:

Rµνρσ R
µνρσ =

24h2 q2

(q + h r)6
, (5.13)

which measures the strength of supersymmetry breaking in the non-BPS solutions.
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5.3 Some three-charge multi-supertube solutions in five

dimensions

5.3.1 Supertubes as microstate geometries

We are going to consider a system of three different species of supertube in the simplest

of hyper-Kähler base metrics, namely the Taub-NUT background. In our formulation, a

“type I” supertube corresponds to allowing an isolated, singular magnetic source for Θ(I)

with singular electric sources in ZJ and ZK (I, J,K all distinct) at the same location. Such

a solution is, of course, singular in five dimensions. However, one can uplift this to the

six dimensions using the vector potential, A(I), as a Kaluza-Klein field and the resulting

geometry is then completely regular D1-D5 supertube geometry in the IIB duality frame

(Section 3.4). The singular sources in five dimensions become smooth magnetic flux on a

three-dimensional bubble in six dimensions.

The obvious problem is that one can only perform this Kaluza-Klein uplift with one

species of supertube and thus a solution with three different species of supertube will always

have singularities in six dimensions. Given that one can always resolve any single supertube

singularity one might, quite reasonably, take the attitude that a multi-species supertube

background should be considered to be a microstate geometry. On the other hand, there is

better way to show that such a viewpoint is correct: One can use spectral flow [48, 54] to

show that a multi-species supertube solution can be used to generate a physically equivalent

and truly non-singular microstate geometry.

More specifically, once one has resolved one species of supertube by uplifting to six
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dimensions, one can perform a coordinate transformation in the six-dimensional solution

and reduce back down to a smooth five-dimensional geometry in which the Taub-NUT space

has been replaced by a more complicated base geometry. For BPS solutions this simply

modifies the potential that appears in the Gibbons-Hawking base [54] but for non-BPS

solutions the four-dimensional base is replaced by a generically more complicated electro-vac

background [48]. The important point is that, from the five-dimensional perspective, spectral

flow represents a highly non-trivial transformation of the solution space in which singular

supertube configurations are replaced by smooth fluxes on new two-dimensional cycles in

the four dimensional base space. Moreover, spectral flow can be done successively with

each different species of supertube. The only cost is that with each spectral flow, the base

geometry and fluxes become more complicated, particularly for non-BPS solutions. Indeed,

the result of a sequence of three spectral flows of an Almost-BPS solution was obtained

indirectly in [55] by performing six T-dualities.

Thus, the important point is that a multi-species supertube solution, while singular in

five dimensions, can always be transformed into a physically equivalent2 smooth, horizonless

solution in five dimensions. For Almost-BPS systems, the resulting geometry is typically

very complicated and so it is much easier to work with the multi-species supertube solution,

as we will here, because it encodes the physically equivalent, albeit rather more complicated,

true microstate geometry.

2It is equivalent because spectral flows are induced by coordinate transformations in six dimensions.
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5.3.2 BPS and almost-BPS solutions

On a GH base space the magnetic field strengths are given by the two-forms:

ΘI
± ≡ −

3∑
a=1

(∂aP±) Ω
(a)
± , (5.14)

are then harmonic if and only if

P+ = V −1KI
+ or P− = KI

− ; ∇2KI
± = 0 , (5.15)

where ∇2 denotes the Laplacian on R3.

Then the vector potentials, B
(I)
± in (3.14) are given by:

B
(I)
± = P

(I)
± (dψ + A) + ~ξ

(I)
± · d~y , P

(I)
+ = V −1KI

+ ; P
(I)
− = KI

− , (5.16)

∇2KI
± = 0 , ~∇× ~ξ(I)

+ = − ~∇KI
+ ,

~∇× ~ξ(I)
− = KI

−
~∇V − V ~∇KI

− , (5.17)

where the± corresponds to the choice in (5.10) and hence to BPS or almost-BPS respectively.

A “type I” supertube, I = 1, 2, 3, has a singular magnetic source for B(I) and singular

electric sources for ZJ and ZK , where I, J,K are all distinct. We study an axisymmetric

supertube configuration with one supertube of each type on the positive z-axis and thus we

take harmonic functions:

KI
± =

k±I
rI
, (5.18)

where

rJ ≡
√
x2 + y2 + (z − aJ)2 . (5.19)
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Without loss of generality we will assume that

a1 > a2 > a3 > 0 . (5.20)

We then have

ξ
(I)
+ = − k+

I

(r cos θ − aI)
rI

dφ , ξ
(I)
− = − k−I

aI rI

[
q (r− aI cos θ) +h aI (r cos θ− aI)

]
dφ ,

(5.21)

and we may then write

B
(I)
+ =

KI
+

V

[
dψ +

q aI
r

dφ− h (r cos θ − aI) dφ
]
, (5.22)

B
(I)
− =

k−I
aI rI

[
aI dψ − q r dφ− h aI (r cos θ − aI) dφ

]
. (5.23)

One can measure the local dipole strength by taking the integral of Θ(I) over a small

sphere, S2
ε ⊂ R3, around the singular point and one finds:

∫
S2
ε

Θ(I) =


−4 π k+

j for BPS

−4π
(
h+ q

aj

)
k−j for almost-BPS

(5.24)

For the two-sphere at infinity one has

∫
S2
∞

Θ+ = − 2 π k+
j ,

∫
S2
∞

Θ− = + 2π h k−j . (5.25)

The difference between (5.24) and (5.25) arises because S2
ε and S2

∞ are not homologous and
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Θ− has a non-trivial flux through the non-compact 2-cycle running defined by (r, ψ) for

0 ≤ r <∞.

Hence, the quantized dipole charges are

k̂j ≡
(
h+

q

aj

)
k−j (5.26)

in the almost-BPS solutions.

It was found in [63] that this definition of dipole charges was also very natural because

it was an essential step in bringing the expression for the horizon area, J4, of non-BPS black

rings into its canonical form.

For BPS supertubes one can write down the complete solution using the results of Section

3 and for non-BPS supertubes one can use the results in [63]. In particular, one has, for the

BPS supertubes:

Z1 = 1 +
Q

(1)
2

4 r2

+
Q

(1)
3

4 r3

+
k+

2 k
+
3

(h+ q
r
) r2 r3

, (5.27)

Z2 = 1 +
Q

(2)
1

4 r1

+
Q

(2)
3

4 r3

+
k+

1 k
+
3

(h+ q
r
) r1 r3

, (5.28)

Z3 = 1 +
Q

(3)
1

4 r1

+
Q

(3)
2

4 r2

+
k+

1 k
+
2

(h+ q
r
) r1 r2

. (5.29)

78



while for the non-BPS supertubes one has:

Z1 = 1 +
Q

(1)
2

4 r2

+
Q

(1)
3

4 r3

+
(
h+

q r

a2 a3

) k−2 k−3
r2 r3

, (5.30)

Z2 = 1 +
Q

(2)
1

4 r1

+
Q

(2)
3

4 r3

+
(
h+

q r

a1 a3

) k−1 k−3
r1 r3

, (5.31)

Z3 = 1 +
Q

(3)
1

4 r1

+
Q

(3)
2

4 r2

+
(
h+

q r

a1 a2

) k−1 k−2
r1 r2

. (5.32)

The Q
(I)
j define the local electric charge source of species I at point j. For the BPS solutions

these also give the electric charges at infinity, but for the non-BPS solutions there is also a

contribution from the dipole-dipole interaction term.

As usual one writes the Ansatz for the angular-momentum vector, k:

k = µ (dψ + A) + ω (5.33)

and one can solve (5.7) for µ and ω. The expressions for these functions are completely

explicit and details may be found in Chapter 3 and [63]. For BPS solutions, µ is given by

µ = 1
6
V −2CIJK K

I
+K

J
+K

K
+ + 1

2
V −1KI

+L
+
I + M+ , (5.34)

where M+ is another harmonic function which we will take to be

M+ = m+
∞ +

m+
0

r
+

3∑
j=1

m+
j

rj
. (5.35)
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Thus for the system we are studying,

µ =
k+

1 k
+
2 k

+
3

r1r2r3V 2
+

1

2V

(
k+

1

r1

(
1 +

Q
(1)
2

4r2

+
Q

(1)
3

4r3

)
+

k+
2

r2

(
1 +

Q
(2)
1

4r1

+
Q

(2)
3

4r3

)
(5.36)

+
k+

3

r3

(
1 +

Q
(3)
1

4r1

+
Q

(3)
2

4r2

))
+ M+ . (5.37)

For non-BPS solutions the expression for µ is rather more complicated:

µ =
∑
I

k−I µ
(1)
I + h

∑
I

∑
j 6=I

Q
(I)
j k−I
4

µ
(3)
Ij + q

∑
I

∑
j 6=I

Q
(I)
j k−I
4

µ
(5)
Ij (5.38)

+ k−1 k
−
2 k
−
3

(
h2µ(6) + q2µ(7) + qhµ(8)

)
+ µ(9) , (5.39)

where, following [63], the µ(j) are defined by:

µ
(1)
I =

1

2rI
, µ

(3)
Ij =

1

2V rIrj
, µ

(5)
Ij =

r2 + aIaj − 2aIrcosθ

2V aI(aj − aI)rrIrj
, (5.40)

µ(6) =
1

V r1r2r3

, µ(7) =
rcosθ

V a1a2a3r1r2r3

, (5.41)

µ(8) =
r2(a1 + a2 + a3) + a1a2a3

2V ra1a2a3r1r2r3

, µ(9) =
M−
V

. (5.42)

The remaining details of the solution, including the expressions for M− and ω are given

in Appendix B , where we discuss the connection of the three supertube solution with the

one of a black ring.
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5.3.3 Constituent charges

One of our primary purposes in this Chapter will be to compare “the same” BPS and non-

BPS supertube configurations and the corresponding solution spaces. There are, however,

two natural notions of being “the same:” one can either arrange to have the configurations

made out of the same number and type of branes or one can arrange the configurations

to have the same bulk charges measured at infinity. We will adopt the former perspective

primarily because it seems more physically in keeping with the idea that we are taking some

otherwise supersymmetric collection of branes and using the holonomy of the background to

break the supersymmetry and then studying the effects on the physics of the solution. The

charges and angular momenta measured at infinity will thus rather naturally depend upon

the supersymmetry breaking process.

On a more practical level, we want to understand and elucidate the effects of supersym-

metry breaking on the possible geometric transitions to bubbled microstate geometries. The

system of equations and constraints is far simpler to understand in terms of local quantities

whereas the asymptotic charges not only depend upon more complicated algebraic combina-

tions of these local charges but also depend upon the geometric layout. Since we are going

to find limitations on the geometric layout as a result of supersymmetry breaking, the study

of the effects of supersymmetry breaking as a function of asymptotic charges becomes a

formidably entangled problem. It is thus far easier to work with fixed constituent charges.

As we saw from equation (5.24), the local dipole charges are determined by k+
j for BPS

supertubes and by k̂j for non-BPS supertubes. We also noted that if one tries to compare

BPS and non-BPS black rings then it is the “effective charges,” k̂j, of the non-BPS object

that replace the dipole charges, k+
j , of the BPS object in canonical physical quantities like
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the horizon area [63]. More directly, the strength of the divergence of the Maxwell field

measures the local constituent charge of the object in terms of the underlying branes and

this is why these quantities naturally appear in formulae that determine horizon areas and

entropies. Thus the same supertube configuration is obtained by fixing the k̂j’s of the non-

BPS configuration to the same values as the k+
j ’s for the BPS configuration.

It is also evident from (5.25) that fixing the constituent charges results in different charges

measured at infinity but, as we remarked in Section 5.3.2, this difference in charge is related

to non-localizable fluxes through non-compact cycles. It is also worth noting that the re-

lationship between local and asymptotic charges is just as much an issue for the electric

charges because the BPS electric charges measured at infinity arising from (5.27)–(5.29) de-

pend solely upon the Q
(I)
j whereas the non-BPS electric charges measured at infinity arising

from (5.30)–(5.32) involve dipole-dipole interactions and depend upon the geometric details.

Another advantage of fixing the constituent magnetic charges of a configuration is that

the corresponding local electric charges are then easy to identify and fix. For example, for

BPS supertubes, (5.27) shows that as r2 → 0 one has:

Z1 ∼
1

4 r2

[
Q

(1)
2 +

k+
2 k

+
3

(h+ q
a2

) |a2 − a3|

]
, (5.43)

whereas for non-BPS supertubes (5.30) yields:

Z1 ∼
1

4 r2

[
Q

(1)
2 +

(
h+

q

a3

) k−2 k
−
3

|a2 − a3|

]
=

1

4 r2

[
Q

(1)
2 +

k̂2 k̂3

(h+ q
a2

) |a2 − a3|

]
. (5.44)

The electric charge thus has a pure source contribution, defined by the Q
(I)
j ’s, and a part
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that comes from the magnetic dipole-dipole interactions. More importantly, the local electric

charges arising from the magnetic dipole-dipole interactions are identical between BPS and

non-BPS solutions if one fixes k̂j of the non-BPS solutions to the values of k+
j in the BPS

solutions. Thus the constituent charges of the BPS system are completely determined by

(Q
(I)
j , k+

j ) and by (Q
(I)
j , k̂j) for the non-BPS system and it is these sets of charges that are

to be identified in order to get “the same” underlying local configuration. In terms of string

theory, this amounts to requiring the local brane constituents to be identical between BPS

and non-BPS system.

5.3.4 Supertube regularity

Supertubes are not regular in five dimensions but a “type I” supertube can be made regular

in six dimensions, in the IIB frame by taking its Maxwell field and realizing it in terms of

geometry as a Kaluza-Klein field. For the type 3 supertube, the six-dimensional metric in

IIB frame can be written as:

ds2
6 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2 ds

2
4 +

Z3√
Z1Z2

(dz + A(3))2 . (5.45)

where A(3) is the gauge potential defined in (3.14). There are two things that need to be

verified for supertube regularity: One must first ensure that there are no divergent terms

along the ψ-fiber and then one must remove any CTC’s associated with Dirac strings. Once

one has done this the metric is completely regular at the supertube (Section 3.4).
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The regularity conditions

Collecting all the (dψ + A)2 terms in (5.45):

(Z1Z2)−
1
2 V −2

[
Z3 (V P 3

±)2 − 2µV 2P 3
± + Z1Z2V

]
(dψ + A)2 , (5.46)

where P 3
+ = V −1K3

+ for BPS supertubes and P 3
− = K3

− for non-BPS supertubes. For

regularity as r3 → 0, one must have:

lim
r3→0

r2
3

[
Z3 (V P 3

±)2 − 2µV 2P 3
± + Z1Z2V

]
= 0 . (5.47)

To determine the condition for no Dirac strings it is simplest to look at the equation for

ω. For BPS solutions one has:

~∇× ~ω = (V ~∇µ − µ~∇V ) − V
3∑
I=1

ZI ~∇
(
KI

+

V

)
, (5.48)

while for non-BPS solutions one has:

~∇× ~ω = − ~∇(V µ) + V

3∑
I=1

ZI ~∇KI
− . (5.49)

To avoid Dirac strings at r3 = 0 one must have no terms that limit, as r3 → 0, to a constant

multiplet of ~∇( 1
r3

) in the source on the right-hand side. This means that one must have

lim
r3→0

r3

[
µ − Z3 P

3
±
]

= 0 . (5.50)

84



One can then use either (5.47), (5.50) or some combination of them, to fix m3 in (5.35).

The other, independent condition, is then most easily expressed by eliminating µ from (5.47)

using (5.50) to obtain:

lim
r3→0

r2
3

[
V Z1Z2 − Z3 (V P 3

±)2
]

= 0 . (5.51)

Regularity of the other supertubes in their IIB frames imposes conditions parallel to (5.50)

and (5.51) as r1, r2 → 0.

As was noted in [63], a rather technical calculation involving the explicit forms of µ shows

that the mj are fixed to be:

m±1 =
Q

(2)
1 Q

(3)
1

32 k±1
, m±2 =

Q
(1)
2 Q

(3)
2

32 k±2
, m±3 =

Q
(1)
3 Q

(2)
3

32 k±3
, (5.52)

in both the BPS and non-BPS solutions. Regularity and the absence of Dirac strings at the

origin imposes conditions on µ and thus fixes the parameters m0 and m∞ in the function M

defined in (5.35) . For the BPS solution, regularity requires that µ be finite as r → 0 and

the absence of Dirac strings at the origin imposes the stronger requirement that µ → 0 as

r → 0. We therefore find that for the BPS solution we must impose:

m+
0 = 0 , m+

∞ = −
3∑
i=1

m+
i

ai
. (5.53)

The result for the non-BPS solution is rather less edifying and its general form may be found

in [63]. The details for the three supertube system will be given in Appendix B.
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The bubble equations

Of central importance here are the other regularity conditions (5.51), and the similar con-

ditions for rj → 0 in general, because these produce the bubble equations, or integrability

conditions that constrain the locations of the supertubes in terms of the charges. Define the

symplectic inner products, Γ+
ij = −Γ+

ji and Γ̂ij = −Γ̂ji by:

Γ+
12 = k+

1 Q
(1)
2 −k+

2 Q
(2)
1 , Γ+

13 = k+
1 Q

(1)
3 −k+

3 Q
(3)
1 , Γ+

23 = k+
2 Q

(2)
3 −k+

3 Q
(3)
2 , (5.54)

and

Γ̂12 = k̂1Q
(1)
2 − k̂2Q

(2)
1 , Γ̂13 = k̂1Q

(1)
3 − k̂3Q

(3)
1 , Γ̂23 = k̂2Q

(2)
3 − k̂3Q

(3)
2 , (5.55)

where the k̂j are the effective dipole charges defined in (5.26). Then the bubble equations

for the BPS supertubes may be written:

Γ+
12

|a1 − a2|
+

Γ+
13

|a1 − a3|
=

1

4

Q
(2)
1 Q

(3)
1

k+
1

(
h+

q

a1

)
− 4 k+

1 , (5.56)

Γ+
21

|a1 − a2|
+

Γ+
23

|a2 − a3|
=

1

4

Q
(1)
2 Q

(3)
2

k+
2

(
h+

q

a2

)
− 4 k+

2 , (5.57)

Γ+
31

|a1 − a3|
+

Γ+
32

|a2 − a3|
=

1

4

Q
(1)
3 Q

(2)
3

k+
3

(
h+

q

a3

)
− 4 k+

3 . (5.58)

while the bubble equations for the non-BPS supertubes are:
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Γ̂12

|a1 − a2|
+

Γ̂13

|a1 − a3|
=

1

4

Q
(2)
1 Q

(3)
1

k̂1

(
h+

q

a1

)
− 4 k̂1 − ε123 Ŷ , (5.59)

Γ̂21

|a1 − a2|
+

Γ̂23

|a2 − a3|
=

1

4

Q
(1)
2 Q

(3)
2

k̂2

(
h+

q

a2

)
− 4 k̂2 − ε213 Ŷ , (5.60)

Γ̂31

|a1 − a3|
+

Γ̂32

|a2 − a3|
=

1

4

Q
(1)
3 Q

(2)
3

k̂3

(
h+

q

a3

)
− 4 k̂3 − ε312 Ŷ , (5.61)

where

Ŷ ≡ 4h q k−1 k
−
2 k
−
3

a1a2a3

=
4h q k̂1k̂2k̂3

(q + ha1)(q + ha2)(q + ha3)
, (5.62)

and

εijk ≡
(ai − aj) (ai − ak)
|ai − aj| |ai − ak|

. (5.63)

Thus the BPS and non-BPS bubble equations are nearly identical, except for the ad-

ditional term defined by Ŷ , if one replaces the kj of the BPS configuration with the k̂j of

the non-BPS configuration. This is because the bubble equations depend upon the local

constituent charges of the underlying branes.

It is also very interesting to note that Ŷ 2 is proportional to the geometric mean of the

curvature invariant, (5.13), evaluated at the supertubes. Thus Ŷ directly measures the

strength of the supersymmetry breaking in the vicinity of the supertubes. Our purpose now

is to see how this affects the space of solutions to these equations.
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5.3.5 The Minkowski-space limit

If one sets h = 0 then the metric (5.8) becomes that of flat Minkowski space modded out by

Zq. In this limit, the BPS and almost-BPS solutions must become the same because both

solutions are necessarily BPS since the base is flat.

It is evident that the potential functions, (5.27)–(5.29) and (5.30)–(5.32), are identical

for h = 0. The metric may then be written as

ds2
4 = q

[dr2

r
+ r

((dψ
q

)2

+ dθ2 + dφ2 ± 2

q
cos θ dψ dφ)

)]
, (5.64)

which takes a more canonical form if one sets r = 1
4
ρ2. The ± sign reflects the BPS, or

almost-BPS description (5.11) but this is a coordinate artifact.

There are several obvious ways of mapping the BPS description of the metric onto the

almost-BPS description but one can most easily see the correct choice by looking at the

magnetic fields, B
(I)
± , for h = 0. Indeed, from (5.23) one sees that the substitution

ψ → − q φ , φ → 1

q
ψ , k+

I → k̂I (5.65)

maps B
(I)
+ → B

(I)
− . This transformation also interchanges the choice of signs in (5.64).

In Appendix B we also verify that the transformation (5.65), for h = 0, also maps the

angular momentum vector in the BPS description to that of almost-BPS description.
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5.4 Scaling solutions

One chooses boundary conditions with ZI going to constants at infinity so that the space-

time is asymptotically flat and with a Taub-NUT background, the non-compact space time

is R3,1, or four-dimensional, at large scales. In order for the microstate geometry to look

like a black hole (or black ring) at larger scales, all the multi-centered parts of the solution

must cluster to look like a concentrated object and around this cluster there must be an

“intermediate region” in which the warp factors (or electrostatic potential functions), ZI ,

behave as:

ZI ∼
QI

rc
, (5.66)

where rc is the radial coordinate measured from the center of the cluster. This intermediate

region then defines the black-hole (or black-ring) throat and since the radial part of the metric

behaves like drc
rc

in this region, the distance diverges logarithmically as the cluster gets more

and more tightly packed. In the intermediate region, the physical metric approaches that

of AdS3 × S2 and the area of the black-hole-like throat is then determined by the QI in

(5.66) and is finite if all of the QI are non-zero. Thus an apparently singular coincidence

limit in the base geometry is not singular in the full geometry. On the contrary, it represents

the physically most interesting limit in which a finite-sized black-hole throat opens up and

all the microstate details then cut off the throat and resolve the geometry at an arbitrarily

depth set by the (small) size of the cluster.

For regular, bubbled geometries in five dimensions, the ZI functions are finite everywhere

and so there is a very important scaling limit that must be taken in order for the black-hole

throat to open up in the proper manner [71, 72]. For the supertube backgrounds, the
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divergence of the ZI at the supertubes, (5.27)–(5.32), automatically guarantees the correct

behavior, (5.66), of the ZI as one approaches a cluster. It is interesting to recall that spectral

flow does not modify the physics of a solution and yet with three spectral flows [48, 54] one

can convert all three supertube species into pure geometric bubbles in five-dimensions in

which the ZI ’s remain finite at the geometric centers. Thus the simple beauty of using three

supertubes is that one gets the microstate geometry of a black hole of finite horizon area

simply by arranging the clustering of the supertubes.

We therefore wish to study the scaling limit of our solutions and see when the two sets of

bubble equations, (5.56)–(5.58) or (5.59)–(5.61), allow the supertubes to form an arbitrarily

tight cluster.

5.4.1 Clustered supertubes

The first thing to note about the bubble equations is that if one adds them then the left-

hand sides cancel and so the sum of the right-hand sides must be zero. For a cluster, one

has aj → R for some fixed R, and so one finds the “radius relation” for the cluster, which

is to be identified with the radius relation of the black ring that asymptotically our three

supertube system looks like. This determines the location, R, of the cluster in terms of the

charges and for BPS solutions it is a simple linear equation in R:

[
Q

(2)
1 Q

(3)
1

k1

+
Q

(1)
2 Q

(3)
2

k2

+
Q

(1)
3 Q

(2)
3

k3

](
h+

q

R

)
= 16 (k+

1 + k+
2 + k+

3 ) , (5.67)
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while for the non-BPS solution one has3

[
Q

(2)
1 Q

(3)
1

k̂1

+
Q

(1)
2 Q

(3)
2

k̂2

+
Q

(1)
3 Q

(2)
3

k̂3

](
h+

q

R

)
= 16 (k̂1 + k̂2 + k̂3) +

16h q k̂1k̂2k̂3

(q + hR)3
, (5.68)

with

k̂i ≈
(
h+

q

R

)
k−j . (5.69)

Whether one writes (5.68) in terms of k−j or k̂j, the non-BPS radius relation is a cubic in R.

It is also obvious that the left-hand sides of the bubble equations for clusters are po-

tentially divergent while the right-hand sides are finite. This means that one must either

have Γij → 0 or, more interestingly, one can have Γij finite but with scaling arranged so

that the divergences cancell on the left-hand sides of the bubble equations. We will focus on

arrangements of charges that allow the latter but do not necessarily exclude the former. In

particular, we will consider configurations for which

|a1 − a2| ∼ λΓ12 , |a2 − a3| ∼ λΓ23 , |a1 − a3| ∼ − λΓ13 , (5.70)

for some small parameter, λ. In particular, for λ > 0, this means that Γ12,Γ23 > 0 and

Γ13 < 0. This means that for a scaling solution satisfying (5.70) one must have:

Γ12 + Γ23 + Γ13 = 0 . (5.71)

There are other permutations that yield scaling solutions but our purpose here is not to

make an exhaustive classification but to study the differences between BPS and non-BPS

3Note that for any ordering of points, the sum of the three εijk’s defined in (5.63) is always 1.
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solutions. We will thus make exactly the same assumptions for the Γ̂ij and for the ordering

of non-BPS supertube configurations.

5.4.2 A simplified system

From our discussion is Section 5.3.3, to get the same supertube configurations we need to

identify (Q
(I)
j , k+

j ) for the BPS system with (Q
(I)
j , k̂j) for the non-BPS system. To simplify

things still further, we will take all the dipole charges to be exactly the same. This means we

take k+
j = d, j = 1, 2, 3 for BPS solutions and k̂j = d, j = 1, 2, 3 for non-BPS solutions and

treat d as a fixed dipole field strength in both instances. With this choice (5.71) becomes

Q
(1)
2 − Q

(2)
1 + Q

(1)
3 − Q

(3)
1 + Q

(2)
3 − Q

(3)
2 = 0 , (5.72)

for both the BPS and non-BPS systems.

While (5.72) means that there are five possible independent charges, we will keep things

very simple by passing to the three-parameter subspace defined by:

Q
(1)
2 = Q

(3)
2 = α , Q

(1)
3 = Q

(2)
1 = β , Q

(3)
1 = Q

(2)
3 = γ . (5.73)

With this choice one has, for the BPS system, as r →∞:

Z1 ∼
α + β

4 r
, Z2 ∼

β + γ

4 r
, Z3 ∼

α + γ

4 r
, (5.74)

which means that α, β and γ can be used to parametrize three independent electric charges

at infinity. The corresponding asymptotics are a little more complicated for the non-BPS
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system but the conclusion is still the same.

With these choices, the bubble equations reduce to

α− β
a1 − a2

− γ − β
a1 − a3

=
1

4

β γ

d2

(
h+

q

a1

)
− 4 − Y , (5.75)

− α− β
a1 − a2

+
γ − α
a2 − a3

=
1

4

α2

d2

(
h+

q

a2

)
− 4 + Y , (5.76)

γ − β
a1 − a3

− γ − α
a2 − a3

=
1

4

β γ

d2

(
h+

q

a3

)
− 4 − Y , (5.77)

where Y = 0 for the BPS system and

Y = Ỹ ≡ 4h q d2

(q + ha1)(q + ha2)(q + ha3)
=

Ŷ

d
, (5.78)

for the non-BPS system. Note that for λ > 0 the scaling conditions (5.70) are equivalent to

γ > α > β. As we noted earlier, the only difference between the BPS bubble equations and

the non-BPS bubble equations is a source term related to the background curvature that is

doing the supersymmetry breaking.

It is also useful to rewrite these equations by multiplying by the obvious common de-

nominators. One the obtains

−(γ − α) a1 + (γ − β) a2 − (α− β) a3 = (a1 − a2)(a1 − a3)

(
1

4

β γ

d2

(
h+

q

a1

)
− 4− Y

)
= −(a1 − a2)(a2 − a3)

(
1

4

α2

d2

(
h+

q

a2

)
− 4 + Y

)
= (a1 − a3)(a2 − a3)

(
1

4

β γ

d2

(
h+

q

a3

)
− 4− Y

)
.

(5.79)
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5.4.3 The solution in flat, cylindrical geometry

To understand the branches of the solution, it is very instructive to start by solving the

equations with q = 0 and subsequently study what happens as q is reintroduced. Setting

q = 0 reduces the geometry of the base space to a flat cylinder, R3×S1, where the radius of

the circle is set by the value of h. The BPS and non-BPS bubble equations become identical

and trivially solvable.

First one should note that because the cylinder is translationally invariant, it is only the

differences (ai − aj) that are going to have physical meaning. Taking the sum of the bubble

equations yields

h =
48 d2

α2 + 2 β γ
. (5.80)

The radii of the supertubes are determined by their charges and this identity forces the

supertube radii to match that of the S1 of the cylinder.

The system of equations (5.79) has three branches of solution. Taking the difference

between (5.75) and (5.77) one easily finds that there is a set of solutions that has a2 mid-way

between a1 and a3:

(a1 − a2) = (a2 − a3) =
(α2 + 2 β γ)

8 (α2 − β γ)
(2α− β − γ) , (5.81)

We call this the symmetric branch.

The other two branches allow the ai to be placed at any position but the charges are

constrained accordingly. That is, we can solve (5.79) for α, β and γ in terms of the ai and
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we find either

α = β = γ = ± 4d√
h
, (5.82)

or

α = ± 4d√
h
, β = ± 4d|a1 − a2|√

h|a2 − a3|
, γ = ± 4d|a2 − a3|√

h|a1 − a2|
. (5.83)

We refer to the latter as the geometric branch because the ratios of charges are related to

ratios of separations and because the charge α is the geometric mean of β and γ:

α2 − β γ = 0 . (5.84)

As we will see, the solution given by (5.82) extends, for q 6= 0, to a scaling solution with

α → 1
2
(β + γ) in the scaling limit, ai − aj → 0. We will therefore refer to such solutions as

the arithmetic branch. The three branches of solution obviously meet when all the points

and charges coincide.

One should also recall that we required:

γ > α > β , a1 > a2 > a3 , (5.85)

Combining this with (5.83) one finds the additional condition

a2 − a3 > a1 − a2 (5.86)

on the geometric branch. To arrange the supertube geometry so that a2 − a3 < a1 − a2 we

just have to flip the signs in (5.70), which also flips the order of the charges γ < α < β.
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This transformation leaves (5.71) unaffected.

It is evident that from (5.82) and (5.83) that, for q = 0, the fluxes, Γij, vanish on the

arithmetic branch and remain finite on the geometric branch. More generally, for the scaling

limit with q 6= 0, we will see in Section 5.6.2 that one typically has Γij → 0 on the arithmetic

branch while Γij remains finite on the geometric branch. In addition, one can only have

α = β = γ if q = 0 or q →∞.

5.5 Linearizing the bubble equations

To define the linearization of the bubble equations, we first define the parameter, R, that

sets the location at which all the supertubes would coinicide. This is given by (5.67) or

(5.68) for the BPS and non-BPS systems respectively. These collapse to:

1

4

( α2 + 2 β γ

d2

)(
h+

q

R

)
= 12 + Y0 , (5.87)

where Y0 = 0 for the BPS system while for the non-BPS system one has:

Y0 =
4h q d2

(q + hR)3
. (5.88)

Having thus defined R, we now consider a solution that is very close to this limit point

and introduce a small parameter, λ, that is defined by setting a2 = (1 + λ)R. One also

assumes that (ai − aj) ∼ O(λ). A quick examination of the bubble equations shows that

at first order one must have (a1 − a2) = λµ(α − β) and (a2 − a3) = λµ(γ − α) for some
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parameter, µ. Thus we are led to the expansion:

a1 = (1 + λ)R + λµ (α− β) + λ2 µ2 x1 , (5.89)

a2 = (1 + λ)R , (5.90)

a3 = (1 + λ)R − λµ (γ − α) + λ2 µ2 x3 , (5.91)

for some parameters, λ, µ, x1 and x3. One then finds that (5.79) is trivially satisfied at

zeroeth and first order in λ and the first, non-trivial set of equations emerges at second

order:

−(γ − α)x1 − (α− β)x3 = (α− β)(γ − β)

(
1

4

β γ

d2

(
h+

q

R

)
− 4− Y0

)
= −(α− β)(γ − α)

(
1

4

α2

d2

(
h+

q

R

)
− 4 + Y0

)
= (γ − α)(γ − β)

(
1

4

β γ

d2

(
h+

q

R

)
− 4− Y0

)
. (5.92)

The equality of the three right-hand-sides of these equations gives two conditions, one of

them is the defining “radius relation” for R, given by (5.87). For the BPS system, the

second condition reduces to:

(α− β) (2α− β − γ) (α2 − β γ) = 0 , (5.93)

while for the non-BPS system it becomes:

(α− β) (2α− β − γ)
(
(α2 + β γ) (q + hR)− 32Rd2

)
= 0 . (5.94)
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Both BPS and non-BPS systems admit the arithmetic branch, which naively involves

setting α = 1
2
(β+γ), but remembering that we are making a series expansion, the arithmetic

branch is defined more precisely by taking:

α =
1

2
(β + γ) + O(λ) . (5.95)

The geometric branch involves taking

α2 = β γ + O(λ) , (5.96)

for the BPS system and

(α2 + β γ) (q + hR)− 32Rd2 + O(λ) = 0 . (5.97)

for the non-BPS system.

For both systems, the right-hand side of (5.92) vanishes on the geometric branch and one

has:

x1

x3

= − (α− β)

(γ − α)
, (5.98)

One can then use the fact that, to leading order, the right-hand side of (5.92) vanishes to

rewrite the condition (5.98) as

α2 − β γ = − 32hqd4

(q + hR)3
+ O(λ) (5.99)

which shows, more explicitly, how the BPS and non-BPS geometric branches differ.
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One can expand to higher orders and obtain expressions for λ and for how the O(λ)

terms in (5.95), (5.96) or (5.97) relate to the values of x1, x3 and higher order corrections.

We will not pursue this here but instead we will move on to discuss the restrictions placed

upon the non-BPS space of solutions. To that end, we note that (5.97) is linear in R and is

trivially solvable to yield:

R =
q (α2 + β γ)

32 d2 − h (α2 + β γ)
+ O(λ) . (5.100)

One can now substitute this in the defining relation, (5.87), for R and the result is a compli-

cated polynomial relationship between α, β, γ and d that is required for the non-BPS system.

This replaces the simple constraint (5.96) on the charges that arises in the BPS system. The

non-trivial constraint on the charges for the non-BPS system is a quartic in α2 and βγ and

reduces to:

(α2 + β γ)
(
h (α2 + β γ)− 32 d2

)3 − 32768 q2 d4 (α2 − β γ) = 0 . (5.101)

We will not analyze this further here, but we will examine the solution space in more gener-

ality in the next section and we will show that there are very non-trivial constraints on the

solution space for the non-BPS system.
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5.6 The solution spaces in terms of charges

5.6.1 The quartic constraint

To find restrictions on the solution space and charges it turns out to be easier to reverse the

usual perspective and treat the bubble equations (5.75)–(5.77) as constraints that fix α, β

and γ for given locations, aj, of the supertubes4.

To do this most efficiently, one solves equations (5.75) and (5.77) for α and γ. Substituting

this into (5.76) generates quartic in β that is required to vanish. This quartic is extremely

complicated and details are given in Appendix B. On the other hand, in the scaling limit

the quartic simplifies dramatically. To that end, we substitute

a1 = a3 + λ y1 , a2 = a3 + λ y2 (5.102)

and expand the quartic to leading order in small λ. We find that the result starts at O(λ4)

and is actually a quadratic in β2: The β and β3 terms actually vanish as O(λ6). Dropping

some overall factors, this quadratic, at leading order in λ, is:

P4 = (q + ha3)2 y2
2 β

4 + 16 a2
3 d

4 (Y + 4)2 (y1 − y2)2

+ 4 a3 d
2 (q + ha3)

(
(y2

1 + 2 y1y2 − 2y2
2)Y − 4 (y2

1 − 2 y1y2 + 2 y2
2)
)
β2 (5.103)

4It is partially for this reason that we chose to reduce the configuration to three independent charge
parameters.
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The discriminant of this quadratic is:

∆ = 16 a2
3 d

4 (q + ha3)2 y2
1 (4− Y )

(
4 (y1 − 2 y2)2 − (y2

1 + 4 y1y2 − 4 y2
2)Y

)
. (5.104)

First observe that for Y = 0 one has

∆ = 256 a2
3 d

4 (q + ha3)2 y2
1 (y1 − 2 y2)2 , (5.105)

which is a perfect square and hence the quadratic always has roots. Indeed, the quadratic

has roots:

β2 =
16 a3 d

2

(q + ha3)
, β2 =

16 a3 d
2

(q + ha3) y2
2

(y1 − y2)2 . (5.106)

For the non-BPS system one has, from (5.78):

Y = Ỹ =
4h q d2

(q + ha3)3
+ O(λ) . (5.107)

Define

µ ≡ y2

y1

, Λ ≡ h q d2

(q + ha3)3
, f(µ) ≡ (1− 2µ)2

(1 + 4µ− 4µ2)
, (5.108)

then the discriminant is non-negative if either

Λ ≤ 1 , f(µ) ≥ Λ , (5.109)

101



or

Λ ≥ 1 , f(µ) ≤ Λ . (5.110)

However, since this is a quadratic in β2, one must also show that there are positive roots.

Since the coefficient of β4 and β0 are non-negative, it follows that the roots of the polynomial

are either both positive or both negative. The sign of these roots is determined by the sign

of the coefficient of β2. This coefficient may be written:

− 2 a3 d
2 (q + ha3)

(
y2

1 (4− Y ) +
(
4 (y1 − 2 y2)2 − (y2

1 + 4 y1y2 − 4 y2
2)Y

))
, (5.111)

which is negative in the region defined by (5.109) and positive for (5.110). This means that

the solutions for β2 are both positive and hence there are four real roots in the region defined

by (5.109) while (5.110) corresponds to four purely imaginary roots for β and is, therefore,

unphysical. Since we want all the asymptotic charges to be positive, (5.74), will generically

mean we want to focus on the solutions with β > 0.

Thus we conclude that the physical branches are defined by (5.109) and there are always

two positive, real solutions for β in this range. Indeed, these solutions must correspond to

the non-BPS extensions of the geometric and arithmetic branches. We therefore focus on

this domain.

In order to preserve the proper ordering of the points, (5.85), one must have 0 < µ < 1

and in this range one has 0 < f(µ) < 1 however there are then “forbidden regions” for µ in
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Figure 5.1: This shows the possible locations of the non-BPS supertubes, as determined by
µ ≡ y2/y1, as a function of the supersymmetry-breaking parameter, Λ. The shaded area
depicts the forbidden region.

which (5.109) is not satisfied. These regions are defined by:

1

2
−

√
Λ

2 (1 + Λ)
< µ <

1

2
+

√
Λ

2 (1 + Λ)
(5.112)

and they are depicted in Fig. 5.1. Inside these regions the values of β are all complex and

no real, physical solution exists.

The simplest way to describe the moduli space of physical, non-BPS solutions is to start

at q = 0⇒ Λ = 0 and slowly turn on the supersymmetry breaking parameter, q. From this

we learn several things. First, the critical control parameter is d/`, where ` is the curvature

length scale at the location of the ring. (Flat space has ` = ∞.) For a given ring dipole

charge, the first inequality in (5.109) tells us that a solution will cease to exist if the curvature

gets too strong at the ring. The second inequality then tells us that if the curvature is in

the range that allows solutions then µ must either be close to zero or it must be close to 1

and µ = 1
2

is always excluded. In other words, for the non-BPS solution with intermediate

curvatures, the middle point (a2) must be close to one or other of the outer points (a1 and
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a3) and as Λ→ 1 one must have a2 → a1 or a2 → a3.

Therefore, if one imagines turning on the curvature, or supersymmetry breaking, slowly

from flat space by increasing q from zero, one starts from a situation where all points in the

range a1 > a2 > a3 are allowed but as the curvature increases the forbidden zone grows,

driving a2 to one or other end of the interval and then, when the curvature reaches a critical

value, the scaling solutions cease to exist altogether. Supersymmetry breaking thus forces

two of the supertubes to come together and merge if the supersymmetry breaking becomes

strong enough. For our choice of scaling conditions (5.70), to keep the proper order of charges

we need a2 → a1 so that (5.86) is satisfied. Once again for the case a2 → a3, the order of

charges has to flip and so we also need to flip the signs in the scaling conditions (5.70).

5.6.2 Some numerical examples

To illustrate the foregoing analysis, we fix the supertube dipole moments and positions

and fix the geometry at infinity and then examine the space of solutions for the charges

α, β and γ as we vary q. Note that for q = 0 and for q → ∞ the geometry is flat and

hence supersymmetric. In both of these limits we expect the BPS and non-BPS solutions to

coincide.

We choose the following values of parameters

d = 1 , h = 1 , a3 = 1 , |a2 − a3| = 2× 10−8 , |a1 − a2| = 1× 10−8 . (5.113)

One should note this corresponds to having µ = 2/3 in (5.108) and that this lies outside

the forbidden region for small q. Indeed, this configuration lies in the forbidden region for

104



0.5 1.0 1.5 2.0 2.5 3.0
q

-10

-8

-6

-4

-2

2

4

PHqL

Figure 5.2: The cubic inequality (5.114) forbids non-BPS solutions for a range of q deter-
mined by the shaded region of this graph.

Λ > 1
17

and with the choices (5.113), this corresponds to

P (q) ≡ (q + 1)3 − 17 q < 0 . (5.114)

This cubic inequality is depicted in Fig. 5.2 and it forbids a range of q that is approximately

given by 0.07258 < q < 2.4808 5. The solution exists for smaller or larger values of q.

In Figures 5.3 and 5.4 we plot the solution for α, β and γ of the exact system of the

bubble equations. We generate these solutions using the reduction of the bubble equations

provided by (A.69) and (A.70).

The BPS and non-BPS solutions both exhibit arithmetic and geometric branches and, as

one would expect, the corresponding BPS and non-BPS solutions are very similar when the

NUT charge is very small or very large. On the arithmetic branch the charges seem to be

identical but a closer examination reveals that the fluxes, Γij, are very small, but non-zero.

Indeed, near the region q = 1 for the BPS solution they are of the order 10−6. We show this

5The NUT charge, q, is, of course, quantized and is required to be a non-negative integer and so the
intermediate real values of q are not physical. On the other hand, the detailed restrictions on q are a direct
consequence of choosing h = a3 = 1 and different choices of these parameters will scale the allowed ranges
of q and these ranges can certainly be arranged to contain physically sensible, positive integer values for q
on both sides of the inequality.

105



detail of the BPS arithmetic branch in Fig. 5.5. As one approaches q → 0 or q → ∞ the

fluxes limit to exactly zero, consistent with (5.82).

For the non-BPS solutions we observe a “gap” in the solution space, corresponding to

the forbidden region identified earlier. In this gap the values of the charges β and γ become

complex. Somewhat surprisingly, the charge α, which is approximately the geometric or

arithmetic average of the other two charges, remains real for all values of q. At leading order

(5.95) and (5.96) then imply that β and γ are complex conjugates of one another but this is

not true in general as can be seen at linear order from (5.98) and at all orders from (A.70).

For completeness we also plot the discriminant of the full quartic in Fig. 5.6 and Fig. 5.7.

The discriminant of a quartic with real coefficients is positive when either all roots are real

or all roots are complex. The discriminant is negative when there are two real roots and a

pair of complex conjugate roots. Fig. 5.6 shows that the BPS discriminant is always strictly

positive. Since one has real values for the charges at q = 0, it follows that by continuously

deforming q one will always have real roots. The non-BPS discriminant is never negative

but there are two points where it vanishes. This is precisely where the four roots change

from all being real to all being complex. The intermediate positive regime corresponds to

the region where all roots are complex. The points where the discriminant vanishes coincide

with the boundaries of the forbidden region and match the results from (5.114) within the

given accuracy.

Finally we note that as q →∞ all the electric charges of the supertube go to zero. The

fact that this must happen is an immediate consequence of the radius relations, (5.67) and

(5.68). We have fixed the dipole moment and the location of the supertubes and as we

increase q the circumference of the U(1) fiber at a fixed location goes to zero. The only way
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such fixed supertubes can have a circumference that limits to zero is if the electric charges

of the supertubes vanish as well.
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Figure 5.3: The charges α, β, γ for the BPS system as a function of i = log10q. These two
graphs show the arithmetic and geometric branches of the solution. Note that the charges are
almost identical on the arithmetic branch.
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Figure 5.4: The charges α, β, γ for the non-BPS system as a function of i = log10q. Again we
show the arithmetic and geometric branches of the solution. There is a gap in solution space
where β and γ become complex. The arithmetic and geometric branches connect precisely at
the gap.
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Figure 5.5: A close-up of Fig. 5.3(a) near the region i = 0 (q = 1). Note that the fluxes are
very small but non-zero.
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Figure 5.6: The BPS discriminant is always positive.

5.7 Concluding remarks

The non-BPS solutions obtained using the “floating brane” Ansatz have greatly enriched the

families of known extremal solutions. The fact that these solutions are also determined by

solving linear systems of equations has also enabled one to generate families of multi-centered

solutions. To date, the majority of such solutions have involved black holes or multi-centered

black rings, however, it is evident from the work presented here that one can use this approach

to generate interesting families of non-BPS scaling microstate geometries. By using multiple

species of supertubes one can generate scaling geometries whose appearance at large scales
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Figure 5.7: The non-BPS discriminant is non-negative but has two zeroes that define the
edges of the forbidden region, or gap. These zeroes closely match the approximation given in
Fig. 5.2.

exactly matches that of a black hole or black ring and yet, via spectral flow, these solutions

represent true microstate geometries in that they are smooth, horizonless and have a long

AdS throat.

As we have shown here, one of the interesting new features of these non-BPS microstate

geometries is that the breaking of supersymmetry places restrictions on the moduli space of

solutions, compared to the analogous BPS solutions. If the supersymmetry breaking scale is

large in the vicinity of the supertubes then a smooth solution does not exist and when the

supersymmetry breaking is sufficiently small then there are still bounds upon the allowed

moduli.

The restrictions on parameters that are imposed by supersymmetry breaking emerge in a

very interesting manner: The equations of motion can be solved for all values of the param-

eters and the restrictions then emerge from the bubble equations, which require that there

are no closed timelike curves near the supertube. While it has not been shown in general,

there is good evidence that the bubble equations can be thought of as a condition of find-
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ing a local minimum of a potential for the supertube interaction. That is, the interactions

between supertubes involve non-trivial forces between their magnetic dipoles and electric

charges and the requirement of a static solution forces them to find an equilibrium config-

uration. More generally, a dynamic solution will involve some kind of oscillation around

this equilibrium configuration[73, 74]. One way one can interpret the results presented here

is that the supersymmetry-breaking holonomy modifies these forces and the potential and

restricts the range of equilibrium configurations and indeed wipes out the minima if the

supersymmetry breaking is too strong.

There is also a rather natural aspect to the restriction placed upon the bubbles, discussed

in Section 5.6.1, that shows that supersymmetry breaking forces two of the supertubes to

come together. We have described the supersymmetry breaking in terms of the supertube

supersymmetry being broken by holonomy, but the supersymmetry breaking is a rather more

democratic between the elements of the solution. One should recall that each supertube is a

1
2
-BPS state and that the Taub-NUT background is similarly a 1

2
-BPS state. Any three out

of the four of these elements will preserve four supersymmetries and create a 1
8
-BPS state but

the whole point of the non-BPS procedure is that all four elements, when put together, do not

agree on which supersymmetries to preserve and thus the supersymmetry is thus completely

broken and the control parameters are the separation of the different geometric elements.

Thus the solution is essentially supersymmetric when there are only three elements involved

in determining the background. Given a strong background holonomy, one can preserve some

approximate supersymmetry locally by bringing two supertubes together while maintaining

a much larger, finite separation from the third. Thus one can think of the restriction on the

moduli space in terms of the solution trying to preserve approximate supersymmetry locally
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by forcing supertubes into clusters and excluding regions of moduli space in which all the

supertubes are widely separated with large intermediate regions in which the supersymmetry

is broken. Whether this perspective is born out in more general classes of solution remains

to be seen but it is certainly worthy of further investigation.

More generally, even though we have studied an extremely simple example, it is very

tempting to conjecture other implications for more general classes of non-BPS microstate

geometries. It may be that the natural geometric elements of microstate geometries are 1
2
-

BPS “atoms” that do not necessarily preserve any supersymmetry when combined together.

The moduli space of such non-BPS solutions would then be restricted so that in each region

some approximate supersymmetry would survive. This would necessitate that the “atoms”

have strong enough local charges (like the dipole moment, d, in Λ in (5.108)) to open up a

non-trivial moduli spaces in the presence of the other charges. This would also be balanced

against the separation between the geometric elements. If one were to think of microstate

geometries being nucleated in regions of high curvature then this would favor the initial

formation of bubbles with larger dipole charges. As this happened, the nucleation of bubbles

would involve diluting the curvature over a larger region thus enabling bubbles with smaller

dipole moments to occur through either splitting of bubbles or nucleation. (In a Taub-NUT

space, this curvature dilution would involve a transition to multi-centered Taub-NUT so that

the background curvature would be distributed into a cloud around all the centers.) This

is consistent with the belief, common to both the fuzzball proposal and ideas of emergent

space-time, that the microstate structure of a black hole is not localized in a Planck-scale

region around a classical singularity, but is, instead, smeared out over a region whose scale

is set by the horizon area.
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While the solutions we have considered here are far too simple to provide one with the

general picture of non-BPS microstate geometries, we have shown that there are interesting

families of non-BPS, scaling microstate geometries and we have shown how supersymmetry

breaking can modify and restrict those families in very interesting ways that might naturally

be characterized in terms of some locally approximate supersymmetry.
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Chapter 6

Non-renormalization for almost-BPS

The contents of this chapter are taken from [21] which is work I did in collaboration with

Iosif Bena, Andrea Puhm and Nicholas Warner.

6.1 Motivation

The physics of multi-center four-dimensional BPS solutions and of their five-dimensional

counterparts [58, 59, 75–79] has been one of the keys that could unlock longstanding mysteries

of black hole physics, such as the information paradox and the microscopic origin of the black-

hole entropy. These solutions yield the easiest-to-construct black-hole microstate geometries

[71, 72] and can be used to study the wall-crossing behavior of black-hole partition functions

[80, 81]. They also provide the best-known examples of entropy enigmas [80, 82, 83].

Another key feature of BPS, multi-center solutions is that the equations controlling the

positions of these centers, also known as the bubble equations, are not renormalized as one
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goes from weak to strong effective coupling. At weak coupling, these configurations are

described by a supersymmetric quiver quantum mechanics (QQM) [76], and the equations

determining the vevs of the QQM Coulomb-branch fields are the same as those determining

the inter-center distances of the fully-back-reacted supergravity solution. This remarkable

non-renormalization property has allowed one to compute the symplectic form, quantize the

moduli space of supergravity solutions from the QQM perspective [84]1 and has given a clear

mapping of some of the microscopic black-hole degrees of freedom to horizonless solutions

that exist in the same regime of the moduli space as the classical black hole [85–87].

For BPS solutions one can also test this non-renormalization of the bubble equations by

considering multi-center solutions in an intermediate region of the effective coupling, where

some of the branes have back-reacted while others are treated as probes. More precisely, one

can place a supertube in a multi-center solution and examine its supersymmetric minima.

The equations that determine the positions of these minima can then be shown to be identical

to the bubble equations [44]. Hence, one can recover the BPS bubble equations both at small

effective coupling from the QQM, at intermediate coupling from the supertube DBI action,

and at large effective coupling by asking that the fully back-reacted solution has no closed

timelike curves.

Since the non-renormalization of the bubble equations is established by invoking quan-

tities protected by supersymmetry, one might naively expect that the beautiful pieces of

physics that are protected from renormalization in BPS systems would no longer survive in

non-supersymmetric, multi-center solutions or in non-supersymmetric fuzzballs. The pur-

1This in turn has confirmed that quantum effects can wipe out macroscopically large regions of certain
smooth low-curvature solutions [72, 84].
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pose of this chapter is to demonstrate that, on the contrary, in certain classes of non-

supersymmetric multi-center solutions - the so-called almost-BPS solutions [63–65] - the

bubble equations are also protected when one goes from intermediate to strong coupling.

This suggests that there are no quantum corrections despite the lack of supersymmetry.

This result is quite surprising because there is neither supersymmetry nor any other un-

derlying symmetry that would prevent the bubble equations from receiving corrections and

because the bubble equations of almost-BPS solutions contain complicated cubic combina-

tions of the inter-center distances, whose coefficients do not a priori appear to be related

to anything one can define in a quiver quantum mechanics. However, in retrospect, this

result may not look so surprising: Emparan and Horowitz have shown in [88] that the

entropy of certain extremal non-supersymmetric black holes can be calculated at weak effec-

tive coupling, and does not change as one increases this coupling. Since a certain subclass

of almost-BPS solutions can be dualized to the black hole considered in [88], it seems plau-

sible that whatever principle protects the quantum states calculated at weak coupling from

being uplifted and disappearing at strong coupling also protects the bubble equations from

receiving quantum corrections2.

To establish that the almost-BPS bubble equations are not changing with the coupling,

we consider an intermediate-coupling configuration where all the centers, except one, have

back-reacted into an almost-BPS supergravity solution. One can then probe this solution

with a supertube and use the (Dirac-Born-Infeld and Wess-Zumino) action to determine

the equilibrium position of the probe. If one considers the back-reaction of the probe then

2It is also interesting to note that whatever underlying principle protects the states and bubble equations
of almost-BPS system from being uplifted by quantum corrections can be even stronger than supersymmetry,
which, for example, does not protect the degeneracy of the D1-D5-P system in the non-Cardy regime [83].

115



the supertube would become another center of the supergravity solution and its location is

fixed by the bubble equations, which arise from requiring that there be no closed time-like

curves. The comparison of these two physically distinct conditions, one in field theory on

the brane and the other from its gravity dual, yields the test of non-renormalization between

the intermediate and strong coupling regimes. At first glance, the equations look nothing

like each other: both differ from the BPS bubble equations by extra cubic terms, but these

cubic terms are not the same. However, the story is a bit more complicated: Unlike the

BPS solution, the quantized electric charge of the supertube DBI action and the electric

charge parameters in the supergravity harmonic functions are not the same. One can then

ask whether there exists a relation between the DBI and the supergravity electric charges

of the supertube that maps one set of bubble equations onto the other. One of the primary

results of this chapter is to prove that such a relation exists, and write it down for the

most general known almost-BPS solution in a single-center Taub-NUT space, involving an

arbitrary collection of concentric supertubes and black rings.

The implications of this relation for the physics of almost-BPS solutions are quite sig-

nificant. First, in a general supergravity solution that contains several supertubes, the

quantized charges of these supertubes are not the obvious coefficients in the supergravity

harmonic functions. The supergravity parameters are related to the quantized charges by

certain shifts that come from dipole-dipole interaction and depend on the location of all the

other centers of the solution. An interesting feature of these shifts is that they only depend

on the dipole charges and positions of the centers that lie between location of the charge in

question and the (supersymmetry-breaking) center of the Taub-NUT space.

For almost-BPS black rings the effect of the charge shift is more subtle because the black
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rings have more than one dipole charge, and hence the formulae that give the dipole-dipole

contribution to the charge appear to be degenerate. However one can assemble a black

ring by bringing together three supertubes with different kinds of dipole charges, and this

will allow us to calculate the shifts between the black-ring supergravity and the quantized

charges.

The second significant implication has to do with charge quantization, and solves a long-

standing puzzle of the physics of almost-BPS black rings and of multi-center almost-BPS

solutions. As one can see from [63] or from [17], the (quantized) asymptotic charge of such

solutions is equal to the sum of the supergravity charges of the centers plus an extra dipole-

dipole term that depends on the positions of the centers and the moduli of the solution.

If the supergravity charges were equal to the quantized ones, this would have implied that

the moduli-dependent contribution to the charges are also quantized, and hence multi-center

almost-BPS solutions could only exist on special codimension-three slices of the moduli space

(where the moduli-dependent contributions are integers). This would have been quite puz-

zling. The results presented here show that this does not happen. Upon using our formulas

that relate the supergravity and the quantized charges, one finds that the asymptotic charge

of the almost-BPS black ring is equal to the sum of the quantized charges of its centers,

and hence the almost-BPS black ring as well as other multi-center almost-BPS solutions

exists for any values of the moduli. If one keeps the quantized charges fixed and changes

the moduli, the quantities that change are simply the supergravity charge parameters of the

centers. Our result also implies that the E7(7) quartic invariant of the almost-BPS black ring

of [65] needs to be rewritten in terms of the quantized charges, and also yields the relation

between the “quantized” angular momentum of this black ring and the angular-momentum
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parameter that appears in the corresponding almost-BPS harmonic function.

A third, perhaps more unexpected consequence of our result is that if one probes a certain

supergravity solution with a supertube and finds, say, two minima, one where the supertube

is at the exterior of the other supertubes and one where it is at an intermediate position,

these two minima do not correspond to two vacua in the same vacuum manifold of the bubble

equations. Indeed, one can relate both minima of the supertube potential to almost-BPS

supergravity solutions, and then use our recipe to compute the quantized charges of the

centers of these two solutions. Since the shifts of the charges of the centers depend on the

position of the tube, the quantized charges of the centers of the two resulting solutions will

not be the same, and hence these solutions do not describe different arrangements of the

same supertubes, and thus cannot be related by moving in the moduli space of solutions of

a certain set of bubble equations. Instead they live in different superselection sectors.

In Section 6.2 we calculate and examine the action of supertube probes in these solutions.

We show that one can reproduce the supergravity bubble equation of the outermost super-

tube by considering this supertube as a probe in the fully back-reacted solution formed by

the other supertubes and find the equation that relates the supergravity charge parameters

and the quantized charges of the probe. We then give a recipe to read off the quantized super-

tube charges in a general multi-center almost-BPS solution. In Section 6.3 we then show that

one can also recover the bubble equations of all the other supertube centers by examining

the minima of probe supertubes and relating their supergravity charges to their quantized

charges. This demonstrates that all the supergravity data of a multi-center solution can be

recovered from the action of supertube probes, and hence this data is not renormalized as

one goes from weak to strong effective coupling. We also discuss in more detail the physics
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behind the shift needed to relate supergravity and quantized charges. Section 6.4 contains

our conclusions and a discussion of further issues arising from this work.

6.2 Brane probes in almost-BPS solutions

6.2.1 Brane probes

We once again consider the system of three supertubes, one of each species, that we con-

sidered in the previous chapter. Without loss of generality we take the supertubes to be

ordered as

0 < a1 < a2 < a3 . (6.1)

This is opposite compared to the order of the previous chapter, however all the results from

the previous chapter we will use still hold in the same form.

To perform the probe calculation we only require a relatively simple result from the brane

probe analysis of [44] or the more recent work of [89]. We need the so-called “radius relation”

that determines the equilibrium position of a probe in a supergravity background.

One can use the M-theory frame or one can go back to the approach of [44] and work

with three-charge solutions in the IIA frame in which the three electric charges, N1, N2 and

N3, of the solution correspond to3:

N1 : D0 N2 : F1 (z) N3 : D4 (5678), (6.2)

where the numbers in the parentheses refer to spatial directions wrapped by the branes and

3For later convenience, we have permuted the labels relative to those of [44].
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z ≡ x10. The magnetic dipole moments of the solutions correspond to:

n1 : D6 (y5678z) n2 : NS5 (y5678) n3 : D2 (yz) , (6.3)

where y denotes the brane profile in the spatial base, (x1, . . . , x4). We will use a D2-brane

probe, carrying electric D0 and F1 charges, Q̂(1) and Q̂(2), and with a D2-dipole moment, d3.

For the supertube worldsheet coordinates, ζµ, we use static gauge and allow the supertube

to wind along both the ψ and φ angles of the base space according to:

x0 = ζ0 , z = ζ1 , ψ = νψζ
2 , φ = νφζ

2 . (6.4)

For such a probe, sitting along the positive z-axis of the base metric, the radius relation is

given by: [
Q̂(1) + d3 B(2)

] [
Q̂(2) + d3 B(1)

]
= d2

3

Z3

V
(νψ + qνφ)2 , (6.5)

where B(I) is the pullback of the vector field, B(I), onto the profile of the supertube on the

spatial base:

B(I) = B(I)
µ

∂xµ

∂ζ2

. (6.6)

Then, using (5.23), for the BPS solutions:

B(I) = B(I)
+ =

k+
I

(h+ q
r
) r rI

[
νψ r + q aI νφ − h r (r cos θ − aI) νφ

]
, (6.7)
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while for non-BPS we have

B(I) = B(I)
− =

k−I
aI rI

[
aI νψ − q r νφ − h aI (r cos θ − aI) νφ

]
. (6.8)

In deriving this radius relation we have set the worldvolume field strength Ftz = +1,

which is the choice one makes when placing supersymmetric probes in supersymmetric so-

lutions, and one may ask whether this choice is justified for a non-BPS probe supertube,

especially because this choice does not describe the metastable supertube minima of [89,

90]. There are two ways to see that this choice correctly reproduces the almost-BPS probe

supertube minima. The first, and most direct, would be to evaluate the Hamiltonian derived

in [89] in an almost-BPS solution, and to find directly that the minima of this Hamiltonian

have Ftz = +1. While he have not done the former computation, there is a simpler, sec-

ond argument that shows what the outcome must be. Remember that, unlike non-extremal

solutions, almost-BPS solutions have the mass and the charge equal, and the only way a su-

pertube action can yield a minimum with the mass equal to the charge is if its worldvolume

field strength satisfies Ftz = +1.

6.2.2 Probing a supergravity solution

We now replace the third supertube in the solution of Section 5.3.2 by a probe: we set

k±3 = Q
(1)
3 = Q

(2)
3 = 0 and consider the action of a probe with charges Q̂

(1)
probe, Q̂

(2)
probe and

dipole charge d3 at a location, a3, on the z-axis and winding once around the ψ-fiber.
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We then have:

B(I)
+ =

k+
I

(h+ q
a3

) |aI − a3|
, B(I)

− =
k−I

|aI − a3|
. (6.9)

We know from the results of [44] that for the BPS choice the radius relation, (6.5), indeed

yields the bubble equation (5.58). We therefore focus on the almost-BPS solution.

Inserting B(I) = B(I)
− in (6.5) and using (6.9) one can rearrange the radius relation to give

1

|a1 − a3|

[
d3Q

(3)
1 −

(
h+

q

a3

)
k−1 Q̂

(1)
probe

]
+

1

|a2 − a3|

[
d3Q

(3)
2 −

(
h+

q

a3

)
k−2 Q̂

(2)
probe

]
(6.10)

=
(
h+

q

a3

) Q̂(1)
probe Q̂

(2)
probe

d3

− d3 +
q k−1 k

−
2 d3

|a1 − a3| |a2 − a3|

(a1 a2 − a2
3

a1 a2 a3

)
.

(6.11)

We now explicitly use the ordering (5.20) to write |ai − aj| = ai − aj for i > j and we use

the definition (5.26) to obtain:

1

|a1 − a3|

[
d3Q

(3)
1 − k̂1Q

(1)
probe

]
+

1

|a2 − a3|

[
d3Q

(3)
2 − k̂2Q

(2)
probe

]
=
(
h+

q

a3

) Q(1)
probeQ

(2)
probe

d3

− d3 −
h q k−1 k

−
2 d3

a1a2a3 (h+ q
a3

)
, (6.12)

where we have introduced

Q
(1)
probe ≡ Q̂

(1)
probe −

q k̂2 d3

a2a3 (h+ q
a2

)(h+ q
a3

)
, Q

(2)
probe ≡ Q̂

(2)
probe −

q k̂1 d3

a1a3 (h+ q
a1

)(h+ q
a3

)
.

(6.13)
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This exactly matches the bubble equation (5.61) provided one makes the identifications:

d3 = k̂3 =
(
h+

q

a3

)
k−3 , Q

(I)
probe = Q

(I)
3 . (6.14)

Hence, the action of a probe supertube that is placed at the outermost position of an almost-

BPS solution that contains two other supertubes of different species can capture exactly the

supergravity information about the location of this supertube. Since all the terms in the

supertube bubble equations only contain two- and three-supertube interactions, we will see

in Section 6.2.4 that this result can be straightforwardly generalized to a probe supertube

placed at the exterior position of an almost-BPS solution containing an arbitrary number of

supertubes of arbitrary species.

There is another more compact way to write the formula that gives the shift from the

quantized charges to the BPS parameters

Q
(1)
probe = Q̂

(1)
probe −

q k̂2 k̂3

a2 a3V2V3

, Q
(2)
probe = Q̂

(2)
probe −

q k̂1 k̂3

a1 a3V1V3

. (6.15)

6.2.3 Interpretation of the charge shift

Given that we have matched the probe calculation to the supergravity one by postulating

the charge shift above, it is legitimate to ask whether this charge shift has any direct physical

interpretation apart from the fact that it maps the probe result onto the supergravity result.

We will argue in the remaining part of the chapter that this charge shift encodes very non-

trivial properties of almost-BPS solutions.

We begin by comparing almost-BPS solutions to BPS multi-center solutions (for which
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there is no charge shift [44]) in the limits when the two kinds of solutions become identical.

We will then explain how this charge shift solves an old puzzle about the relation between

quantized charges and moduli in almost-BPS solutions

Mapping BPS to non-BPS solutions

There are two ways to turn an almost-BPS solution into a BPS one. The first is to set the

Taub-NUT charge, q, to zero (and obtain black strings and supertubes extended along the

S1 of R3×S1), and the second is to set the constant, h, in the Taub-NUT harmonic function

equal to zero. In the first limit (q = 0), the charge shifts automatically vanish, consistent

with the result of [44].

However, for h = 0, the shift does not vanish and this may seem a little puzzling. To

understand the origin of the shift we should remember that, in the h = 0 limit, the BPS and

the almost-BPS solutions are identical up to the coordinate transformation (5.65). Hence, a

supertube wrapping the ψ-fiber once in the almost-BPS solution and a supertube wrapping

the ψ-fiber once in the BPS writing of the same solution wrap different circles. Indeed,

the supertube that wraps the ψ-fiber once in the almost-BPS solution has (νψ, νφ) = (1, 0).

Then the transformation (5.65) means that in the BPS writing of the solution this object is

a supertube that wraps the φ-fiber 1
q

times, and hence it has (νψ, νφ) = (0, 1
q
).

Clearly two supertubes with different windings are not the same object, and the only way

their radius relations can be the same is if their charges are different. To be more precise,

when h = 0, (6.7) reduces to:

B(I)
+ (νψ, νφ) =

k+
I

q (a3 − aI)
[νψ a3 + νφ q aI ] =

k+
I (νψ + q νφ) a3

q (a3 − aI)
− k+

I νφ , (6.16)
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where we have used (6.1). The first term is identical for either choice of winding numbers:

(νψ, νφ) = (1, 0) and (νψ, νφ) = (0, 1
q
), and this makes sense because, for either choice, the

Taub-NUT fiber is being wrapped once. However, the last term is different, which indicates

that the almost-BPS supertube also wraps the Dirac string of the background magnetic flux.

Hence, if the supertubes with (νψ, νφ) = (1, 0) and (νψ, νφ) = (0, 1
q
) are to have the same

radius their charges must be related by a shift. Using the charge identification k+
I → k̂I in

(5.65) and using (5.26) for h = 0, one sees that this charge shift is simply:

Q̂
(1)
(1,0) = Q̂

(1)

(0, 1
q

)
− d3 k̂2

q
, Q̂

(2)
(1,0) = Q̂

(2)

(0, 1
q

)
− d3 k̂1

q
. (6.17)

which exactly matches the shift in (6.13) for h = 0. Hence the shift between the almost-

BPS supergravity charge and the almost-BPS quantized charge is the same as the shift from

the BPS quantized charge to the almost-BPS quantized charge. This implies that the BPS

quantized and supergravity charges are the same as the almost-BPS supergravity charge.

Another way to understand this result is to remember that one can consider a solution

with a probe supertube of a certain charge wrapping a Dirac string, and take away the Dirac

string by a large gauge transformation. As explained in [44], this changes the charges of

the supertube. If one does this in our situation, and takes the Dirac string away from the

location of the probe supertube, both the BPS and the almost-BPS supertubes will have the

same charge and wrapping and will become the same object. Clearly, upon back-reaction

the supergravity charges of the two will be the same. Hence, the reason why the quantized

charge of the almost-BPS supertube is shifted from its supergravity charge is because, when

written as a probe in R4, this supertube wraps a Dirac string non-trivially.
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Note that when h = 0 this shift involves only integers, but for a generic almost-BPS

solution this shift depends also on the moduli. As we will explain in section 6.3.3 this happens

because almost-BPS solutions have an additional magnetic flux on the non-compact cycle

extending to infinity.

A puzzle about charges and its resolution

Once one understands how the quantized charges of the centers of an almost-BPS solution

are related to the supergravity charge parameters one can re-examine the problem of moduli-

dependence of the asymptotic charge of almost-BPS solutions. Recall that for a BPS solution

in Taub-NUT the warp factors go asymptotically like

Z(1) ∼
[
Q

(1)
2 +Q

(1)
3

] 1

r
, Z(2) ∼

[
Q

(2)
1 +Q

(2)
3

] 1

r
,

Z(3) ∼
[
Q

(3)
1 +Q

(3)
2

] 1

r
, (6.18)

which confirms the fact that the asymptotic charges are simply the sum of the quantized

charges of the individual component supertubes. However, for an almost-BPS solution one

has

Z(1) ∼
[
Q

(1)
2 +Q

(1)
3 + q k̂2 k̂3

a2 a3V2V3

] 1

r
, Z(2) ∼

[
Q

(2)
1 +Q

(2)
3 +

q k̂1 k̂3

a1 a3V1V3

] 1

r
,

Z(3) ∼
[
Q

(3)
1 +Q

(3)
2 + q k̂1 k̂2

a1 a2V1V2

] 1

r
. (6.19)

This appears to imply that if one changes the moduli of a solution continuously, while keeping

the charges of the centers fixed, the asymptotic charges will change continuously. If this were
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true, an almost-BPS solution would have non-quantized asymptotic charges for generic values

of the moduli, and would only exist on certain submanifolds of the moduli space where the

asymptotic charges are integer. Needless to say, this would be rather peculiar.

Our results show that this does not, in fact, happen. If one expresses the supergrav-

ity charge in terms of quantized charges, the moduli-dependent term drops out and the

asymptotics become identical to the one in (6.18). Hence, the asymptotic charges of almost-

BPS solutions are also equal to the sum of the quantized charges of the centers, and the

quantization of charges does not restrict the the moduli space of supertube locations.

To see this we can make the following Gedankenexperiment: we start with a single

supertube of species I = 1 at position a1, for which the supergravity charges are the same

as the quantized charges

Q
(2)
1 = Q̂

(2)
1 , Q

(3)
1 = Q̂

(3)
1 . (6.20)

We then bring in a second supertube of species I = 2 at position a2. The supergravity charge

Q
(3)
2 of this supertubes is shifted from its quantized charge Q̂

(3)
2 because of the presence of

the first supertube, while its other charge remains the same:

Q
(1)
2 = Q̂

(1)
2 , Q

(3)
2 = Q̂

(3)
2 −

qk̂
(1)
1 k̂

(2)
2

a1a2V1V2

, (6.21)

The asymptotic charges Q̂(I)
12 of the resulting solution are given by the (sum of the)

quantized charges, Q̂(1)
12 = Q̂

(1)
2 = Q

(1)
2 , Q̂(2)

12 = Q̂
(2)
1 = Q

(2)
1 and

Q̂(3)
12 = Q̂

(3)
1 + Q̂

(3)
2 = Q

(3)
1 +Q

(3)
2 +

qk̂
(1)
1 k̂

(2)
2

a1a2V1V2

, (6.22)
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which agrees with the coefficient of r−1 in Z(3) in (6.19). After back-reacting the second

supertube we bring in a third supertube of species I = 3 at position a3 whose supergravity

charges after back-reaction are shifted with respect to their quantized charges

Q
(1)
3 = Q̂

(1)
3 −

qk̂
(2)
2 k̂

(3)
3

a2a3V2V3

, Q
(2)
3 = Q̂

(2)
3 −

qk̂
(1)
1 k̂

(3)
3

a1a2V1V2

, (6.23)

because of the other supertubes. The asymptotic charges Q̂(I)
123 of the solution with all three

supertubes back-reacted are Q̂(3)
123 = Q̂(3)

12 ∼ r Z(3) and

Q̂(1)
123 = Q̂(1)

12 + Q̂
(1)
3 = Q

(1)
2 +Q

(1)
3 +

qk̂
(2)
2 k̂

(3)
3

a2a3V2V3

∼ r Z(1) , (6.24)

Q̂(2)
123 = Q̂(2)

12 + Q̂
(2)
3 = Q

(2)
1 +Q

(2)
3 +

qk̂
(1)
1 k̂

(3)
3

a1a3V1V3

∼ r Z(2) . (6.25)

As advertised, these charges match the coefficients of r−1 in the Z(I). Hence, while the shift

between the quantized and supergravity charges might have seemed surprising at first, it

represents the missing ingredient necessary to relate the asymptotic charge of a multi-center

solution to those of the centers.

One can also use these equations to determine the shift between the quantized and

supergravity charges for an almost-BPS black ring in Taub-NUT [65]. Although black rings

have no DBI description, one can make a black ring by bringing together three supertubes

with three different types of dipole charges. Since in this process both the supergravity and

the quantized charges are preserved, the shifts of the black ring charges will be the shifts

of the charges of the composing supertubes. For a Taub-NUT almost-BPS black ring with

128



dipole charges k̂(I) at position a1 these shifts are:

Q(I) = Q̂(I) − |εIJK |
qk̂(J)k̂(K)

a2
1V

2
1

, (6.26)

where capital Latin indices are not summed. Note that there are n! ways of making a black

ring starting with n supertubes, corresponding to the different relative orderings of these

supertubes, and for each ordering the charge shifts of various supertubes are different, but

the sum of all these charge shifts (which gives the black ring charge shift) is always the same.

We are now ready to further use this result and the iterative procedure outlined above

in order to unambiguously determine the relation of the supergravity charge parameters and

the quantized charges in a solution with an arbitrary number of centers.

6.2.4 Generalization to many supertubes

We can generalize the calculation in the previous section to an almost-BPS solution con-

taining an arbitrary number of colinear supertubes. Without loss of generality we consider

a solution containing i− 1 supertubes at positions

0 < a1 < a2 < ..... < ai−1 , (6.27)

and we bring a probe supertube of species I (wrapping the tori T 2
J and T 2

K in (5.1)) to

the point ai on the z-axis, at the outermost position with respect to the other supertubes

(ai > ai−1). This probe has electric charges Q̂
(J)
i , Q̂

(K)
i and dipole charge d

(I)
i . Starting from
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the radius relation:

[
Q̂

(J)
i + d

(I)
i B

(K)
i

] [
Q̂

(K)
i + d

(I)
i B

(J)
i

]
= (d

(I)
i )2Z

(I)
i

Vi
(6.28)

with

B(L)
i = B(L)

− (r = ai) =
∑
l

k
−(L)
l

|al − ai|
=
∑
l

k̂
(L)
l

|al − ai|Vl
, Vi = h+

q

ai
, (6.29)

and

Z
(I)
i = Z(I)(r = ai) = 1 +

∑
j

Q
(I)
j

|ai − aj|
+ |εIJK |

∑
j,k

(
h+

qai
ajak

)
k
−(J)
j k

−(K)
k

|ai − aj||ai − ak|
, (6.30)

we obtain the shift of charges by matching this relation to the bubble equation for the

back-reacted probe center (that can be derived from the results of [63]):

{∑
j

1

|ai − aj|
[
d

(I)
i Q

(I)
j − k̂

(J)
j Q

(J)
i

]
+
∑
k

1

|ai − ak|
[
d

(I)
i Q

(I)
k − k̂

(K)
k Q

(K)
i

]}
=

Q
(J)
i Q

(K)
i

d
(I)
i

(
h+

q

ai

)
− d(I)

i − |εIJK |
hqd

(I)
i

ai

(
h+ q

ai

)∑
j,k

εijk
k
−(J)
j k

−(K)
k

ajak
, (6.31)

where there is no summation over capital Latin indices4. We find that, upon identifying

d
(I)
i = k̂

(I)
i = k

−(I)
i Vi, the shift between the supergravity charge parameters of the supertube

4Note that the terms involving |εIJK | in Z(I) and the bubble equation (6.31) differ by a factor 1/2 from
the usual form (see, for example, [63]) where there is summation over I, J,K.
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and its quantized charges are

Q
(J)
i = Q̂

(J)
i − |εJKI |

∑
k

qk̂
(K)
k k̂

(I)
i

akaiVkVi
(6.32)

and similarly for Q
(K)
i , where there is no summation over capital Latin indices. In equations

(6.31)–(6.32) the indices j, k run over the positions of supertubes of species J,K respectively.

One can now use this formula and find the charge shifts for all the centers of a certain

solution, by constructing it recursively by bringing in probe supertubes. From the previous

analysis it is clear that the relation between the supergravity and the quantized charges of

a given center in the interior of the solution does not change as one brings more and more

supertubes at the outermost positions. Hence, the shifts of the charges of a given supertube

center only depend on the locations and dipole charges of the centers that are between this

supertube center and the Taub-NUT center, but not on the locations or charges of the centers

at its exterior:

Q
(J)
i = Q̂

(J)
i − |εJKI |

∑
k<i

qk̂
(K)
k k̂

(I)
i

akaiVkVi
. (6.33)

It is not hard to see that the asymptotic charge of the solution (which can be read off

from the asymptotics of Z(I)) is now the sum of the quantized charges of all the centers

Q̂(I)
∞ =

∑
j

Q
(I)
j + |εIJK |

∑
j,k

qk̂
(J)
j k̂

(K)
k

ajakVjVk
=
∑
i

Q̂
(I)
i . (6.34)

One can also extend this calculation to describe a configuration containing an arbitrary

collection of concentric supertubes and black rings, by constructing the black rings from

three different species of supertubes. The general formula relating the supergravity charge
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parameters to the quantized charges is

Q
(J)
i = Q̂

(J)
i − |εJKI |

∑
k<i

qk̂
(K)
k k̂

(I)
i

akaiVkVi
− |εJKI |

qk̂
(K)
i k̂

(I)
i

a2
iV

2
i

, (6.35)

where once again the capital latin indices are not being summed.

6.3 Extracting the complete supergravity data from

supertubes

We have seen that if one considers an axially-symmetric brane configuration and brings in a

brane probe along the axis from one side of the configuration then the radius relation of that

probe exactly reproduces the bubble equation for the charge center that would replace the

brane probe in a fully back-reacted supergravity configuration. This correspondence requires

the charge shifts described in Section 6.2. Since we are considering only the action of the

probe, there is no immediate way in which this action could directly yield the fully back-

reacted bubble equations for the other centers in response to the probe. That is, given the

n-supertube solution, the probe radius relation for the (n + 1)st supertube yields the exact

supergravity bubble equation for that supertube. However, when back-reacted, the probe

supertube must introduce modifications to the bubble equations for the other supertubes

and these are not given directly by the computations described above.

In contrast, the analysis of brane probes in BPS solutions [44] required no charge shifts

and the bubble equations contained only two-body interactions of the form Γij|~yi − ~yj|−1 as

in (5.54)–(5.58). In that solution, the action of the probe was used to read off all the two-
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by-two terms between the probe and the centers, and thus derive the bubble equations for

all the centers. However, for almost-BPS solutions the bubble equations for a certain center

contain complicated three-body terms, which cannot be read off from the action describing

the location of another center. However, there is still a (more complicated) way to recover

the full supergravity data from DBI actions: given a solution with (n+1) supertubes one can

examine all the ways of extracting one supertube and treating it as probe in the background

sourced by the others. As we will show below, this yields all the bubble equations of the

solution.

6.3.1 Reconstructing the bubble equations from probes

For non-BPS supertubes there are three elements for the inductive modification of the bubble

equations as one goes from n to (n+ 1) supertubes:

(i) Compute the charge shifts of all probe charges.

(ii) Write the left-hand sides of the bubble equations with all two-body interactions,

Γij|ai − aj|−1.

(iii) Compute and include all the supersymmetry breaking terms, Y , as in (5.62) and include

them with the correct relative sign on the right-hand sides of the bubble equations as

in (5.59)–(5.61).

If one assembles the configuration by bringing in the charges successively along the sym-

metry axis from the right then the charge shifts are given by (6.32). The two-body inter-

actions are fixed iteratively exactly as in the BPS solution. These terms are also fixed by
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the consistency condition that the sum of all the bubble equations must be identically zero.

The new feature is that we need to specify the algorithm for (iii): We need to generalize the

supersymmetry breaking terms and how they are to be included in the bubble equations.

It is clear that the bubble equation for a supertube of type I will have an interaction, Y ,

of the form (5.62) with every pair of supertubes of species J,K where I, J and K are all

distinct. The issue is to introduce these terms with the correct signs in each bubble equation.

One can do this by making the more formal induction using all the ways of extracting one

supertube and treating it is a probe. However, for simplicity, we will start by restricting

our attention to configurations in which the probe is always the outermost supertube. As

we will see in the next section, the charge shifts are modified when the probe is some other

supertube in the configuration and so the discussion is a little more complicated. We will

begin by completing the discussion of Section 6.2.4 by giving a recipe for the supersymmetry

breaking terms when the probe is the outermost supertube and we will explain its derivation

below.

Suppose we have an n-supertube system and we bring in, as a probe, a supertube of

species I then the bubble equations for a center of type J at position aj must include an

extra supersymmetry breaking term, Y
(J,I)
j,(n+1), that is to be subtracted from the right-hand

side. These terms are given by:

Y
(J,I)
j,(n+1) = |εIJK |

∑
k

(aj − an+1) (aj − ak)
|aj − an+1||aj − ak|

hqd
(I)
n+1k̂

(J)
j k̂

(K)
k

an+1ajakVn+1VjVk
=

= −|εIJK |
∑
k

(aj − ak)
|aj − ak|

hqd
(I)
n+1k̂

(J)
j k̂

(K)
k

an+1ajakVn+1VjVk

(6.36)
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where, for fixed I and J , the summation over k runs only over supertubes of species K, with

I, J,K all distinct. In the last equality we used that an+1 > aj for j = 1, 2, ..., n. Thus, as

we assemble the system by successively bringing supertubes from the right, for every new

supertube added we have to subtract (6.36) from the right hand side of the bubble equations

of the previously back-reacted system.

6.3.2 Assembling colinear supertubes in general

The general bubble equations (6.31) for a system of n colinear supertubes contain supersym-

metry breaking terms, Y , that come with a relative sign given by by εijk defined in (5.63)5.

In the procedure discussed in Section 3, we always had εijk = +1 since the probe was always

being placed in the outermost position of the back-reacted geometry. However, if the probe

is of species I and located at a general position, ai, then we find that its radius relation

can be mapped directly onto is supergravity bubble equation if one uses the following more

general relation between supergravity and quantized brane charges:

Q
(J)
i = Q̂

(J)
i − |εJKI |

∑
k

ai − ak
|ai − ak|

qk̂
(K)
k k̂

(I)
i

akaiVkVi
, (6.37)

where, once again, the capital latin indices are not being summed and the sum over k runs

over supertubes of species K. Thus for ai > ak the shift terms get subtracted from the

quantized charge as before, but for ai < ak the shift terms have to be added! We also

find that if one uses the more general shifts in (6.37) then the radius relation also exactly

reproduces precisely the correct supersymmetry breaking terms, Y, in the bubble equations.

5This εijk should not be confused with the factors of |εIJK | that give the triple intersection number of
the dipole charges.
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As a result, by using (6.37), we can recreate the whole set of bubble equations of the

system by the following iterative procedure. Consider a (n + 1)-supertube system with

preassigned order

0 < a1 < a2 < ..... < an−1 < an+1 . (6.38)

Now consider each supertube, in turn, as a probe in the supergravity background of the

remaining n and imagine placing the probe in its assigned position, (6.38), to recreate the

full (n + 1)-supertube system. To be more explicit, start by taking the supertube at an+1

out of the supergravity system and treat it as a probe being placed at position an+1. This

generates the bubble equation for the center at an+1 as described earlier. Next, imagine the

supergravity system where the supertube at position an has been removed and replaced by

a probe placed at position an. The radius relation of this probe produces exactly the bubble

equation for the center at an provided one uses the charge shifts defined in (6.37). One can

then repeat this iterative procedure (illustrated in Fig. 6.1) for each of the n+ 1 centers of

the system.

As we noted earlier, for a probe of species I, the bubble equations for the center of type

J will involve a supersymmetry breaking term, Y
(J,I)
j,(n+1), that is a sum over all centers of

species K (with I, J,K distinct). The importance of this general iterative procedure is that

it generates all these terms in the bubble equations in exactly the correct form and yields

the formula (6.36) for a general position, ai, of the probe:

Y
(J,I)
j,i = |εIJK |

∑
k

(aj − ai) (aj − ak)
|aj − ai||aj − ak|

hqd
(I)
n+1k̂

(J)
j k̂

(K)
k

an+1ajakVn+1VjVk
. (6.39)
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Figure 6.1: The first graph represents the three-supertube back-reacted geometry while the three
below represent the iterative procedure by which one removes each center of the system and
treats it as a probe in the background of the remaining two supergravity supertubes. Because
supertubes cross over each other we need the formula (6.37) to generate the shift with the
correct sign.

6.3.3 Topology, charge shifts and back-reacting probes

To understand the charge shifts and their dependence on the location of the supertubes it

is important to recall the geometric structure underlying the almost-BPS supergravity solu-

tions. In an appropriate duality frame6 a solution containing multiple supertubes becomes

smooth, and all the charges come from fluxes wrapping topologicaly non-trivial cycles. These

cycles can be described in terms of U(1) fibers over paths that end at the locations of the

supertubes. The supertube locations are precisely where one of the U(1) fibers pinches off

and this, in turn, defines cycles and their intersections. The magnetic dipole charges of

the supertube then correspond to cohomological fluxes through these cycles. Hence, in this

6This can be realized by performing three generalized spectral flows on almost-BPS solutions [55].
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particular duality frame the back-reaction of a supertube corresponds to blowing up a new

cycle and replacing a singular magnetic source with a cohomological flux. If one starts out

with a particular supergravity solution and makes a particular choice of homology basis, then

introducing a new supertube and back-reacting it will involve blowing up a new cycle and

perhaps pinching off other cycles in order to achieve this. Hence, this will involve generically

a reshuffling of the homology basis.

The presence of the Chern-Simons term in the electromagnetic action means that the

interaction of pairs of magnetic charges can source electric charges and so the change of

homology basis arising from the back-reaction of a supertube can lead to shifts of electric

charges. Because the magnetic charges on the compact cycles are quantized and the magnetic

contributions to electric charges are determined though the intersection form, one would

expect all charge shifts to be quantized. This is, indeed, precisely what one finds in all the

BPS solutions: the shifts, if they are non-zero, are indeed quantized. What distinguishes

the non-BPS solutions is that there is a non-vanishing, normalizable flux on a non-compact

cycle that extends to infinity and this flux depends upon the supergravity parameters and

moduli. It is the interactions between the fluxes on this non-compact cycle that leads to

moduli-dependence of the shifts.

One can recast this geometric picture in more physical terms through a careful exam-

ination of Dirac strings. Because a supergravity supertube carries a magnetic charge, the

supertube comes with Dirac strings attached (these are, of course, an artifact of trying to

write a vector potential for a topologically non-trivial flux). A supertube wraps a U(1) fiber

in the background and to define its configuration properly one must specify precisely which

Dirac strings are being wrapped by the supertube. This defines the dipole-dipole interac-
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tion between the probe and the background7 and the difference between wrapping and not

wrapping will appear as a shift of the electric charges that it contributes to the supergravity

solution.

If the supertubes are all colinear then one can choose all the Dirac strings to follow

the axis of symmetry out to infinity. One can then set up a configuration in which an

outermost probe supertube wraps the Dirac strings of all the other supertubes, and hence

its charges get shifted. On the other hand the tubes at the interior of this configuration will

not feel the Dirac string of the outermost supertube, and hence the relationship between

their supergravity charge and their quantized charge does not shift. In the duality frame

where the multi-supertube solution is smooth, this corresponds to blowing up a homology

cycle at the outer edge of the original configuration.

If one were to place the probe supertube so that it is the closest to the Taub-NUT

center, its Dirac string would generically affect all the other supertubes, and would change

the relation between quantized and supergravity charges. This corresponds to blowing up

a different new homology element and reshuffling the homology basis. Hence, if one keeps

the supergravity charges of the back-reacting supertubes fixed, as one must do in a probe

approximation, bringing a supertube to a point that is closer to the center of Taub-NUT

than the other supertubes will change the quantized charges of these supertubes. Thus,

the resulting configuration will not have the same quantized charges on the centers as when

the supertube is at the outermost location, and hence belongs to different sector of the

multi-centered solutions. There are, of course, similar consequences to bringing the probe

7This wrapping choice determines the new homology element and its intersections with other other ele-
ments of homology.
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supertube to some point in the middle of the back-reacted supertube centers.

One can also take a more pragmatic perspective and try to understand the charge shifts

by compactifying the multi-supertube solutions to obtain a multi-center almost-BPS solution

in four dimensions. The five-dimensional, smooth solutions we discuss here are singular at

the supertube centers in four dimensions, but this does not impede the calculation of the

conserved charges at the singularities. As explained in [91], these conserved charges differ in

general from the supergravity charge parameters by dipole-dipole position-dependent shifts

similar to the ones found here, and it would be interesting to see whether one can reproduce

our results using the four-dimensional KK reduction formulae of [91] (starting, for example,

from equation (266) on page 55).

6.3.4 Quantized charges, supergravity parameters and probes

As we have seen in the previous section, bringing a supertube to some point in the middle

of a multi-center supertube solution changes the relation between the quantized charges and

the supergravity parameters of the supertube centers at its exterior. Hence, all the probe

calculations that describe supertubes at interior locations in a multi-center solution are not

self-consistent, because the quantized charges of the other centers before bringing in the

probe are not the same as the quantized charges with the probe inside. One can think of

this as coming from the fact that all probe supertubes come with Dirac strings attached,

and when these Dirac strings touch the other centers, the relation between the supergravity

and quantized charges of these centers change. Thus, the only probe supertube that one can

bring without shifting everybody else’s quantized charges is one that lays at the outermost

position and whose Dirac string extends away from the supertubes and towards infinity.
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An immediate corollary of this is that if one wants to calculate the amplitude for a

supertube to tunnel to a vacuum across another center, this calculation cannot be done

using the DBI action of that supertube and treating it as a probe in a fixed supergravity

background. Instead one would have to change the solution as the probe moves around, and

this cannot be done off-shell. One can wonder whether there exists any way to compute

this tunneling amplitude. Again, the correct probe for this would be a supertube with

Dirac strings attached, such that one would change the supergravity charges of the back-

reacted solution as one moves the probe around, in such a way that the quantized charges

stay the same. Unfortunately, there is no known action for such a probe, so probing the

interior of a multi-supertube solution with a probe supertube does not correspond to a

physical process. Hence, the calculation we performed in Section 6.3.2, where we took the

supergravity parameters to be fixed and treated the background of n supertubes merely as

one would treat any other supergravity background ignoring the details of how it might have

been assembled from other supertubes, should be interpreted as a formal calculation, which

does not correspond to a physical process, but which does however reproduce the bubble

equations of all the interior supertube centers. It would be clearly interesting to understand

the reason for this.

It is also important to stress out that this charge shift subtlety only affects the validity

of the probe calculation when the other centers are supertubes or black rings, that interact

directly with the Dirac string of the probe. If the other centers are bubbled Gibbons-

Hawking centers, where the geometry is smooth, the presence of a Dirac string does not

change their four-dimensional charge parameters nor the fluxes wrapping the corresponding

cycle in the five-dimensional solution. Hence, one can use the probe supertube action to
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calculate tunneling probabilities of metastable supertubes in bubbling geometries [89, 90].

Similarly, the description of multi-center non-BPS solutions using supergoop methods [92],

being intrinsically non-gravitational, is not affected by this subtlety.

6.4 Concluding remarks

We have shown that a brane probe in an almost-BPS background of supertubes can capture

the complete supergravity data of the background in which the probe becomes a fully back-

reacted source. A similar result was established for BPS solutions in [44] but it is rather

surprising that this can also be achieved for almost-BPS solutions in which the supersymme-

try is broken, albeit in a rather mild manner. It is surprising because going from a probe to a

back-reacted supergravity solution represents going from weak to strong coupling in the field

theory on the brane and when supersymmetry is broken one would expect the parameters of

this field theory to be renormalized. Our result therefore suggests that, even though super-

symmetry is broken, the couplings of the field theory that govern the probe location are still

protected. This does not mean that the theory is unchanged relative to its BPS counterpart:

there are terms in the probe action that come from the supersymmetry breaking and these

exactly reproduce the corresponding terms found in the supergravity solution.

We suspect that the non-renormalization of the relevant parts of the probe action arises

from the rather special form of the supersymmetry breaking: the probe is supersymmetric

with respect to every other center in the supergravity solution taken individually and the

supersymmetry breaking arises from the fact that these supersymmetries are incompatible

between multiple centers. Indeed the supersymmetry breaking terms depend on the product

142



of the charges and dipole charges of three or more centers, and do not have the “two-body”

structure of the terms that appears in the BPS bubble equations. It would be interesting

to try to extend our analysis to the other known class of non-BPS extremal multi-center

solutions, the interacting non-BPS black holes [93, 94], and see if the bubble equations

of these solutions are also not renormalized when one goes from weak to strong effective

coupling.

One of the new features of our analysis is that the supergravity charge parameters and

the quantized charges of the supertubes need to be shifted relative to one another in order

to match the supergravity bubble equations and the probe radius relations. By taking

a flat-space limit, we saw that part of this difference was related to the choice of how

the supertube wraps Dirac strings, or equivalently, how the cycle is blown up after back-

reaction. This accounts for a quantized shift but in a Taub-NUT background the shift is

no longer obviously quantized because it depends upon moduli. Quantized shifts have also

been encountered and understood in the study of black rings [44, 95, 96] but it would be

very nice to understand how to extract the quantized charges, and hence the more general

moduli-dependent shifts, via a pure supergravity calculation. A good starting point may be

to use the four-dimensional reduction formulas of [91] as well as a judicious accounting of

the integer charge shifts caused by Dirac string, to try to reproduce the shifts we find.

Our results also suggest further interesting supergravity calculations. For rather mys-

terious reasons, explicit solutions of the almost-BPS equations still elude us for non-axi-

symmetric configurations. Such solutions are extremely simple in the BPS system but for the

almost-BPS system even the three-centered, non-axi-symmetric solution is not known. The

most one could get is an implicit solution in terms of integrals that one can evaluate asymp-
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totically [91]. Finding the three-centered solution is particularly important because one can

then use this solution and the methods of [63] to generate the general, non-axi-symmetric,

multi-centered solutions. A two-centered solution is, of course, trivially axi-symmetric and

it is easy to introduce a probe in any location. It would therefore be very interesting to

see if such a probe could be used to gain insight into the structure of the full supergravity

solution.

Given that our results suggest that there are non-renormalization theorems that protect

the bubble equations of almost-BPS multi-center solutions, it would be extremely interesting

to investigate whether almost-BPS solutions could be described in the regime of parameters

where none of the centers is back-reacted, using a suitable generalization of quiver quantum

mechanics of [76]. Clearly, this generalization will have to account for the supersymmetry-

breaking terms, which is highly non-trivial: these terms involve three- and four-center in-

teractions, and at first glance no theory of strings on multiple D-branes appears capable

of producing such a term. It would be very nice to understand how the charge shifts and

supersymmetry breaking terms emerge from the field theory on the branes and whether the

effective number of hypermultiplets may be different from the number of hypermultiplets

appearing in the Lagrangian. This could be the effect of some of these hypermultiplets be-

coming massive and no longer contributing to the low energy dynamics. It is thus not too

difficult to imagine that our results might be derivable from a field theory analysis and we

intend to investigate this further in the future.
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Chapter 7

Multi-Superthreads and Supersheets

The material of this chapter is taken from [19, 20]. The latter ([20]) is one of my sole author

papers and is based on work I did in collaboration with Benjamin Niehoff and Nicholas

Warner in [19].

7.1 Motivation

In the previous chapters we examined BPS and non-BPS systems in five dimensions and

presented solutions which constitute microstate geometries for black holes and black rings.

These geometries are a semi-classical coarse-grained description of the microstates of black

holes but the hope is they will at least account for the correct scaling of the entropy with

respect to the charges, which for 1/8-BPS systems in five dimensions is S ∼ Q3/2. The

ambipolar geometries of chapter 3 through various entropy enhancement mechanisms [44,

62] can account for Q5/4 of the entropy which is certainly less than required.
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The expectation is that for 1/8-BPS systems the dominant semi-classical contribution

to their microstate structure will be given by conjectured microstate geometries called su-

perstrata [46, 97], in the same way that supertubes accounted for the entropy of 1/4-BPS

systems. These superstrata depend upon several functions of two variables and generalize

supertubes in several important ways. Supertubes are supergravity backgrounds that carry

two electric charges and one magnetic dipole charge and, in the IIB duality frame, are com-

pletely smooth solutions [52, 53]. It is such geometries that lie at the heart of Mathur’s

original fuzzball proposal for the microstate structure of two-charge black holes (see, for ex-

ample, [12, 98]). The conjectured superstratum carries three electric charges and three dipole

charges, two of which are independent, and is described by an arbitrary, (2 + 1)-dimensional

world-surface in six space-time dimensions.

The argument for the existence of the superstratum has its origins in earlier work [99]

that suggested that one should be able to make two independent supertube transitions to

produce new BPS solutions that carry three electric charges, two magnetic dipole charges

and depend upon functions of two variables. It was originally believed that such objects

would be non-geometric and have spatial co-dimension two, but it was shown in [97] that

if one does this in the proper manner for the D1-D5-P system in IIB supergravity then the

result will not only be a geometric BPS object with co-dimension three but one that is also

completely smooth. Indeed, very near the superstratum the geometry approaches that of

the supertube and so the smoothness follows directly from that of the supertube geometry.

Thus the superstratum provides a new microstate geometry of co-dimension three that carries

three electric charges, two independent magnetic dipole charge and depends upon several

functions of two variables.
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While the arguments given in [97] for the existence of the superstratum are fairly com-

pelling, it still remains to construct one explicitly and thereby establish its existence beyond

all doubt. An interesting development is that the BPS equations for six-dimensional, mini-

mal N =1 supergravity [100] coupled to an anti-self-dual tensor multiplet [101] were shown

to be linear1 [102]. This not only provides a huge simplification in solving these equations

but it also enables one to use superposition to obtain multi-component solutions and, more

abstractly, analyze the moduli spaces of such solutions. It is not only anticipated that this

will lead to interesting new developments in the study of black-hole microstate geometries

but that it will also lead to interesting new results for holography on AdS3 × S3 geometries.

The fact that the BPS equations in six dimensions are linear gives one hope that the

explicit supergravity solution may just be within reach (although it will still be extremely

complicated). The construction in [97] has the virtue that it lays out a sequence of steps, via

two supertube transitions, to arrive at the superstratum and so a possible route to making

a superstratum might be to replicate these intermediate steps in a series of progressively

more complicated but exact supergravity solutions. Indeed some initial progress in this

direction was achieved in [102] where the D1-D5-P system was pushed through the first

supertube transition to obtain a new three-charge, two-dipole charge2 generalized supertube

with an arbitrary profile as a function of one variable. We will refer to such a solution as a

superthread.

The next step towards a superstratum, which will be the subject of this chapter, requires

1As with the corresponding result in five dimensions [22, 49], the equations that determine the spatial
base geometry are still non-linear.

2The two dipole charges in this solution are related to one another and so, to get to the superstratum, a
further independent dipole charge must be added via a second supertube transition [97].
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the construction of a multi-superthread solution that could then be smeared to a continuum

and thus obtain a three-charge solution with a two-dimensional spatial profile that is a

function of two variables, namely a supersheet. This solution will still be singular and, like

the standard supertube, will only become regular after the second supertube transition in

which a Kaluza-Klein monopole is combined with the smearing. This last step is probably

going to be the most difficult and will not be addressed here.

In [102] the step to the multi-superthread was only achieved for the highly restricted

situation in which each thread was given exactly the same profile with a rigid translation

to each distinct center. The smearing of such a multi-threaded solution will thus produce

two-dimensional surface that is determined by a several functions of one variable, namely

the smearing density and the original superthread profile functions. (See Fig. 7.1). To get a

surface that is truly a generic function of two variables one must find the multi-superthread

solution in which the threads at each center have independent profile functions so that, in

the continuum limit, one obtains a one-parameter family of curves and hence a surface swept

out by a generic function of two variables (See Fig. 7.2). The purpose of this chapter is

to find this general a multi–thread solution. The difficulty that we overcome here is that

multiple superthreads with different profiles have highly non-trivial shape-shape interactions

and we show exactly how these contribute to the angular momentum and local momentum

charge densities. We also generalize our results to concentric multi-supersheet solutions.

For different choices of the profile functions we perform the smearing integrals and

produce supersheets which do not depend on the sixth dimension and are essentially five-

dimensional as well as corrugates multi-supersheet solutions which are genuinely six-dimensional.

Specifically we consider coaxial multi-supersheet geometries such that the shape of each su-
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persheet is fixed but its scale varies within the compactification direction. They represent a

new class of six-dimensional solutions that are by construction free of Dirac-strings. In five

dimensions the cancellation of Dirac strings is given by integrability conditions which for

single objects appear as a radius relation that gives the position of the object in terms of its

charges, while for multiple objects they express the interactions between them in terms of

magnetic fluxes. Thus it is interesting to explore how these interactions get embedded in the

solution in the six-dimensional geometry and allow us in the future to construct microstate

geometries in six dimensions. Analyzing the structure of these objects will also help us un-

derstand more about the superstratum which is also a genuine six-dimensional geometry.

A novel feature of these new geometries is that, because of their fluctuation in the sixth

dimension, under certain conditions they can touch or even intersect through each other.

It should, of course, be stressed that even though our solutions represent only a step

towards the ultimate goal of the superstratum, the multi-superthread solutions presented

here are completely new BPS solutions that are interesting in their own right.

In section 7.2 we briefly summarize the linear BPS system we must solve, briefly summa-

rize the superthread of [97] and then present the new family of multi-superthread solutions.

In section 7.3 we take the continuum limit and right the solution as a single supersheet.

We also perform the smearing integrals that give a straight supersheet and a corrugated

supersheet with an arbitrary periodic function describing the fluctuations in the compact

direction. In section 7.4 we generalize our formalism to multi-supersheet solutions. We con-

struct multiple corrugated supersheets with independent and arbitrary oscillation profiles

along the compact direction. We derive the local conditions that need to be satisfied for

two supersheets to touch or intersect and by a specific choice of examples we provide a nu-
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merical analysis of the global regularity conditions as well. In section 7.5, based on results

of section 7.3, we give general arguments about the structure of six-dimensional solutions

and a possible perturbative approach towards constructing black geometries as well as the

superstratum. Finally we display our conclusions in section 7.6.

Figure 7.1: Multi-thread solution in which all the threads are parallel. When smeared the
sheet profile is described by a product of functions of one variable: the original thread profile
and the thread densities.

Figure 7.2: Multi-thread solution in which all the threads have independent profiles. When
smeared the sheet profile is described by generic functions of two variables.
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7.2 Solving the BPS equations

7.2.1 The BPS equations

The six-dimensional metric has the form:

ds2 = 2H−1(dv + β)
(
du+ ω + 1

2
F (dv + β)

)
− H ds2

4 . (7.1)

where the metric on the four-dimensional base satisfies some special conditions that will not

be relevant here because we are going to take ds2
4 to be the flat metric on R4. The coordi-

nate, v, has period L and the metric functions generically depend upon both v and the R4

coordinates, ~x. We are also going to take the trivial fibration by setting β = 0, which means,

in particular, that there will be no Kaluza-Klein monopoles in the solution. The spatial part

of the metric is simply flat R4×S1. Also because β = 0, although the inhomogeneous terms

in the BPS equations as we will see contain v derivatives, the differential operators in the left

hand side contain no v derivatives. The latter means that because of linearity, the solutions

we find, although v-dependent, can be thought to be assembled by constant v sections of the

full solution.

With these choices, the first step in constructing a solution is to determine the harmonic

functions that encode the D1 and D5 charges:

∗4 d̃ ∗4 d̃ Za = −∇2Za = 0 , i = 1, 2 , (7.2)

where d̃ is the exterior derivative and ∇2 is the Laplacian on R4. The metric function, H, is

151



then given by H =
√
Z1Z2 and one then must find self-dual Maxwell fields

Θa = ∗4 Θa , i = 1, 2 , (7.3)

that satisfy

d̃Θ1 = 1
2
∂v
[
∗4 (d̃Z2)

]
, d̃Θ2 = 1

2
∂v
[
∗4 (d̃Z1)

]
. (7.4)

These Maxwell fields determine the magnetic components of the fluxes in six dimensions and

thus the magnetic dipole D1 and D5 charges.

The angular momentum vector is obtained by solving

(1 + ∗4) d̃ω = 2 (Z1Θ1 + Z2Θ2) . (7.5)

and the last metric function is determined via:

∗4 d̃ ∗4 d̃F = −∇2F = 2 ∗4 d̃ ∗4 ω̇ − 2(Ż1Ż2 + Z1Z̈2 + Z̈1Z2) + 4 ∗4 (Θ1 ∧Θ2) . (7.6)

This last function encodes the momentum (P) charge of the solution.

7.2.2 The new solutions

The first steps in our new solution directly parallel those of [102]. The harmonic functions,

Zi, are sourced on the thread profiles, ~F (p)(v):

Zi = 1 +
n∑
p=1

Qi p

|~x− ~F (p)(v)|2
, (7.7)
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where we have required that Zi → 1 at infinity so that the metric is asymptotically Minkowskian.

The Maxwell fields, Θi, that solve (7.3) are simply given by:

Θi = 1
2

(1 + ∗4) d̃

( n∑
p=1

Qi p Ḟ
(p)
m dxm

|~x− ~F (p)(v)|2

)
. (7.8)

As noted in [102], the magnetic dipoles of this solution may be thought of as being defined

by

~d1 = Q1
~̇F (v) , ~d2 = Q2

~̇F (v) , (7.9)

and they satisfy the constraint that is familiar from the five-dimensional, generalized super-

tube [103–105]:

Q1

∣∣~d2

∣∣ = Q2

∣∣~d1

∣∣ . (7.10)

This means that even though the solution has two dipole charges, only one of them is

independent of the other charges.

To write the solution for the angular momentum vector and the third function, F , it is

useful to define:

~R(p) ≡ ~x − ~F (p)(v) , Rp ≡
∣∣~R(p)

∣∣ ≡ ∣∣~x − ~F (p)(v)
∣∣ , (7.11)

and for each p and q, introduce the anti-self-dual two form area element:

A(p,q)
ij ≡ R

(p)
i R

(q)
j −R

(p)
j R

(q)
i − εijk`R

(p)
k R

(q)
` , (7.12)
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where ε1234 = 1. The angular momentum vector can be written in three pieces:

ω = ω0 + ω1 + ω2 . (7.13)

where the first two parts are very similar to the those in [102]:

ω0 =
2∑
i=1

n∑
p=1

Qi p Ḟ
(p)
m dxm

|~x− ~F (p)(v)|2
,

ω1 =
1

2

n∑
p,q=1

(Q1 pQ2 q +Q2 pQ1 q)
Ḟ

(p)
m dxm

R2
pR

2
q

. (7.14)

The last part of the solution, ω2, is part of our new result and arises from the interaction

between non-parallel threads:

ω2 =
1

4

n∑
p,q=1
p 6=q

(Q1pQ2q+Q2pQ1q)

(
Ḟ

(p)
i − Ḟ

(q)
i

)∣∣~F (p) − ~F (q)
∣∣2
{(

1

R2
p

− 1

R2
q

)
dxi − 2

R2
pR

2
q

A(p,q)
ij dxj

}
. (7.15)

From this one can easily verify that

~∇ · ~ω = − ∂v(Z1Z2) , (7.16)

which means that the equation for F simplifies to

∇2F = − 2
[
Ż1Ż2 + ∗4 (Θ1 ∧Θ2)

]
= − 4

n∑
p,q=1

(Q1pQ2q +Q2pQ1q)
1

R4
pR

4
q

[
(~R(p) · ~R(q))

(
~̇F (p) · ~̇F (q)

)
− ~̇F (p)i ~̇F (q)j A(p,q)

ij

]
.

(7.17)
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This can be solved by the somewhat obvious guess:

F = − 4 − 4
n∑
p=1

Q3 p

R2
p

− 1

2

n∑
p,q=1

(Q1pQ2q +Q2pQ1q)

R2
pR

2
q

(
~̇F (p) · ~̇F (q)

)
+

n∑
p,q=1
p6=q

(Q1pQ2q +Q2pQ1q)
1

R2
pR

2
q

Ḟ
(p)
i Ḟ

(q)
j A

(p,q)
ij∣∣~F (p) − ~F (q)
∣∣2 ,

(7.18)

where the first two terms represent particular choices for the harmonic pieces of F . In

normalizing these harmonic pieces we have kept in mind the fact that dimensional reduction

to five space-time dimensions yields F = −4Z3, where Z3 determines the third electric

charge of the solution and is on the same footing (in five dimensions) as Z1 and Z2. The

terms in ω and F that contain A(p,q)
ij express the non-trivial interaction between non-parallel

superthreads. These terms vanish for solutions with multiple threads of parallel profiles,

~F (v), and hence did not appear in [102].

Finally, there are also possible harmonic pieces that can be added to the angular mo-

mentum vector, ω. To define these, introduce the following self-dual harmonic forms on

R4:

Ω
(1)
+ = dx1 ∧ dx2 + dx3 ∧ dx4 ,

Ω
(2)
+ = dx1 ∧ dx3 − dx2 ∧ dx4 ,

Ω
(1)
+ = dx1 ∧ dx4 + dx2 ∧ dx3 .

(7.19)

Then the following are zero modes of the equation (7.5) that defines ω:

ωharm =
3∑

a=1

n∑
p=1

1

R4
p

J (a)
p (v) Ω

(a)
+ij R

(p)idxj , (7.20)
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where the J
(a)
p (v) are v-dependent angular momentum densities. The one-form in (7.20) is

sourced along the profile of the superthread. Moreover, one can easily verify that:

∗4 d̃ ∗4 ωharm = 0 , (7.21)

and so this induces no additional contribution to F in (7.6).

7.2.3 Regularity and the near-thread limit

The six-dimensional metric we are considering is:

ds2 = 2(Z1Z2)−
1
2dv

(
du+ ω + 1

2
F dv

)
− 2(Z1Z2)

1
2 |d~x|2 . (7.22)

Regularity requires that Z1Z2 > 0 and we will ensure this by taking

Q1p , Q2p ≥ 0 , (7.23)

for all p. Moreover, if one sets all displacements to zero except along the circular fiber

parametrized by v then the metric collapses to ds2 = (Z1Z2)−
1
2F dv2, which means that one

must require

−F ≥ 0 (7.24)

everywhere if one is to avoid closed timelike curves. The expression for F in (7.18) is

somewhat complicated but the condition (7.24) can generically be satisfied if one takes Q3p

to be positive and large enough. We will discuss this further below.
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The near-thread limit is going to be singular because it is locally a three-charge, two-

dipole charge object. However we must also ensure that there are no closed time-like curves

(CTC’s) near the superthreads. To that end we collect all the divergent and finite parts of

the metric in the limit Rp → 0:

Zi ∼
Qip

R2
p

+ Qip +
∑
q 6=p

Qiq

R2
pq

+ O(Rp) , i = 1, 2 ,

F ∼ − Q1pQ2p

R4
p

∣∣ ~̇F (p)
∣∣2 − 1

R2
p

[
4Q3p +

∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

(
~̇F (p) · ~̇F (q)

)]
+ O(1) ,

ω ∼ − Q1pQ2p

R4
p

(
~̇F (p) · d~x

)
+

1

R3
p

3∑
a=1

J (a)
p (v) Ω

(a)
+ij R̂

(p)i dxj

+
1

R2
p

[
(Q1p +Q2p) +

∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

] (
~̇F (p) · d~x

)
+ O

( 1

Rp

)
.

(7.25)

where we have included the harmonic pieces, (7.20), of ω and where

F 2
pq ≡

∣∣~F (p) − ~F (q)
∣∣2 , R̂(p) ≡

~R(p)

Rp

. (7.26)

Setting du = 0, one finds, at leading order as Rp → 0,

ds2 ∼
√
Q1pQ2p

R2
p

[∣∣ ~̇F (p)
∣∣2( dv − ~̇F (p) · d~x∣∣ ~̇F (p)

∣∣2
)2

+ dx2
⊥

]
. (7.27)

where

dx2
⊥ ≡ |d~x|2 −

∣∣ ~̇F (p) · d~x
∣∣2∣∣ ~̇F (p)

∣∣2 , (7.28)
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which is the spatial metric in R4 perpendicular to the tangent, ~̇F (p), to the superthread.

The asymptotic metric (7.27) is manifestly positive but not positive-definite: There is a null

direction along the supertube. That is, the leading order terms vanish precisely if one takes

d~x = ~̇F (p) dλ , dv =
∣∣ ~̇F (p)

∣∣ dλ , (7.29)

for some infinitesimal displacement, dλ.

For this displacement one finds a leading order term coming from the harmonic pieces of

ω:

ds2
λ =

dλ2

Rp

1√
Q1pQ2p

3∑
a=1

J (a)
p (v) Ω

(a)
+ij R̂

(p)i Ḟ (p)j (7.30)

If one looks in the direction R
(p)
i ∼ −

∑3
a=1 J

(a)
p (v) Ω

(a)
+ij Ḟ

(p)j one finds that ds2
λ is negative

and proportional to
∑3

a=1 (J
(a)
p (v))2

∣∣ ~̇F (p)
∣∣2. Thus for a superthread with ~̇F (p) 6= 0 one can

only avoid CTC’s if one sets

J (a)
p (v) = 0 (7.31)

that is, the harmonic pieces, (7.20), produce CTC’s and so must be discarded. The complete

physical solution is thus given by ω0 + ω1 + ω2 defined in (7.14) and (7.15).

An important consequence of this analysis is that the angular momentum vector is com-

pletely determined by the electric charges and profiles of the configuration. This is slightly

different from the five-dimensional solutions in which one has independent choices of har-

monic functions in the angular momentum vectors and the angular momenta are then fixed

in terms of the charges and positions of the sources via bubble equations, or integrability

conditions, that remove CTC’s. For the six-dimensional solutions presented here one fixes
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charges, positions and profiles and the angular-momentum vector is adjusted automatically:

there are no bubble equations.

Having now killed the leading order of the metric along the displacement (7.29) it turns

out that there is a finite order piece. As Rp → 0 the metric becomes:

ds2
λ =

dλ2√
Q1pQ2p

[
4Q3p −

∣∣ ~̇F (p)
∣∣2(Q1p +Q2p)

−
∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

~̇F (p) ·
(
~̇F (p) − ~̇F (q)

)]
+ O(Rp).

(7.32)

Again, to avoid closed timelike curves we require that the quantity in brackets be non-

negative, which is equivalent to asking that

−F ≥ Ḟ
(p)
i ωi (7.33)

near each thread. Hence the positivity of ds2
λ in (7.32) places a lower bound on each of the

charges Q3p:

Q3p ≥
1

4

∣∣ ~̇F (p)
∣∣2(Q1p +Q2p) +

1

4

∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

~̇F (p) ·
(
~̇F (p) − ~̇F (q)

)
. (7.34)

The individual bounds for each p depend upon the detailed geometric layout of the threads

but if one sums over all the threads then one obtains a global bound upon the total charges:

n∑
p=1

Q3p ≥
1

4

n∑
p=1

∣∣ ~̇F (p)
∣∣2(Q1p +Q2p) . (7.35)

The origins of these bounds can be understood in terms of “charges dissolved in flux”
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[49]. From (7.9) one sees that the right-hand sides of (7.34) and (7.35) can be thought of

as the dipole-dipole interactions that give rise to an effective electric contribution to the

Kaluza-Klein charge described by F . As we will describe below, the harmonic charge term,

described by Q3p in F , is the charge measured at infinity and so these bounds mean that

the only physically sensible solutions are those in which one does indeed correctly account,

at infinity, for the charge coming dipole-dipole interactions.

7.2.4 Asymptotic charges

The electric charges measured at infinity come from the asymptotic forms of Z1, Z2 and

Z3 ≡ −1
4
F . From the leading (O(R−2)) terms in (7.7) and (7.18) one can easily read off the

D1, D5, and P charges:

D1:
∑
p

Q1p, D5:
∑
p

Q2p P:
∑
p

Q3p. (7.36)

The terms in the tensor, A(p,q)
ij , defined (7.12) do not contribute in F because ~R(p) and ~R(q)

become nearly parallel at large distances and so this term vanishes at leading order.
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The asymptotic form of ω can be massaged into

ω ∼ 1

R2

∑
p

(
Q1p +Q2p

)
~̇F (p) · d~x+

2

R4

∑
p

(
Q1p +Q2p

)(
~R · ~F (p)

)
~̇F (p) · d~x

+
1

2

1

R4

∑
p,q
p 6=q

Q1pQ2q +Q2pQ1q

F 2
pq

Ri

[
F

(pq)
i

(
~̇F (pq) · d~x

)
− Ḟ (pq)

i

(
~F (pq) · d~x

)
+ εijk`F

(pq)
j Ḟ

(pq)
k dx`

]
+

1

2

1

R4
~R · d~x

∑
p,q
p 6=q

Q1pQ2q +Q2pQ1q

F 2
pq

(
~F (pq) · ~̇F (pq)

)
,

(7.37)

where ~F (pq) ≡ ~F (p)− ~F (q). The first term falls of as R−1 and is perhaps somewhat unexpected.

Mathematically it arises through the contribution of the constant terms in the Zi to the source

for ω in (7.5). These source terms mean that, to leading order, (1+∗4)d̃ω limits to 2(Θ1+Θ2)

and thus ω inherits an asymptotic behavior given by the vector fields in parentheses in (7.8).

In five dimensions, (Θ1 + Θ2) falls off faster and leads to standard expansions for angular

momenta in ω. The presence of the O(R−1) terms in six-dimensions comes because of the

v-dependent sources in (7.4). The fact that this term is a total v-derivative means it will

always vanish when we reduce to five dimensions. This is because, in order to reduce to five

dimensions, the sources must be smeared in a way that kills all v dependence; hence the

unusual O(R−1) term disappears and one recovers the standard behavior of five-dimensional

solutions. We will illustrate this in the next section.

Physically, the O(R−1) terms represent a linear momentum for the configuration. The

somewhat unusual feature of the six-dimensional linear system is that all the equations are

solved on a constant-v slice and that, for a given value of v, the solution is insensitive to
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the configuration at other values of v and so, slice-by-slice, the solution sees the superthread

as indistinguishable from the thread that carries a linear momentum. It is only when one

smears the solution along a closed profile that the solution combines different sections of

the solution with different orientations so that the leading momentum behavior cancels and

leaves one with a more standard angular momentum.

The second term is in (7.37) is purely rotational, and expresses the difference JT ≡ J1−J2.

The third term is the potential of a purely anti-self-dual 2-form, and so it expresses the sum

J1 + J2. The last term is a total derivative, and may be viewed as pure gauge.

7.3 Single supersheets

7.3.1 General supersheets

It is straightforward to take the continuum limit of the multi-superthread solution. The set

of profiles, ~F (p)(v), are replaced by a function of two variables, ~F (σ, v), the discrete charges,

Qi p, are replaced by density functions, ρi(σ) and the sums are replaced by integrals. Thus

we have

Zi = 1 +

∫ 2π

0

ρi(σ) dσ

|~x− ~F (σ, v)|2
, (7.38)

Θi = 1
2

(1 + ∗4) d̃

(∫ 2π

0

ρi(σ) ∂v ~F (σ, v) · d~x
|~x− ~F (σ, v)|2

dσ

)
, (7.39)
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where we have chosen to normalize the smearing over the interval [0, 2π]. Following (7.11)

and (7.12) we define

~R(σ) ≡ ~x − ~F (σ, v) , R(σ) ≡
∣∣~R(σ, v, ~x)

∣∣ , (7.40)

and the tensor

Aij(σ1, σ2) ≡ Ri(σ1)Rj(σ2)−Rj(σ1)Ri(σ2) − εijk`Rk(σ1)R`(σ2) , (7.41)

With these definitions, the rest of the continuum solution can be written

ω0 =
2∑
i=1

∫ 2π

0

ρi(σ) ∂v ~F (σ, v) · d~x
|~x− ~F (σ, v)|2

dσ ,

ω1 =
1

2

∫ 2π

0

∫ 2π

0

(ρ1(σ1)ρ2(σ2) + ρ2(σ1)ρ1(σ2))
∂v ~F (σ1, v) · d~x

R(σ1, v, ~x)2R(σ2, v, ~x)2
dσ1dσ2 , (7.42)

ω2 =
1

4

∫ 2π

0

∫ 2π

0

(ρ1(σ1)ρ2(σ2) + ρ2(σ1)ρ1(σ2))

(
∂vFi(σ1, v)− ∂vFi(σ2, v)

)∣∣~F (σ1, v)− ~F (σ2, v)
∣∣2{(

1

R(σ1)2
− 1

R(σ2)2

)
dxi − 2

R(σ1)2R(σ2)2
Aij(σ1, σ2) dxj

}
dσ1dσ2 ,

(7.43)

163



F = − 4 − 4

∫ 2π

0

ρ3(σ)

R(σ)2
dσ

−
∫ 2π

0

∫ 2π

0

(ρ1(σ1)ρ2(σ2) + ρ2(σ1)ρ1(σ2))
1

R(σ1)2R(σ2)2[
1

2

(
∂v ~F (σ1, v)

)
·
(
∂v ~F (σ2, v)

)
− ∂vFi(σ1, v) ∂vFj(σ2, v) Aij(σ1, σ2)∣∣~F (σ1, v)− ~F (σ2, v)

∣∣2
]
dσ1dσ2 .

(7.44)

The integrals for ω2 and F have potential singularities at the coincidence limits, σ1 = σ2,

with a double pole coming from the denominator factor of |~F (σ1, v)− ~F (σ2, v)|2. However,

the tensor Aij has a simple zero as σ1 → σ2 and this skew tensor is further contracted with

factors that have simple zeroes in the coincidence limit. Thus there is also a double zero in

the numerator leading to a finite contribution in the coincidence limit.

While we have smeared the multi-superthread solution into a single supersheet, it is also

clear that one can smear the multi-superthread solutions into multiple supersheets and such

solutions will be given by straightforward generalizations of (7.38)–(7.44).

Finally, we note that one can, of course, recover the multi-superthread solutions from

this continuum solution by replacing the density functions, ρa, by sums over delta functions:

ρa(σ) =
N∑
j=1

Qa p δ
(
σ − σ(p)

)
, a = 1, 2, 3 , (7.45)

and where the individual profile functions are specified by the sampled values of ~F (σ, v):

~F (p)(v) = ~F
(
σ(p), v

)
. (7.46)
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7.3.2 The five-dimensional generalized supertube as a supersheet

The supersheets described above are sourced by sheet profiles described by arbitrary func-

tions of two variables and are thus much more general than previously-known solutions.

However, it is worthwhile to smear our solutions in a more trivial way in order to see ex-

actly how five-dimensional solutions emerge. Therefore we give an example that produces

a v-independent sheet profile, allowing us to reduce on the v fiber and obtain a standard

five-dimensional solution.

A useful, non-trivial way to accomplish this is to choose any profile ~F (σ) in R4, and

define ~F (σ, v) = ~F (σ + κv). The result should then be a solution of the standard, linear

BPS system in five dimensions [22, 49]. One should also directly recover physical constraints

like radius relations. For simplicity, we will take the charge densities to be constant and we

will smear a simple helical configuration that will produce a cylinder along v and a ring in

R2 ⊂ R4:

~F (σ, v) =
(

0, 0, a cos(κv + σ), a sin(κv + σ)
)
, (7.47)

where κ and a are constants with κ = 2nπ
L

, for n ∈ Z. Each thread will have a constant

charge distribution, given by

ρi(σ) ≡ Qi

2π
. (7.48)

To carry out the integrals (7.38), (7.42), (7.43), (7.44), it is easiest to work in polar

coordinates on R2 × R2 given by:

x1 = η cosφ, x2 = η sinφ, x3 = ζ cosψ, x4 = ζ sinψ. (7.49)
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Note that R2 = η2 + ζ2. From these coordinates we can easily go to spherical coordinates

by defining η = R cos θ and ζ = R sin θ. Then, for example, we obtain Z1 by integrating

Z1 = 1 +
Q1

2π

∫ 2π

0

dσ
1

η2 + ζ2 + a2 − 2aζ cos(σ + κv)

= 1 +
Q1√

(η2 + ζ2 + a2)2 − 4a2ζ2
.

(7.50)

The rest of the integrals are tedious, but straightforward. The result is

Z1,2 = 1 +
Q1,2

Σ
, F = −4− 4Q3

Σ
− κ2Q1Q2

1

Σ

(
η2 + ζ2

Σ
− 1

)
, (7.51)

ω =
κ

2
(Q1 +Q2)

(
η2 + ζ2 + a2

Σ
− 1

)
dψ + κQ1Q2

1

Σ2

(
η2 dφ+ ζ2 dψ

)
, (7.52)

where we have defined

Σ ≡
√

(η2 + ζ2 + a2)2 − 4a2ζ2 =
√

(R2 + a2)2 − 4a2R2 sin2 θ. (7.53)

At infinity, these behave as

Z1,2 ∼ 1 +
Q1,2

R2
, Z3 = − 1

4
F ∼ 1 +

Q3

R2
(7.54)

ω ∼ κ

R2

[(
(Q1 +Q2) a2 +Q1Q2

)
sin2 θ dψ +Q1Q2 cos2 θ dφ

]
(7.55)

=
1

2R2

[
J1 sin2 θ dψ + J2 cos2 θ dφ

]
, (7.56)

where the five-dimensional angular momentum vector, k, is related to ω via ω = 2k. This

explains the factor of 2 in (7.56).
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This solution corresponds, as expected, to the three-charge, two-dipole-charge generalized

supertube [105], with charges Q1, Q2, Q3, and dipole charges

q1 ≡ −κQ2

2
, q2 ≡ −κQ1

2
, q3 ≡ 0. (7.57)

We define Q̃3 as

Q̃3 ≡ Q3 − 1
4
κ2Q1Q2 (7.58)

Note that Q̃3 is the constituent electric charge while the charge measured at infinity, Q3,

also contains the charge arising from the dipole-dipole interaction.

From (7.56) one can read off the angular momenta and one can also check that the radius

relation:

JT ≡ J1 − J2 = − 1
2
κ a2 (Q1 +Q2) = (q1 + q2 + q3) a2 (7.59)

is satisfied automatically.

The condition that one has F ≤ 0 globally implies that Q̃3 ≥ 0 and hence:

Q3 ≥ 1
4
κ2Q1Q2 = q1 q2 (7.60)

This is simply the continuum analog of (7.35).

Near the ring, we find that to avoid CTC’s one must have:

Q1Q2

(
Q̃3 − 1

4
κ2a2(Q1 +Q2)

)
≥ 0 , (7.61)
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and hence

Q̃3 ≥ 1
4
κ2a2 (Q1 +Q2) = 1

2
κ JT . (7.62)

This is not quite the same as the continuum limit of (7.34) because the latter bound was

derived assuming that Rq remained finite as Rp → 0 whereas the continuum limit gets other

important terms in from the coincidence limits when two threads approach one another. This

is evident from the fact that the general integrals in Section 7.3 are finite in the coincidence

limit but the continuum limit of (7.34) involves a divergent integral.

We have thus recovered one of the standard five-dimensional solutions. The process of

obtaining a solution in five dimensions usually involves choosing some harmonic functions

and then adjusting the coefficients so as to avoid closed timelike curves. These choices are

already implicit in our six-dimensional solution and emerge directly in the smeared solution.

7.3.3 A corrugated supersheet

In the previous calculation by considering superthreads of helical profile the smearing in-

tegrals for a single supersheet were explicitly calculated. Although the profile functions

depended on both v and σ the resulting supersheet was independent of v and it matched a

special class of already known five-dimensional solutions [103], [104], [105]. Here we want to

extend these results by considering a slightly more general choice of profile functions so that

the resulting supersheet can also fluctuate in the coordinate v. Thus, we choose

~F (v, σ) = (A(λv) cos(κv + σ) , A(λv) sin(κv + σ) , 0 , 0). (7.63)

168



We once again choose helical profile functions, but now the radius A, instead of being con-

stant, is an arbitrary function of v. The resulting supersheet will have a circular profile in

R4 for a specific value of v, with varying circle radius as we move along the v direction.

The constants λ and κ are of the form 2πn/L, where n is an integer, and can in principle

be independent. Although our results are for a circular profile we believe that they can be

generalized to any closed, non-intersecting curve by constructing the appropriate Green’s

functions.

For the R4 base space with take double polar coordinates

x1 = η cosψ , x2 = η sinψ , x3 = ζ cosφ , x4 = ζ sinφ, (7.64)

from which we can go to spherical coordinates by substituting

η = r sin θ , ζ = r cos θ. (7.65)

The solution

To describe a single supersheet we need to calculate the integrals (7.85) with no summations

and the latin indices removed. We also consider a constant charge distribution

ρm(σ) =
Qm

2π
. (7.66)

The integrals are easily calculated by going to the complex plane and summing the residues

of the poles that are within the unit circle. The double integrals transform to a double

complex integral and the residues of the first complex integration act as integrand functions
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for the second complex integral. Then for the functions describing the solution we find

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q2

Σ
, (7.67)

where

Σ =
√

(A2 + η2 + ζ2)2 − 4A2η2 =
√

(A2 + r2)2 − 4A2r2 sin2 θ, (7.68)

is the position of the supersheet in R4 and is now v dependent via the function A(λv).

Similarly we have

F = −4−
4Q3A

2 −Q1Q2

(
λ2Á2 + κ2A2

)
A2Σ

−Q1Q2

(
λ2Á2 + κ2A2

)
(η2 + ζ2)

A2Σ2
. (7.69)

For the angular momentum one obtains

ω =
(Q1 +Q2)

2ηA

(
−1 +

A2 + η2 + ζ2

Σ

)(
κAηdψ + λÁdη

)
+

+Q1Q2
η

AΣ2

(
ηκAdψ + λÁdη

)
+Q1Q2

ζ

AΣ2

(
ζκAdφ+ λÁdζ

)
,

(7.70)

where

∂vA = Ȧ = Áλ. (7.71)

It is interesting to observe that the functions (7.69) and (7.70) , because of linearity of

the BPS equations, can be considered as the “superposition of modes” occurring from two

distinct cases of supersheets: one made from superthreads of helical profile with constant

radius (λ = 0) and another made of straight superthreads with a corrugated profile (κ = 0).

Thus corrugated and helical modes of the solution are independent, originating from the fact
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that the profile function factorizes and each mode is sourced by a different factor of (7.63).

The R4 coordinates on which the angular momentum one form ω has legs depend on

Ḟidx
i, (7.85). Thus the helical mode generates the components dψ and dφ. The corrugated

mode generates new components dη and dζ along radial directions, expressing that the R4

circular profile changes radius as we move along v.

Regularity and asymptotic charges

Before examining our solution for closed timelike curves there are some restrictions to be

placed on the function A. In general there is the possibility of antipodal points of the R4

circular profile to intersect over each other at specific values of v = v0. For our choice of

profile functions this happens exactly when A(λv0) = 0. Then the functions F and ω diverge.

Thus we need

A(λv) 6= 0 ∀v ∈ [0, L]. (7.72)

For example for the simple choice A = b + a cos(λv) we need b > a. However, since A is a

periodic function of v there will be points v = v1 such that Ȧ(λv1) = 0. For these values of

v the solution and its physical analysis exactly matches the one for the supersheet where A

is constant. That might lead to an interesting perturbative approach in exploring the super-

stratum by expanding around the points Ȧ(λv1) = 0 where the superstratum should match

the v-independent supertube solution. Thus the superstratum can possibly be realized as

additional perturbation modes in the supertube solution around these points. We further

comment on this idea in section 7.5. A different perturbative approach to the superstratum

171



3, which differs from what we discuss here has recently appeared in [106].

We read the asymptotic charges of the solution from the expansion of Z1, Z2, F and ω

for r →∞. The asymptotic electric charges are

Q1,∞ = Q1 , Q2,∞ = Q2 , Q3,∞ = Q3 (7.73)

and from the expansion of ω we get

ω ∼ 1

r2

((
κA2(Q1 +Q2) + κQ1Q2

)
sin2 θdψ + κQ1Q2 cos2 θdφ+

1

2
(Q1 +Q2)λAȦ sin(2θ)dθ

)
.

(7.74)

Thus, in contrast to the case that the supersheet is v-independent there is an additional

term proportional to Ȧ along the θ direction.

To examine the solution for closed timelike curves it is useful to rewrite the metric (7.1)

by completing the squares

ds2 = H−1F
(
dv + β + F−1(du+ ω)

)2 −H−1F−1 (du+ ω)2 −Hds2
4. (7.75)

Taking a slice of u =constant the absence of closed timelike curves requires that the following

conditions hold globally

F ≤ 0, (7.76)

ds2
4 +

ω2

H2F
≥ 0. (7.77)

3The superstratum discussed in [106] would be a generalization of the three electric one, magnetic dipole
charge supertube presented in [18].
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From (7.76) for r → 0 we get

Q3 ≥
Q1Q2

(
λ2Á2 + κ2A2

)
4A2

. (7.78)

The charge Q3 should be big enough so that is greater than the right hand side of (7.78) for

every value of v. Since Q3 enters F as a harmonic term, the charge Q3 can be an arbitrary

function of v without affecting the solution. Consequently by defining

Q3(v) = Q̂3

(
λ2Á2 + κ2A2

)
κ2A2

, (7.79)

we get a result similar to the five dimensional case

Q̂3 ≥
1

4
κ2Q1Q2, (7.80)

where Q̂3 is an effective v-independent charge. From (7.77) by taking the near supersheet

limit Σ→ 0 we obtain from the leading order term

1

κ2A2 + λ2Á2

(
Aκdr − Áλr sin2 θdψ − Áλr cos2 θdφ

)2

+ r2 sin2 θ cos2 θ (dψ + dφ)2 + rdθ2,

(7.81)

which is always positive. Suppose we have Ȧ(λv1) = 0 at some point v1, then we can make the

leading order term vanish by choosing, consistently with the Σ→ 0 limit, r → A, θ → π/2.

By considering the next to leading order term in the expansion we get the constraint given
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for a non-corrugated supersheet, which is

Q1Q2

(
Q̃3(v1)− 1

4
κ2A(λv1)(Q1 +Q2)

)
≥ 0. (7.82)

Thus

Q̃3(v1) ≥ 1

4
κ2A(λv1)(Q1 +Q2), (7.83)

where we defined

Q̃3(v) = Q3 −
Q1Q2

(
λ2Á2 + κ2A2

)
4A2

. (7.84)

Also in the limit Σ → 0 the metric function blows up and thus the corrugated supersheet

geometry is singular. This is consistent with the five-dimensional non-corrugated supersheet

picture and the comment in the beginning of section 7.2.1 that because β = 0 these geome-

tries can be thought as a collection of slices of constant v. Thus for every value of v we have

a singularity with radial profile in R4 and the collection of all the different v-slices creates a

singular six-dimensional geometry.

7.4 Multi-Supersheets

7.4.1 General multi-supersheets

Here we give the immediate generalization for multiple supersheets with arbitrary and inde-

pendent two-dimensional profiles. Thus for a multi-supersheet solution the profile functions

~Fp(v) become functions of two variables ~FI(σ
(I), v) and the discrete charges Qmp are being

replaced by density functions ρ(I)(σ(I)). In the above we used capital latin indices to separate
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between different supersheets of the solution. Then we have

Zm = 1 +
∑
I

∫ 2π

0

ρ
(I)
m (σ(I)) dσ(I)

|~x− ~FI(σ(I), v)|2
,

F = − 4 −
∑
I

4

∫ 2π

0

ρ
(I)
3 (σ(I))

R(I)(σ(I))2
dσ(I)

−
∑
I,J

∫ 2π

0

∫ 2π

0

(ρ
(I)
1 (σ

(I)
1 )ρ

(J)
2 (σ

(J)
2 ) + ρ

(I)
2 (σ

(I)
1 )ρ

(J)
1 (σ

(J)
2 ))

1

R(I)(σ
(I)
1 )2R(J)(σ

(J)
2 )2[

1

2

(
∂v ~FI(σ

(I)
1 , v)

)
·
(
∂v ~FJ(σ

(J)
2 , v)

)
−

∂vFI,i(σ
(I)
1 , v) ∂vFJ,j(σ

(J)
2 , v) A(IJ)

ij (σ
(I)
1 , σ

(J)
2 )∣∣~FI(σ(I)

1 , v)− ~FJ(σ
(J)
2 , v)

∣∣2
]
dσ

(I)
1 dσ

(J)
2 ,

ω0 =
∑
I

2∑
m=1

∫ 2π

0

ρ
(I)
m (σ(I)) ∂v ~FI(σ

(I), v) · d~x
|~x− ~FI(σ(I), v)|2

dσ(I),

ω1 =
1

2

∑
I,J

∫ 2π

0

∫ 2π

0

(ρ
(I)
1 (σ

(I)
1 )ρ

(J)
2 (σ

(J)
2 ) + ρ

(I)
2 (σ

(I)
1 )ρ

(J)
1 (σ

(J)
2 ))∂v ~FI(σ

(I)
1 , v) · d~x

R(I)(σ
(I)
1 , v, ~x)2R(J)(σ

(J)
2 , v, ~x)2

dσ
(I)
1 dσ

(J)
2 ,

ω2 =
1

4

∑
I,J

∫ 2π

0

∫ 2π

0

(ρ
(I)
1 (σ

(I)
1 )ρ

(J)
2 (σ

(J)
2 ) + ρ

(I)
2 (σ

(I)
1 )ρ

(J)
1 (σ

(J)
2 ))

(
∂vFI,i(σ

(I)
1 , v)− ∂vFJ,i(σ(J)

2 , v)
)∣∣~FI(σ(I)

1 , v)− ~FJ(σ
(J)
2 , v)

∣∣2{(
1

R(I)(σ
(I)
1 )2

− 1

R(J)(σ
(J)
2 )2

)
dxi − 2

R(I)(σ
(I)
1 )2R(J)(σ

(J)
2 )2

AIJij (σ
(I)
1 , σ

(J)
2 ) dxj

}
dσ

(I)
1 dσ

(J)
2 ,

(7.85)

where we define

~R(I)(σ(I)) ≡ ~x − ~FI(σ
(I), v),

AIJij (σ
(I)
1 , σ

(J)
2 ) ≡ R

(I)
i (σ

(I)
1 )R

(J)
j (σ

(J)
2 )−R(I)

j (σ
(I)
1 )R

(J)
i (σ

(J)
2 ) − εijk`R

(I)
k (σ

(I)
1 )R

(J)
` (σ

(J)
2 ).

(7.86)
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The capital latin indices in the integration variables σ
(I)
i of (7.85), (7.86) are dummy indices

and can be removed. For the single integrals this is a trivial observation, while for the double

integrals it is based on the symmetry of the integrand in exchanging I ↔ J . The structure of

the equations (7.85) indicates that a mult-supersheet solution will consist of two parts. First,

there will be a summation over individual supersheets of different radii and profiles coming

from single summation terms and from double summations when I = J . Secondly there will

be interaction terms between the different supersheets coming from double summations when

I 6= J . Furthermore, because superthreads interact in pairs so will the resulting supersheets.

Thus the solution naturally decomposes as

Zi = 1 +
∑

H
(I)
i ,

ω =
∑
I

ω(I) +
∑
I 6=J

ω(I,J),

F = −4 +
∑
I

F (I) +
∑
I 6=J

F (I,J).

(7.87)

Because the integrands of ω2 and F are symmetric in exchanging I ↔ J , we have ω
(I,J)
2 =

ω
(J,I)
2 and F (I,J) = F (J,I). So we can further reduce (7.87) to

Zi = 1 +
∑

H
(I)
i ,

ω =
∑
I

ω(I) +
∑
I<J

(
ω

(I,J)
1 + ω

(J,I)
1 + 2ω

(I,J)
2

)
,

F = −4 +
∑
I

F (I) + 2
∑
I<J

F (I,J).

(7.88)
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7.4.2 Corrugated multi-supersheets

Here we calculate the smearing integrals (7.85) for corrugated multi-supersheets. General-

izing (7.63) we separate the superthreads at different sets AI with profile functions at each

set

~FI(v, σ
(I)) = (AI(λIv) cos(κIv + σ(I)) , AI(λIv) sin(κIv + σ(I)) , 0 , 0), (7.89)

with AI < AJ for I < J ∀v ∈ [0, L].

To each set of threads we assign a constant charge distribution given by

ρ
(I)
i (σ(I)) =

Q
(I)
i

2π
. (7.90)

The solution

These supersheets have concentric circular profiles in R4 with radii AI(λIv) which fluctuate

as we move along the v coordinate. In general they are also non-parallel as each one has

its own function AI(λIv) that oscillates along v. By using (7.88) we write the solution as a

combination of individual supersheets and interaction terms. For the individual supersheets

terms we have
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H(I)
m =

Q
(I)
m

ΣI

,

F (I) = −
4Q

(I)
3 A2

I −Q
(I)
1 Q

(I)
2

(
λ2
IÁI

2
+ κ2

IA
2
I

)
A2
IΣI

−Q(I)
1 Q

(I)
2

(
λ2
IÁI

2
+ κ2

IA
2
I

)
(η2 + ζ2)

A2
IΣ

2
I

,

ω(I) =
(Q

(I)
1 +Q

(I)
2 )

2ηAI

(
−1 +

A2
I + η2 + ζ2

ΣI

)(
κIAIηdψ + λIÁIdη

)
+

+Q
(I)
1 Q

(I)
2

η

AIΣ2
I

(
ηκIAIdψ + λIÁIdη

)
+Q

(I)
1 Q

(I)
2

ζ

AIΣ2
I

(
ζκIAIdφ+ λIÁIdζ

)
(7.91)

and for the interaction terms

F (I,J) = −4Q
(I,J)
3

ΣI

− Q
(I)
1 Q

(J)
2 +Q

(I)
2 Q

(J)
1

2

(
λIλJÁIÁJ + κIκJAIAJ

)(
− 1

AIAJΣI

+
η2 + ζ2

AIAJΣIΣJ

)
,

ω
(I,J)
1 =

Q
(I)
1 Q

(J)
2 +Q

(I)
2 Q

(J)
1

4ηAJΣIΣJ

(
A2
J + η2 + ζ2 − ΣJ

) (
κJAJηdψ + λJÁJdη

)
,

ω
(I,J)
2 =

(
Q

(I)
1 Q

(J)
2 +Q

(I)
2 Q

(J)
1

)((
−G(I,J)

1 κI +G
(I,J)
2 κJ

)
dψ+

+

(
− ÁI
AIη

G
(I,J)
1 λI +

ÁJ
AJη

G
(I,J)
2 λJ

)
dη+

+
(
L

(I,J)
1 AIAJ(κI + κJ) + L

(I,J)
2 (κIA

2
I + κJA

2
J)
)
dφ+

+
1

ζ

(
L

(I,J)
1 (λIAJÁI + λJAIÁJ) + L

(I,J)
2 (λIAIÁI + λJAJÁJ)

)
dζ

)
,

(7.92)

where as in (7.88) we require I < J and we also define
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ΣI =
√

(A2
I + η2 + ζ2)2 − 4A2

Iη
2 =

√
(A2

I + r2)2 − 4A2
Ir

2 sin2 θ (7.93)

and we have introduced the functions

G
(I,J)
1 =

(A2
I + ΣJ + ζ2)(A2

I − ΣI + ζ2) + η2(2ζ2 − 2A2
I + ΣJ − ΣI) + η4

8(A2
I − A2

J)ΣIΣJ

,

G
(I,J)
2 =

A4
J + 2A2

IΣJ − (ΣI − η2 − ζ2)(ΣJ + η2 + ζ2)− A2
J(ΣI + ΣJ + 2η2 − 2ζ2)

8(A2
I − A2

J)ΣIΣJ

,

L
(I,J)
1 =

AIAJζ
2 (A2

I(ΣJ − 2η2) + (ΣI + ΣJ)(η2 + ζ2) + A2
J(ΣI + 2η2))

(A2
I − A2

J)ΣIΣJ(A2
J − A2

I + ΣI + ΣJ)(A2
I(ΣJ − η2 − ζ2) + A2

J(ΣI + η2 + ζ2))
,

L
(I,J)
2 =

ζ2 ((A2
I − A2

J)ΣIΣJ − (A2
I + A2

J)(A2
I + η2 + ζ2)ΣJ)

2(A2
I − A2

J)ΣIΣJ(A2
J − A2

I + ΣI + ΣJ)(A2
I(ΣJ − η2 − ζ2) + A2

J(ΣI + η2 + ζ2))
−

− ζ2 ((A2
J + η2 + ζ2) (A2

J(ΣI + η2 + ζ2) + A2
I(A

2
J + ΣI − η2 − ζ2)− A4

I))

2(A2
I − A2

J)ΣIΣJ(A2
J − A2

I + ΣI + ΣJ)(A2
I(ΣJ − η2 − ζ2) + A2

J(ΣI + η2 + ζ2))
.

(7.94)

Although the integrands of the interaction terms ω
(I,J)
2 and F (I,J) are symmetric under

I ↔ J , the functions that occur after smearing are not. This is due to the fact that while

calculating the integrals we had to make use of AI < AJ for I < J . Our solutions match the

already studied five-dimensional solutions provided we set all λI = 0. In the five-dimensional

case however one writes down the solution with freely adjustable parameters and positions

and the interaction terms are symmetric under I ↔ J . Then one has to separately solve

integrability conditions (also called bubble equations), coming from requiring the absence of

Dirac strings, that relate the positions of the objects with their electric and dipole magnetic
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charges. Here the solution is by construction free of Dirac strings and that is reflected in the

lack of symmetry under I ↔ J .

To this end it is useful to provide additional details on how the asymmetry in I ↔ J

arises from the multi-supersheet integrals (7.85). To calculate any double integral expressing

the interactions between the supersheets I and J we go to the complex plane by introducing

complex variables z = eiσ1 , w = eiσ2 . We perform a double complex integration where the

residues of the first integral become the integrand of the second. At each integral we pick

the poles that are within the unit circle. The denominator of the integrand contains the

factor (AIz−AJw)(AJz−AIw), coming from the term |~FI(σ1, v)− ~FJ(σ2, v)|2 in (7.85). As

a result when performing the first integral (either over z or w) we need to know which of

the two ratios AI
AJ

or AJ
AI

is less than one, to pick the pole within the unit circle, and thus the

ordering of the supersheets matters.

7.4.3 Regularity and asymptotic charges

Once again we have to verify that our solution is free of closed timelike curves (7.76), (7.77).

For each of the terms of the solution representing an individual supesheet the analysis of

section 7.3.3 can be repeated in exactly the same manner and the conditions (7.76) and

(7.77) give exactly the conditions (7.78) - (7.84) with the capital latin index I included to

specify the supersheet we are referring to. In the multi-supersheet case though one has to

examine the interaction terms as well. Imposing

F (I,J) ≤ 0, (7.95)
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we get from (7.92) the additional constraint

Q
(I,J)
3 ≥

(
Q

(I)
1 Q

(J)
2 +Q

(I)
2 Q

(J)
1

) λIλJÁIÁJ + κIκJAIAJ
8AIAJ

. (7.96)

Similarly to (7.79) we can define an effective v-independent interaction charge Q̂
(I,J)
3 such

that

Q
(I,J)
3 (v) = Q̂

(I,J)
3

λIλJÁIÁJ + κIκJAIAJ
κIκJAIAJ

. (7.97)

Then (7.96) reduces to the condition we would take for the five-dimensional case (λI = λJ =

0)

Q̂
(I,J)
3 ≥

(
Q

(I)
1 Q

(J)
2 +Q

(I)
2 Q

(J)
1

) κIκJ
8

. (7.98)

One should also verify that the global condition (7.77) is satisfied by numerically examin-

ing the space between the different supersheets for specific choices of the functions AI(v).

We partially perform this analysis later and find there are areas of the parameter space

of solutions for which (7.77) is satisfied. In general, because of the correspondence to the

five-dimensional case, if the supersheets are well separated and the oscillations along v are

small we expect the solution to be regular.

The asymptotic charges of the solution, in addition to being the sum of the individual

supersheet pieces, will also get contributions from the interaction terms. The asymptotic

electric charges are

Q1,∞ =
∑
I

Q
(I)
1 , Q2,∞ =

∑
I

Q
(I)
2 , Q3,∞ =

∑
I

Q
(I)
3 + 2

∑
I<J

Q
(I,J)
3 . (7.99)
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By expanding ω we get

ω ∼ 1

r2

(∑
I

J (I) +
∑
I<J

J (I,J)

)
, (7.100)

where

J (I) =
(
κIA

2
I(Q

(I)
1 +Q

(I)
2 ) + κIQ

(I)
1 Q

(I)
2

)
sin2 θdψ + κIQ

(I)
1 Q

(I)
2 cos2 θdφ+

+
1

2
(Q

(I)
1 +Q

(I)
2 )λIAIÁI sin(2θ)dθ,

J (I,J) =
(
Q

(I)
1 Q

(J)
2 +Q

(I)
2 Q

(J)
1

)
κJ
(
sin2 θdψ + cos2 θdφ

)
.

(7.101)

The contributions to the angular momentum that come from the interaction pieces neither

depend on Ȧ nor do they have a dθ component. Thus the interaction terms in the asymptotic

charges for corrugated multi-supersheets are the same with those for solutions with trivial

reduction to five dimensions. It will be interesting to examine whether this holds when we

include the third dipole charge i.e. β 6= 0.

Having fully described the solution there is an interesting coincidence limit where all the

supersheets become identical

AI → A , λI → λ , κI → κ , Q
(I)
i → Qi , Q

(I,J)
3 → Q3, (7.102)

for all the N supersheets of the solution and for i = 1, 2, 3. Then we obtain the single

supersheet solution of section 7.3.3 and its asymptotic charges with

Q1 → NQ1 , Q2 → NQ2 , Q3 → N2Q3. (7.103)
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7.4.4 Touching, intersecting & regularity

Although so far we have strictly imposed the condition AI < AJ ∀v ∈ [0, L], the functions

describing the solution are regular in the limit AI → AJ . The individual supersheet terms

H(I), F (I), ω(I) and the interaction terms F (I,J), ω
(I,J)
1 are trivially regular in this limit. For

the terms appearing in ω
(I,J)
2 the functions G

(I,J)
1 and G

(I,J)
2 are regular while L

(I,J)
1 and L

(I,J)
2

are singular. However one can observe from ω
(I,J)
2 in (7.92) that in the limit AI → AJ the

dφ and dζ components factorize and the quantity L
(I,J)
1 + L

(I,J)
2 is regular as well. Thus it

seems that since supersheets can be realized as a collection of different v-slices we can have

different supersheets touching or intersecting (fig.7.3) through each other at specific values

of v = v2 such that AI(λIv2) = AJ(λJv2).

For touching supersheets we should by definition have

AI(λIv2) = AJ(λJv2) , ȦI(λIv2) = ȦJ(λJv2). (7.104)

Then continuity of the solution requires that taking the limit (7.104) on the result (7.92),

(7.94) should match the result of the smearing integral for v = v2 where (7.104) holds before

smearing. Then one gets that the helical winding numbers of the two supersheets should

match i.e. κI = κJ . Overall the conditions for two supersheets touching at v = v2 are

κI = κJ , AI(λIv2) = AJ(λJv2) , ȦI(λIv2) = ȦJ(λJv2). (7.105)

The somewhat notorious case of supersheets intersecting through each other such that

AI(λIv2) = AJ(λJv2) needs some additional attention, as the ordering of the supersheets
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changes. As we mentioned at the end of section 7.4.2 not only the functions F (I,J) and ω
(I<J)
2

describing the interactions between different supersheets are not symmetric under I ↔ J , but

also the ordering of the supersheets matters in calculating the integrals. Reminding ourselves

that our solution is a collection of different constant v slices the previous issue could easily

be resolved. One would have to calculate the smearing integrals of the interaction at two

different areas of the coordinate v. For v < v2 we have AI < AJ and the result would be the

functions F (I,J) and ω
(I,J)
2 as given by (7.92), (7.94). For v > v2 we would have AI > AJ

and thus

F̃ (I,J) = F (J,I),

ω̃
(I,J)
2 = ω

(J,I)
2 .

(7.106)

Then we should at least require that the functions describing the supersheets are continuous

at the intersection point v = v2, which means we should demand

lim
v→v2

(
F (I,J) − F̃ (I,J)

)
= 0,

lim
v→v2

(
ω

(I,J)
2 − ω̃(I,J)

2

)
= 0.

(7.107)
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Using (7.106) we find for the difference of the functions

lim
v→v2

(
F (I,J) − F̃ (I,J)

)
= 4

Q
(J,I)
3 (v2)−Q(I,J)

3 (v2)

ΣI

,

lim
v→v2

(
ω

(I,J)
2 − ω̃(I,J)

2

)
= lim

v→v2

(
Q

(I)
1 Q

(J)
2 +Q

(I)
2 Q

(J)
1

)
·

·

((
−
(
G

(I,J)
1 +G

(J,I)
2

)
κI +

(
G

(I,J)
2 +G

(J,I)
1

)
κJ

)
dψ+

+

(
− ÁI
AIη

(
G

(I,J)
1 +G

(J,I)
2

)
λI +

ÁJ
AIη

(
G

(I,J)
2 +G

(J,I)
1

)
λJ

)
dη

)
.

(7.108)

Thus taking the limit v → v2, for (7.107) to hold we need

Q
(I,J)
3 (v2) = Q

(J,I)
3 (v2) , κI = κJ , ȦI(λIv2) = ȦJ(λJv2) , AI(λIv2) = AJ(λJv2). (7.109)

The conditions (7.109) suggest that the supersheets can only intersect through a point at

Figure 7.3: Sections of different supersheets (blue & green): (a) touching supersheets, (b)
supersheets intersecting by touching tangentially, (c) supersheets cannot intersect without
touching tangentially.

which they tangentially touch each other. It is interesting to observe that both intersecting

and touching require the helical winding numbers κI , κJ to be the same. In both cases the
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requirement of a local condition (continuity) gives a constraint on the global parameters κ.

This constraint (along with ȦI = ȦJ for intersecting) can be understood as follows: for the

supersheets to touch or intersect, the superthreads they consist of should, at the touching

or intersection point v = v2, be able to be realized as constituents of the same supersheet.

Another way of realizing the constraints (7.105), (7.109) is through the angular momentum

of the supersheets (7.100), (7.101). The parameters κI generate the ψ, φ components of

the angular momentum and ȦI the θ one. Thus for the supersheets to touch or intersect

regularity requires that at the point of touching they should rotate in the same manner.

One could also argue that the cases of supersheets touching and tangentially intersect-

ing are not essentially different since the regularity conditions for these two situations are

essentially the same and one could change from one situation to the other after a piecewise

relabeling of the supersheets whenever they come into contact. Such a procedure would of

course change the A(v) part of the profile functions of the superthreads and hence the su-

persheets, but that is safe to do since our solutions can be realized as a collection of different

v slices. Thus as far as the constraints (7.109) are satisfied any pair of touching supersheets

with some profile functions can be realized as a pair of tangentially intersecting supersheets

with different profile functions and vice versa. Up to the change in the profile functions,

both of these solutions are being described by (7.91), (7.92) and (7.94).

Another remark is that because the five-dimensional bubble equations are encoded in the

ordering of the supersheets and since at a touching or intersection point the ordering becomes

degenerate, the constraints (7.105), (7.109) are basically the six-dimensional conditions for

the absence of Dirac strings when different supersheets touch or intersect.
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7.4.5 Numerics on global regularity conditions

So far we have examined the case of well separated multi-supersheets as well as the situation

at which they touch or intersect. In our analysis we mainly focused in the local regularity

conditions that these solutions have to satisfy. However one should also check the global

constraints (7.76), (7.77) which come from the absence of closed timelike curves. Here by

considering specific examples of two concentric supersheets we perform a partial numerical

analysis of these constraints and observe that at the usual areas of danger, our solutions

pass the test. We will focus in the area between the supersheets and examine the phase

space of solutions as the two supersheets approach or as we vary the parameters κ1, κ2.

Regarding (7.77) we will examine the dψ2 part of it, which matches the five dimensional

global regularity condition [22]. In all of the cases we will have a non-corrugated supersheet

of constant radius A1 and we choose

Q
(1)
1 = Q

(1)
2 = Q

(2)
1 = Q

(2)
2 = 1 , Q

(1)
3 = Q

(2)
3 = Q

(21)
3 = 50 , θ =

π

2
. (7.110)

For distinct or touching supersheets we will choose

A2 = 6 + sin v, (7.111)

which means that 0 < A1 ≤ 5 with the supersheets touching for A1 = 5. For A1 < 5 we will

examine the area for v = 3π
2

where the supersheets A1 and A2 are closest to each other and

we will choose the radial distance to be in the middle of the two supersheets r = 5+A1

2
. The

results are shown in figures (7.4(a)), (7.4(b)) and (7.5) in terms of contour plots of (7.77).
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In fig.(7.4(a)) we have chosen A1 = 2. This corresponds to the case where the supersheets

are well separated. We see that there is enough parameter space for κ1, κ2 before closed

timelike curves appear. In fig.(7.4(b)) we have A1 = 4.9 and the allowed parameter space for

κ1, κ2 is significantly smaller. This is displayed better in fig.(7.5) where we have set κ1 = κ2

(the condition for touching) and observe how the allowed values decrease as the supersheets

approach.

(a) A1 = 2 Well separated supersheets (b) A1 = 4.9 Supersheets close to each other

Figure 7.4: Contour plot of the dψ2 component of the left hand side of (7.77) for θ = π
2 shows

the allowed values of κ1, κ2 for separated supersheets in the middle of the area between them.
The left hand side of (7.77) has to be greater or equal to zero. The allowed values of κ1 and
κ2 reduce as the supersheets approach.

For touching supersheets we have A1 = 5 and κ1 = κ2 = κ. We set v = 3π
2

+ 0.1 and

examine the area between the two supersheets near the touching point as we vary κ and the
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Figure 7.5: Contour plot of the dψ2 component of the left hand side of (7.77) for θ = π
2 in

the middle of the area between two supersheets with same helical mode κ. The left hand side
of (7.77) has to be greater or equal to zero. The allowed values of κ reduce as the supersheets
approach.

radius r. The results are displayed in fig.(7.6). Once again we see there are ample values for

κ so that (7.77) is satisfied.

For intersecting supersheets we choose

A1 = 5 , A2 = 5 +
(

sin
(
v +

π

2

))3

. (7.112)

The function A2 has inflection points for v = (2n+1)π
2
, where n ∈ Z. At these points A1 = A2

and that’s when the two supersheets intersect. As in the case of touching supersheets we
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Figure 7.6: For touching supersheets there are allowed values of κ for all radial distances r
in the area between them next to the touching point.

are going to choose v = 3π
2

+ 0.1, so that we are near the intersection point, and examine

the area between A1 and A2. As we observe from fig.(7.7) there are allowed values of κ from

(7.77) and thus the solution exists.

The condition (7.76) is trivially satisfied in the areas we examined so far. Examining

(7.76) near the origin we also need (7.78), (7.96). Also from examining (7.77) near the

supersheets when ȦI = 0 we additionally get (7.83). All of these conditions (7.78), (7.96),

(7.83) set finite upper bounds to the values of κ1, κ2. Upper bounds to the values of κ1, κ2

have also been found in the numerical analysis presented in this section. Thus the conditions

(7.78), (7.96), (7.83) together with examining (7.77) in the area between the supersheets will

have a common set of allowed values for κ1, κ2.
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Figure 7.7: For intersecting supersheets there are allowed values of κ for all radial distances
r in the area between them next to the intersection point.

7.5 Suggestions on the addition of KKM

The geometries we have studied so far are restricted to setting β = 0 and hence there is no

third dipole charge. The addition of β is needed to construct not only generic black hole

solutions, but also the superstratum. Here we use the results of this chapter to argue about

certain aspects of the solution that include β 4. We find that our arguments are consistent

with previous analysis regarding the superstratum [97].

4Geometries with all three electric and dipole magnetic charges (they have β 6= 0 but still β̇ = 0) have
been constructed in [107] for a Kähler base space. In contrast to five dimensions, in six dimensions the BPS
conditions do not require the base space to be hyper-Kähler [100, 102] and indeed the more general solutions
we are after may require a more general class of metrics. However it is still interesting to examine which
genuinely six-dimensional geometries can be constructed with a hyper-Kähler base.
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The difficulty arises because the BPS equation [102] for β is non-linear

Dβ = ∗4Dβ, (7.113)

where

DΦ = d̃Φ− β ∧ Φ̇ (7.114)

and d̃ is the exterior derivative with respect to the four-dimensional base space. When β is

v-independent (7.113) becomes linear and reduces to the equation known from linearity in

five dimensions

d̃β = ∗4d̃β. (7.115)

In section 7.3.3 we observed that because of the periodicity of v, there should be values

of v = v1 such that Ȧ(λv1) = 0. At these points our solution directly reduces to the non-

corrugated supersheet which is essentially five-dimensional. Thus for any generic genuinely

six-dimensional solution there are points along the compactification circle such that the so-

lution looks five-dimensional. Consequently, we should be able to explore six-dimensional

solutions by adding appropriate perturbations around the points v = v1 to already known

geometries from five dimensions. This should be allowed based on the superposition of corru-

gated and helical modes we constructed in section 7.3.3. At v = v1 we should simultaneously

have

Ȧ(v1) = 0 , β̇(v1) = 0, (7.116)

with A(v) representing the radius of the profile in the four-dimensional base metric.Thus by

expanding around v = v1, β should at least have similar linear order dependence on v with A.
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The superstratum, since it is a smooth geometry, is expected to be much more constrained

compared to generic black geometries and one would have to add appropriate perturbations

in a very precise manner. Indeed, the only known D1-D5 geometry that has all of its

electromagnetic sources at a single point, is smooth in six dimensions and can be reduced

to five is the supertube. The supertube carries D1, D5 electric charges and KKM dipole

charge. The superstratum is expected to have all three electric (D1-D5-P) and magnetic

dipole (d1-d5-KKM) charges. Thus for v = v1 the superstratum should look exactly like a

supertube aligned along the v direction and because of the smoothness of the solution we

should simultaneously have

Ȧ(v1) = 0 , β̇(v1) = 0,

P (v1) = 0 , d1(v1) = d5(v1) = 0.

(7.117)

The additional requirement on the charges of the object is consistent with the supersymmetry

analysis in [97]. The D1-D5 system is being placed along the v direction and is being

given momentum P vertically with respect to the branes. This gives a system with charges

Q1 = QD1, Q2 = QD5 and angular momentum J = P . To generate dipole charge and

momentum along v one gives a tilt of angle α to the D1-D5 system with respect to the v

direction. Then

d1 = QD1 sinα , d5 = QD5 sinα , Pv = P sinα. (7.118)

Consequently, the conditions (7.117) on the charges can be simultaneously satisfied provided
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the tilting angle α is a function of v such that

α = α(v) , α(v1) = nπ, (7.119)

where n is an integer. The dependence of the tilting angle with respect to v is an essential part

of the second supertube transition [97] which is in turn required to generate the superstratum.

7.6 Concluding remarks

The BPS equations in six-dimensional, minimal N = 1 supergravity coupled to one tensor

multiplet have been shown to be a linear system [102] once an appropriate base geometry has

been determined. This allows one to use superposition to create a wide variety of solutions

and such solutions could lead to interesting new developments in the study of black hole

microstate geometries, as well has holography on AdS3 × S3. It has also been conjectured

[97] that a new class of BPS microstate geometries, superstrata, may exist. Such objects carry

three electric charges and two independent dipole charges, depend on arbitrary functions of

two variables and are expected to be regular solutions in the IIB duality frame. They are

thus a sheetlike, three-charge generalization of the supertube. The fact that they depend

upon functions of two variables suggests that they should be able to store large amounts of

entropy in their shape modes, indeed the superstrata microstate geometries are expected to

give the dominant semi-classical contribution to the entropy of the three-charge system [46].

The results we present here are a very significant step in that direction.

The non-trivial aspect of our new solutions is that they take into account the shape-

194



shape interactions of the separate superthreads. It was evident in [102] that superthreads

interact non-trivially with one another when the threads have different profiles and so the

completely general multi-superthread was not constructed. Indeed, as depicted in Fig. 7.1,

the multi-centered solutions found in [102] only involves parallel threads, shifted by rigid

translation in R4. Such solutions can only be smeared together into a sheet depending on

arbitrary functions of one variable with one set of functions describing the thread profile and

another defining the smearing densities. To get a solution that is genuinely a function of two

variables by smearing, it is essential to construct the multi-superthread solution in which all

the threads can have independent profiles and so the smeared threads yields a thread-density

profile, ~F (σ, v). This is depicted in Fig. 7.2.

In this chapter we have analyzed the effect of this shape-shape interaction and presented

the general solution with multiple threads of completely arbitrary and independent shapes

at each center. These solutions were then smeared to obtain new solutions sourced by a

two-dimensional sheet of completely arbitrary profile, described by arbitrary functions of

two variables.

We also checked our results against a known five-dimensional solution by taking a simple

helical profile and smearing it to a cylindrical sheet and dimensionally reducing. We thus

recovered the generalized supertube solution with three-charges and two-dipole charges [103–

105]. We found that CTC conditions, like the radius relation, which usually require an

additional constraint on the five dimensional solution, emerge automatically from our six-

dimensional solutions.

Furthermore we described multi-supersheet solutions with D1-D5-P electric charges and

d1-d5 magnetic dipoles, which have a non-trivial dependence on the compactification direc-
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tion. The supersheet profile functions were chosen so that they are the product of a helical

mode and an arbitrary corrugated mode. Then we saw that after smearing the resulting

supersheet is basically the superposition of the two modes.When multiple supersheets are

present they interact in pairs and we observed that the absence of integrability conditions

is encoded as a lack of symmetry in exchanging the two supersheets in the functions de-

scribing the interaction. Before smearing the integrands are symmetric in exchanging the

supersheets, but while performing the integral one has to choose an order to decide which

poles are within the unit circle. The asymptotic charges get contributions from the inter-

action terms between the supersheets, but interestingly enough these extra terms do not

get affected by the non-trivial dependence along the compactification direction. Thus the

contribution of the interaction to the asymptotic charges is essentially five-dimensional.

A new feature is that different supersheets can under certain conditions touch and inter-

sect through each other without the occurrence of closed timelike curves. The local regularity

conditions (originating from the absence of Dirac strings in five dimensions) require that the

supersheets come in contact tangentially and also have the same helical mode windings κI .

These conditions essentially guarantee that the superthreads making the two supersheets

can at the point of contact realize themselves as constituents of a single supersheet as well as

that touching and intersecting supersheets are equivalent up to an appropriate relabeling of

the profile functions. These features are a consequence of the fact that our solutions can be

realized as a sequence of different slices of constant v and it would be interesting to examine

whether such features hold in more general six-dimensional solutions with β 6= 0.

Another interesting aspect of these solutions is that because the direction v is periodic

there are values v1 of v where the first derivative of the radius of the four-dimensional
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profile A(v) vanishes and thus the solution looks five-dimensional. This, together with the

superposition of corrugated and helical modes, gives hope that one will be able to add

perturbative modes on already known five-dimensional solutions to generate a richer class of

solutions. We should note however that when β 6= 0 there might be a wider class of solutions

such that there is no superposition between helical and corrugated modes.

The solutions presented in this chapter are completely new geometries and are interesting

in their own right as three-charge solutions sourced by arbitrary two-dimensional surfaces.

To obtain the superstratum we will need to do exactly what we have achieved here but

with an additional KKM magnetic charge smeared along the profile thereby providing the

required second independent dipole moment [97].
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Chapter 8

Conclusions

In this thesis we employed the tools of supergravity in order to study the microscopic struc-

ture of supersymmetric and non-supersymmetric black holes at strong gravitational coupling.

In supergravity the microstates can be realized as smooth horizonless geometries that have

the same asymptotic structure and charges as a black hole. They offer a coarse-grained

description of the black hole phase space which, in general, is expected to consist of brane

configurations with non-geometric description [99, 108].

These solutions fit into the physical description of the fuzzball proposal according to

which black holes should be thought of as horizonless star-like objects consisting of strings

and branes extending all the way up to the scale of the horizon. This picture offers the

necessary O(1) corrections required to extract information from the black hole [13] and

allows for unitary scattering.

The goal of such a program is to create enough microstate geometries in order to at least

account for the correct scaling of the black hole entropy with respect to the charges. This
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will eventually yield some form of a semiclassical description of black hole microstates. For

BPS solutions this has almost been achieved, while for non-BPS solutions much more work

is needed.

For BPS solutions we used the formalism of supertubes and ambipolar Gibbons-Hawking

spaces to extend the construction of three-charge smooth solutions in five dimensions to 1/8-

BPS systems with four charges. Also we constructed singular six-dimensional solutions and

examined their properties. Our solutions are constructed by combining multiple superthreads

of different shapes. The latter are one-dimensional singular objects with three electric and

two dipole magnetic charges. Upon smearing the superthreads we got supersheets which are

two-dimensional surfaces depending on profile functions of two variables. These, in addition

to being new interesting solutions, are the first step towards constructing the superstratum.

The latter is a conjectured six-dimensional smooth geometry which is expected to give the

dominant semiclassical contribution to the entropy of 1/8-BPS black holes. To go from a

supersheet to the superstratum one would need to add the third dipole magnetic charge in

the solution which would play the role of KKM and smooth the geometry in a similar fashion

with supertubes. The difference between supertubes and supersheets is that the first depend

on profile functions of one variable, while the latter also have momentum modes and thus

depend on profile functions of two variables.

For non-BPS solutions we examined a special class of extremal solutions with broken

supersymmetry called almost-BPS. The main characteristic of these solutions is that the

supersymmetry is broken by the holonomy of the background and thus one has a controlled

way to break supersymmetry and study its effects. To that end we used a multi-species

supertube solution to construct an example of a scaling microstate geometry for an almost-
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BPS black ring. Examining the local regularity conditions, which control the positions of

the supertubes with respect to their charges and guarantee the absence of Dirac strings

and CTC’s, we studied the moduli space of the solutions and compared it with its BPS

counterpart. We found that almost-BPS microstate geometries are indeed allowed, but they

are more restricted compared to the BPS case. Also we established evidence indicating that

almost-BPS solutions are subject to a non-renormalization theorem despite the breaking

of supersymmetry. By going at an intermediate gravitational coupling and treating one of

almost-BPS centers as a probe in the background of the rest we showed that the probe action

reproduces local regularity conditions as obtained in supergravity.

Looking Ahead

For supersymmetric solutions the steps that need to be taken are quite clear. The super-

stratum is the smooth 1/8-BPS geometry that needs to be found. An example of a smooth

geometry that is a function of two variables has recently been constructed in [109] verifying

thus the existence of the superstratum. However the solution describes only certain oscil-

lation modes and these at the decoupling limit. Thus the quest for a generic superstratum

solution with flat asymptotics is still open. Once this solution has been obtained the next

step would be to quantize the oscillation modes of the superstratum and indeed verify that it

gives S ∼ Q3/2 as according to the analysis of [46]. It is interesting that the solution found in

[109] makes use of of the four charge formalism presented in chapter 4, since it simplifies the

sources of the six-dimensional equations. It may be important to further elucidate the role of

this system in constructing smooth geometries in six dimensions and specify the superstrata

modes that correspond to the topological limit where the central charge is zero. In general,
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in addition to constructing the superstratum, another direction that would be interesting is

to find new six-dimensional black hole geometries.

For non-BPS microstates the situation is less under control. For almost BPS black holes

we showed that there is a systematic way to construct microstate geometries as well as the

existence of a non-renormalization theorem. It will be useful to try extending these results

in other classes of extremal non-supersymmetric systems [91, 93, 94, 110]. It is important

to mention that some extremal non-BPS black holes in five dimensions [68] were found to

be BPS in six dimensions [107]. It is important to investigate whether the same holds

for other non-BPS systems like almost-BPS. Thus one could see whether the existence of

non-renormalization is because the system is secretly supersymmetric or it can indeed be a

property of systems with broken supersymmetry.

Of course the holy grail of the microstate geometry program would be to find smooth

geometries that would provide the entropy for a Schwarzschild (or Kerr) black hole. For

non-extremal black holes we are still lacking of a systematic way in constructing microstate

geometries and only a few isolated examples exist [66, 111–115]. The authors in [116] may

have made a first step towards a systematic way of constructing non-extremal microstate

geometries. The presence of the above examples shows that the existence of smooth solutions

is not only a characteristic of supersymmetric solutions. The difficulty is mainly technical

since non-extremal black holes emit Hawking radiation and thus the relevant microstates are

time dependent. Studies for near-extremal black holes have been done with the use of brane

probes and have uncovered some the relevant physics [89, 90, 117]. Thus a more tractable

problem may be to construct microstates for near-extremal systems by adding perturbations

to already known BPS solutions.
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Overall we can say that microstate geometries are in good standing in explaining BPS

black holes and are taking their first steps towards non-extremal ones. Explaining the physics

of black holes will eventually enhance our understanding of the physical world at a funda-

mental level. We can only hope that the contents of this thesis will provide inspiration for

additional research on that direction. Finally overfilled with inspiration let us vent and close

with an Ode to the Black Hole:

Oh black hole,

overall,

with no distinction

you accept us all.

Our information irretrievably lost,

your horizon once across,

there is no way out,

even for the brave most.

Shall we your eternal embrace to evade

only in thermal radiation escape?

Where are your microstates?

What are you made of?

The mystery remains

as the years drive off.

Complementarity and firewalls,
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you deserve all that buzz,

but truly you may be

purely fuzz.
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Appendix A

Units and Conventions

Let us summarize the conventions used in this thesis. We use the conventions of [40, 44].

One can also check [37, 118] for more details. Throughout we use c = ~ = 1 and a mostly

plus Lorentzian metric (−,+, . . . ,+).

Strings, branes and Newton’s constant

For the Planck length lD and the Newton’s constant GD in D spacetime dimensions we have

16πGD ≡ (2π)D−3 lD−2
D . (A.1)

For eleven and ten dimensions specifically we have,

16πG11 ≡ (2π)8 l9D , 16πG10 ≡ (2π)7 g2
s l

8
s , (A.2)

where ls =
√
α′ is the string length, gs is the string coupling constant and we have l10 = lsg

1/4
s .
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Upon dimensional reduction we have

GD =
G11

(2π)11−D V11−D
(A.3)

where V11−D is the volume of the internal compactification manifold.

When compactifying M-theory in a circle of radius R for the resulting IIA theory we

have

R = lsgs . (A.4)

Thus one can show that

l11 = g1/3ls (A.5)

The tensions of the extended objects in string and M-theory are:

TF1 =
1

2πα′
, TDp =

1

gs (2π)p lp+1
s

, TNS5 =
1

g2
s (2π)5 l6s

, (A.6)

TM2 =
1

(2π)2 l311

, TM5 =
1

(2π)5 l116
. (A.7)

Compactification from eleven to five dimensions

We use conventions such that

G5 =
π

4
, QI = NI , kI = nI , (A.8)

where NI , nI are the numbers of M2 and M5 branes respectively and QI , kI are the physical

charges of the five-dimensional solution.
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When compactifying M-theory on T 6 along the directions 5, 6, 7, 8, 9, 10 with each circle

having radius Ri we have the following relations

G5 =
G11

(2π)6 V6

=
π

4

(l11)9

V6

, (A.9)

Q1 =
l611

R7R8R9R10

N1 , Q2 =
l611

R5R6R9R10

N2 , Q3 =
l611

R5R6R7R8

N3 , (A.10)

q1 =
l311

R5R6

n1 , q2 =
l311

R7R8

n2 , q3 =
l311

R9R10

n3 . (A.11)

Thus for our conventions (A.8) we choose all three T 2’s to be of equal volume

R5R6 = R7R8 = R9R10 = l311 ≡ gsl
3
s , (A.12)

and the volume of T 6 is fixed at

V6 = R5R6R7R8R9R10 = l911 . (A.13)

Conventions in the IIA frame

We compactify from M-theory down to IIA on the circle R9. Thus R9 = gsls = 1 and from

(A.12) R10 = l2s . Consequently, from (A.6), for the tensions used to describe supertubes in

the D0-F1-D4 frame we have

TD0 = 1 , 2πTF1R10 , 2π
TD2

TF1

= 1 . (A.14)
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Black hole asymptotics

The mass M , angular momentum J and charge Q of a black hole in D spacetime dimensions

can be read of from the following expansions of the metric functions and the field strength

− gtt = 1− 16πGD

(D − 2)AD−2

M

rD−3
+ . . . , (A.15)

gti =
16πGD

AD−2

xjJji
rD−1

+ . . . , (A.16)

Ftr = (D − 3)
Q

rD−2
+ . . . , (A.17)

where AD−2 is the area of the (D − 2)-sphere.
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Appendix B

Details of the almost-BPS system

B.1 The angular momentum vector

The angular momentum vector, k, in the metric (5.1) is decomposed as in (5.33). Here we

present the results for the functions µ and ω for both the BPS and the almost-BPS case.

For the almost-BPS case we present the results in both conventions that is with ε = +1 in

(5.5) and the base metric anti-self-dual and ε = −1 and the base metric being self-dual. The

BPS results as usual correspond to ε = +1 and a self-dual base metric. We also examine the

relationship between BPS and almost-BPS descriptions for h = 0.

B.1.1 The function, µ

Here we write again the function µ that we provided in the main text in equations (5.34) -

(5.40).
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BPS

For BPS we have

µ = 1
6
V −2CIJK K

I
+K

J
+K

K
+ + 1

2
V −1KI

+L
+
I + M+ , (A.1)

where M+ is a harmonic function which we will take to be

M+ = m+
∞ +

m+
0

r
+

3∑
j=1

m+
j

rj
+m+

divr cos θ . (A.2)

For reasons that will become apparent below, we have added an unphysical harmonic term

that diverges at infinity. Thus for the system we are studying,

µ =
k+

1 k
+
2 k

+
3

r1r2r3V 2
+

1

2V

(
k+

1

r1

(
1 +

Q
(1)
2

4r2

+
Q

(1)
3

4r3

)
+

k+
2

r2

(
1 +

Q
(2)
1

4r1

+
Q

(2)
3

4r3

)
(A.3)

+
k+

3

r3

(
1 +

Q
(3)
1

4r1

+
Q

(3)
2

4r2

))
+ M+ . (A.4)

Almost-BPS

For almost-BPS solutions the expression for µ is the same for both conventions

µ =
∑
I

k−I µ
(1)
I + h

∑
I

∑
j 6=I

Q
(I)
j k−I
4

µ
(3)
Ij + q

∑
I

∑
j 6=I

Q
(I)
j k−I
4

µ
(5)
Ij (A.5)

+ k−1 k
−
2 k
−
3

(
h2µ(6) + q2µ(7) + qhµ(8)

)
+ µ(9) , (A.6)
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where, following [63], the µ(j) are defined as follows

µ
(1)
I =

1

2rI
, µ

(3)
Ij =

1

2V rIrj
, µ

(5)
Ij =

r2 + aIaj − 2aIrcosθ

2V aI(aj − aI)rrIrj
, (A.7)

µ(6) =
1

V r1r2r3

, µ(7) =
rcosθ

V a1a2a3r1r2r3

, (A.8)

µ(8) =
r2(a1 + a2 + a3) + a1a2a3

2V ra1a2a3r1r2r3

, µ(9) =
M−
V

. (A.9)

M− = m−∞ +
m−0
r

+
3∑
j=1

m−j
rj

+
m−div
r2

cos θ . (A.10)

Again we have added an unphysical harmonic term but this time it diverges at the origin.

Once again regularity at the supertubes requires the following for both classes of solution:

m±1 =
Q

(2)
1 Q

(3)
1

2 k±1
, m±2 =

Q
(1)
2 Q

(3)
2

2 k±2
, m±3 =

Q
(1)
3 Q

(2)
3

2 k±3
. (A.11)

B.1.2 The one-form, ω

BPS

For ai > aj we define:

ωij ≡ − (r2 sin2 θ + (r cos θ − ai + ri)(r cos θ − aj − rj))
(ai − aj) ri rj

, (A.12)
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To define the BPS angular momentum vector, ω, it is also convenient to introduce:

∆1 ≡ 2
(
h+

q

a1

)
m+

1 −
Γ+

12

(a2 − a1)
− Γ+

13

(a3 − a1)
− k+

1 , (A.13)

∆2 ≡ 2
(
h+

q

a2

)
m+

2 +
Γ+

12

(a2 − a1)
− Γ+

23

(a3 − a2)
− k+

2 , (A.14)

∆3 ≡ 2
(
h+

q

a3

)
m+

3 +
Γ+

13

(a3 − a1)
+

Γ+
23

(a3 − a2)
− k+

3 . (A.15)

Note that the bubble equations (5.56)–(5.58) and (A.11) imply that ∆j = 0, j = 1, 2, 3. We

will not impose these conditions here and we will not remove Dirac strings more generally.

We then find that for the BPS solution, ω = ωφdφ, with

ωφ =
1

2

(
Γ+

21 ω21 + Γ+
31 ω31 + Γ+

32 ω32

)
+ q

3∑
i=1

m+
i

ai ri
(r sin2 θ + (r cos θ − ai + ri)(cos θ − 1)

+
1

2

3∑
i=1

∆i
r cos θ − ai

ri
+ κ+ − 1

2

( Γ+
12

(a1 − a2)
+

Γ+
13

(a1 − a3)
+

Γ+
23

(a2 − a3)

)
+
(
q

3∑
i=1

m+
i

ai
− hm+

0

)
(1− cos θ)− q m+

∞ cos θ + m+
div(

1
2
hr2 + qr) sin2 θ , (A.16)

where κ+ is a constant of integration. After removing Dirac-strings and setting m+
div = 0 we

get

ω =
3∑
i=1

q mi ωi0 +
1

8

∑
i

∑
j,(aj<ai)

Γji ωij (A.17)

The label i = 0 refers to the Taub-NUT center and, in particular, a0 = 0 , r0 = r.
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Almost-BPS

When using the conventions with ε = +1 we have

ωφ = − 1

2

3∑
i=1

k−i
ai ri

(
h ai (r cos θ − ai) + q (r − ai cos θ)

)
− 1

2

3∑
i,j=1
j 6=i

k−i Q
(i)
j

ai(ai − aj) ri rj
[
h ai

(
r2 − (ai + aj)r cos θ + aiaj

)
+ q

(
(r2 + aiaj cos θ)− r(ai cos 2θ + aj)

)]
− k−1 k

−
2 k
−
3

a1a2a3 r1r2r3

[
q2 r2 sin2 θ + 1

2
h q
(
r3 − (a1 + a2 + a3)r2 cos θ

+ (a1a2 + a1a3 + a2a3)r − a1a2a3 cos θ
)]

− κ− − m−div
r

sin2 θ + m−0 cos θ +
3∑
i=1

m−i
ri

(r cos θ − ai) , (A.18)

where κ− is another constant of integration.

When ε = −1 we get

ω =
∑
I

kI ω
(1)
I + h

∑
I

∑
j 6=I

Q
(I)
j kI

4
ω

(3)
Ij + q

∑
I

∑
j 6=I

Q
(I)
j kI

4
ω

(5)
Ij (A.19)

+ k1k2k3

(
h2ω(6) + q2ω(7) + qhω(8)

)
+ ω(9) , (A.20)
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where

ω
(1)
I =

h

2

r cos θ − aI
rI

dφ+
q

2

r − aI cos θ

aIrI
dφ , (A.21)

ω
(3)
Ij =

r2 + aIaj − (aI + aj)r cos θ

2(aI − aj)rIrj
dφ , (A.22)

ω
(5)
Ij =

r (aj + aI cos 2θ)− (r2 + aIaj) cos θ

2aI(aj − aI)rIrj
dφ , (A.23)

ω(6) = 0 , ω(7) =
r2 sin2 θ

a1a2a3r1r2r3

dφ, (A.24)

ω(8) =
r3 + r(a1a2 + a2a3 + a1a3)− (r2(a1 + a2 + a3) + a1a2a3) cos θ

2a1a2a3r1r2r3

dφ, (A.25)

ω(9) =

(
κ−m0 cos θ −

∑
i

mi
r cos θ − ai

ri

)
dφ , (A.26)

where we also set m−div = 0. The absence of Dirac strings and CTC’s requires that the bubble

equations (5.59)–(5.61) are satisfied and that:

κ = −q
∑
i

ki
2ai
− h q

k1k2k3

2a1a2a3

− h
∑
I

∑
j 6=i

Q
(I)
j kI

8(aI − aj)
, (A.27)

m0 = −q
∑
i

ki
2ai
− hq

k1k2k3

2a1a2a3

+ q
∑
I

∑
j 6=i

Q
(I)
j kI

8aI(aI − aj)
. (A.28)

B.1.3 The Minkowski-space limit

For h = 0 the BPS and non-BPS solutions must be the same and in Section 5.3.5 it was

argued that this should be achieved by the coordinate change (5.65) 1. For the angular

1Here for almost-BPS we are using the conventions with self-dual field strengths and anti-self-dual base
metric
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momentum vector this means

µ−(dψ− − q cos θ dφ−) + ωφ−dφ− = µ+(dψ+ + q cos θ dφ+) + ωφ+dφ+

= µ̃+(−q dφ− + cos θ dψ−) +
1

q
ω̃φ+dψ−/, , (A.29)

where the quantities with the tildes have the replacement k+
I → k̂I . This implies that we

must have (for h = 0):

µ− = µ̃+ cos θ +
1

q
ω̃φ+ , ωφ− = ω̃φ+ cos θ − q µ̃+ sin2 θ . (A.30)

We have verified this by explicit computation and it works provided that one also makes the

substitutions:

m+
i →

ai
q
m−i , m+

0 →
1

q
m−div , m+

∞ →
1

q
κ− , m+

div →
1

q
m−∞ , κ+ → m−0 .

(A.31)

Thus the transformation (5.65) does indeed map the complete BPS description to the almost-

BPS description. Note also that we have included the terms m±div so as to complete this

dictionary.

B.2 The asymptotic structure and charges

The general scaling geometries discussed in Sections 5.3 and 5.4 look, at larger scales, like

a black-ring wrapping the Taub-NUT fiber and, as a result, look like a black hole in the

four-dimensional, non-compact space time. Here we complete this description by examining
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the asymptotic structure. For the general configuration of supertubes described in Section

5.3 we give the remainder of the solution and compare it with black-ring solution and we

calculate the asymptotic charges. It should be remembered that the complete solution isn’t

simply an isolated black hole but is a two centered configuration with a D6-brane at the

center of the space and so there will be contributions to the asymptotic charges from both

centers and the interactions between them. In this calculations we use the convention with

ε = −1.

B.2.1 The BPS configuration

In the scaling limit were the distances between the supertubes are very small compared to

their distance from the center of the space we expect the configuration to look like a black

ring of radius R. It follows immediately from (5.27)–(5.29) that the asymptotic electric

charges are:

Q1 = Q
(1)
2 +Q

(1)
3 , Q2 = Q

(2)
1 +Q

(2)
3 , Q3 = Q

(3)
1 +Q

(3)
2 . (A.32)

The functions describing the solution of a black ring in Taub-NUT (see [105] for details)

precisely match the ones for a system of three clustered supertubes. In particular, it is

useful to introduce the effective angular momentum parameter:

mR ≡ m1 +m2 +m3 , (A.33)
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and then note that (5.52) and (5.67) yield the radius relation of the effective black ring:

mRVR =
1

2
(k1 + k2 + k3) . (A.34)

In the scaling limit, to first order, we find ω10 ≈ ω20 ≈ ω30 ≈ ωR0 and ω21 ≈ ω32 ≈ ω31.

The latter, when combined with (5.71), means that the “supertube interaction term” in

(A.17) vanishes to leading order. This is the familiar merger condition on local angular

momentum contributions [71]. The remaining term in (A.17) is the sum of the angular

momentum contributions for each supertube about the center of space thus give the correct

effective ω for the black ring.

We can compactify our solution on the Taub-NUT circle to obtain a microstate geometry

for a four-dimensional black-hole. By standard Kaluza-Klein reduction arguments and in

the same spirit as in [65] we can write the metric as:

ds2 =
I4

(Z1Z2Z3)2/3V 2

(
dψ + A− µV 2

I4

(dt+ ω)
)2

+
V (Z1Z2Z3)1/3

√
I4

ds2
4 , (A.35)

where

ds2
4 = −I−1/2

4 (dt+ ω)2 + I
1/2
4 (dr2 + r2dΩ2

2) , (A.36)

is the 4-dimensional Lorentzian metric and one defines:

I4 ≡ Z1Z2Z3V − µ2V 2 . (A.37)

To identify the asymptotic charges and ADM mass it is most convenient to pass to a rest-
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frame at infinity by re-defining

ψ̃ = ψ − µ0h
2

I0

t , (A.38)

where I0 = h − h2µ2
0 and µ0 are the constant values of I4 and µ at infinity. For the BPS

solution one has µ0 = m∞ = −mR
R

= JR
16R

.

The asympotic charges can be read from the expansion of the metric and the warp factors

ZI . After simplifying the resulting expressions and by making use of the radius relation. Thus

for the electric charges we find:

Q̄I = QI , (A.39)

and the ADM mass is given by:

M =
1

8I
3/2
0

(
4 q + 16m2

∞h
2R + h (Q1 +Q2 +Q3)

)
. (A.40)

The Kaluza-Klein charge coming from the momentum around the ψ-fiber is:

P = − h2m∞
4I2

0

(
4hm2

∞RVR + 4h (R + 1) + 4h2m∞R + h
(
Q1 +Q2 +Q3

))
, (A.41)

and the angular momentum around the φ direction is:

J3 =
qhm∞R

I
3/2
0

(hm2
∞ − 1) = − m∞qR√

I0

. (A.42)
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The black ring horizon area is given by:

AH = 2π2q
√
J4 , (A.43)

where J4 is the E7(7) quartic invariant:

J4 = −
3∑
I=1

Q2
Ik

2
I + 2

∑
I<J

kIkJQIQJ + 8k1k2k3JR . (A.44)

B.2.2 The non-BPS configuration

In the scaling limit, where the distances between the supertubes are very small compared

to their distance from the center of the space, the solution should effectively behave as a

black ring of radius R. Once more it is easy to see that the functions describing the solution

match those of the black ring if one identifies:

Q(I) =
∑
i 6=I

Q
(I)
i , mR = m1 +m2 +m3 . (A.45)

Denoting the terms corresponding to the supertube and the black ring solution with the

subscripts “st” and “br”, we then have:

κbr = κ̃st = κst + h
∑
I

∑
j 6=i

Q
(I)
j kI

8(aI − aj)
, , (A.46)

m0,br = m̃0,st = m0,st − q
∑
I

∑
j 6=i

Q
(I)
j kI

8aI(aI − aj)
, (A.47)
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µ
(1)
br = µ

(1)
I,st , ω

(1)
br = ω

(1)
I,st , (A.48)

µ
(2)
br = µ

(3)
Ij,st , ω

(2)
br = ω̃

(3)
Ij,st = ω

(3)
Ij,st −

1

2(aI − aj)
dφ , (A.49)

µ
(3)
br = µ

(2)
st , ω

(3)
br = ω

(2)
st , µ

(4)
br = µ̃

(5)
Ij,st = µ

(5)
Ij,st −

1

2(aj − aI)aIr
, (A.50)

ω
(4)
br = ω̃

(5)
Ij,st = ω

(5)
Ij,st −

cos θ

2(aj − aI)aI
, µ

(5)
br = µ

(4)
st , ω

(5)
br = ω

(4)
st , (A.51)

µ
(i)
br = µ

(i)
st , ω

(i)
br = ω

(i)
st , i = 6, 7, 8, 9 . (A.52)

The modified terms κ̃st, m̃0,st, ω̃
(3)
Ij,st, µ̃

(5)
Ij,st, ω̃

(5)
Ij,st still describe exactly the same three-

supertube system because the modifications involve the re-shuffling of harmonic functions

into the µ(i)V with compensating shifts in M (along with corresponding changes in ω’s).

The non-BPS radius relation for the black ring is:

m̂RVR = 16
∑
I

k̂I + 16hq
k̂1k̂2k̂3

VRR3
, (A.53)

which is to be identified with (5.68), where

m̂i = mi

(
h+

q

|ai|

)−1

, (A.54)

is the effective angular-momentum parameter.

The electric charges of the non-BPS configuration are

Q̄I = QI +
4q

R2

CIJK

2
kJkK , (A.55)
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while the ADM mass is given by

M =
1

I
3/2
0

(
q

2
+
h

8

(
Q̄1 + Q̄2 + Q̄3

)
−mh (k1 + k2 + k3)

)
. (A.56)

The Kaluza Klein charge is now

P =
1

I2
0

(
h2(h+m2) (k1 + k2 + k3)− 1

4
mh2

(
Q̄1 + Q̄2 + Q̄3

)
−m3q

)
, (A.57)

and the angular momentum is:

J3 =
q

2
√
I0

(
(k1 + k2 + k3) +

1

R
~k · ~Q+

1

R2

(
h+

2q

R

)
k1k2k3

)
. (A.58)

For the horizon area we find:

ÂH = 2π2q

√
Ĵ4 , (A.59)

where

Ĵ4 = −
3∑
I=1

Q2
I k̂

2
I + 2

∑
I<J

k̂I k̂JQIQJ − 8k̂1k̂2k̂316m̂R , (A.60)

which, upon setting 16m̂R = −JR, matches the horizon area of a BPS black ring with dipole

and angular momentum parameters equal to the effective ones.
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B.3 Details of the quartic

The bubble equations can be written in a more symbolic form as:

g(β − α) + b(γ − β) + d1βγ + f1 = 0 , (A.61)

c(α− γ) + g(α− β) + d2α
2 + f2 = 0 , (A.62)

b(β − γ) + c(γ − α) + d3βγ + f3 = 0 , (A.63)

with the following definitions:

g =
1

|a1 − a2|
, b =

1

|a1 − a3|
, c =

1

|a2 − a3|
, di =

Vai
4d2

, (A.64)

Vai =

(
h+

q

ai

)
, f1 = f3 = −4− Y , f2 = −4 + Y . (A.65)

Summing the bubble equations we get the relatively simple condition:

βγ(d1 + d3) + d2α
2 + f = 0 , (A.66)

where f = f1 + f2 + f3. For later convenience we define the following:

A = c

(
1− b

g

)
− b , B =

cd1

g
− d3 , Γ =

cf1

g
− f3 , (A.67)

Ψ = 1− b

g
, Φ =

2 b

g
− 2 b2

g2
+

2 d1f1

g2
+
d1

d2

+
d3

d2

. (A.68)
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The foregoing system of equations can be explicitly solved by reducing it to a quartic poly-

nomial for the charge β:

s4β
4 + s3β

3 + s2β
2 + s1β + s0 = 0 , (A.69)

from which α and γ can be determined using:

γ =
Γ + Aβ

A−Bβ
, α = β +

b

g
(γ − β) +

d1

g
βγ +

f1

g
= 0 . (A.70)

The coefficients of the quartic (A.69) are given by:

s0 =

(
Γ
b

g
+ A

f1

g

)2

+ A2 f

d2

, s4 =

(
BΨ− Ad1

g

)2

, (A.71)

s1 = 2AΓ
b2

g2
+ ΓAΦ + 2Γ2 bd1

g2
+ 2A2f1

g
Ψ + 2

(
A2 − ΓB

) f1b

g2
− 2AB

(
f 2

1

g2
+
f

d2

)
,(A.72)

s2 = A2Ψ2 + A2 b
2

g2
+ Γ2d

2
1

g2
+
(
A2 − ΓB

)
Φ + 2ΓA

d1

g
Ψ + 4ΓA

bd1

g2
− 4AB

f1

g
Ψ

−2AB
f1b

g2
+B2

(
f 2

1

g2
+
f

d2

)
, (A.73)

s3 = −2ABΨ2 + 2ΓA
d2

1

g2
− ABΦ + 2

d1

g

(
A2 −BΓ

)
Ψ + 2A2d1b

g2
+ 2B2f1

g
Ψ . (A.74)

For q = 0 one has s3 = s1 = 0 and the quartic, (A.69), collapses to a quadratic in β2.

235


	Acknowledgments
	Abstract
	Introduction
	Black holes in general relativity and string theory
	Black Holes
	Schwarzschild black hole
	Reissner-Nordström black hole
	Extremal Reissner-Nordström
	Black hole thermodynamics

	Black holes in string theory
	Matter content of string & M-theory
	A black hole in string theory and its entropy


	BPS microstates in five dimensions
	The view from eleven dimensions
	Gibbons-Hawking metrics
	Solutions on a Gibbons-Hawking base
	Regularity of the solution
	Smooth solutions

	Supertubes

	BPS geometries with four charges
	Motivation
	The hairier BPS solution
	General form of the solution
	Regularity

	Bubbling
	Flat asymptotics
	Regularity at the critical surfaces
	Regularity at the centers
	Solving for 
	Asymptotic charges

	A three charge supertube in IIB
	Concluding remarks

	Almost-BPS vs. BPS
	Motivation
	The supergravity equations 
	Some three-charge multi-supertube solutions in five dimensions
	Supertubes as microstate geometries
	BPS and almost-BPS solutions
	Constituent charges
	Supertube regularity
	The Minkowski-space limit

	Scaling solutions
	Clustered supertubes
	A simplified system
	The solution in flat, cylindrical geometry

	Linearizing the bubble equations
	The solution spaces in terms of charges
	The quartic constraint
	Some numerical examples

	Concluding remarks

	Non-renormalization for almost-BPS
	Motivation
	Brane probes in almost-BPS solutions
	Brane probes
	Probing a supergravity solution
	Interpretation of the charge shift
	Generalization to many supertubes

	Extracting the complete supergravity data from supertubes
	Reconstructing the bubble equations from probes
	Assembling colinear supertubes in general
	Topology, charge shifts and back-reacting probes
	Quantized charges, supergravity parameters and probes

	Concluding remarks

	Multi-Superthreads and Supersheets
	Motivation
	Solving the BPS equations
	The BPS equations
	The new solutions
	Regularity and the near-thread limit
	Asymptotic charges

	Single supersheets
	General supersheets
	The five-dimensional generalized supertube as a supersheet
	A corrugated supersheet

	Multi-Supersheets
	General multi-supersheets
	Corrugated multi-supersheets
	Regularity and asymptotic charges
	Touching, intersecting & regularity
	Numerics on global regularity conditions

	Suggestions on the addition of KKM
	Concluding remarks

	Conclusions
	Bibliography
	Appendices
	Units and Conventions
	Details of the almost-BPS system
	The angular momentum vector
	The function, 
	The one-form, 
	The Minkowski-space limit

	The asymptotic structure and charges
	The BPS configuration
	The non-BPS configuration

	Details of the quartic


