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Resumo

O principal propósito da experiência COMPASS no CERN é a determinação da contribuição
dos gluões para o spin do nucleão. Para atingir este objectivo COMPASS utiliza um feixe de
muões naturalmente polarisados, com uma energia de 160 GeV, e um alvo fixo também ele
polarisado. Dois tipos de materiais foram usados como alvo: 6LiD (deuterões polarisados) em
2002-2006 e NH3 (protões polarisados) em 2007. Os gluões no nucleão podem ser directamente
acedidos através do processo de fusão do fotão com o gluão (PGF). Entre os canais estudados
por COMPASS, a produção de mesões com charme aberto é aquele que selecciona uma interação
PGF da forma mais limpa e eficiente. Esta tese apresenta uma estimativa da polarização dos
gluões, ∆G/G, que é baseada numa medida da assimetria de spin resultante da produção de
mesões D0. Estes mesões são reconstrúıdos através da massa invariante dos seus produtos
de decáımento. A pureza dos espectros de massa D0 foi significativamente melhorada através
da utilização de um novo método baseado em Redes Neuronais. O resultado de ∆G/G é
também apresentado usando correcções de ordem superior (NLO-QCD) ao processo PGF. Estas
correcções são relevantes e foram pela primeira vez aplicadas a uma medida experimental da
polarização dos gluões.

Palavras-chave: Spin, Deuterão, Protão, PGF, Charme Aberto, Assimetria, Es-
pectros de Massa D0, Rede Neuronal, Polarização dos Gluões, NLO-QCD.
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Abstract

The main purpose of the COMPASS experiment at CERN is the determination of the gluon
contribution to the nucleon spin. To achieve this goal, COMPASS uses a naturally polarised
muon beam with an energy of 160 GeV and a fixed polarised target. Two types of materials
were used as a target: 6LiD (polarised deuterons) in 2002-2006 and NH3 (polarised protons)
in 2007. The gluons in the nucleon can be accessed directly via the Photon Gluon Fusion
(PGF) process. Among the channels studied by COMPASS, the production of open-charm
mesons is the one that tags a PGF interaction in the most clean and efficient way. This thesis
presents an estimation of the gluon polarisation, ∆G/G, which is based on a measurement of the
spin asymmetry resulting from the production of D0 mesons. These mesons are reconstructed
through the invariant mass of their decay products. The purity of the D0 mass spectra was
significantly improved through the use of a new method based on Neural Networks. The ∆G/G
result is also presented using the next-to-leading order (NLO-QCD) corrections to the PGF
process. Such corrections are relevant and were for the first time applied to an experimental
measurement of the gluon polarisation.

Keywords: Spin, Deuteron, Proton, PGF, Open-Charm, Asymmetry, D0 Mass Spec-
tra, Neural Network, Gluon Polarisation, NLO-QCD.
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Chapter 1

Introduction

All matter is composed of protons, neutrons and electrons. Our present knowledge indicates
a point-like structure for the latter, whereas the nucleons (protons and neutrons) do have an
internal structure. The first evidence of the existence of this substructure was obtained from
experiments on inelastic electron-proton scattering 1. They revealed a complete new world
inside the proton: it is made of charged point-like particles which were initially called partons.
Later, the accumulated proofs led to the identification of these partons with the u (up) and
d (down) quarks postulated by Gell-Mann. The quark concept was a great success in the
explanation of all the properties found in hadron spectroscopy.

It is known since the twenties that the nucleons carry half integer spin, which implies that
they belong to the family of fermions. This means that, according to the Pauli exclusion
principle, two identical nucleons cannot occupy the same quantum state. Up to now, it is
not known how the spin of 1/2 comes about in terms of the nucleon constituents. However,
the knowledge that protons and neutrons are fermions is by itself of a great help for the
understanding of their complex internal structure: it’s like a faint light that guides us through
the shadows of the unknown. Until the eighties it was believed that the nucleon spin was
distributed among its three valence quarks. In fact, assuming an SU(2) flavour symmetry and
an SU(2) spin symmetry, we obtain the following expression for the static wave function of the
proton (the spin projection is considered to be parallel to the quantisation axis):

|p ↑〉 =
1√
18

[ 2 |u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉 − |u ↓ u ↑ d ↑〉 + (u ↔ d) ] (1.1)

Eq. 1.1 allows us to calculate the contribution of the u and d quarks to the proton spin:

∆u = 〈p ↑ |Nu ↑ − Nu ↓ |p ↑〉 =
3

18
(10 − 2) =

4

3
(1.2)

∆d = 〈p ↑ |Nd ↑ − Nd ↓ |p ↑〉 =
3

18
(2 − 4) = −1

3
(1.3)

where Nq ↑ (Nq ↓) represents the number of quarks of flavour q with a spin projection parallel
(anti-parallel) to the proton spin. Therefore, we have:

1In 1968 at the Stanford Linear Accelerator Center (SLAC).
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∆Σ = ∆u + ∆d =

(
4

3
− 1

3

)
= 1 (1.4)

Indeed, from eq. 1.4 we conclude that all the nucleon spin is carried by the valence quarks.
However, in 1988 the European Muon Collaboration (EMC) at CERN astonished the scientific
community by publishing a surprising result for the total contribution of quarks to the nucleon
spin (∆Σ). The experimental result obtained by EMC was very small (∆Σ = 0.12 ± 0.17)
and even compatible with zero [1]. This fact caused the so-called spin crisis of the nucleon
because it could not be reconciled with the theoretical predictions: even if we apply relativistic
corrections [2], the expectation value for ∆Σ is about 0.60 [4]. Since then, polarised lepton-
nucleon scattering experiments were performed at CERN by SMC [3] and COMPASS [5], at
SLAC [6], at DESY [7] and at JLAB [8] as well as in polarised proton-proton collisions at
RICH [9, 10]. The goal is to extract the parton helicity distributions in the nucleon, using a
perturbative QCD analysis 2. The contribution of quarks to the nucleon spin is now confirmed
to be 30% (∆Σ = 0.30± 0.01± 0.01 [5]). The fact that this number is still quite below to the
expected one leads us to the following question: where is the remaining part of the nucleon
spin? In QCD the nucleon spin projection (in units of ~) may be decomposed into the quark
and gluon helicities, ∆Σ and ∆G1, and also into their orbital angular momenta Lq and Lg:

1

2
= Jq + Jg =

(
1

2
∆Σ + Lq

)
+ (∆G1 + Lg) (1.5)

Therefore, the best approach to solve this spin puzzle (eq. 1.5) is to measure the contri-
bution of ∆G1. This guess is strongly supported by the discovery that gluons carry half of
the proton momentum. By analogy, we expect that the missing spin in the nucleon is car-
ried by gluons (note that ∆G1 =

∫ 1

0
∆G(xg)dxg). The average gluon polarisation in a limited

range of xg, 〈∆G/G〉xg , has been determined in a model independent way, from the Photon
Gluon Fusion (PGF) process, by HERMES [11], SMC [12] and COMPASS [13, 14]. In this
work it is presented the COMPASS result which was obtained from an open-charm analysis.
Basically, the PGF process is tagged by the detection of the decay products of charmed mesons.

This thesis is organised as follows. The tool of polarised Deep Inelastic Scattering (DIS) is
introduced in Chapter 2, together with the theoretical framework needed for the extraction
of information on the spin structure of the nucleon. The relevant aspects of the COMPASS
experiment for this analysis are described in Chapters 3 and 4. In Chapter 5, the selection and
the reconstruction of open-charm mesons is presented. Thereafter, the method used to extract
〈∆G/G〉xg from the data is extensively discussed in Chapters 6 and 7. Finally, the results are
presented in Chapter 8 and the systematic errors are discussed throughout Chapter 9. Chapter
10 shows the interpretation of ∆G1 in terms of the gluon polarisation.

2In 1979 the gluon was discovered in the Positron-Electron Tandem Ring Accelerator (PETRA) at HERA.
These bosons (spin-1 particles) are the mediators of strong interactions between quarks. The theory of QCD
accounts for their presence in the calculations.
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Chapter 2

Theoretical Motivation

The goal of this work is to extract an experimental value for the gluon polarisation in the
nucleon. Therefore, for a proper understanding of the results, a detailed introduction to the spin
dependent lepton-nucleon inelastic scattering is hereafter presented. A theoretical discussion
of the polarised and unpolarised structure functions of the nucleon is also included. For more
details on the polarised DIS process, see the text book of Ref. [15].

2.1 DIS - Deep Inelastic Scattering

2.1.1 Event kinematics

The main process to study the internal structure of the nucleon is illustrated in Fig. 2.1. The
kinematic variables corresponding to such an interaction are:

Figure 2.1: Diagram of an inclusive deep inelastic lepton-nucleon scattering. The case of COM-
PASS is represented: a muon beam collides in a fixed target (~p = 0), using the approximation of
a single photon exchange. The hadronic final state is represented by X and the electromagnetic
boson by γ∗ (virtual-photon).
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Variables Meaning

M Mass of the target nucleon

~p = (0, 0, 0) Momentum vector of the target (COMPASS case)

p = (M, ~p) Four-momentum of the target nucleon

E Energy of the incident muon

~k = (0, 0, 160 GeV/c) Momentum vector of the incident muon (COMPASS case)

k = (E, ~k) ≈ E(1, 0, 0, 1) Four-momentum of the incident muon

E ′ Energy of the scattered muon

~k′ 1= (k′x, k′y, k′z) Momentum vector of the scattered muon

k′ = (E ′, ~k′) Four-momentum of the scattered muon

θ Polar angle defining the direction of the scattered muon

φ Angle between the X axis and the XY projection of ~k′

Ω Solid angle into which the outgoing muon is scattered

q = k − k′ Four-momentum transfer, i.e. the four-momentum of the γ∗

ν = E − E ′ = (p · q)/M Energy transfer from the incident muon to the γ∗

y = ν/E = (p · q)/(p · k) The fractional energy loss of the incident muon

Q2 = −q2 2≈ 2EE ′(1− cos θ) Measure of the γ∗ virtuality

xBj = Q2/2Mν Measure of the elasticity of the process

Table 2.1: Definition of the most important DIS kinematic variables and their meaning. The
muon beam is defined along the Z axis and the laboratory system is the target rest frame.

The last two variables shown in Table 2.1 are of crucial importance for the understanding of the
internal properties of the nucleon. In particular, we will see in section 2.1.2 that the structure
functions which describe the quarks and the gluons depend only on xBj and Q2 (at LO-QCD
they are practically independent of Q2). Therefore it is convenient to present here a physical
interpretation for these two quantities. Let’s start from the definition of the invariant mass
corresponding to the hadronic final state, X:

M2
X = (p + q)2 = M2 + 2Mν −Q2 (2.1)

Since the baryon number is conserved in a DIS collision, the invariant mass of X cannot be
smaller than the nucleon one. This implies that

M2 + 2Mν −Q2 ≥ M2 ⇔ 2Mν ≥ Q2 ⇒ xBj ≤ 1 (2.2)

In eq. 2.2 one sees that xBj = 1 if and only if Q2 is equal to the factor 2Mν. Clearly, this limit

1~k′ = (E′sin θcos φ, E′sin θsinφ, E′cos θ)
2Using k2 = m2

µ , k′2 = m2
µ′ and neglecting the muon mass.

4



corresponds to an elastic collision where the nucleon structure remains unchanged (MX = M).
Since Q2 and ν are both positive, the allowed kinematic range for xBj is:

0 ≤ xBj ≤ 1 (2.3)

The lepton-nucleon scattering is increasingly inelastic as it approaches the lower limit of xBj.
By definition, the mass of the hadronic final state in such inelastic processes, MX , should be
larger than 4 GeV/c2. This region of masses avoids the nucleon excited states and, conse-
quently, implies the fragmentation of the target.

Concerning the Q2 variable, we can interpret it as a measure of virtuality in DIS processes. The
electromagnetic boson that carries the four-momentum from the lepton to the nucleon has a
non-zero mass 3, q2 = M2

γ∗ < 0, and therefore it cannot be considered a real photon. However,
if Q2 is close to zero, the virtuality associated to the inelastic scattering is small (quasi-real
photons). This concept of the virtual-photon mass gives us a clearer physical meaning for the
Q2 variable: it can be reinterpreted as the resolving power of the virtual-photon, because its
Compton wavelength is completely defined by Q2 (λγ∗ = ~/Mγ∗ = ~/

√
Q2). As a result, using

the uncertainty principle, we can estimate the needed Q2 to resolve the nucleon:

∆x∆E ∼ ~ ⇒ Q2 ∼
[
0.197 (GeV · fm)

∆x

]2

(2.4)

Inserting in eq. 2.4 the size of the proton, 1.754 fm [16], results in a Q2 of 13 (KeV/c)2 just to
’see’ the proton. In order to be able to penetrate its structure and resolve for example a valence
quark, a much higher energy is required. It is conventional to define a lower limit of 1 (GeV/c)2

for the Q2 of a DIS process. In this case the inelastic muon scattering results from a ’deep’
interaction between the virtual-photon and one quark inside the nucleon. However, inelastic
collisions with a stationary nucleon can also exist for Q2 < 1 (GeV/c)2. For these processes the
interaction is simply called inelastic scattering. In the phase space of DIS, which is defined by
Q2 > 1 (GeV/c)2, we can interpret xBj as the fraction of the nucleon momentum that a quark
must have to absorb the virtual-photon. This is the basic assumption of the parton model which
will be discussed in section 2.2. Basically, this model provides us with some structure functions
that describe the probability of finding a given quark flavour (polarised or unpolarised) carrying
a momentum fraction xBj. Since these functions are Lorentz invariant, we can formulate the
parton model in a convenient frame of infinite momentum. The latter implies that the quarks
inside the nucleon don’t have time to interact (with each other) during the absorption of the
virtual-photon by one of them (due to the time dilatation). Consequently, we have

(xBjp + q)2 = x2
BjM

2 −Q2 + 2xBjp · q ≈ 0 (for a mass-less quark) (2.5)

The previous equation reproduces the definition of xBj, given in table 2.1, provided that both
Q2 and ν are large when compared with the term x2

BjM
2. In the case of small Q2, xBj can only

be interpreted as a scaling variable on which the structure functions depend. This dependence
is exclusive up to a leading order approximation.

3According to the uncertainty principle, this violation (an energy fluctuation converted into mass) is allowed
during a time interval which is a fraction of the Planck constant. Nonetheless, the total energy is conserved in
the process.
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2.1.2 Polarised and unpolarised cross-sections

In COMPASS the centre-of-mass energy has a value of 17 GeV, which means that the scatter-
ing process is mediated by only one virtual-photon 4. Consequently, the scattering amplitude
corresponding to the spin dependent version of the process illustrated in Fig. 2.1 is given by

iM = (−ie)2

(
−igµν

q2

)
︸ ︷︷ ︸
γ∗ propagator

〈k′|jµ
l (0)|k, sl〉〈X|jν

N(0)|p, sN〉 (2.6)

Where sl represents the polarisation of the incident lepton and sN the polarisation of the
stationary nucleon. The leptonic and hadronic currents are given by jµ

l and jν
N , respectively.

In order to obtain the total cross-section one needs to divide the description of the physical
process (given by |M |2) by the incident flux, which for a fixed target experiment has the value
of 2E × 2M [17]. In addition, an integration over all the available final states to the scattered
muon is required. The phase space is defined by d3k′/(2π)32E ′ and 4 delta functions are used
to impose the energy-momentum conservation. Finally, after summing over all the hadronic
final states, the differential cross-section is given by

dσ =
∑
X

∫
d3k′

(2π)3 2E ′
(2π)4 δ4 (k + p− k′ − pX)

|M |2

(2E) (2M)

=
∑
X

∫
d3k′

(2π)3 2E ′
(2π)4 δ4 (k + p− k′ − pX)

(2E) (2M)

e4

Q4

× 〈p, sN ′|jN,µ(0)|X〉〈X|jN,ν(0)|p, sN〉 〈k, sl|jµ
l (0)|k′〉〈k′|jν

l (0)|k, sl〉︸ ︷︷ ︸
lµν : leptonic tensor

(2.7)

The hadronic tensor is defined by the following expression [17],

Wµν (p, q, SNN ′) =
1

4π

∑
X

[
(2π)4 δ4 (p + q − pX) 〈p, sN ′|jN,µ(0)|X〉〈X|jN,ν(0)|p, sN〉

]
(2.8)

where the sum is performed over the allowed phase space for the final state X, which in turn
is restricted by the four-momentum conservation imposed by the delta function. Using the
definition of eq. 2.8 the differential cross-section can be written in a compact form:

dσ =
e4

Q4

∫
d3k′

(2π)3 2E ′
4πlµνWµν

(2E) (2M)
(2.9)

4There is not enough energy for the polarised muon to emit a Z0 with a mass of 91 GeV/c2. In addition,
since the COMPASS target is composed by deuteron/proton elements, the emission of a second photon by
the incident lepton is highly suppressed. The assumption of only one photon exchange is valid for the target
elements with an atomic number Z � 1/α, where α is the electromagnetic coupling constant.
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Explicit form of the leptonic tensor lµν

The leptonic tensor can be easily calculated because it consists on two point-like fermions. For
a polarised beam, we can sum over all the spin states that are available to the scattered muon:

lµν(k, k′, sl) =
∑
s′l

ū (k′) γνu (k, sl) ū (k, sl) γµu (k′) (2.10)

where u(k, sl) and ū(k′) represent the spinors describing the incident and scattered leptons,
respectively. Instead of calculating the sum above, it is much more convenient to transform eq.
2.10 into a trace of matrices γµ. To accomplish that, two identities are used. The first one is:

∑
s′l

u (k′) ū (k′) = /k′ + ml (using /k′ = γµk
µ) (2.11)

The second identity uses the spin-projector operator to account for the polarisation of the
incoming lepton. Thus, the product of spinors in the initial state is given by

ū (k, sl) u (k, sl) = (/k + ml)×
1 + γ5

(
/sl

ml

)
2︸ ︷︷ ︸

spin-projector

(2.12)

The lepton mass in the spin-projector operator is a result from the chosen normalisation for
sl. We can define the spin vector as ~sl = ml~z (see Ref. [17]), for a spin-1/2 particle at rest
with spin along the Z axis. This normalisation is useful to avoid unnecessary leptonic mass
terms in the spin dependent cross-section (they are negligible in the relativistic domain). As
a consequence, the 4-vector sl = (s0

l , ~sl) can be written as sl = hlk, where hl = ± represents
the relativistic lepton helicity. Using those two identities, the calculation of lµν becomes quite
simple:

lµν(k, k′, sl) = Tr

(/k′ + ml

)
γν (/k + ml)

1 + γ5

(
/sl

ml

)
2

γµ


= 2

[
kµk′ν + kνk′µ − gµν

(
k · k′ − 5m2

l

)]︸ ︷︷ ︸
symmetric part: lµν(s)

− 2
[
iεµναβ (k − k′)α slβ

]︸ ︷︷ ︸
anti-symmetric part: lµν(a)

(2.13)

The important detail to retain from eq. 2.13 is that the leptonic tensor can be conveniently
separated into symmetric and anti-symmetric factors [18]. The anti-symmetric part results
from the presence of the Levi-Civita tensor, εµναβ, and from its definition we can see that it
absorbs completely the dependence of lµν on the lepton spin. Later on, we will verify that this
separation is extremely useful for the study of the nucleon spin structure.

Explicit form of the hadronic tensor W µν

5This term can be neglected in the relativistic domain.
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Unlike the leptonic tensor which is a known quantity, the hadronic tensor cannot be calculated
from QCD because of the existence of non-perturbative effects in strong interactions. Therefore,
W µν can only be decomposed into some unknown structure functions. The latter represent our
ignorance about the internal structure of the nucleon and have to be measured in experiments.
The most general hadronic tensor for a polarised DIS experiment (using a spin-1/2 target)
can be written in terms of p, q and sN , together with the invariant tensors gµν and εµναβ.
To accomplish this, only three requirements are needed: W µν must be invariant under parity
and time reversal (properties of the strong interactions) and, most important, the current
conservation in a real nucleon, ∂µj

µ(x) = 0, implies that

qµW
µν (p, q, sN) = qνW

µν (p, q, sN) = 0 (2.14)

Using the above criteria, the final expression for Wµν is (see Ref. [17]):

Wµν (p, q, sN) =

symmetric part: W
(s)
µν︷ ︸︸ ︷(

−gµν +
qµqν

q2

)
F1

(
xBj, Q

2
)

+

(
pµ −

p · qqµ

q2

)(
pν −

p · qqν

q2

)
F2 (xBj, Q

2)

p · q

(2.15)

+
(
εµναβqαsβ

N

) ig1 (xBj, Q
2)

p · q
+
(
εµναβqα

[
p · qsβ

N − sN · qpβ
]) ig2 (xBj, Q

2)

(p · q)2︸ ︷︷ ︸
anti-symmetric part: W

(a)
µν

The total cross-section

Using the above definitions of lµν and Wµν , we can conveniently separate the spin dependent
and the spin independent parts of the cross-section:

d2σ

dE ′dΩ
=

e4

16π2Q4

(
E ′

ME

)
lµνWµν

=
α2

Q4

(
E ′

ME

)[
lµν(s)W (s)

µν − lµν(a)W (a)
µν

]
(2.16)

Experimentally this differential cross-section has three measurable contributions (see Ref. [19]),

d2σ

dE ′dΩ
=

(
d2σunpol

dE ′dΩ

)
− hl × cos δ

(
d2∆σ‖
dE ′dΩ

)
− hl × sin δ

(
d2∆σ⊥
dE ′dΩ

)
(2.17)

where δ is the polar angle of the nucleon spin vector with respect to the incident lepton direction
(cf. Fig. 2.2). The first term results from an unpolarised DIS event, while the latter two
correspond to the interesting configurations where the lepton spin is parallel (δ = 0, π) or
perpendicular (δ = π/2, 3π/2) to the nucleon spin. The last two terms are written as a
function of the following two quantities:
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∆σ‖ = σ
←−⇒ − σ

←−⇐ and ∆σ⊥ = σ
←−
⇓ − σ

←−
⇑ (2.18)

with the symbols (→, ⇒) representing the orientation of the muon and nucleon spins, respec-
tively. In the case of an unpolarised collision, the anti-symmetric part of eq. 2.16 is identical
to zero. Therefore, after the contraction of the symmetric tensors (given by eq. 2.13 and eq.
2.15), the explicit expression for the differential cross section is

d2σunpol

dE ′dΩ
=

4α2E ′2

Q4

(
2F1(xBj, Q

2)

M
sin2 θ

2
+

F2(xBj, Q
2)

ν
cos2 θ

2

)
(2.19)

The use of this equation allows us to extract the unpolarised structure functions F1(xBj, Q
2)

and F2(xBj, Q
2). The only requirement is a measurement of the remaining parameters, i.e. the

beam energy E, the scattered muon energy E ′ and the polar angle θ.

Concerning the polarised part of the cross-section, eq. 2.16 also tells us how to study the
spin dependent structure functions g1(xBj, Q

2) and g2(xBj, Q
2). They can be obtained by

subtracting the cross-sections with opposite nucleon spins (the symmetric part cancels), along
an arbitrary direction. Using ∆σδ = σδ − σδ+π, we obtain:

d2∆σδ

dE ′dΩ
=

8mlα
2E ′

q4E

([
(q · sN) (q · sl) + Q2 (sl · sN)

]
Mν

g1 (xBj, Q
2)

(p · q)2

)

+
8mlα

2E ′Q2

q4E

(
[(sl · sN) (p · q)− (q · sN) (p · sl)]

g2 (xBj, Q
2)

Mν (p · q)

)
(2.20)

The best way to solve eq. 2.20 is to consider the case where the beam is longitudinally polarised,
i.e. the initial leptons have an helicity along or opposite their direction of motion, while the
nucleons are at rest and polarised along an arbitrary direction ~sN (see Ref. [18]):

sµ ←
l = −sµ →

l =
(
|~k|, k̂E

)
with k̂ =

~k

|~k|
(2.21)

and

sµ
N = (0, ~s) with ~s = (sin δcos β, sin δsin β, cos δ) (2.22)

Using these two definitions together with the ones of Table 2.1 and Fig. 2.2 (β = φ+Φ), results
in the following polarised cross-section:

d2∆σδ

dE ′dΩ
=
−4α2E ′

Q2νME

(
[Ecos δ + E ′cos Θ] g1(xBj, Q

2) +
2EE ′

ν
[cos Θ− cos δ] g2(xBj, Q

2)

)
(2.23)

where

cos Θ = sin θsin δcos Φ + cos θcos δ (2.24)
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As already stated, an experimentally interesting case is when the target is also longitudinally
polarised (δ = 00, 180o and θ = Θ). This gives a final interpretation for the parallel polarised
cross-section:

d2∆σ‖
dE ′dΩ

= − 4α2E ′

Q2νME

[
(E + E ′cos θ) g1(xBj, Q

2)− 2xBjMg2(xBj, Q
2)
]

(2.25)

Similarly, for the case of a transversely polarised target (δ = 900, 270o) we obtain:

d2∆σ⊥
dE ′dΩ

= − 4α2E ′2

Q2νME
sin θcos Φ

(
g1(xBj, Q

2) +
2E

ν
g2(xBj, Q

2)

)
(2.26)

Figure 2.2: Definition of the angles δ, θ, Θ, Φ and φ in polarised DIS.

2.1.3 Cross-section asymmetries

In principle the spin dependent structure functions can be determined from a measurement of
the two cross-section differences evidenced in eqs. 2.25 and 2.26. However, these differences
are extremely sensitive to small changes in the spectrometer setup and, therefore, the following
experimental asymmetries are used to study the nucleon spin:

A‖ =
dσ
←−⇒ − dσ

←−⇐

dσ
←−⇒ + dσ

←−⇐ (2.27)

and
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A⊥ =
dσ
←−
⇓ − dσ

←−
⇑

dσ
←−
⇓ + dσ

←−
⇑

(2.28)

where dσ is the short notation for d2σ/(dE ′dΩ). From the experimental point of view these
asymmetries are much more reliable due to a cancellation of the systematic effects (changes in
the spectrometer setup with time) in the ratio. The denominator, in both cases, corresponds
to the unpolarised cross-section counted twice.

Before we proceed, it is convenient to express A‖ and A⊥ in terms of the interesting physical
quantities which are the cross-section asymmetries for the photon-nucleon interaction. To
accomplish this, we must rewrite eq. 2.19, eq. 2.25 and eq. 2.26 in terms of xBj and y [19]:

d2σunpol

dxBjdy
=

8πα2

Q2

[
y

2
F1(xBj, Q

2) +
1

2xBjy

(
1− y − y2γ2

4

)
F2(xBj, Q

2)

]
(2.29)

d2∆σ‖
dxBjdy

=
8πα2

Q2

[(
1− y

2
− y2γ2

4

)
g1(xBj, Q

2) − y

2
γ2g2(xBj, Q

2)

]
(2.30)

d2∆σ⊥
dxBjdy

=
8πα2

Q2

[
γ

√
1− y − y2γ2

4

(y

2
g1(xBj, Q

2) + g2(xBj, Q
2)
)]

(2.31)

In the equations above the lepton mass is neglected and a new parameter, γ2 = Q2/ν2 =
(4M2x2

Bj)/Q
2, is introduced. In COMPASS, a muon beam of 160 GeV/c is used. Therefore,

the approximation done in these equations is completely justified. Using the equations above,
we can write A‖ and A⊥ in terms of the photo-absorption cross-section asymmetries (see Ref. [20]
for details):

A‖ = D(A1 + ηA2) and A⊥ = d(A2 − λA1) (2.32)

using

A1 =
σ1/2 − σ3/2

σ1/2 + σ3/2

=
g1 − γ2g2

F1

, (2.33)

A2 =
2σTL

σ1/2 + σ3/2

=
γ(g1 + g2)

F1

(2.34)

In these expressions σ1/2 and σ3/2 are the photo-absorption cross-sections representing the
processes where the projection of the total angular momentum of the photon-nucleon system
along the direction of the photon momentum is 1/2 and 3/2, respectively. The quantity σTL

is the interference cross-section between the transverse and longitudinal components of the
virtual-photon. The remaining quantities are the depolarisation factor, D, and the kinematics
factors d, η and λ defined by:

D =
y(2− y)(1 + γ2y/2)

y2(1 + γ2) + 2(1− y − γ2y2/4)(1 + R)
(2.35)

11



d =

[√
1− y − y2γ2/4

1− y/2

]
×D (2.36)

η =

[
1− y − γ2y2/4

(1− y/2)(1 + γ2y/2)

]
× γ (2.37)

λ =

[
1− y/2

1 + γ2y/2

]
× γ (2.38)

The variable R is the ratio of the longitudinal and transverse photo-absorption cross-sections:

R =
σL

σT

=
F2

2xBjF1

(1 + γ2)− 1 (2.39)

Using eqs. 2.32-2.34, we obtain:

g1 =
F1

1 + γ2
×
(

A‖
D

+ (γ − η)A2

)
≈

(
F1

1 + γ2

)
×

A‖
D

= −g2 (2.40)

The contribution of A2 for the determination of g1 is suppressed by the small kinematic factor
(γ − η). Therefore, the spin dependent structure functions can be completely determined by
a measurement of A‖ and F1 (only at LO-QCD where we have R ≈ 0 due to eq. 2.55). At
NLO-QCD (emission of gluons), the resulting corrections to the R factor may become impor-
tant and, consequently, the knowledge about F2 is also required to calculate D.

Generalisation to the spin-1 targets

Until now the polarised target was assumed to be formed by spin-1/2 particles. In the present
analysis this corresponds to the COMPASS data accumulated during the year of 2007, where
the polarisable material of the target consisted on protons. However, a spin-1 deuteron target
was the main polarisable material used by COMPASS during the remaining years of data
taking. Therefore it is convenient to generalise the procedure discussed so far to the spin-1
targets. The unpolarised and polarised structure functions are given by 6 [20]

F1 =
1

3
(σ0 + σ1 + σ2) (2.41)

g1 =
1

2
(σ0 − σ2) (2.42)

where σ0 (σ2) is the photo-absorption cross-section corresponding to the deuteron target po-
larised in the opposite (same) direction of the virtual-photon momentum. In addition to F1

6Using eq. 2.33 with γ2 ≈ 0. Note that the virtual-photon is a spin-1 boson.
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and g1, the generalisation to spin-1 targets introduces a new leading-twist structure function
b1:

b1 =
1

2
(2σ1 − σ0 − σ2) (2.43)

This structure function results from the cross-section difference obtained with a scattering from
an unpolarised and a longitudinally polarised target. Clearly, b1 is indistinguishable from g1

in the case of a spin-1/2 target (b1 = 1/2[2σ1/2 − σ1/2 − σ3/2]). The contribution of b1 to the
photon-nucleon asymmetry is given by

b1

F1

=
1

2

(
2σ1 − σ0 − σ2

F1

)
=

3

2

(
σ1 − F1

F1

)
(2.44)

This tensor asymmetry was recently measured and found to be different from zero (but small)
[21]. Nonetheless, the experimental points are still compatible with zero within two standard
deviations. In addition to that, the use of a solid state target in COMPASS (with ≈ 40% of
polarisable material) results in a small polarisation tensor [22] and, therefore, the influence of
a small b1 in the photon-nucleon asymmetry is even more suppressed. Assuming that b1 = 0
(σ1 = 1/2[σ0 + σ2] from eq. 2.43), we obtain for A1:

A1

eq.2.33

≈ g1

F1

=
3

2

(
σ0 − σ2

σ0 + σ1 + σ2

)
b1=0

=
σ0 − σ2

σ0 + σ2

(2.45)

From eq. 2.45 we conclude that it is sufficient to measure g1 with parallel and anti-parallel
orientation of the target spins. As a result, the expression given by eq. 2.40 is still valid for a
polarised target consisting of deuterons (with A‖ defined by eq. 2.27).

2.2 The Quark Parton Model

As it was already discussed in section 2.1.1, the Quark Parton Model (QPM) describes the
internal structure of the nucleon in terms of point-like and non-interacting particles (among
them) in a frame of infinite momentum. These mass-less constituents carry a fraction of the
nucleon momentum ξ and they are called partons. The virtual-photon probing the internal
structure of the nucleon can only interact with a charged parton and, therefore, these partons
are identified with quarks. Basically the QPM provides an interpretation for the nucleon
structure functions in terms of quarks, which is valid up to a leading order (LO) approximation.
Using this picture of the DIS process, we just need to insert the leptonic tensor (defined by eq.
2.13) in the expression of Wµν , given by eq. 2.8, to properly describe the point-like interaction
between the virtual-photon and a quark inside the nucleon. Taking also into account the charge
of the quark and integrating over the phase space available to the final particle, the hadronic
tensor is reduced to the following expression:
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W µν (p, q, s) =
Q2

q

4π

∫
d3p′

ξ (2π3) 2Ep′
(2π)4 δ4 (ξp + q − p′)

× 2 (ξpµp′ν + ξpνp′µ − gµνξp · p′)− 2
(
iεµναβqαsβ

)
(2.46)

using the replacements: k → ξp, k′ → p′, sl → s and q → −q. Note that the muon mass is
neglected, and the factor 1/ξ is introduced to normalise the parton flux to the proton flux. The
integral in the definition of W µν is easily computed using the following identity [17]

∫
d3p′

(2π)3 2Ep′
=

∫
d4p′

(2π)4 2p · q
(2π) δ

(
ξ +

q2

2p · q

)
(2.47)

Neglecting all the mass terms of the target and using p′ = (ξp + q) together with sβ = hξpβ,
with h representing the helicity of the parton, results in the final expression for the hadronic
tensor:

W µν (p, q, s) =
Q2

q

2ξp · q
(
2ξ2pµpν − gµνξp · q + ihξεµναβqαpβ

)
δ (ξ − xBj) (2.48)

The comparison of eq. 2.48 with the general expression of the hadronic tensor, shown in eq.
2.15, gives us an interpretation for the structure functions of the nucleon. The target spin,
sN , is replaced by the product of the target helicity with the nucleon momentum, i.e. Hp. In
addition to that, all terms involving qµ and qν in eq. 2.15 are neglected. The reason for that
relies in the fact that the leptonic current is also conserved, i.e. the following two equations
must be verified:

qµl
µν = qνl

µν = 0 (2.49)

Since the hadronic and leptonic tensors are contracted in the cross-section (defined by eq.
2.16), the above simplification of W µν is completely justified. As a result, the polarised and
unpolarised structure functions have the following meaning in the frame of the parton model:

F1(xBj) =
Q2

q

2
δ(ξ − xBj), F2(xBj) = Q2

qξδ(ξ − xBj) (2.50)

g1(xBj) =
Q2

q

2
hHδ(ξ − xBj), g2 = 0 (2.51)

Integrating these structure functions over all point-like interactions, results in

F1(xBj) =
∑

i

Q2
qi

2
[qi(xBj) + q̄i(xBj)] , F2(xBj) =

∑
i

Q2
qi
xBj [qi(xBj) + q̄i(xBj)] (2.52)
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g1(xBj) =
∑

i

Q2
qi

2
[∆qi(xBj) + ∆q̄i(xBj)] (2.53)

using

qi(xBj) =
[
q+
i (xBj) + q−i (xBj)

]
and ∆qi(xBj) =

[
q+
i (xBj)− q−i (xBj)

]
(2.54)

The new functions q±i (xBj)
[
q̄±i (xBj)

]
represent the probability to find a given quark [anti-

quark] i carrying a momentum fraction xBj and with an helicity equal (+) or opposite (−) to
the nucleon one. The latter corresponds to the case where hH = −, while the case of same
helicities is defined by hH = +. These probability functions are identified with the following
photo-absorption cross-sections:

Figure 2.3: Simplified picture of a polarised DIS process in the frame of the parton model. Due
to helicity conservation, the virtual-photon can only interact with a quark which is polarised
in the opposite direction. Therefore if the quark is oriented in the same direction as the
nucleon spin, the symbol (+) is used in the probability function. In this case the total angular
momentum in the photon-nucleon system has a value of 1/2 (cf. top).

The Callan-Gross relation

In the parton model the unpolarised structure function F1 can be interpreted as the probability
to find a quark carrying a momentum fraction xBj of the nucleon. For the polarised case, g1

represents the difference in probabilities to find a given quark carrying a momentum fraction
xBj with its spin parallel and anti-parallel to the nucleon one. The model implies the Q2

independence of the structure functions and the validity of the Callan-Gross relation:

F2(xBj) = 2xBjF1(xBj) (2.55)

In fact the expression shown in eq. 2.55 is only valid in the Bjorken limit, i.e. when ν, Q2 →∞.
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In this case, the scattering process can be interpreted as an elastic collision between the lepton
and a free quark. As a result, the structure functions of the nucleon can be conveniently
interpreted as quark distribution functions. It is important to note that the sums in eq. 2.52
and in eq. 2.53 run only over those quark flavours that are light when compared with the
magnitude of Q2. The scaling of the structure functions, i.e. their exclusive dependence in
xBj, was confirmed by the experiments performed at SLAC during the sixties. This was a
stunning achievement of the QPM. One of the major implications of the model is that only
two independent measurements of the nucleon structure functions are needed: F1 or F2 (cf.
eq. 2.55) and g1 to completely describe the nucleon structure. However, the next generation of
experiments showed a small dependence in Q2 of F1 and F2 (of the order of 10%). The scaling
was approximately confirmed but it was not complete. The implications of this discovery
will be discussed in section 2.3. Nevertheless, the QPM is able to describe well enough the
experimental results using a LO approximation 7 (cf. Fig. 2.4).

2.2.1 The first moment of g1

Up to now the theoretical models that describe a polarised nucleon are only capable of making
predictions for the first moment of the spin dependent structure function. It is defined by

Γ1 =

∫ 1

0

g1(xBj)dxBj =
1

2

∑
i

Q2
qi

[
∆q̂i + ∆ˆ̄qi

]
(2.56)

where

∆q̂i =

∫ 1

0

[
q+
i (xBj)− q−i (xBj)

]
dxBj and ∆ˆ̄qi =

∫ 1

0

[
q̄ +
i (xBj)− q̄ −i (xBj)

]
dxBj (2.57)

Therefore, with the help of eq. 2.56 we can write explicitly the expressions for the first moments
of the proton and the neutron (u = up-quark, d = down-quark and s = strange-quark):

Γp
1 =

1

2

[
4

9

(
∆û + ∆ˆ̄u

)
+

1

9

(
∆d̂ + ∆ ˆ̄d

)
+

1

9

(
∆ŝ + ∆ˆ̄s

)]
=

1

9
a0 +

1

12

[
a3 +

1√
3
a8

]
(2.58)

Γn
1 =

1

2

[
1

9

(
∆û + ∆ˆ̄u

)
+

4

9

(
∆d̂ + ∆ ˆ̄d

)
+

1

9

(
∆ŝ + ∆ˆ̄s

)]
=

1

9
a0 +

1

12

[
−a3 +

1√
3
a8

]
(2.59)

using

a0 =
[(

∆û + ∆ˆ̄u
)

+
(
∆d̂ + ∆ ˆ̄d

)
+
(
∆ŝ + ∆ˆ̄s

)]
(2.60)

a3 =
[(

∆û + ∆ˆ̄u
)
−
(
∆d̂ + ∆ ˆ̄d

)]
(2.61)

a8 =
1√
3

[(
∆û + ∆ˆ̄u

)
+
(
∆d̂ + ∆ ˆ̄d

)
− 2

(
∆ŝ + ∆ˆ̄s

)]
(2.62)

7Here LO means the absence of gluon emissions by the quarks. It will be shown in section 2.3 that the Q2

dependence is introduced by the existence of gluons. A radiated gluon is interpreted as a NLO process.
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Figure 2.4: Compilation of several DIS measurements on F2 (up) and g1 (down) as a function
of Q2, and for fixed values of xBj. Both proton (left) and deuteron (right) data are shown.
The dashed lines illustrated in the figures of g1 correspond to a NLO fit to the world data.
The measurements clearly show the scaling property of the structure functions for high Q2

values. However, in the low Q2 regime small scaling violations start to appear (see top-left).
They are related with a harder resolution of some gluon emissions by the virtual-photon and,
therefore, the momentum of the interacting quark is overestimated (cf. section 2.3). The data
were obtained from H1 [23] , ZEUS [24] , BCDMS [25] , E665 [26] , NMC [27] , SLAC [28],
EMC [1], SMC [3], E143 [29], E155 [6], HERMES [7], CLAS [30] and COMPASS [31, 32].

The coefficients a0, a3 and a8 correspond to some of the proton matrix elements that can be
calculated from the SU(3) flavour octet axial-vector currents, J i

5µ,

〈p, s|J i
5µ|p, s〉 = Maisµ, i = 1...8 (2.63)

and from the flavour singlet axial-vector current J0
5µ. These proton currents are given by
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J0
5µ = Ψ̄γµγ5Ψ and J i

5µ = Ψ̄γµγ5
λi

2
Ψ (2.64)

where λi are the Gell-Mann matrices (generators of the flavour SU(3) [33]) and Ψ = (Ψu, Ψd, Ψs)
is a vector in the quark flavour space. The matrix elements defined in eqs. 2.60-2.62 result from
eq. 2.63 if and only if the point-like quarks are assumed as free particles inside the nucleon.
The coefficients a3 and a8 can be obtained from the parameters F and D, which in turn are
measured from the hyperon β-decays (Λ → p, Σ → n, etc.). The following relations are
verified (gA and gV are the axial and the vector coupling constants, respectively) [16, 18]:

a3 =

∣∣∣∣gA

gV

∣∣∣∣ = F + D = 1.270± 0.003 (2.65)

a8 =
1√
3

(3F −D) = 0.579± 0.025 (2.66)

Therefore the contribution of quarks to the nucleon spin, ∆Σ ≡ a0 (in the QPM), can be deter-
mined by an additional measurement of Γp

1. This procedure was followed by the collaboration
EMC which obtained the shocking result of ∆Σ = 0.12± 0.09± 0.14 [1]. Such an unexpected
contribution from the quarks to the nucleon spin caused the so called spin crisis of the nucleon.
This result triggered a new generation of experiments to measure ∆Σ in a NLO approximation
(i.e., by taking also into account the gluons as mediators of the strong interactions between
quarks) and, posteriorly, the obtained results motivated experiments like COMPASS to mea-
sure also the gluon polarisation, ∆G/G. In Fig. 2.5 the world measurements of g1 are presented
as a function of xBj:
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Figure 2.5: Results for the polarised structure function, xg1, using a proton (left) or a deuteron
(right) target. The first moment Γp

1 is given by the integral of the fit to the world data shown
in the left figure.

Anomalous gluon contribution

At LO all the proton currents are conserved (for mass-less quarks), i.e:
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∂µJ j
5µ = 2imjΨ̄jγ5Ψj

mj→0

→ 0 (2.67)

However, the consideration of gluons in the nucleon dynamics gives rise to the following con-
tribution to the proton matrix elements [18, 20, 34, 35]:

Figure 2.6: The anomalous gluon contribution to the singlet axial-vector current. It is given
by the illustrated triangle (only at NLO).

The diagram of Fig. 2.6 affects only the singlet axial-vector current, while it cancels between
flavours in the conserved octet axial-vector currents. We have for this process:

∂µJ0
5µ =

αs

2π
nfTr

(
GµνĜ

µν
)

(2.68)

using

Ĝµν =
1

2
εµναβGαβ and nf = 3 (2.69)

where Gµν is the gluonic field tensor and nf the number of active flavours. It is clear from eq.
2.68 (which is still valid for higher order corrections) that J0

5µ is not conserved. As a result, the
expectation value of a0 is dependent of Q2. However, a conserved current can be constructed
by subtracting the gluon axial current, Kµ, from the quark current:

Ĵ0
5µ = J0

5µ − nf
αs

2π
Kµ using ∂µKµ = Tr

(
GµνĜ

µν
)

(2.70)

The gluon axial current is identified with ∆G1, i.e. the gluon contribution to the nucleon spin.
Therefore, at NLO, eq. 2.63 gives for â0

â0 = a0 + nf
αs

2π
∆G1 (2.71)

or in terms of the quark contribution to the nucleon spin, â0 ≡ ∆Σ:

a0(Q
2) = ∆Σ− nf

αs(Q
2)

2π
∆G1(Q

2) (2.72)

Therefore, the existence of a large gluon contribution could explain why the experimental a0(Q
2)

was found so small. This was a strong motivation to measure ∆G1 in dedicated experiments like
COMPASS. However, a direct measurement of ∆Σ in NLO approximation was also obtained
using the formalism discussed in the next section.
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2.3 QCD corrections to the QPM

The gluons are as important as quarks to the understanding of the internal structure of the
nucleon. This was confirmed by unpolarised DIS experiments, which have shown that quarks
carry only about half of the total nucleon momentum. The remaining part of the momentum is
assigned to the quanta of the strong interactions between quarks, i.e. the gluons. Accordingly,
these bosons are also responsible by the breaking of the scale invariance of the nucleon structure
functions. In fact, one can see in Fig. 2.4 that the Q2 independence of the unpolarised and
polarised structure functions is only approximately fulfilled. The theory of Quantum Chro-
modynamics (QCD) explains the small Q2 dependence of F2 and g1, for fixed values of xBj,
by considering that the quarks exchange coloured gluons between them (instead of being free
point-like particles). According to the theory, each valence quark in the nucleon is surrounded
by a cloud of gluons and sea-quark pairs (qq̄). Such gluon cloud is better resolved with an
increasingly larger Q2:

Figure 2.7: Illustration of a DIS process between a virtual-photon (γ∗) and a quark. One
can see that the γ∗ with a Q2

1 > Q2
0 is able to resolve the gluon emission of quark carrying a

momentum ξ. Consequently, the quark is observed with a smaller momentum xBj (right) when
compared to the momentum ξ which is resolved with Q2

0 (left).

As a result, the consideration of NLO processes (gluon emissions) leads to a Q2 dependence of
the parton distributions, ∆q(xBj, Q

2), and therefore to the scale dependence of the structure
functions. Is is clear from Fig. 2.7 that the momentum at which a quark is probed is dependent
on Q2: a virtual-photon with a higher resolving power can probe the same quark at a lower
xBj (after a gluon emission).

The QCD evolution in the polarised case

The evolution of the quark and gluon distribution functions with Q2, at a fixed xBj, is described
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations:

d∆qNS (xBj, Q
2)

dlnQ2
=

αs (Q2)

2π
∆PNS

qq

(
xBj

ξ

)
⊗∆qNS

(
ξ, Q2

)
(2.73)
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d

dlnQ2

(
∆Σ (xBj, Q

2)
∆G1 (xBj, Q

2)

)
=

αs (Q2)

2π

 ∆P S
qq

(
xBj

ξ

)
2nf∆P S

qg

(
xBj

ξ

)
∆P S

gq

(
xBj

ξ

)
∆P S

gg

(
xBj

ξ

) ⊗
(

∆Σ (ξ, Q2)
∆G1 (ξ, Q2)

)

using

(∆P ⊗∆F )
(
xBj, Q

2
)

=

∫ 1

xBj

dξ

ξ
∆P

(
xBj

ξ

)
∆F

(
ξ, Q2

)
(2.74)

where ∆F represents a polarised parton distribution function (quark or gluon). Analogous
equations can be written for the unpolarised case (see Ref. [36]). It is convenient to separate
the singlet and non-singlet distributions of polarised quarks, in order to profit from a gluon
independent evolution by the latter. They are defined as (using Qq = e):

∆qNS
(
xBj, Q

2
)

=

nf∑
i=1

 e2
iPnf

i=j e2
j

nf

− 1

[∆q̂i

(
xBj, Q

2
)

+ ∆ˆ̄qi

(
xBj, Q

2
)]

(2.75)

∆Σ
(
xBj, Q

2
)

=

ni∑
i=1

[
∆q̂i

(
xBj, Q

2
)

+ ∆ˆ̄qi

(
xBj, Q

2
)]

(2.76)

The DGLAP equations contain five polarised splitting functions, ∆P , which are obtained from
the following unpolarised ones:

Figure 2.8: These functions account for the probability of a quark (gluon) with momentum
fraction xBj to come from a parent quark with a larger momentum fraction ξ, due to a gluon
radiation by the latter (top). Similarly, Pqg and Pgg take into account the probability of a
quark (gluon) with momentum xBj to come from a gluon which carries a higher momentum ξ
(bottom). The latter illustrate two of the gluon properties: conversion into qq̄ and gg pairs.
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In the polarised scenario we have ∆Pij(xBj/ξ) = Pi+j+(xBj/ξ)− Pi−j+(xBj/ξ), with the latter
term representing the probability of a parton j with positive helicity and momentum fraction ξ
to radiate another parton i with negative helicity and momentum fraction xBj. The considera-
tion of these QCD corrections to the parton model leads also to the introduction of corrections
in the nucleon structure functions. In particular, the NLO expression for g1 is given by

g1

(
xBj, Q

2
)

=

(∑nf

i=1 e2
i

2nf

)
[∆CNS

q

(
xBj, Q

2
)
⊗∆qNS

(
xBj, Q

2
)

(2.77)

+ ∆CS
q

(
xBj, Q

2
)
⊗∆Σ

(
xBj, Q

2
)

+ 2nf∆CG

(
xBj, Q

2
)
⊗∆G1

(
xBj, Q

2
)
]

The corresponding first moment of the proton is

Γp
1

(
Q2
)

=

(∑nf

i=1 e2
i

2nf

)
[ ∆CNS

q

(
Q2
)
∆qNS

(
Q2
)

+ ∆CS
q

(
Q2
)
∆Σ

(
Q2
)

+ 2nf∆CG

(
Q2
)
∆G1

(
Q2
)

] (2.78)

where CNS
q , CS

q and CG are the coefficient functions describing the photon-parton scattering
process. These three functions are calculable in perturbative QCD and are also well known up
to the NLO approximation [37, 38, 39]. The same is true for the DGLAP splitting functions,
Pij(xBj/ξ).

Each of the three factors shown in eq. 2.78 has two separate contributions: the hard part of
the photon-parton interaction is included in the coefficient functions whereas the soft part, i.e.
the structure of the nucleon, is absorbed in the parton distribution functions. The soft parts
cannot be calculated directly from QCD and thus they have to be measured by experiments.
However, the separation of these two contributions is not strict. Different factorisation schemes
and scales are allowed. The latter indicates the scale at which the separation takes place. Two
common choices are the Modified Minimal Subtraction (MS) scheme and the Adler-Bardeen
(AB) scheme. The two schemes differ in how they treat some of the soft contributions. In
the MS scheme these soft corrections are applied to the coefficient functions and, as a result,
the first moment of ∆CG(xBj, Q

2) vanishes up to the NNLO (next-to-next-to-leading order).
Consequently, the first moment of g1(xBj, Q

2) is decoupled from the gluon distribution ∆G1.
Concerning the AB scheme, all the soft contributions are absorbed by the parton distribution
functions, which implies the dependence of Γp

1 in ∆G (∆CG(xBj, Q
2) 6= 0 in the NLO approx-

imation). Therefore, at NLO, the following relation is verified (note that ∆ΣMS = a0 and
∆ΣAB = a0 + [(nfαs)/2π]∆G1):

∆ΣMS(Q2) = ∆ΣAB − nfαs(Q
2)

2π
∆G1(Q

2) (2.79)

where the independence of Q2 in the AB scheme is ensured by the Adler-Barden theorem [40],
which states that the gluon anomaly (discussed in section 2.2.1) does not receive any higher
order corrections.
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2.4 Determination of ∆Σ at NLO

The DGLAP equations can be used to perform a NLO-QCD analysis of the g1 data. Four
ingredients are needed to obtain the polarised parton distributions: DGLAP splitting functions,
coefficient functions (shown in eq. 2.77), experimental measurements of g1 in the (xBj, Q

2) plane
and a parameterisation of ∆Σ, ∆qNS and ∆G at a reference Q2 (= Q2

0). The latter is needed as
an input to the DGLAP equations in order to allow for the Q2 evolution of the polarised parton
distribution functions. The knowledge of how these distributions evolve with Q2 provides us
a tool to extract the quark and gluon contributions to the nucleon spin. In COMPASS this
analysis is done using the following parameterisation:

∆Fk = nk

xαk
Bj(1− xBj)

βk(1 + γkxBj)∫ 1

0
xαk

Bj(1− xBj)βk(1 + γkxBj)dxBj

@Q2
0 = 3 (GeV/c)2 (2.80)

where ∆Fk represents each of the polarised parton distribution functions, namely ∆Σ, ∆qNS

and ∆G, and nk is the integral of ∆Fk. A reference value of Q2
0 = 3 (GeV/c)2 is chosen because

it is close to the average Q2 of the COMPASS DIS data. The above parameterisation is then
evolved to the Q2 of an existing g1(xBj, Q

2) measurement, and thereafter the parameters are
optimised through the use of the following χ2 minimisation:

χ2 =
N=230∑

i=1

[
g1(xBji

, Q2
i )

calc − g1(xBji
, Q2

i )
exp
]2

[σ (g1(xBji
, Q2

i )
exp)]

2 (2.81)

Here the errors σ are the statistical ones for all the 230 experimental data points. Using these
NLO-QCD fits, we obtain for the integral of ∆Σ 8:

nΣ = 0.30± 0.01(stat)± 0.02(evol) (2.82)

The quark contribution to the nucleon spin is determined from the following two hypotheses:
∆G > 0 (nΣ = 0.27 ± 0.01) and ∆G < 0 (nΣ = 0.32 ± 0.01). This result uses the world data
on the polarised proton, neutron and deuteron targets. The consideration of the 43 COMPASS
points on the gd

1(xBj, Q
2) measurement allowed the reduction of the error by a factor of 2 in

the region of x < 0.02 [31].

This NLO-QCD analysis is done using the MS factorisation scheme. The high precision value
obtained for nΣ confirmed the early conclusion made upon the EMC results, i.e. the quark
contribution to the nucleon spin is unexpectedly small. Therefore, the missing spin was as-
sumed to come from the polarised gluons. It is well known from unpolarised DIS experiments
that gluons carry approximately half of the nucleon momentum and, by analogy, they were also
seen as the best candidates to solve this spin puzzle (cf. eq. 1.5). A value for nG (∆G1) can
also be obtained from the NLO-QCD fitting procedure described above. The main problem
is that this analysis is extremely dependent on how extensively the g1 structure function was
measured in the (xBj, Q

2) kinematic plane. One can see from Fig. 2.4 that in the unpolarised
case the coverage and statistical accuracy in this plane are very good and, consequently, the
unpolarised parton distributions can be determined rather well. However the situation is com-
pletely different for the polarised case, where the available data have not yet reached the same
kinematic extent because it comes mainly from fixed target experiments. As a consequence

8Note that in eq. 1.5 we have (for simplicity of notation): ∆Σ = ηΣ.
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the polarised parton distributions are less well constrained. In particular, the uncertainty in
∆G1 is large. In addition to that, two equally good solutions are found for the polarised gluon
distribution, one positive and one negative. Both solutions describe very well the experimental
data (cf. Fig. 2.9) with a first moment of |nG| ≈ 0.3, but the shapes of their distributions are
very different. The results of these two fits can be seen in Fig. 2.10.

  

Figure 2.9: Values of xgd
1(xBj, Q

2). The COMPASS points are given at the 〈Q2〉 where they
are measured. The SMC points have been moved to the Q2 of the COMPASS points. Only
statistical errors are shown with the data points. The shaded band at the bottom shows the
systematic errors of COMPASS. The curves show the results of the QCD fits with ∆G > 0 and
∆G < 0. Both fits describe very well the existing data (also true for the gp

1(xBj, Q
2) points

shown in Fig. 2.5 and gn
1 (xBj, Q

2) using the world data). Plot taken from [31]

    

Figure 2.10: Results of the NLO-QCD fits for the polarised quarks and gluons as a function
of x. All solutions obtained with ∆G > 0 and ∆G < 0 are shown on the left and right plots,
respectively. The distributions of x(∆q + ∆q̄) reveal a very small sensitivity to x∆G.
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There are two ways to improve our knowledge about ∆G. The first one is to enlarge the
kinematic range of the g1(xBj, Q

2) measurements in order to better constrain the QCD fits. This
could be achieved by taking data with polarised (leptonic) beams in colliders, but unfortunately
this is not foreseen for the near future. The second option is to measure directly ∆G/G from
a process called Photon-Gluon Fusion (PGF).
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Figure 2.11: The Photon-Gluon Fusion process at LO. The diagram corresponds to the process
used as a reference for the open-charm analysis.

2.5 Direct measurement of ∆G/G

The best way to obtain a direct measurement of the gluon polarisation is to make use of
electromagnetic probes. It is clear from Fig. 2.11 that the PGF mechanism is the simplest
process to use in order to access the polarised gluon distribution in the nucleon: the virtual-
photon interacts with a gluon in the polarised nucleon via exchange of a virtual-quark, resulting
in a qq̄ pair that is produced back-to-back in the centre-of-mass frame. There are two strategies
of analysis. The first one uses the open-charm method, which was applied for the first time in
COMPASS (in polarised experiments). It takes advantage of the fact that in the COMPASS
kinematic domain the intrinsic-charm content of the nucleon is negligible and, therefore, at
LO, an open-charm hadron can only be produced as the outcome of a PGF process. Thus, the
reconstruction of these hadrons provides a clean signature of events originating from interactions
with gluons. The fusion process is in this case mediated by a charm quark. The “final state”
quarks fragment to an open-charm hadron with the following probabilities (only the most
relevant are shown):

1. ) c
50%→ D0(cū) (includes also the parent process D∗ → D0πslow)

2. ) c
20%→ D+(cd̄)

3. ) c
20%→ D+

s (cs̄)
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4. ) c
10%→ Λ+

c (udc)

As it is clear from the above fragmentation processes, the D0 meson is the most important
hadron to consider in the open-charm analysis. Nevertheless, the statistics is still quite limited
(due to the difficulty of a cc̄ production) and this represents the main drawback of the method.
The diagram shown in Fig. 2.11 illustrates the fundamental process for the open-charm produc-
tion in a LO-QCD approximation. Technically speaking, the diagram represents a higher order
interaction of the virtual-photon. However since a photon cannot couple directly with a gluon,
the illustrated process represents the lowest order allowed for a PGF interaction. The second
option to probe the polarisation of gluons is to select hadron pairs with high transverse mo-
mentum regarding to the virtual-photon direction. In this approach it is assumed that a large
transverse momentum (pT ) can only be generated by the PGF and QCD-Compton (γ∗q → gq)
processes. For the PGF part, the diagram is the same as represented in Fig. 2.11 but with
the charm quark replaced by a light-quark (u, d, s). This is the high-pT method for hadron
pairs and its main advantage is the large statistics available. The drawback is the existence
of physical background and therefore the method is extremely model dependent. The details
about the high-pT analysis of COMPASS are given in the Refs. [41, 42, 43].

2.5.1 The open-charm method

The open-charm analysis is the one used to obtain the results shown in this thesis. This
approach is completely free from physical background (in a LO approximation) and, therefore,
it is the most direct way to access ∆G. We can check in Fig. 2.12 and in Fig. 2.13 that the
intrinsic-charm contamination is indeed negligible in the COMPASS kinematic domain (cf. also
the top-right of Fig. 5.19).

Figure 2.12: Intrinsic-charm predictions obtained for the 〈ν〉 in COMPASS. The experimental
points represent measurements of the charm structure function by the collaboration EMC [44],
and the black dotted curves are theoretical fits for the PGF process using different renormal-
isation and factorisation schemes [45]. The blue curve shows the intrinsic-charm prediction
assuming a nucleon fluctuation into charmed meson-hadron pairs [46]. The red dashed curve
shows the intrinsic-charm prediction assuming charm fluctuations at the partonic level [47].
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Figure 2.13: Intrinsic-charm predictions obtained by the CTEQ collaboration (CTEQ 6.5c).
The theory driven predictions show that the COMPASS data is not sensitive to the nucleon
intrinsic-charm. They are the meson cloud models (for c and c̄ separately), which account
for the probability that the nucleon can fluctuate into an intermediate state composed by a
charmed baryon plus a charmed meson, and also the BHPS model. The latter calculates the
probability of finding the nucleon in a higher Fock state of |qqqcc̄ >. The remaining prediction
uses a phenomenological approach, which is based on the assumption that some charm already
exists in the nucleon sea even before the DGLAP evolution of the initial gluon distribution.

We can see in Fig. 2.13 that the sea-like model predicts the existence of some intrinsic-charm
in the xBj range of the COMPASS data. However, this assumption (without any theory basis)
was not yet proven and therefore it is neglected in the present analysis. In addition to that,
the mass of the charm quark, mc ≈ 1.5 GeV/c2, is much higher than the mass of the u, d and
s quarks. Therefore, the charm content of the nucleon can be safely neglected in COMPASS.
The creation of charm quarks during the fragmentation of the nucleon caused by non-PGF
processes is also highly suppressed (in the kinematic domain of COMPASS).

Extraction of ∆G/G in a LO-QCD approximation

As explained in section 2.1.3, it is much more convenient to extract asymmetries from experi-
ments than to measure cross-section differences. Therefore a measurement of ∆G/G, instead
of ∆G, is obtained. This can be accomplished by a measurement of the experimental spin
asymmetry for the open-charm production 9. This asymmetry is defined by

Aexp =
N
←−⇒
cc̄ −N

←−⇐
cc̄

N
←−⇒
cc̄ + N

←−⇐
cc̄

(2.83)

where Ncc̄ represents the number of reconstructed charmed mesons coming from a polarised
muon-nucleon interaction. In COMPASS, these mesons are produced with a parallel (N

←−⇐
cc̄ ) and

9Recall that an open-charm meson is a clean tag for a PGF process (c.f. Fig. 2.11).
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anti-parallel (N
←−⇒
cc̄ ) orientation of the beam and target spins. The relation between Aexp and

the physical asymmetry, AµN
cc̄ , is given by the following equation (using the definitions of Ncc̄

presented in Chapter 6, with Âbg = 0):

Aexp = (fPµPt)× AµN
cc̄ (2.84)

We can see that the physical asymmetry is diluted by three experimental factors: the fraction of
polarisable material inside the target, f (also called the dilution factor), the beam polarisation
Pµ and the target polarisation Pt. These quantities are experimentally measurable and will be
further discussed in Chapter 3. In COMPASS, the selection of open-charm mesons is done via
reconstruction of the invariant mass obtained from their decay products (namely, kaons and
pions). Therefore, in the mass spectrum also exists some combinatorial background underlying
the reconstructed resonance (D0 mesons). If we take into account a possible contribution from
the background asymmetry, Âbg, eq. 2.84 is rewritten as

Aexp = fPµPt

(
S

S + B

)
AµN

cc̄ + fPµPt

(
B

S + B

)
Âbg (2.85)

where S and B represent the differential unpolarised cross-sections of the signal and background
events folded with the experimental resolution. The quantity S/(S + B) can be interpreted
as a PGF probability, i.e. the probability that a given event is indeed an open-charm meson
(cf. Chapter 7). Consequently, we have B/(S + B) = [1 − S/(S + B)]. At LO-QCD, the
muon-nucleon asymmetry is given by

AµN
cc̄ = D × Aγ∗N

cc̄ = D ×
(

∆σγ∗N→cc̄

σγ∗N→cc̄

)

= D ×
∫

∆σ̂γ∗g→cc̄(ŝ)∆G(xg, ŝ) dŝ∫
σ̂γ∗g→cc̄(ŝ)G(xg, ŝ) dŝ

= D ×

∫ ∆σ̂γ∗g(ŝ)

σ̂γ∗g(ŝ)

∆G(xg ,ŝ)

G(xg ,ŝ)
σ̂γ∗g(ŝ)G(xg, ŝ) dŝ∫

σ̂γ∗g(ŝ)G(xg, ŝ) dŝ

≈ D × 〈âγ∗g
LL 〉

∆G

G
(〈xg〉) with âγ∗g

LL =

(
∆σ̂γ∗g→cc̄

σ̂γ∗g→cc̄

)
(2.86)

where D is the depolarisation factor defined in eq. 2.35 (with R = 0), and ŝ is the centre-of-mass
energy at the partonic level. The equality in the second line is ensured by the factorisation
theorem which allows for the separation of the hard part of the process, i.e. the interaction
γ∗g → cc̄, from the gluon structure function. The partonic asymmetry, âγ∗g

LL , is calculated at
LO from the diagrams shown in Fig. 2.14. The final expression is given by [48]

âγ∗g
LL =

∆σ̂0 + (cos φ̂) ∆σ̂1

σ̂0 + (cos φ̂) σ̂1 + (cos 2φ̂) σ̂2

(2.87)

where
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Figure 2.14: Feynman diagrams for the PGF process at LO-QCD.

σ̂0 =
αs (1− y)

4π

(
8 (1− xp) xp −

2βxp

(1− zq) zq

)
+

αs

8π

(
(1− y)2 + 1−

2m2
µy

2
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)

×

[(
x2
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2) (z2

q + (1− zq)
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+
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4 (1− zq)
2 z2

q

]
(2.88)

σ̂1 =
αs

2π
(2− y)

√
1− y −

m2
µy

2

Q2

(
1− 2xp −

β

2 (1− zq) zq

)
(1− 2zq)

×
√

(1− xp) xp

(1− zq) zq

− βxp

4 (1− zq)
2 z2

q

(2.89)

σ̂2 =
αs

π

(
1− y −

m2
µy

2

Q2

)(
(1− xp) xp +

(1− 2xp) β

4 (1− zq) zq

− −β2

16 (1− zq)
2 z2

2

)
(2.90)

∆σ̂0 =

αsy
2π

(
2− y − 2m2

µy

Q2(1−xBjy)

)(
β

2(1−zq)2z2
q

+ 2xp−1

(1−zq)zq

) (
(1− zq)

2 + z2
q

)
√

1− 4m2
µ(1−xBj)xBjy2

Q2(1−xBjy)
2

(2.91)

∆σ̂1 =

αsy
2π

√
1− y − m2

µy

Q2 (1− 2zq)
√

xp(1−xp)

zq(1−zq)
− β

4z2
q (1−zq)2√

1− 4m2
µ(1−xBj)xBjy2

Q2(1−xBjy)
2

(2.92)

and

β =
4xpm

2
c

Q2
, xp =

xBj

ξ
, zq =

p · pq

p · q
, φ̂ =

(~p× ~k) · (~p× ~pq)

|
(
~p× ~k

)
| · | (~p× ~pq) |

(2.93)

In eq. 2.93 ξ is the momentum fraction of the incoming parton, mc is the mass of the charm
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quark, and pq is the four-momentum of the final quark. Therefore, the use of eq. 2.86 in eq. 2.85
allows us to extract the gluon polarisation inside the nucleon, i.e. ∆G/G. To accomplish that,
the experimental asymmetry for the open-charm production is measured and, in addition, the
following factor needs to be determined for every event (considering Âbg = 0 for illustration):

fPµPt

(
S

S + B

)
Daγ∗g

LL︸ ︷︷ ︸
aµg

LL

(2.94)

In Fig. 2.15 one can see a big dispersion of values for the partonic asymmetry, aµg
LL = 〈âµg

LL〉,
obtained as a function of the centre-of-mass energy of the muon-gluon collision. Moreover, the
fact that aµg

LL changes sign is a strong motivation for using this quantity as an event weight.
Therefore, a weighted analysis was developed in order to minimise the statistical error of the
∆G/G extraction (cf. chapter 6). In addition to that, the reconstruction of the open-charm
mesons shows a clear anti-correlation between the PGF purity, S/(S + B) (obtained from
the D0 mass spectra), and the asymmetry aµg

LL: more combinatorial background events are
reconstructed for high aµg

LL values, and vice-versa. Since these two factors are simultaneously
used inside the event weight, a proper multi-dimensional kinematic parameterisation is needed,
for each of them, in order to avoid any bias in the analysis.

Figure 2.15: Partonic asymmetry aµg
LL as a function of the photon-gluon centre-of-mass energy,

ŝ, for fixed values of y = 0.5, Q2 = 0.01 (GeV/c)2 and integrated over the polar angle [49].

The goal of this method is to extract the gluon polarisation in the most model independent
way, and with the best possible precision. To accomplish that, the requirements are:

1. The reconstruction of open-charm mesons ⇒ clean signature of a PGF process.

2. The use of a weighted method for the simultaneous extraction of ∆G/G and Abg ⇒
best possible precision in the determination of ∆G/G.

3. Multi-dimensional kinematic parameterisations for aµg
LL and also for S/(S + B). The lat-

ter reduces to a minimum the contamination of the PGF sample by the combinatorial
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background (enhancing S/(S+B) for the real PGF events) and, simultaneously, it ensures
the experimental anti-correlation between S/(S + B) and aLL.

The previous three topics form the core of the present work and, therefore, they will be exten-
sively discussed in the chapters 5, 6, and 7. Finally, ∆G/G can be translated to ∆G through
the use of the unpolarised gluon structure function. Just for indicative purposes I show an
example of the xG distribution in Fig. 2.16:

Figure 2.16: Comparison of the gluon momentum distribution (determined from a QCD fit to
the NMC and H1 data) with the measurements of xG(x, Q2) obtained from an open-charm
analysis [50]. For the DIS study a Q2 > 2 (GeV/c)2 was used whereas for the photo-production
limit a Q2 < 0.01 (GeV/c)2 was considered.

For a proper comparison with the experimental results, the QCD fits of ∆G/G are also deter-
mined by COMPASS (using the same Q2 as the scale of the measurements):
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Figure 2.17: Distributions of ∆G/G at Q2 = 13 (GeV/c)2 obtained from the COMPASS NLO-
QCD analysis [31, 51]. The error bands correspond to the statistical errors estimated from
the error matrix on the fitted parameters. The variable x denotes the fraction of the nucleon
momentum carried by a gluon.
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Extraction of ∆G/G in a NLO-QCD approximation

In Ref. [52] it is shown that the NLO corrections to the PGF process may be important for the
production of heavy flavours. We can see in Fig. 2.18 the comparison of the unpolarised and
polarised cross-sections, obtained in a LO-QCD and NLO-QCD approximations. The shapes
of the LO and NLO distributions are significantly different and, in some cases, the asymmetry
aγ∗g

LL changes by almost a factor of two (for example, in η ≈ 0.4 → right figure). Therefore, and
for the first time, the extraction of ∆G/G is also performed at NLO. The obtained results are
presented in this thesis.

Figure 2.18: Left: distributions of the NLO cross-sections for the charm production as a result

of a polarised
(
∆c

(1)
γg

)
or unpolarised

(
c
(1)
γg

)
photon-gluon interaction. Similar distributions

are also shown for the anti-charm production. Right: comparison of the LO cross-sections,
∆c

(0)
γg and c

(0)
γg , with the ones accounting also for the NLO corrections, ∆c

(0)
γg + 2.7∆c

(1)
γg and

c
(0)
γg + 2.7c

(1)
γg . Note that s ≡ ŝ and aγ∗g

LL (NLO) =
(

∆c0γg+2.7∆c1γg

c0γg+2.7c1γg

)
.

The main disadvantage of a NLO analysis is the existence of physical background contributing
to the cc̄ production. The Feynman diagrams responsible for these non-PGF processes are:

Figure 2.19: Charm production via a polarised γ∗q interaction.
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We can see in Fig. 2.19 that, at NLO, the production of an open-charm meson is not an
exclusive characteristic of a PGF process. For example, in the diagram (c) the virtual-photon
interacts with a light-quark in the nucleon which posteriorly creates a cc̄ pair after the radiation
of a gluon. These processes do not probe directly a gluon and, therefore, they contribute as
a physical background to the measurement of the gluon polarisation. In addition to them, we
have also to account for the NLO corrections to the PGF process:

Figure 2.20: The diagrams (a), (b), (c), (g), (h), (i), (m), (n) and (o) show the NLO virtual
corrections to PGF via the γ∗g → cc̄ process. The diagrams (d), (e), (f), (j), (k) and (l)
represent the NLO gluon bremsstrahlung corrections that are accounted in the γ∗g → cc̄g
process [(k) and (l) are ghost diagrams]. With exception of (b), reversing the heavy quark lines
yields the remaining NLO diagrams.

Therefore, in order to be able to extract ∆G/G at NLO from the open-charm asymmetries, we
just need to modify the LO interpretation of AµN

cc̄ to account for the contributions shown in
Fig. 2.19 and in Fig. 2.20:

AµN
cc̄ (NLO) = D

[
aγ∗g

LL

∆G

G
+ aγ∗q

LL A1

]
(2.95)
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where

aγ∗g
LL =

(
∆σ̂γ∗g→cc̄(LO) + ∆σ̂γ∗g→cc̄(NLO) + ∆σ̂γ∗g→cc̄g(NLO)

σ̂γ∗g→cc̄(LO) + σ̂γ∗g→cc̄(NLO) + σ̂γ∗g→cc̄g(NLO)

)
(2.96)

aγ∗q
LL =

(
∆σ̂γ∗q→cc̄

σ̂γ∗q→cc̄

)
(2.97)

A1 ≈ g1

F1

=

(∑
q e2

q∆q∑
q e2

qq

)
(2.98)

All the diagrams shown in Fig. 2.14, in Fig. 2.19 and in Fig. 2.20 are considered in eq. 2.95.
However, the results of the NLO calculations are extremely long and cumbersome to be pre-
sented here. They are partly available in [52, 53, 54, 55, 56] and also upon request [57]. The
general formula shown in eq. 2.85 is still valid in the NLO-QCD approximation. The only
difference, besides AµN

cc̄ , is that the signal S also contains open-charm mesons originating from
non-PGF processes (S = Sg + Sq). The proper way to correct these contaminations, for the
simultaneous extraction of ∆G/G and Abg (Âbg = DAbg), will be discussed in the Chapters 6
and 8.

Range of Q2 for the open-charm analysis

In polarised DIS, we can interpret the muon beam as a source of photons. This leads to the
following factorisation of the muon-nucleon cross-section:

d2σµN→cc̄X

dQ2dν
= Γ

(
E, Q2, ν

)
σγ∗N→cc̄X

(
Q2, ν

)
(2.99)

where we have for the virtual-photon flux

Γ
(
E, Q2, ν

)
=

α

2π

(
2 (1− y) + y2 + Q2

2E2

Q2
√

Q2 + ν2

)
(2.100)

It can be seen from eq. 2.100 that the flux is higher for quasi-real photons; i.e. for Q2 →
0. Therefore, the COMPASS spectrometer was optimised to make use of the low Q2 region.
Possible contributions from resolved photons (in Q2 < 1) to the open-charm production were
verified to be unimportant in the COMPASS kinematic domain. Thus, they are neglected in
this analysis. The perturbative treatment of the γ∗g cross-section is ensured by the square of
the transverse mass associated to the charm quarks, µ2 = (2mT

c )2 = 4(m2
c + p2

T ) = 13 GeV/c2

(scale of the open-charm measurement).
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2.6 Strong probes for the extraction of ∆G/G

The polarised gluon structure inside the nucleon can also be probed through the use of the
following reactions:

Figure 2.21: Schematic view of the prompt photon production (qg → γq) and of the jet
production (qg → gq and gg → gg).

The above processes are studied by the STAR and PHENIX experiments using the polarised
proton-proton collisions at RHIC 10. The main advantage of using strong probes is the existence
of a significantly higher production of gluon interactions as compared to the lepton-nucleon
processes. However, the main drawback of this analysis is the existence of reactions that
contribute as physical background (eg., qq̄ → γg in the prompt photon production). The
double spin asymmetry that results from proton-proton collisions is given by (for a specific
reaction i):

App
i = âLLi

(
∆Fi1

Fi1

· ∆Fi2

Fi2

)
(2.101)

where ∆Fi(1,2) and Fi(1,2) are the polarised and unpolarised distributions of partons taking part
in the interaction, and âLLi is the partonic asymmetry corresponding to the reaction considered.
We can see from eq. 2.101 that one of the big disadvantages of using strong probes is that we
have to consider an additional parton density in the initial state of the interaction, i.e. the
desired measurement is sensitive only to a convolution of the gluon density and another parton
density (which may be another gluon). In addition to that, the experimental asymmetry Aexp

is a sum of all the Ai that lead to a given final hadronic state (weighted with their respective
fractions and multiplied by the diluting factors). Consequently, the extraction of ∆G/G from
this sum is a complex and difficult task. Therefore, instead of extracting ∆G/G directly from
the data, another method is used. Different distributions of ∆G are assumed, and then the Aexp

corresponding to a given final state is calculated. Finally, the results obtained are compared
with the measured asymmetries. Thereafter, the scenarios of ∆G that do not agree with the
measurements are discarded. The measurements done at RHIC cover a wide range of xg,
0.01 < xg < 0.3, and they predict a small value of the gluon polarisation which is compatible
with zero [58, 59] (Aexp = ALL = A‖ in the References.).

10Relativistic Heavy Ion Collider which is located at the Brookhaven National Laboratory (BNL) in USA.
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Chapter 3

The COMPASS Experiment

The COMPASS collaboration, NA58, is formed by nearly 240 physicists from 11 countries
(Europe, Russia, Japan and India) and 28 institutions. It is the successor of a long chain
of muon scattering experiments at CERN, namely EMC (NA28), NMC (NA37) and SMC
(NA47). COMPASS is an acronym for COmmon Muon and Proton Apparatus for Structure
and Spectroscopy and, as the name implies, it is the result of merging two experimental pro-
posals (HMC and CHEOPS) with different physics programs. The first one is dedicated to the
study of the nucleon spin and the other is mainly focused on the hadron spectroscopy. In the
former a polarised muon beam and a polarised target are used whereas the latter is based on
different nuclear targets and hadron beams. The experiment was approved in 1998 and the
first physics data was recorded in the year of 2002. Since then until now, 2011, COMPASS is
taking data with exception of the year of 2005 during which the SPS accelerator was shutdown
at CERN. The analysis presented in this thesis concerns the data collected in 2002-2007 using
a naturally polarised muon beam. During these years, a longitudinally/transversely polarised
deuteron (2002-2006) and proton (2007) targets were used. Only the longitudinally polarised
targets are considered in the open-charm analysis, which corresponds to approximately 70% of
the data recorded in those years. The data for the hadron spectroscopy program was collected
in 2008 and 2009.

In this experimental chapter only the relevant topics for the open-charm analysis will be ad-
dressed: the polarised beam, the polarised target and the most important parts of the COM-
PASS spectrometer. In the latter mainly the Ring Imaging Cherenkov detector (RICH) will
be discussed. The detailed information about the COMPASS spectrometer can be found in
Ref. [60].

3.1 The Beam

The COMPASS spectrometer is located in the CERN North Area, at the end of the M2 beam-
line of the Super Proton Synchrotron (SPS) accelerator. This beam-line can be tuned to deliver
a muon or a hadron beam and, therefore, it is ideally suited for the two physics programmes
of COMPASS. A scheme representing the production of a polarised muon beam is presented
in Fig. 3.1. The first step is the acceleration of protons in the SPS to an energy of 400 GeV.
Thereafter they are extracted into the M2 beam-line, during 4.8 s in a cycle of 16.8 s (spill
structure of the beam), and then their collision with a thick beryllium target (T6) is imposed.
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Hadron Absorber
COMPASS Target

Berylium Target:
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measurement
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Figure 3.1: Sketch of the production of a polarised muon beam for COMPASS. The resulting
leptons, µ+, are the probes used to scan the gluon polarisation.

As a result, a secondary beam of kaons and (mainly) pions is produced: K+, K−, π+ and
π−. The positive particles of the beam are then selected by bending magnets and directed into
a decay pipe of 500 meters long. Basically only π+ mesons enter into the tunnel, and then
most of them decay into µ+νµ pairs while travelling through this 500 m section of the M2 line.
Therefore in the rest frame of π+ the resulting µ+ are 100% polarised, with negative helicity,
due to the presence of a left-handed neutrino in the final state (owing to the angular momen-
tum conservation). The thickness of the solid beryllium target can also be adjusted in order to
provide a specific intensity for the muon beam. For a nominal intensity of 2.8 × 108 µ+/spill,
a target length of 500 mm is needed for T6. Finally, at the end of the tunnel is placed a heavy
hadron absorber to remove the remaining hadrons from the beam. The polarised muons pass
through this absorber with a minimum loss of their initial energy. Thereafter, they enter into
a new section of 400 meters long, where particles of a given energy are selected and focused
using a set of magnets. The out-coming muons are then delivered directly to the COMPASS
experimental hall, where they will collide on a fixed polarised target (cf. Fig. 3.3 and Fig. 3.5).
The contamination of the beam by hadrons is less than 10−6.

Due to the Lorentz boost, the muon beam is no longer 100% polarised in the laboratory frame.
Instead, the magnitude of its polarisation is given as a function of the muon energy and also
as a function of the energy of its parent particle:
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Pµ = −
m2

π,K +
(
1− 2Eπ,K

Eµ

)
m2

µ

m2
π,K −m2

µ

(3.1)

Therefore, the selection of the momentum for π+/K+ (and also for µ+) allows us to adjust
the polarisation of the muon beam. However, the momentum selection for the latter is also
constrained by three important parameters that must be taken into account: the experimen-
tal acceptance of events (which varies with the muon energy), the beam intensity and most
important the cross-section for the PGF process. Dedicated Monte Carlo studies have shown
that the optimal momentum for µ+ is 160 GeV/c [61]. Thereafter, a parameterisation of the
beam polarisation as a function of the muon momentum was obtained from a Monte Carlo
simulation of the M2 beam-line. This line was also used by the SMC experiment, which mea-
sured the polarisation of the muon beam with a good precision [62, 63]. It was found that the
results of these measurements agree very well with the ones obtained from the Monte Carlo
parameterisations (cf. Fig. 3.2) and, therefore, it was decided to use the latter to determine
the polarisation of the muon beam at COMPASS. For the data collected in 2002 and 2003, an
average muon polarisation of 〈Pµ〉 = −0.76 is obtained. To accomplish that, the momentum
of π+/K+ is selected to be pπ+,K+ = 177 GeV/c. For the years of 2004, 2006 and 2007 the
momentum of the secondary beam is changed to pπ+,K+ = 172 GeV/c, resulting in a larger
polarisation of 〈Pµ〉 = −0.82.

Figure 3.2: Monte Carlo parameterisation of the muon beam polarisation as a function of the
beam momentum (pµ+). In 2002 and 2003, a momentum of pπ+,K+ = 177 GeV/c is selected
for the secondary beam (circles). For the years of 2004, 2006 and 2007 it was decided to use
pπ+,K+ = 172 GeV/c in order to increase the polarisation of the muon beam (triangles).

We can see in Fig. 3.2 that Pµ is obtained for every µ+ event, provided that its momentum is
known. The momenta of these particles are measured up to an accuracy of 0.5% by the Beam
Momentum Station, BMS, which is located 100 meters upstream of the COMPASS target.
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The muon polarisation, Pµ, is one of the important factors used in the open-charm analysis.
It enters as a dilution factor in eq. 2.85, and because of that it will also be used as an event
weight for the extraction of ∆G/G (see Chapter 6).

3.2 The Polarised Target

The COMPASS target used in 2002, 2003 and 2004 consists on two solid state cells, each 60
cm long and 3 cm in diameter, separated by a gap of 10 cm. For the study of the gluon
polarisation, the cells are longitudinally polarised in opposite directions (in order to allow for
the extraction of the spin asymmetries). The experimental acceptance for the resulting events
is limited to an angular range of ±70 mrad. However, in the years of 2006 and 2007 the target
setup was upgraded to a 3-cell system with an angular acceptance of ±180 mrad. These two
improvements represent the only differences compared to the setup used until 2004. In 2006
and 2007 the upstream and downstream cells are 30 cm long, and are both 5 cm away from a
central cell of 60 cm long (their diameter is 4 cm). The former cells are longitudinally polarised
in the opposite direction of the middle cell, cf. Fig. 3.3:

  

180 mrad

1000 mm

Two 30 cm long target cells              One 60 cm long target cell 
polarised in the same direction     polarised in the opposite direction  

Superconducting
Solenoid (2.5 T) Magnet (0.5 T)

Dipole

refrigerator (T ~ 50 mK)
3He – 4He Dilution

Figure 3.3: Setup of the COMPASS target as it was used during the years of 2006 and 2007.
The arrows indicate the orientation of the beam and target spins. The spins of the latter may
be reversed by the dipole magnet without any loss of polarisation. The experimental acceptance
of events is limited by the radius of the surrounding solenoid and has a value of ±180 mrad.

Solid state targets are used, for all years of data taking, in order to achieve the high lumi-
nosity required for the physics programme of COMPASS. The target material used to study
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the spin structure of deuterons and protons is 6LiD (2002-2006) and NH3 (2007), respectively.
The target cells are surrounded by a powerful superconducting solenoid which is used for their
polarisation. Therefore, the solenoid defines the aperture through which the resulting events
are accepted for detection. During the years of 2002-2004, the old solenoid of SMC (with an
aperture of ±70 mrad) was used in the setup of the COMPASS target.

DNP - The Dynamic Nuclear Polarisation method

The first requirement for the study of the nucleon spin is to have a proton (or deuteron) target
with a very high level of polarisation 1. This can be achieved by the superconducting solenoid
which provides a homogeneous longitudinal magnetic field of 2.5 T. However, even with such
a field-strength and with a temperature of 1 K the polarisation that one can reach for these
nuclei is less than 1%. Under the same conditions the electrons can be polarised up to 96%.
This big difference is explained by a much higher magnetic moment of electrons in comparison
with the atomic nuclei. Therefore, a technique based on the Dynamic Nuclear Polarisation
method [64] is used to polarise the target. Basically the trick consists in the transfer of the
large electron polarisation to the nuclei. This method takes into account the fact that the
electrons interact with the nucleus, in the atomic system, through the electromagnetic field. In
other words, they need to be treated as a complex quantum system and cannot be considered
separately. Let us consider, for illustration, an atomic system composed by one proton and
one electron. Therefore, for a given electron spin projection we have two possible states for the
proton spin (cf. Fig 3.4):

1. |A〉 =
(
+1

2
, +1

2

)
& |C〉 =

(
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2
, +1

2

)
2. |B〉 =

(
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,−1

2

)
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(
−1

2
,−1

2

)
where in 1. (2.) the electron spin is oriented parallel (anti-parallel) to the magnetic field. Inside
the strong solenoid field, the atomic system is divided among the two quantum states defined
by |B〉 and |D〉. Then, after polarising the electrons with the solenoid field, the target cells are
irradiated with a microwave radiation. The frequency of the radiation is tuned to the exact
value that allows for a simultaneous flip of the electron and proton spins. We can verify in
Fig. 3.4 that the selection of the proper frequency ωe + ωp allows for a complete polarisation
of the proton spin in the direction anti-parallel to the magnetic field. This frequency has no
impact in those atomic systems where the proton spin is already anti-parallel to the solenoid
field (|D〉), i.e. both spins of the system remain unchanged. However, for those atoms that
are in the state |B〉 the electron and the proton spins are reversed by 180o degrees. Soon
after this spin flip the electrons relaxate to a lower energy state, defined by |D〉, while the
protons maintain their spin orientation. The latter is justified by the long relaxation time
of protons (low magnetic moment). Therefore after this procedure almost all nuclei will be
polarised in the same direction, which is anti-parallel to the magnetic field (|D〉). Analogously,
if we want to polarise the target parallel to the solenoid field, we just need to irradiate the
cells with a frequency of ωe − ωp. During the polarisation of electrons, the 3He-4He dilution
refrigerator provides a temperature of about 0.4 K (c.f Fig. 3.3). In this way the magnitude of
the polarisation that one can achieve is maximised, because the thermal motion of the system
is reduced to a minimum. Then, after polarising the nuclei with the microwave radiation, the

1Information about the neutron spin can be obtained from the combined results on the proton and deuteron
targets.
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spin configuration is frozen by cooling the target material to 50 mK. Thereafter we can benefit
from a long relaxation time which exceeds 1000 hours.

eω

pω

 +eω pω

 -eω pω
magnetic
field

electron spin
relaxation

electron spin
relaxation

A

B

C

D

Figure 3.4: Diagram representing the four energy levels defined by the spin projections of an
electron-nucleon pair. Transitions between the levels are possible using the following microwave
frequencies: ωe + ωp and ωe − ωp. Arrows ⇑ and ↑ represent the nucleus and electron spin
projections.

There is a separate microwave system for each of the target cells: one for the middle cell and
another one for the upstream plus downstream cells 2. In this way we can polarise the cells
in opposite directions by providing the two microwave frequencies shown in Fig. 3.4. To ac-
complish that, the target cells are placed inside a microwave cavity. They are separated by a
gap containing a microwave stopper, which prevents the radiation intended for one cell from
leaking into the other one. This microwave system ensures the attainment of the desired spin
configuration with a very high level of polarisation. The result can be seen in Fig. 3.3 (red and
yellow arrows). We can see that the cells are installed one after the other along the beam and,
consequently, they are exposed to the same muon flux. This fact is important to avoid the
measurement of false spin-asymmetries related to variations of the beam flux. However, we can
also see that the experimental acceptance is different for the events coming from separate cells.
This difference is even larger for the 2002-2004 setup (2-cell system). Here lies the main reason
for the target upgrade to a 3-cell system: the average acceptance for the events coming from
the upstream + downstream cells is approximately the same as the acceptance experienced by
events coming from the middle cell. Nonetheless, possible contributions from this kind of false
asymmetries are easily eliminated by the application of a dipole field of 0.5 T. This field is
perpendicular to the solenoid one, and it is capable of reversing the target spins (in 30 min-
utes) without any loss of their polarisation. This procedure ensures the cancellation of false
spin-asymmetries originating from the different experimental acceptances. However, small false
asymmetries correlated with the application of the dipole field can also be generated. Therefore
in 2006 and 2007, the spin reversal is done only once every 24 hours. For the years of 2002,
2003 and 2004 the polarisation is flipped every 8 hours due to the absence of a 3-cell system.

2For the 2002-2004 setup, the two cells have also a separate microwave system.
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The polarisation of the target is measured by the method of Nuclear Magnetic Resonance. It
is constantly monitored by five NMR-coils along each cell. The maximum polarisation obtained
is +57% and -53% for the target based on the 6LiD material (2002-2006). For the ammonia
target, NH3 (2007), the maximum polarisation achieved is +95% and -95%. The results of these
measurements give us the second dilution factor present in eq. 2.85 (needed for the extraction
of ∆G/G), i.e. the target polarisation Pt. The final 〈Pt〉 is about 50% for the 6LiD target
and about 86% for NH3 target. The justification for the lower polarisation of the former is
found in the magnetic moment of the deuterons, which is significantly smaller than the mag-
netic moment of protons. The fact that only deuterons (protons) are polarisable in the 6LiD
(NH3) target implies that the polarisation values shown above are not true for all interactions
of the muon beam at the target. This is correctly taken into account by the third dilution factor
appearing in eq. 2.85, f , which accounts for the fraction of polarisable material inside the target.

The dilution factor f

The 6LiD molecule can be considered as formed by a 6Li-nucleus plus deuteron. The 6Li-
nucleus can again be thought of as a 4He-nucleus, i.e. an alpha particle, and yet another
deuteron. Therefore with this simple picture of 6LiD we get an average value for f around 0.5
(4 polarisable nucleons out of a total of 8 nucleons):

f =

4︷︸︸︷
nnuc

D

nnuc
D + nnuc

4He︸ ︷︷ ︸
8

= 0.5 (3.2)

In a similar way we can obtain 〈f〉 ≈ 0.17 for the NH3 target (three polarisable nucleons out of
17). However, in reality the target cells contain a certain amount of impurities contaminating
the above materials. In particular, for the 6LiD target, half of the cylindrical cells is filled
with the 3He-4He cooling-mixture fluid. By taking into account these two elements, we get a
dilution factor with the approximate value of 〈f〉 = 0.43. However, the target has also traces
of 6 different isotopes: 1H, 6Li, C, F, Ni and Cu. In addition, the NMR coils are made of
cooper-nickel (CuNi) with a Teflon coating containing carbon and fluor. All these elements
need to be taken into account in the analysis since they dilute the polarisable material inside
the target. The proper formula for the calculation of the dilution factor is:

f =
nnuc

(D/P )

nnuc
(D/P ) +

∑
A nnuc

A

(
σ̄(A)

σ̄D/P

) (3.3)

where nnuc
(D/P ) is the number of polarisable nucleons in the 6LiD/NH3 target. The sum runs

over all the remaining isotopes contaminating the cells and σ̄ represents the unpolarised muon-
nucleon cross-section. The final results give the values of 〈f(6LiD)〉 ≈ 0.36 and 〈f(NH3)〉 ≈
0.15 for the two targets used in COMPASS [65].

3.3 The Spectrometer

The COMPASS detector consists on a two-stage forward spectrometer (cf. Fig. 3.5). The spec-
trometer is divided in two separate parts in order to optimise the resolution of the momenta
associated to the reconstructed tracks of particles. The first one is a Large Angle Spectrometer
(LAS) and, as the name implies, it was designed to perform accurate measurements of tracks
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emitted at large angles (up to 180 mrad) with respect to the beam direction. The LAS encom-

  

ECal & HCal

           LAS → Large Angle Spectrometer 
                         (low momentum tracks)

 SAS 

Figure 3.5: The artistic view (top) and top view (bottom) of the COMPASS spectrometer
during the 2004 data taking. The polarised muon beam enters from the left, and after being
tracked by a set of SciFi and Silicon detectors collides in the polarised target. The products of
the reaction are detected by a two-stage spectrometer, which are separated by the SM2 magnet.

passes all detectors between the polarised target and the SM2 magnet. On the other hand,
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the Small Angle Spectrometer (SAS) is intended for the reconstruction of high momentum
tracks emitted at smaller angles (up to 30 mrad). Both spectrometers contain dipole magnets,
SM1 and SM2. The SM1 is located 4 meters downstream of the target and has a field integral
of 1.0 Tm. Its main purpose is to allow for a measurement of the low momenta associated
to the particles emitted at large angles in the LAS. In order to accomplish that, the magnet
was built with a wide angular acceptance: it has a central hole with dimensions of 2.29 ×
1.52 m2. The drawback of using such a wide magnet, in that position, is that it leads to a
non-negligible fringe-field in the zone between the target solenoid and the SM1. Nevertheless,
for some cases, this fringe-field is useful to estimate the momenta of those particles that do not
cross the dipole magnet (p < 400 MeV/c). This can be done by measuring the tracks deviation
in the fringe-field. However, the reconstruction efficiency of particles with a momentum smaller
than 2 GeV/c is quite low 3 (cf. Chapter. 4). Fortunately these missing tracks have a little
impact on the open-charm analysis (see section 5.5). Concerning the SAS, the SM2 magnet is
located 18 m downstream of the target. It has a field integral of 4.4 Tm and a central hole
with dimensions 2 × 1 m2. Particles need to have at least 4 GeV/c to pass through the SM2.

Each spectrometer is equipped with several tracking detectors, before and after each mag-
net, in order to permit the reconstruction of tracks associated to the particles coming from a
polarised DIS event. The tracks are reconstructed by segments, i.e. each tracking zone (field-
free regions) reconstructs a segment of the original track, and then all the segments are bridged
through the magnetic field. The measured deflection allows us to estimate the momentum as-
sociated to each reconstructed track. Thereafter, the identity of the final state particles can be
revealed by measuring their velocity with the RICH detector (cf. section 3.3.2). This detector
is located in the first spectrometer. To complement the experimental apparatus, a set of elec-
tromagnetic and hadronic calorimeters also exists in both spectrometers. Since the hadronic
calorimeters absorb most of the particles whose energy they are intended to measure, they are
placed at the end of each spectrometer. For the identification of muons, a set of muon filters is
used at the very end of the LAS and SAS. Particles with large momenta are able to cross the
LAS due to the existence of holes in the calorimeters and in the muon filter.

The positions of all detectors are defined in a reference system where the Z axis is oriented along
the direction of the beam. The X axis is pointing horizontally (in the magnetic bending plane)
and the Y axis is pointing upwards. In 2002-2004 the upstream cell of the polarised targed is
located between Z = −100 cm and Z = −40 cm whereas the downstream cell is between Z =
−30 cm and Z = 30 cm. In 2006 and 2007 the upstream cell is placed between Z = −65 cm
and Z = −35 cm, the middle cell between Z = −30 cm and Z = 30 cm, and the downstream
cell is located between Z = 35 cm and Z = 65 cm.

3.3.1 Tracking detectors used in the LAS and in the SAS

Both spectrometers are equipped with three types of tracking detectors: Very Small Area
Trackers (VSAT), Small Area Trackers (SAT) and Large Area Trackers (LAT). The former
were designed to handle the high intensity of the beam and therefore they are suited to detect
particles emitted at small angles. On the other hand, the LAT detectors were made to cover
large angles and because of that they don’t need to be optimised for high rates of particles. The
purpose of these detectors is to measure the impact point (hit) of a charged particle. Typically

3The fringe-field hinders the reconstruction of low momentum tracks in that zone. In most cases these
particles are not reconstructible at all, even if their tracks are well reconstructed downstream of SM1: their
momenta cannot be estimated because the corresponding tracks were not reconstructed in the fringe-field, i.e.
it is not possible to measure the deflection imposed by the SM1 on these particles.
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one plane of a tracking device measures the X or Y coordinate of the impact point. Several
segments can then be reconstructed by connecting all the hits along the spectrometer. In order
to solve ambiguities, the detectors are sub-divided in consecutive planes (at different Z) with
their wires oriented in different projections (Y (0o), 45o, X (90o) and 135o). Two planes are
needed to reconstruct a space-point. The most important tracking detectors used in COMPASS
are presented in Tab. 3.1.

Detector
Active Dead Time Space

area (mm2) zone (mm) resolution (ns) resolution (µm)

SciFi 39 × 39 (pre-target) − 0.50 130
SciFi 123 × 123 (spectro.) − 0.35 210

Silicons 50 × 70 − 3 14
Micromega 400 × 400 r = 50 9 90

GEM 316 × 316 r = 50 12 70
Drift Chamber 1800 × 1275 r = 30 − 220
Straw Tubes 3230 × 2800 197 × 197 − 250

MWPC 1780 × 1200 r = 220 − 500

Table 3.1: Characteristics of the most important tracking detectors used in COMPASS. The
three rows divide the VSAT, SAT and LAT. In the latter only the larger dimensions of the
detectors are shown (they have multiple sizes along the spectrometer). In total COMPASS
has 8 SciFi with 24 projection planes (3 per detector), 3 Silicons with 12 projections, 11 GEM
with 44 projections, 3 Micromegas with 12 projections, 3 Drift Chambers with 12 projections, 4
Straws with 15 projections and 11 MWPC with 34 projections. The efficiency of these detectors
is 99% for the VSAT and around 97% for the remaining ones.

Micromegas

One of the detectors used by COMPASS to handle high rates of particles is the Micro Mesh
Gas detector (Micromega). The detector and its working principle are shown in Fig. 3.6.
It is chosen as an example to illustrate the tracking technologies used in COMPASS. Each
Micromega is a gas chamber that is divided in two regions of different voltages. The separation
of the conversion gap from the amplification gap is made by Micromesh wires subjected to
a voltage of 500 V. As the names imply, the ionisation caused by the passage of a charged
particle is produced in the conversion gap, whereas the avalanche of electrons takes place in the
amplification gap. In the latter, the configuration of the electric field ensures a quick evacuation
of the ions to the Micromesh. Note that the rate of particles that a gaseous detector can stand is
inversely proportional to the drift time of the ions (the drift is, in general, very slow). Therefore,
the trick consists in the reduction of the distance between the beginning of the amplification
process and the cathode. In Micromegas the anode strips are separated from the Micromesh
by an impressive 0.1 mm. This fact combined with a reduced diffusion of electrons makes
the detector capable to withstand high intensities of particles. Therefore, with the help of
Micromegas COMPASS is able to reconstruct tracks with high precision at very small angles.
This design results in a time resolution of about 9 ns and a space resolution of 90 µm for the
detector. In total, three stations of Micromegas are used in the LAS (between the target and
the SM1). Each station is composed by 4 planes with the following orientation of the wires:
135o (at a fixed Z), 45o (Z + 1 cm), 90o (Z + 9 cm) and 0o (Z + 10 cm). The last two measure
the coordinates Y and X (respectively) of the hits produced by a passing particle.
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Figure 3.6: One plane of the Micromega detector (left) and its working principle (right). The
active area is represented by the central green square (left). The ions resulting from the
ionisation of the gas are subjected to a potential difference of 50 kV/cm in the amplification
gap. In the conversion gap the potential difference is of 1 kV/ cm.

3.3.2 The RICH detector

The LAS is equipped with a Ring Imaging CHerenkov (RICH) whose purpose is the identifica-
tion of charged particles (cf. Fig 3.7). The working principle is based on the Cherenkov effect:
a charged particle crossing a medium with a speed greater than the speed of the light in that
medium emits photons at an angle θC . The use of this effect to identify charged particles is
extensively discussed in section 5.2.1. Here we are only interested in the description of the main
characteristics of the detector. All particles that reach the RICH within its wide acceptance 4

Figure 3.7: Scheme of the working principle (left) and an artistic view (right) of the RICH.

4RICH acceptance: ± 250 mrad in the horizontal direction and ± 200 mrad in the vertical direction.
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have to cross 3 m of a C4F10 gas. The detector was designed to ensure a constant pressure for the
gas and also its transparency to the visible and UV photons 5. These are crucial requirements
for the correct operation of the RICH. The radiator gas system keeps the gas pressure constant
within 10 Pa and ensures its transparency by a continuous filtering of contaminants. The
biggest problem is the presence of O2 and H2O inside the gas, due to their large absorption
cross-section in the UV range. Therefore these molecules are continuously removed from the
cavity of the RICH.

All photons produced in the radiator are reflected by a 21 m2 wall, formed by 116 spherical
UV mirrors, and focused onto photon detectors. The mirror wall is divided in two spherical
systems, with their centres vertically displaced in order to be able to focalise outside the
spectrometer acceptance. In this way the photon detectors can be installed so that they are
protected by the SM1 magnet. In Fig. 3.7 one can see that parallel rays are focused into the
same point by the mirror system. As a result, the photons emitted by a given particle produce
a ring in a plane of the photon detectors. The radius of this ring is proportional to the focal
length f of the mirror system:

r = θC × f (3.4)

where f has the value of 3.3 m. An example of these reconstructed rings is given in Fig. 3.8.
If we determine their radius, r, we can access the value of the corresponding Cherenkov angle
θC . In section 5.2 we will see that this angle allows us to obtain the mass of a given particle as
long as we know its momentum. Particles are, therefore, identified in this way.

Figure 3.8: Left: examples of rings (made by the impact of Cherenkov photons) reconstructed
in the central part of the photon detectors (MAPMT). The outer parts are made of MWPC
detectors. Right: refractive index of C4F10 as a function of the Cherenkov wavelength. The
visible photons are only detected by the MAPMT. These figures are made for the 2006 setup.

During the years 2002-2004 the photo-detection in the RICH has been performed with MultiWire
Proportional Chambers (MWPC). The Cherenkov photons enter the chambers via a quartz
window and hit their photocathod (made of CsI). These photons are then converted to elec-
trons and thereafter multiplied in the MWPC. The main drawback of the system is its electronic

5The intensity of the Cherenkov photons emitted by a given particle increases with decreasing the photon
wavelength. Therefore, the detector was optimised to work also in the very Ultra-Violent (UV) range.
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readout which, unfortunately, generates a considerable amount of dead time due to its long in-
tegration time (around 3.5 µs). Consequently, the four central pads of the photon detectors are
highly populated by uncorrelated background images (until 2004). Major sources for this back-
ground are pile-up muons (non-interacting beam particles) crossing the RICH: the Cherenkov
images produced by the high momentum particles are detected in those four pads. This con-
tamination was reduced by the installation of a stainless steel beam pipe (10 cm in diameter),
which shielded the photon detectors from photons originating from the muon beam. However,
not all the beam can be contained in the pipe. Therefore these halo muons contribute to a sub-
stantial amount of background. To overcome these limitations the RICH detector was upgraded
from 2006 onwards. The main update is the replacement of the central part of the photon de-
tectors by Multi Anode Photo Multiplier Tubes (MAPMT). These tubes have a considerably
higher detection efficiency and a much faster response. The latter is important to account for
the high intensity of Cherenkov photons emitted by the halo muons. For the outer parts the
readout electronics was also refurbished, allowing a significant reduction of the background. In
total, the MAPMT system allows to detect four times more Cherenkov photons than in the
peripheral MWPC detectors. The use of two different detectors results in the detection of pho-
tons in two different wavelength regions (cf. Fig. 3.8). Consequently, the average values of the
corresponding refractive indexes are also different. From now on they will be referred as nUV

(MWPC) and nV S (MAPMT). This extended wavelength range also helps to distinguish a given
particle from halo muons (they emit mainly UV photons). The result of the RICH upgrade
can also be seen in Fig. 3.8: photon rings are very well reconstructed by the MAPMT detectors.

We will see in section 5.2 that the threshold condition for the Cherenkov effect is:

β ≥ 1

n
(3.5)

where n is the refractive index and β =
√

1 + (M2c2)/p2. In the latter, M and p are the mass
and momentum of the detected particle. Using the average value of the two refractive indexes
belonging to the C4F10 gas (c.f Fig. 3.8), we obtain the following thresholds for the Particles
IDentification (PID): 2.5 GeV/c for pions, 9 GeV/c for kaons and 17 GeV/c for protons.

Figure 3.9: The measured Cherenkov angle θC versus the particle momentum p. Pions, kaons
and protons are clearly distinguished below a momentum of 50 GeV/c.
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For growing momenta we approach the asymptotic limit of β = 1/n (small angles for the
Cherenkov photons), which means that it is more difficult to separate the different kinds of
particles. By design, the RICH detector of COMPASS has a limit around 50 GeV/c for PID.
All these limits can be confirmed in Fig. 3.9.

To finalise this section, Fig. 3.10 shows the impact of the RICH upgrade in the analysis. Clearly,
the RICH detector is now much more efficient in the identification of kaons. The number of
kaons, per incoming muon, is bigger by almost a factor of three, in 2006. One can also see the
impact of the increased acceptance of the target solenoid for the year of 2006: the reconstruction
of pions at larger angles is significantly improved. These two mesons are of crucial importance
for the present analysis. They are the decay products used to reconstruct the open-charm
mesons and, therefore, they are the primary seeds for the definition of a PGF process.
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Figure 3.10: Number of identified pions (left) and kaons (right) per incident muon, as a function
of the polar angle θ. The comparison is done between the target and spectrometer setups of
the years 2004 (red) and 2006 (yellow). All events are required to be identified by the RICH
detector.
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Chapter 4

Reconstruction of Tracks in the LAS

As already stated in section 3.3, the reconstruction of low momentum tracks is strongly hin-
dered by the fringe-field that exists upstream the SM1 magnet. A scheme of this particular zone
of the LAS is shown in Fig. 4.1. Although only the equipotential lines of the individual mag-
netic fields (solenoid and SM1) are represented, we should not forget that interferences between
the two fields also exist. This fact introduces an additional difficulty for the reconstruction of
tracks, because it may generate subtle effects (small instabilities in the apparatus) that cannot
be predicted. In the presence of such fringe-field the trajectories of low momentum particles
are expected to deviate significantly from straight lines. Therefore, the standard-method 1 for
the reconstruction of tracks cannot be applied in this zone of the LAS.

The reconstruction program of COMPASS uses the so-called projection method [66, 67].
The track-candidates are first searched in the XZ and YZ planes, separately, and thereafter
they are associated in space with the help of inclined detector planes (U and V ). The X and Y
projections represent the axes of reference used for the reconstruction of tracks. A pair of hits
in two reference planes with the same projection provides the x (or y) coordinates and the slope
dx/dz (or dy/dz). These planes are well separated in order to allow for a reasonable accuracy
on the obtained line direction. Lines are defined for each of the reference planes by connecting
the corresponding hits. In the non-bending plane, YZ (the dipole fields of SM1 and SM2 are
oriented in the Y direction), all the accepted lines are required to point to the target within
a tolerance accounting for a possible residual curvature. The same is demanded for the lines
defined in the X projection after the SM1. Finally, the obtained 3-d segments (combination
of lines from the orthogonal projections X and Y) are extrapolated to the remaining U and
V planes of the same tracking zone. The hits that are found within a given distance around
the impact point, in those planes, are added to the track-candidate. The validation of these
segments just requires the existence of a minimum number of planes with selected hits.

The majority of tracks have their origin before the SM1 magnet. Therefore, most of the
downstream segments need to be connected to their counterparts in the fringe-field zone. The
measurement of the deflection caused by the SM1 allows us to measure the particles momen-
tum. However, due to the existence of a fringe-field (upstream the SM1), the reconstruction of
particles with a momentum smaller than 2 GeV/c is somewhat inefficient. To counter this fact,
a different approach is used to collect the track-candidates in that zone. It is based on the use

1Typically the tracking detectors are installed in free-field zones where straight lines (containing several
hits) can be defined. Then, the particles momentum is estimated by bridging two matching lines through a
magnetic field.
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Figure 4.1: Schematic representation of the LAS spectrometer, between the target solenoid and
the SM1 magnet, as it was used during the year of 2003 (top figure). All tracking detectors of
the zone are represented. The number of detection planes are given by the vertical lines. The
orientation of the wires have the following convention: Y (top-bottom direction), U (45o), X
(90o) and V (135o). A scaled representation of the projection-plane defined by the X coordinate
is also shown (bottom figure). The blue lines illustrate the fringe-field, whereas the red arrows
point to the 3 Y planes of Micromegas that measure the X coordinate of the hits.

of a dictionary containing all the possible tracks through the COMPASS spectrometer. This
dictionary maps the 2 representations of tracks into each other, i.e. a set of hits is connected to
a vector in a 5-dimension phase space. The latter contains the following 5 parameters: x, y, tx
(dx/dz), ty (dy/dz) and Q/p (charge / momentum). The dictionary is organised as a look-up
table, thus allowing a very fast calculation of the χ2 of a given 5-vector with respect to a set
of hits. The lines defined in the YZ plane of the fringe-field zone follow the same procedure
described above (for lines in the SAS). However, for the X projection, lines are selected by
comparison with the dictionary of particles. The chosen lines are those containing the values
of x and tx corresponding to the smallest χ2. This selection of segments is possible as long
as we know the magnetic field map in the fringe-field zone (note that y and ty are available a
priori). Finally, the fringe-field segments that are kept are those that can be bridged through
the SM1 to a more downstream segment. Despite the efforts done for a good reconstruction
in the fringe-field, the overall efficiency achieved is 〈ε〉 = 89.8%. The latter is obtained from a
Monte Carlo simulation using the number of generated and the actually reconstructed tracks.
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A minimum number of 8 hits in the fringe-field zone is required for the reconstruction. The
detection efficiency of the Micromegas is 97% (main detectors in the fringe-field). Therefore,
the justification for a lower efficiency of reconstruction is found in the contributions of low
momentum particles. The efficiency ε drops to about 75% for p = 1.5 GeV/c and below 50%
for p ≤ 0.5 GeV/c. In the frame of this scenario, a new method based on a cellular automaton
approach is developed. The goal is to raise the reconstruction efficiency for the low momen-
tum particles. However, before we come to that, lets summarize how the measurements of the
fringe-field are done.

Magnetic field in the fringe-field zone:

The field map of SM1 was measured at the beginning of the experiment. This was accomplished
through the use of Hall probes, moved step-wise, systematically, over the volume of the zone.
Thereafter a file with three field components and three space-point coordinates was produced.
The grid size of these measurements is 4 × 8 × 8 cm. Concerning the solenoid, only two field
components (z and r) are stored in the field map. This is justified by the cylindrical symmetry
of the homogeneous field provided by the solenoid. Apart from the latter, the target dipole
magnet is also able to generate a field of 0.5 T in the Y direction. For this mode of operation
the field map is provided in cartesian coordinates. The final field evaluation is performed by a
linear interpolation between all measurements.

4.1 Cellular Automaton for fringe-field tracking

An algorithm based on Cellular Automata is developed in an attempt to overcome the dif-
ficulties of reconstruction of particles with low momentum. Cellular Automata have become
particularly popular in the seventies with the creation of the Game of Life [68] by the british
mathematician John Horton Conway. The idea was to use a fixed set of rules under which a
simple system could evolve into complex structures capable of simulating some aspects of real
life. Basically, Conway built a zero-player game: its evolution is completely determined by the
initial state, without further inputs. The universe of the game is an infinite two-dimensional
grid of square cells. Each cell can assume only one out of two possible states: live or dead. The
set of rules for this system is very simple (rules are applied locally to each cell):

1. A cell with less than 2 living neighbours dies from isolation.

2. A cell with 2 living neighbours stays alive for the next generation.

3. A cell is born if it has exactly 3 living neighbours.

4. A cell with more than 3 living neighbours dies from overpopulation.

The initial pattern constitutes the seed of the system. Thereafter, all cells in the grid evolve
simultaneously, in discrete amounts of time, to a new generation of cells. The new created
structures continue to evolve, originating increasingly complex structures that are capable to
simulate all kinds of behaviour. The evolution continues until stable structures are found.
Structures with about 4000 cells capable of simulating logical behaviours (like memory) and
movements through space were already observed. Cellular Automata are not learning algo-
rithms (like the ones typified by Neural Networks) but, as explained above, they are a good
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model for a large number of artificial life simulations. They can be considered as a particular
case of a Neural Network. The use of the latter implies that the system is able to assume con-
tinuous states during its evolution. Here, the evolution proceeds in discrete amounts of time
with the system assuming only those states that are allowed by the simple set of local rules.

The application of Cellular Automata to the track reconstruction in particle physics is pretty
straightforward. Analogously to the cells used in the Game of Life, we can define 3d-segments
as the basic ingredients of a Cellular Automaton algorithm for tracking. These segments will be
called from now on as cells. Looking back to Fig. 4.1 we see that 3 different types of detectors
coexist in the fringe-field zone. Unfortunately, due to their inhomogeneity, the performance of
the algorithm is severely disturbed. Therefore, the reconstruction of tracks is performed in two
stages:

1. Track-searching part → The procedure involving Cellular Automata is applied only
to the Micromegas. The goal is to create seeds of very good quality.

2. Track-following part → The seeds selected in the track-searching are extrapolated
(using a Kalman Filter [69, 70]) to the remaining detectors, and also to the Micromegas
projections that were not used. The goal is to catch more hits and to remove ghost tracks.

In this chapter we focus our attention on the track-searching part. The full procedure is
illustrated in Fig. 4.2:

1. Space-Points

5. Tracks

2. Cells

4. Track-Candidates

3. Evolution
1 2 3 4 5

Figure 4.2: The track-searching procedure using all 6 Micromega stations. Each station is
formed by 2 neighbouring projection-planes (cf. top of Fig. 4.1). The space-points are defined
by the combination of 2 neighbouring hits in orthogonal planes.

54



A typical Cellular Automaton is built accordingly to the following algorithm. First we de-
fine elementary cells along with their possible discrete states. After that we need to define
the concept of neighbour and, in addition, a set of communication rules between all cells. Fi-
nally, the last step of the algorithm encompasses the definition of time evolution for the system.

We are now in conditions to describe the track-searching algorithm presented in Fig 4.2:

1. Definition of Space-Points → All hits in neighbouring planes of Micromegas are com-
bined in space-points. These points are reconstructed on the average Z coordinate corre-
sponding to the planes used. They are only accepted if their location in space is compatible
with the active area of the detectors.

2. Definition of Cells and the Cellular Automaton initialisation→ A cell is identified
with a straight-line segment connecting two neighbouring space-points (from two adjacent
stations). To account for possible inefficiencies of the Micromegas, we have also to define
cells that skip one station. The only criterium for their selection is that they point in the
direction of the target: a safe cut of 0.2 is demanded for the tx and ty (cf. Fig. 4.3-left)
of all accepted cells. This cut accounts for the curvature introduced in the tracks by the
fringe-field. The algorithm is initialised by attributing to all cells a discrete value of 1.

3. Definition of Neighbours and Rules of Evolution → Cells with a common Space-
Point are likely to be considered neighbours. The second requirement for that to be
possible is the following: two cells are indeed neighbours if they obey the upper limit
defined for their angular difference (cf. Fig. 4.3-right). These angles owe their existence
to the multiple scattering in the detectors and also to the fringe-field. A cut of 0.02
is imposed to the tx and ty differences of all cells that share the same Space-Point. In
Fig. 4.2, the dashed cells have no neighbours. The rules of evolution are as follows. At
each discrete moment of time, all cells look to their preceding neighbours and increase
their value by one unit if they find a neighbour in the same state (i.e., with the same
value). Since the time evolution is discrete, all cells change their state simultaneously.
The evolution stops when there are no more neighbouring cells in the same state. In
COMPASS the maximum value that can be attributed to a cell is 5. These numbers
are associated with the position of cells on the track, and are represented by different
thicknesses and colours in Fig. 4.2.

4. Collection of Track-Candidates → The selection of candidates starts from cells with
the highest position values (5 in the present case). Thereafter, tracks are collected by
adding cells with lower position values of one unit. All neighbouring cells with a position
value which differs by more than one are removed. After the selection of all track-
candidates consisting of 5 cells, all hits that make up their Space-Points are marked as
used. The selection procedure is once again repeated, but now starting with the cells in
position 4. The only requirement is that none of the hits belonging to such a track of 4
cells are already in use (by a higher level track). Tracks with a minimum of 2 cells are
accepted for reconstruction 2.

5. Reconstruction of Tracks→ A final quality test is applied to all track-candidates of the
same level who share hits or Space-Points among them. A Kalman Filter 3 [69, 70] is used

2A minimum of 3 Space-Points is required to estimate the momentum.
3All hits belonging to a given track are fitted twice: one in the forward direction and another one in the

backward direction. As a result, we obtain a helix for the last and first measured points of the track. A helix
consists of: x, y, tx, ty and Q/p. The latter is randomly initialised and then evaluated by the fit. After some
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to fit these tracks and the one with the lowest χ2 is chosen. The remaining competing
tracks are killed. In practice, this quality test is done before the selection of track-
candidates with a lower number of cells. In this way we ensure that the hits belonging to
the latter are not marked as used by a ghost track of higher level. By definition, a ghost
track is a reconstructed track formed by less than 85% of hits belonging to a real track
(the remaining hits belong to other tracks or are fake hits). This procedure allows us to
avoid the fake point (open circle in Fig. 4.2) in the reconstruction of the two real tracks.
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Figure 4.3: Left: slope distribution of all generated tracks in the magnetic bending plane. Only
the piece of each track defined by the MM01 (1st cell) is illustrated here. The target acceptance
is represented by the red vertical bars (as it was in 2003). Right: angular difference between
neighbouring cells corresponding to the same generated track. The first 3 Micromega stations
are used in this example. Similar distributions are obtained for ty.

In Fig. 4.4 we can verify the impact introduced by the Cellular Automaton algorithm in the
reconstruction of low momentum tracks:

Figure 4.4: Illustration of a given event containing 3 generated particles in the fringe-field zone.
All hits are shown in the projection corresponding to the magnetic bending plane. To the left,
the tracks are reconstructed using the projection method. To the right, the Cellular Automaton
algorithm is applied. The remaining points represent fake hits in the Micromegas.

tests, it was decided to use three fits to compensate the considerable error obtained for Q/p after the first fit.
The multiple-scattering (estimated from the detectors radiation length given in the material maps) is accounted
for during the fit.

56



Clearly, for this particular event, the Cellular Automaton algorithm is the only one that is
able to reconstruct the track that bends the most in the fringe-field of SM1 (track with low
momentum). The main advantage of a method based on Cellular Automata lies in its local
and parallel nature. Basically, this means that the rules are only applied to the individual cells
(locality) and that their evolution is simultaneous. The fact that the decisions for the evolution
of the system are made locally, between neighbours, is a valuable aid for the reconstruction
of tracks that reveal a non-negligible curvature. Also, by being essentially parallel and local
the algorithm avoids extensive combinatorial searches (good for the online triggering). The
drawback of this method is related to the characteristics of the detectors used (Micromegas):
hits are provided in projections, which means that we need two registered impacts in two
neighbouring planes to reconstruct a Space-Point. Therefore, the inefficiencies introduced in
the reconstruction of the latter are considerably higher compared with the use of a 2D pixel
detector. The ideal solution for an efficient reconstruction in the fringe-field would be the
replacement of each Micromega projection-plane by a pixel detector. All 2D planes should be
equally spaced apart and, if possible, the use of detectors with different geometric acceptances
should also be avoided 4 (Micromegas and Drift Chamber). These modifications would allow
us to use only the track-searching part for the total reconstruction of tracks in the fringe-field.

4.1.1 Results

Results of the application of Cellular Automata for the reconstruction of particles in the fringe-
field are summarised in Fig. 4.5:
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Figure 4.5: Left: the efficiency of reconstruction, ε = Nrec/Ngen (ratio between the number of
reconstructed and generated tracks), as a function of the tracks momentum. Right: zoomed
version of the figure shown in the left.

The overall efficiency of reconstruction achieved is 〈ε〉 = 90.06%, using a sample of 5000 gen-
erated events. The efficiency drops to about 75% if we consider only generated particles with
a momentum p ≤ 2 GeV/c. At 1.5 GeV/c the efficiency has a value of ε ≈ 80%, while for
particles with a momentum p ≤ 0.5 GeV/c we have an average efficiency of 〈ε〉 ≈ 50%. Unfor-
tunately, these values correspond roughly to those obtained using the projection method (cf.

4The exception to this argument are the SciFi detectors. They are needed for the detection of high momen-
tum particles surrounding the beam.
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discussion after Fig. 4.1). The main reason for this fact can be derived from the analysis of
Fig. 4.7. In this figure we can observe a proper comparison between the generated particles
and the reconstructed tracks. In other words, the quality of the reconstruction can be seen
from the pulls of the following 5 parameters (obtained from the last helix): x, y, tx, ty and
Q/p. A very good reconstruction is characterized by a gaussian distribution centred in 0 and
with a standard deviation of 1. We can conclude from the pulls on the X and Y coordinates
that at least for some tracks the error is overestimated. The main sources of σ ∼ 0.85 are the
reconstructed tracks that correspond to the slow-moving particles. For most of these tracks the
momentum is reconstructed with a deviation in Q/p which greater than 1 GeV/c (regarding the
generated particles). These cases represent 18% of the total statistics. The remaining tracks
are reconstructed with an average deviation of 0.2 GeV/c in Q/p, and 7% of them do not have
any momentum associated (peak at -1 in the residual of Q/p). The latter are mostly tracks of
2-cells for which the Kalman Filter could not find any momentum.

The fact that the momentum of a slow particle is little known is strongly related to the
limited spatial resolution of Micromegas (90 µm). In a fringe-field of about 0.1 T, a slow-
moving particle can be easily deviated from its trajectory in a straight line. However, in most
cases, the magnitude of these deviations is compatible with the resolution of the detector. If
we also take into account the multiple scattering that occurs on the detection planes, we obtain
a relatively large error for the momentum estimated by the Kalman Filter for those particles.
As a consequence, 10% of the tracks are reconstructed with an x-residual which falls outside
the illustrated range. This fact may lead to a misleading fit through the hits of some slow
tracks: part of these hits may be ghost-hits which are selected in the vicinity of the real ones.
As a result we may reconstruct ghost tracks which, in turn, hamper the reconstruction of real
tracks with a lower level of priority 5. Therefore, the efficiency of reconstruction is significantly
reduced for particles with momentum p < 2 GeV/c.

In order to try to improve the determination of the particles momentum in the fringe-field,
a new fitting method was also tested during the track-searching [71]. This method was spe-
cially developed to work with Cellular Automata. It makes use of an analytic formula for a
fast extrapolation of tracks in an inhomogeneous magnetic field. The precision of extrapolation
does not depend on the shape of the magnetic field. However, the results obtained are the
same as those using the standard Kalman Filter algorithm. Therefore, we conclude that the
efficiency of reconstruction associated with slow-moving particles is not likely to be improved
by any method in particular. This statement is valid under the experimental conditions that
were available during the year of 2003.

The relevant tracks for the open-charm analysis are the ones that cross the SM1 magnet. A
proper reconstruction of the D0 invariant mass is assured through the identification of charged
particles by the RICH detector (located downstream of SM1). These particles are only re-
constructed if the fringe-field tracks can find corresponding segments downstream of the SM1.
These segments are very well defined by a straight-line and, therefore, they are a valuable help
in the removal of ghost tracks which were defined in the fringe-field 6. The momentum resolu-
tion for particles whose fringe-field tracks are bridged over SM1 to the downstream segments
is about 1.2%.

Ghost Tracks:

As already mentioned, the Cellular Automaton algorithm reconstructs also a huge amount

5These kind of ghost tracks mark some hits of real tracks (containing less cells or a worse χ2) as being
already in use.

6Note that these segments are extrapolated to the fringe-field zone through the strong field of SM1. The
measured deflection allows us to know the position of the fringe-field track with a reasonably good precision.
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of ghost tracks. About 94% of the selected tracks are ghosts. This poses no problem since
no attempt was made to remove such tracks during the track-searching procedure. The vast
majority of ghost tracks are later on removed from the reconstruction if they do not find a
corresponding segment downstream of SM1. This procedure kills most of the high-level ghost
tracks (containing 4 or 5 cells), which are the most difficult ones to remove. The remaining
ghost tracks need to be removed by a different method. In Fig. 4.6, we can compare the real
tracks that are reconstructed with the ghost and the not-reconstructed 7 tracks:
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Figure 4.6: Total number of hits in the Micromegas produced by reconstructed (top-left), ghost
(top-right) and missed (bottom) tracks.

From the figure above we conclude that about 90% of ghosts have their origin in the tracks of
2-cells containing 6 hits. Most of these tracks are removed from the fringe-field zone during the
track-following part of the algorithm. To accomplish that, a minimum of 8 hits is demanded
for the reconstruction of tracks in the fringe-field. These extra hits are added after a proper
extrapolation of the track-candidates through the planes of the DC detector, and also through
the missed planes of the Micromegas. The ghost contamination can be even further reduced by
the application of a combined set of cuts in the momenta and in the residuals of all tracks (and
also in the χ2). We can confirm in Fig. 4.8 and in Fig. 4.9 that these quantities are significantly
different for ghost tracks. After this selection, the fraction of reconstructed ghosts is kept below
10%.

7Note the large number of tracks with 12 hits that are not reconstructed. The justification for this lies
on the poor momentum estimation for the slow-moving tracks. As a result, we may reconstruct a ghost track
instead of a real one.
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Figure 4.7: The residuals (left) and pulls (right) obtained for the relevant parameters defining
a track. The definition of these two quantities can be seen on the figures.
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Chapter 5

Reconstruction of D0 Mesons

The purpose of this chapter is to provide a set of events where the fraction of those result-
ing from Photon Gluon Fusion (PGF) is enhanced. In Chapter 2 it was shown that a PGF
process can be distinctly tagged by the detection of a charmed meson (at LO-QCD): in the
COMPASS kinematic domain the production of charm is a characteristic signature from an
interaction involving a gluon (cf. Fig. 2.14) and, consequently, the gluon polarisation can be
obtained from the measurable properties of the open-charm mesons that result from the frag-
mentation of the charm quarks. The production of these mesons is originated by the collision
of the virtual-photon with one of the charm quarks 1: due to the asymptotic-free nature of
Quantum Chromodynamics the struck quark escapes from the nucleon but, since all quarks
need to be colour confined, the outcome of this interaction is the production of an open-charm
meson (or baryon). At NLO-QCD, however, some of these mesons result from interactions
between the virtual-photon and a light-quark of the nucleon (cf. Fig. 2.19). Nevertheless, this
contamination is quite small and it can be easily taken into account in a proper NLO analysis
(cf. sections 6.2 and 8.3).

The D0 mesons are the open-charm references considered for the present analysis. Among the
known open-charm hadrons, the D0 has the best branching ratio to the most easily identifiable
particles in the final state: kaons and pions. As in COMPASS there are no dedicated vertex
detectors, restriction imposed by the cryogenic solid state target, it is only possible to have
access to the identification of D0 through its decay particles, pions and kaons. In the experiment,
the best resolution achieved for the z component of the vertex is of the order of 1 cm, which
makes it impossible to distinguish between the production and the decay vertices. Let’s justify
this argument by considering a D0 with a (high) momentum of 50 GeV/c and a cτ of 122.9 µm
[16] (with τ representing the D0 proper time). Using c = 1, we have for the Lorentz factor:

γ =

(
E

E0

)
= 26.81 (5.1)

where

E0 = M(D0) = 1.8648 GeV and E
P2 � E2

0≈ P (= 50 GeV)

Consequently, the total distance travelled by the D0 in the spectrometer is

1The collision may also be seen as between a charm quark and a ”polarised” gluon.
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z = γ × cτ
eq.5.1

≈ 3.29 mm (� 1 cm) (5.2)

Since the reconstruction of these mesons needs be done via their invariant mass (due to the
short life of D0), an efficient identification of the particles that result from their decay is re-
quired (see section 5.2).

The following decay modes are considered for this analysis 2:

D0 3.89%→ K−π+ + cc
(
charge conjugated ∈ D

0
)

(5.3)

D0 13.9%→ K−π+π0 + cc (5.4)

D0 10.8%→ K−ρ+ ≈100%→ K−
(
π+π0

)
+ cc (5.5)

D0 2.22%→ K∗−π+ ≈100%→
(
K−π0

)
π+ + cc (5.6)

D0 1.88%→ K
∗0

π0 ≈100%→
(
K−π+

)
π0 + cc (5.7)

D0 8.09%→ K−π+π+π− + cc (5.8)

D0 6.76%→ K−π+ρ0 ≈100%→ K−π+
(
π+π−

)
+ cc (5.9)

In all the processes shown above, only the final particles have a sufficiently long life to be
detected in the spectrometer. As a result, the different decay modes involving the same particles
in the final state cannot be distinguished. Taking this fact into account, five independent data
samples are defined for the study of the gluon polarisation:

Non-tagged events Events tagged with a PGF D∗

Sample D0
Kπ D∗Kπ D∗Ksubπ

D∗Kππ0 D∗Kπππ

Reaction number 5.3 5.3 5.3 5.4, 5.5, 5.6, 5.7 5.8, 5.9

Table 5.1: Samples used in the analysis. The final state of a D0 decay is indicated by a

corresponding subscript. For the ’tagged’ events, the D0 is a product of a D∗ decay: D∗
67.7%→

D0 πslow. For simplicity of notation the last 4 samples are referred to as D∗ instead of tagged-D0.
Throughout this thesis, each sample will be referred to by the above notation.

The COMPASS RICH detector (cf. section 3.3.2 and [72]) is used to identify all particles in
the final state. In this way we avoid the reconstruction of particles that are not kaons or pions.
As a result, the signal purity of the D0 mass spectra is substantially increased for all samples
listed in Table 5.1. The remaining background is purely combinatorial and form a continu-
ous underlying the reconstructed signal (see, for e.g., Fig. 5.16). This background is made

2They represent the reactions that can be reconstructed with enough statistics in COMPASS.
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of kaons and pions that originate from other processes than PGF and that by chance have a
somewhat similar kinematics to those particles coming from a D0 meson. The only exception
is the D∗Ksubπ

sample for which the kaon candidates are not directly identified. The justification
for this absence of identification lies in the fact that these particles are outside the detection
range for the kaon mass hypothesis: p(K) < 9 GeV/c (cf. Fig. 3.9) 3. Simulations using a
Monte Carlo generator for heavy flavours, AROMA [73], and a full spectrometer description
based on GEANT, have shown that about 30% of kaons coming from D0 decays have their mo-
menta below this RICH threshold. Therefore, a considerable effort was made to recover such
mesons for the analysis. However due to the existence of a higher D0 contamination by the
combinatorial background, the D0

Ksubπ
sample can only be reconstructed if their events come

from a PGF D∗: the presence of an extra slow-pion in the final state allows us to significantly
reduce the background through the application of a very efficient mass cut (cf. Fig. 5.12).
By subtracting the pion mass to the difference obtained between the reconstructed D∗ and
D0 masses, M(D∗)rec − M(D0

Ksubπ
)rec − M(π), we end up only with a very small amount of

available energy for the slow-pion momentum. Due to a clear domination of the pion mass over
its momentum (cf. Fig. 5.21), we can measure this mass difference with a very good precision.
Consequently, the purity of the D∗Ksubπ

spectrum is significantly improved. From now on this
sample will be called as the RICH sub-threshold kaons sample.

For the same reason pointed out above, the samples D∗Kππ0 and D∗Kπππ are reconstructible only
if they can be tagged with a D∗ originating from a PGF process. However, the main causes
for their low purity are different: for the D∗Kππ0 sample the π0 is not directly reconstructed
in the COMPASS spectrometer, while for D∗Kπππ the problem lies in the presence of a huge
combinatorial background and a low momentum shared by four particles. In the former the
signal appears in a lower mass region (compared to the real D0 mass) of the invariant mass
spectrum belonging to the D∗Kπ sample, as a sort of a ’bump’ emerging from the combinatorial
background, due to the non-identification of the neutral pion (see Fig. 5.14 and Fig. 5.15).
This ’bump’ also exists for the remaining samples but in those cases it is completely masked
by the combinatorial background. Concerning the D∗Kπππ sample, the main difficulty comes
from the huge combination of the random pions that are available in the same kinematic region
considered for a D0 reconstruction. These particles are abundantly produced during the frag-
mentation of the nucleon caused by other processes than PGF. Also, because the number of
particles in the final state is raised to four, the percentage of the RICH sub-threshold kaons is
much higher. The same is true for the pions, which have an identification threshold of p(π) >
2.5 GeV/c. Consequently, and despite of the good branching ratio for this channel, the number
of available D0 mesons for reconstruction is considerably lower when compared to the D∗Kπ

sample. The RICH sub-threshold events cannot be efficiently recovered for the D∗Kπππ sample
due to the enormous background contamination.

Finally, as it is clear from the above discussion, the D∗Kπ is the golden sample for this analysis.
The corresponding mass spectrum can be reconstructed with a very good signal purity and,
because of that, it also allows us to reconstruct these candidates for the untagged case: D0

Kπ

mesons coming directly from the PGF interaction. In this chapter we will discuss the kinematic
selection of all the mass spectra corresponding to the samples listed in Table 5.1. The goal is
to reduce the combinatorial background as much as possible. Thereafter, in Chapter 7 we will
show how to minimise the impact of the remaining background in the results. From now on all
samples of Table 5.1 will be referred to as channels of analysis.

3Other types of particles that cannot be identified in this range are the protons. The latter can be recon-
structed as kaons, and therefore the combinatorial background is significantly larger for this particular sample.
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5.1 Event selection

Since the extraction of the gluon polarisation involves the measurement of small spin asymme-
tries, the first thing that one must control is the quality of the data. This is done by ensuring the
existence of a steady performance of the spectrometer during the collection of the data under
study. In fact, this is a critical condition for a reliable analysis: if the experimental apparatus
is changed in such a way that the ratio of acceptances between the target cells is also changed
(cf. Fig. 3.3 and Fig. 6.1), the natural consequence is the generation of false asymmetries for
the corresponding data. This may also happen if some of the events used in the asymmetry
calculation are collected by a certain detector which suddenly changed its efficiency. Before we
proceed further, let’s introduce some important definitions:

• Event: it is defined by the interaction of a single polarised muon in a specific target cell.

• Spill: corresponds to a bunch of polarised muons delivered to the COMPASS target, per
unit of time. Each spill lasts for 4.8 s and has the following beam intensities:

– 2.2× 108 µ+/16.8 s (2002, 2003, 2004 and 2006 data: 6LiD target).

– 4.5× 108 µ+/16.8 s (2007 data: NH3 target).

• Run: a short period of data taking. Typically it includes 200 spills of data.

• Week / Period: defines a period of data acquisition (seven days), separated by a few
hours normally used by the accelerator team for developments.

Data is considered stable if the time interval during which the spectrometer performance is
tested is reasonably short. Therefore, using the definitions given above, it was decided to
control the quality of the data on a spill-by-spill level. Basically, the following quantities are
used to monitor the stability of the data acquisition:

• Average number of primary vertices per spill.

• Average number of beam tracks per spill.

• Average number of tracks per spill.

• Average number of tracks in the primary vertex per vertex.

• Integrated muon beam flux.

The spills in which at least one of the above quantities is more than 5 sigmas away from the
main band are removed from the analysis. Spills with less than 3 times the mean number of
events are also rejected, as well as a group of them which are revealing a systematic shift as
compared to the neighbouring spills. Finally, a group of runs is rejected due to an online evalu-
ation of their bad quality (e.g., relevant errors on the acquisition of some important detectors).
The list of spills and runs which are removed from the analysis are summarized in Ref. [74].
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In order to ensure the spectrometer stability, we should group a few runs of data and then
perform a separate analysis for each of these groups. The main goal is to suppress the con-
tributions of potential systematic effects induced by the reversal of the target spins, which for
the 2-cells scheme of the target (2002, 2003 and 2004) is performed every 8 hours. This proce-
dure is necessary to ensure an equal contribution from each spin configuration to the measured
asymmetry, but unfortunately it can also disturb the stability of the experimental apparatus
(e.g., by slightly moving the position of one of the cells). The impact of the dipole and solenoid
fields in the spectrometer stability was studied in detail and considered in the systematic error
(cf. Chapter 9). For the 2006 and 2007 data the target spins are reversed only once every 24
hours, taking advantage of the new polarised target composed by three cells. This target con-
figuration was designed to minimise the differences in the experimental acceptance of each spin
configuration (see Fig. 5.1): by adding the events produced in the upstream and downstream
cells, which are longitudinally polarised along the same direction opposite to the middle cell,
we can obtain the same experimental acceptance as it is experienced by those events coming
from the middle cell. As a result, the need for a spin reversal in the target is much less critical
for the 3-cells scheme.

During 8 hours one is able to acquire 4 to 6 runs of data but, unfortunately, for the present
analysis this corresponds to an insignificant amount of the reconstructible D0. The same is
true for the 12 to 18 consecutive runs which are acquired with the same spin configuration
during the years of 2006 and 2007. Therefore, due to the statistical limitations resulting from
the charm production at COMPASS, this analysis is performed only on a week-by-week basis.

5.1.1 Basic cuts

After a proper run selection (as explained above), the following criteria are applied in order to
enhance the selection of open-charm events from the raw data:

1. Only the events associated with a primary vertex are considered for the D0

reconstruction: one and only one incoming muon must be assigned to this kind of
vertices;

• If more than one exists, the vertex with the best χ2 fit is chosen.

2. One scattered muon must be reconstructed from this primary vertex: the
relevant trigger hodoscopes for the open-charm analysis, which are the inner and the
ladder triggers [60], should contain some hits that can be associated with this track.

3. In addition to the scattered muon, a minimum number of outgoing particles
from the primary vertex is required:

• 2 reconstructed tracks for the untagged D0
Kπ channel.

• 3 reconstructed tracks for the following D∗-tagged channels (K, π, πslow): D∗Kπ,
D∗Ksubπ

and D∗Kππ0 .

• 5 reconstructed tracks for the D∗Kπππ channel.
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4. No secondary vertices are allowed: the D∗ and D0 mesons are too short lived to be
detected through their decay vertices. Using the opposite argument, the kaons and pions
are long lived enough to be directly detected by the COMPASS spectrometer.

5. The incoming muon beam must cross all target cells: this can be ensured after
the extrapolation of the measured beam track to the beginning of the upstream cell and
to the end of the downstream cell. The tri-dimensional points defined by the extrapolated
positions must be inside the physical limits of the corresponding target cells. This allows
us to normalise each cell to the same beam flux, for the events used in the calculation
of the spin asymmetry, and at the same time it avoids the use of events coming from
interactions with the halo muons.

6. The primary vertices must be reconstructed inside of one of the target cells: we
need to ensure that the reconstructed kaons and pions result from a polarised interaction.
This is the case when the 6LiD (2002, 2003, 2004 and 2006 data) or NH3 (2007 data)
materials are hit by a polarised muon. So, the reconstruction of primary vertices must
allow for a clear assignment of events to each of the target cells (see Fig. 5.1).
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Figure 5.1: Primary vertex distribution after all cuts explained in section 5.1.1. The z compo-
nent along the beam axis is chosen to illustrate that each event can undoubtedly be assigned
to a specific target cell (green bands / thick bars). The arrows indicate the orientation of the
target spins before (solid lines) and after (dashed lines) the reversal of the solenoid field. Also,
from these figures one can see that more events are reconstructed in the downstream cells: their
acceptance is larger because they are closer to the exit of the solenoid aperture.

5.2 PID: Particles identification

As it was already explained, in COMPASS the detection of a D0 meson must be done via
the reconstruction of its invariant mass. In order to obtain a good signal purity for the mass
spectra we must properly identify the nature of the mesons resulting from the D0 decay, as
this significantly reduces the combinatorial background coming from the production of other
types of particles. To accomplish that, a Ring Imaging CHerenkov (RICH) detector is used
to identify the relevant particles for this open-charm analysis: charged kaons and pions. The
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operation of the detector is described in detail in section 3.3.2. Here the only goal is to
present the method used to identify these mesons. In COMPASS, the PID algorithm [72] uses
the Extended Likelihood Method which is based on the Cherenkov effect. For each particle
of momentum p and mass M that reaches the RICH within its geometrical acceptance, the
expected angle for the Cherenkov emission can be calculated as follows 4:

cos θM =
1

nβ
=

(√
p2 + M2

np

)
(5.10)

where n is the refractive index of the gaseous radiator that fills the detector. All the Cherenkov
photons emitted by a given particle passing through the gas contained in the RICH vassel are
expected to have the same polar angle θM and an uniformly distributed azimuthal angle φ.
Taking advantage of this fact, we can use the Cherenkov equation 5.10 to determine a critical
variable for the RICH PID: the refractive index n of the gaseous radiator. This important
variable n is dependent on several parameters, which may change along the time, such as the
purity of the gas, the atmospheric pressure, its temperature, etc. As a result, the experimental
measurements of n need to be complemented with the determination of the refractive index
from the data (in order to properly account for its time dependency). This is done as follows:
for every charged particle entering the RICH with a measured momentum p, the refractive
index is calculated for each photon associated to the particle by assuming the pion mass (using
eq. 5.10). The momentum is measured with the help of the tracking system before and after
the magnetic field (see section 3.3), and the assumption on the pion mass leads to a minimum
bias introduced by the method. Using this approach we obtain a Gaussian-like distribution for
the refractive index. The Gaussian gives the mean value for the refractive index n.

Figure 5.2: Distribution of the refractive index calculated from the reconstructed photons. To
the left one can see the distribution obtained from photons with UV energies (emitted by tracks
passing through the outer part of the detector), and to the right it is shown the distribution
obtained from the detected photons belonging to the visible spectrum (inner part of the RICH).
The solid lines correspond to the best fit of these distributions.

We can consider alternative methods, namely by using the distribution of photons associated
only to identified particles (originating a cleaner peak), but unfortunately they can suffer from
biases due to the selection criterium of the sample.

4Note that θM is the same variable as the θC defined in section 3.3.2.
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The refractive indices are experimentally measured every 24 hours of data taking, and then
their time evolution are determined as a function of the pressure and the temperature of the
gaseous radiator (which are continuously monitored). The refractive indices which were deter-
mined from the data are then used as a correction to these experimental values but, before
that, let’s first describe the Likelihood algorithm for PID.

5.2.1 The Likelihood method

The Extended Likelihood Function for each mass hypothesis is written as follows:

Lx(M) = e−(SM+B) × ΠN
i=1


(

S0

σθi

√
2π

)
e
− 1

2

(θi−θM )2

σ2
θi ξ(θj, φi)︸ ︷︷ ︸

sM (θi, φi)

+ b

 (5.11)

where

Variables Meaning

Lx(M) Likelihood for a particle x, assuming a mass hypothesis M

N Number of detected photons

θi Polar angle for each reconstructed photon

φi Azimuthal angle for each reconstructed photon

ξ(θj, φi) Photon probability to reach the RICH photon detectors

θM Expected Cherenkov angle for a particle of mass M and momentum p (eq. 5.10)

σθi
Single-photon resolution

b Background hypothesis for the origin of a single reconstructed photon

sM(θi, φi) Signal hypothesis for the origin of a single reconstructed photon

B Expected number of background photons

SM Expected number of signal photons

S0 Expected number of photons from the Frank-Tamm law: S0 = N0 × sin2 θM

N0 Number of photons at saturation (Nβ→1/sin
2 θM,β→1)

Table 5.2: Definition of the variables used in eq. 5.11.

The parameter b takes into account the possibility that each photon can belong to the back-
ground. Background photons have their origin in the out of time hits and also in the detector
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noise: they are calculated from the integrated cluster distribution on the photon detectors,
normalised to one event. Also, since the Extended Likelihood Function is used, the parameters
sM(θi, φi) and b do not need to be normalised probabilities. Concerning the variables SM and
B, they result from the integration of the previous parameters over a region defined up to the
maximum Cherenkov angle allowed by the RICH detector (70 mrad). Finally, σθi

can be de-
termined from a parameterisation obtained on data. This error is evaluated from two angular
distributions: θi−θπ, assuming the pion mass for all the photons associated with a given track,
and θi−θR for the photons belonging only to the reconstructed rings (see e.g. in Fig. 3.8). The
distributions of the former (cf. Fig. 5.3) are parameterised as a function of the particle polar
angle θx, the particle momentum p and the photon azimuthal angle φ. Using these parame-
terisations we can obtain the error associated to every reconstructed photon, coming from the
MWPC (σθi(UV )) or the MAPMT (σθi(V I)) detectors.

The distribution involving θπ has the advantage of a much clearer physical definition. However,
the calculation of θπ is also dependent on the uncertainties in the determination of the refractive
indices and the particles momentum. Therefore, in order to avoid an exclusive dependence on
θπ, the distribution of θi−θR is also used to build the final parameterisation. In Fig. 5.3 we can
see the θi − θπ distributions, as an example, from which we can estimate a typical resolution
of 2.1 mrad and 2.0 mrad for the MAPMTs and MWPCs detectors, respectively (half width of
the distributions).

Figure 5.3: To the left one can see the θi − θπ distribution of the photons detected by the
MAPMTs. To the right, the equivalent distribution for the MWPC detectors is shown. Typ-
ically, resolutions of 2.1 mrad and 2.0 mrad are obtained (for the left and right distributions,
respectively).

The extraction of the Likelihoods for the various mass hypotheses - e, µ, K, π, Pr (proton)
and also for the background - is done through the calculation of Lx(M) for each of these cases,
and, for the background hypothesis, it is assumed that SM(θi, φi) is zero (in eq. 5.11). The
remaining variable, ξ(θj, φi), is determined by considering that the photons can be absorbed
by the beam pipe, lost because of the holes between the mirrors forming the large mirror wall,
or lost due to the dead zones in the photon detectors [72]. In first order of approximation, the
maximum of all the Lx(M) values correspond to the best mass hypothesis. However, for the
present analysis, the identification of the relevant charged particles is performed as follows:

• Pions from a D0 decay (π): Lπ(π)
Lπ(K)

> 1 & Lπ(π)
Lπ(bg)

> 1
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• Kaons from a D0 decay (K): LK(K)
LK(π)

> 1 & LK(K)
LK(bg)

> 1 & LK(K)
LK(Pr)

> 1

• Pions from a D∗ decay (πslow): Lπs (e)
Lπs (π)

� 1 & Lπs (e)
Lπs (bg)

� 1 (conditions to reject events)

– Since typically we have p(πslow) < 8 GeV/c (favourable energies for electrons), the
RICH acts as an electron veto for these candidates: if there is a positive electron
identification the event is rejected.

All the Likelihoods above are corrected in the following way:

Lx(M) = Lx(M)tmp + dLx(M)
[
nexp − ndata

]
(5.12)

where Lx(M)tmp is a temporary Likelihood calculated from eq. 5.11, dLx(M) is the Likelihood
derivative for the mass hypothesis M , nexp is the measured refractive index and ndata is the
refractive index determined from the data (see Fig. 5.2). Since the identification of these
particles is made by comparison of the different mass hypotheses, the term e−B in eq. 5.11
is neglected (it is the same for all cases). The conditions illustrated above reflect an ideal
situation, however, they are tuned per channel and year. The aim is to get the best signal-
strength 5 of the resonance in the D0 mass spectra, without removing a significant amount of
signal events (cf. Fig. 5.4). The number of signal and background events are obtained from the
integral of the best fit to the reconstructed peak and to the underlying background, respectively,
using only those candidates within a mass window of (M rec

D0 −MD0) ∈ ±40 MeV/c2 (≈ 2σ(D0),
cf. Fig. 5.15). Those two conditions are critical for this analysis because, as demonstrated in
Chapter 6, the signal-strength obtained from the D0 mass spectra is inversely proportional to
the statistical error of the determination of the gluon polarisation. The list of all Likelihood
cuts used in the analysis is shown in the next section.

5.2.2 Likelihood cuts

Years
Kaon PID Pion PID Electron Rejection (πs)

LK(K)
LK(π)

> LK(K)
LK(bg)

> LK(K)
LK(Pr)

≥ Lπ(π)
Lπ(K)

> Lπ(π)
Lπ(bg)

> Lπs (e)
Lπs (π)

> Lπs (e)
Lπs (bg)

> Lπs (e)
Lπs (K)

>

2007 1.05 0.99 1 0.9 0.99 1.1 2 1

2006 0.99 0.99 1 0.9 0.99 1.5 2 1

2004 (new) 1.02 0.95 1 0.9 0.99 1.5 1.8 1

2004 (old) 6 0.97 0.97 1 0.9 0.99 1.5 1.5 1

2003 0.97 0.99 1 0.9 0.99 1.5 1.5 1

2002 (new) 0.99 0.99 1 1 1 1 1.5 1

2002 (old) 7 / 1.01 1 1 1 / / /

Table 5.3: RICH coefficients for the selection of the D∗Kπ and D∗Kππ0 channels.
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Years
Kaon PID Pion PID (3π) Electron Rejection (πs)

LK(K)
LK(π)

> LK(K)
LK(bg)

> LK(K)
LK(Pr)

≥ Lπ(π)
Lπ(K)

> Lπ(π)
Lπ(bg)

> Lπs (e)
Lπs (π)

> Lπs (e)
Lπs (bg)

>

2007 0.98 0.97 1.0 0.9 0.99 1.2 1.5

2006 1.1 1.1 1.0 0.9 1.0 1.5 1.5

2004 1.0 1.0 1.0 0.9 1.0 1.3 1.5

2002+2003 1.02 1.05 1.0 0.9 1.0 1.3 1.5

Table 5.4: RICH coefficients for the selection of the D∗Kπππ channel.

Years
Kaon Recovery Pion PID Electron Rejection (πs)
LK(π)
LK(bg)

< LK(e)
LK(bg)

< Lπ(π)
Lπ(K)

> Lπ(π)
Lπ(bg)

> Lπs (e)
Lπs (π)

> Lπs (e)
Lπs (bg)

>

All years 1.2 1.2 0.9 0.99 2.0 2.0

Table 5.5: RICH coefficients for the selection of the D∗Ksubπ
channel.

Years
Kaon PID Pion PID

LK(K)
LK(π)

> LK(K)
LK(bg)

> LK(K)
LK(Pr)

≥ Lπ(π)
Lπ(K)

> Lπ(π)
Lπ(bg)

>

2007 1.1 0.99 1 0.9 0.99

2006 1.1 0.99 1 0.9 0.99

2004 (new) 1.02 1.05 1 0.9 0.99

2004 (old) 0.98 1.15 1 0.9 0.99

2003 1.02 1.05 1 0.9 0.99

2002 (new) 0.98 1.15 1 1 1

2002 (old) / 1.01 1 1 1

Table 5.6: RICH coefficients for the selection of the D0
Kπ channel.

In the tables shown above, for all channels, all cuts introduced by the Likelihood ratios are
required to be fulfilled at same time (except for the electron rejection cuts): one D0 candidate
is accepted if its Likelihood ratios for the kaon and pion candidates are simultaneously true,
according to the RICH coefficients which are defined for the corresponding channel/year. Con-
cerning the slow-pion, instead of a positive identification, the RICH detector acts as an electron
veto. There are two reasons justifying this approach. The first one is related to the inability of
the detector to identify kaons and protons at low momentum (see Fig. 3.9), while the second
reason lies on the fact that within a momentum range defined by p < 8 GeV/c the electron
contamination is quite significant. Since the contamination introduced by other types of parti-

5S2/(S + B), with S = D0 events and B = background events.
67 periods of 2004 (out of 13) were produced with an older version of the RICH and tracking algorithms.
72 periods of 2002 (in a total of 6) were produced with an older version of the RICH code.
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Figure 5.4: Example for the tuning of the kaon Likelihood ratios (see table 5.3). The goal is to
maximise the signal-strength for the selected D0 mesons, if and only if the signal is not reduced
by more than 10%. The ratio LK(K)/LK(π) is the first one to be optimized (left plot), and
then the procedure is repeated iteratively until a convergence is achieved for the two ratios:
(LK(K)/LK(π))max is used for the tuning of LK(K)/LK(bg), and vice versa. Also, in order
to avoid possible statistical fluctuations, the maximum value from each distribution is taken,
instead of the absolute maximum value (cf. right plot).

cles is comparatively much smaller (due to their lower production rates), these two reasons are
enough to justify the method used for the cleaning of the slow-pion sample. Therefore, if the
slow-pion passes through the RICH acceptance, the corresponding D0 candidate is accepted if
and only if the particle is not identified as an electron. The events that have all the Likelihood
ratios for the slow-pion simultaneously verified are rejected. For the cases where the slow-pion
does not have any RICH information, the D0 candidate is still considered in order to take
advantage of the D∗-tag effect. This lack of information can happen, because particles of low
momentum can be easily deviated from the experimental acceptance of the RICH by the srong
magnetic field of SM1 (see Fig. 3.5).

We can verify the quality of the RICH PID in Fig. 5.5. The upper plots illustrate in a
clear way the relevance of the RICH detector for a proper PGF selection. To the left, we see
the invariant mass distribution for the kaon candidates considered for a D0 selection but, as
expected, this sample is strongly contaminated by pions coming mostly from other processes
than PGF (blue distribution). However, after the application of the Likelihood cuts for the
kaon ID, a very clean sample of kaons is obtained (cf. mean value of the zoomed spectrum of the
upper-left plot). Concerning the bottom-left figure, the mass distributions, with and without
Likelihood cuts, are shown for the slow-pion candidate that is used to tag a D0 event with a
PGF D∗. The clean distribution (yellow) shows a reduction of the background in the order of
65%, after the electron rejection cuts, without removing any part of the signal. To the right
(gray plot), the same distribution is shown but this time with the kaon and pion Likelihood
cuts applied: the background is even more suppressed, due to the constraints imposed to the
other particles coming from a D0 decay, but not completely vanished. In fact, the left wing of
the peak cannot be considered as containing only background events. The majority of them
have a momentum smaller than 2 GeV/c and, as a result, their momenta are measured with a
large uncertainty due to the influence of the magnetic fringe-field which is present in the first
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sector of the spectrometer 8 (see Chapter 4). Consequently, the invariant mass of the slow-pion
will be underestimated for most of these events (cf. eq. 5.10). Due to this fact, we cannot
remove more background events, by tightening the electron rejection cuts, without suppressing
part of the signal belonging to the D0 mass spectrum (the signal-strength is decreased).
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Figure 5.5: Left: the reconstructed invariant mass by the RICH detector, for the kaon (up) /
slow-pion (bottom) candidates, using eq. 5.10. Right: zoomed spectrum of these candidates
after the corresponding Likelihood selection.

Concerning the D∗Kπππ channel the data belonging to the years of 2002 and 2003 are analysed
together due to their low amount of events. For the same reason, the data from 2002 and 2004
are only separated according to the old/new productions for the main channels of analysis:
tagged and untagged D0

Kπ samples. The cuts applied to the D∗Ksubπ
channel are tuned in a very

loose way for all years. The justification for this procedure comes from the necessity of having
a good amount of signal to determine the gluon polarisation with the best possible precision.
However, for the sub-threshold kaons channel, the most important particle for the D0 selection
is almost unidentified. Consequently, we obtain a quite low signal-strength from the invariant
mass spectra of these candidates, due to a big contamination of the kaon sample induced by
the loose cuts. This difficulty can be overcome provided that the signal be preserved during
the D0 selection: the signal-strength can be greatly improved by a proper Neural Network pa-
rameterisation (see Chapter 7), which assigns a D0 probability to each event, and therefore the
impact of the background contamination is significantly reduced. For this reason, and specially
for the D∗Ksubπ

channel, the RICH cuts are left loose enough in order to preserve as much sig-

8The description of the multi-scattering of slow-moving particles in the detectors is also quite difficult.
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nal as possible. Two kinds of sub-threshold kaons are considered:

• Kaon candidates with RICH information for the lower mass hypotheses: they
are recovered like kaons if they are not identified as pions or electrons (cf. table 5.5).

• Kaon candidates without RICH information but within the geometrical ac-
ceptance of the detector 9: they are recovered like kaons if their momenta are above
the RICH threshold for the pion identification (p(K) > 2.5 GeV/c).

It should be emphasised that this kaon recovery does not introduce any bias in the analysis.
The only contamination with some relevance in the D∗Ksubπ

channel comes from low momentum
protons that are impossible to detect (cf. Fig. 3.9). Nevertheless, in the momentum range con-
sidered, the ratio defined by the different production rates of protons and kaons is smaller than
10% (verified on Monte Carlo). This contamination appears in the invariant mass spectrum as
a combinatorial background, possibly under the reconstructed D0 peak, but since we use only
the peak (where the PGF events are located) to estimate the gluon polarisation, this procedure
is completely free of any bias. We can see in Fig. 5.6 and in Fig. 5.7 the impact of the RICH
PID in the D0 selection:
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Figure 5.6: Upper line: to the left we can see the invariant mass distribution, for the golden
channel, with (yellow) and without (light gray) RICH identification, for the data collected by
COMPASS during the year of 2006. To the right (zoomed spectrum), one can confirm the big
improvement in the signal purity achieved by the RICH PID. Bottom line: the same information
is shown for the year of 2004 (smaller acceptance of the spectrometer).

9This can happen to those sub-threshold particles for which it is not possible to associate a single noise
photon to its background hypothesis (due to a very clean environment inside the RICH).
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Figure 5.7: Left: invariant mass distribution for the D∗Ksubπ
channel, with (yellow) and without

(light gray) kaon recovery by the RICH detector, for the data collected by COMPASS during
the year of 2006. Right: the same information is shown for the year of 2004.

By fitting the signal and the background distributions of these mass spectra, we can quantify
the improvement introduced by the RICH PID. This is summarized in table 5.7 for two years
of data taking, 2004 and 2006.

Data No RICH PID RICH PID Gain (PID/No PID)

2004
S
B

0.19 1.93 10
S2

S+B
437 1632 3.7

2006
S
B

0.11 1.87 17
S2

S+B
274 1907 7

Table 5.7: Signal-to-background ratios S/B and signal-strength S2/(S +B), for the D∗Kπ chan-
nel, obtained from a fit to the mass spectra shown in Fig. 5.6. These values result from an
integration of the signal and background events over a mass window of ±40 MeV/c2 (2σ of the
resonance).

The number of D0 mesons is similar for both years but, for 2006, we can clearly see a much
bigger gain in the signal-to-background ratio of the reconstructed mass spectrum. This fact
is even more relevant because in 2006 the combinatorial background is significantly larger (by
a factor of 1.7): more particles are detected by the COMPASS spectrometer due to the much
bigger acceptance of the target solenoid. In fact, the RICH has a better performance in 2006, as
compared to 2004, because an upgrade of its central part was accomplished in 2005. The new
detector allows us to remove the huge combinatorial background produced by the halo muons.
Finally, for the D∗Ksubπ

channel we gain a factor of 3 in the signal-strength for the year of 2006,
after the kaon recovery, and a factor of 6 for the year of 2004. The gain is bigger for the latter
due to the presence of a much larger background: it is a consequence from the fact that half of
the periods of 2004 were produced with an old version of the RICH and tracking algorithms.
As a result, we have more particles for which the RICH cannot compute the Likelihood for the
kaon mass hypothesis.
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5.3 Kinematic selection

5.3.1 Energy and angular cuts

The most important cuts for this analysis were discussed in the previous section. In addition
to them, some kinematic cuts are also applied in order to improve the purity of the PGF
samples. The most relevant quantity to consider for this kind of selection is the fraction of the
virtual-photon energy carried by a D0 candidate:

zD0 =

(
ED0

ν

)
(5.13)

with

ν = Eγ∗ = (Eµ − Eµ′)

A typical open-charm meson coming from a PGF process should have half of the virtual-photon
energy: since a pair of charm quarks is produced in the centre-of-mass of the photon-gluon
system (cf. Fig. 2.11), each quark tends to receive half of the virtual-photon energy. In Fig. 5.8
we can observe that PGF events are really selected: the zD0 distribution obtained from the
data agrees with the shape of the corresponding Monte Carlo distributions, either with parton
shower on, in the initial and final states (right-plot), or with parton shower off (left-plot). Also,
the the average value of these zD0 distributions is close to the expected energy-fraction of 0.5.
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Figure 5.8: In yellow is the zD0 distribution obtained from the data, using only those events
belonging to a ±80 MeV/c2 mass window that survived to the subtraction of the background
distribution. In blue is shown is the distribution for the generated D0 mesons with (right
plot - useful for a NLO analysis) and without (left plot - ideal to simulate LO processes)
parton showers. The Monte Carlo distributions are obtained with the help of AROMA [73], by
considering only D0 mesons coming from a PGF interaction.

In order to accomplish a proper comparison of the data with the Monte Carlo samples, only
the real reconstructed D0 mesons are used. However, since for every channel there is also some
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combinatorial background masking the D0 signal (cf. Fig. 5.15-5.18), it is necessary to find
an effective method that avoids the contamination of these events in the zD0 distribution. The
most obvious way to reduce the impact of the combinatorial background in this comparison is
to use the channel with the highest signal purity: D∗Kπ. The background contamination under
the D0 peak is subtracted from the mass spectrum of the D∗Kπ sample, in a ±80 MeV/c2 mass
window, by using the zD0 distribution from a wrong charge combination sample (wcc). These
wcc events are selected exactly in the same way as a D0 candidate, with only one difference:
the same charge is assigned to the Kπ pairs and, in this way, we ensure that no D0 mesons are
reconstructed for this sample. In the upper right of Fig. 7.13 we can see the quality of the wcc
sample as a background model, for the year of 2006: under the D0 signal the wcc distribution
is describing very well the real combinatorial background. It is better to use these wcc events
to obtain the zD0 distribution, instead of the real background 10, because it does not have the
danger of dealing with the signal corresponding to the D∗Kππ0 channel (at ≈ −240 MeV/c2).

By subtracting the background from the reconstructed D0 events, using the wcc sample,
we can reproduce well enough the corresponding Monte Carlo distributions (cf. Fig. 5.8).
Finally, from this figure we can define a zD0 cut: in order to enhance the purity of the PGF
sample, the events with a very high zD0 value must be rejected. These events that have almost
all the energy from the virtual-photon are, in general, produced during the fragmentation of
a struck light-quark. Obviously, this process has nothing to do with a PGF interaction and,
consequently, the resulting hadrons will contribute only to the combinatorial background (at
LO-QCD). This statement is confirmed by the Monte Carlo distributions, from which we can
see that no open-charm mesons are produced for zD0 > 0.85. Moreover, we can also reject
those reconstructed events with a zD0 close to zero. Most of these candidates result from the
hadronisation of the remnants of the nucleon fragmentation, which is caused by its DIS collision
with the electromagnetic boson. In Fig. 5.8 we can see that the PGF contribution in this region
is quite low and, therefore, we can safely remove some events with low zD0 values in order to
raise the PGF purity for the reconstructed mass spectrum. The precise values of these cuts,
together with all the other kinematic cuts, are summarized in the table 5.8.
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Figure 5.9: Yellow: pT (D0) distribution from data, obtained by subtracting the corresponding
wcc distribution in a ±80 MeV/c2 mass window. Red: pT distribution for the wcc sample in a
±80 MeV/c2 mass window. Blue: pT distribution for the real combinatorial background (gcc:
good charge combination), obtained using the events from the sidebands of the main peak.

10Note that in this case the background can only be estimated from the sidebands of the mass spectrum.
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As it is implicit in the above explanation for the rejection of the D0 candidates with high
zD0 values, another criterium for the selection of PGF events is found on their high transverse
momentum pT regarding to the virtual-photon direction. If the D0 candidate has a very low pT ,
the most likely is that is has been produced by a hadron resulting from the fragmentation of a
struck light-quark (struck by γ∗). In Fig. 5.9 we can see that indeed the signal and background
events have different pT distributions. It is clear that a typical D0 has a larger pT as compared
to the events coming from the combinatorial background. Moreover, and despite the fact that
the gcc distribution has been obtained from the sidebands of the real mass spectrum, it can be
seen that the agreement with the wcc model is quite good: both distributions have an average
value around 0.7 GeV/c, which is considerably lower if compared with the value of 1 GeV/c
obtained for the signal events. However, there is a much better variable to use for this kind of
cut: the cosine of the polar angle of kaon in the D0 centre-of-mass regarding to the direction
of the D0 momentum.

Figure 5.10: Representation of the polar angle of kaon in the D0 centre-of-mass (example for
the 2-body decay channels). The dashed circle illustrates that all angles are possible for the
back-to-back D0 decay into a kaon and a pion.

For the decay of a spin-0 particle, such as a D0, the distribution of cos θ∗ should be flat. The
combinatorial background is composed by kaons (and pions) originating from the nucleon frag-
mentation, obtaining only a small amount of pT . Therefore, the background distribution should
reveal a large peak for the small θ∗ angles. We can take advantage of these facts to further
enhance the purity of the PGF sample, by removing those candidates with cos θ∗ values close to
±1. The cuts introduced by the RICH detector remove the kinematic range where cos θ∗ > 0.8.
However, it can be seen in Fig. 5.11 that the number of background events is considerably
higher in the region covered by cos θ∗ < −0.8. Therefore a kinematic cut in |cos θ∗| is applied
to reduce the background contamination of the PGF sample. For a low purity channel, such
as the untagged D0 (see Fig. 5.18), this angular cut is very helpful in enhancing the signal-
strength.

However, another approach is used for the golden channel. Due to a mass cut (cf. sec-
tion 5.3.2), the D0 mass spectrum is already very clean (see Fig. 5.15) and, as a result, the
gain introduced by an angular cut is not significant. Instead, a very loose |cos θ∗| cut is applied,
in order to preserve the underlying background (since it cannot be completely removed). The
goal is to have enough statistics for a parameterisation of the probability that a D0 candidate is
indeed a D0 meson (see Chapter 7). The outcome of this parameterisation is a clear separation
of the signal events from the combinatorial background.
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Figure 5.11: Left: distribution of cos θ∗ for the signal (after a subtraction of the background
distribution) and background (wcc sample) events, after all the kinematic and RICH cuts.
Right: distribution of cos θ∗, for the wcc sample, without particles identification by the RICH
detector. Only those events within a mass window of ±80 MeV/c2 are considered.

5.3.2 The D∗-tag cut

Four of the five samples of events considered in this analysis are selected through the use of a
cut in the reconstructed mass difference between a PGF D∗ and the resulting D0 from its decay
(D∗ → D0πslow). With the help [16], the remaining energy from the real mass difference can
be easily calculated:

(MD∗ −MD0)−Mπs = 145.92−Mπs = 6.35 MeV/c2 (5.14)
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Kππs
−M rec

Kπ, subtracted by the nominal pion mass, Mπs , is plotted versus the
reconstructed D0 mass, M rec

Kπ −MD0 . A clear signal is seen around the expected value given by
eq. 5.14. Right: projection of the D0 candidates within a mass window of ±40 MeV/c2 (in a
M rec

Kπ - MD0 mass spectrum) into the M rec
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−M rec
Kπ−Mπs axis. The reconstructed signal peaks

around 6 MeV/c2, as expected, and the bars illustrate the mass cut chosen for this analysis.
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We can see that almost all the mass difference between the two open-charm mesons is taken
by the pion mass. As a result, the momenta available for the resulting particles is quite low.
Therefore, the mass difference presented in eq. 5.14 is very well reconstructed (see Fig. 5.12),
because possible limitations in the momentum resolution are overcome by the dominance of
the slow-pion mass. The use of the mass cut, as defined in Fig. 5.12, allows us to improve
significantly the signal-strength of the reconstructed mesons:
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5.3.3 Summary of the kinematic cuts

Kinematic Cuts

Variables
D∗-tagged channels

untagged D0
Kπ

D0
Kπ D0

Kππ0 D0
Ksubπ

D0
Kπππ

(M rec
Kπ −MD0) [MeV/c2] ∈ [−600, +600] ∈ [−400, +400] ∈ [−400, +400]

zD0 ∈ [0.20, 0.85] ∈ [0.25, 0.85] ∈ [0.30, 0.85] ∈ [0.20, 0.85]

|cos θ∗| < 0.90 < 0.85 < 0.65

∆M [MeV/c2] ∈ [3.2, 8.9] ∈ [4.0, 7.5] —–

pK [GeV/c] ∈ ]9.0, 50] ∈ [2.5, 9.0] ∈ ]9.0, 50] ∈ ]9.0, 50]

pπ [GeV/c] ∈ [2.5, 50] ∈ [7, 50]

Table 5.8: List of all kinematic cuts used in the open-charm analysis. For every channel, a D0

candidate is accepted if it belongs simultaneously to all the specified intervals. All cuts are
tuned to maximise the signal-strength without killing the D0 mesons (cf. e.g. in Fig. 5.4). The
definition of ∆M is: ∆M =

(
M rec

Kππs
−M rec

Kπ −Mπs

)
.
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The lower cut in the pion momentum of the untagged sample, p(π) < 7 GeV/c (rejected events),
is introduced to clean the electron contamination of pion candidates. In addition to that, a cut
of 50 GeV/c is applied to the momentum of all particles in the analysis. This cut is necessary
to avoid the kinematic region where the RICH detector is not effective in distinguishing a kaon
from a pion (cf. Fig. 3.9). Finally, the following criteria is applied to the selected samples:

1. If a given channel contains a double D0 candidate, in the same event, only one of them
is considered in the analysis (chosen randomly).

2. If two channels contribute with a D0 candidate to the same event, a priority rule is
followed in their selection (only one is accepted):

• D∗Kπππ, D∗Kπ or D∗Kππ0 , D0
Kπ, D∗Ksubπ

The channels listed above are sorted in order of importance for the extraction of the gluon
polarisation. The exception is the D∗Kπππ channel: it is the first in priority because it helps in
the cleaning of the golden channel when the same event is shared by them. The final samples
can be seen in Figs. 5.15-5.18. We can observe that the D∗Kππ0 and D∗Kπ channels share the same
mass spectrum. The signal of the former emerges as a kind of a ”bump” over the underlying
background, centred around a mass of −240 MeV/c2. It’s origin comes from the undetected
neutral pion in the COMPASS spectrometer. The effect of ignoring the π0 in the analysis is
studied by Monte Carlo and shown in Fig. 5.14. Since the π0 is not reconstructed, the impact
of the missing energy in the mass spectrum is a shift of the distribution towards the lower
masses. This result confirms that the bump in Fig. 5.15 is indeed a reflection of the D0

Kππ0

signal to that mass region.
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5.4 The final D0 samples

The mass spectra displayed in Figs. 5.15-5.18 are obtained by calculating the invariant mass of
the system formed by D0 decay particles (example for the D∗Kπππ channel):

MKπππ =

√
(PK + Pπ1 + Pπ2 + Pπ3)

2 (5.15)
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where PK , Pπ1 , Pπ2 and Pπ3 are the four-momentum vectors defined by

PK = (px
K , py

K , pz
K , EK) , Pπ(1,2,3)

=
(
px

π(1,2,3)
, py

π(1,2,3)
, pz

π(1,2,3)
, Eπ(1,2,3)

)
(5.16)
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Figure 5.15: Invariant mass distributions of the D∗Kπ channel. After subtracting the nominal D0

mass (cf. [16]), the signal is reconstructed, as expected, around zero. The number of D0 mesons
and the resolution of the peak are presented for these samples. To the left (highlighted in green),
one can also see the signal belonging to the D∗Kππ0 channel emerging from the combinatorial
background. This resonance is seen only in these high purity spectra.
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Figure 5.16: Invariant mass distributions of the D∗Kπππ channel.
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Figure 5.17: Invariant mass distributions of the D∗Ksubπ
channel.
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Figure 5.18: Invariant mass distributions of the D0
Kπ channel.

It can be seen from Fig. 5.15 that the same background is shared by the D∗Kππ0 and D∗Kπ

channels. However, the number of D0 mesons and respective signal resolution are given only
for the latter. The reason for that lies in the difficulty of fitting such a wide resonance of low
purity (in 2002 the signal is not even seen). Therefore these results will only be presented after

86



an additional rejection of background events by using a Neural Network (see Chapter 7). This
procedure has also a positive impact for the samples D∗Kπππ and D∗Ksubπ

, as shown in Fig. 5.16
and in Fig. 5.17. For the remaining channels (D∗Kπ and D0

Kπ), the mass spectra displayed in
Fig. 5.15 and in Fig. 5.18 correspond already to the final samples used in this work. In all
figures, it is shown the mass distributions per each year of data taking.

5.5 Kinematic properties of the PGF sample
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Figure 5.20: Momentum distributions of the mesons involved in a D∗ decay. All distributions
are obtained from the D∗Kπ channel, using only those events for which we have a D0 candidate
within a mass window of ±80 MeV/c2.

The impact of the target upgrade in this open-charm analysis is put in evidence in the upper-
right of Fig. 5.21. More pions of low momentum are detected in 2006, due to the increased
acceptance of the solenoid that surrounds the target. More kaons are also detected, per incoming
muon, but they are uniformly distributed along the momentum range. In the bottom-left
one can observe the impact of the RICH upgrade. In fact, a much cleaner sample of the
Cherenkov photons in 2006 gives rise to a significant increase in the number of sub-threshold
kaons recovered.
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Chapter 6

Extraction of the Gluon Polarisation

The gluon polarisation is proportional to the spin asymmetry that results from the production of
open-charm mesons in target cells oppositely polarised (cf. eq. 2.84 and eq. 2.86). The purpose
of this chapter is to demonstrate the determination of ∆G/G with the best possible accuracy.
There are four types of events which are used for the experimental asymmetry calculation (see
Fig. 6.1): Nu, Nd, Nu′ and Nd′ , for the data taken between 2002 and 2004.

µ
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⇒ ⇒
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u'N m'N d'N

 24h≈

 24h≈

Figure 6.1: Scheme of all target configurations used in the open-charm analysis. N repre-
sents the number of D0 candidates that are reconstructed in a given cell, with the following
interpretation for the indexes: u = upstream cell, m = middle cell and d = downstream cell.

The reversal of the target spins is important to minimise the effects introduced by the different
acceptances of the cells, whose origin is related to the events that are able to escape from
the solenoid (that surrounds the target) to the COMPASS spectrometer. By reversing the
target spins we can gather about the same amount of events for each spin configuration due
to the introduction of Nu′ and Nd′ in the analysis (every 8h of data taking the solenoid field is
reversed). Four event rates are also measured for the target scheme used from 2006 onwards
(right plot of Fig. 6.1): (Nu +Nd), Nm, (Nu′+Nd′) and Nm′ . In fact, the target is composed by
three cells in order to symmetrize the acceptance of the u and d cells regarding the m cell, and
also to avoid an often reversal of the solenoid field which may cause other systematic effects
(from 2006 onwards the reversal of the field is made once every 24h).
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6.1 Method for the asymmetry extraction

The yield of charmed mesons is given for each cell configuration and for a defined time interval
by (from now on cc̄ will replace µN → cc̄X for simplicity):

N̂t
cc̄

= at[ (Φ→n⇒t + Φ←n⇐t )σ
←−⇐
cc̄ + (Φ→n⇐t + Φ←n⇒t )σ

←−⇒
cc̄ + Φ

∑
X

(nX · σcc̄,X) ] (6.1)

Variables Meaning

t Target configuration: t = (u, d, u′, d′) or t = (u + d, m, u′ + d′, m′)

at Experimental acceptance for a specific t cell

Φ = Φ→ + Φ← Total muon flux

Φ→ and Φ← Integrated flux of muons with positive and negative helicity

nt = n⇒t + n⇐t Number of polarisable nucleons per area unit and cell configuration

n⇒t and n⇐t Number of nucleons with positive and negative spin projections

σcc̄ = 1
2

(
σ
←−⇐
cc̄ + σ

←−⇒
cc̄

)
Unpolarised cross-section of polarisable nucleons for the cc̄ production

σ
←−⇐
cc̄ and σ

←−⇒
cc̄ Cross-sections for the parallel and anti-parallel spin configurations

nX Number of unpolarisable nucleons inside the target cell

σcc̄,X Unpolarised cross-section for the non-polarisable nucleons

n̂t = nt +
∑

X nX Total number of nucleons per unit area and cell configuration

σ̂cc̄ =
ntσcc̄+

P
X(nX ·σcc̄,X)

n̂t
Total averaged unpolarised cross-section

Pµ = Φ→−Φ←

Φ→+Φ←
Polarisation of the muon beam

Pt =
n⇒t −n⇐t
n⇒t +n⇐t

Target polarisation for each cell configuration

f = ntσcc̄

ntσcc̄+
P

X(nX ·σcc̄,X)
Dilution factor of the target material

AµN→cc̄ =
(

σ
←−⇒
cc̄−σ

←−⇐
cc̄

σ
←−⇒
cc̄ +σ

←−⇐
cc̄

)
Muon-Nucleon asymmetry for charmed meson events (for short Acc̄)

Table 6.1: Definition of the variables used in eq. 6.1 and in eq. 6.2.

The mass spectra of the D0 decay particles do not represent a pure sample of PGF events.
In Figs. 5.15 to 5.18 it is clear that a significant combinatorial background is masking the
D0 signal. Most of this contamination corresponds to the reconstruction of kaons and pions
resulting from the fragmentation of the struck light-quarks. Since this background is part of
the samples, we must also include its contribution to the event yield (ÂµN→bg ≡ Âbg):

dNt

dmdX
= atΦn̂tσ̂tot,t

(
1− PµPtf

σ̂cc̄

σ̂tot,t

Acc̄ − PµPtf
σ̂bg

σ̂tot,t

Âbg

)
(6.2)
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with

σ̂tot,t = σ̂cc̄ + σ̂bg , m ≡ MKπ and X = (zD0 , cos θ∗, ....) (6.3)

Equation 6.2 is conveniently written in terms of the physical and background spin asymmetries,
to take advantage of the fact that they are much less sensitive to the experimental changes than
the cross-section differences. By assuming an equal acceptance for the signal and background
events, the cross-section ratios can be expressed in the following way:

σ̂cc̄

σ̂tot,t

=

(
S

S + B

)
and

σ̂bg

σ̂tot,t

=

(
B

S + B

)
(6.4)

The quantity S/(S + B) is the signal purity, where the signal events, S(m, X), are obtained
from a fit to the peak of the invariant mass spectra. S(m, X) and B(m, X) represent the unpo-
larised cross-section of signal and background events folded with the experimental resolution,
where X denote a set of kinematic variables defining an event. From these definitions, we see
that a good kinematic parameterisation of S/(S + B) is essential for an unbiased analysis (cf.
section 7.3).

We now turn to the relation between the muon-nucleon asymmetry, Acc̄, and the partonic
distribution that we want to measure, ∆G = G⇒ − G⇐. In the perturbative regime of LO-
QCD (cf. Fig. 2.14), the cc̄ cross-section has the following decomposition:

σ
←−⇒
µN→cc̄ ≡ σ

←−⇒
cc̄ ∝

∫
(σ̂
←−⇒
µgG

⇐ + σ̂
←−⇐
µgG

⇒) dŝ (6.5)

σ
←−⇐
µN→cc̄ ≡ σ

←−⇐
cc̄ ∝

∫
(σ̂
←−⇐
µgG

⇐ + σ̂
←−⇒
µgG

⇒) dŝ (6.6)

Using the above equations and the definition of Acc̄ given in Table 6.1, we obtain

Acc̄ =

∫ [
σ̂
←−⇒
µg(ŝ)− σ̂

←−⇐
µg(ŝ)

]
[G⇐(xg, ŝ)−G⇒(xg, ŝ)] F (zD0) dŝ∫ [

σ̂
←−⇒
µg(ŝ) + σ̂

←−⇐
µg(ŝ)

]
[G⇐(xg, ŝ) + G⇒(xg, ŝ)] F (zD0) dŝ

=
F (zD0)

∫
∆σ̂µg(ŝ)∆G(xg, ŝ) dŝ

F (zD0)
∫

σ̂µg(ŝ)G(xg, ŝ) dŝ

=

∫ (∆σ̂µg(ŝ)

σ̂µg(ŝ)

∆G(xg ,ŝ)

G(xg ,ŝ)

)
σ̂µg(ŝ)G(xg, ŝ) dŝ∫

σ̂µg(ŝ)G(xg, ŝ) dŝ

=

〈
âLL

∆G

G
(xg)

〉
1= aLL ×

∆G

G
(xg) with aLL = 〈âLL〉 , xg = 〈xg〉 (6.7)

where ŝ = (q + xgp)2 is the invariant mass of the photon-gluon system, q and p are the virtual-
photon and the nucleon 4-momenta, ν is the virtual-photon energy, xg = (ŝ + Q2)/(2Mν) is
the gluon momentum fraction with dxg expressed in terms of dŝ (the resulting Jacobian cancels
in the asymmetry), M is the nucleon mass and F describes the fragmentation of c quarks into

1See eq. 6.37 from section 6.1.1 for the demonstration
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D0 mesons carrying an energy fraction zD0 = (ED0/ν) [76]. The perturbative approach of the
muon-nucleon cross-section is justified by the hard scale given by the charm mass: (2mT

c )2

for the cc̄ production. This scale turns the assumption of the convolution between the gluon
structure function and the hard fusion (photon-gluon) valid. Finally, the partonic asymmetry
for the longitudinally polarised beam and target is defined by:

âLL =
∆σ̂µg(ŝ)

σ̂µg(ŝ)
=

(
σ̂
←−⇒
µg(ŝ)− σ̂

←−⇐
µg(ŝ)

σ̂
←−⇒
µg(ŝ) + σ̂

←−⇐
µg(ŝ)

)
(6.8)

This asymmetry is fully dependent on the partonic kinematics, and its general expression, in a
LO-QCD approximation, can be found in eqs. 2.87-2.93.

We are now in conditions to rewrite eq. 6.2 in its final form (dξ = dmdX):

〈Nt〉 =

∫
N̂t dξ = αt

(
1 − 〈βt,cc̄〉

∆G

G
− 〈βt,bg〉Abg

)
(6.9)

with

αt =

∫
(atΦn̂tσ̂tot,t) dξ , 〈βt〉 =

∫
(atΦn̂tσ̂tot,tβt) dξ∫
(atΦn̂tσ̂tot,t) dξ

, Âbg = DAbg (6.10)

βcc̄ = PµPtf

(
S

S + B

)
aLL and βbg = PµPtf

(
B

S + B

)
D (6.11)

The new background asymmetry, Abg, is a photon-nucleon asymmetry: Aγ∗N→bg. The relation

with Âbg is given through the depolarisation factor, D, which defines the amount of polarisa-
tion transferred from the muon to the virtual-photon (cf. eq. 2.35). Concerning the signal
asymmetry, the depolarisation factor is hidden inside the muon-gluon asymmetry aLL.

6.1.1 Extracting ∆G/G with the best possible accuracy

From now, in order to simplify the notation we will only consider the target configuration
used in COMPASS until 2004: t = (u, d, u′, d′) in Fig. 6.1. Assuming that the background
asymmetry is negligible, we can easily solve eq. 6.9 by using the following double ratio of the
number of events:

r =

(
NuNd′

Nu′Nd

)
=

αuαd′

αu′αd

[
(1− 〈βu〉∆G

G
)(1− 〈βd′〉∆G

G
)

(1− 〈βu′〉∆G
G

)(1− 〈βd〉∆G
G

)

]
(6.12)

where the expectation values 〈Nt〉 were replaced by the measured D0 rates (Nt). Since with
specific cuts to the data sample it is ensured that both cells are subject to the same muon flux
(Φu = Φd and Φu′ = Φd′), we can solve the previous equation by assuming that (obviously, we
have also: nu = nu′ , nd = nd′ , σ̂tot,u = σ̂tot,u′ and σ̂tot,d = σ̂tot,d′):
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αuαd′

αu′αd

= 1 (6.13)

Equation 6.13 implies that the two cells are equally affected by possible changes in the ex-
perimental acceptance over time (the acceptance don’t need to be the same for both cells).
Consequently, the knowledge of 〈βt〉 for every event allows us to solve eq. 6.12 for ∆G/G:

B

(
∆G

G

)2

+ C

(
∆G

G

)
+ D = 0 (6.14)

with

B = r〈βu′〉〈βd〉 − 〈βu〉〈βd′〉 (6.15)

C = r (〈βu′〉+ 〈βd〉)− (〈βu〉+ 〈βd′〉) (6.16)

D = r − 1 (6.17)

The solution of this second order equation is (for B 6= 0)

∆G

G
=
−C ±

√
C2 − 4BD

2B
(6.18)

The case where B = 0 is very helpful to illustrate clearly how to extract ∆G/G with the best
possible precision (since 〈β〉 � 1, the following definitions ensure that B � D):(

N

4

)
= Nu ≈ Nu′ ≈ Nd ≈ Nd′ (6.19)

and

〈β〉 = 〈βu〉 ≈ 〈βd′〉 ≈ −〈βu′〉 ≈ −〈βd〉 (6.20)

A more general expression of the error associated with eq. 6.18 can be found in [77]. However,
this is irrelevant for the present discussion because the conclusions to draw are the same. Using
these realistic approximations, the gluon polarisation is trivially extracted from eq. 6.14:

(
∆G

G

)
B=0

= −D

C
(6.21)

The corresponding statistical error is given by

σ2
∆G
G

=

(
∂(∆G/G)

∂r

)2

σ2
r

=
1

〈β〉2N
with σr =

4√
N

(6.22)

95



2≈ 1

〈PµPtf〉2
(

S2

S+B

)
〈âLL〉2

(6.23)

In eq. 6.23 we have used N = (S + B). The quantity FOM ≡ S2/(S + B) is the Figure
Of Merit (or signal-strength) of the reconstructed D0 mass spectra. One can easily see the
interpretation given to the event rates, N , by looking to the mass spectra of kπ pairs (see
Figs. 5.15, 5.17 and 5.18) or to the mass spectra of Kπππ combinations (cf. Fig. 5.16): they
show a mass distribution containing the PGF events, S, inside the resonance that emerges over
the combinatorial background B. From eq. 6.23 we can also verify that the FOM is inversely
proportional to the precision of the gluon polarisation measurement. As a result, the main
criterium for the selection of the final mass spectra should be the maximisation of the FOM
for each reconstructed peak.

Event Weight to minimise the statistical error

It is clear from eq. 6.22 that no measurement can be made for the case where 〈β〉2 = 0,
because the resulting uncertainty would be infinite. Unfortunatelly, the partonic asymmetry
âLL assumes both positive and negative values (see Fig. 2.15). This fact may lead to a result for
〈β〉2 which is very close to zero. The best way to solve this potential problem is to extract ∆G/G
in bins of β. Since these measurements are independent (inside each bin), the corresponding
statistical error is given by (

σ∆G
G

)Nbin

=
1√∑Nbin

i

(PN
j β2

j

N2

)
i

Ni

(6.24)

using

〈β〉 =

∫
βα dξ∫
α dξ

3
β ∆G

G
�1

≈
∫

βα
(
1 + β ∆G

G

)
dξ∫

α
(
1 + β ∆G

G

)
dξ

N→∞
=

eq. 6.9

∑N
j βj

N
(6.25)

Ideally, an infinite number of bins should be used to allow for the best possible precision. The
corresponding error is (

σ∆G
G

)Nbin→∞
=

1√
〈β2〉N

(6.26)

Using this result, we can determine the maximum gain introduced by the binning in the signal-
strength of a given D0 mass spectrum:

FOM(gain) =

(
1/
(
σ∆G

G

)Nbin→∞
)2

(
1/σ∆G

G

)2 =
〈β2〉
〈β〉2

(6.27)

2From σAcc̄

(
≡ 〈âLL〉 × σ∆G

G

)
= 1

〈PµPtf
S

S+B 〉
√

N

∗= 1
〈PµPtf〉 S√

S+B

∗( S
S+B is independent of f , Pt and Pµ)

3The approximation is justified by the observed data. A possible error made in the calculation of 〈β〉 has
a negligible impact on ∆G/G: the propagation of this error to ∆G/G is diluted by the ratio of asymmetries.
Therefore, the approximation is only assumed for 〈β〉 (not for α).
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If we define an appropriate weight for each event, ω, the ideal situation of an infinite number
of bins is reached [49]. To confirm this, we must rewrite eq. 6.12 in terms of the double ratio
of the weights:

r(ω) =

(
WuWd′

Wu′Wd

)
=

(1− 〈βu〉ωu

∆G
G

)(1− 〈βd′〉ωd′
∆G
G

)

(1− 〈βu′〉ωu′
∆G
G

)(1− 〈βd〉ωd

∆G
G

)
(6.28)

where we used

Wt =
Nt∑
i=1

ωi , 〈βt〉ωt =

∫
(ωtβtαt) dξ∫
(ωtαt) dξ

and αt =

∫
(ωtatΦn̂tσ̂tot,t) dξ (6.29)

Since by definition we have σ
(∑Nt

i ωt

)
=
(∑Nt

i ωi

)2

, the statistical error for the weighted

extraction of ∆G/G is (using again eq. 6.19 and eq. 6.20)

σ2
∆G
G

(ω)
=

(
1

16〈β〉2ω

)
σ2

r(ω)

=
1(

16〈βω〉2
〈ω〉2

)(
(

PNt
i ωt)

2

16
PNt

i (ωt)2

)
=

1(
〈βω〉2
〈ω〉2

)(
N〈ω〉2
〈ω2〉

) (6.30)

If we define ω = β, we obtain:

σ∆G
G

(ω) =
1√
〈β2〉N

(6.31)

=
(
σ∆G

G

)Nbin→∞

In conclusion, the use of ω = β allows us to reach the ideal case of an infinite number of β bins.
Consequently, the best possible precision for an unbiased extraction of ∆G/G is achieved by
a weighted analysis 4. The gluon polarisation can be estimated from eq. 6.14 (replacing r and
〈βt〉 by r(ω) and 〈βt〉ωt), using the following factor which is evaluated for each D0 candidate:

〈βt〉ωt

eq.6.25

=

∑Nt

j βjωj∑Nt

j ωj

(6.32)

ω = fPµ

(
S

S + B

)
aLL and β = fPµPt

(
S

S + B

)
aLL (6.33)

The target polarisation, Pt, was removed from the event weight because it is a time dependent
quantity. This dependence results from the target re-polarisation or relaxation, and it may

4For a more general discussion concerning the extraction of weighted asymmetries see [78].
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even be different for each cell. As explained before, to be able to extract ∆G/G from eq. 6.28
we must ensure the following identity:

K =
〈au〉ωu〈ad′〉ωd′

〈au′〉ωu′
〈ad〉ωd

= 1 with 〈at〉ωt =

∫
(atωtΦn̂tσ̂tot,t) dξ∫
(ωtΦn̂tσ̂tot,t) dξ

(6.34)

From the above definitions we immediately see the impact of the time dependent Pt (if included
in ω) in the ratio K: it may deviate from 1 even if the acceptances are perfectly stable in time.
All the major sources of K 6= 1 are taken into account in the systematic error. However, it is
wise to avoid unnecessary additional contributions such as the definition of Pt inside the event
weight. All the needed ingredients for eq. 6.33 are obtained as true values, for each event, with
their uncertainty being transferred to the systematic error. The determination of f , Pµ and
Pt was discussed in Chapter 3, whereas the parameterisations of aLL and S/(S + B) will be
discussed in Chapter 7.

We have now all the required information to define the remaining variable of the puzzle, 〈xg〉,
which represents the average fraction of the nucleon momentum carried by the probed gluons.
Assuming a linear behaviour for ∆G/G,

∆G

G
= a (xg − 〈xg〉) + b (6.35)

we can easily demonstrate eq. 6.7 and write a general expression for 〈xg〉:

Acc̄
eq.6.7

=

〈
âLL

∆G

G
(xg)

〉
ω

→ weighted case

=

∫ ∫
ω(ξ)âLL(ŝ) [a(xg − 〈xg〉) + b] σ̂µg(ŝ)G(xg, ŝ) dξdŝ∫ ∫

ω(ξ)σ̂µg(ŝ)G(xg, ŝ) dξdŝ
(6.36)

xg = 〈xg〉
=

b
∫

ω(ξ)âLL(ŝ)σ̂µg(ŝ)G(xg, ŝ) dξ̂∫
ω(ξ)σ̂µg(ŝ)G(xg, ŝ) dξ̂

(6.37)

∗
= 〈âLL〉ω

∆G

G
(〈xg〉) (6.38)

* using

b =
∆G

G
(〈xg〉) and 〈âLL〉ω =

∫
ω(ξ)âLL(ŝ)σ̂µg(ŝ)G(xg, ŝ) dξ̂∫

ω(ξ)σ̂µg(ŝ)G(xg, ŝ) dξ̂
(6.39)

The eq. 6.37 is only obtained from eq. 6.36 if the following definition is true:

〈xg〉 =

∫
xgω(ξ)âLL(ŝ)σ̂µg(ŝ)G(xg, ŝ) dξ̂∫
ω(ξ)âLL(ŝ)σ̂µg(ŝ)G(xg, ŝ) dξ̂

with dξ̂ = dξdŝ , 〈xg〉 = 〈xg〉ω (6.40)

In order to complete section 6.1.1, we quantitatively verify the large gain introduced by the
weighted analysis in the FOM of each spectrum (see Fig. 6.2). We can conclude that the use
of ω is absolutely essential for an accurate measurement of ∆G/G. Moreover, we can also
verify that the FOM corresponding to an infinite number of bins is achieved even without the
inclusion of Pt in the weight. These huge improvements (by a factor 3 or 4) are justified by the
unfortunate shape of the β distributions. Since they peak around zero, we have:
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〈β2〉
〈β〉2

=
〈β〉2 + σ2

β

〈β〉2
=

(
1 +

σ2
β

〈β〉2

)
with

σ2
β

〈β〉2
〈β〉→0

� 1 (6.41)

The main reason for 〈β〉 being close to zero is given by the distribution of the partonic asymme-
try, âLL, which can assume positive and negative values. Also, the purity of the reconstructed
D0 mesons, S/(S + B), is much higher for low values of aLL (and vice-versa). Consequently, a
proper parameterisation of S/(S + B) brings 〈β〉 even closer to zero. In the limit of 〈β〉 = 0,
an infinite improvement is obtained due to the total uncertainty that results from the standard
analysis (cf. eq. 6.22). In practice, the gains are smaller than the ones shown in Fig. 6.2,
because one can extract ∆G/G in several β bins. Nevertheless, the number of bins is strongly
limited by the available statistics and, therefore, the weighted method corresponds to the best
possible statistical precision that one can achieve. Moreover, the weighting of the charmed
events allows us to measure a more reliable asymmetry: the use of ω in the analysis ensures
that the D0 candidates with a small 〈β〉 factor have a small impact on the final asymmetry.
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Figure 6.2: Distributions of β, per channel, using only events under the reconstructed peak.
Since σ∆G/G ∝ (1/

√
FOM), the statistical gain introduced by ω range from 40% (D0

Kπ) to 50%
(D∗Kπππ). The FOM(gain) is calculated with the help of eqs. 6.22, 6.26 and 6.31.
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6.1.2 Fit method - Simultaneous extraction of ∆G/G and Abg

In the previous section we saw how to extract ∆G/G in the most optimal way. One of the two
assumptions involved in the determination of ∆G/G is summarised in eqs. 6.13 and 6.34, for
the unweighted and weighted methods: the possible modifications in the experimental accep-
tance over time affect all target cells in the same way. This is a fair assumption because it only
requires that a specific cell should not significantly move its position with respect to the other
cell(s) (small deviations of the target stability are considered in the systematic error).

Up to now a possible contribution from the background asymmetry Abg has been neglected.
However, if in reality Abg is nonzero, the assumption that Abg is negligible may be a bit danger-
ous for the validity of the procedure described in 6.1.1. One solution to this potential problem
would be to correct the ∆G/G result, by subtracting a value of Abg estimated from events be-
longing to the sidebands of the D0 mass spectra (see Figs. 5.15-5.18). Yet, this is not the ideal
solution because the events that contaminate the signal (under the reconstructed peak) are not
taken into account in this correction. There is an elegant and much more efficient method that
involves the simultaneous extraction of ∆G/G and Abg [49]. In order to explain this method,
we must write the weighted version of eq. 6.9 with Abg 6= 0 (consequently, a weight ωB should
be considered). Using t = (u, d, u′, d′), C = (S, B) and C ′ = (S, B), we obtain:

Nt∑
i=1

ωi,C = αt,C

(
1− 〈βt,S〉ωt,C

∆G

G
− 〈βt,B〉ωt,C

Abg

)
(6.42)

with

〈βt,C′〉ωt,C
=

∫
(ωt,Cβt,C′αt) dξ∫

(ωt,Cαt) dξ

eq.6.25

≈
∑Nt

i=1 Pt,iωi,C′ωi,C∑Nt

i=1 ωi,C

(6.43)

and

ωS = fPµ

(
S

S + B

)
aLL , ωB = fPµ

(
B

S + B

)
D (6.44)

αt,C =

∫
(ωt,CatΦn̂tσ̂tot,t) dξ (6.45)

In eq. 6.42 we have defined 8 equations with the following 10 unknown quantities:

∆G

G
, Abg, αu,S, αd,S, αu′,S, αd′,S, αu,B, αd,B, αu′,B, αd′,B

These 8 equations result from the weighting procedure: we have 4 equations for each spin
configuration t weighted with a signal weight, ωS, or with a background weight, ωB. The
number of unknowns corresponding to the parameters α is reduced from 8 to 6, because αu′,S

and αu′,B are fixed by the following acceptance conditions (cf. eq. 6.13):
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αu′,S =

(
αu,Sαd′,S

αd,S

)
and αu′,B =

(
αu,Bαd′,B

αd,B

)
(6.46)

Using these constraints the system 6.42 can be solved simultaneously for ∆G/G and Abg,
provided that we know ωS and ωB for every D0 candidate. Nevertheless, one can reduce
further the number of unknowns by assuming that:

αd,S

αd,B

=
αd′,S

αd′,B
(6.47)

The same is assumed for the u and u′ configurations. These conditions imply that the number
of unknowns is reduced to 7 (by fixing, for eg., αd′,S). The assumption made here is even safer:
the signal and background events are affected in the same way by a possible change in the
position of the cell where they are produced (their ratio is the same before and after the field
reversal). The reduced number of unknowns in the 8 equations allows us to extract them by
the method of minimum quadratics:

χ2 = ( ~N − ~f)T Cov−1( ~N − ~f) (6.48)

with

~N =

(
Nu∑
i=1

ωi,S,

Nd∑
i=1

ωi,S,

Nu′∑
i=1

ωi,S,

Nd′∑
i=1

ωi,S,
Nu∑
i=1

ωi,B,

Nd∑
i=1

ωi,B,

Nu′∑
i=1

ωi,B,

Nd′∑
i=1

ωi,B

)
(6.49)

and

~f = (fu,S, fd,S, fu′,S, fd′,S, fu,B, fd,B, fu′,B, fd′,B) (6.50)

The components of the vector function, ~f , are obtained from each of the 8 equations for the
weighted event rates:

Nu∑
i=1

ωi,S = αu,S

[
1− 〈βu,S〉ωi,S

∆G

G
− 〈βu,B〉ωi,S

Abg

]
= fu,S(αu,S,

∆G

G
, Abg) (6.51)

Nd∑
i=1

ωi,S = αd,S

[
1− 〈βd,S〉ω,S

∆G

G
− 〈βd,B〉ωi,S

Abg

]
= fd,S(αd,S,

∆G

G
, Abg) (6.52)

Nu′∑
i=1

ωi,S = αu′,S

[
1− 〈βu′,S〉ωi,S

∆G

G
− 〈βu′,B〉ωi,S

Abg

]
= fu′,S(αu′,S,

∆G

G
, Abg) (6.53)

Nd′∑
i=1

ωi,S = αd′,S

[
1− 〈βd′,S〉ωi,S

∆G

G
− 〈βd′,B〉ωi,S

Abg

]
= fd′,S(αd′,S,

∆G

G
, Abg) (6.54)
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Nu∑
i=1

ωi,B = αu,B

[
1− 〈βu,S〉ωi,B

∆G

G
− 〈βu,B〉ωi,B

Abg

]
= fu,B(αu,B,

∆G

G
, Abg) (6.55)

Nd∑
i=1

ωi,B = αd,B

[
1− 〈βd,S〉ωi,B

∆G

G
− 〈βd,B〉ωi,B

Abg

]
= fd,B(αd,B,

∆G

G
, Abg) (6.56)

Nu′∑
i=1

ωi,B = αu′,B

[
1− 〈βu′,S〉ωi,B

∆G

G
− 〈βu′,B〉ωi,B

Abg

]
= fu′,B(αu′,B,

∆G

G
, Abg) (6.57)

Nd′∑
i=1

ωi,B = αd′,B

[
1− 〈βd′,S〉ωi,B

∆G

G
− 〈βd′,B〉ωi,B

Abg

]
= fd′,B(αd′,B,

∆G

G
, Abg) (6.58)

Finally, the covariance matrix is given by



σ2
u,S 0 0 0 σu,SB 0 0 0
0 σ2

d,S 0 0 0 σd,SB 0 0
0 0 σ2

u′,S 0 0 0 σu′,SB 0
0 0 0 σ2

d′,S 0 0 0 σd′,SB

σu,SB 0 0 0 σ2
u,B 0 0 0

0 σd,SB 0 0 0 σ2
d,B 0 0

0 0 σu′,SB 0 0 0 σ2
u′,B 0

0 0 0 σd′,SB 0 0 0 σ2
d′,B


with

σt,SB = Cov(
Nt∑
i=1

ωi,S,
Nt∑
j=1

ωj,B) 5≈
Nt∑
i=1

ωi,Sωi,B (6.59)

and

σ2
t,C = Cov(

Nt∑
i=1

ωi,C ,

Nt∑
i=1

ωi,C) ≈
Nt∑
i=1

(ωi,C)2 (6.60)

where t = (u, d, u′, d′) and C = (S, B). The existence of nonzero off-diagonal elements is
related to the fact that the same data are used twice: once with a weight ωS and once with ωB.

5

σt,SB =

〈
Nt∑
i=1

ωi,S

Nt∑
j=1

ωj,B

〉
−

〈
Nt∑
i=1

ωi,S

〉〈
Nt∑
j=1

ωj,B

〉

=

〈
Nt∑
i=j

ωi,Sωi,B +
Nt∑
i 6=j

ωi,Sωj,B

〉
−

〈
Nt∑
i=1

ωi,S

〉〈
Nt∑
j=1

ωj,B

〉
eq.6.25

= 〈N〉 〈ωSωB〉+ 〈N(N − 1)〉 〈ωS〉 〈ωB〉 − 〈N〉2 〈ωS〉 〈ωB〉

= 〈N〉 〈ωSωB〉+ (

σ2
N︷ ︸︸ ︷〈

N2
〉
− 〈N〉2−〈N〉︸ ︷︷ ︸

= 0 if N is Poisson distributed

) 〈ωS〉 〈ωB〉 ≈
Nt∑
i=1

ωi,Sωi,B
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This fit method is the one used to estimate the gluon polarisation. The second order weighted
method (described in section 6.1.1) was also used, but only to control the results obtained by
the fit method. For both cases, ∆G/G is extracted in the leading order approximation (LO-
QCD, cf. Fig. 2.14) using the interpretation of Acc̄ given in eq. 6.7. However, we have seen in
Chapter 2 that the next-to-leading order corrections to the PGF process may be important for
the charm production (see Fig. 2.20). It can be seen from Fig. 2.18 that the partonic asymmetry
may even change by a factor of 2, in the COMPASS kinematic domain. The implementation
of such corrections in the fit method will be discussed in the following section.

6.2 The Fit method with NLO corrections

In addition to the several NLO corrections to the photon-gluon fusion graph (cf. Fig. 2.11 and
Fig. 2.20), an unwanted process must be properly taken into account for the NLO determination
of ∆G/G. This process corresponds to the interaction between a virtual-photon and a light-
quark in the nucleon, producing in the final state a pair of charmed quarks (see Fig. 2.19).
The possible reconstruction of the resulting open-charm mesons (which are not originate from
a PGF interaction) contributes to the physical background of the D0 resonance in the mass
distributions. Until now we have always treated each event belonging to the D0 resonance as
resulting from one interaction with a gluon. However, at NLO it is also necessary to take into
account the contamination introduced by the physical background. The impact in the analysis
caused by these events must be carefully evaluated. Since in the NLO approximation we have,

S

S + B
=

(
S(PGF ) + S(q)

S(PGF ) + S(q) + B

)
(6.61)

and

aLL =

(a0 (PGF ) + 1 (PGF )
LL

)
+ a

1 (q)
LL︸ ︷︷ ︸

physical background

 with aLL = 〈âLL〉 (6.62)

the ideal solution for the extraction of ∆G/G would be (starting from eq. 6.42):

Nt∑
i=1

ωi,C = αt,C

(
1− 〈βt,S(PGF )〉ωt,C

∆G

G
− Ã(q) − 〈βt,B〉ωt,C

Abg

)
(6.63)

where C = (S(PGF ), B) and q = (uquark, dquark, cquark, c̄(anti)quark). The Feynman diagrams rep-
resented in Fig. 2.19 show two kinds of interactions that contribute to the physical background:
in the first two diagrams we see an interaction between a charm quark (cquark, c̄(anti)quark)

6 and
a valence quark in the nucleon, whereas the last two illustrate a direct interaction between the
virtual-photon and one of the valence quarks (uquark, dquark)

7. Contributions from the polarised
sea-quarks are negligible. Comparing eq. 6.63 with eq. 6.42 we obtain the following differences:

6These quarks are produced by the γ∗. One of them emits the gluon involved in the interaction and,
therefore, the resulting mesons have nothing to do with the gluon polarisation in the nucleon.

7The charm quarks are produced by a valence quark, after or before its collision with the γ∗.
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ωS(PGF ) = fPµ

(
S(PGF )

S(PGF ) + S(q) + B

)(
a

0 (PGF ) + 1 (PGF )
LL

)
(6.64)

and

Ã(q) = 〈βt,S(q)〉ωt,C

(∑
q e2

q∆q∑
q e2

qq

)
︸ ︷︷ ︸

A1

(6.65)

using

〈βt,S(q)〉ωt,C
≈

∑Nt

i=1 Pt,iωi,C

[
fPµ

(
S(q)

S(PGF )+S(q)+B

)
a

1 (q)
LL

]
i∑Nt

i=1 ωi,C

(6.66)

The system 6.63 has solution provided that we know the values of ωB, 〈βt,B〉ωt,C
, ωS(PGF ) ,

〈βt,S(PGF )〉ωt,C
and 〈βt,S(q)〉ωt,C

for each D0 candidate. Note that the asymmetry A1 in eq. 6.65

is experimentally well known, which implies that Ã(q) is contributing only as a correction num-
ber. Therefore, we solve eq. 6.63 using the same 7 unknowns described in section 6.1.2.

However, there is one big disadvantage in using this method for the present analysis:

• It is not possible to distinguish S(q) from S(PGF ) without increasing considerably the
systematic error of the ∆G/G measurement.

Two separate Monte Carlo parameterisations are needed to obtain S(q)/(S(PGF ) + S(q) + B)
and S(PGF )/(S(PGF ) + S(q) + B) (no distinction is possible from real data). In order to trust
these two fractions we must use a full NLO Monte Carlo generator and, in addition, we need to
tune it carefully so that we can perfectly describe the real data. Consequently, the advantage
of having an analysis that is weakly dependent of models is drastically reduced. A method
capable of solving this problem will be presented in the following section.

6.2.1 NLO extraction of ∆G/G without S(q) identification

First, we consider the decomposition of the muon-nucleon cross-sections. In the perturbative
regime of QCD (ensured by the heavy quark mass), we have for the polarised part:

∆σcc̄ =

(
∆G⊗

(
∆σ̂0 (PGF )

µg + ∆σ̂1 (PGF )
µg

)
+
∑
q′

e2
q′∆q′ ⊗∆σ̂

1 (q′)
µq′ +

∑
q′′

∆q′′ ⊗∆σ̂
1 (q′′)
µq′′

)
⊗ F

=

(
∆G⊗∆σ̂(g) +

∑
q

∆q ⊗∆σ̂(q)

)
⊗ F (6.67)

with

∆σ̂(g) =
(
∆σ̂0 (PGF )

µg + ∆σ̂1 (PGF )
µg

)
and ∆σ̂(q) 8=

(
5

18
∆σ̂

1 (q′)
µq′ + ∆σ̂

1 (q′′)
µq′′

)
(6.68)
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where q′ = (uquark, dquark), q′′ = (cquark, c̄(anti)quark), q = (q′, q′′), ⊗ is the convolution integral
between the partonic cross-sections and the corresponding structure functions (of gluons and
quarks), and F stands for the fragmentation function. All the kinematic dependencies have
been omitted for simplification. For the unpolarised cross-section we have:

σcc̄ =

(
G⊗ σ̂(g) +

∑
q

q ⊗ σ̂(q)

)
⊗ F (6.69)

The resulting asymmetry is

Acc̄ =

(
∆σcc̄

σcc̄

)
=

(
∆G
G

G⊗∆σ̂(g) + Ad,c
1

∑
q q ⊗∆σ̂(q)

)
⊗ F

σcc̄

=

∫ (
∆G
G

+
Ad,corr

1

P
q q∆σ̂(q)

G∆σ̂(g)

)(
G∆σ̂(g)

Gσ̂(g)+
P

q qσ̂(q)

)(
Gσ̂(g) +

∑
q qσ̂(q)

)
F dŝ

σcc̄

=

〈
∆G

G
â

(g)
LL + Ad,corr

1 â
(q)
LL

〉
eq.6.38

=

〈
∆G

G
+ Ad,corr

1

â
(q)
LL

â
(g)
LL

〉
︸ ︷︷ ︸

Agq : D0 asymmetry

〈
â

(g)
LL

〉
(6.70)

using for the case of the deuteron target:

Ad
1 =

∑
q e2

q∆q∑
q e2

qq
, Ad,corr

1 =
Ad

1

1− 3
2
ωD

(6.71)

and

â
(g)
LL =

G∆σ̂(g)

Gσ̂(g) +
∑

q qσ̂(q)
, â

(q)
LL =

∑
q q∆σ̂(q)

Gσ̂(g) +
∑

q qσ̂(q)
(6.72)

After inserting this expression for Acc̄ in eq. 6.2, it is straightforward to obtain the following
system of 8 weighted equations (NLO equivalent of eq. 6.42):

Nt∑
i=1

ωi,C = αt,C

(
1− 〈βt,S〉ωt,C

Agq − 〈βt,B〉ωt,C
Abg

)
(6.73)

8The factor 5
18 is a consequence of using a deuteron target (80 % of the data): we have the same number

of uquarks and dquarks inside the polarised target, which allows us to factorize
∑

q′ e
2
q′ in front of the partonic

cross-section ⇒
∑

q′ e
2
q′∆σ̂

(q′)
µq′ =

(
(4/9)+(1/9)

2

)
∆σ̂

(q′)
µq′ (averaged over the isoscalar target). The second term,

∆σ̂
(q′′)
µq′′ , is needed to describe the charm production by the virtual-photon: in this case, all valence quarks

contribute equally to the physical background because they are coupled to a virtual-gluon (consequently, this
term is convoluted only with

∑
q′′ ∆q′′).
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with C = (S, B), t = (u, d, u′, d′) and S =
(
S(PGF ) + S(q)

)
. From this system of 8 equations

and 7 unknowns, one can extract Agq(〈xg〉) using:

ωS = fPµ

(
S

S + B

)
a

(g)
LL , ωB = fPµ

(
B

S + B

)
D (6.74)

and

a
(g)
LL =

〈
â

(g)
LL

〉
ω

=

∫
ωS â

(g)
LL

(
Gσ̂(g) +

∑
q qσ̂(q)

)
dξ̂∫

ωS

(
Gσ̂(g) +

∑
q qσ̂(q)

)
dξ̂

(6.75)

〈xg〉ω
eq.6.40

=

∫
xgωS â

(g)
LL

(
Gσ̂(g) +

∑
q qσ̂(q)

)
dξ̂∫

ωS â
(g)
LL

(
Gσ̂(g) +

∑
q qσ̂(q)

)
dξ̂

(6.76)

Since this asymmetry is obtained per week of data taking (cf. section 5.1), we can safely extract
the gluon polarisation from Agq

9:

(
∆G

G
(〈xg〉)

)week

=

[
Agq −

〈
Ad,corr

1

â
(q)
LL

â
(g)
LL

〉]week

〈xg〉

(6.77)

where

〈
Ad,corr

1

â
(q)
LL

â
(g)
LL

〉
〈xg〉

=

∫
ωS

(
Ad,corr

1
â
(q)
LL

â
(g)
LL

)(
Gσ̂(g) +

∑
q qσ̂(q)

)
dξ̂∫

ωS

(
Gσ̂(g) +

∑
q qσ̂(q)

)
dξ̂

≈

∑N
i=1 ωS

(
Ad,corr

1
â
(q)
LL

â
(g)
LL

)
∑N

i=1 ωS

(6.78)

Finally, we have:

〈
∆G

G
(〈xg〉)

〉
=

∑
week

(
(∆G/G)week

σ2
(∆G/G)week

)
∑

week

(
1

σ2
(∆G/G)week

) and σ∆G
G

(〈xg〉) =

√√√√√ 1∑
week

(
1

σ2
(∆G/G)week

) (6.79)

Note that we don’t need to decompose S/(S +B) to obtain ∆G/G from eq. 6.73. The fractions
of the PGF and non-PGF processes are accounted for in the new definitions of the respective
partonic asymmetries (cf. eq. 6.72). The asymmetries â

(g)
LL and â

(q)
LL are estimated from Monte

Carlo using only the available phase space, i.e. they are both calculated for each generated
event. The inclusive asymmetry Ad,corr

1 is taken from a parameterisation of the data shown in
ref [5].

9During these periods of time, the spectrometer conditions are stable enough to allow for a reliable correction
of Agq using the average contribution from the physical background.
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Chapter 7

Neural Network Parameterisations

On the last few years, artificial Neural Networks are being successfully applied to a wide range of
problems involving all areas of knowledge. In fact, for every situation where one is confronted
with a problem of prediction or classification, the use of an artificial intelligence algorithm
is highly recommended. The working principle is based on the operation of biological neural
systems. In other words, it is a result from an emulation of the most powerful computer known:
the human brain. The advantages of these algorithms include:

• Nonlinear modelling: Neural Networks are capable of modelling extremely complex
functions, which are useful to describe many real life problems where the linear approxi-
mation is not valid.

• Parallel processing: when solving a specific task, if an individual element fails the
program can go on without any problem.

• Adaptive learning: like for the brain that learns from experience, a Neural Network
learns from examples (initial experience). The Neural Networks invoke training algo-
rithms to automatically understand the structure of the data, and thus they are very
useful to solve those problems where all the needed instructions to work out a conven-
tional program are unavailable (not known a priori). Contrary to conventional computer
programs, Neural Networks are not programed to execute a specific task.

• Multidimensional classification of the data: correlations between the predictor vari-
ables (input information) and their individual influences on the predicted variable (Neural
Network output) are taken simultaneously. An artificial Neural Network is capable to ex-
ecute extremely complex tasks, making use of a very large number of simple processing
units. The analogy with the brain is obvious: complexity (e.g., human behaviour) results
from simplicity (billions of simple neurons processing information in parallel).

The aim of this chapter is to explain how the parameterisations of S/(S + B) and aLL are
obtained. As already discussed in Chapter 6, the estimation of these two quantities is critical
for the extraction of the gluon polarisation, i.e. ∆G/G. The best unbiased precision that
one can achieve for the gluon polarisation is reached by the use of a Neural Network in the
parameterisations of the signal purity and of the muon-gluon asymmetry.
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7.1 Biological inspiration of a Neural Network

The brain contains about 10 billion neurons massively interconnected (thousands of connections
per neuron). Each neuron has an input structure, called the dendrites, a specialised cell body,
and an output structure formed by axons. The axons of one neuron connect to the dendrites
of another neuron through synapses. Each neuron can fire an electrochemical signal along the
axon, if the signal received from the dendrites is above a certain level (activation threshold),
which in turn may activate other neurons after crossing their synaptic connections. Each
synapse contains a gap, with chemical neurotransmitters ready to transmit the signals across
the gap: the strength of a signal received by a neuron critically depends on the efficiency of
these synaptic connections. The most important conclusion for the artificial Neural Network
algorithms is that the learning process consists mainly in altering the strength of the synaptic
connections: a person learns by experience to avoid obstacles, when walking, by strengthening
the synaptic connections between the visual cortex and the motor cortex neurons. The same
principle is applied in a Neural Network algorithm as it will be explained in the next section.

7.2 DMLP Network to improve the PGF selection

To capture the essence of biological systems a DMLP (Dynamic MultiLayer Perceptrons) Net-
work is used [79, 80]. Each artificial neuron structure receives several inputs from real data
or from other neurons. This information arrives through connections with weights associated
(synaptic strength), allowing the neuron to compute an output if the weighted sum of the inputs
is greater than the activation threshold. The global architecture involves the input data (sen-
sory nerves) connected to the Network output (motor nerves), through some hidden neurons
involved in the process:

Figure 7.1: Structure of the Dynamic Neural Network used in the analysis.

The Network used in this analysis has a feed-forward nature, meaning that the information
flows from the input data to the output neurons: the final response corresponds to the output
of the neurons in the final layer. Each neuron computes an answer, after being activated by
the input data, by using a transfer function that should be able to accept the input values in
a wide range and also to compute an output in a restricted range. One good candidate to use
is the sigmoid function which computes an output between [0, 1] by taking an input range in
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the interval [-1, 1]. This function has a smooth nature and it is easily differentiable, facts that
are essential for a good operation of the training algorithms (see Fig. 7.2).
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Figure 7.2: Neuron activation function (left) and its derivative (right).

Like for the biological Neural Networks, the goal is to tune the weights of the Network structure.
This is achieved by the minimisation of the error obtained during the training procedure, using
the expected result and the obtained output. If one defines the expected output variable as t1,
the Network will minimise the following mean squared error function (averaged over all events):

δ =
1

N

N∑
i=1

(t1,i − o1,i)
2 (7.1)

The learning procedure, which consists in the weights optimisation, is based on a supervised
back propagation algorithm: it is supervised in the sense that the Neural Network is trained
with the help of an input vector and matching output patterns. As the algorithm name implies
the errors propagate backwards from the output neuron to the hidden units, and finally to the
input vector. This is done by calculating the gradient of the error, for each neuron, with respect
to the corresponding weights from all existing connections:

∆wij = −∂(δij)

∂wij

= −∂(δij)

∂ni

∂

∂wij

∑
k∈Ai

(wikxk) = −∂(δij)

∂ni

xj = δixj (7.2)

where ωij are the weights associated to all connections between the neurons j and the neuron
i, Ai is a set containing all neurons prior to the unit i, δi is the error signal for the neuron i
and xj is the activity in the unit i generated by all neurons j. Note that for the neurons in
the first layer we have Vj = xj. During each iteration the weights are infinitesimally adjusted,
towards the greatest descent ∆w over the error surface, until a minimisation in the output error
is achieved. Therefore, for each neuron we just need to know 2 things: the activity through
the incoming connections, xj, and the error associated to the structure. By simply adjusting
these weights we can model any function regardless of the exact neuron activation shape. The
power of this kind of Neural Network is hidden in its dynamic structure: during the training
stage a control sample is used to ensure the validity of the Neural Network parameterisation
(the quality of the learning), and if the errors in the 2 samples start to diverge the Network
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can readjust itself by allowing new neurons to born or neurons with redundant connections
to be killed. This feature is of great importance, because it allows total independence of pre-
cise initial conditions (number of neurons) for a task that we don’t know a priori how to proceed.

In the analysis, this DMLP Network is used for two important tasks:

• Event classification: to distinguish the signal (D0 mesons) from the combinatorial
background on a event-by-event basis.

• Event prediction: to obtain the PGF partonic asymmetry aLL, for every event, after
learning from a Monte Carlo sample.

7.3 Neural Network classification of events

The main goal here is to obtain D0 probabilities for each of the events belonging to the
Figs. 5.15-5.18. The knowledge of S/(S + B) is of critical importance for this analysis (see
Chapter 6), and to achieve this aim the illustrated Neural Network (cf. Fig. 7.1) is used to
parameterise simultaneously its relevant kinematic dependencies. In practice, what the Neural
Network does is to sort the events according to their kinematic similarities. This classification
of events allows us to distinguish the signal from the combinatorial background in the D0 mass
spectra, provided that we feed the Network with a realistic background model.

Figure 7.3: Procedure for the Neural Network classification of events.

The full procedure is represented on Fig. 7.3. The parameterisation is accomplished by feeding
the DMLP Network with 2 samples: the signal model, gcc (good charge combination of parti-
cles resulting from a D0 decay), and the wcc (wood charge combination of kaons and pions)
background model. Each channel is parameterised separately (except the D0

Kπ) and per year
of data taking:

• gcc:


1: D∗Kπ → D0πs → (K−π+)π+

s + cc
(
charge conjugated ∈ D

0
)

2: D∗Kππ0 → D0πs → (K−π+π0)π+
s + cc

3: D∗Kπππ → D0πs → (K−π+π+π−)π+
s + cc

4: D∗Ksubπ
→ D0πs → (K−subπ

+)π+
s + cc

• wcc:


Channel 1: → K−π−π+

s + cc

Channel 2: → K−π−π0π+
s + cc

Channel 3: → K−π−π+π−π+
s + K−π+π−π−π+

s + K−π−π−π−π+
s + cc

Channel 4: → K−subπ
−π+

s + cc
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Each of these samples is randomly divided in 2, the train set (learning sample) and the test
set (control sample), in order to ensure a universal result. The signal model corresponds to the
D0 mass spectra (after all kinematic and RICH cuts) and, therefore, contains D0 mesons plus
background events. The wcc sample is selected in a very similar way but with the additional
requirement that the net charge of the final state particles is different from zero (not counting
with πs): in this way we ensure that no D0 event is present in the background sample. After
defining the expected outputs, t1 = 0.95 for the gcc sample and t1 = 0.05 for the wcc sample 1,
the best input vector is chosen to teach the Neural Network, considering 5 variables:

V

(
zD0 , cos θ∗, p(K),

LK(K)

LK(bg)
,

Lπ(π)

Lπ(bg)

)
These variables are then normalised to a zero mean and to one standard deviation, in order to
avoid very different ranges among them. Using this input vector, the Neural Network learns
from the training set how to distinguish the D0 events from the combinatorial background:
by comparing the signal and background models in a multidimensional way, the Network is
able to identify some of the combinatorial background events inside the gcc sample (due to a
similar kinematics between these events and the ones belonging to wcc). The same is to say
that the weights of the Network structure are tuned to minimise the error in the output neuron,
(t1− o1)

2
train, averaged over all events. As explained before, the validity of this trained Network

structure is ensured by an independent parameterisation coming from the control sample (test
set). In Fig. 7.4, we can observe the followed criterium to choose a good learning variable.
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Figure 7.4: Distribution of |cos θ∗| for the gcc (blue) and wcc (red) events, under (left) and
outside (right) the D∗Kπ peak.

The |cos θ∗| distributions correspond to the cosine of the polar angle of kaon in the D0 centre-
of-mass regarding to the direction of the D0 momentum. We can verify the good description
of the real combinatorial background by the wcc sample (see Fig 7.4-right), both in shape and
normalization, which clearly indicates that this sample is a good background model to work
with. On the other hand, both distributions have different shapes under the peak, meaning that
the Neural Network can learn to distinguish the D0 events from the combinatorial background
due to their different kinematic distributions.

1The choice of these two values simplifies the interpretation of the Neural Network result in terms of
probabilities.
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After the convergence of the training algorithm, the weights from the frozen structure are used
to compute an answer o1, from the output neuron, for every gcc and wcc event. However, the
Neural Network output cannot be interpreted directly as a D0 probability: for those gcc events
that the Network cannot distinguish from the typical wcc kinematics, an answer o1 around 0.5
is computed (see Fig. 7.2). In the next sections, two alternative methods to obtain S/(S + B)
from o1 are presented.

7.3.1 Parameterisation of S/(S+B): Pure Neural Network method

When the available background model is good enough (same shape and similar statistics), and
the existing signal purity is significant, the open-charm probabilities can be directly obtained
from the Neural Network output. This fit independent method can be used to parameterise
S/(S + B) in the following samples: D∗Kπ, D∗Kππ0 and D∗Kπππ from the years with more statis-
tics (2004, 2006 and 2007). Unfortunately, as it can be seen from Fig. 7.5, the above criteria
are not fulfilled for the D0

Kπ channel. Since this untagged sample is the major source of sys-
tematic errors (and they are all correlated among channels), it was decided to use a ”hybrid
method” to build all the S/(S+B) parameterisations. This hybrid approach will be discussed in
the next section. In any case, the statistical accuracy achieved in the extraction of ∆G/G is the

 )2 ( MeV/c0D - MπKM

 )
2

E
v

e
n

ts
 /

 5
 (

 M
e

V
/c

 2007: πK
0COMPASS D

gcc

wcc

gcc vs. wcc mass spectrum

-400 -300 -200 -100 0 100 200 300 4000

10000

20000

30000

40000

Figure 7.5: D0
Kπ(2007) mass spectrum (yellow plot) vs. wcc background model (red plot). In

addition to the low S/(S + B), the background is also poorly described by the wcc sample.

same for both methods. There are, however, two exceptions to the hybrid method used in this
analysis: the D∗Kππ0 channel obtained from the years of 2006 and 2007. These two examples
are chosen to illustrate the good approximation made in the description of the broad resonance
containing the D0

Kππ0 signal in the mass spectra of the D∗Kπ channel (cf. Fig. 5.15): a Gaussian
function is used to fit the bumpy shape, which results from the failure to identify the π0. In
the pure Neural Network approach the probabilities are extracted as explained below, in a fit
independent way, and then they are validated by the Gaussian fits that are applied to the
’bump’ (cf. Fig. 7.21).

The Neural Network is trained using only the events within a ±40 MeV/c2 mass window under
the D0

Kππ0 peak. In order to parameterise the signal purity of these two samples (using the data
from the years of 2006 and 2007), an additional input is provided to the Network: (f ·Pµ ·aLL).
This quantity is needed to ensure the known anti-correlation between S/(S + B) and the
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fundamental partonic asymmetry aLL
2. At the end of the learning procedure of the Neural

Network we can obtain S/(S + B) from its output, using the following system of equations:

{
(S + B)gcc = o1

(S + B)o1
gcc + Bo1

wcc = 1
(7.3)

The Neural Network computes an answer o1 for every gcc event (an answer is also computed for
each of the wcc events). If the background model is good enough, meaning that the Network
can learn about the background existing in the gcc sample, the normalised sum of gcc and of
wcc events, around a specific o1 value, should be 1. The validity of the second condition in
the system of equations 7.3 can be confirmed in several bins of o1. This would prove that the
Neural Network is doing what is supposed to do and, as a consequence, we can safely obtain
D0 probabilities from the parameterisation (by solving the system of equations above):(

S

S + B

)
gcc

=
[(1 + k) · o1 − 1]

k · o1

using k =

(
Bwcc

Bgcc

)
(7.4)

The ratio k, of crucial importance for this method, is tuned inside a few o1 bins to fulfil the
second condition of the system 7.3 (only for the samples D∗Kππ0(2006) and D∗Kππ0(2007)).

Recipe to tune the background ratios (k in eq. 7.4):

1. In order to maximise the FOM of the D0 signal, the events coming out of the
Neural Network with low o1 values are rejected (see Figs. 7.6, 7.7 and 7.8):

• D∗Kππ0(2006) final mass spectrum → Only events with o1 ≥ 0.50 are accepted.
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Figure 7.6: Left: gcc (yellow) and wcc (red) training samples. Right: final mass spectrum after
a cut in the Neural Network response.

2Note that these two quantities appear in the definition of the signal weight (cf. eq. 6.33). If their proper
correlation is not taken into account, the outcome will be an underestimation of the statistical error of ∆G/G.

113



1o

E
ve

nt
s 

/ 0
.0

1

0

500

1000

1500

 (D* tagged):0ππK
0COMPASS 2006 D  distributions1o

wcc

gcc

0 0.2 0.4 0.6 0.8 1
 )2 ( MeV/c0D - MπKM

-600 -400 -200 0 200 400 600

 )2
E

ve
nt

s 
/ 1

0 
( M

eV
/c

0

50

100

150

200

gcc

 (D* tagged):0ππK
0COMPASS 2006 D  < 0.501o

Figure 7.7: Distributions of the Neural Network o1 (left) and rejected mass spectrum (right).
One can verify that no significant signal exists in the mass spectrum containing the events
with o1 < 0.5, and as a consequence the FOM is increased by applying this cut in o1.

• D∗Kππ0(2007) final mass spectrum → Only events with o1 ≥ 0.53 are accepted.
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Figure 7.8: In the left plot one can see the training samples corresponding to D∗Kππ0(2007). To
the right of, it is shown the final mass spectrum used in the analysis (after the Neural Network
cut).

2. Each final mass spectrum is divided in bins of o1 for an optimised tuning of
the k factor (see Figs. 7.9 and 7.10):
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Figure 7.9: D∗Kππ0(2006) mass spectrum in bins of o1. One can see a good description of the
background by the wcc sample, inside all bins, together with an increasing purity of the mass
spectrum due to the signal recognition by the Neural Network.
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3. A temporary ratio k′ is evaluated for each bin, using the number of gcc and
wcc events outside both D0 peaks (D0

Kπ and D0
Kππ0).

4. Finally, a correction is applied to k′ in order to satisfy the second equation of
system 7.3:

• The average value of o1(wcc) is calculated per bin using only the events within the pa-
rameterisation window: 〈o1〉final

wcc = [〈o1〉wcc]
o1 ≤ 0.5 or 〈o1〉final

wcc = [1− 〈o1〉wcc]
o1 > 0.5.

• The final k factor is determined from the following equation (where N represents
the number of events within the parameterisation window):

k = k′ +

∣∣∣∣∣ 〈o1〉final
wcc

N(wcc)
N(wcc+gcc)

− 1

∣∣∣∣∣ (7.5)

7.3.2 Parameterisation of S/(S+B): Hybrid method

This method is the one used for 90% of the S/(S + B) parameterisations. It is not so elegant
as the previous one, which is totally fit independent, but it is much easier to implement since it
does not depend critically on a very good Neural Network parameterisation. Moreover, as it was
mentioned before, the achieved statistical precision in the measurement of the gluon polarisa-
tion is the same (one example will be given for the D∗Kπ channel). Each sample is parameterised
independently per year of data taking (with a few exceptions for the data of 2002 and 2003):
in this way we avoid the mixture of data obtained with different experimental acceptances and
also with different spectrometer conditions. The process of the classification of events according
to their kinematic similarities is the same as discussed in the previous section. The only differ-
ence lies on the procedure used to obtain S/(S+B), per event, from the Neural Network output.

In total, 24 parameterisations of S/(S + B) are built:

Data
Channels

D∗Kπ D∗Kππ0 D∗Kπππ D∗Ksubπ
D0

Kπ

2002 Σ(1)
Σ(7) Σ(11) Σ(15)

Σ(19)

2003 Σ(2) Σ(20)

2004(old) Σ(3)
Σ(8) Σ(12) Σ(16)

Σ(21)

2004 (new) Σ(4) Σ(22)

2006 Σ(5) Σ(9) * Σ(13) Σ(17) Σ(23)

2007 Σ(6) Σ(10) * Σ(14) Σ(18) Σ(24)

Table 7.1: Parameterisations of the signal purity: Σ =
(

S
S+B

)
[ ~V’] (cf. eq. 7.13).
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In 2004, two separate parameterisations are built for the channels with higher statistics. The
justification for this fact lies in the existence of two different reconstruction programs for this
data sample (cf. Tab 5.3). Concerning the channels of low purity and low statistics from the
years of 2002 and 2003 (columns 3, 4 and 5 in Tab. 7.1), only one parameterisation is obtained
due to a very small D0 statistics collected from the 2002 data. The parameterisations Σ(9) and
Σ(10) come directly from the corresponding Neural Network outputs as it was explained in the
previous section. The remaining 22 parameterisations use a different approach to obtain the
desired D0 probabilities, for every event, as explained hereafter.

Principle: Why do we need a proper kinematic parameterisation of S/(S + B)?

The signal purity Σ is a very important quantity of the event weight used in the open-charm
analysis, i.e. ωS = fPµaLLΣ. It is known experimentally that the dependence of Σ on the
event kinematics is anti-correlated with fPµaLL (cf. Fig. 7.11). Therefore, the naive approach
to obtain the probability Σ is to calculate ΣfPµaLL

(m) from each mass spectrum of Fig. 7.11
(example for Σ(5)). The same is to say that we are including the mass dependence in Σ from a
fit to the mass spectrum sampled in bins of fPµaLL, in order to account for the anti-correlation
that exists in the weight. However, if the full weight is vω instead of ω, the use of ω as the
weight gives rise to a bias if the missing term v is correlated with ω. To illustrate this point,
we use the experimental open-charm asymmetry, i.e. Aexp = fPµPtA

µN
cc̄ (see eq. 2.84):

AµN =
1

〈ω〉

(
Nu −Nd

Nu + Nd

)
(7.6)

δ(AµN) =
1

〈ω〉
√

N
with N = (Nu + Nd) (7.7)

where a generic weight ω = fPµPt is defined. Note that the D0 counting rates are represented
by Nu (upstream cell) and Nd (downstream cell), using the target geometry of [2002, 2004].
Weighting each event with w is equivalent to define an infinite number of y = (Eγ∗/Eµ) bins
for the extraction of AµN (the dilution factor is dependent on this kinematic variable):

AµN
ω =

∑
i

(
AµN

i

δ2(AµN
i )

)
∑

i

(
1

δ2(AµN
i )

) =

∑
i(A

µN
i ω2

i Ni)∑
i(ω

2
i Ni)

=

∑
i(Nui

ωi)−
∑

i(Ndi
ωi)∑

i(Nui
ω2

i ) +
∑

i(Ndi
ω2

i )
(7.8)

The above sums can be rewritten just as the sum of ω for each target cell:

AµN
ω =

∑
u ω −

∑
d ω∑

u ω2 +
∑

d ω2
(7.9)

δ2(AµN
w ) =

1∑
u ω2 +

∑
d ω2

=
1

〈ω2〉N
(7.10)

Now, we consider that the weight is ω = f instead of the true one: vω = fPµPt. If we divide
at the end the weighted asymmetry by the missing weight, 〈v〉, we obtain:
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〈
AµN

ω

〉
=

1

〈v〉

∑
i

(
〈AµN

i 〉
δ2(AµN

i )

)
∑

i

(
1

δ2(AµN
i )

) =
1

〈v〉

∑
i(viω

2
i Ni)∑

i(ω
2
i Ni)

Aθ =
〈vω2〉
〈v〉 〈ω2〉

Aθ (7.11)

where the expectation value of the physical asymmetry is: 〈AµN
i 〉 = viAθ. If the used weight ω

is not correlated with the missing weight, v, there is no bias:〈
vω2
〉

= 〈v〉
〈
ω2
〉

(7.12)

Unfortunately, this is not the case for the real weight used in the analysis. We can see from Fig.
7.11 that the quantity fPµaLL shows a well defined anti-correlation with the signal purity (due
to aLL), S/(S + B), which in turn is strongly dependent on the event kinematics. The solution
to remove this residual bias from the weight is to parameterise the dependence of S/(S + B)

in the relevant event kinematics, S/(S + B)(~V ), in addition to the anti-correlation with aLL:

Σ =

(
S

S + B

)
[ ~V ′] with ~V ′ = (o1, fPµaLL) (7.13)

For the present method, two variables are needed to parameterise Σ in the most optimal way.
Since aLL is a critical variable for this analysis, it was decided to treat fPµaLL separately from
the Neural Network output o1 (the former variable exists independently in the weight). The
inclusion of o1 into the parameterisation is vital to remove the residual bias in the weight, as
explained above, but also to allow for the best statistical precision in the measurement of the
asymmetry. By comparing eq. 7.10 with eq. 7.7, we immediately see that the gain introduced
by a weighted analysis is proportional to the variance of the weights (note that for ω = fPµaLLΣ
we need to replace AµN by ∆G/G):(

δ(AµN)

δ(AµN
ω )

)2

=
〈ω2〉
〈ω〉2

= 1 +
σ2

ω

〈ω〉2
(7.14)

The largest unbiased ratio of σω/〈ω〉 is achieved after a proper parameterisation of the signal
purity, over the event kinematics, and as a consequence the gain in statistical precision due to
the use of the weights is maximised. This method is better because it considers the kinematic
dependencies of S/(S + B) in a multidimensional way. In fact, the Neural Network is able to
process all the input variables at same time, meaning that possible correlations between them
are correctly taken into account.

Algorithm to build Σ:

Each sample is divided in bins of o1 (cf. Fig 7.12) and also in bins of fPµaLL (cf. Fig. 7.11).
In the illustrated example, for the D∗Kπ(2006) sample, we can see the nice improvement in the
signal purity with o1. The efficient parameterisation obtained by the Neural Network, as shown
in Fig. 7.12, is only possible due to the existence of good background models from real data
(wcc). In Figs. 7.13-7.14 all samples used for each parameterisation of Tab. 7.1 are shown,
except for the mass spectra corresponding to the untagged D0

Kπ channel. In this case, we use
the parameterisations obtained from D∗Kπ.
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Figure 7.11: D∗Kπ(2006) sample in bins of fPµaLL. The anti-correlation between S/(S + B)
and the remaining part of the event weight is clear (these signal purities are obtained from a
fit to the mass spectra in a window of ±40 MeV/c2).
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Figure 7.12: D∗Kπ(2006) mass spectrum in bins of o1. The Neural Network is clearly able to
recognise the signal, D0 mesons, out of the combinatorial background.
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Figure 7.13: Full samples used for each Neural Network classification of the D∗Kπ candidates
(first 3 lines). In the last line we can see the remaining samples of the D∗Kππ0 channel (cf.
Fig. 7.6 and Fig. 7.8 for the 2006 and 2007 mass spectra). The signal model is represented
in yellow (gcc) and the background model in red (wcc): the multidimensional comparison is
performed in a mass window of ±40 MeV/c2 under the corresponding D0 peak.
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Figure 7.14: Full samples used for each Neural Network classification of the D∗Kπππ (first 2 lines)
and of the D∗Ksubπ

(last 2 lines) candidates. The multidimensional comparison is also performed
in a mass window of ±40 MeV/c2 under the corresponding D0 peak.
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In Figs. 7.13-7.14 one can see the number of D0 corresponding to the low purity samples:
D∗Kππ0 , D∗Kπππ and D∗Ksubπ

. It turns out that for these channels the Neural Network is able to
kill part of the combinatorial background under the peak, after applying a cut on the o1 values
computed by the Network. By rejecting events with low o1 values, the FOM of these mass
spectra are increased with a minimum loss of the signal content (cf. example in Fig. 7.6). This
fact can be confirmed by comparing the numbers of D0 events shown in the figures above with
the numbers of D0 events obtained from a fit to the final mass spectra (see Fig. 7.27-yellow).
However, since we assign a D0 probability to each event after the parameterisation of S/(S+B),
a compromise between the number of signal events and the final FOM must be established (all
D0 should be preserved in an ideal parameterisation). In the case of the D∗Kπ channel, despite
of the good signal recognition by the Neural Network (cf. Fig. 7.12), the FOM cannot be
further improved by a cut in o1: these mass spectra are already very clean after the kinematic
cuts, containing only a residual background which is hard to distinguish from the signal due to
the very similar kinematics. By applying a cut in the first bin of Fig. 7.12 ( for example), part
of the signal is also removed in a way that the FOM can only decrease or remain the same.

The parameterisation of Σ is built in the bi-dimensional space of ~V ′, (o1, fPµaLL), divided
in n1 × n2 bins (see Fig. 7.11 and Fig. 7.12 for Σ(5)). It is chosen to parameterise the
ratio (S/B)par (see also [81]), inside of each bin, by taking as a reference the total number of
signal and background events: they are obtained from a fit to the mass spectra in a window
of ±(40/30) MeV/c2 under the corresponding peak (for the tagged/untagged mass spectra).
Finally, after this parameterisation, the signal purity Σ is obtained for each event as follows:

Σ =

(
S
B

)
par

1 +
(

S
B

)
par

(7.15)

The algorithm, for the ratio parameterisation (S/B)par, uses two functions, F1 and F2, which
are initially defined as explaind in Fig. 7.15.
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Figure 7.15: Ratios of (S/B)fit obtained in bins of o1 (left) and in bins of fPµaLL (right), for the
D∗Kπ(2006) mass spectrum. The continuous functions F1 and F2 are defined, for each variable,
by a linear interpolation of the fit results obtained for each bin.
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More specifically, the function F1 interpolates linearly the points
(
〈o1〉, (S/B)fit

〈(S/B)par〉

)j

from all bins

j (similarly for F2). By initialising the ratio (S/B)par with the value of 1, for every event, the
initial functions of Fig. 7.15 are reproduced. The procedure can now be easily explained:

• For each iteration i, the algorithm loops twice over all events (once per variable). The
first loop of the iteration i corrects the slopes of F1, from iteration (i − 1), between 2
neighbouring bins j:

f i,j
corr(o1) =

[
(S/B)j+1

fit (o1)

〈(S/B)i−1
par (o1)〉j+1 −

(S/B)j
fit(o1)

〈(S/B)i−1
par (o1)〉j

]
[
〈o1〉j+1 − 〈o1〉j

] (7.16)

• With the help of the global function f i
corr(o1), the signal-to-background ratios are also

corrected for every event:

(
S

B

)i

par

(o1) = f i
corr(o1)×

(
S

B

)i−1

par

(o1) (7.17)

• A second loop over all events is performed, inside the same iteration i, to account for the
dependence of S/B in fPµaLL. Using (S/B)i

par(o1) as an input, from eq. 7.17, we can
obtain the final parameterisation of S/B for the iteration i:

(
S

B

)i

par

= f i
corr(fPµaLL)× f i

corr(o1)×
(

S

B

)i−1

par

(o1) (7.18)

where

f i,j
corr(fPµaLL) =

[
(S/B)j+1

fit (fPµaLL)

〈(S/B)i
par(fPµaLL)〉j+1 −

(S/B)j
fit(fPµaLL)

〈(S/B)i
par(fPµaLL)〉j

]
[
〈fPµaLL〉j+1 − 〈fPµaLL〉j

] (7.19)

The procedure continues iteratively until a global convergence is achieved for all bins from
both variables (cf. Fig. 7.16). The final function F (o1, fPµaLL) describes properly (S/B)par,
for every event, if it can reproduce the fit results obtained for all n1 × n2 bins:

〈
F (o1, fPµaLL) ≡

(
S

B

)
par

〉j

=

(
S

B

)j

fit

(7.20)

where (
S

B

)
par

= F2 × F1 ×
(

S

B

)
par

(o1) (7.21)

and
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F1 = ΠN
i f i

corr(o1) , F2 = ΠN
i f i

corr(fPµaLL) (7.22)
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Figure 7.16: D∗Kπ(2006): the algorithm is stable after 5 iterations (with corrections below 0.2%).
The quadratic differences of Σ, between 2 consecutive iterations, are taken as a sum over all
events.

7.3.3 Validation of the Σ-parameterisations

Each parameterisation Σ from Tab. 7.1 must fulfill two conditions in order to avoid any bias.
These conditions are defined with the help of the true signal purity, Σtrue [82]:

1. We must ensure that the missing part of the weight,
(

Σtrue

Σ

)
, is not correlated with the

weight used in the analysis: ω = fPµaLLΣ. To guarantee this, we fit the mass spectrum

sampled in bins of ω, to obtain Σω
true =

(
S

S+B

)
, and finally we check that

(
Σω

true

〈Σ〉ω

)
= 1

within the fitting errors (inside of each parameterisation window and for each bin).

2. In addition to the previous requirement, we must verify that Σ does not include any other
dependence which is not present in Σtrue. This is ensured by fitting the mass spectrum
sampled in bins of Σ, to obtain ΣΣ

true, and thereafter we must control that we obtain(
ΣΣ

true

〈Σ〉Σ

)
= 1 within the fitting errors (inside of each parameterisation window and for each

bin).

We can see from Fig. 7.17 to Fig. 7.21 that each of the Σ parameterisations satisfy these 2
conditions.
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Figure 7.17: D∗Kπ channel: validation of all parameterisations (Σ1, Σ2, Σ3, Σ4, Σ5, Σ6) in bins
of weight (first 2 lines) and also in bins of probability (last 2 lines). The agreement between
the fits and the 〈Σ〉 is good enough inside all bins (within the fitting errors).
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Figure 7.18: D0
Kπ channel: validation of all parameterisations (Σ19, Σ20, Σ21 , Σ22, Σ23, Σ24) in

bins of weight (first 2 lines) and also in bins of probability (last 2 lines).
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Figure 7.19: D∗Kπππ channel: validation of all parameterisations (Σ11, Σ12, Σ13, Σ14) in bins of
weight (first column) and also in bins of probability (second column).
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Figure 7.20: D∗Ksubπ
channel: validation of all parameterisations (Σ15, Σ16, Σ17, Σ18) in bins of

weight (first column) and also in bins of probability (second column).
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Figure 7.21: D∗Kππ0 channel: validation of all parameterisations (Σ7, Σ8, Σ9, Σ10) in bins of
weight (first column) and also in bins of probability (second column).
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7.4 Including the reconstructed mass in Σ

In the previous sections the method used to build Σ is described in terms of kinematic variables.
However, the final parameterisation must also include the dependence on the reconstructed
mass, Σ(m), before using it in the weight for the asymmetry extraction 3. This is done in bins
of the parameterised Σ (unbiased bins), according to the following equation:

Σ(m) =

(
ηS(m)

ηS(m) + B(m)

)
(7.23)

using

η =

(
S
B

)
par( R b

a S(m)R b
a B(m)

)
fit

and

(
S

B

)
par

=

(
Σ

1− Σ

)
(7.24)

The mass dependence is included in eq. 7.23 by the functions S(m) and B(m). These functions
are the signal and background fits to the mass spectra sampled in bins of Σ, and they are
used to obtain the signal purity for every event of mass m. The final parameterisation, Σ(m),
results from these signal purity fits corrected with the parameterisation Σ (cf. eq. 7.24),
where the limits of integration correspond to the training mass windows which are used for
the Neural Network parameterisations (windows under the corresponding D0 peak): {a, b} =
{−40 (−30), +40 (+30)} MeV/c2 for the D∗ tagged (untagged) samples. The fits used for each
channel are:

• D∗Kπ + D∗Kππ0:

S(m) →
(

p[0]·bw√
2π·p[2]

)
e−

1
2
·(m−p[1]

p[2] )
2

B(m) → p[3]e−p[4]·m +
(

p[5]·bw√
2π·p[7]

)
e−

1
2
·(m−p[6]

p[7] )
2

• D∗Kπππ:

S(m) →
(

p[0]·bw√
2π·p[2]

)
e−

1
2
·(m−p[1]

p[2] )
2

B(m) → p[3] + (p[4] ·m) + (p[5] ·m)2

• D∗Ksubπ
:


S(m) →

(
p[0]·bw√
2π·p[2]

)
e−

1
2
·(m−p[1]

p[2] )
2

B(m) → p[3]e−p[4]·m
[
+
(

p[5]·bw√
2π·p[7]

)
e−

1
2
·(m−p[6]

p[7] )
2
]

• D0
Kπ:

S(m) →
(

p[0]·bw√
2π·p[2]

)
e−

1
2
·(m−p[1]

p[2] )
2

B(m) → p[4] · e−p[3]·m + p[6] · e−p[5]·m

where bw is the bin width in MeV/c2, and the parameters p in the signal function are the total
number of D0, p[0], the reconstructed mass of the particle, p[1], and finally the signal width p[2].

Since the resonances of the D∗Kπ and D∗Kππ0 channels are seen in the same mass spectrum, a
second Gaussian is used to fit the unwanted peak as a background contribution: for example, in

3Note that the reconstructed mass cannot be used as a learning variable, in the Neural Network, because it
will enhance the probability of a background event in the signal region to be a true D0 meson.
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the D∗Kππ0 case the signal function is parameterised by p[0] = N(D0
Kππ0), p[1] = M(D0

Kππ0) and
p[2] = σ(D0

Kππ0); and the background function contains a Gaussian distribution describing the
D0

Kπ peak. Concerning the D∗Ksubπ
mass sample, the Gaussian fit is only used in the background

function for those bins where the D0
Kππ0 resonance can be distinguished from the combinatorial

background. All Gaussians are centred around zero, MKπ −MD0 or MKπππ −MD0 , except for
the D0

Kππ0 peak where the signal fit is centred around −240 MeV/c2 (cf. Fig. 5.14).

In Figs. 7.22-7.26 we can see the nice probability behaviour of the mass spectra, in bins of Σ, for
each channel, together with the fits used to introduce the mass dependence (one example per
channel is shown). One can clearly see that in the first Σ-bin mostly combinatorial background
is present, whereas the last Σ-bin contains mostly open-charm events. The beauty of this
behaviour is that we can obtain a very large Σ(m) for the events belonging to the last bins of
Σ, which are also the events that reveal the biggest kinematic differences as compared to the
combinatorial background (this is the reason why they are classified with higher probabilities
Σ). This means that these events are a cleaner tag of the PGF process, and by isolating them
from the background we are able to maximise their contribution to the weight in an unbiased
way. Consequently, the statistical improvement introduced by the weights in the measured
asymmetry is also maximised (cf. eq. 7.14).
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Figure 7.22: D∗Kππ0(2006) mass spectrum sampled in bins of D0 probability (Σ). This specific
parameterisation was built in a fit independent way (c.f. section 7.3.1), however, the agreement
with the illustrated fits is good enough to trust them as a good approximation to the bumpy
shape of this D0 signal (as quantified in the 6th plot of Fig. 7.21)
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Figure 7.23: D∗Kπ(2006) mass spectrum in bins of D0 probability (Σ). The fits shown are used
to introduce the mass dependence in Σ(5) and also to validate the parameterisation (11th plot
in Fig. 7.17)
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Figure 7.24: D∗Kπππ(2004) mass spectrum in bins of D0 probability (Σ).
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Figure 7.25: D∗Ksubπ
(2002 + 2003) mass spectrum in bins of D0 probability (Σ).
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Figure 7.26: D0
Kπ(2007) mass spectrum in bins of D0 probability (Σ).

7.5 Impact of Σ in the analysis

In Table 7.2 it is quantified the impact of the Σ parameterisation in the FOM ≡ S2/(S+B) of
all D0 mass spectra. For the case of the D0

Kπ channels (tagged and untagged) the FOM is not
improved by a cut in the Neural Network response and, therefore, the cut in o1 is not used for
these samples. Although their signal purities can be increased through the use of such cut in o1
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(mostly combinatorial background is removed), no cut value is found to increase their FOM 4.
Regarding the D∗Kπ channel, the kinematic selection of D0 events (see Tab. 5.8) gives rise to a
very clean peak (cf. Fig. 5.15). Therefore, the application of a cut in o1 is not very helpful for
the golden channel. On the other hand, the main problem of the untagged D0

Kπ samples is the
absence of a dedicated Σ-parameterisation. As a result, the huge combinatorial background
cannot be removed without affecting significantly the signal.

The improvements introduced by Σ in the analysis can also be seen qualitatively in Fig. 7.27,
where the final mass spectra (yellow plots - after a cut in o1) are shown together with the
Σ-weighted mass spectra (green distributions): by comparing the scales of both mass spectra,
it is clear that the signal-to-background ratios (S/B) are increased by the Σ-parameterisations.
In a more quantitative approach we can determine the gain in the FOM, for each channel, by
fitting the signal of the Σ-weighted mass spectra with a Gaussian function. The integral of the
Gaussian fit corresponds to the FOM that is achieved by the use of Σ. The results obtained
can then be compared to the FOM coming from the yellow mass spectra (cf. Tab. 7.2 and Fig.
7.27). Using the numbers from the 4th column of Tab. 7.2, we can directly compare the relative
contributions of the 5 channels to the extraction of the gluon polarisation:

δ

(
∆G

G

)
=

1

Pµ · PT · f ·D · 〈aLL〉
× 1√

FOM
(7.25)

The low purity channels of low statistics (D∗Kππ0 , D∗Kπππ and D∗Ksubπ
) and all samples from the

2007 proton data are analysed for the first time in this open-charm analysis.

Data Channel

FOM (2σ) ≡ S2/(S+B)

Mass spectra with Final mass Σ-weighted mass

o1 cut spectra spectra

2002-2006

D∗Kπ - 5967 +14%

D∗Kππ0 +17% 1986 +29%

D∗Kπππ +16% 1170 +34%

D∗Ksubπ
+32% 818 +65%

D0
Kπ - 3170 +20%

2007

D∗Kπ - 3021 +11%

D∗Kππ0 +6% 1074 +8%

D∗Kπππ +13% 393 +26%

D∗Ksubπ
+39% 239 +13%

D0
Kπ - 1909 +27%

Table 7.2: Improvements introduced by the parameterisations of S
S+B

in the FOM of all D0

mass spectra. The illustrated gains are calculated by using the same mass windows where o1

and Σ were built. The penultimate column shows the final FOM obtained for each channel.

4Note that a smaller percentage of the signal is also removed with a cut in o1.
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Figure 7.27: Final samples used for the asymmetry calculation (in yellow). Each channel can
be seen per line, for the deuteron (first column) and proton (second column) data. The green
distributions, shown with their own scales on the right, correspond to the Σ-weighted events:
by fitting the signal of these distributions we obtain the FOM corresponding to the use of Σ.

137



7.6 The analysing power

The muon-gluon analysing power for the charm production, aLL, is dependent on the full
knowledge of the partonic kinematics. Therefore, this partonic asymmetry is not experimen-
tally accessible, on the event-by-event basis, because the information associated with one of
the charm quarks is lost. Even in the unlikely event where two D0 candidates can be recon-
structed, the probability that at least one of them belongs to the combinatorial background is
non-negligible. Qualitatively, one can easily understand this statement by considering all the
requirements for a double D0 reconstruction:

1. In a PGF event, it is necessary that the two charm quarks do fragment into the same
kind of D meson (D0 or D∗) with the same D0 decay mode (both candidates need to be
in the same mass spectrum).

2. All particles in the final state need to be in the experimental acceptance imposed by the
solenoid surrounding the target.

3. With the exception of the slow-pion, all particles in the final state must have a momen-
tum high enough in order to be reconstructed (above the RICH thresholds for PID, cf.
Fig. 3.9):

• p(K) > 9.0 GeV/c ( p(K) > 2.5 GeV/c for the D∗Ksubπ
channel )

• p(π) > 2.5 GeV/c

Clearly, it is very unlikely to have two D0 in the same event decaying to one out of the three
final states considered in the analysis. For example, being the branching ratio of a D0 decay
into a Kπ pair 3.89% [16], we obtain a probability of only 0.16% for a double D0

Kπ production
in the same event. Moreover, as a result from the PGF interaction, these open-charm mesons
are produced with a high-transverse momentum. Consequently, if a second D0 is required,
the number of reconstructed events is significantly reduced: the probability for all the decay
products to be in the acceptance window is obviously lower. Even if those two conditions are
fulfilled, all the particles in the final state (twice more) need to enter the RICH detector with
the required momenta (cf. section 3.3.2). After the kinematic and RICH selection (Chapter 5),
the number of events with two D0 candidates correspond only to 7% of the total statistics, for
the untagged channel, and less than 2 % for the D∗-tagged samples. In addition to that, as ex-
plained above, most of these events contain a contribution from the combinatorial background.

In the best scenario we can partially separate the signal from the background in the D0 mass
spectra, by performing a proper kinematic parameterisation (cf. section 7.3) which attributes to
every D0 candidate a probability to be indeed a D0 meson. Nevertheless, even if the background
contamination is efficiently removed (under the resonance), the resulting statistics to calculate
aLL is only a small fraction of 2% (or 7%) of the total number of selected events. Therefore,
the only solution is to obtain the partonic asymmetry with the help of a Monte Carlo generator
for heavy flavours. Events containing the charmed mesons are generated with AROMA [73],
processed with COMGEANT 5 [75] to simulate the full response of the COMPASS spectrometer,
and finally reconstructed with CORAL 6 and PHAST 7 using the same analysis chain as for real

5COMpass Monte Carlo simulation program based on GEANT 3.21.
6COmpass Reconstruction ALgorithm: used for the event reconstruction, involving the definition of the

beam track, the scattered muon and the vertex of the interaction.
7PHysics Analysis Software Tools: used to read the output of CORAL and to perform the physics analysis.
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events. After this full Monte Carlo chain the muon-gluon asymmetry is calculated, for every
generated event, using the reconstructed partonic variables. The explicit kinematic dependence
of aLL, using a leading order QCD approximation, can be verified from eq. 2.87 to eq. 2.93.
The general formula, including the next-to-leading order corrections, is partially available in
[52, 53, 54, 55, 56] and also upon request [57]. In order to use the generated values of aLL in
the real data, a Neural Network [79] is used to parameterise this partonic asymmetry in terms
of mensurable kinematic variables:

COMGEANT

AROMA

CORAL PHAST

Data

PHAST

CORAL

 (LO)/DLLa

 (NLO)/D(g)
LLa

 (NLO)/D(q)
LLa × 1A

DMLP

Network training:

DMLP
Frozen structure

parton shower off parton shower on

 1t inVinV

 candidate0D
 with0Generated D with0Generated D

1oN

2)1 - t
1

(o
N
∑

min 

 (LO)/DLLa

1o Run mode

Figure 7.28: Scheme of the procedure used to obtain the photon-gluon asymmetry, aLL/D.

To the left of Fig. 7.28 one can see a flowchart representing the full Monte Carlo chain, from
AROMA to the Dynamic Multi-Layer Perceptrons (DMLP) Network, illustrating all the needed
ingredients for the Neural Network parameterisation. This last step is of crucial importance to
determine the values of the partonic asymmetries to be used in real data. The procedure is very
similar to the one described for the signal purities, S/(S+B), with one exception: instead of an
event classification based on a multidimensional kinematic comparison, here the Network acts
as an event predictor based on the underlying kinematics. For a proper understanding of this
new mode of the Network operation, a very brief summary of the S/(S + B) parameterisation
is now presented.

The Neural Network classification of events:

The D0 probabilities are parameterised by a kinematic comparison of two real data samples,
gcc and wcc, where the latter is used as a background model. This sample has the obvious
expectation value of t1(wcc) = 0, whereas the data sample containing the D0 events and com-
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binatorial background is labelled with t1(gcc) = 1. What the Network does is to parameterise
a two-value classification function 8 with the aim of minimising the following two deviations:∑N(wcc)

i=1 [o1,i(wcc)− t1,i(wcc)]2

N(wcc)
(7.26)

∑N(gcc)
i=1 [o1,i(gcc)− t1,i(gcc)]2

N(gcc)
(7.27)

There is one important consequence imposed by eq. 7.26: those gcc candidates that are kine-
matically similar to the wcc events are interpreted (by the Neural Network) as members of the
combinatorial background and, as a result, they are assigned with lower o1(gcc) values when
compared to the real D0 mesons. To the latter the Neural Network assigns o1(gcc) values close
to 1, due to their unmatched kinematics and to the existence of the condition given by eq. 7.27.
Finally, for those indistinguishable gcc events (when compared to the wcc sample) an answer
around 0.5 is computed by the Network. The result of this parameterisation is the classifica-
tion of the gcc events according to their kinematic similarities. Consequently, using the o1(gcc)
spectrum we are able to distinguish part of the signal from the combinatorial background.

7.6.1 Neural Network parameterisation of aLL at LO

As already stated above, for the parameterisation of aLL the Neural Network acts as an event
predictor. The expectation variable, t1, changes its values for every event: t1 = aLL/D (gen-
erated). Since the depolarisation factor D is basically dependent on y, D(y) (cf. eq. 2.35),
it is chosen to parameterise the photon-gluon asymmetry (instead of the muon-gluon one) to
take advantage of this extra kinematic dependence. The Neural Network takes as an input a
vector containing some generated kinematic variables (experimentally accessible), and then the
event information contained in t1 is used to obtain the correlation between aLL/D and those
kinematic variables. If the correlation is high, it means that the Network prediction for the
photon-gluon asymmetry is very close from the truth: in other words, if the correlation is high
the deviation between the prediction (o1) and the expected output (t1) is small. As for the
signal purities, the Neural Network tries to minimise the following quantity:∑Ngen

i=1 (o1,i − t1,i)
2

N gen
(7.28)

In order to ensure an unbiased parameterisation, a control sample is also used here. The
procedure is identical to the one represented in Fig. 7.3, except for the fact that now only
one sample is used in the training and in the testing sets. Consequently, the output o1 of the
Network is a single spectrum of predictions for the aLL/D corresponding to each event. Several
learning vectors are tested, and the one originating the highest correlation between o1 and t1
is selected. The kinematic variables considered for the parameterisation are:

Q2 , xBj , y , zD0 and pT (D0)

The same initial neural structure as represented in Fig. 7.1 is used. The weights associated
to the variable-neuron and to the neuron-neuron connections are randomly initialised, and

8In the definition of the classification function the two values which distinguish between the wcc and the
gcc samples are arbitrary ones. The choice of 0 and 1, respectively, simplifies the interpretation of the Neural
Network output in terms of probabilities.
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thereafter they are all iteratively adjusted to minimise eq. 7.28. As before, the sigmoid function
represented in Fig. 7.2 is used as a neuron activation function: every neuron computes an answer
fact(~V · ~W T ) = o1 using the sigmoid function, where ~V and ~W represent the corresponding input
and weight vectors. After each iteration, the weights associated to every hidden neuron are
modified to produce the desired answer of the final neuron in the output layer (Neural Network
response). The independent control sample ensures that the result of this parameterisation is
not artificial: the same stable minimum is found for the training and for the testing sets (see
section 7.2 for details). At the end of the parameterisation, the Network structure is frozen to

allow for its use on the real data. It consists on several weight vectors ~W belonging to each
of the hidden neurons that survived to the training procedure. Using this trained structure
we are able to feed the Neural Network with the same reconstructed kinematic variables (from
real data), and as an output the Network computes a prediction of aLL/D for every single data
event. The illustration of the full procedure can be seen on the right side of Fig. 7.28. Finally,
the conversion of the photon-gluon asymmetry to the muon-gluon asymmetry is trivial:

aLL = aµg
LL =

(
aγ∗g

LL ×D(y)
)

(7.29)

The depolarisation factor is given by eq. 2.35 and, due to its exclusive dependence on y, it is a
quantity that is experimentally accessible on an event-by-event basis. In Fig. 7.29 one can see
the quality of the aLL parameterisations (purple box in Fig. 7.28).
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A total of 6 parameterisations are built for all the samples considered in the analysis: three
for each D0 decay mode using the COMGEANT description of the 2006 spectrometer (cf. Fig.
7.29), and another three using the description of the spectrometer as it was in 2004. The
idea is to account for the different experimental acceptances, because these constraints may
affect the corresponding aLL distributions in different ways. The target acceptance for a D0

candidate was increased from 70 mrad to 180 mrad during the year of 2005 (by replacing the
target solenoid by a new one), cf. Fig. 3.3. Nevertheless, it is found for the events collected
in 2004 that the obtained muon-gluon asymmetry is practically the same when one uses the
parameterisation of 2004 or 2006. As a result from this observation, it was decided to use only
two parameterisations to account for the impact of the different experimental acceptances in
aLL: for the data collected in 2007 (2002 and 2003) the parameterisation of 2006 (2004) is
used. The different D0 decay modes are also considered for a separate parameterisation of the
partonic asymmetry, because the reconstruction of those events containing more particles in
the final state may be more affected by the acceptance constraints.

7.6.2 The analysing power aLL obtained at NLO

Only the leading order aLL/D is considered for the Neural Network parameterisation, with the
aim of using it event-by-event in the real data (cf. the full procedure in procedure in Fig. 7.28).
For the next-to-leading order analysis the generated photon-gluon asymmetry is directly applied
on the data. The justification for that lies on the weak correlation found between the analysing
power and the available kinematic variables for reconstruction:

•
(

ag
LL(NLO)

D

)
→ 52% of correlation (between o1(a

par
LL ) and t1(a

gen
LL ))

• A1 ×
(

aq
LL(NLO)

D

)
→ 23% of correlation

The second item is needed to account for the physical background that exists in the NLO inter-
pretation of the open-charm production (cf. Fig. 2.19). With such low correlations achieved by
the Neural Network parameterisations, the statistical benefits of aLL inside the signal weight
are lost. Consequently, the next-to-leading order analysis is performed in several kinematic bins
(pD0

T and ED0) where the average values of the generated aLL/D can be used (see section 8.3).
The use of this method instead of an event-by-event analysis, results in a loss of precision in
the order of 6% on the measurement of the gluon polarisation. This was verified in the leading
order analysis where both methods can be applied (cf. section 8.2).

Determination of aLL at NLO:

The phase-space needed for the NLO real gluon emission processes, γ∗g → cc̄g (cf. Fig. 2.20),
is simulated through parton showers included in the standard LO AROMA generator 9. For
every simulated event, the energy of parton showers (if present in the event) defines the upper
limit of integration over the energy of the unobserved gluon in the NLO emission process. This

9The parton showers are considered in the initial and final states of the PGF interaction originating an
open-charm meson.
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integration reduces the differential cross-section for a three–body final state (cc̄g) into a two–
body one (cc̄), and thus we can combine it with the LO cross-section (cc̄, PGF), plus the two–
body virtual and soft NLO corrections. This procedure guarantees a correct cancellation of the
infra-red divergence [53, 54]. Therefore, the total partonic cross-section, at NLO, is calculated
on an event-by-event basis, for the unpolarised case as well as for the polarisation dependent
cross-section and, as a consequence, a new aLL in NLO-QCD approximation is obtained. The
same procedure is applied for the correction originating from a light-quark (cf. Fig. 2.19), but
in this case the integration is performed over an unobserved final state light-quark. However, a
LO generator with parton showers cannot properly describe the full phase-space corresponding
to the NLO processes due to the approximations used when simulating the parton showers.
Also, the normalisation of the event distributions is based on the LO cross-section. In order
to estimate the systematic effect on aLL related to the approximations used in the parton
shower concept, a simplified Monte Carlo is employed. The events with and without real gluon
emissions are generated using uniformly distributed partonic kinematic variables. Afterwards,
the events are re-weighted according to the correct unpolarised NLO cross-section containing all
the corrections: virtual, soft and real gluon emissions. This procedure guarantees a correct NLO
normalisation. The gluon polarisation based on the events obtained from the LO AROMA with
parton showers, is well approximated by the result based on the re-weighted events obtained
from the simplified Monte Carlo. Here the comparison is done at the generator level, i.e.
without simulating the detector acceptance. Therefore, the usage of LO AROMA with parton
showers to simulate the phase-space for NLO processes is completely justified. To end this
section, two examples corresponding to the LO and NLO distributions of aLL are presented in
Fig. 7.30. From this figure, we conclude that the NLO corrections to the muon-gluon asymmetry
are quite important. Therefore, the gluon polarisation should also be extracted at the NLO
approximation.
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Figure 7.30: Distributions of the analysing power aLL in the LO-QCD and in the NLO-QCD
approximations. Observe the different normalisations of the LO and NLO samples. The 2006
target setup is considered for these distributions. The LO distribution results from the AROMA
generator without parton showers, whereas for NLO the parton shower concept is applied. Both
distributions are obtained after the full Monte Carlo chain.
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Chapter 8

Results for ∆G/G and Abg

The results of the gluon polarisation measurement from the open-charm production are pre-
sented in this chapter. Firstly, the values of 〈∆G/G〉 and 〈Abg〉, obtained in a LO-QCD
approximation, will be given for each of the five channels under analysis. Thereafter, the com-
bined virtual-photon asymmetries for the D0 production, Aγ∗N→D0X , will be presented in bins
of the D0 transverse momentum and energy. These asymmetries are totally independent of
any theoretical interpretation as they correspond only to the measurement of the experimen-
tal spin-asymmetries. Therefore, the obtained results on Aγ∗N can be used by theorists to
constrain their fit models of ∆G in a global analysis (using the world data). To enable an
unbiased use of these asymmetries, they are provided in bins within which the acceptance of
the COMPASS spectrometer is roughly flat for the PGF process. Finally, results for 〈∆G/G〉
and 〈Abg〉, obtained in the NLO-QCD approximation, will also be shown and discussed.

8.1 Leading Order results for the gluon polarisation

Values for the 〈∆G/G〉 and the 〈Abg〉 are obtained for each of the 48 weeks of data taking and,
separately, for each of the five channels of analysis. The method used for this extraction is
described in section 6.1.2. The results are summarised in the Tables 8.1 and 8.2 in terms of
the weighted means (per year). The background asymmetries are consistent with zero.

Year
∆G/G

D∗Kπ D∗Kππ0 D∗Kπππ D∗Ksubπ
D0

Kπ

2002 −1.506± 1.509
+0.844± 1.288 −4.530± 2.549 −4.396± 2.027

−3.207± 1.864

2003 +0.152± 0.746 +0.106± 1.014

2004 +0.106± 0.570 +0.622± 1.259 −1.747± 1.701 +2.403± 1.668 +0.827± 0.755

2006 −0.612± 0.542 −1.236± 0.996 +2.925± 1.175 +2.147± 1.687 −0.574± 0.742

2007 +0.036± 0.702 −1.159± 1.132 +0.403± 2.135 −0.872± 4.292 +0.548± 1.017

Total −0.192± 0.305 −0.414± 0.575 +0.628± 0.833 +0.497± 0.995 +0.020± 0.415

Table 8.1: Results per channel and per year for the gluon polarisation extracted from the full
weighted analysis. The quoted errors are statistical.
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Year
Abg

D∗Kπ D∗Kππ0 D∗Kπππ D∗Ksubπ
D0

Kπ

2002 −0.107± 0.107 −0.149± 0.068 −0.048± 0.084 −0.190± 0.101
+0.019± 0.014

2003 −0.055± 0.067 +0.001± 0.009

2004 +0.052± 0.056 +0.088± 0.061 +0.057± 0.067 +0.139± 0.129 −0.014± 0.008

2006 +0.051± 0.056 +0.146± 0.069 +0.000± 0.060 −0.015± 0.071 −0.008± 0.007

2007 +0.055± 0.072 +0.157± 0.088 −0.046± 0.093 +0.164± 0.105 −0.004± 0.009

Total +0.019± 0.029 +0.051± 0.035 +0.002± 0.037 +0.004± 0.047 −0.005± 0.004

Table 8.2: Results per channel and per year for the background asymmetry. The quoted errors
are statistical.

We can also compare these results in a graphical way from Fig. 8.2 to Fig. 8.4. The values of
〈∆G/G〉 are all distributed around zero, with larger fluctuations for the low purity channels
due to the small statistics available (cf. Fig. 8.4). The final value of the gluon polarisation is
the weighted mean of the five channel results shown in Tab. 8.1, and amounts to:〈

∆G

G

〉LO

= −0.08± 0.21 (stat.)± 0.08 (syst.) (8.1)

The details about the systematic error are given in Chapter 9.

Assuming that [∆G/G](xg) is approximately a linear function of xg in the range covered by
the present data, the above result is the gluon polarisation ∆G/G at 〈xg〉ω2 , where the latter
is the weighted average calculated using the signal weights (eq. 6.44). The average value of xg

probed by this analysis, in the LO approximation, is:

〈xg〉ω2 = 0.11+0.08
−0.04 @〈µ2〉ω2 = 13 (GeV/c)2 (8.2)

The limits defined by the above xg interval are determined from Fig. 8.1, using the following
equation:

AL = 10( Log10〈xg〉 ± RMS )

(RMS = 0.22)

= {0.06︸︷︷︸
−

, 0.19︸︷︷︸
+

} (8.3)

where AL are the Asymmetric Limits of 1σ that result from the logarithmic (symmetric)
distribution of xg. The result quoted in eq. 8.1 represents the cleanest (and most direct)
measurement ever made of the gluon polarisation. The obtained value is displayed in Fig. 8.5
together with all the world 〈∆G/G〉 measurements. Note the difference in the scale used to
obtain each of the experimental results: the open-charm point is measured at a scale of 〈µ2〉 = 13
(GeV/c)2 whereas the remaining points are determined at a scale of 〈µ2〉 = 3 (GeV/c)2. In the
case of the open-charm analysis, the perturbative treatment of the hard photon-gluon process
is completely ensured by the much higher scale considered. Concerning the high-pT results,
they all have associated some theoretical uncertainties related to the existence of a physical
background. Therefore, the quality of these experimental (high-pT ) points rely on the existence
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of a Monte Carlo describing very well the data. All results show a good compatibility among
them: they are all consistent with small values of ∆G/G within a range of xg ∼ [0.05, 0.25].
The previous sentence is the most fair conclusion that one can draw from Fig. 8.5, because not
even the sign of ∆G can be inferred from all the 〈∆G/G〉 measurements (due to the existence
of large statistical errors). The results are also compatible with zero, i.e. the gluons do not
contribute to the nucleon spin in this xg range.

 (LO)gx
0 0.2 0.4 0.6 0.8 1

E
v

e
n

ts
 /

 0
.0

1

0

100

200

300

(LO)g x
10

Log
-2 -1.5 -1 -0.5 0

E
v

e
n

ts
 /

 0
.0

2
5

0

50

100

 = 0.11〉 g x〈

RMS = 0.22

Figure 8.1: Distribution of xg, obtained in the LO approximation, in linear (left) and logarithmic
(right) scales. The latter is much more symmetric and therefore it is suited for the estimation
of the xg interval.
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Note that these background asymmetries are simultaneously extracted with ∆G/G for each
week of data. No significant deviations from zero are found, as attested by the illustrated
averaged results.
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Figure 8.5: Summary of the world measurements on 〈∆G/G〉. Due to the large statistics
available in the COMPASS high-pT analysis, the result obtained for Q2 > 1 (GeV/c)2 is divided
in three bins of xg [43, 83]. The open-charm point is the only one obtained at a scale of
〈µ2〉 = 13 (GeV/c)2. It represents also the only result for which the theoretical framework is
well established.

8.2 Determination of the photon-nucleon asymmetries

The data described in Chapter 5 also allow us to determine the photon-nucleon asymmetry
resulting from the D0 production, Aγ∗N→D0X = AµN→D0X/D = (aLL×∆G/G)/D. The exper-
imental result of this asymmetry is used to constrain the values of ∆G(xg), in a global analysis
fit, because it does not depend on any QCD interpretation. To maximise the impact of Aγ∗N

in the QCD fits of ∆G(xg), the asymmetry is extracted in bins of the transverse momentum
of the D0 with respect to the virtual-photon, pD0

T , and also in bins of the energy carried by
the D0 in the laboratory frame, ED0 . There are two major criteria for the choice of the bin-
nings. The first one has a pure statistical basis: the number of bins is maximised according
to the available statistics, and they are chosen in such a way that the variation of aLL/D is
small (within each bin) when compared to the variation over the whole domain. The latter
is important because averaging aLL/D over the full kinematic range would result in a large
dilution of the photon-nucleon asymmetry 1, caused by the large dispersion of a sign changing

1This fact is relevant only if we want to extract ∆G/G from Aγ∗N .
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aLL (cf. Fig. 7.29). But, above all, the most important requirement for the definition of those
(pD0

T , ED0) bins is the minimisation of the asymmetry dependence on the experimental accep-
tance. If this is ensured, the asymmetries Aγ∗N(〈pD0

T 〉, 〈ED0〉) can be used without major bias
by the theorists outside of the COMPASS collaboration. In principle, Aγ∗N also depends on
the inclusive variables y and Q2. These dependencies are accounted for by the depolarisation
factor D, which is used in the new definition of the signal weight. In fact, this represents the
only modification introduced in the method used to extract 〈∆G/G〉 (cf. section 6.1.2). The
partonic asymmetry, aLL, is replaced by the depolarisation factor D in the signal weight:

ωS = PµfD
S

S + B
(8.4)

The justification of the above ωS is given as follows. By definition, the removal of aLL from ωS

is equivalent to extract a muon-nucleon asymmetry: AµN = aLL×∆G/G. However if we insert
the depolarisation factor D into the signal weight, ωS, we extract Aγ∗N instead of AµN 2.

As explained before, the asymmetry Aγ∗N→D0X is extracted simultaneously with the background
asymmetry for each (pD0

T , ED0) bin of the selected data. These values are obtained per channel
and per year of data taking, except for the low purity channels with low statistics (D∗Kππ0 ,
D∗Ksubπ

and D∗Kπππ). In these 3 channels, the data taken in the years with the same target setup
(2002-2004 and 2006-2007) are merged for some bins. Final results of Aγ∗N for each D0 decay
mode are presented in Tables 8.5-8.7, together with the average values of relevant kinematic
variables. In total, fifteen (pD0

T , ED0) bins are defined for the asymmetries extraction. As stated
above, by construction, within these bins the dependence on the experimental acceptance is
negligible. All averages are calculated using ω2

S as the weight. The justification for the use of
ω2

S to calculate the averages of the kinematic variables is given as follows. Not considering any
weights in the analysis implies the evaluation of those averages using the following analysing
power 3: PµfDS/(S + B). The use of the latter is needed to properly account for the small
contribution of events with low signal purities (and vice-versa). Therefore, if an additional
weight ωS is considered, all averages are determined as:

〈v〉 =

∑
i

(
PµfD S

S+B

)2
i
vi∑

i

(
PµfD S

S+B

)2
i

(8.5)

for a generic variable v and a weight ωS = PµfDS/(S + B).

Finaly, the extraction of the gluon polarisation, from each Aγ∗N measurement (see Tables 8.5-
8.7), is performed by using the equation 8.6 (true at LO):

〈
∆G

G

〉
(〈pD0

T 〉, 〈ED0〉) =
Aγ∗N(〈pD0

T 〉, 〈ED0〉)
〈aLL/D〉 (〈pD0

T 〉, 〈ED0〉)
(8.6)

By combining all the fifteen ∆G/G (〈pD0

T 〉, 〈ED0〉) results we obtain a value for the gluon
polarisation corresponding to each D0 decay mode. The only requirement is the knowledge
of 〈aLL/D〉 for each (pD0

T , ED0) bin. All these quantities are determined from the data using

2Note that AµN = D ×Aγ∗N .
3Apart from the target polarisation Pt (time-dependent variable), this factor corresponds to the variable βS

which is defined in eq. 6.11. This important factor relates the number of D0 mesons to the gluon polarisation.
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eq. 2.35 (with R = 0), eqs. 2.87-2.93 (at LO-QCD) and using also the procedure described in
section 7.6. The resulting average values of aLL/D are shown in Tab. 8.9. The corresponding
average values at NLO are also presented and they will be discussed in section 8.3. The
stability of the ∆G/G results obtained from Aγ∗N can be verified by comparing them with the
ones resulting from the full weighted analysis (summarised in Tab. 8.1). The results of both
methods are presented in Tab. 8.3 4.

Channels
〈∆G/G〉

Full weighted analysis Aγ∗N in bins of (pD0

T , ED0)

D∗ → D0
Kππs −0.192± 0.305 −0.252± 0.319

D∗ → D0
Kππ0πs −0.414± 0.575 −0.370± 0.643

D∗ → D0
Ksubπ

πs +0.497± 0.995 +0.565± 1.057

D∗ → D0
Kππππs +0.628± 0.833 +0.584± 0.853

Untagged D0
Kπ +0.020± 0.415 −0.040± 0.446

Table 8.3: 〈∆G/G〉 results obtained from the two applied method.

The judgement whether the two measurements are compatible, for each channel quoted in Tab.
8.3, is obtained from the difference of their mean value and from the error of the difference:

Channels Difference in 〈∆G/G〉 Error

D∗ → D0
Kππs −0.060

√
0.3192 − 0.3052 = 0.093

D∗ → D0
Kππ0πs +0.047

√
0.6432 − 0.5752 = 0.288

D∗ → D0
Ksubπ

πs +0.068
√

1.0572 − 0.9952 = 0.357

D∗ → D0
Kππππs −0.044

√
0.8532 − 0.8332 = 0.184

Untagged D0
Kπ −0.060

√
0.4462 − 0.4152 = 0.163

Table 8.4: Comparison of the 〈∆G/G〉 results shown in Tab. 8.3.

From Tables 8.3 and 8.4 we see that both methods lead to a compatible result, with a min-
imum loss in the precision when using the asymmetries. The slightly bigger statistical error
corresponding to the latter method is justified by the absence of aLL inside the signal weight:
the statistical benefits introduced by a variable that shows a large dispersion are lost.

4Note that for this comparison the asymmetries obtained from the individual channels D∗
Kπ, D∗

Ksubπ and
D0

Kπ are used. However, since all these channels share the same D0 decay mode only their combined asymmetries
are shown in Tab. 8.5.
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Bin limits
Aγ∗N 〈y〉 〈Q2〉 〈pD0

T 〉 〈ED0〉 〈D〉
pD0

T (GeV/c) ED0 (GeV) (GeV/c)2 (GeV/c) (GeV)

0-0.3 0-30 −0.90± 0.63 0.50 0.46 0.19 24.3 0.62

0-0.3 30-50 −0.19± 0.48 0.60 0.69 0.20 39.1 0.74

0-0.3 > 50 +0.07± 0.68 0.69 1.17 0.20 59.2 0.84

0.3-0.7 0-30 −0.18± 0.37 0.51 0.47 0.51 24.6 0.63

0.3-0.7 30-50 +0.10± 0.26 0.60 0.62 0.51 39.5 0.75

0.3-0.7 > 50 −0.04± 0.36 0.69 0.73 0.51 59.0 0.83

0.7-1 0-30 −0.42± 0.44 0.50 0.45 0.85 24.7 0.62

0.7-1 30-50 −0.36± 0.29 0.61 0.60 0.85 39.2 0.75

0.7-1 > 50 +1.49± 0.42 0.69 0.76 0.84 58.6 0.83

1-1.5 0-30 −0.30± 0.35 0.54 0.41 1.23 25.3 0.66

1-1.5 30-50 +0.13± 0.23 0.64 0.55 1.24 39.2 0.77

1-1.5 > 50 −0.20± 0.33 0.71 0.73 1.24 58.3 0.85

> 1.5 0-30 +0.38± 0.49 0.56 0.47 1.84 25.6 0.69

> 1.5 30-50 −0.00± 0.25 0.65 0.70 1.92 39.9 0.79

> 1.5 > 50 +0.36± 0.33 0.69 0.60 1.95 59.9 0.86

Table 8.5: The asymmetries Aγ∗N for the D∗Kπ, D∗Ksubπ
and D0

Kπ combined samples in bins of

(pD0

T , ED0), together with the weighted averages of several kinematic variables (weighted with
ω2

S). Only the statistical error is given.

Bin limits
Aγ∗N 〈y〉 〈Q2〉 〈pD0

T 〉 〈ED0〉 〈D〉
pD0

T (GeV/c) ED0 (GeV) (GeV/c)2 (GeV/c) (GeV)

0-0.3 0-30 −0.63± 1.29 0.52 0.75 0.19 24.4 0.65

0-0.3 30-50 +0.27± 1.17 0.67 0.65 0.20 38.8 0.81

0-0.3 > 50 −2.55± 2.00 0.72 1.12 0.19 59.3 0.86

0.3-0.7 0-30 −0.24± 0.80 0.53 0.51 0.52 24.3 0.65

0.3-0.7 30-50 +0.49± 0.69 0.65 0.65 0.51 39.0 0.79

0.3-0.7 > 50 −1.28± 1.03 0.72 0.77 0.51 59.1 0.86

0.7-1 0-30 +0.55± 0.95 0.53 0.41 0.84 24.6 0.65

0.7-1 30-50 −0.53± 0.76 0.63 0.53 0.86 39.4 0.77

0.7-1 > 50 −0.17± 1.00 0.73 0.80 0.85 58.2 0.88

1-1.5 0-30 +1.35± 0.86 0.54 0.38 1.24 25.4 0.67

1-1.5 30-50 −0.11± 0.51 0.64 0.59 1.25 39.6 0.78

1-1.5 > 50 −0.05± 0.78 0.74 0.62 1.25 58.3 0.88

> 1.5 0-30 −0.19± 1.14 0.56 0.52 1.80 25.7 0.70

> 1.5 30-50 −0.23± 0.51 0.66 0.66 1.88 40.0 0.80

> 1.5 > 50 +0.26± 0.90 0.74 0.88 1.92 57.3 0.88

Table 8.6: The asymmetries Aγ∗N for the D∗Kππ0 sample in bins of (pD0

T , ED0) together with the
weighted averages of several kinematic variables (weighted with ω2

S). Only the statistical error
is given.
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Bin limits
Aγ∗N 〈y〉 〈Q2〉 〈pD0

T 〉 〈ED0〉 〈D〉
pD0

T (GeV/c) ED0 (GeV) (GeV/c)2 (GeV/c) (GeV)

0-0.3 0-30 +7.03± 4.74 0.46 0.38 0.22 27.7 0.58

0-0.3 30-50 −2.05± 1.10 0.60 0.72 0.20 40.6 0.74

0-0.3 > 50 +0.17± 1.83 0.69 0.88 0.20 59.1 0.84

0.3-0.7 0-30 −0.59± 1.74 0.52 0.31 0.53 27.8 0.71

0.3-0.7 30-50 +1.00± 0.54 0.61 0.44 0.52 39.7 0.80

0.3-0.7 > 50 −1.75± 0.84 0.68 0.70 0.51 60.2 0.84

0.7-1 0-30 +2.91± 2.61 0.45 0.26 0.84 27.7 0.61

0.7-1 30-50 +1.42± 0.57 0.64 0.57 0.85 40.9 0.81

0.7-1 > 50 +1.69± 0.81 0.69 0.58 0.86 60.9 0.84

1-1.5 0-30 −1.89± 2.64 0.46 0.31 1.22 27.7 0.64

1-1.5 30-50 −0.45± 0.51 0.63 0.58 1.23 41.1 0.79

1-1.5 > 50 +1.06± 0.66 0.71 0.77 1.24 61.8 0.86

> 1.5 0-30 +1.64± 3.52 0.46 0.40 1.84 28.1 0.72

> 1.5 30-50 +0.44± 0.68 0.65 0.75 1.95 42.2 0.78

> 1.5 > 50 +0.08± 0.63 0.74 0.77 2.03 64.4 0.88

Table 8.7: The asymmetries Aγ∗N for the D∗Kπππ sample in bins of (pD0

T , ED0) together with
the weighted averages of several kinematic variables. Only the statistical error is given.

Bin limits
〈
xNLO

g

〉
pD0

T (GeV/c) ED0(GeV) D∗kπ, D∗ksubπ
and D0

kπ D∗kππ0 D∗kπππ

0-0.3 0-30 -9.48 0.47 0.41

0-0.3 30-50 0.56 0.44 0.51

0-0.3 > 50 0.34 0.33 0.36

0.3-0.7 0-30 0.48 0.33 0.45

0.3-0.7 30-50 0.30 0.27 0.31

0.3-0.7 > 50 0.23 0.23 0.26

0.7-1 0-30 0.29 0.27 0.34

0.7-1 30-50 0.25 0.25 0.26

0.7-1 > 50 0.23 0.22 0.23

1-1.5 0-30 0.29 0.28 0.28

1-1.5 30-50 0.25 0.26 0.26

1-1.5 > 50 0.24 0.24 0.24

> 1.5 0-30 0.33 0.32 0.34

> 1.5 30− 50 0.31 0.30 0.30

> 1.5 > 50 0.27 0.29 0.28

Table 8.8: The average of xg obtained at NLO in bins of (pD0

T , ED0) and for each D0 decay

mode. The weighted average of xg is computed using as a weight: ω =
(
a

(g)
LL ×D

)
.
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8.3 Next-to-Leading Order results for ∆G/G

In this section, an alternative method to obtain 〈∆G/G〉 at NLO is presented. The simultaneous
extraction of 〈∆G/G〉 and 〈Abg〉 can be done using a similar method to the one used for the LO
analysis. The complete formalism is described in section 6.2. To access the gluon polarisation,
at NLO, the additional requirements are the knowledge of the inclusive asymmetry A1, a

(g)
LL

and a
(q)
LL for each real data event. Like for the LO approximation this can be achieved by

a Neural Network parameterisation. However, as it was already discussed in section 7.6.2,
the correlation between the generated and the parameterised aLL/D turned out to be much
smaller than in the LO analysis. This is obvious, since the partonic kinematics is much more
complicated at NLO (e.g., there are 3 particles in the final state of the real gluon emission
processes). Consequently, the expected gain in the precision of ∆G/G when using the full
weighted method (cf. section 6.2) is lower at NLO. Due to this fact, the photon-nucleon
asymmetries Aγ∗N(〈pD0

T 〉, 〈ED0〉) are used to obtain the gluon polarisation result at NLO. To
accomplish that, we just need to use the following NLO interpretation of Aγ∗N :

Aγ∗N =

〈
∆G

G

〉〈
a

(g)
LL

D

〉
+ 〈Acorr〉 (8.7)

where

Acorr =

〈
Ad

1

a
(q,d)
LL

D
+ βpAp

1

a
(q,p)
LL

D

〉
(8.8)

In addition to the diagrams shown in Fig. 2.14, the quantity a
(g)
LL/D contains also contributions

from the processes illustrated in Fig. 2.20. The correction term, Acorr, is needed to account
for the physical background which is introduced by the processes shown in Fig. 2.19. Since
this background originates from interactions with polarised quarks, the soft part of the muon-
nucleon scattering is replaced by the inclusive asymmetry A1 (instead of ∆G/G). Two terms
are considered in eq. 8.8 due to the two types of nuclear targets used in this analysis: deuterons
(2002-2006 data) and protons (2007 data). Therefore, the respective asymmetries Ad

1 and Ap
1

are needed. The quantity ζp accounts for the Figure Of Merit (FOM) of the proton data. The
weight of each target material in the whole data is:

ζd =

(
FOMd

FOMd + FOMp

)
= 0.775 and ζp =

(
FOMp

FOMd + FOMp

)
= 0.225

The quantity ζd does not appear explicitly in eq. 8.8 because it is hidden inside the asymmetry
a

(q,d)
LL /D. Indeed, these photon-gluon and photon-quark asymmetries do not have the same

interpretation as aLL/D at LO. To see why, we must look to the following definitions of the
polarised and unpolarised cross-sections (in the NLO approximation):

σµN =

(
G⊗ σ̂µg + ζd

∑
q

q ⊗
[
σ̂µc +

5

18
σ̂µq

]
+ ζp

[∑
q

q ⊗ σ̂µc +
∑

q

e2
qq ⊗ σ̂µq

])
⊗ F

=

(
G⊗ σ̂µg +

∑
q

q ⊗ σ̂1 + ζp
∑

q

e2
qq ⊗ σ̂µq

)
⊗ F (8.9)
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∆σµN =

(
∆G⊗∆σ̂µg +

∑
q

∆q ⊗∆σ̂1 + ζp
∑

q

e2
q∆q ⊗∆σ̂µq

)
⊗ F (8.10)

using

σ̂µg = σ̂0 (PGF )
µg + σ̂1 (PGF )

µg and σ̂1 = σ̂µc +
5

18
ζdσ̂µq (8.11)

where c stands for the charm quark (cf. (a) and (b) in Fig. 2.19), q represents any of the light-
quarks (diagrams (c) and (d) in Fig. 2.19) and F is the fragmentation function. Therefore, the
muon-nucleon asymmetry can be written as:

AµN
cc̄ =

(
∆G
G

G⊗∆σ̂µg + Ad
1

∑
q q ⊗∆σ̂1 + Ap

1ζ
p
∑

q e2
qq ⊗∆σ̂µq

)
⊗ F

σµN

=

〈
∆G

G
a

(g)
LL + Ad

1a
(q,d)
LL + ζpAp

1a
(q,p)
LL

〉
=

〈
∆G

G

〉〈
a

(g)
LL

〉
+
〈
Ad

1a
(q,d)
LL + ζpAp

1a
(q,p)
LL

〉
(8.12)

where

a
(g)
LL =

G∆σ̂µg

σ̂
a

(q,p)
LL =

∑
q e2

qq∆σ̂µq

σ̂
a

(q,d)
LL =

∑
q q∆σ̂1

σ̂
(8.13)

and

σ̂ = Gσ̂µg +
∑

q

qσ̂1 + ζp
∑

q

e2
qqσ̂µq (8.14)

Finally, using the definition of the photon-nucleon asymmetry, Aγ∗N = AµN/D, we reproduce
eqs. 8.7-8.8. From the latter we can estimate the gluon polarisation for each (pD0

T , ED0) bin.

The ingredients needed (Aγ∗N , a
(g)
LL/D and Acorr) are all available, per bin, in Tables 8.5-8.7 and

in Tab. 8.9. All quantities shown in Tab. 8.9 are weighted only with D2 because they are pure
Monte Carlo quantities (S/(S + B) = 1). To obtain Acorr the following two parameterisations
are used:

Ad
1 = x1.24 and Ap

1 = x0.67 (8.15)

These parameterisations are determined from a fit to the world data on the inclusive asymme-
tries Ad

1 and Ap
1 (see Refs.[5, 32]).

Summary of the 〈∆G/G〉 results:

The ∆G/G measurements at NLO, obtained from eq. 8.7, are shown in the last column of Tab.
8.10 5. The corresponding LO results are also presented for comparison. We see that the LO

5Note that only the combined asymmetries of the D∗
Kπ, D∗

Ksubπ and D0
Kπ channels are shown in Tab. 8.5.

However, to obtain the results shown in Tab. 8.10 the asymmetries Aγ∗N are considered separately.
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Channels

〈∆G/G〉
LO NLO

Full weighted analysis Aγ∗N in bins Aγ∗N in bins

D∗ → D0
Kππs −0.19± 0.31 −0.25± 0.32 +0.04± 0.32

D∗ → D0
Kππ0πs −0.41± 0.58 −0.37± 0.64 +0.12± 0.55

D∗ → D0
Ksubπ

πs +0.50± 1.00 +0.57± 1.06 −0.34± 1.21

D∗ → D0
Kππππs +0.63± 0.83 +0.58± 0.85 −0.96± 0.56

Untagged D0
Kπ +0.02± 0.42 −0.04± 0.45 −0.34± 0.41

Total −0.08± 0.21 −0.11± 0.23 −0.20± 0.21

Table 8.10: Summary of all the 〈∆G/G〉 results in these analyses. The values in the last two
columns represent the weighted means of the fifteen ∆G/G results in bins of (pD0

T , ED0).

extraction of ∆G/G from Aγ∗N leads to a compatible result with the one obtained from the
full weighted analysis, with a minimum loss of precision. Therefore, the NLO determination of
∆G/G from Aγ∗N is well justified. It can also be seen that the NLO results have a different
sign when compared to the LO ones. The exception is the untagged D0 channel for which the
∆G/G result is very close to zero (the LO value fluctuates in the same direction as the NLO
value). The justification for this sign change is given by the different muon-gluon asymmetry
distributions at LO and at NLO (cf. Fig. 7.30). At NLO, the distribution peaks on the negative
side of aLL, contrary to the LO one. Since these partonic asymmetries are given as functions
of pD0

T and ED0 , a two-dimensional distribution of aLL is also presented in Figs. 8.6-8.7. The
pD0

T distribution is very different in the two analyses (the average pT is higher at NLO - cf.
also Fig. 7.30). One can also observe that within each bin the muon-gluon asymmetry is
approximately constant.
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Figure 8.6: Distribution of aLL in bins of (pD0

T , ED0) (left) and the corresponding AROMA
events (right), in the LO-QCD approximation. Lines define the bins used in the analysis (see
section 8.2 for details).

The final result on the gluon polarisation, at NLO, is obtained from the combination of the five
values shown in Tab. 8.10 and amounts to:
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Figure 8.7: Distribution of aLL in bins of (pD0

T , ED0) (left) and the corresponding AROMA
events (right), in the NLO-QCD approximation. Lines define the bins used in the analysis (see
section 8.2 for details).

〈
∆G

G

〉NLO

= −0.20± 0.21 (stat.)± 0.09 (syst.) (8.16)

As for the LO result, the systematic error is discussed in Chapter 9. The NLO calculations have
also led to the important observation that the xg average value of (at which the gluon polarisa-
tion is probed) is dependent on the sign of aLL and, consequently, on the QCD approximation
used in the analysis 6. Moreover, due to the real gluon emissions in the NLO approximation,
the energy in the photon-gluon centre-of-mass system is higher than at LO. These two effects
lead to a higher xg average value at which the gluon polarisation is determined. The individual
results obtained per each bin and per decay-mode are presented in Tab. 8.8. The value of
−9.48 is non-physical and results from a statistical fluctuation coming from averaging events
with slightly negative and slightly positive values of aLL. Nevertheless, at NLO, that particular
(pD0

T , ED0) bin does not contribute to the final result of ∆G/G. The reason for this lies on the

zero value obtained for a
(g)
LL/D, which makes it impossible to estimate the gluon polarisation.

The final value of 〈xg〉 is determined by the weighted average of all bins, using the statistical
error of ∆G/G as a weight:

〈xg〉ω2 = 0.28+0.19
−0.10 @〈µ2〉ω2 = 13 (GeV/c)2 (8.17)

Again, as in the LO case, the limits defined by the above interval are determined from Fig. 8.8.
Using eq. 8.3, we obtain the xg domain corresponding to the present measurement: [0.18, 0.47].
The result given in eq. 8.16 is also shown in Fig. 8.9 together with the available NLO-QCD fits
for ∆G/G (DSSV [84, 85], LSS [86] and COMPASS [87]). The open-charm point represents

6The general expression for 〈xg〉 is given by eq. 6.40. Here, at NLO, we extract ∆G/G from Aγ∗N .
Therefore, in eq. 6.40 we need to replace aLL by aLL/D, and as a weight we use the quantity D2 (because xg

is a pure Monte Carlo quantity). As a result, the average of xg is determined using the following global weight:
ω2 = aLL ×D.
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the first direct measurement ever made for ∆G/G at the NLO approximation.
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Figure 8.8: Distribution of xg, obtained in the NLO approximation, in linear (left) and log-
arithmic (right) scales. The latter is much more symmetric and therefore it is suited for the
estimation of the xg interval.

-210 -110
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

x

G
/G

 
∆

2 = 10 (GeV/c)2DSSV at Q

G > 0∆, 2 = 13 (GeV/c)2LSS at Q

G > 0∆, 2 = 13 (GeV/c)2COMPASS at Q

G < 0∆, 2 = 13 (GeV/c)2COMPASS at Q

G changing sign∆, 2 = 13 (GeV/c)2LSS at Q

2 = 13 (GeV/c)〉 2µ 〈, all data, 2COMPASS, Open-Charm, NLO, all Q
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illustrated fits are also obtained in the NLO approximation.
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Chapter 9

Studies on the Systematic Error

The main contributions to the systematic error of 〈∆G/G〉 are listed in Table 9.1:

Source δ
(
〈∆G/G〉LO

)
δ
(
〈∆G/G〉NLO

)
False Asymmetry 0.080 0.080

S/(S + B) 0.006 0.014

aLL 0.008 0.036

Dilution Factor 0.002 0.004

Target Polarisation 0.004 0.010

Beam Polarisation 0.004 0.010

Total 0.081 0.090

Table 9.1: Systematic errors for the LO and the NLO analyses. Aside from the false asymmetries
and the target polarisation, the remaining contributions enter in the signal weight used in the
analysis (the extraction of ∆G/G is done exclusively based on the event weights). The total
results are obtained by adding all the listed contributions in quadrature.

The experimental factors related to the beam and target polarisations, Pµ and Pt, are parame-
terised with a relative error of 5%, whereas the dilution factor f is parameterised with a relative
error of 2% (cf. Chapter 3). These uncertainties are included to the systematic error of the
gluon polarisation as a fraction of the 〈∆G/G〉 value. The other contributions are discussed
below. The quantities S/(S + B) and aLL are just multiplicative factors between the muon-
nucleon asymmetry and ∆G/G. Consequently, possible errors in their description will result in
an error which is also a fraction of the measured 〈∆G/G〉. We may evaluate these systematic
errors from the spread of the 〈∆G/G〉 values, originated by a change in the description of
S/(S +B) and aLL. However, in the open-charm analysis this method is completely dominated
by statistical fluctuations. There is a much better approach. For the study of the systematic
error, one must compare the default analysis using a weight ω0 with other analyses dealing
with other weights ωi (containing different S/(S +B) or aLL values). This can be accomplished
through the use of the following equation 1 [88]:

1Using eq. 7.6 (with ω = ω0) in eq. 7.8 results in the following weighted asymmetry: Aω0 =
P

j Arawω0j
njP

j ω2
0j

nj
,

where Araw =
∑

j ω0j Aj . The use of the latter definition implies an unbiased analysis, i.e. 〈Aω0〉 = Aj .

However, if the correct weight is ωi instead of ω0, i.e. Araw =
∑

j ωij Aj , we have: 〈Aω0〉 = 〈ωi·ω0〉
〈ω2

0〉
Aj
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〈Aω0〉 =
〈ωi · ω0〉
〈ω2

0〉
∆G

G
(9.1)

where the expectation value of the asymmetry A is identified with the gluon polarisation.
Therefore, the quantity 〈ωi · ω0〉/〈ω2

0〉 gives the relative systematic error 2 introduced by a
different analysis of weight ωi.

9.1 Systematic error associated with S/(S+B)

Several changes were introduced in the parameterisation procedure of the signal purity in order
to determine the contribution of S/(S + B) to the systematic error. In total, more than 50
parameterisations (around 3 per sample/year) are built for each of the following steps:

• Parameterisation window: Different mass intervals are considered for the Neural Net-
work parameterisation.

• Fitting procedure: Different functional forms are tried to fit the background of the
mass spectra in the hybrid-method approach (in bins of the fPµaLL and also in bins of
the NNo1). These background fits are also used to control the uncertainties resulting from
the introduction of the mass dependence in S/(S + B).

• Binning: The impact of a different number of bins in the mass spectra is analysed.

Concerning the fitting procedure, only the background description is changed, with one excep-
tion: the real bumpy shape of the D∗Kππ0 signal (obtained from Monte Carlo) is also tested to
fit the distribution containing these D0 mesons. However, the impact of this function in the
parameterisation of S/(S + B) is completely negligible:
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Figure 9.1: Example of the spread of weights generated by the use of a different fitting proce-
dure. The first point corresponds to the default analysis, i.e. ωi = ω0. The remaining points
use a different signal purity, [S/(S + B)]i, which is obtained through the use of new fitting
functions to the signal (2) or to the background (3, 4, 5) of the mass spectra. Consequently, a
new weight ωi is determined and used to estimate the systematic error. The variable x in those
functions is the reconstructed mass of a D0 candidate.

2The final error is given by the average spread of weights around 1 (ωi = ω0), taken as a fraction of ∆G/G.
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One can conclude from Fig. 9.1 that the signal of the D∗Kππ0 sample is well approximated by a
Gaussian distribution. In Fig. 9.2 it is displayed all the systematic studies performed for the
sample that reveals the worst parameterisation of S/(S + B), i.e. D0

Kπ(2006), the sample for
which there is the biggest uncertainty in the weight definition (highest spread of weights). As
in the previous case, the first point in each plot corresponds to the default analysis of weight
ω0. All the remaining points generate a systematic error which is given by their difference to
the default analysis (in the y-coordinate). For this particular sample, the biggest uncertainty
introduced by a parameterisation of S/(S + B) corresponds to 11% of the 〈∆G/G〉 value.
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Figure 9.2: Example of the systematic studies done for S/(S + B), in the D0
Kπ (2006) sample.

The final uncertainty associated with S/(S + B) is obtained from the weighted average of all
the systematic spreads belonging to all samples considered in the analysis (5 channels from 5
years). The statistical errors of 〈∆G/G〉 are used as a weight to this average. In this way, the
different impact that each sample has in the final result is taken into account. The averages
are determined separately for each step of the parameterisation, i.e. for the different mass
windows considered, the different fitting procedures and the different binnings. The three
results obtained are added in quadrature to produce the final dispersion which amounts to 7%.
Therefore, at LO, the uncertainty assigned to S/(S + B) in the determination of the gluon
polarisation is 0.006 (0.014 at NLO).
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9.2 Systematic error associated with aLL

Analogously to the parameterisation of S/(S + B), several modifications are introduced in the
procedure used to determine the partonic asymmetry aLL. This study is divided in two parts:
the Monte Carlo PGF simulator and the Neural network procedure. The most important one
is focused on the uncertainties generated by the Monte Carlo simulation of the PGF process.
These contributions to the systematic error are obtained from the spread of the signal weights
originated by the use of different PDFs (Parton Distribution Functions), different masses of the
charm quark and different scales. For each of these systematic studies, the AROMA generator
[73] is used to produce a new set of PGF events (with (NLO) and without (LO) parton showers).
The produced D0 mesons are constrained to the COMPASS acceptance through a full simulation
of the spectrometer, and thereafter they are reconstructed like real events. Using the Monte
Carlo information on both charm quarks we can calculate a new ai

LL (for every generated
event) and, consequently, a new ωi is obtained as a signal weight. The final results are shown
in Fig. 9.3.
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Figure 9.3: The spread introduced in the signal weight by all the systematic studies related
to the Monte Carlo dependence of aLL (at LO). All data is included. The default analysis is
given by the first point (in blue). The remaining points correspond to the use of a different
combination of PDFs, charm masses (mc in GeV/c2), and scales (µ2 = (2mT

c )2), during the
generation of the PGF events.

The second part of this study is devoted to the systematic error introduced by the Neural Net-
work in the parameterisation of aLL. To this aim, the initial conditions of the Neural Network
are changed and, as a result, a new parameterisation is obtained. With the help of the latter a
different ai

LL is calculated for each real data event. The resulting spread of the signal weights
can be seen in Fig. 9.4. The final uncertainty associated to this partonic asymmetry is calcu-
lated from the two averages of spreads (from Fig. 9.3 and Fig. 9.4) added in quadrature. The
dispersion obtained amounts to 9% of the 〈∆G/G〉 value, which corresponds to an uncertainty
of 0.008 introduced by aLL in the LO determination of the gluon polarisation. Regarding the
NLO analysis, a conservative value of 18% is assumed to account for the contributions of a

(q)
LL.

This dispersion represents an uncertainty of 0.036 to the NLO determination of ∆G/G.
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Figure 9.4: The spread introduced in the signal weight by all the systematic studies related to
the Neural Network parameterisation of aLL (at LO). All data is included. The default analysis
is given by the first point (blue). The remaining points correspond to the use of a different set
for the initial conditions of the Neural Network structure, i.e. a different number of neurons
and a different number of layers are used.

9.3 False Asymmetries

The asymmetry extraction relies on the following assumption:

K =
aunu × ad′nd′

au′nu′ × adnd

= 1 (9.2)

where a is the acceptance and n is the number of target nucleons in the upstream (u) or in
the downstream (d) cells, before and after (’) the field rotation. Variations with time of a and
n may generate false asymmetries but, in general, a global change cancels in K. However, a
small change of efficiency in a given part of the spectrometer will not affect the target cells in
the same way: since they are not at same distance from the detectors, these inefficiencies will
not cancel in K.

We can consider two kinds of false asymmetries depending whether the source of the asymmetry
is or is not correlated with the solenoid field (surrounding the polarised target) direction. Un-
correlated sources are essentially time variations of the spectrometer efficiency. The latter false
asymmetries will not really bias the measured asymmetries but rather enlarge their variance.
They can be studied by measuring the asymmetries dispersion (the so-called pulls), and we call
them random false asymmetries.

There are at least two sources correlated with the magnetic field: the displacement of the
target induced by the solenoid field rotation and some subtle effects resulting from the inter-
ference between the fields of the solenoid and of the SM1 magnet. The latter may originate
a small tilt of the target (caused by a force that tends to anti-align the two fields) and, as a
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result, the number of target nucleons is changed inside the fiducial volume (K 6= 1). These kind
of false asymmetries are called reproducible false asymmetries. Their sign is changed when the
microwave (µW) settings in the two cells are exchanged to reverse the polarisation. Therefore,
they can be studied by comparing the asymmetries measured with the two µW settings.

9.3.1 Random False Asymmetries

These kind of uncertainties are studied with the help of the following pulls:

pi =
〈∆G/G〉i − 〈∆G/G〉

σi

(9.3)

where 〈∆G/G〉i corresponds to the results on the gluon polarisation (per channel) obtained
for each of the 48 weeks (periods) of data taking. For the channels of low statistics (D∗Kππ0 ,
D∗Kπππ and D∗Ksubπ

) some periods of data with same acceptance are merged for the asymmetry
extraction. The factors σi and 〈∆G/G〉 are the statistical errors and the final value of the gluon
polarisation. The pulls obtained from the main channels of analysis are shown in Fig. 9.5:
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Figure 9.5: Pulls of ∆G/G (left) and Abg (right) related to the D∗Kπ, D0
Kπ and D∗Kππ0 channels.
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The statistical error associated to the RMS of the pulls is δRMS = RMS/
√

2(N − 1), where N
is the total number of weeks (44 for the D∗Kπ case). By defining σ2

tot = σ2
stat + σ2

syst, where σsyst

denotes the systematic error due to the random false asymmetries, we get a 1-σ upper limit for
σtot of (max(RMS, 1) + δRMS)× σstat. This result implies the following upper limit:

σsyst ≤
√

(max(RMS, 1) + δRMS)2 − 1 × σstat (9.4)

The absence of this kind of false asymmetries is verified if the pulls are centred at zero with
an RMS = 1. In Fig. 9.5, a result compatible with this assumption is seen (left plots). We
can also verify the absence of correlation among the pulls of the different channels, in Fig. 9.6.
The latter is also a good indication for the non existence of random false asymmetries in the
present analysis.

πK

0G/G pulls from D∆
-3 -2 -1 0 1 2 3

 π
K

G
/G

 p
u

lls
 f

ro
m

 D
*

∆

-3

-2

-1

0

1

2

3

 0.14± = 0.19 ρ

πK
0 vs DπKPulls correlation: D*

0ππK
G/G pulls from D*∆

-3 -2 -1 0 1 2 3

 
π

K
G

/G
 p

u
ll
s
 f

ro
m

 D
*

∆

-3

-2

-1

0

1

2

3

 0.14± = 0.19 ρ

0ππK vs D*πKPulls correlation: D*

 0ππK
G/G pulls from D*∆

-3 -2 -1 0 1 2 3

π
K0

G
/G

 p
u

ll
s
 f

ro
m

 D
∆

-3

-2

-1

0

1

2

3

 0.14± = 0.06 ρ

0ππK vs D*πK
0Pulls correlation: D

Figure 9.6: Correlation (ρ) among the pulls of ∆G/G corresponding to the D∗Kπ, D0
Kπ and

D∗Kππ0 channels. In all cases the correlation is compatible with zero.

The upper limit obtained for σsyst, as defined in eq. 9.4, is quite high. Considering the D∗Kπ

channel as an example, we obtain the following uncertainty for an RMS = 1: σsyst ≤ 0.48×σstat.
In order to get a smaller upper limit, instead of ∆G/G we consider the pulls from the back-
ground asymmetries which have much more statistics (cf. Fig. 9.5-right). Thereafter, the
obtained results need to be translated to ∆G/G. The following discussion describes the proce-
dure to get σsyst(〈∆G/G〉) from σsyst(〈Abg〉). Let’s consider KS and KB to be the double ratio
of acceptances, auad′/adau′ , for the signal and for the background events. The generalisation of
eq. 6.12 (double ratio of events) to include the background asymmetry is given by the following

167



equation (for simplicity of notation we have ∆G/G for 〈∆G/G〉):

rC = KC

(1− 〈βu,S〉ωC

∆G
G
− 〈βu,B〉ωC

Abg)(1− 〈βd′,S〉ωC

∆G
G
− 〈βd′,B〉ωC

Abg)

(1− 〈βd,S〉ωC

∆G
G
− 〈βd,B〉ωC

Abg)(1− 〈βu′,S〉ωC

∆G
G
− 〈βu′,B〉ωC

Abg)
(9.5)

where C = S, B

Using −〈βS〉ωC
= −〈βu,S〉ωC

= −〈βd′,S〉ωC
= 〈βu′,S〉ωC

= 〈βd,S〉ωC
and −〈βB〉ωC

= −〈βu,B〉ωC

= −〈βd′,B〉ωC
= 〈βu′,B〉ωC

= 〈βd,B〉ωC
, we obtain for eq. 9.5:

rC = KC

(1 + 〈βS〉ωC

∆G
G

+ 〈βB〉ωC
Abg)

2

(1− 〈βS〉ωC

∆G
G
− 〈βB〉ωC

Abg)2

≈ KC

(
1 + 4〈βS〉ωC

∆G

G
+ 4〈βB〉ωC

Abg

)
(9.6)

The above approximation is justified by the small asymmetries ( 〈βS〉ωC
∆G/G � 1 and

〈βB〉ωC
Abg � 1 ) observed in COMPASS. The following system of equations is obtained from

eq. 9.6 [89]: (
ξS

ξB

)
=

(
∆G/G
Abg

)(
〈βS〉ωS

〈βB〉ωS

〈βS〉ωB
〈βB〉ωB

)
(9.7)

where ξC = 1
4

(
rC

KC
− 1
)
. The solution of this system is:

(
∆G/G
Abg

)
=

1

[〈βS〉ωS
〈βB〉ωB

− 〈βB〉ωS
〈βS〉ωB

]
×
(
〈βB〉ωB

ξS − 〈βB〉ωS
ξB

−〈βS〉ωB
ξS + 〈βS〉ωS

ξB

)
(9.8)

There are two ways to translate the random false asymmetries from Abg to ∆G/G:

1- Assuming KS = KB:

From eq. 9.8 we obtain:

δ(∆G/G)|KS

δ(Abg)|KB

=

(
∂∆G/G

∂KS
· δ(KS)

∂Abg

∂KB
· δ(KB)

)
=

∣∣∣∣−〈βB〉ωB
+ 〈βB〉ωS

〈βS〉ωB
− 〈βS〉ωS

∣∣∣∣ (9.9)

where the assumptions of KS = KB = 1 and rC ≈ 1 are used. Inserting eq. 9.4 into eq. 9.9
(and replacing δ by σsyst), we have:

σsyst(∆G/G)|KS
=

∣∣∣∣−〈βB〉ωB
+ 〈βB〉ωS

〈βS〉ωB
− 〈βS〉ωS

∣∣∣∣×√(max(RMS, 1) + δRMS)2 − 1 × σstat(Abg) (9.10)

Therefore, this uncertainty on ∆G/G can be estimated from the knowledge of the factors 〈βC〉ωC
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together with the RMS information associated to the Abg pulls. The present hypothesis is the
most realistic one because it only assumes an equal influence of the detector instabilities on the
signal and background events.

2- Assuming that ρ(KS, KB) = 0:

Using a much more conservative approach, we can also consider the scenario where KS and KB

are totally uncorrelated. With this assumption we obtain for the systematic error:

σsyst(∆G/G)|KS
=

∣∣∣∣〈βB〉2ωB
+ 〈βB〉2ωS

〈βS〉2ωB
+ 〈βS〉2ωS

∣∣∣∣×√(max(RMS, 1) + δRMS)2 − 1 × σstat(Abg) (9.11)

using

δ(∆G/G)|KS

δ(Abg)|KB

=
〈βB〉2ωB

+ 〈βB〉2ωS

〈βS〉2ωB
+ 〈βS〉2ωS

(9.12)

Clearly this hypothesis corresponds to an extreme case. Nevertheless, it is useful to set an
upper limit that takes into account possible small deviations between KS and KB (caused by
instabilities of the spectrometer). The final results obtained for the random false asymmetries
are shown in Table 9.2

Channels

D∗Kπ D0
Kπ D∗Kππ0 D∗Ksubπ

+ D∗Kπππ∣∣∣−<βB>ωB
+<βB>ωS

<βS>ωB
−<βS>ωS

∣∣∣ 1.388 2.492 0.857 1.678

<βB>2
ωB

+<βB>2
ωS

<βS>2
ωB

+<βS>2
ωS

2.524 29.609 7.168 6.729√
(max(RMS, 1) + δRMS)2 − 1 0.279 0.950 0.812 0.277

σsyst(Abg) 0.008 0.004 0.028 0.008

σsyst(∆G/G) 0.011 (0.021) 0.009 (0.107) 0.024 (0.203) 0.013 (0.054)
σsyst(∆G/G)

σstat(∆G/G)
4% (7%) 2% (26%) 4% (35%) 2% (8%)

Table 9.2: Summary of the random false asymmetries estimated for each channel of the analysis.
The channels D∗Ksubπ

and D∗Kπππ are merged due to statistical limitations. All the factors
needed in eqs. 9.10-9.11 are listed here. The final systematic error (accounting for this kind of
uncertainty) is shown for KS = KB and also for the case where ρ(KS, KB) = 0 (in parenthesis).

9.3.2 Reproducible False Asymmetries

This contribution to the systematic error is estimated from the comparison of asymmetries
obtained with the two microwave settings, i.e. Arep

bg = (A+
bg − A−bg)/2. All asymmetries Arep

bg ,
summarized in Table 9.3, are compatible with zero. Therefore, there is no evidence that points
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to the existence of reproducible false asymmetries in the data. Still a 1-σ upper limit is defined:
|Arep

bg | + δ(Arep
bg ). As before, this result must be transformed to an upper limit for (∆G/G)rep.

This can be accomplished by applying the same multiplicative factors used for the random false
asymmetries (cf. eq. 9.9 and eq. 9.12). Thereafter, the final systematic error introduced by
reproducible false asymmetries is obtained from the following equation:

σsyst

(
∆G

G

)rep

=
(δ+)2 − (δ−)2

(δ+)2 + (δ−)2

(
∆G

G

)rep

(9.13)

where δ+/− = 1/[σ
+/−
stat (∆G/G)]2 is computed from the data collected with a positive (+) or

with a negative (−) microwave configuration. The uncertainty resulting from eq. 9.13 is even
more diluted as a consequence of averaging the asymmetries over the two µW-settings. The
results for this kind of false asymmetries are presented in Table 9.3.

Channels A+
bg A−bg Arep

bg σsyst(∆G/G)rep

D∗Kπ(02− 04) -0.016 ± 0.055 -0.002 ± 0.057 -0.009 ± 0.040 0.003 (0.005)

D∗Kπ(2006) -0.025 ± 0.094 -0.093 ± 0.069 -0.059 ± 0.058 0.047 (0.086)

D∗Kπ(2007) 0.183 ± 0.104 -0.061 ± 0.099 0.122 ± 0.072 0.014 (0.025)

D0
Kπ(02− 04) -0.003 ± 0.007 0.006 ± 0.007 -0.004 ± 0.005 0.002 (0.020)

D0
Kπ(2006) 0.015 ± 0.012 -0.017 ± 0.009 -0.016 ± 0.055 0.021 (0.251)

D0
Kπ(2007) 0.006 ± 0.012 -0.014 ± 0.012 0.010 ± 0.009 0.002 (0.020)

D∗Kππ0 (02− 04) 0.018 ± 0.070 -0.014 ± 0.068 0.016 ± 0.049 0.002 (0.016)

D∗Kππ0 (2006) 0.017 ± 0.116 -0.218 ± 0.087 -0.100 ± 0.072 0.042 (0.351)

D∗Kππ0 (2007) 0.243 ± 0.127 0.076 ± 0.123 0.084 ± 0.088 0.005 (0.041)

D∗Ksubπ
+ D∗Kπππ (02− 04) -0.059 ± 0.095 0.049 ± 0.063 -0.054 ± 0.057 0.073 (0.294)

Table 9.3: Summary of the reproducible false asymmetries estimated for each channel of the
analysis. The study is done separately for the two different solenoids (2002-2004 and 2006-2007)
and for the two different targets (2002-2006 and 2007) used in the COMPASS experiment. This
kind of contribution to the systematic error is shown for KS = KB and also for the case where
ρ(KS, KB) = 0 (in parenthesis).

9.3.3 Final results

The final uncertainty coming from possible false asymmetries is calculated from the components
summarized in the Table 9.4. A value of 0.077 is obtained from the weighted average (using the
statistical error as weight) of the individual channels total results. The latter are determined
in two steps. In the first step, the averages of the results obtained under the assumptions
KS = KB and ρ(KS, KB) = 0 are calculated per channel and separately for the random and
reproducible false asymmetries. In the final step, these averages are added in quadrature to
reproduce the uncertainties shown in the last line of Table 9.4.
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False Asymmetry
Channels

D∗Kπ D0
Kπ D∗Kππ0 D∗Ksubπ

+ D∗Kπππ

σsyst(∆G/G)ran 0.016 0.058 0.114 0.034

σsyst(∆G/G)rep 0.030 0.053 0.076 0.184

Total 0.034 0.079 0.137 0.187

Table 9.4: Final false asymmetries resulting from the random and reproducible contributions
added in quadrature.

9.3.4 Additional False Asymmetry studies

The efficiency stability and the homogeneity of the detector are an essential assumption of this
analysis. In order to control the consistency of the data recorded, one last test was performed:

• Left-Right and Top-Bottom stability of the spectrometer.

For this study two samples of similar statistics are considered. This division is done based on
the data containing a D0 candidate going to the left (L) or to the right (R) in the spectrometer
(similar case for the top (T) / bottom (B) samples). The slow pion coming from a D∗ decay
(together with a D0) is used for this test, since it is more interesting to see the effect on the
magnetic bending plane. For each of those two samples the gluon polarisation is simultaneously
extracted with the polarised background asymmetry (after applying all standard cuts of the
analysis). The consistency of the data collected from all parts of the spectrometer can be
evaluated through the following difference:

(∆G/G)
L−R (T−B)
F = (∆G/G)

L (T )
F − (∆G/G)

R (B)
F (9.14)

This difference should be compatible with zero within the accuracy of the statistical error,
evaluated by:

σ (∆G/G)
L−R (T−B)
F =

√(
σ (∆G/G)

L (T )
F

)2

+
(
σ (∆G/G)

R (B)
F

)2

(9.15)

The results for each year of data taking are shown in Fig. 9.7. No significant inconsisten-
cies are observed, as all the points are compatible with zero, within two standard deviations.
However, concerning the top-bottom compatibility a small systematic effect is observed: all
experimental points have the same asymmetry signal. Clearly, this effect has its origin in the
lack of statistics available because it is completely washed out from the (Abg)

T−B
F asymmetry.

The latter is extracted with much more statistics from the same data. A similar problem is
observed for the left-right compatibility study. Unfortunately, there are no more data available
to confirm or deny the validity of such false asymmetry (seen in (Abg)

L−R
F ). Therefore, using a

conservative approach we can consider the final point of (Abg)
L−R
F , 0.06, as an upper limit for

the false asymmetry contribution to the systematic error. Assuming that KS = KB, this limit
is translated to ∆G/G with a value of 0.08. The latter is precisely the result obtained from
the previous discussion on random and reproducible false asymmetries. Since these two results
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are totally correlated, only one of them is considered as a contribution to the final uncertainty
associated to the measured ∆G/G.
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Figure 9.7: Stability tests to the performance of the spectrometer. The differences in ∆G/G
(top-figures) and in Abg (bottom-figures) are calculated from two independent samples of each
year of data taking: the πslow coming from a D∗ decay (together with a D0

Kπ) is reconstructed
in the left/right (left-figures) or in the top/bottom (right-figures) parts of the spectrometer.
The absence of false asymmetries is verified if these differences are compatible with zero.
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Chapter 10

Summary and Conclusions

The unpolarised structure of the nucleon is nowadays very well known. It is the result of a
series of successful Deep Inelastic lepton-nucleon Scattering experiments, DIS, that have been
performed at CERN, SLAC and DESY. The resulting data allowed a very precise determination
of the unpolarised structure functions over a wide kinematic range. From these measurements
one can easily extract the quark (per flavour) and gluon densities inside the nucleon. In
particular, the structure function which describes the gluon was accurately determined from a
QCD fit to the world data on F2.

Concerning the spin structure of the nucleon, the situation is completely different. The
concept of spin is extremely important for many areas of science, from quantum computing
to medical applications such as the magnetic resonance. Therefore, it would be useful (and
advisable) to know in detail the origin of the nucleon spin. In the last years, a considerable
effort has been made to understand how the spin of ~/2 is decomposed in terms of contributions
of quarks and gluons. Up to now, it was only possible to determine with good accuracy the
contribution of quarks to the nucleon spin. The obtained result shows that only 30% of the
nucleon spin is due to the intrinsic spin of the quarks. At the first glance the most obvious
solution to this spin puzzle lies in the contribution of gluons, i.e. ∆G. However, the QCD
fit is poorly constrained for the structure function describing the gluon helicity. This fact is
justified by the scarce information available on the polarised data. The latter are available in
a rather limited kinematic range, since the corresponding measurements have been performed
mainly by fixed-target experiments. Therefore, a direct measurement of ∆G is needed to solve
the puzzle of the nucleon spin.

This thesis is dedicated to the determination of the gluon polarisation in the nucleon. The
process on which this measurement is based is the Photon-Gluon Fusion (PGF). It can be
tagged by the open-charm meson production, assuming that the intrinsic charm content of the
nucleon is negligible. In the presented analysis, D0 mesons are used to directly measure ∆G/G
from the polarised data of COMPASS. These mesons are identified via the reconstruction of
their invariant mass, without distinction between the production and the decay vertices (the
polarised target of COMPASS does not permit the use of dedicated vertex detectors with the
needed resolution, i.e. ≈ 1 mm). Nevertheless, the impact of the combinatorial background is
significantly reduced through the use of an innovative method based on Neural Networks. The
remaining ingredient, needed for the extraction of ∆G/G, is the analysing power, aLL, which is
defined by the ratio of the spin-dependent and the spin-independent muon-gluon cross-sections.
This quantity cannot be determined from the data because it depends on the unknown partonic
kinematics: typically, only one D0 of the two charmed hadrons produced is reconstructed from
each PGF event in COMPASS. Therefore, aLL is determined from events resulting from a
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dedicated Monte Carlo simulation. The final result for the gluon polarisation is obtained at
LO-QCD (aLL is calculated in Leading Order approximation of αS) and also, for the first time,
at NLO-QCD (Next-to-Leading Order approximation). These two values are determined at
the scale of µ2 = 13 (GeV/c)2, and amount to:

〈
∆G

G

〉LO

= −0.08± 0.21(stat.)± 0.08(syst.) @〈xg〉 = 0.11+0.11
−0.05 (10.1)

〈
∆G

G

〉NLO

= −0.20± 0.21(stat.)± 0.09(syst.) @〈xg〉 = 0.28+0.19
−0.10 (10.2)

The uncertainty of these results is completely dominated by their statistical errors. The amount
of the systematic errors is considerably much smaller. Therefore, in despite of the large sta-
tistical uncertainties, these results are of great relevance as they are almost independent of
theoretical models. The dependence on the assumptions introduced in the Monte Carlo simu-
lations represents only a small fraction of the total systematic errors.

The final question we want to answer is the contribution of gluons to the nucleon spin (cf. eq.
1.5), i.e. ∆G. That can be accomplished with the help of Fig. 10.1:
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Figure 10.1: Examples of some parameterisations for xG(x, Q2) obtained in the LO-QCD (left)
and in the NLO-QCD (right) approximations.

One can easily obtain ∆G by using the proper xG(x, Q2) value corresponding to the xg of the
∆G/G measurement. By using the same parameterisation that is used in the analysis (for the
estimation of aLL), MRST 98, one obtains:

〈∆G〉LO = −0.83± 2.30 @〈xg〉 = 0.11+0.11
−0.05 (10.3)

〈∆G〉NLO = −0.20± 0.23 @〈xg〉 = 0.28+0.19
−0.10 (10.4)

The uncertainties shown in these two equations contain both the statistical and the systematic
errors, added in quadrature (multiplied by G(x, Q2) from MRST 98). An additional error
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related to the choice of G(x, Q2) should also be assigned. However, as one can see from Fig. 10.1
the impact of this choice is completely negligible as compared to the error values already
estimated (cf. eq. 10.3 and eq. 10.4). This contribution is therefore neglected. Final results
for x∆G are shown in Fig. 10.2:
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Figure 10.2: Parameterisations of x∆G(x, Q2) together with the LO and the NLO results
obtained from the open-charm analysis.

In Fig. 10.2 it is also displayed the COMPASS fits performed at the NLO approximation in
QCD, using all the world inclusive DIS data (Q2 > 1 (GeV/c)2). Thirty values of Ad

1 and Ap
1

are used to constrain the fits in the range of 0.004 < x < 0.7. Two solutions with comparable
χ2 probability are found, one with ∆G > 0, the other with ∆G < 0. These two fits are also
constrained by the result obtained for 〈∆G/G〉NLO from the open-charm analysis performed in
this work. The impact of the open-charm point in the COMPASS fits can be verified in the
following table:

∆G > 0 ∆G < 0

No open-charm point
∆G1 = 0.39± 0.07 ∆G1 = −0.32± 0.11

χ2/NDF = 250/235 χ2/NDF = 261/235

Open-charm point included
∆G1 = 0.27± 0.09 ∆G1 = −0.34± 0.12

χ2/NDF = 260/236 χ2/NDF = 262/236

Table 10.1: Summary of the first moments of ∆G: ∆G1 =
∫ 1

0
∆G(x) dx.

One can see from Tab. 10.1 that the negative solution is practically not affected by the open-
charm result. On the other hand, the first moment of the positive solution is reduced by 30%.
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The experimental points for x∆G reveal a good compatibility with the negative COMPASS fit
(cf. Fig. 10.2) 1. In fact, if we consider only the golden channel for this analysis, D∗Kπ, the result
that we obtain is x〈∆G〉NLO = +0.01± 0.09 at x = 0.28, which is precisely the place where the
fit crosses zero. The addition of the remaining channels change this result, but nevertheless it
is still compatible with zero. It is worthwhile to recall that the NLO-point from open-charm
has no impact on the COMPASS fit with ∆G < 0. The use of this fit implies a contribution
of gluons to the nucleon spin of ∆G1 = −0.34. This number is clearly too small to solve the
spin puzzle evidenced by eq. 1.5 (note that ∆Σ ≈ 0.3). Therefore, from the available results,
we may conclude that the missing spin is in the orbital angular momentum of quarks and
gluons (at least partially). This conclusion is not strict due to the large errors associated to the
experimental points. Nevertheless, the COMPASS solution for ∆G > 0 is strongly unfavoured:
the point for x〈∆G〉NLO is 2.7σ below the curve, even after the constraint imposed on the fit
by the open-charm result. The first moment, corresponding to the positive fit of ∆G, has the
needed value for the solution of the spin puzzle (cf. Tab. 10.1 and eq. 1.5). Unfortunately
this fit is not confirmed by the direct measurements of ∆G/G obtained from the open-charm
analysis.

The remaining fits shown in Fig. 10.2 (non COMPASS fits) were not yet constrained by
the open-charm asymmetries (cf. section 8.2 ). They are 1.5σ, 2σ and 2.5σ above the point
obtained for x〈∆G〉NLO. Their integrals reveal a first moment of ∆G whose absolute value
is considerably closer to zero. If we take also into account the experimental points from the
high-pT analyses (cf. Fig. 8.5), we are tempted to support the conclusion made above: the
gluon contribution to the nucleon spin is small and compatible with zero.

Another conclusion we can draw is that the contribution of quarks to the nucleon spin
is indeed 30%. A possible reconciliation with the theoretical preditictions of ∆Σ ≈ 0.60 is
completely excluded. In the AB scheme, ∆Σ is related to ∆G1 according to the following
equation:

∆ΣAB = a0(Q
2) +

nfαS(Q2)

2π
∆G1(Q

2) (10.5)

In order to reconcile a ∆ΣAB ≈ 0.60 with the measurement of a0 ≈ 0.30, we would need to have
a ∆G1 ≈ 2.5−3. The latter scenario is completely ruled out by the experimental measurements
of ∆G/G. Therefore, since ∆G1 is small we have ∆Σ ≈ a0 for all factorisation schemes.

The future program of COMPASS [90] includes the determination of the so-called Generalised
Parton Distributions (GPDs). Each of these functions contain the corresponding PDF, together
with the additional information on the transverse localisation of a parton as a function of the
fraction it carries of the nucleon’s longitudinal momentum. Obtaining such a 3-dimensional
nucleon picture is sometimes referred to as ”nucleon tomography”. It is quite obvious that the
GPDs will be a major breakthrough for the understanding of the nucleon structure. Moreover,
it was already shown [90] that the total angular momentum of a given parton species, Jq for
quarks (q = u, d, s) or Jg for gluons, is related to the second moment of the sum of two
GPDs (H and E). Therefore, the experimental measurement of the quark GPDs will allow us
to constrain the quark component Jq of the nucleon spin. Such data may provide the answer to
the question whether the missing spin in the nucleon is due to the orbital angular momentum
of partons (Lq or Lg) or not.

1The comparison of the LO-point from open-charm with the NLO fits may be misleading. However, we can
see from Fig. 10.1 that the different parameterisations of xG are very similar, either if we consider the LO or
the NLO approximation in QCD. Therefore, we assume that the same is valid for x∆G.
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http://wwwcompass.cern.ch/compass/publications/theses/2011 phd silva.pdf.

[44] EMC, J.J. Aubert et. alThe Intrinsic Gluon Component of the Nucleon, Nucl. Phys. B213
(1983) 31.

[45] B. W. Harris, J. Smith and R. Vogt, Reanalysis of the EMC charm production data with
extrinsic and intrinsic charm at NLO, Hep-ph/9508403.

[46] Johan Alwall, Quark Asymmetries and Intrinsic Charm in Nucleons, Hep-ph/0508126.

[47] S. J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, The intrinsic charm of the proton,
Phys. Lett. B93 (1980) 451.

[48] A. Bravar, K. Kurek, R. Windmolders, POLDIS: A Monte Carlo for POLarized (semi-
inclusive) Deep Inelastic Scattering, (1997) Hep-ph/9704313v1.

[49] J. Pretz, The Gluon Polarization in the Nucleon from the COMPASS Experiment, Ha-
bilitation Thesis, Mathematisch-Naturwissenschaftliche Fakultat der Universitat Bonn,
2007. http://wwwcompass.cern.ch/compass/publications/theses/2007 hab pretz.pdf.

[50] M. Klein, Structure Functions in Deep Inelastic Lepton-Nucleon Scattering, Preprint,
hep-ex/0001059 (2000).

[51] R. Windmolders, QCD fits of g1(x, Q2) updated with the open charm result on ∆G/G,
private communication, June 2011.

[52] I. Bojak, NLO QCD Corrections to the Polarized Photo- and Hadroproduction of Heavy
Qaurks, PhD thesis, Abteilung Physik der Universitat Dortmund, 2001.

[53] W. Beenakker, H. Kuijf, W.L .Neerven, J. Smith, Phys. Rev. D 40 (1989) 54.

[54] J. Smith, W.L. Neerven, Nucl. Phys. B 374 (1992) 36.

[55] I. Bojak and M. Stratmann, Phys. Lett.B 433 (1998) 411.

179



[56] I. Bojak and M. Stratmann, Nucl. Phys.B 540 (1999) 345.

[57] M. Stratmann, private communications.

[58] By STAR Collaboration (Pibero Djawotho for the collaboration), Gluon polarization and
jet production at STAR, Published in J.Phys.Conf.Ser.295:012061, 2011. 4pp.

[59] By PHENIX Collaboration (Paul Kline for the collaboration), Accessing Gluon
Polarization in the Proton with Direct Photons at PHENIX, Published in
J.Phys.Conf.Ser.295:012073, 2011. 4pp.

[60] COMPASS, P. Abbon et al., The COMPASS Experiment at CERN, NIMA 577 (2007)
455-518

[61] J-M Le Goff, Evaluation of D0 and D∗ channels for the measurement of ∆G/G, COM-
PASS Internal Note 2002-2.

[62] B. Adeva et al, Measurement of the Polarization of a High-Energy Muon Beam, Nucl.
Instr. and Meth. A343 (1994) 636.

[63] D. Adams et al, Measurement of the SMC Muon Beam Polarization using the Asymmetry
in the Elastic Scattering of Polarized Electrons, Nucl. Instr. and Meth. A443 (2000) 1.

[64] A. Abragam and M. Goldman, Nuclear Magnetism: Order and Disorder, Clarendon Press,
Oxford, 1982.

[65] K. Gustafsson, Computation of the Dilution Factor for the Year 2002 COMPASS Data,
COMPASS Internal Note 2003-3.

[66] K. Kurek et al, An algorithm for track reconstruction in the large-angle spectrometer of
the COMPASS experiment, NIMA 485 (2002) 720.

[67] Y. Bedfer, S. Gerassimov, A. Korzenev and R. Windmolders, COMPASS’s track recon-
struction algorithm, COMPASS Internal Note 2004-1.

[68] M. Gardner (October 1970), Scientific American, ISBN 0894540017.

[69] M. S. Grewal, Kalman Filtering: Theory & Practice, Englewood Cliffs, NJ: Prentice-Hall,
1993.

[70] K. Fujii, Extended Kalman Filter,
http://www-jlc.kek.jp/subg/offl/kaltest/doc/ReferenceManual.pdf.

[71] S. Gorbunov and I. Kisel, An Analytic Formula for Track Extrapolation in an Non-
Homogeneous Magnetic Field, NIMA 559 (2006) 148-152.

[72] P. Abbon, et al, Particle identification with COMPASS RICH-1, Nucl. Instr. and Meth.
A 631 (2010) 26.

[73] G. Ingelman et al, AROMA 2.2 - A Monte Carlo Generator for Heavy
Flavour Events in ep Collisions, Comput. Phys. Commun. 101 (1997) 135; see
http://www.isv.uu.se/thep/aroma/ for recent updates.

[74] http://wwwcompass.cern.ch/compass/software/offline/input/stab/index.html

180



[75] V. Alexakhine, COMGEANT web page,
http://wwwcompass.cern.ch/compass/software/offline/welcome.html

[76] B. Andersson, The Lund Model, Cambridge University Press, 1989.

[77] J.M. Le Goff and J. Pretz, Statistical errors and correlations for semi-inclusive asymme-
tries, COMPASS note 2004-4.

[78] J. Pretz and J.M. Le Goff, Simultaneous Determination of Signal and Background Asym-
metries, Nucl. Instr. and Meth. A 602 (2009) 594.

[79] See. http://www.ire.pw.edu.pl/∼rsulej/NetMaker/

[80] R. Sulej, K. Zaremba, K. Kurek and E. Rondio, Application of the neural networks
in events classification in the measurement of spin structure of the deuteron, Mea-
sur.Sci.Tech.18: 2486-2490.

[81] F. Robinet, Measure de la polarisation des gluon dans le nucléon par la muo-production
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