
ERRATA 

SLAC-PUB-4543 
UTHEP-88-0101 
April 1988 
P-/E) 

EXPONENTIATION OF SOFT PHOTONS IN THE MONTE CARLO: 

THE CASE OF BONNEAU AND MARTIN* 

STANISLAW JADACH 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94309 

and 

Institute of Physics, Jagellonian University, 
Cracow, ul. Reymonta 4, Polandt 

and 

B. F. L. WARD 

Department of Physics and Astronomy, 
The University of Tennessee, Knoxville, Tennessee 37996-1200 

and 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94309 

Please note the following: 

1. In Eq. (I), sz’, should be ~[Ln(s/m~) - l] sz’,. 

2. In Eq. (3), 7r2/6 should be 2z2/3. 

3. In Eq. (5), +(2~~/7r)[&z(s/mf) - l].&zzc is missing from the RHS. 

We apologize for this. 

*Work supported in part by the Department of Energy, contracts DE-ACOS- 
76SF00515 and DE-AS05-76ER03956. 

SPermanent address. 

Submitted to Physical Review D 



SLAC-PUB-4543 
UTHEP-88-0101 
January 1988 
(T/E) 

EXPONENTTATION OF SOFT PHOTONS IN THE MONTE CARLO: 

THE CASE OF BONNEAU AND MARTIN* 

STANISLAW JADACH 

Stanford Linear Accelerator Center, 

Stanford University, Stanford, California 94309 

and 

Institute of Physics, Jagellonian University, 

Cracow, ul. Reymonta 4, Poland $ 

and 

B. F. L. WARD 

Department of Physics and Astronomy, 

The University of Tennessee, Knozville, Tennessee 37996-l 200 

and 

Stanford Linear Accelerator Center, 

Stanford University, Stanford, California 9~309 

ABSTRACT 
It is shown, explicitly, how to proceed in the Monte Carlo program in order 

to include multiple soft photon emission. The method is based on the rigorous 
theory for summing infrared contributions to the respective cross section by Yen- 
nie, Frautschi and Suura. Procedures are illustrated on the example of the initial 
state bremsstrahlung. One photon is allowed to be hard and an arbitrary number 
of real soft additional photons are confined to the neighborhood of the infrared 
point. 
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I. Introduction 

The currently used Monte Carlo (MC) programs for the calculation of QED 

bremsstrahlung effects in high energy lepton-lepton and lepton-hadron processes 

(see, for example, Ref. 1) are baaed on the single bremsstrahlung calculations. 

They include, typically, an emission of a single hard real photon while the infrared 

point (photon energy = zero) is excluded from the phase space by means of a 

traditional cutoff on the photon energy in the center-of-mass-system. Events 

without a photon are also generated and they populate phase space precisely at 

the infrared point, i.e., they are distributed within a reduced phase space with one 

particle (three dimensions) less. Their cross section includes contributions from 

virtual and real photon emission, the result being infrared finite. On the other 

hand, there was in the past a variety of the calculations based on the summation 

of the contributions from the infinite number of the soft photons, i.e., on the so- 

.called exponentiation procedure. The most extensive and complete discussion of 

- exponentiation was exposed in the paper of Yennie, Frautschi and Suura (YFS).2 

It provides a rigorous framework for the calculation in which one may improve 

the precision of the calculation step by step as in the traditional perturbative 

expansion. In most of the practical applications the common procedure was not 

to apply the YFS scheme precisely but rather to make an educated guess related 

to the YFS scheme. Typically that was done by an ad hoc modification of an 

analytical formula for the partly integrated cross section resulting from the single 

bremsstrahlung (one loop) calculation. An example of such a procedure may be 

found in the paper of Jackson and Scharre,3 where the calculation of Bonneau 

and Martin4 is “exponentiated.” This sort of procedure is regarded as a relatively 

easy method of introducing higher order effects in the QED calculation. In fact, 

when the double bremsstrahlung (two loop) result is compared5 with that of the 

“exponentiated” single bremsstrahlung (one loop), one finds that they are rather 

close. 

The question which we address in this paper is the following: is it possible to 

find a corresponding procedure of introducing multiple soft photons in the MC 
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event generators?. Our ambition is also not to rely on ad hoc procedures but 

rather to refer to the original YFS scheme. The answer is generally positive and 

the first complete recipe of how one answers our question (proposed examples of 

MC algorithms) was given in Ref. 6. Here we shall work out an example of adding 

in the MC generator multiple soft photons in addition to the one hard photon. 

All photons are emitted from the initial state beams in the e+e- annihilation. 

This will be roughly analogous to the “exponentiation” made on the integrated 

cross section in Ref. 3. It should be stressed, however, that the procedure used in 

our MC calculation is based on the rigorous prescriptions of Ref. 2 whereas Ref. 3, 

and numerous other works related to it, involve various departures from rigor.5s7 

There will be no major obstacle in improving our calculations by inclusion of a 

second hard photon in the future. In some preliminary form it was done even 

in this work. It is needless to mention that, in addition to the necessity of 

calculating/correcting cross sections due to QED effects, there is another reason 

_ for including multiple soft and hard photon emission in the MC generators. They 

may be seen in the detector and it is essential to include them in the MC sample 

for. apparatus acceptance studies. 

The plan of the paper is the following. In the next section we consider the 

Bonneau-Martin cross section and its naive exponentiation in the spirit of the 

original work of Jackson and Scharre. (We consider Jackson and Scharre’s work 

purely for pedagogical and historical reasons. We are aware5s7 that their original 

work has been improved recently by several groups although, from the standpoint 

of rigor, these improved results are not complete. Accordingly, we feel that Ref. 3 

is representative enough of the naive “exponentiation” procedure that it will not 

misrepresent the pedagogical relationship between the naive procedure and our 

rigorous methods.) In Section III, we review the relevant aspects of the YFS 

program from the standpoint of our MC methods. In Section IV, we describe the 

essential ingredients in our MC realization of the YFS program for the Bonneau- 

Martin case. Section V contains the numerical results which we use to illustrate 
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the effects of including the multiple photons in the respective final state. It also 

contains our concluding remarks. 

II. Bonneau-Martin Cross Section and Its Exponentiation 

The effect of the initial state bremsstrahlung in the e+e- annihilation on the 

total cross section can be summarized in a simple formula usually referred to 

as a Bonneau-Martin formula. It includes an integral over the photon energy 

spectrum convoluted with the lowest order cross section at the reduced c.m. 

system energy: 

VW(S) = +)[l + ~sx(+:,~o)] + 
/ 
l P+(1-s)210B[(1-x)s] dx 2x 9 (1) 

20 

where a is c.m.s. energy squared, x is photon energy in units of Ebeam = G/2 

and 

consists of the virtual photon (vertex) correction 

2ReFl(s/m:) = z [h(s/m~) - l]h(m?,/mz) 
( 

7r2 
(3) 

- gz2(s/mf) + ;t.n(s/m:) - 2 + -g- , 

and the real soft photon contribution (p1t2) is the four-momentum of e(E) and 

p = Pl + P2) 

= d3kg(k) 
- 

(22 + t7$)1/2 (4 

I~l<zofi/2 

79 + gz2(s/mf) - -Jj- 
> 

. 

4 



Here n7 is a photon mass introduced temporarily in order to regulate the infrared 

singularity. It drops out in the sum as it is seen from the explicit expression below 

&x(+& x0) = f ( 
L(s/m~) - 2 + 7rz/3 2 

> 
. 

The exponentiated formula of Jackson and Scharre (neglecting the contribution 

from the vacuum polarization) reads 

1 

a.&) = ssxoB(s) + t 
/ 

dx[xt-’ - (1 - x/2)]4(1 
0 

where 

t = yLn(s/m:) - l] , 

and it is obtained by means of the replacement 

1+t 1 
0 

+ txt-l . 
x + 

- 44 3 (6) 

(7) 

(8) 

Note that both distributions when integrated in the range from 0 to 1 give pre- 

cisely one. 

As an introductory numerical exercise we plot in Fig. 1 the result from the 

Bonneau-Martin and Jackson-Scharre formulas for the 2” resonance near the top 

of the cross section. It is worth mentioning that the result is not very sensitive to 

the way the exponentiation is done. For example, one gets practically the same 

curve from another exponentiation ansatz: 

1 

aJs (s) = &pB(s) + t 
/ 

dxxt-‘[l - x(1 - x/2)]oB[(1 - x)s] . (9) 
0 

As it was mentioned this result is not far from the result of the exact second 

order calculation. 

5 



III. Yennie-Fkautschi-Suura Expansion 

In the following we review briefly the essential ingredients of the YFS for- 

malism which are necessary for further discussion of our MC calculation. Let us 

start with the YFS expansion truncated on the first two p terms: 

_ aYFS(s) =exp(2ReaB) ~~/d~n,,(P;~,,rz,kl,...,kn) 
n=O * 

d7n+2(P;ql,q2,kl,..., kn) (f&g(h)) Pl(YL.Pl.kj)} 3 

(10) 
where q1c2) is the four-momentum of f( f2 and where 

dTn(P;pl,. . . (11) 

In the above formula, soft virtual photon contributions are sitting in the exp(2ReoB) 

factor where 

d4k 2~1+ k 2~2 + k 2 
k2 - m; + ic Cc2 + 2kpr - k2 + 2kp2 )I 

=- f2 [.tn(s/mf) - l]!!n(m~/n3~) - i&2(s/rnz) 
7r ( 

02) 

+ ;h(s/mf) - 1 + 7r2/6 
> 

, 

and the real photon emission cross section is rearranged in such a way that the 

formula as a whole is infrared finite. (The distributions pi are finite and will be 

discussed below.) To see this more clearly, let us introduce temporarily a photon 

mass regulator and take advantage of the explicit factorizability of the infrared 
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part of the formula (10): 

oyFs(S) = exp(2ReaB + 2c&) d7,‘(P;ql,q2)~o(ql,q2) 

/ 
+ d7,‘(P;ql,qa,k)p,(ql,q%,k) 

(13) 

where we define 

n d3pi s d4y 
dTi(P;pl,...,pn) =n- - 

Py (W4 
exp iy(P - kpi) + D 

I 
(14 

i=l i=l 

for 

- fl(Kmax - k)) m (15) 

so that 5 depends on Kmax. The sum in the exponent is finite (mr cancels out) 

and, assuming Kmax E G/2, i.e., x0 = 1, we get 

245 + ReB) = f ~fh(s/m~) - 1 + n2/3 
> 

. (16) 

.For the purpose of the MC we repeat this exercise once more but this time we 

split the integral over x = 2)z]/& f s rom 0 to 1 into two parts: the first from 0 to 

6 and the second from 6 to 1. The first contribution we include in the exponent 

exp (Pa[ReB + E(6)]) = exp ~[(!%(s/$) - l)kzS 

> 
+ ;en(s/m:) - 1+ 7?/3] ) 

(17) 

and the second we leave where it was, i.e., in the phase space integral. In this 

way, we split the phase space into two regions: below x = 6 where virtual and 

real soft photons are combined analytically to yield an infrared finite result and 
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above where we have only real photons which will be generated in the MC. The 

energy limit k6 = J&/2 which separates virtual and soft photons in the phase 

space may be set arbitrarily low. The resulting differential cross section reads 

[here, D in (14) is now SL’““(d3k/k)s”(k)(e-iyk - 1) ---) 0 for kg + 0] 

The reader may worry that the above expression looks as if the four mo- 

mentum was not conserved. For example the phase space element dri includes 

b4(P - ql - 42 - 5) and it seems that only one photon was included in the 

four-momentum conservation which would determine Dr. Let us now clarify this 

point. In fact, for the sake of simplicity, some simplification in the notation was 

tacitly done. Our master formula should be better written in the following way: 

(19) 
In the framework of the YFS scheme one performs certain manipulations on the 

differential cross sections in which infrared singularities for real soft photons are 
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extracted in singular g(kl) factors and pi functions are the finite residua in this 

procedure at the singular point, i.e., at the point reached by putting the momenta 

of some photons to zero. The related fact is that, strictly speaking, Do is defined 

within two body phase space and p1 is defined inside three body phase space. 

The operation R is defined such that in PO q; obeying q1 + q2 + xi ki = P are 

transformed into “reduced momenta” Rqi which obey Rql + Rq2 = P. Similarly, 

in pr, reduced momenta obey Rql + Rq2 + kj = P instead of q1 + q2 + xi k; = 

P. This corresponds exactly to going to the residue position. It amounts in 

practice to some manipulations on momenta in which momenta of some photons 

are excluded from the four momentum balance. There is a certain degree of 

freedom on how it is actually done but there are also some restrictions. The 

previous formula and the actual master formula are numerically equivalent in 

the sense that in the previous one the momenta qi should be really treated as 

-new integration variables q/ = Rqi used instead of the original ones. This can be 

- true provided that the Jacobian of the transformation R is equal to 1 (otherwise 

it is included properly in the formula). In practice, one may take advantage of 

the Lorentz invariance of the phase space element dr,, under boosts and rotations 

and use these transformations as the building blocks in the reduction operation 

R. In general, one has to do at least one resealing of the momenta and it turns 

out, not surprisingly, that the best is to do that in the rest frame of q1 + q2 where 

the corresponding Jacobian is equal to one (for almost massless fermions). 

Finally let us write our master formula once again in a form which will be 

useful for further discussion of the MC algorithm: 

~YFS(s) ~2; / dr~+,(P;ql,q2,kl,...,kn) 
n=O . k;>ka (20) 
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where 

~n(ql,q2,h,~-~,~kn) = e2a[ReB+EC6)1 po(Rql, RQ2) 

{ 

+ kBl(Rql, Rqzvkj)/g(kj) 

(21) 

- 
j=l 

IV. The Monte Carlo 

For the purpose of the further discussion we need not only the Bonneau- 

Martin distribution which is integrated over angles but also the differential cross 

section. It may also be cast* into a semifactorizable form which involves the dif- 

ferential lowest order distributions hB/dR(s’,cos 0) at the reduced c.m. energy 

squared s ( ’ = 1 - z)s multiplied by certain functions dependent on the photon 

momentum: 

aBM(s) = oB(s)[l + ~sx(+T,~o)l 
+jdr/d4( /dnlgl(x,cose~)~(s’,cos81) 

20 

J 

d4P 
+ df-hgz(s,cos~7)-&‘,~~~Bz) 

2 

(22) 

where i = 1,2 in the parametrization of the final state fermion direction deli 

correspond to two well-defined choices of the z-axis in the rest frame of the final 

state fermions (rcms). In the first case (i = 1) it points in the direction of the first 

beam (in rcms) and in the second case (; = 2) it points opposite to the second 

beam (also in rcms). Coefficient functions are given by the following expressions: 

gi(x,cos e,) = 5 [ 1 2 - :Xbi I( - 1 l-x - - 24 

6162 s l+(l-xp ( ,> 
‘+A 
6; 6; ’ 

b1 = i -coser 
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The Bonneau-Martin formula is easily recovered using the identity 

1 

/ 
d++, ~0s e,) + g2 (x, ~0s e,)] = ’ + t, x)2 ~[tn(s/m~) - l] . 

7r (24 
0 

Having in hand the above distributions we may proceed to constructing the 

functions Do and Pr which are necessary to complete our master formula for the 

MC calculation. The relevant definitions may be found in Ref. 7: 

~0(!71,!72) = 
duB 

d~#'; ql, 42) 
(1 + 2ReFr - 2ReaB) 

(25) 
=- p”, $$,c0se) [I+ z(ln(s/m:) - I)] , 

where /3’ = (1 - 4rn;/~)l/~ and 

~l(qlm,k)/~(k) = f, ;$;;I;:; g 
{ 

(d, co8 e,) 

+ 94 5, COS e,) doB 

so(x, cos e,) dn (26) 

dc7B 
+ +s, c0s e2) 

>> 
, 

where 

go(x,c0se7) = 5 {ik-Tyg+;)} (27) 

is up to a normalization constant equal to g(k). In pr, above, the last two terms 

represent o(Rql, Rq2). The R procedure in that case amounts to taking cos 8i 

in the rest frame of q1 + q2 system and the average over i is taken in order to 

have a symmetric solution. It should be stressed also that in these two terms s is 

taken in contrast to the first two where s’ is used instead. In the presence of the 
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additional photons one has to provide for the R procedure to produce Rql, Rq2, 

and k momenta to be plugged in as arguments in the above p1 expression. In 

the actual Monte Carlo it is done in the following way. One transforms qi to the 

<’ + $2 = 0’ frame, then $1 and $2 are resealed by the factor which corresponds to 

exclusion of additional photons and the momenta are boosted back to the ems 

system, taking again a boost parameter which takes the exclusion of additional 

photons into account. The resulting momenta obey Rql + Rq2 + k = P where 

k is the momentum of the only one photon which actually was not touched in 

the R reduction procedure. (Using entirely analogous procedures we have also 

constructed the leading logarithmic approximation to p2.) 

The MC algorithm is organized in such a way that there are two distinct 

levels in it. There is a low level MC generator which generates events according 

to our master formula with a simplified bn function. It is simply 

bA(ql,q2,h,---,kn) = +jyJBKrl + q2121 * (i8) 

The events are generated on the four-momentum level using this simplified dif- 

ferential cross section and next the real distribution is recovered with help of the 

rejection procedure with the rejection weight 

The advantage of this arrangement is that the low-level MC part will remain the 

same even if more p’s are included in the future in the YFS expansion in bn. One 

will need to change only the model-dependent part of the program. In a sense, 

the low-level MC part is a sort of universal phase space MC program for QED 

initial state bremsstrahlung. 

The question is now, however, how events are generated in the low-level MC 

according to our simplified distribution. The solution is quite similar to that 
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proposed in Ref. 6. The integral may be written as follows 

O+FS = ] dvaB[(l - v)s] 2 f / (fi $s”(kl)) 6 (v - 2K;; K2) , 

0 n=O * k;>ka e=i e 

(30) 
where K = Ci ki. Photon momenta are generated quite similarly as in the 

algorithm no. 2 in Ref. 6. In this algorithm the energy conservation is obtained 

by resealing momenta of all photons by a certain factor. Here the method is the 

same but the condition to be fulfilled, that inside the delta function in the above 

expression, is slightly more complicated. Because of that one picks up a Jacobian 

factor in the integrand which has to be removed again by the rejection method. 

The details on that will be given elsewhere. 

V. Numerical Results and Conclusions 

In Fig. 1 we plot the total cross section in R-units for r pair production 

at the vicinity of the 2” resonance. Included are the Born cross section, the 

cross section from the Bonneau-Martin formula and the exponentiated result 

obtained using the Jackson-Scharre formula (as we have noted), and the formula 

of Kuraev and Fadin.g The results from the MC of the type described in this 

paper are represented by dots. They are obtained from samples of lo4 events. 

The statistical error is of the size of the dot. At each energy the two cross sections 

correspond to two possible upper limits on the energy of the soft photon Eyft. 

There is no limitation on the energy of the most energetic photon but all other 

ones must stay below Eyft. One result (higher cross section) is obtained using 

,!?!+Oft = 2 GeV and the other one using Eft”it = 0.1 GeV. Generally, the result 

of the MC comes close to the result of the naive exponentiation and it depends 

rather weakly on Eyft. It is very essential, however, that this dependence is 

included in the calculations. 

The Do and & in (25) and (26) do not include the effects of renormalization 

group improvement. In the case at hand such improvement may be effected 
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as follows. In PO3 the prescription in Ref. 7 requires, here, the substitution 

(a(2m/.Wys) is (Y at the scale 2mP,phys) 

with the understanding that, in the 2’ squared-coupling G2, we write 

where, here, x N MZO/2mP,phys - - 4.353621 x lo2 and gw is the SU~L coupling 

evaluated at the scale Mzo so that, from Ref. 10, we may take it to be .65626. 

Here, Mw N 80.8 GeV and Mp N 92 GeV. Note also that bo = 11/48z2 here. 

Similarly, in pr, the prescription in Ref. 7 requires that we leave CY N l/ 

-137.03604 in go,1,2 but that we make the substitutions in (31) and (32) in daB. 

This then accounts for the renormalization group improvement of the results in 

(22)-(27). Th e improvement of p2 is effected in an analogous manner. 

The respective renormalization group improvement effects on the cross sec- 

tion represented by the round dots in Fig. 1 are shown by the crosses in the 

figure. We see that these effects are significant if one wants high precision MC 

simulations. 

Note added: It has recently been verified (Wim de Boer, private communi- 

cation, 1987) that the total integrated cross sections associated with the Monte 

Carlo procedure described in this paper are in fact consistent, to three or more 

significant figures, with the total integrated cross sections in the second order 

results of Berends et cd5 at fi = Mp. This is an important check on the global 

aspects of our Monte Carlo methods. More checks of this type will be taken up 

elsewhere. 
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1. 

Figure Caption 

Two solid curves represent the Born and Bonneau-Martin cross sections. 

The dashed curve is according to Jackson and Scharre and the dotted curve 

is from the Kuraev-Fadin result .a Three types of points come from our 

Monte Carlo, lo4 events, statistical error below the size of the dots. Round 

and square dots represent the Monte Carlo result for PO + PI + p2 and 

triangle points represent the PO + PI result. The most energetic photon is 

allowed everywhere in the phase space and the other photons are confined 

within a sphere IX, 5 I??“. Two values for the Eyft cutoff are used: 

2 GeV and 0.1 GeV. The crosses show the effect of renormalization group 

improvement on the round dots. 

‘The Kuraev-Fadin result is defined as follows: 

1 

UKF = 
J 

dzoB[s(l - z)] { aAzaA--l (I+ h) + cuA(-1 + z/2)}, 
0 

,crA = $[.f?n(s/m~) - l] = t . 
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