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Abstract

E143 [1] [2] was a high precision measurement of the proton and deuteron spin structure
functions g, and g2 in SLAC’s End Station A facility, with longitudinally and transversely
polarized NH3 and ND3 targets, and a longitudinally polarized electron beam. The
experiment was done,.at'beam energies of 29, 16 and 9.7 Gev. The deeply inelastic
scattered électrons were detectec! by two independent spectrometers at 4.5° and 7°
relative to the incident electron beam. At a beam energy of 29 Gev, the measurements
covered the Bjorken x range from 0.03 to 0.8, and the Q7 range from 1.2 (Gel/c)?
to 9.8 (GeV/c)? . It was found that the [ g7(z,Q;)dr is more than two standard
deviations away from the Ellis-Jaffe sum rule, and the corresponding deuteron integral
is more than three standard deviations away from the Ellis—Jéffe's rule, but the Bjorken
sum rule is consistent with the expenimental data. Tests of the sum rules at different
values of Q?, and the implications of these results for the quark-parton model have also

been done.:
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