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INTRODUCTION

GEOMETRY AND STRING THEORY

The language of geometry has proved remarkably adept to formulate the presently known
fundamental physical theories. The general theory of relativity on the one hand, but also
gauge theories such as the standard model of particle physics can be formulated in essen-
tially differential geometric language.

String theory, as a candidate to provide a unified framework for the description of both
gravitation and the other known fundamental forces should, and does contain both familiar
gravitational and gauge theory in appropriate regimes. But this is not all. Crucially, in string
theory, a theory in which the fundamental objects are extended, the role of geometry is quite
different than in theories of point particles. Even the very notion of what we would mean
by geometry can be very different than is familiar from ‘ordinary’ differential geometry.

In the perturbative approach! to string theory, to a large extent the role of geometry is
taken over by worldsheet conformal field theory.

In many situations, the worldsheet conformal field theory has a target space interpreta-
tion. It is interpreted as describing the embedding of the string worldsheet in a spacetime
background, which has an ‘ordinary geometric’ interpretation. Yet in many other cases
worldsheet conformal field theories can have all the properties required of them to define a
string ‘background’, yet no target space interpretation is apparent. This situation is possible
because the definition of a conformal field theory can be made in ways very different than
as a sigma model.

'We mean perturbation theory in the string worldsheet genus expansion. This is not to be confused with the
o' expansion, a perturbation expansion in the string scale used in worldsheet conformal field theory. The term
‘non-perturbative T-duality” which permeates the setup of this work, alludes to perturbation theory in d
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Chapter 1 - Introduction

T-DUALITY

At least equally interesting, is the situation that two different sigma models can define iso-
morphic conformal field theories. Such isomorphic conformal field theories define equiv-
alent string backgrounds which have different ‘ordinary geometric’ interpretations. Intu-
itively speaking, the reason why backgrounds that look different to a classical geometer
may look indistinguishable to a string theorist, is that strings are not in general located at
a ‘point’ in spacetime, but they trace out a curve. Thus, a closed string can wind around a
closed curve.

T-duality essentially exchanges winding modes in the string worldsheet theory with mo-
mentum modes. The momentum modes, are nothing but the modes that a theory of point
particles would also have. Consequently, T-duality exchanges the ‘intrinsically stringy’ part
of geometry (probed by winding strings) in one background, with the ‘ordinary’ geometry
(as probed by point particles) in the dual background.

The archetypal relation of T-duality is the R « 1/R duality of strings on a circle.
On a circle of radius R, the winding modes have energy levels which are spaced with an
energy difference proportional to R, while momentum modes are spaced with energy levels
proportional to R~!. On a circle of radius 1/ R, the level spacing of winding and momentum
modes is interchanged.

IMPURITIES 1: GEOMETRIC IMPURITIES

T-duality can have more complicated implications in more complicated backgrounds. The
backgrounds which we consider in this work can be called ‘impurities’. There are two kinds
of impurities which we distinguish.

The first kind is a ‘geometric impurity’. In this case there are no background fields, other
than a metric. The metric defines a singular geometry, more precisely, a geometry which
preserves some spacetime supersymmetry? and which has an isolated singularity. Often an
explicit metric of the background will not be known. Instead, we use other more implicit
means to characterize the background geometry.

In chapter 2 different ways are discussed to characterize supersymmetric singular back-
ground geometries. Of the methods discussed, two play a prominent réle later, in chapter
4. The first method is the characterization as a metric cone. In this method the differen-
tial geometry of the background is emphasized. Supersymmetry imposes a restriction on
the holonomy of the background. The structure of a metric cone, together with restricted
holonomy leads to differential geometric constraints on the base of the cone. In particular, it
turns out that all of the bases of supersymmetric complex metric cones have a Killing vector
field, which degenerates at the apex of the cone. This is interesting because when there is
an isometry, it is usually possible to consider a T-dual background.

2We concem ourselves with complex geometry. It would be an interesting but quite separate undertaking
to transform the methods discussed to a form suitable for supersymmetric singular geometries which admit no
complex structure.




Chapter 1 - Introduction

The second kind of characterization, describes the geometric impurity as a hypersur-
face. In this description, the differential geometry is less explicit. However, there are ana-
lytic, algebraic and topological properties which can be studied and have been studied by
mathematicians.

Actually, the hypersurfaces which we consider, bear a similarity to metric cones. The
affine hypersurfaces under consideration are defined by weighted homogeneous polynomi-
als. These are equivariant under a C* action. Compare this to the supersymmetric metric
cones, they admit a scaling of the base, and the base has a Killing vector field, which in
all cases that are discussed by us, has closed orbits, so defines a U (1) action. So both the
hypersurfaces and metric cones we use, admita R x U(1) action.

Describing a singularity as a hypersurfaces offers some advantages which a metric cone
description does not have. First, deformations of the space, and more specifically desin-
gularizations, which smooth out the space completely, are described as simple analytic
deformations of the defining polynomial. Second, weighted homogeneous polynomials,
used to describe the hypersurfaces, can also be used to describe conformal field theories, as
Landau-Ginzburg theories. Both these properties are very important in the construction of
backgrounds which are T-dual to the geometric impurities.

IMPURITIES 2: FLUX IMPURITIES

The second kind of impurities can be called ‘flux impurities’. These are, as the name indi-
cates, sources of gauge field flux. So in backgrounds with flux impurities, there are other
non-trivial background fields than just the metric.

The flux impurities are sources of Kalb-Ramond field. The archetypal example is a
simple Neveu-Schwarz fivebrane. Also, these impurities create a non-constant dilaton: near
the impurity the effective string coupling is large.

LOCALIZED PHYSICS NEAR AN IMPURITY

Intuitively speaking, because the string coupling grows large near a flux impurity, it may be
possible to decouple the physics localized near this impurity by sending the string coupling
asymptotically far from the impurity to zero. Then the bulk degrees of freedom, coupling
to the ‘localized’ degrees of freedom through gravity, can decouple, and one can restrict
attention to the degrees of freedom localized near the impurity alone.

Such decoupling limits have various interesting properties. First, typically the ‘local-
ized’ physics has a holographic description. That is to say, the decoupled subsector of
string theory in the original background, which contains just the ‘localized’ physics of the
impurity, is equivalently described by the full string theory in another background (think of
Anti-de Sitter backgrounds, and also of linear dilaton backgrounds).

Next, it happens often, as we will see, that these ‘decoupling limit backgrounds’ admit
an exact worldsheet conformal field theory description, while such a description is unknown
for the full, unscaled backgrounds with a local impurity.

3




Chapter 1 - Introduction

On the other hand, geometric impurities also have localized physics. Essentially, it
comes from branes wrapping vanishing cycles in the singularity. The notion of vanishing
cycles is also useful to understand that geometric impurities are quite generic. One may
start with a smooth geometric background. Such a background is usually one in a family
of connected backgrounds, parametrized by moduli. At certain perfectly fine values of the
moduli, a homology cycle in the geometric background may shrink to zero size. Then a
singularity, or geometric impurity, develops. A scaling limit which isolates the physics
localized at the singularity, typically involves tuning the size of a vanishing cycle to zero,
while also scaling other parameters, usually the string coupling, analogous to the limit for
flux impurities. Especially the hypersurface singularities are suited to such a scaling limit,
as blowing up certain cycles corresponds to simply deforming the defining polynomial.

DUALITY BETWEEN GEOMETRIC AND FLUX IMPURITIES

Geometric impurities and flux impurities are related by T-duality. In practice it is difficult to
explicitly carry out the duality transformation. A reason for this difficulty is, that worldsheet
instanton effects are crucial to the duality. These worldsheet instantons break spacetime
symmetries which seem to be present if one considers only the perturbative physics.

If one performs a perturbative analysis and dualizes a geometric impurity, it appears
that the dual flux impurity has an isometry, which turns out not to be present in reality,
when considering non-perturbative contributions to the duality. The prime example of such
a duality, is that between IIA strings in an asymptotically Euclidean space, with an A
singularity, and IIB string theory on R%! x R3 x S, with a stack of k + 1 Neveu-Schwartz
fivebranes localized at a point in R? x S'.

It is easier to consider duality in the ‘near impurity background’, rather than the full
background, before zooming in on the impurity. The ‘localization’ of the flux impurity is
of course crucial to get the correct ‘decoupling limit’ or, as we just referred to this limit, a
‘near impurity limit’.

We will see exact worldsheet conformal field theory descriptions in the ‘near impurity
limit’ of both the geometric and the dual flux impurity. Actually, in certain cases the world-
sheet conformal field theory of the dual flux impurity will have an explicit construction and
interpretation as a sigma model. In other cases, a geometric interpretation of the ‘near flux
impurity’ worldsheet theory remains to be discovered.

WHY IMPURITIES?

What are the motivations for the study of ‘geometric’ and ‘flux’ impurities and the T-duality
relation between the two?

First, there are the intriguing relations between the descriptions of geometric and flux
impurities. We will find flux impurities which can be viewed as a background of the form

G
li ilat =
(linear dilaton) x i

4




Chapter 1 - Introduction

the right hand factor denotes a coset conformal field theory. When this is realized as a
gauged WZW model and when the level of G is large, the target space can be approximated
by a one-loop calculation in the gauged WZW model. This gives a target space G/H = L,
where H acts as a vector gauging, g ~ h~!gh. Note that this target space looks very
different from the coset manifold G/ H, where group elements are identified as g ~ gh.

We shall see intriguing cases that flux impurities of this kind are related, by T-duality
and adjusting the moduli, to geometric impurities, that are described as follows. These
impurities are metric cones on a base space L, where L is a fiber bundle

St—>p

l,

VA

with base Z, which is a homogeneous space G/ (H x I'), and I" is a discrete subgroup of
G, related to modular data of the coset model.

So there are some intriguing similarities and differences going on, which must point at
some stringy geometric phenomena. It seems worthwhile to try and understand such stringy
geometric aspects better.

There is also a quite different motivation. This is related to holographic duality: string
theory in certain backgrounds is believed to be exactly equivalent to a non-gravitational
theory in a spacetime that has one dimension less. The two types of string background that
are widely believed to exhibit such behavior are linear dilaton backgrounds and Anti-de
Sitter backgrounds.

Very generically, the flux impurities we find have a linear dilaton. The linear dilaton
backgrounds are believed to holographically describe certain exotic quantum theories in
dimensions d < 6: Little String Theories. These theories are non-local, and little is known
about them. Clearly it would be highly interesting to better understand such unfamiliar
quantum theories.

Also very generically, the linear dilaton backgrounds can be ‘deformed’ to AdS back-
grounds. Therefore the flux impurities are of interest to study AdS backgrounds, and their
holographic duals, which are conformal field theories.

Then why are the geometric impurities of interest? A fruitful way to gain knowledge
about AdS/CFT, is to take certain non-dilatonic brane configurations, that is, impurities of a
sort, and take a scaling limit which isolates the physics near the branes. This physics can be
characterized in two different looking ways, one can think in terms of open string degrees of
freedom, describing the physics on the worldvolume of the branes, or closed string degrees
of freedom describing the dual, gravitational physics in the background near the branes,
which is deformed by the branes. A lot can be learned about AdS/CFT by realizing the
AdS background and the dual field theory through a brane setup. However, simple brane
configurations only give a limited number of geometries AdS x N.

5



Chapter 1 - Introduction

A lot of geometries can be obtained by also considering ‘geometric impurities’, that is,
singularities. In particular, many interesting AdS/CFT realizations are possible by consid-
ering D3branes in a Calabi-Yau singularity. These produce AdS geometries of the form
AdSs x N, where N is an Sasaki-Einstein manifold, which can be viewed as the base of a
metric Calabi-Yau cone.

Apart from considering D3 branes, there is another way to get AdS backgrounds from
geometric impurities, which is an important motivation for the study of these impurities
and their T-duality. One can take a geometric impurity and put fundamental strings at the
singularity. This is not a non-dilatonic background as such, but by performing a T-duality
it becomes non-dilatonic. The dilaton contribution of the fundamental string, in the ‘near
impurity limit’ compensates the linear dilaton that is generated by the T-duality. In this way
many backgrounds of the form AdS 3 x N7 might be realized, which cannot be obtained from
other simple brane configurations. Therefore, we hope that the knowledge about T-duality
of these impurities will also lead to a better understanding of holographic duality.

OUTLINE

The outline of this thesis is as follows.
In chapter 2 geometric impurities are discussed. Mainly two characterizations of su-
persymmetric (and complex) singularities are presented: metric cones with holonomy con-

tained in SU(n) on the one hand, and weighted homogeneous affine hypersurfaces on the
other.

Differential geometric aspects of the metric cones are discussed. A particular réle is
played by quasi-regular Sasaki-Einstein manifolds. Many known examples are homoge-
neous spaces, or related to homogeneous spaces. Sasakian(-Einstein) manifolds have a
characteristic Killing vector field, which is used to relate these spaces to quasi-smooth
Kihler-Einstein varieties. These are the subject of study of algebraic geometers.

Weighted homogeneous polynomials can also be used to characterize supersymmetric
complex singular hypersurfaces. Aspects of such hypersurfaces are discussed. As somewhat
of an aside, some topological properties of such hypersurfaces are discussed. Weighted
homogeneous polynomials also define Kihler varieties in weighted projective space. These
can be interpreted as base spaces of Sasaki-Einstein circle fibrations. This establishes a
connection between metric cones and affine hypersurfaces.

In chapter 3 various aspects are discussed of superconformal field theories, which are
put to use later, in chapter 4, to describe strings in the background of impurities. Some par-
ticularly important constructions are Landau-Ginzburg models, which are defined through
a weighted homogeneous polynomial and thus make contacts with hypersurface singular-
ities. Also coset conformal field theories play a réle, since the best understood dualities
between geometric and flux impurities involve coset conformal field theories, which are ac-
tually coset models that are closely related to Landau-Ginzburg (and Kazama-Suzuki coset-)
models. Of course an important class of conformal field theories is formed by sigma models.

6




Chapter 1 - Introduction

Finally in chapter 3 non-conformal models are discussed which interpolate between
sigma models on hypersurfaces, and Landau-Ginzburg theories. Models of this kind are
employed to formulate the T-duality of impurities in chapter 4.

Chapter 4 begins with a discussion of geometric and flux impurities (in particular: five-
branes) in string theory, and the ‘near impurity geometry’ and exact conformal field theo-
ries for ‘near impurity’ geometries. Next generalities of T-duality are discussed: classical
T-duality rules, the role of degenerating isometries, and breaking of isometries in the dual
model by worldsheet instantons. Finally, in section 4.4, T-duality for a large class of im-
purities is discussed. Agreement is found with the known result of hyper-Kihler surface
singularities and ADE-throat geometries, and some further examples are discussed, and
some final observations are made.

BASIS FOR THIS THESIS AND OTHER WORK BY THE AUTHOR

Perhaps it may be difficult for the reader to separate original work by the author from previ-
ously known results obtained by others, which serve as a basis for the author’s work, solely
from the references throughout the body of this thesis. In order to draw a clearer picture
of the original contribution of the author, we wish to spend a few paragraphs here, before
commencing our exposition in the subsequent chapters.

The central objective and main work of the author presented in this thesis, is the propo-
sition for a way to T-dualize singular supersymmetric string backgrounds. In the dualiza-

tion of such backgrounds, worldsheet instantions contribute in a crucial way. It has proved
very difficult to take into account these crucial contributions in a systematic fashion. The
proposition entails a manner to take into account these contributions, using an intermedi-
ate ‘half-dualized’ model. This proposition is an essential original element of this thesis
and it is presented in section 4.4. The relations between original, ‘half-dualized’ and fully
dual model are phrased making use of a collection of notions and ideas from geometry and
from (conformal) field theory and string theory. Separate elements of these had been known
in circles of geometers or string theorists, but arguably not in the context provided by the
proposition for T-duality.

From the various existing characterizations of singular supersymmetric string back-
grounds, it is found that affine hypersurfaces provide a description that is directly connected
to the dualization proposal. In particular, the affine hypersurfaces are defined by weighted
homogeneous polynomials. These polynomials define the ‘half-dual’ intermediate models
as Landau-Ginzburg field theories.

A connection between, on the one hand, the sigma model which describes string propa-
gation on the singular background and, on the other hand, the ‘half-dual’ model is provided
by embedding these models in a family of non-conformal ‘worldsheet’ field theories. These
families of models are first presented in section 3.3, and the full connection with T-duality
is presented in section 4.4, Essentially, within these families of non-conformal field theories
the effect of worldsheet instantons is argued to be described in a concise fashion, as turning
on a vacuum expectation value of a certain field. Earlier parts of chapters 3 and 4 are to a

7




Chapter 1 - Introduction

large extent intended to provide the necessary context, from existing literature, to arrive at
the author’s proposals regarding these families of theories and the T-duality.

There is a number of ideas from older literature that play an important part in the appre-
ciation of the duality proposition. We name a few of these.

In chapter 2 mostly geometric ideas are discussed that have a place in earlier, to a large
extent mathematical literature. These ideas include characterization of a class of supersym-
metric backgrounds by means of weighted homogeneous polynomials. Such polynomials
in turn appear in string theory as Landau-Ginzburg superpotential, which is a point of view
not considered in the mathematical literature. On the other hand, for the very special ADE
hyper-Kihler surface singularities, the connection between Landau-Ginzburg model and
geometry was proposed by Ooguri and Vafa [19], without the here discussed duality pre-
scription.

In section 3.4 particular Kazama-Suzuki coset models are reviewed. It has been strongly
believed in existing literature, cited in that section, that some of these coset models have a
Landau-Ginzburg description. Using these known correspondences it is possible to pro-
vide geometric interpretations of some models T-dual to some special singularities. These
interpretations are discussed in chapter 4.

The ideas put forward in this thesis shall be presented in more condensed form in a
forthcoming publication.

Finally, we should mention some work which has been done by the author in collabo-
ration with Boels, de Boer and Wijnhout, {109, 110] which is not discussed in this thesis.
This work deals with non-perturbative aspects of three- and four-dimensional gauge theo-
ries. This work is apparently quite unrelated to the work that is discussed in this thesis.
However, there is an overarching theme common to that work as well as the work that has
gone into this thesis, although any concrete aspects of this remain to be formulated.

Both the work discussed in this thesis and [109, 110] are connected to worldvolume de-
scriptions of certain ‘impurities’ or brane configurations. On the one hand, gauge theories
as considered in [109, 110] can be viewed as worldvolume theories of certain brane config-
urations. On the other hand, the geometric singularities discussed in this thesis can be used
to construct AdS/CFT relations. In [109, 110] certain three-dimensional gauge theories are
studied using Toda models. Curiously, these appear also in T-duals of geometric singular-
ities, although these are T-duals performed in a somewhat different way than discussed in
this thesis. It seems that many interesting U-duality relations might be studied through the
use of families of non-conformal field theories which flow to various different conformal
worldsheet cft’s in the infrared. An example of the use of such families of theories is formed
by the T-duality application that is central in this thesis.




2

GEOMETRY AND
SINGULARITIES

The objective of this chapter is to collect and expose several different geometric perspectives
which can be used to describe supersymmetric ‘compactifications’ of string theory. The
term ‘compactification’ is somewhat inappropriate, as most of the ‘compactification’ spaces
discussed are not compact and also often singular. Such spaces are considered as local
models of degenerate limits of smooth but not necessarily compact manifolds which can
make up part of a string vacuum. In chapter 4 the physical motivation of such degenerate
limits is discussed. Very briefly stated, it is possible that some cycles in a smooth manifold
become small. Then some massive nonperturbative degrees of freedom of the compactified
theory become light and make up physics which is localized at the degeneration of the
manifold. This ‘localized physics’ can be decoupled in appropriate scaling limits. It depends
on the local geometry near such a degeneration.

At present we are concerned with the geometry of such local models. Differential and
algebraic geometric methods exist to characterize some of these. The various characteri-
zations are interconnected in intriguing and insufficiently understood ways, and also con-
nected to various descriptions of possible worldsheet conformal field theories, which are
discussed in chapter 3. In this chapter the following topics are discussed.

If a space is part of a supersymmetric string vacuum, it must satisfy certain differential
geometric requirements. For example, it might have to be Ricci flat and Kihler. Such
requirements also hold for singular spaces. The four dimensional singular spaces which
fit the bill are the hyper-Kéhler surface singularities. These have various interchangeable
descriptions, notably as quotient singularities, as hypersurfaces embedded in R® ~ C3 and
as metric cones.

These descriptions can be used to describe many higher dimensional singularities as
well, where the focus will be on complex singularities. It is however not true, that any
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Chapter 2 - Supersymmetry, Spinors and Holonomy

given singularity can be described in all of the above fashions. Metric cones are interesting
because the differential geometric constraints on the cone lead to constraints on the base
of the cone. Typically the base, also known as the link of the cone is a Sasaki-Einstein
manifold. Sasaki manifolds have a circle isometry and the corresponding orbit space is
Kihler. For a Sasaki-Einstein manifold, it is Kihler-Einstein.

Some examples of Kahler-Einstein spaces are homogeneous. A considerable number
can be constructed as hypersurfaces where a weighted homogeneous polynomial vanishes
in an appropriate weighted homogeneous space. Such examples often have orbifold singu-
larities. The zero locus of such a polynomial in affine space is precisely a supersymmetric
singularity. A class of very interesting polynomials are not precisely of the form for which
the known proof is valid. These polynomials ‘define’ certain (Landau-Ginzburg) conformal
field theories which also have a geometric (sigma model) interpretation.

The generic presence of a circle isometry that exists for a Sasakian manifold partly mo-
tivates the study of T-duality for complex supersymmetric singularities in chapter 4. Some
ingredients in the description of such singularities return in an apparently quite different
context in chapter 3, where they are used to construct abstract conformal field theories which
describe supersymmetric string vacua. In particular, weighted homogeneous polynomials
are quite generally used to construct superconformal field theories. Some specific choices
of the polynomial correspond to conformal field theories which have a known interpretation
as coset conformal field theories. The corresponding symmetric spaces are Kihler-Einstein.

2.1 SUPERSYMMETRY, SPINORS AND HOLONOMY

2.1.1 SUPERSYMMETRY AND DIFFERENTIAL GEOMETRY
We are interested in supersymmetric vacua of string theory of the form
Myg = R4 x My, (2.1

in the absence of fluxes and with a constant dilaton. If M 4 is a smooth d-dimensional man-
ifold, the low energy effective theory is the appropriate supergravity theory in this back-
ground. If this geometry is indeed a vacuum, the Ricci tensor of M 1o must vanish. To find
the number of conserved supersymmetries in this background one considers the supersym-
metric variations of all the fermionic fields. In the backgrounds of this form, these variations
are parametrized by a spinor field. They are proportional to the spinor or to its covariant
derivative. The number of conserved supersymmetries is equal to the number of covariantly
constant sections of the spinor bundle over R®~%1 x M, times the number of independent
supersymmetry transformations that can be constructed out of one section, which is n = 1
for heterotic and n = 2 for Type II theories. The spinors can be decomposed into spinors
over M and spinors over R%~%1. The number of supersymmetry charges conserved by the
background R%~%1 x My is

s=mn2Pg 2.2)
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Chapter 2 - Supersymmetry, Spinors and Holonomy

| Dimension d of Mg is d | Holonomy group Hol(Mg4) |  Nameof My |

d=2n U(n) Kihler
d=2n SU(n) Calabi-Yau
d=4n Sp(n) Hyper-Kihler
d=4n Sp(n)Sp(1) Quaternionic Kihler
d="17 Gz Gz-Manifold
d=8 Spin(7) Spin(7)-Manifold

Table 2.1: Berger’s list of possible reduced holonomy groups of simply connected irreducible non-
symmetric Riemannian manifolds.

where n = 1 for heterotic theories and n = 2 for Type II theories. The number 2 (Ao

is the number of covariantly constant spinors on R¢~!:! and £ is the number of covariantly
constant spinors on M 4. So the condition for supersymmetry is that M 4 has at least one
covariantly constant spinor.

Manifolds which admit covariantly constant spinors are characterized by their holo-
nomy. The holonomy group of a general M 4 is SO(d), but if its spinor bundle admits a
covariantly constant section, the holonomy group has to be a proper subgroup H C SO(d).
After all, the covariantly constant spinor obviously transforms in the trivial representation
of H, but this representation must be obtained by decomposing the spinor representation of
SO(d) into representations of H.

The possible subgroups that can appear are classified. If M 4 is a product manifold, its
holonomy group is the product group of the individual holonomy groups. If M 4 is a simply
connected Riemannian symmetric space it can be written as G/ H where G is a Lie group of
isometries that acts transitively and H C G is the isotropy subgroup, which leaves a point
fixed, then Hol(M,) = H. If M, is a simply connected Riemannian symmetric space
G/H, the holonomy group is H. This was shown long ago by Cartan. Finally, if M ;isa
simply connected Riemannian manifold that is not a product manifold and non-symmetric,
there is a list of possible holonomy groups, due to Berger. In addition to the generic case
SO(d), there are the cases listed in table 2.1.

The holonomy groups in table 2.1 imply certain parallel tensors, and hence certain geo-
metric structures, see, for example [65]. If the holonomy is U (n), it is possible to split the
tangent bundle into a holomorphic and an antiholomorphic part. Such a split is effected by
the complex structure J(., .) which is an endomorphism of the complexified tangent bundle
of M. To speak of holonomy, there must be a connection. It is always possible to choose a
Hermitean metric g compatible with J, i.e. ¢g(.,.) = g(J., J.). From these two structures it
is possible to construct a two-form w(., .) = g(J., .), using the property that J 2 = —1. This
two-form is non-degenerate. If it is also closed, w is symplectic and, by compatibility with
J, Kidhler; the Hermitian connection coincides with the Christoffel connection and it is the
sum of a holomorphic one-form taking values in the endomorphisms of the holomorphic
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tangent bundle, in addition there is an entirely antiholomorphic equivalent. This means that
under parallel transport (anti-)holomorphic tangent vectors remain (anti-)holomorphic, so
the holonomy is contained in U/ (n). Using this connection J is covariantly constant, and so
is w.

On a Kihler manifold one can construct the Ricci form from the Riemann tensor of
the Kihler metric, using the complex structure: using the Dolbeault differentials & and dit
can be expressed as R = 09 log /detg. This is manifestly closed, but usually not exact,
because det g is not a scalar. The cohomology class of the Ricci form is 27 times the first
Chern class of the (tangent bundle of the) Kédhler manifold. The Chern class is an analytic
invariant: continuous changes of the metric do not alter the cohomology class of R.

In addition to preserving some supersymmetry, the geometry of (2.1) should solve
the equations of motion, which means that the Ricci tensor of M must vanish. The
U(1) — U(n) part of the holonomy is generated by Ricci tensor. So if the Ricci tensor
vanishes, the holonomy is SU(n) C U(n). But given a Kéhler manifold with Kéhler form
w it is possible to deform this to w’ without altering the cohomology class of the Kihler
form (the Kihler form cannot be exact, because that would be contradictory to it being non-
degenerate). The new Kihler form w’ is such that its associated Ricci form is precisely the
first Chern class. Yau’s theorem implies that such a choice of w’ is always possible. So a
Kihler manifold with SU(n) holonomy admits a metric with vanishing Ricci tensor. The
restrictions on a hyper-Kahler metric are so strong, that necessarily any such metric is Ricci
flat.

The hyper-Kihler and Calabi-Yau manifolds, and singularities, will play a considerable
role in the rest of this chapter. Some important reasons for this are the following. As com-
plex manifolds, powerful tools from algebraic geometry are known to study such spaces.
The Kibhler structure of these manifolds appears naturally in A” = 2 superconformal mod-
els discussed in chapter 3. The properties of these models are used in chapter 4 to relate
hyper-Kihler and Calabi-Yau singularities to other backgrounds of string theory.

2.1.2 HYPER-KAHLER SURFACE SINGULARITIES

This section discusses the geometry of the best understood supersymmetric singularities:
complex surface singularities which are hyper-Kahler. These are complex surfaces, so lo-
cally they look like C? ~ R*, have holonomy group Sp(1) ~ SU{(2), with an isolated
singularity. A great deal is known about these, both from a mathematical point of view and
also from the perspective of string theory. Because so much is known about them, they take
a special place. Some of the special properties they have are:

e They are classified;

o The classification is isomorphic to that of many other interesting objects in mathe-
matics and string theory;

12
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o They have a number of different descriptions which illustrate descriptions of higher
dimensional singularities;

o For the hyper-Kihler surface singularities all descriptions are interchangeable, unlike
for higher dimensional ones;

e The hyper-Kihler singularities are a motivation and the clearest example of the T-
duality for cones discussed in chapter 4.

One way to describe the hyper-Kihler surface singularities, is as quotients of C 2. Ona
space of SU(2) holonomy there is a parallel holomorphic two-form. On the covering C 2
such a two from can be taken as w = dz; A dz;. This two-form is preserved by SU(2)
mixing the holomorphic coordinates. This group has a fixed point at the origin. Take an
discrete subgroup I' C SU(2). Then the quotient space C2/T is a complex surface with
a singularity at the origin and SU(2) holonomy, with the constant holomorphic two-form
given by projection of dz; A dz2 on the covering space.

The discrete subgroups of SU(2) were classified in the nineteenth century by Klein and
the quotient singularities C2 /T are also referred to as Kleinian singularities. The Kleinian
singularities exhaust the hyper-Kahler surface singularities. There is a one-to-one corre-
spondence of the subgroups I' C SU(2) and Dynkin diagrams of simply laced Lie algebras.
This motivates the name ‘ADE-singularities” which is also commonly used. In fact, there is
a huge web of connections, containing the topology of desigularizations of these singulari-
ties, the representation theory of ' C SU(2) [60] and a lot of different areas of mathematics
and physics, such as conformal field theory [17] and gauge theories [61].

From the description as quotients, one can obtain a different description. One can think
of a point in C? as the zero of a monomial

zo — (2 — 20) =0. (2.3)
Such monomials are the prime divisors of polynomials with complex coefficients, and the

algebraic structure of polynomials can be used to study geometry. An arbitrary divisor in
the polynomial ring C[z1, z2] is of the form

and can be viewed as the divisor
k
> ailzi]
=1

in the sense of algebraic geometry.
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| ' c C? l Fp(zl,z2,23) |

An 20+ 22 + 22
D, 22 23 4 22
Fs 2t + 25 + 22
E7 Z% + leg + Zg
Eg 2P + 25 + 22

Table 2.2: The hyper-Kahler surface singularities as quotients C*/T" and as surfaces F- *(0) c C3.

From the point of view of algebraic geometry it is the polynomial ring C[z 1, 23], gener-

ated by z; and 2z which characterizes the space. Consider the A, singularity
A, = C2/T,

2ni 2ni (2'4)

I':(21,22) = (en+1z, €7 2+ 25).

Not every polynomial inC[z1, z2] is invatiant under the action of I". The subset of I invariant
polynomials is generated by the three generators

u= 2"
v =25t (2.5)
I = 2122,
which clearly satisfy the relation
uy = z" L, (2.6)

So the divisors on \A,, are those polynomials in C[u, v, z] which vanish on the hypersurface
defined by (2.6). Or, put differently, as far as algebraic geometry is concerned, the quotient
singularity C2/Z,, 1 is the hypersurface : 7! + 22 + 23 = 0in C3.

Similarly all the ADE-singularities' have a description as surfaces F'; },;(0) in C3. The
polynomials Fapg(z1, 22, 23) are collected in table 2.2. Note that all the polynomials are
weighted homogeneous, i.e. for each F there exists a set of weights a; which are (positive)
integers, such that

F(A% 21, A% 29, A% 23) = A F (21, 23, 23). Q.7

The description as a quotient singularity C? /T also provides a third description, which

is more differential geometric in nature. The space C2\{0} can be fibered by three-spheres.

!The Dy singularity can be obtained by a Z quotient of the Ay, singularity. The Ay singularity is C2/Z, , |
where Zg 1, acts on the coordinates of Cy as (21,22) ~ (e27/(k+1)z; e=27i/(k+1)z,) Quotienting further
by Z2 : (21, 22) ~ (22, —=z1) yields a Dy, singularity.
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The metric ds? = dz1dZ; + dz2dZ5 is written as ds? = dr? + r2d)2, i.e. a cone over the
three sphere. As SU(2) acts on C2 in a way that leaves invariant 72 = |2;]? + |22/2, an
ADE-singularity can be written as the metric cone

C?/T =Ry x S3/T,
PR 9
ds® = dr* + r°d%°,
where d2 is the line element on the smooth space S2/T. The action of I" on S? is obtained
from the action in the embedding C2. The spaces S3/I" are simple examples of a more
general class discussed in section 2.2, which can all be viewed as circle fibrations.

The base of each Ay metric cone, S3/Zi, is a circle bundle over S?, and in fact
all circle bundles over the two-sphere are of this form (they are so-called lens spaces).
One way to view the lens spaces S3/Z;, is as quotient spaces (S3 x S1)/U(1), see for
example [80]. Let S3 be parametrized by z = (21,22) € C? that satisfy the condition
|21]2 + |22/ = 1. Let S* be parametrized by o = e*. The U(1) equivalence relation
identifies (21, 22) ~ (€*®21,€*®25) and o ~ e~ *(¥+1)¢5 By an equivalence transformation
one can always set o = 1, unless k + 1 = 0. This ‘gauge choice’ fixes the /(1) action
up to a Z, subgroup. So quotient space is S3/Zy1. This is bundle over 2, with the
projection

e Ss/Zk+1 - S2

- o 29
z— V=252,
where & indicates the three Pauli matrices. The vector  has unit length, because |z1|? +
|22|> = 1, and hence parametrizes S%. When k + 1 = 0, the total space is the trivial
bundle S? x S!, and when k + 1 = 1, the fiber bundle structure is the Hopf fibration
Sl - 8% P~ S2
The bases of the Dy 2 metric cones can be considered in a similar fashion, as quotient
spaces (5% x S1)/(U(1) x Zy). The U(1) part acts as it does in the Ay, case, the Zy acts as

Zy : ((z1,22); 8) = ((Z2, =%1); %) (2.10)

The Z; action also acts on the image of the projection 7. The image is not the entire S 2, but
rather S?/Z,, with antipodal points identified, i.e. the bases of the D metric cones are
circle bundles over the base RP2.

The different descriptions each have their advantages, emphasizing different properties
of the ADE-singularities. The algebraic geometric description as surfaces in C® emphasizes
the complex structure of the singularity. Actually, since these are hyper-Kihler spaces, they
have three independent complex structures I, Iz, I3 and a1I; + azly + azl3 is again a
complex structure if the three real numbers a; satisfy a? + a2 + a% = 1. So it is better
to say that it emphasizes one particular complex structure out of the whole S 3’s worth. A
deformation of the polynomial defining the hypersurface corresponds to a deformation of
the complex geometry of the singularity.
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Consider the example of an A; singularity, defined as uv — z2 = 0 in C3. This can be
deformed to uv = (z + €)(x — €). The surface defined by this deformed equation no longer
passes through u = v = 0, where the singular point was. Instead, the product of the moduli
|u| and |v| is determined by the equation, and it vanishes at = +e. Only the difference of
phases of u and v is free. In the surface uv = (z + €)(x — €) there is a two sphere which
is a circle fibration over the line segment from z = —e to x = +e¢. This is an example of a
kind of deformation which can be applied to any polynomial which defines a hypersurface
with an isolated singularity at the origin:

F(z1,...,zo) = F(z1,...,25) + 1. (2.11)

This deformation will be considered in chapter 4.

It is possible to characterize all deformations of the ADE-singularities. The number of
independent deformations actually equals the rank of the corresponding ADE Lie algebra.
By successive deformations a singular surface can be ‘desingularized’ by blowing up two-
spheres. Hyper-Kihler metrics on the resulting smooth non-compact manifolds are known
[62, 63, 64]. The construction of these metrics makes use of the fact that the singular
spaces are quotient singularities C2/T" and the McKay correspondence [60] which relates
the representation theory of I" and the topology of the smoothed space. Far away from the
origin, the smoothing does not change much and the smooth metrics asymptote to the metric
cones R, x(S3/T).

Crucially, in one description the differential geometry of a singularity is explicit but
deformations of the singularity are not atall apparent: this is the metric cone description. In
another description deformations are apparent, but there is no hyper-Kéahler metric apparent:
the description as surfaces in C3. The logical connection between these two descriptions, is
the realization as quotient singularities. The deformation parameters in the polynomials are
related to the representation theory of the quotient group.

In higher dimensions, not all descriptions of supersymmetric singularities are inter-
changeable. That is to say, there are supersymmetric singularities which are not quotient
singularities. Such singularities may have descriptions as Ricci flat metric cones with the
right holonomy, SU(n) or Sp(n/2), but whose base manifolds are not S 27~ /T". It is not
so clear how to deform such a metric conical singularity to a smooth space which still ad-
mits a Calabi-Yau or hyper-Kihler metric if there is no apparent hypersurface description
F~1(0) ¢ C™*1. Nor is it immediately clear if there might be a hypersurface description.
In fact, for a lot of interesting singularities there is no hypersurface description, like for
example C3/Z3. Approaching the matter from the other direction, starting with a hypersur-
face singularity, it is often difficult to find a differential geometric description of it, like an
explicit metric, or the group of isometries of the space

These issues are discussed in the subsequent sections. Typical questions are the follow-
ing. What are the conditions on a polynomial F' so that F' ~1(0) in C**! is a supersymmetric
singularity which can be used as a string vacuum? What can be said about the geometry
of a singularity defined by such a polynomial? If the singularities are not quotient singu-
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larities, what is left of existing and conjectured correspondences in the spirit of the McKay
correspondence, and what new correspondences are gained by leaving the set of quotient
singularities? Some questions will be answered in the following sections, and some inter-
connections will be discussed. Together with the ingredients of chapter 3 these will be put
to use in chapter 4.

2.2 METRIC CONES

An acceptable supersymmetric singularity of dimension d = 2n which can serve as a string
background must be Ricci flat and have a holonomy group which is contained in SU(n).
Take as such a singularity the metric cone C(L),

C(L) =R, XL

ds?, =dr® + r?ds3,_,. @12
That is to say, it is the warped product of the manifold L of dimension 2n — 1 with the
half line 7 > 0, with the above metric. The question is: what are the properties of the base
manifold Loy, 1?

An answer was given by Bir [7], who studied metric cones of restricted holonomy.
Essentially, one uses the canonical vector field on a metric cone, rd/dr, called the Euler
vector field. With this vector field, the different special tensor fields on the cone can be
mapped to special tensor fields on Lo, 1.

First, if the Ricci tensor of C(L) vanishes, then L is a positively curved Einstein mani-
fold. We call a manifold Einstein if there is a constant number A such that the Ricci tensor
Ric and the metric tensor g satisfy

Ric = )g, (2.13)

i.e. its scalar curvature is a constant. Only the sign of the Ricci curvature is really interesting,
since the absolute value can be changed by rescaling L. Conversely, if B is an Einstein
manifold of positive curvature, it can always be appropriately scaled to make C(L) a Ricci
flat cone?.

THE GEOMETRY OF L

Next, the restricted holonomy of C gives rise to various parallel tensors on the cone. The
Kihler form w on C(L) satisfies dw = 0 and A" w # 0. Contracting the Euler vector with
w yields a one-form 7 on L. This one-form satisfies

nA(dn)* ! #0, (2.14)

2The rescaling is proportional to n — 1, with some constants of proportionality dependent on conventions,
n = d/2 being the complex dimension of the cone.
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everywhere on L. This equation states that 7 is a contact form on L. A symplectic metric
cone C{L) has a base L that is a contact manifold.

In addition to the contact form, a contact manifold also has a unique vector field, dual
to n: the Reeb vector field £. It satisfies

ten =1

2.15
1edn = 0. (215)

The Reeb vector field on L is obtained from the complex structure J on C(L), by acting
with J on the Euler vector field of C(L). The contact form 7, Reeb vector field £ and an
endomorphism T of the tangent bundle 7' L together define an almost contact structure on
L. They satisfy

=1

2.16
T2 = —id+£6Q7. (2.16)

A compatible metric g must satisfy

g(T..T.)= g(.,.) —n()n(.), (2.17)

analogous to an almost Hermitean metric on an almost complex manifold.
On B the endomorphism 7" : T'L — T'L is obtained as

T(¢) = V&, (2.18)

via the covariant derivative, where ¢ is any section of T'L. The tensor fields €, n, T and g on
L form a special kind of metric contact structure because L is the base of a metric cone C(L)
which is Kihler, i.e. on which the complex structure, Hermitean metric and symplectic form
are compatible. This special kind of metric contact structure is called a Sasaki structure, and
L is a Sasaki manifold.

One definition of a Sasaki manifold, is precisely that the metric cone over a manifold
is Kahler iff the manifold is Sasaki. An equivalent definition, see for example [8], is a
Riemannian manifold (M, g) with a Killing vector field of unit length £, and endomorphism
T defined as T'(¢) = —V 4 for any section ¢ of T'M that satisfies

(VD) ¥ = g(x,¥) — g(&,¥)x,

for all vector fields x, 9.

If the cone C(L) is hyper-Kihler, it has three independent complex structures which
form a quaternion algebra. Analogously, L inherits three related Sasakian structures and L
is a tri-Sasakian manifold. A good overview of the properties of (tri-) Sasakian manifolds
used in this section and the next, is [8].

The Reeb vector field £ that any Sasaki manifold L has (often called its characteristic
vector field), gives rise to some important consequences. For one thing, it means that a
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metric cone has a Killing vector field which degenerates at the apex r = 0. One might be
tempted to perform a T-duality along this isometry, and we are tempted to do so in chapter
4. The vector field £ is also very interesting from a purely geometric point of view. Note
that because £ is nonvanishing, its integral curves define a one-dimensional foliation of L.

The space of leaves of this foliation turns out to be quite interesting. We call the space
of leaves Z. When the leaves are closed curves, so the Reeb vector field is a Killing vector
field of a U(1) isometry, L is called quasi-regular. In this case Z is a Kéhler space which
can have finite quotient singularities. When Z is a smooth Kihler manifold, L is called
regular. If Z has finite quotient singularities, L is called non-regular (L is called irregular if
the leaves do not close).

Regularity is a very strong condition and many examples of Sasaki-Einstein manifolds
are non-regular. Explicit metrics are rarely known, with the exception of homogeneous
spaces. As we will see shortly, methods and results from algebraic geometry have provided
means to prove the existence of (quasi-regular) Sasaki-Einstein metrics on a much larger
class of spaces. However, these methods are not constructive, and they give only limited in-
formation about the differential geometry of the spaces. The spaces for which these methods
apply, are described as specific kinds of affine hypersurfaces. This description is compatible
in a natural way with our duality prescriptions discussed in chapter 4.

Recently explicit metrics have been found for many five and seven dimensional Sasaki-
Einstein manifolds, including the first irregular ones [104, 73, 74], using a supergrav-
ity/string theory approach. Our present interest will be with quasi-regular Sasaki-Einstein
manifolds, but within an adapted framework, irregular ones should be of great interest as
well, especially for string theory. For example, they could be related to rather exotic irra-
tional conformal field theories, through a gauge/gravity correspondence. We will not dis-
cuss these further. Rather, we focus of the geometry of the leaf-space Z of a quasi-regular
Sasaki-Einstein manifold.

THE GEOMETRY OF Z

If each point in B has a neighborhood such that any leaf of the characteristic foliation
intersects the transversal at most a finite number of times k, then L is called quasi-regular.
Equivalently B is quasi-regular if the leaves are compact. So all Sasaki manifolds which
appear as compact bases of cones are quasi-regular. If £ = 1, L is called regular. A quasi-
regular L that is not regular, is called non-regular. Regularity is a very strong condition.
The vast majority of compact Sasaki spaces is non-regular.

At this point we have seen that the particular structure of a metric cone, or the Euler
vector field, led to geometric structures on the link L — C(L). The metric Calabi-Yau
cones have Sasaki-Einstein links, either regular or non-regular. The hyper-Kéhler cones
have tri-Sasaki links, which will be discussed in more depth later. Now focus on the Sasaki-
Einstein manifolds®, and to be more specific, on the regular Sasaki-Einstein manifolds. It is

3The curvature of a Sasaki-Einstein manifold is necessarily positive and hence it can always be used to construct
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| G/H | R-dimension |
SU(mfg ggm)x 3{6)) 2mn
ﬁ%%%ﬂ 2n+1
o0 2
SUSS(:?J) iy n?—n-2
ﬁ% n?+n+2
SOOI 32
Enbm 54

Table 2.3: Hermitean symmetric spaces.

useful to consider the leaf space Z of the foliation of L by the Reeb vector field,
w: L - Z.

The regular Sasaki structure ensures that S is a smooth Kihler manifold, and the fact that
L is Sasaki-Einstein results in Z being Kihler-Einstein. Moreover Z is positively curved,
¢1(Z) > 0: Z is a Fano® variety with a smooth Kihler-Einstein metric.

Explicit realizations of Kihler-Einstein Fano manifolds are provided by Hermitean sym-
metric spaces. These are compact Kahler manifolds and Riemannian symmetric spaces, and
positively curved. As an aside, as such these spaces are geometrically formal, that is to say,
the wedge product of harmonic forms is again a harmonic form. It is proved in [66] that
any geometrically formal Kihler manifold of non-negative Ricci curvature is Einstein. The
Hermitean symmetric spaces play an important part in the construction of superconformal
field theories 3.4. The harmonic forms on the Hermitean symmetric spaces are in one-to-one
correspondence with (c, c) primary operators in the conformal field theory. These special
fields have the property that under the naive operator product, they form a nilpotent ring.

The Hermitean symmetric spaces are classified. Only spaces of which the dimension
1s not too large can be used to build metric cones for a superstring compactification. The
Hermitean symmetric spaces are listed in table 2.3.

In dimension d = 2, the only Kihler-Einstein manifold with ¢; > 0 is

P! ~ SU(2)/U(1).

In dimension d = 4, the manifolds with c; > 0 are known as del Pezzo surfaces, those
which admit a Kéhler-Einstein metric have been classified [38] and are collected in table
2.4. On the del Pezzos obtained by blowing up P2 at three to eight generic points, no explicit

a Calabi-Yau metric cone.
4 A manifold with ¢; > 0 is called a Fano manifold.
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[ L,del Pezzo surface | Homogeneous, G/H |

SU{3
P2 SUEZingfl)
P! x P! 515112) % 55112)
dP, =P?#P? | 3<n<8 no

Table 2.4: Smooth del Pezzo surfaces admitting a Kéhler-Einstein metric.

metrics are known. The del Pezzo surfaces dP; and d P, do not feature in the classification
[38] of Tian and Yau. It is a well known fact in the mathematics community, that the del
Pezzo surfaces dP; and d P do not admit a Kihler-Einstein metric?.

In general there can be several Sasaki-Einstein circle bundles over a base Z

J" (2.19)

The first Chern class of the circle fibration L must divide the first Chern class of Z [36, 67]
in order to get a smooth total space. In concreto this means that the possible regular Sasaki-
Einstein manifolds are®

i. 8% - P2
ii. §%/Z3 — P2,
iii. 79! — P! x P!,

iv. TV /Zy — P! x P!,
v. S, — dP,.

The metric cone over S° is just R® and therefore not interesting from the point of view
of singularities. The manifold 71! ~ SO(4)/SO(2) ~ (SU(2) x SU(2))/U(1) is the
link of the conifold. There is a natural interpretation why only the Z 3 quotient of S5 gives a
regular Sasaki-Einstein space, from the perspective of quotienting C 3 by a discrete subgroup
I' ¢ SU(3). C? can be viewed as the total space of the tautological bundle over P2. The
U(1) < SU(3) which acts only on the fiber but not on the base, acts on the homogeneous
coordinates as [z; : 22 : 23] — [nz1 : 722,m23). The only nontrivial discrete subgroup

5This is because their automorphism groups are not reductive. But a theorem of Matsushima says that a Kihler-
Einstein manifold with ¢; > O must have a reductive automorphism group.

6The spaces T*1/Z3 and S®/Z3 are regular because the canonical class of P x P! is 2H, twice the hyper-
plane class, and similarly Kp2 = 3H. The other del Pezzo surfaces in the list have K = H.
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' € U(1) that leaves the holomorphic three-form invariant is generated by e 27%/3. This
precisely ’shortens’ the fiber by a factor of three, and so increases the Chern class of the
bundle by three.

In for string theory, the case d = 6 is also interesting. The Kihler-Einstein Fano mani-
folds of dimension d = 6 have not been classified. The homogeneous manifolds are known,

i. P3,

ii. P2 x P1,

iii. P! x P! x P!,
iv. Gr(5,2),

v. F(1,2]3),

where 6';*(5, 2) is the real Grassmannian SO(5)/(S0O(3) x SO(2) and F(1,2|3) is the flag
manifold (SU(3) x SU(2))/(SU(2) x U(1) x U(1)). There are homogeneous Sasaki-
Einstein manifolds that are circle bundles over these spaces’. These manifolds are known
from the study of compactifications of eleven dimensional supergravity of the form AdS_4 x
M [68]. Some of these spaces are even tri-Sasakian. Examples of inhomogeneous Kéhler-
Einstein manifolds are P! x dP,.

About tri-Sasakian manifolds, more stringent results can be stated. These can be found
in [8]. All homogeneous tri-Sasakian manifolds in any dimension are known and construc-
tions exist which given one tri-Sasakian space yield others. At the base of these results lies
the structure of tri-Sasakian manifolds. As Sasaki-Einstein manifolds, they can be seen as
circle bundles over Kihler-Einstein spaces. But the tri-Sasakian structure allows them to be
seen also as SU(2) fibrations over quaternionic Kéhler manifolds. Also, the twistor space of
the quaternionic Kahler manifold is the Kéihler-Einstein manifold. A very good discussion
is presented in [8].

Tri-Sasakian manifolds will not be further discussed here. Yet, they are very interesting
for a number of reasons. Explicit geometric constructions of such manifolds exist, based
on the hyper-Kihler quotient [62]. The hyper-Kihler cones preserve more supersymmetry
than a generic Calabi-Yau cone and the structure as Sp(1) bundles might provide a way to
consider non-abelian duality for hyper-Kéhler cones in a spirit similar to that of T-duality in
chapter 4. This, however remains a subject left entirely for future study.

SUMMARY

Perhaps the main lesson from the description of supersymmetric singularities as metric
cones, is that such cones generically have a U(1) isometry which degenerates at the apex of

7 A homogeneous Sasaki-Einstein manifold has a transitive group of isometries which preserve the Sasakian
structure.
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[ Metric Cone C (L) | L | Z ~LJU(1)
symplectic contact symplectic
Kabhler Sasaki Kihler
Calabi-Yau | Sasaki-Einstein Kéhler-Einstein
and Fano
" . . Kihler-Einstein, Fano,
hyper-Kahler tri-Sasaki twistor space of quaternionic Kihler

Table 2.5: Relation of geometries of some metric cones and associated spaces

the metric cone. This isometry is generated by the characteristic (or Reeb) vector field that
any Sasaki manifold has. Some particular simple, exceptionally symmetric Sasaki-Einstein
manifolds are U(1) bundles over Hermitean symmetric spaces. The Hermitean symmetric
spaces also appear in the construction of some particularly symmetric worldsheet conformal
field theories which can be used to describe supersymmetric string compactifications, which
appear in section 3.4,

The largest class of Sasaki-Einstein spaces fall outside this category. They are non-
regular and thus U (1) bundles over Einstein-Kéhler spaces with isolated quotient singular-
ities. Recently many such spaces were found, using algebraic geometric considerations.
These constructions show that an orbifold Kihler-Einstein metric must exist on a large class
of varieties, but does not explicitly construct such metric, not unlike the proof that certain
varieties admit a Calabi-Yau metrics, based on algebraic geometric criteria. This construc-
tion can be used to construct supersymmetric cones as well, and it does so in terms of
hypersurfaces defined by complex polynomials. These matters are discussed in section 2.3.

2.3 HYPERSURFACES

The description of singularities as hypersurfaces C = F~1(0) ¢ C"*2 provides a direct
way to deform a singularity. By deforming the defining polynomial, a hypersurface may
be completely smoothed. A deformation of the defining polynomial can be interpreted as a
deformation of the complex structure of C. There is no simple way to smooth a singularity in
a metric cone or quotient description. A smoothing operation normally has negligible effect
asymptotically far away from the singular point, but does not fit with a global description in
terms of a quotient or a metric cone that is also applicable near the smoothed singularity.
An asymptotic metric cone description is useful, as it provides a differential geometric
picture with a characteristic Killing vector field on a Sasaki-Einstein link, which is generic
for any supersymmetric metric cone. Hypersurface descriptions turn out to be not only
useful to consider deformations of singular cones, but also to characterize Sasaki-Einstein
manifolds in a way unlike those used in section 2.2. In particular, projective hypersurfaces,
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defined as the zero locus of a single weighted homogeneous polynomial in an appropriate
weighted projective space, can be an algebraic geometric way to describe varieties that
admit Kihler-Einstein metrics, possibly with orbifold singularities. Such varieties can be
used to construct metric cones on non-regular Sasaki-Einstein manifolds, as S I bundles
over the Kihler-Einstein base. Additionally, the links of projective hypersurfaces can be
related to fiber bundles over a S! base. Topological properties of these bundles are related
to the analytic properties of the hypersurface singularity. It is the object of this section to
introduce these two viewpoints, both for hypersurfaces in C 3 and in higher dimensions.

2.3.1 THE ADE-SINGULARITIES AS HYPERSURFACES

The ADE-singularities have descriptions as hypersurfaces F;}£(0) C C3. The polynomi-
als F4pp are listed in table 2.2. These singularities are quite special, as discussed in section
2.1.2, for many reasons. For one, they also have descriptions as quotients C 2T and hence
also as metric cones. As quotient singularities, the McKay correspondence relates the ho-
mology of resolutions to the representation theory of the quotient groups, a point which has
a beautiful string theoretic interpretation [61]. As surface singularities, both resolutions and
deformations blow up two-cycles. The distinction between complex and Kihler deforma-
tions is not an invariant notion, because of the Sp(1)-family of complex structures on these
hyper-Kihler surfaces. In higher dimensions, not all of these properties are simultaneously
present in general.
The polynomials F 4 p are weighted homogeneous, they satisfy (2.7),

.F(/\a'1 21, )\aZZz, A% 2’3) = /\dF(Zl, 22, 23).

So a hypersurface C = F~1(0) admitsa C* = Ry x U(1) action, like a supersymmetric
metric cone does. The link L of a metric cone C(L) is obtained as L = C(L)/R . Anal-
ogously, one can fix the R ; scaling of C = F~! € C™*2 by intersecting the hypersurface
with a small sphere,

n+2
S = {ze C™2: Y |u? =17,
=1 (2.20)
C={ze C"*?: F(z) = 0},
Lr =Cn S"Z‘n—f»B.

which envelops an isolated singularity at the origin. For any hypersurface C = F ~1(0)
defined by a weighted homogeneous F with an isolated singularity at the origin it makes
sense to consider its link L. in this way and write C(L).

One may ask to what extent this notion of a link is related to the link of a metric cone.
The ADE-singularities have descriptions as metric cones, and one can compare the two
notions. Let’s call these the ‘metric link’ and the ‘analytic link’. First of all, the metric links

24



Chapter 2 - Hypersurfaces

are S3/T" and are Sasaki-Einstein manifolds. The base space of each S3/T is S3/U(1) ~
(C?\{0})/C* ~ P'. The analytic links can be viewed as U(1) bundles over certain base
spaces Z(I'). The space Z(I') is characterized as the projective hypersurface F~1(0) in a
weighted projective space defined by the weighted C* action on the weighted homogeneous
polynomial F'.

The projective hypersurfaces Z(I') are characterized using the adjunction formula. Re-
call the adjunction formula in ordinary projective space, see, for example [76]. It gives the
canonical bundle of a hypersurface P = F ~1(0) ¢ P™. Such a hypersurface is the zero
locus of a section of the line bundle Opn (d), where d is the degree of the homogeneous
polynomial F' that defines the hypersurface P. It can also be viewed as a submanifold of
P™. There is the following short exact sequence,

0 TP S TP p Y O(d)pm|p — 0. .21

The meaning of this sequence is as follows, reading from left to right. The tangent bundle
to P is a subbundle of the tangent bundle to the embedding P ™, restricted to P, so there is
an inclusion map. The next arrow maps every tangent vector X *V; € TP™|p to a section
of Opm(d), i.e. to a homogeneous polynomial of degree d. Its kernel is formed by vectors
tangent to P. The map that achieves this is the covariant gradient,

VxF = X(F,; +T;F).

The second term involves a connection I'; on Opm (d), but restricted to P it drops out, as
F = 0 on P by definition. The vectors mapped to zero are the vectors tangent to P since
by definition P is the surface of which F has the constant value # = 0. The short exact
sequence (2.21) implies for the determinant line bundles

det TP™|p ~ det TP ® Opm lp.

The determinant bundle of the cotangent bundle to a complex manifold is also called the
canonical bundle X, and its dual, the determinant bundle of the tangent bundle, is the anti-
canonical bundle, denoted by —XC or K*. The above expression implies that the canonical
bundle of P is given by

Kp =~ (Kpm ® O(d)) |p. (2.22)
This relation is the statement of the adjunction formula. As Kpm ~ Opm(—m — 1), the
adjunction formula can be written as

’dec]pm =~ O]pm (d -—m— l)l'pd, (2.23)

For a degree d hypersurface in P™.
The adjunction formula can be generalized to weighted projective hypersurfaces (see
section 2.3.3). The ordinary projective space P™ is a special case, with all weights

a1 =...=am4 = L.
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The adjunction formula applied to the complex curves Zr, written as zero loci of the ADE
polynomials Fr- in the appropriate weighted projective space gives the first Chern class of
Zr. Hence gives its Euler characteristic, x = —2c;, in terms of the first Chern classes of
the embedding space and a that of the line bundle with section F'r. The result is

3
a(Zr)=—~d+» ai=1. (2.24)
1=1

For all ADE-polynomials, listed in table 2.2, the relation between weights and weighted
degree is as in (2.24). Such hypersurfaces are called anticanonically embedded,

—Kape = 0Q).

Many higher dimensional hypersurfaces are not anticanonically embedded, while their
defining polynomial does define a supersymmetric affine hypersurface. Consequently, they
are of importance for string theory. But from the mathematicians’ point of view the anti-
canonically embedded ones have received special attention. It will turn out that the distinc-
tion between anticanonically embedded hypersurfaces and others also has a (slight) con-
sequence for the string theory duality transformation. In particular, the worldsheet field
theories employed in the formulation of the duality transformation describe exactly affine
hypersurfaces of the ‘anticanonical’ kind, and particular cyclic quotients of surfaces which
are not of the ‘anticanonical’ kind. These worldsheet models are discussed at the end of
section 3.3.2 and in section 4.4.

2.3.2 TOPOLOGY OF AFFINE HYPERSURFACES

This section is relatively disconnected from the rest. We discuss some aspects of affine
hypersurface singularities, defined by a weighted homogeneous polynomial, in arbitrary
dimension. So these results in particular hold for six and eight dimensional singularities,
which are of interest in string theory.

The description as a hypersurface obscures any differential geometric data of the space.
However, there is a remarkable connection between analytic properties of the polynomial
defining the affine hypersurface and topological properties. The ‘topological properties’
conceptually split into two sorts. First, there is the topology of a resolution of the singularity.
This is related to deformations of the defining polynomial; essentially this is a statement in
the context of Morse theory.

Second, there is the topology of the ‘base of the cone’, the analogue of L for metric
cones. Topological properties of L, or rather its equivalent in the hypersurface context,
are related to analytic properties of the defining polynomial as well. This may seem quite
remarkable. This may seem quite remarkable, since L, regarded as the ‘base’ very far from
the apex of a cone, is quite insensitive to small deformations of the singular apex.
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SASAKI AND MILNOR: CIRCLE FIBER OR CIRCLE BASE?

In higher dimensions, many interesting ‘supersymmetric’ hypersurface singularities are not
anticanonically embedded, but the ones that are play a special réle, as it can be proved
that some admit Kdhler-Einstein metrics. This requirements seems more of a technical
condition in the proofthan a fundamental necessity. We will return to the higher dimensional
cases in the next section. In any case, the Kihler-Einstein base manifolds Z of all ADE-
hypersurfaces are P!, as y = —2¢; = —2. This coincides with the base of the metric cone
description C2 /T — (C2\{0})/C* ~ P

Can the links of the metric cones, S3/T" and the links of the hypersurface singularities
F1(0) N S® also be identified? Given the weights a; of Fr there is a natural Sasakian
structure on S® C €3 with contact form 7, and characteristic vector £, defined in terms of
the coordinates zx = z, + iy on C3,

3
Y- (zrdyr — yrdar)
k=1

a (23 + y) (2.25)
3
8 8
€a = ;;ak (J:ka—yk _yka—u) .

This Sasakian structure is in general non-regular. It generalizes to S 273 spheres for any
n. This restricts to a Sasakian structure on Lr = S° N F-'(0), and the question is to
find a metric on Lr that is not only compatible with this Sasakian structure, but that is also
Sasaki-Einstein, i.e. the U(1) action above should be an isometry and it should be the action
of a characteristic vector field on a Sasakian manifold. Analytic sufficient conditions can
be found, discussed in a more general case in the next section, which are met by the ADE-
hypersurfaces. Much like the proof of existence of Calabi-Yau metrics, it is not constructive.
But from the hypersurface, some topological information about the analytic link can be
found.

The link of a weighted homogeneous hypersurface singularity can be viewed not only as
a circle bundle over a projective variety, such as P! in the case of the A D E-hypersurfaces.
It can also be seen as the ‘boundary’ of a fiber bundle with a relatively complicated fiber, but
with S for a base. The topology of the link is studied via the topology of its complement
52n+3 M L. This approach is essentially similar to the study of one-dimensional knots and
links via their embedding in S3, related to complex curve singularities

Na =

C?>C—Lcss

Topological information about the link is related to topological information about its com-
plement, which in turn is related to analytic information about the hypersurface.

More specifically, deformations of the defining polynomial of a hypersurface correspond
to smoothings of the singular point. Such smoothings do not change the asymptotic form
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of the hypersurface toward infinity. The link of a weighted homogeneous hypersurface
is obtained by intersecting it with a sphere that contains the singular point, and may be
large. The deformations of the singularity occur inside the enveloping sphere and may
not affect the asymptotic geometry near the sphere. Yet, the possibility of these analytic
deformations far inside, which can smooth out the singularity, have a consequence for the
topology of the link as well. The connection between singularity theory and topology is a
very interesting matter and only a very small part will be discussed, in the context of not only
ADE-hypersurfaces but also higher dimensional cases. A nice starting point, containing
many classic references is [72].

A polynomial F : C"*2 — C defines an affine hypersurface M = F~1(0). This
hypersurface is singular where the dF = 0, in other words, at the critical points of F,
where in addition F = 0. We assume that F' has isolated critical points. Around such a
critical point F' can be expanded as

n42
F(z1,...,2042) Zz (ak +ak +1zl-+~...), (2.26)

and the multiplicity of the critical point is

n+2

p=> (k—1), (2.27)

For a weighted homogeneous polynomial,
F(X%21,..., X% %22, 0 0) = AF(2,.. ., 2n42) (2.28)

this number is determined by the weights and the weighted degree,

n+2

= Z d-a; (2.29)

The number y is called the Milnor number of the hypersurface.

A polynomial F with a degenerate critical point can be deformed, F — F so that F has
(1 non-degenerate critical points. The Milnor number can also be expressed as the dimension
of the following quotient ring

C[Zl, .- '72n+2]
oF '

The ‘numerator’ is the polynomial ring generated by all variables in F' and the ‘denomina-
tor’ is the ideal generated by the first derivatives of I, known as the Jacobian ideal of F.
This quotient ring is also the (¢, c) ring of a N' = (2, 2) Landau-Ginzburg model, as dis-
cussed in section 3.3.1. Every (c, ¢) state corresponds to a critical point of F and to count

p = dimg (2.30)
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Figure 2.1: Homology cycles in H(T', ¢; Z) for a deformed hypersurface singularity.

the multiplicity correctly, one can deform F' — F so that the degenerate critical point of
F, at the origin, splits into ;2 non-degenerate critical points, z; € C"*2, of F, such that
|lzi]| < r. These critical points are mapped to p critical values, F(z) = ¢ eC.

The function F is continuous with non-degenerate critical points which maps the ball
B, = {||z|| € r} C C**2 containing all y critical points into the disk D, = {|z| < p} Cc C
containing all critical values. Such a function is a Morse function and it can be used to
extract topological information about the hypersurface, see for example [72]. Define

r=FYD,)NB,,
-1 (2.31)
¢=F""(¢),

where ( is a generic point. The function F can be used to find the relative homology [72]

0 ifkAn+2
H’“(F"i"z)z{ Z¢ ifk=n-+2. (232)

The function F' can be used to explicitly visualize a basis of H,, 1o(I, ¢; Z). Choose a
point ¢ on the boundary of the disk D ,. Non-intersecting paths from ¢ to the critical values
(; are the images of homology cycles in the deformed hypersurface. These cycles shrink as
critical points move together, see figure 2.1.

When the deformation is turned off completely, ¥ — F, all critical points coincide at
the origin, and F ~1(¢) is smooth, except when ¢ = 0, in which case the hypersurface has
its only singularity isolated at the origin z = 0.

Both the cone C = F~1(0) and its complement C"*2\C admit a C* action. One can
divide out the R, part by intersecting with S?"*3 = 9B,. Using the fact that ' has no
critical points outside the origin, it can be shown that L = F~1(0) N S?"*3 and M =
S§2n+3\ [ are smooth manifolds. M can be viewed as a fiber bundle with base U(1). The
projection map M — U(1) is given by

m: M —U(1),
F(z) (2.33)

“TTF@)]
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The fiber is a 2n + 2-dimensional manifold, ® ~ ®4 ~ 7~ !(e*), known as the Milnor
fiber. And the total space
> — M

lw (2.34)
Sl
is the Milnor fibration [71]. Clearly the complement of the M in the sphere, or OM =
MA\M, is the link L. )
It was shown by Milnor [71] that & ~ JM and also, taking a Morsification F of F

which has y nondegenerate critical points inside a ball B, and yp corresponding critical
values inside a disk D, that

) 0 kFEN+1
Hk(F:¢sZ) — { i/ k=n+1, (235)
taking T = F~1(D,) N B, and ¢ = F~1(e'*) N B,. Furthermore he showed that this T is
contractible. Using this together with the long exact sequence for relative homology groups,
pCT,

<o D Hi(9) < He(D) S Hi(D,0) 5 Hea(9) & ..., (236)
it is found that the homology of the Milnor fiber is given by
o) 0 kERHL
Hk(¢, Z) - { ZF k=n+1. (237)
This means that the Milnor fiber is homotopy equivalent to a bouquet of (n + 1)-spheres,
L~ 8§y, v 8§t (2.38)
i

The number of spheres in the bouquet is the Milnor number 4. A bouquet of spheres
Srtlygntly |y gntl

is the topological space obtained by taking the union of the topologies of the separate copies
of §7*! and identifying a marked point on each sphere to a single point, like in figure 2.2.

The total space M of the Milnor fibration is obtained by gluing the Milnor fibers over
the circle in an appropriate way, using a homeomorphism

h:®— &, (2.39)

known as the characteristic map,

M =(® x [0,27]) / ~, (2.40)

(0,®) ~ (27, h(®)).
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S/oN

Figure 2.2: Three S'’s glued into a bouquet

Figure 2.3: Simplified version of a Milnor fibration. The link is a bouquet of three circles, a point
on each of the three circles in the fiber is identified, see figure 2.2. The base space is the large circle
direction. Traversing the base, the fibers are glued together in a non-trivial fashion.
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An attempt to illustrate this point of view of the Milnor fibration in made in figure 2.3.

The topology of the Milnor fiber does not yet clarify the topology of the link. Note that
the for a (2n + 2)-dimensional hypersurface C = F ~1(0) C C"*2, the link is a manifold
of dimension dim(L) = 2n + 1, the complement of the Milnor fibration in S 2"*3, which
has a (2n + 2)-dimensional Milnor fiber. The homeomorphism 4 : & — & induces a linear
map

hy Hn+1(®;(c) - n+1(q);c)' (2.41)

This map can be used to construct the exact sequence [70], using the fiber bundle structure ®
of M andOM =L,

0 = Hos1(L;Z) = Hop1(8;0) =25 Hpy)(9,Z) — Ho(LiZ) — 0. (242)

This implies that H,,.1(L,Z) = Ker{l — h,) is a free Abelian group. And H,(L;Z) =
Coker(I — h.). This may have torsion, but its free part is isomorphic to Ker(I — h.) as
well. The kemel of I — h, is determined from the characteristic polynomial

A(t) = det(t L, — h.). (2.43)

There is an algorithmic way [70] to determine A(t) in terms of the a; and d of a weighted
homogeneous polynomial like (2.28) on page 28, and from that, the Betti numbers b ,, 1 (L)
and b,,(L). This recipe is as follows.

For the Milnor fibration associated with a hypersurface F ~!(0) defined by F as in
(2.28), the homeomorphism A can be chosen to act on the coordinates as

2mia) 2"”“nj:2
h: (21,...,zn+2)H(e 4 21,...,6 @ zn+2). (2.44)

In order to write down A(t), it is convenient to introduce different notation. Define r; =
d/a;, and write these as fractions of relatively prime pairs r; = s;/t;. Associate divisors to
polynomials as follows,

k
divisor H(t —a;) = (o) + ...+ (o).

i=1

A divisor, like the one denoted on the right hand side of the above equation, can be regarded
as a formal linear combination of points in C. More clearly, a divisor is an element of a free
Abelian group®. Each generator (o;) of this group is in one-to-one correspondence with
a point in C, which can be regarded as the zero of a complex monomial function t — « ;.

8In particular the Wang sequence is used, for fiber bundles over odd-dimensional spheres.

90ne could even say the divisors form the group ring ZC*, which is formally a better way to think of them.
The ‘special’ divisors E,, are then considered not to form a subgroup, but a genuinely different group ring: QC
(the coefficients of the (7, ) are rational numbers).
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Each (a;) generates a subgroup isomorphic to Z. The group operation in this group can be
denoted as addition, and one can concisely write

(1) + {a1) = 2{en).

We can introduce some additional structure, multiplication, on a subgroup, if we realize
that the a; are also complex numbers, not just labels for geometric points. We restrict to a
special subgroup of divisors. Define

n—1
1., . n 1 k
B = fdivisor (1" = 1) = 25 (()),

where 7, is a primitive n-th root of unity. Now a multiplication rule for these special
divisors is proposed, inspired by complex multiplication of roots of unity. The E; form a
ring with multiplication rule

ExE; = E ),

where [k, {] denotes the least common multiple of k£ and . With this notation the divisor of
A(t) associated to the Milnor fibration of F~1(0) as in ((2.28) reads

n+2
divisorA = ] (reEe, — 1). (2.45)
k=1

The Betti numbers b, ; = b, of the link L = F~1(0) N $?"*+3 are equal to the number of
factors of (¢t — 1) in A(t) [70].

Recapitulating, the weights and degree of a weighted homogeneous polynomial F' de-
termine the Milnor number y of the hypersurface ' ~1(0). This number counts the number
of deformations of the singularity or in other words, the multiplicity of the critical point
at the singularity. As such, it is related to Landau-Ginzburg models, counting the number
of (¢, ¢) primary states (see section 3.3.1). But y also gives the dimension of the middle
integral homology of the Milnor fiber ® — M — S!; & ~ §7+lv .. . v S+l The
total space of the Milnor fibration M is obtained by gluing & along the base, twisting it by
the characteristic map h. The boundary of M is the link F ~! N $2"+3_ Its Betti numbers
bn(L) = bpy1(L) are determined, employing the h, in terms of the weights and degree of
F. The link itself is a circle fibration over a projective variety S! — L — Z.

For the A-type hypersurfaces, Z ~ P!, which admits a Kahler-Einstein metric of pos-
itive curvature. This is in agreement with the observation that the F 4pg in table 2.2 are
precisely those weighted homogeneous polynomials that satisfy,

3
daizd+1. (2.46)
=1

The F4pE even saturate this inequality.
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One can consider other weighted homogeneous hypersurfaces F ~1(0), as ‘cones’ in C3
or projective surfaces in a weighted projective space (C3\{0})/C*[a]. Notably, one might
consider projective hypersurfaces with ¢; < 0. The corresponding cones will not be suitable
to serve as supersymmetric compactifications by themselves, only the ADE-cones do. Yet
there are still some interesting points to note.

The simplest of ADE-hypersurfaces are those of Brieskorn-type: the A ,,-series together
with Eg and Es. These are of the form z]* + 252 + z3* = 0. Intersected with S3_, c C3
these define the Brieskorn manifolds M(r1, 72, 73). The three dimensional Brieskorn man-
ifolds were studied by Milnor [69]. He demonstrated that M (r;,ro, r3) are homogeneous
spaces which fall into three categories, depending on the canonical class of the correspond-
ing projective hypersurface.

1 1 1
-+ —>1 c =1, (247)
™1 T2 T3
1 1 1
— Y —+—=1 c1 =0, (2.48)
™ e T3
1 1 1
—+ —+—x1 cp < 1. (2.49)

T, T2 T3
In the cases (2.47) the homogeneous spaces M (r1,ry,73) are of the form SU(2)/T, as
familiar from the quotient description. In the case (2.49) the spaces M(rq,re,r3) are
m@; R)/I", quotients of the universal cover of the projective version of SL(2;R) by
discrete subgroups. The case (2.48) is different, there M (r1,r2,73) ~ G/H where G is the
Heisenberg group, with elements the matrices

1 a ¢
[a,b,c] = 01 b , a,bcelR, (2.50)
0 0 1

and H are subgroups where a, b, ¢ € kZ for some integer k, see [69]. .
The polynomials which define Brieskorn manifolds of type (2.48) are

Fg (21, 22,23) = 2428+ 23 (+azizazs),

2, .4 4 2.2
Fg (21,22,23) =27 + 25 + 23 (+az{z3), (2.51)
2, .3, ,6 4
Fg (21,22,23) =27 + 23 + 23 (+azjz).
The conformal field theories defined by these polynomials, as Landau-Ginzburg models (see
section 3.3.1) have ¢ = 1, with the Brieskorn polynomials (o« = 0) corresponding to cft’s
with enhanced symmetry. The polynomials in (2.51) define tori in the appropriate weighted
rojective spaces, as is seen from the adjunction formula'®. The links of the singularities
proj P J gu
are circle bundles over tori, in these cases, and are homogeneous spaces.
101n fact, this enhanced symmetry of the cft can be interpreted as the tori being at the self-dual radius. This will

not be discussed. The connection between Landau-Ginzburg models, which a priori have no geometric interpreta-
tion, and sigma models, is discussed in section 3.3.
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There is an interesting correspondence between the polynomials in (2.51) that define
curves with trivial anticanonical class and thus cannot be used to make supersymmetric
cones directly, and the del Pezzo surfaces dPs, dP; and dPg, that not only can be used to
construct supersymmetric cones (as metric cones over regular Sasaki-Einstein manifolds),
but also have descriptions as projective hypersurfaces, but are not homogeneous.

2.3.3 KAHLER-EINSTEIN HYPERSURFACES

The 4d supersymmetric singularities are classified, have different but equivalent descrip-
tions, and are related, via the ADE classification, to an enormous number of apparently
very different objects that appear in mathematics. Each different description of one sin-
gularity highlights different aspects. For example, the metric cone shows there is a U(1)
isometry, degenerating at the apex. The quotient description relates singularities to homo-
geneous spaces It also relates metric cones and hypersurfaces to one another, at least in the
case of the complex surface singularities.

In the hypersurface description possible deformations are more apparent. In addition,
important for our purposes, the defining polynomials of hypersurfaces play a role in world-
sheet conformal field theories describing strings moving on a hypersurface and also T-dual
spaces. Finally, many weighted homogeneous hypersurfaces give rise to Sasaki-Einstein
manifolds, mostly non-regular ones. This section deals with the relation between hypersur-
faces and metric cones in dimension d > 4.

AFFINE CALABI-YAU HYPERSURFACES

The condition on a metric cone to be part of a supersymmetric string vacuum, i.e. a Calabi-
Yau cone, is that its link is Sasaki-Einstein. Is there an analogous condition on hypersur-
faces? The answer is: “yes”. Consider an affine hypersurface C = F ~1(0) C (C"*2\{0})
defined by a weighted homogeneous polynomial,

F(\%zy,...,A%%22, 0) = MF(21,..., Znt2), (2.52)

with a singularity only at the origin. If the weights a; and the weighted degree d of F' are

such that
n+2

T=-d+) a: >0, (2.53)
i=1

then C is Calabi-Yau {27].

Note that the condition (2.53) is different from the Calabi-Yau condition for hypersur-
faces in a projective space. Such hypersurfaces are Calabi-Yau iff J = 0, as a consequence
of the adjunction formula and Yau’s proof of the conjecture of Calabi. But (2.53) deals with
affine hypersurfaces, not projective ones. Nevertheless, since F is a weighted homogeneous
polynomial, one may consider the hypersurface P = F ~1(0) in an appropriate weighted
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projective space. Such hypersurfaces, which satisfy (2.53) are called Fano. In terms of the
first Chern class, ¢; > 0 for a Fano manifold.

Such a projective hypersurface is Kahler, since it is embedded holomorphically in a
weighted projective space. It can be positively curved, as ¢; > 0. So maybe it can be
the leaf space of a Sasaki-Einstein manifold. But this is only possible if the hypersurfaces
admits a positive Kihler-Einstein metric (possibly with orbifold singularities).

One important question is: “What are necessary and sufficient conditions that such a
P admit a positive Kéhler-Einstein metric?”. And a following question is: “Can a Sasaki-
Einstein manifold be constructed from a P that admits such a metric, and if so, how?”.

The latter question can be answered affirmatively. Given a hypersurface that has a
Kihler-Einstein with positive scalar curvature, and at worst cyclic orbifold singularities,
a Sasaki-Einstein manifold can be constructed, using the C* action on the weighted ho-
mogeneous polynomial F' [33, 32, 37]. The answer to the former question is a lot more
involved. It is possible to find sufficient conditions, that P admit a Kihler-Einstein metric
with at worst cyclic quotient singularities, but part of these conditions is likely to be too
strict {39, 34, 35]. Many hypersurfaces which are interesting from the perspective of string
theory do not satisfy all of these sufficient conditions.

WEIGHTED PROJECTIVE BASICS

First, let us recall some basic definitions and properties of weighted projective spaces; see,
for example [75]. Weighted projective spaces Plai,...,a,42] are generalizations of or-
dinary projective spaces P! = P[1,...,1]. Points in C"*%\ {0} are identified by the
weighted C* action,

(21, s zn+2) ~ (Aalzlv cevy Aan+2'zn-§-2)’

where A € C*. Unlike ordinary projective spaces, weighted projective spaces can have
singularities. These are seen in the affine coordinate patches where z; # 0. In such a patch,
one can set z; = 1 by a weighted C* transformation. The coordinates is such a patch are
¢ J(-’) = 2;/2; If the weight a; of the coordinate z; is larger than one, then a Z,, subgroup of
the weighted C* action leaves invariant z; = 1, but does act on the other coordinates:

(Zl,---,Zi = 17"'7zn+2) g (nalzly-")zi = 1,---,77a"+22n+2)a

where 7 is a primitive a;-th root of unity. So the affine coordinate patches where z; # 0 can
have cyclic quotient singularities. These singularities occur at the so-called vertices P; of
the weighted projective space The vertex P; is the point {z; = 0}, j # ¢. The singularity
at P; is said to be of type -~ Lig),... a,,. ,@n+2). A hat over an element means that that
element is omitted from the list. If some of the weights have common factors, there may also
be singular lines, planes etc. The singular lines occur at edges P; P; (i.e zx, = 0, ¢ # k # j)

and are of type m(al, oy iy dj, ..., Qni2), AN SO ON.
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Clearly the weight vectors (ay,. .., an4+2) and (kay, ..., ka,2) correspond to isomor-
phic weighted projective spaces, for any integer k. So one can assume that all a;’s are rel-
atively prime. In fact, there are further isomorphisms between weighted projective spaces,
and every weighed projective space is isomorphic to a well formed one, so says a theorem
by Delorme'!. A well formed projective space P[a1, ..., a, 2| has a weights such that

ged(ar, ..., @iy @py2)=1 1<i<n+2. (2.54)

A hat over an element means that the element is omitted. In a well formed projective space,
the affine coordinate charts (z; # 0) have Z,, quotient singularities. Some examples of
some weighted projective spaces are

Plp,q} ~P[1,1] Vp,q

2.55
P[6, 10, 15) ~ P[6, 2, 3] ~P[3,1,3] ~ P[1,1,1] (2:55)

A hypersurface in a weighted projective space inherits singularities from the embedding
space if it passes through vertices, singular lines, etc. In general a hypersurface cannot avoid
all vertices. It can avoid all vertices if

ai|d Vi (2.56)

A hypersurface with singularities that are all due to the singularities of Play,...,an42]
alone!? is called quasi-smooth. Its singularities are all cyclic quotient singularities. Math-
ematicians know how to deal with such ‘mild’ sorts of singularities, and objects familiar
from the algebraic geometry in ordinary projective spaces can be generalized [75]. In par-
ticular there is an adjunction formula if a hypersurface does not contain any singularities of
codimension 2. Such a hypersurface is called well formed. A hypersurface P = F ~1(0),
defined by a polynomial of weighted degree d inPla 1, . . ., ant2] is called ‘well formed” iff
the following conditions are satisfied,

Play, ..., an+2] is well formed, and
; . (2.57)
ged(ar,- .., 60i,...,an42) |d Vi

The adjunction formula gives the canonical class of the P in terms of the weights a ;
and the weighted degree d of F', which can be seen as a section of the sheaf Op(d). The

adjunction formula tells us
n+2

Kp~0(d-)_ a). (2.58)

i=1
Consider a weighted projective space P[aj, . .., an+2]. It can be shown that this space is isomorphic to
Pla1,a2/9,a3/g,--.,an+2/g], where g = ged(az, . . ., ant2). Making use of this equivalence at most n + 2

times produces a well formed projective space.
121t is to say, that there are no singularities due to the way the hypersurface is embedded, i.e F* = dF = 0 has
no solutions in Play, . ..,an+2]-
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| Surface F~1(0) C Play, az,a3,a4] | F=0 | Play, a2,a3,a4] |
P2 z71+22+23+24=0 P[l,l,l,l]

P! x P! Z+22+22+22=0] P[1,1,1,1)
dPs B+3+23+22=0| P[,1,1,1]
dP; i+ +24+22=0] P[1,1,1,2]
dPg 28+28+22422=0| P[1,2,3,3]

Table 2.6: Smooth del Pezzo hypersurfaces admitting a Kahler-Einstein metric.

A well formed hypersurface is Fano iff = —d+ a1+ ...+ any2 > 0. Such hypersurfaces
stand a chance of having positive Kihler-Einstein metrics, thus providing a connection with
metric cones.

HYPERSURFACES ADMITTING KAHLER-EINSTEIN METRICS

Which quasi-smooth hypersurfaces admit a Kéhler-Einstein metric? A general answer is
not known, but there are many examples, in various dimensions. First of all, there are the
complex curves defined by the ADE polynomials, in table 2.2. As discussed earlier, all
the ADE polynomials define a P! hypersurface, which of course admits a Kihler-Einstein
metric. Next, we know from section 2.2 which smooth complex surfaces admit positive
Kihler-Einstein metrics. These are P2, P! x P! and the del Pezzo surfaces dP,, for3 < n <
8. Of these, the ones that can be realized as hypersurfaces in weighted projective space are
listed in table 2.6.

In addition to these smooth surfaces, there are many more quasi-smooth cases. Quasi-
smoothness and well-formedness, see (2.54) and (2.57), impose conditions on the weights
and degree similar to the smoothness condition (2.56). These conditions !> are not quite
strong enough to determine all surfaces. It is possible to determine all surfaces and three-
folds that satisfy one more condition, which is that they be anticanonically embedded,

J=—d+ay+...+Gnyz =1, (2.59)

All the conditions impose a set of linear relations among the weights a ;, which were orga-
nized in such a way [35, 34] that all solutions were found using a computer program.

The authors of [35, 34] also discuss the existence of Kéhler-Einstein orbifold metrics
on these hypersurfaces. The criteria that are used are sufficient but not necessary. Many

13The conditions are the following, see [34] 2. Quasi-smoothness requires that for every # there exist a j and a
monomial z:"" z; of weighted degree d. The case i = j gives the smoothness condition (2.56). Well-formedness

furthermore requires that if ged(a;, a;) > 0, then there must be a monomial zf" z;j of weighted degree d. Also, if
every hypersurface of weighted degree d contains a coordinate axis 3, = 2z; = 0, then a general such hypersurface
must be smooth along it, or have only a singularity at the vertices. This is the case if for all ¢, j there is either a

.y by bj . . ci Ci d; d;
monomial z;* z; of degree d or a pair of monomials z; Eng 2 and z; z;7 2 of degree d.
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hypersurfaces which are very interesting from the point of view of string theory are not
anticanonically embedded. For example, the hypersurfaces defined by

F(z1,...,2n42) = H(z1,.. ., 2a) + 25,1 + 22,5 (2.60)

are not, except for those defined by the A polynomials of table 2.2. Yet such polynomials
have a special rdle in chapter 4.
In fact, from the point of view of string theory the single essential condition on an affine

hypersurface is
n+2

I=—d+) a;>0 (2.53)
i=1

which ensures that it is Calabi-Yau, assuming that the only singularity is at the origin. Ac-
tually, it ensures that the cone without the apex at the origin is Calabi-Yau. For string theory
one would also like that there are deformations of the singular hypersurface to a smooth
one and that the smooth hypersurfaces as well as the singular limit are Calabi-Yau. This is
indeed the case [77]. It would be interesting to know to what extent (2.53) is sufficient for
the existence of a Kihler-Einstein metric (with singularities) on the projective hypersurface
that it defines, and what additional conditions are necessary and sufficient.

A sufficient condition, based on [39] and [35, 34] and references therein, is given in
[78). They consider a Brieskorn hypersurface F ~1(0), i.e. one defined by a polynomial of

the form
n+2

F=3Sur, 261)
i=1
with F' = dF = 0 only at the origin. F has weighted degree
d = R =lem{a;}. (2.62)
The weighted homogeneous action on the coordinates 2 ; is
(215 Znga) = (VB/T1g o AR a2 0y, (2.63)
Actually, they consider any deformation of such a hypersurface by a polynomial
f(z15. . 2na2)

of weighted degree d, _
F=F+f,
provided that the intersections with any number of hyperplanes 2; = 0 are smooth away

from the origin. The condition of [78] that a hypersurface admit a Kihler-Einstein orbifold
metric of positive scalar curvature, is

n+2
1 n+1 1 1
1 E —<1 i . .
< m <1+ min { } (2.64)

n 3,7 T ’ bs, bj

i=1
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Here the b; are somewhat complicated expressions, in terms of the a ;,

Cj Elcm{rl,...,fj,...,rn+2},
b; = ged (r;, C7).

The lower bound is a necessary condition. It is the requirement that the hypersurface
be Fano. The upper bound is a sufficient condition. It derives from certain estimates that
guarantee the existence of a Kihler-Einstein metric [39]. These will not be discussed. The
estimates are related to those used to find smooth Kihler-Einstein metrics on del Pezzo
surfaces [38]. Essentially, it comes down to the question if a particular nonlinear partial
differential equation has a solution, similar to the reformulation of the Calabi conjecture in
the proof of Yau.

NOT ANTICANONICALLY EMBEDDED: KAHLER-EINSTEIN?

These estimates discussed above are not sharp enough to determine if a Kéhler-Einstein
metric exists on many interesting hypersurfaces. For example

42 +2E+2i=0

does not satisfy (2.64). Unfortunately no sharper criteria are known to determine if a Kéhler-
Einstein orbifold metric exists. It would be especially interesting to find a way to determine
if such metrics exist for hypersurfaces of the form

F(z1,... 2ne2) =H(z1,... 22) + 2201 + 2215,

which are important in chapter 4. However, if one has a hypersurface in weighted projective
space that does have a Kihler-Einstein metric with at worst cyclic quotient singularities,
then there is always a Sasakian-Einstein metric on the link L = F ~1(0) N 52"+3 of the cor-
responding affine hypersurface [33]. Basically, the weighted projective C * action restricts
to a weighted S! action on §27+3 C C27\{0}, and also on the link. This weighted S*
action is that of a characteristic vector field of a Sasakian manifold. There is a Sasakian
structure on the link with such a characteristic vector field that also has a compatible metric
that is an Einstein metric.

2.4 SUMMARY AND CONTEXT

WHAT HAVE WE DONE?

Various spaces have been discussed which can feature as part of a supersymmetric string
vacuum of the form
R9—2m,1 x sz.
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All Co,,, must preserve some supersymmetry and have a metric with a vanishing Ricci tensor.
Also, Cyp, are non-compact and have an isolated singularity. There are numerous different
ways to describe such spaces, among those discussed the most prominent two are metric
cones and (weighted homogeneous) affine hypersurfaces.

Any particular exponent of a space C3,, may have a description in both of these ways,
in just one of the two, or in neither of them. Either way of describing a C »,,, emphasizes
some characteristics of the space. A metric cone has a characteristic S isometry which
degenerates at the apex. This isometry is interesting for T-duality of such a space.

But possible deformations of the singularity are obscured in the description as a metric
cone. On the other hand, a description as a hypersurface manifests some possible defor-
mations, to be specific, deformations of the complex structure. Some such deformations
can even smooth out a singularity completely, without affecting the asymptotic form of the
space.

As we have seen, the number of such deformations is indicated by the Milnor number of
the singularity. But this number also describes aspects of the topology of the hypersurface
away from the singularity. It does so in two different ways. First, the hypersurface C 5,,, cuts
out a link in a $2™~! surrounding the singular point. This link is a fiber bundle with a circle
fiber. The Milnor number roughly speaking indicates how far the fibration is from being
trivial. Second, the complement of the link is a fiber bundle with a circle as a base. The
fiber is a special manifold, the Milnor fiber and the Milnor number determines its complete
homology. Finally, in a somewhat different context, the Milnor number counts the number
of ground states in certain superconformal field theories, as discussed in section 3.3.1.

So these two descriptions, metric cones and affine hypersurfaces highlight different as-
pects and obscure others. Is it possible to construct one description from the other? A
connection between metric cones and hypersurfaces is clearly present in some cases, most
notably the C4 ADE singularities. In those instances, there is a direct connection via the
quotient description C2/T 4pg. In higher dimensional cases, if there is a connection at all,
it is more indirect.

In specific cases, a connection can be established. The most obvious similarity between
the metric cones and the hypersurfaces, is that both admit a special C* action. For metric
cones, this comes partly from the definition, the R , scaling, and partly from the requirement
of supersymmetry, the S! of the characteristic isometry of a Sasakian base. The Sasakian
base of a supersymmetric metric cone is itself a circle bundle over a Kihler manifold (pos-
sibly with quotient singularities). On the other hand, a weighted homogeneous polynomial,
such as defines the affine hypersurfaces under consideration, also defines a hypersurface in
a weighted projective space. Such a hypersurface is Kihler.

If it is Kéhler-Einstein, then the affine hypersurface is Calabi-Yau, and it can be viewed
as a metric cone. There is also a sufficient condition, due to Tian and Yau, that an affine hy-
persurface be Calabi-Yau. If is phrased in terms of the scaling weights a ; and the weighted
degree d of the defining polynomial: J = —d + > a; > 0. Some of these Calabi-Yau hy-
persurfaces C certainly give rise to Kéhler-Einstein C/C* and can thus be viewed as metric
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cones, with a S! isometry. It is not known what the minimal sufficient conditions are, for
this to be the case. It would be interesting to know such conditions, so that metric cones and
hypersurfaces can be related.

From the point of view of the T-duality of chapter 4 and further string applications, there
are many affine hypersurfaces (or actually, discrete quotients of hypersurfaces, see section
4.4) which are not known to be connected to Kihler-Einstein hypersurfaces with the present
status of mathematical knowledge.

WHY ARE WE DOING THIS?

Ultimately the interest of the connection of metric cones and hypersurfaces might be mo-
tivated from the T-duality of Calabi-Yau singularities, in chapter 4, which, where ‘under-
stood’, relates almost all objects which have an ADE classification. A broad question would
be:“If, as it seems, such a T-duality holds for a wider range of singularities, what objects
does it relate, and how can these objects be interpreted in string theory, particularly from a
stringy geometric point of view?”

But this met get ahead of the ideas presented to this point. Let us put hypersurfaces
and metric cones in some perspective. Both metric cone and hypersurface descriptions
emphasize certain objects which are important in another context, that is not discussed much
in this chapter, but becomes more important in later ones. These objects have to do with
worldsheet descriptions of string backgrounds. The weighted homogeneous polynomials
that describe hypersurfaces, also describe Landau-Ginzburg conformal field theories. These
can be used to build worldsheet conformal field theories that do not have a direct target
space interpretation. However, in some cases, Landau-Ginzburg models are related to a
target space.

Often Landau-Ginzburg models can be considered to describe string backgrounds that
are compact Calabi-Yau hypersurfaces in weighted projective space. Or rather, a Landau-
Ginzburg (-orbifold) describes a “Kéhler” deformation of such a background to a non-
geometric ‘phase’. It may be that a similar connection exists to non-compact Calabi-Yau hy-
persurfaces in affine space. A very different geometric interpretation of a Landau-Ginzburg
model exists in a much more limited collection of cases. Sometimes a Landau-Ginzburg
model has an interpretation as a coset model, and a coset model may have a geometric tar-
get space interpretation when the levels of the Ka¢-Moody algebras are large, so that stringy
modifications to ordinary geometric concepts are small. In particular, the coset models that
preserve the same amount of supersymmetry as the C2,, of this chapter, are so-called Her-
mitean symmetric space coset models. Even if the levels are large so that there is a classical
geometric target space interpretation, the target space of the Hermitean symmetric space
coset models is very different from the geometry of the Hermitean symmetric spaces, which
feature in the present chapter as particular examples of Kihler-Einstein manifolds. From
these, Sasaki-Einstein manifolds can be built and from these, metric cones Cop,.
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3

SUPERCONFORMAL FIELD
THEORIES

Where chapter 2 deals with different views of geometric objects, in the sense of different
descriptions, the present chapter could be said to deal with a different kind of geometry
altogether. The way that strings probe their ambient space cannot be described simply
by ‘ordinary’ geometry. An intuitively clear reason for this, is that strings are extended
objects. The basic tool in the description of string theory in a perturbative formulation, is the
worldsheet conformal field theory. One important observation regarding ‘string geometry’
that can be made using worldsheet cft, is that some backgrounds that look different from the
point of view of ‘ordinary’ geometry, are indistinguishable for strings.

Before dealing with such issues in chapter 4, here we present aspects and formulations
of two dimensional quantum field theories, which appear as worldsheet models in string
theory. Some have a quite direct ‘ordinary geometric’ target space interpretation: think
of sigma models when o’ — 0, for instance. Others may have a somewhat ‘fuzzy’ target
space interpretation, like general WZW models, for example. Also, there are abstractly con-
structed conformal field theories which at best have an indirect target space interpretation.
The kinds of these which we will be concerned with most, are Landau-Ginzburg models
and more generally, conformal field theories which are defined as the low energy endpoint
of the renormalization group flow of non-conformal ‘ultraviolet’ field theories.

The various models are important for us, not so much each in their own right, but be-
cause there exist remarkably useful interconnections, and strong evidence even for equiva-
lences between different formulations of some conformal models. These equivalences are
put to use in chapter 4.

The worldsheet conformal field theory corresponding to a generic Type I string back-
ground is N' = (1, 1) superconformal field theory. More specifically, a background that is
a vacuum preserving some spacetime supersymmetry is described by a worldsheet theory

43




Chapter 3 - N = (2, 2) Supersymmetry

with more (super-) symmetry. In the cases of interest to us, ‘compactifications’ on Calabi-
Yau cones, the worldsheet theories have A = (2, 2) superconformal symmetry. A number
of different constructions to obtain such theories are reviewed, such as Landau-Ginzburg
effective field theories and coset models. Even though such conformal field theories have
no direct geometric interpretation as sigma models, in some cases they can be related to
sigma models in various ways. Often, the theory is a marginal deformation of one with a
geometric interpretation.

Different objects in this chapter which play a role in the construction of ‘non-geometric’
conformal field theories show intriguing resemblances to the objects in the differential and
algebraic geometric constructions of chapter 2.

3.1 N = (2,2) SUPERSYMMETRY

This section serves to set notation regarding A* = (2, 2) supersymmetry, superfields and
R-charges which appear in later discussions.

N = (2,2) superspace has bosonic coordinates z*

= 2% + x! and fermionic coor-

. =+ . . . . . e
dinates 8% and 6 . The spacetime signature is Minkowski. The §  are seen as complex
conjugates to §%. Write 81 for 8/0z*. Differential operators generating supersymmetry
transformations on superspace are

Q* = a% +i0 s,

ot = -2 _ipto..
The operators

Dy = % — 0 0.,

— 3
Dy = —— +i6%0;
o0

commute with the 9%, _Q“i and generate supersymmetry transformations on superfields,
which are functions on superspace. The superfields can be expanded as a finite sum of
monomials in the fermionic coordinates, due to their anticommuting nature. The non-zero
anticommutators are

{0* 0%} = —2id,
{Di,ﬁi} = +2i{0+.

So supersymmetry transformations square to Lorentz transformations.
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The supersymmetry algebra has a vector and an axial U/(1) R-symmetry. On the fermi-
onic coordinates and on general superfields with vector (axial) charge gy (g4) these sym-
metries act as

giefv :f(zi,Gi,O ) — 2 F(zE, et eticg),

efFa . f(:ci,é’i,gi) — ew‘“}'(wi,e:FiBOi,eiwai).

Chiral superfields obey D+® = 0. The conjugate field ® is an antichiral superfield and
is annihilated by Dy. A twisted chiral superfield satisfies D,Y = 0 = D_Y and its
conjugate is twisted antichiral and annihilated by D _ and D, . Due to the linearity of the
differential operators, the product of two chiral superfields is a chiral superfield. Similar
statements hold for twisted chirals and the conjugate fields. The notions ‘untwisted’ and
‘twisted’ are interchanged as the notions of vector and axial U (1) rotations are interchanged.
Such a change corresponds to an outer automorphism of the supersymmetry algebra that
interchanges the generators

Fy & Fy
Q -9
In a quantum theory the conserved charges become operators. Their commutation relations

follow from the classical commutation relations of the symmetry generators. However, it is
possible to have central charges in the anticommutation relations

{§+,§_} =Z
{Q—,@+} =Z.

These central charges break some of the R-symmetry. If the vector symmetry is conserved,
Z must vanish and Z = 0 if F4 is conserved. The automorphism (3.1) also exchanges Z
and Z.

Using superfields it is straightforward to write down Lagrangians which are invariant
under supersymmetric transformations. The general D-term

/ d%z / d% / d*0K (F;) (3.2)

is invariant when K is a function of general superfields F ;. More specifically, one can con-
struct a nonlinear sigma model, taking chiral and antichiral superfields as holomorphic and
antiholomorphic coordinates on a Kihler manifold M, and K (®;, ®;) a Kihler potential on
M which defines a positive definite Kihler metric

3.1)

9.7 = 8,‘5]‘K(Zm,§n).

Instead of only chiral fields, one could equivalently have taken only twisted chirals,
using the automorphism of the algebra. When K is a real valued function of both chirals & ;
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and twisted chirals Y, with bottom component fields the bosons ¢; and y, respectively, the
purely bosonic term in the Lagrangian reads [48]

K - 32K
— 8" i(’? P —_6'” aa Y,
[8@,6@] ¢ H¢J aYaaYb v ‘uyb:| (3 3)
K %K _ - ’
v | —=——=08,0:0,7, + ———08,0:0,ya| -
Teu [8<I>,-8Ya W610uYa + G Oud y]

The derivatives of K in the top line are interpreted as a sigma model metric on a target space
on which the ¢’s and y’s are coordinates. If there are either no chirals or no twisted chirals,
the metric is a Kihler metric and the second line in (3.3) equals zero. If K depends on both
chiral and twisted chiral superfields, the derivatives of K together with ¢ w behave as an
antisymmetric tensor background on the target space.

In addition to a D-term it is possible to have an F-term,

/ d’x / d20 W(®;) + c.c.,

where W is a holomorphic function of the chiral superfields and c.c. stands for the complex
conjugate function (of the antichiral fields). Similarly it is possible to add a twisted F-term,

/dz.r/dg_dl?+ W(Y:) + cc..

If we are considering a sigma model on a Kihler manifold coordinatized by chiral super-
fields ®;, then W (®;) is a holomorphic function on the Kihler manifold.

These various terms in a possible action are invariant under transformations generated
by the four supersymmetry generators, but they are not all invariant under both F'y, and F4.
Furthermore, even if Fy or F4 is a symmetry of the classical theory, it may be anomalous
in the quanturn theory.

First consider the symmetries at the classical level. The measure d 46 of the D-term is by
itself invariant under both F'y and F4. If the Kéhler potential of a nonlinear sigma model
depends on the chiral superfields only through the combination ®®, then it is invariant for
any values of gy and g4 of the chiral superfields. The measure of the F-term, d8 *d8~ is
invariant under F'4, and has vector charge —2. Choosing ¢ 4 = 0 for all chiral superfields in
the F-term makes it F'4-invariant. If the superpotential is a weighted homogeneous function
of the chiral superfields, it is possible to assign a definite vector charge to it, which compen-
sates the transformation of the chiral measure if the gy of the chiral superfields are chosen
properly:

WAV, ... A d,) = N2W(8y,...,0,).
A similar argument holds for the twisted F-term, exchanging vector and axial symmetries.

Quantummechanically the symmetries may be anomalous. For models based on chiral
superfields only, sigma models on a Kéhler space, possibly with a superpotential that is a
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holomorphic function on the target space, the following statement holds. A model based
only on chiral superfields cannot have an anomaly of F'y, but it turns out that the D-term
can have a F4 anomaly, see e.g. [18]. This anomaly is proportional to the first Chern class
of the target space. So a nonlinear sigma model with a Calabi-Yau target space has both
Fy and F4 symmetry, and the addition of a superpotential that is a weighted homogeneous
function on the Calabi-Yau preserves both Fy and F4.

In addition to the models discussed above, an important rdle is played by gauged linear
sigma models, see for example [18] . The sigma model on C™ is invariant under linear
shifts of coordinates on C™, ®;, which are chiral superfields in the sigma model. Also, it is
invariant under rigid phase shifts &, — e2™@*®; . To construct a model which is invariant
under superspace dependent phase transformations of the chiral superfields,

By(zF,6%) — eTiAET NG, (2 F 9F), (3.4)

parametrized by the chiral superfield A, the kinetic term for the chiral superfields must be
changed, from Lg;, = [d%0®,®; + ... + ©, D, t0

m
Liin = / d*0) " eV By, (3.5)
k=1

where V is a vector superfield. It is a real superfield, V = V, taking values in U(1), or
more generally, in U(1)", with r < m. The gauge group index will be suppressed for now.
In order to compensate for the gauge transformations (3.4), the vector superfield transforms
as

V -V +i(A-AR). 3.6)

To the vector superfield corresponds a field strength superfield which can be written as
L =D,D_V. 3.7

The field ¥ is a twisted chiral superfield. It can be used to construct a gauge kinetic term in
the Lagrangian,
-1 —
Lgauge = / d“egzz. (3.8)

Given the naturally appearing twisted chiral field X, the field strength for a U(1) gauge
field, one can add a twisted F-term to the Lagrangian,

1 ——
Lpr = 5 (—t /d9+d9 2) + c.c., 3.9
where the constant ¢t = r—i6 contains the theta angle 6 and the Fayet-Iliopoulos parameter r.

The Fayet-1liopoulos parameter plays a central role in connecting different conformal field
theories via the gauged linear sigma model [18] as is discussed in section 3.3.2. This twisted

47




Chapter 3 - N = (2, 2) Supersymmetry

F-term is Fy -invariant choosing ¢v = 0 for ¥ and, as it is linear in X it is classically also
F 4 invariant if the axial charge of X is taken to be g 4 = 2. A linear twisted superpotential
is the only kind compatible with axial R-symmetry. In general it is possible to have a more
general twisted superpotential, say, generated as a quantum effective superpotential, but it
will break (part of) the F'4 symmetry. In addition it is possible to add an F-term using the
®,, as long as the superpotential is gauge invariant.

The total gauge invariant Lagrangian thus consists of four terms. The D-terms L g;,, and
L gauge, both kinetic terms,

m T

_ a -1 —

/d40§ Biet Vet + s ZaTh, (3.10)
k=1 a,b=1 (a,b)

the Fayet-Iliopoulos (and #-angle) term L p;

1 g
5/de) dé ; —t£, + cec.,

which is a twisted F-term, and possibly a gauge invariant F-term L
/d0+d9“ W(®:) + cc

Written out in components the superfields are
O=¢+0TY, +0y_+6T0"F
V=00 (vo—v1)+078 — 070 0c—0%0 7
+i070T (0 AL +0 A +0 0 (O A +0TAy)
+07670'9 D
L=0+i0tA, —i0 A_ +070 (D —ivoy).

Where vg1 = Opv1 — O1vp is the gauge field strength. The component fields of a chiral
(twisted chiral) superfield depend only on the combinations of superspace coordinates = * —
i6%9" (z* F 6+F"). Using the convariant derivative D, = 8, + iv,,, the various terms in

the Lagrangian can be expressed as

/ d*9®e?V® = — D*¢D,®

+ D|p|* + |F? — |of?|¢l?

+1i [Y_(Do+ D1)v— + ¥, (Do — D1 )]

- W—0’¢+ +E+E¢—]

+1 [ip(Ae - — Ap4) + 6D A —P_Xy)],
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and

1

5% d*6xx = i (050,00 + vgy + D2]+ s [A-0: A + 21 —8-X], (3.15)

and )
3 (/ d%6 — tZ) + c.c. = —rD 4+ Bvp:. 3.16)

The potential energy for the scalar component fields is found to be [18]

. (e(a,b))2 a b
= 160 Pl + 5 (a7 10xl? — 7 ) (allul® 7o) + Z| @)

Here ¢y are scalar components of the chiral superfields and o, are scalar components of the
twisted chiral field strengths and (e(®?))? is the inverse of the coupling matrix, fora U/(1)"
gauge group, appearing in (3.10).

3.2 GENERALITIES OF
N = (2,2) SUPERCONFORMAL THEORIES

The symmetry algebra common to most of the models discussed in this chapter is the N = 2
superconformal algebra, or more accurately, a holomorphic and an antiholomorphic copy of
this algebra. The N = 2 superconformal algebra contains the Virasoro algebra, two sets of
fermionic partners to the Virasoro generators and generators of a U (1) R-symmetry which
rotates the two sets of fermionic generators. The nonzero (anti-) commutation relations are
the following:

~

C
[Lm, Ln] = (m - Tl)Lm+n + Zm(m2 - 1)6m+n,()

[me Jn] = é(sm-i-n,O
[Lm, Jn] = - nJm+n

[Lm, Gl = (5 - (1 £0)) Gy

1
{G,+n+a, Gr ot =2Lpin+(m—n+2a)Jpmyn+¢é ((m + a)2 - Z) Om+n,0

[J’m-’ G?l:ia.] =z Grd:t+n:ba'

(3.18)

Note that (GE)' = GF,, and & = ¢/3.
The parameter 0 < a < 1 determines the boundary conditions of the fermionic currents,

G*(e¥™iz) = —eTImeGE(z), (3.19)
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so in fact there is a family of N' = 2 superconformal algebras, including the Ramond
(integral moding) and Neveu-Schwarz (half-integral moding) cases.

All the algebras in this family are isomorphic and the isomorphism is provided by spec-
tral flow. The U(1) current can be written in terms of a free scalar boson as

J(z) = iVe 8¢(z), (3.20)

and a spectral flow operator as
U, = e *Vens, (3.21)

Spectral flow shifts operators as O — U, OU, ! and on states as | ) — U,| ). It changes the
boundary conditions of the fermionic currents, but not the structure of the algebra.

The representations of the differently moded algebras look different as spectral flow
shifts the U(1) charge and conformal weight. Of special interest are chiral and antichiral
states [21]. These are states annihilated by G “_Ll oand G—, /2 respectively. Among these
states the primary states, annihilated by all positive modes, take a special place. The confor-
mal weight h and the Jy charge g of chiral (antichiral) primaries are h = g/2 (h = —q/2),
which saturate the bound 2h > |g| that holds for any state, from unitarity. In a non-
degenerate unitary conformal field theory (so the spectrum of L g is discrete) the number
of chiral primary fields is finite as their weights satisfy h < &/2. There is a unique chiral
primary which saturates this bound.

The operator algebra of chiral primary fields is special, as there are no singularities to
subtract, (x¢)(z) = lim @(2")x(z). Because of additivity of the U(1) charge, for chirat

2=z

primary fields it holds that h,g = (g + g¢)/2 = hy + hg. The general form of the
operator product is ¢(2)x(2') = 3_,,(z — )"+ ~Pe~hxy(z). Note that the product of two
chiral (primaries) is again chiral, but not necessarily primary. Non-primary terms vanish as
z' — z while primary terms occur with finite coefficients. So operator product induces the
structure of a finite commutative nilpotent ring on chiral primary states. This chiral ring can
also be thought of as the operator algebra of general chiral states, modulo the equivalence
relation that sets descendant states to zero. Of course a similar argumentation goes through
for antichiral states. Having a holomorphic and an antiholomorphic part of the algebra,
there are thus four rings (c, ¢), (a, ¢) and by conjugation {a, a) and (c, a).
Spectral flow | ) — U,| ) changes the U (1) charge and conformal weight

q—=qp=q—20n

5 (3.22)
h—>hn=h—qn+§n2
By spectral flow of half a unit a chiral primary state | ) x5 can be mapped to a Ramond
ground state | ) g = Uy /2| ) s, and flowing yet another half a unit, to an antichiral primary.
The conformal weight and U (1) charge of states connected by spectral flow varies:

Uz ¢ lghns =1Q,Q/2)ns — |Q — ¢/2,¢/8)r — | — Q,Q/2)ns.
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It is possible to apply spectral flow to the holomorphic and the anti-holomorphic sectors
separately. Flowing by the same amount in both sectors the difference of U(1) charges
q — @ is unchanged. The (c, c) primary states and the Ramond-Ramond ground states are
related by symmetric spectral flow. The U(1) character of the Ramond ground states and
the (c, c) states are related

Trr [tJOEJ"] gt _zt_o = ()" *Trns [t“’“f“"’] leo = ()2P(tD).  (3.23)

o —Yo —

The Poincaré polynomial P(t,7) = 3" b, ,tPT" encodes the degeneracies b, 4 of (c, c) pri-
maries with U(1) charge (p,q). From P(t,t) one can also read off the Witten index, to
which only Ramond ground states contribute,

Te(~1)F = Trg [(__l)Jo—quLo—é/Safg—é/S]

— Z eiw(qk—ﬁk) — P(eiw,e—iw).
ke(c,c)

(3.24)

In case all U(1) charges are integral, P(t,) looks like the Poincaré polynomial of the
Dolbeault cohomology ring of a complex manifold with Hodge numbers b, ,. When all
charges are integral then in particular ¢ = d is an integer, as there is a unique state with
g = ¢inany N = (2,2) model. Then spectral flow in the holomorphic sector relates
(NS, NS) and (R, NS) states and furthermore, with integral charges it is possible to define
(—1)Fr = ¢ and (—1)Fr = e~"/0 t0 make a GSO projection. Such models can be
used as factors in a supersymmetric string ‘compactification’, also if the model has no direct
geometric interpretation.

The invariance of Ramond ground states under charge conjugation implies

P(t,7) = (t1)°P(1/t,1/%). (3.25)

In terms of the coefficients this says by, ; = bz—p,s—q, Which looks like Poincaré duality for
a d dimensional complex manifold.

The connection between supersymmetric ground states and cohomology classes is very
general. Because of the relations {Q, Q} = 0 and {Q, Q1} = 2H, supersymmetric ground
states are representatives of the cohomology classes of the supercharge. In supersymmetric
sigma models, the ground states necessarily must have zero momentum [57]. It suffices to
consider quantize only those modes which do not depend to the spatial coordinate, so the
supersymmetric ground states are determined from supersymmetric quantum mechanics.

Fora N = (2, 2) sigma model the target space is Kihler and the Lagrangian restricted
to the constant modes, written out in component fields is [59]

/d49K(¢i»6i) = 9,-;&51'(1.7 +i9;5 (a}thi + WDW;) + Rijszih’/’k?/ﬁEI, (3.26)
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So the bosonic components ¢; and ¢; are coordinates on the target manifold (pulled back
to the worldline). The supercharges are

Qv = gﬁdjf (3.27)
Q- = 950,

and their conjugates.
Now these constant! modes can be canonically quantized. The fermions become cre-
ation and annihilation operators,
{v', ¢’} = g%,
T _] -,
{v', v} =g".

It is natural to map these antlcommutmg objects with cotangent space indices to differential

(3.28)

forms on the target manifold, z/z ~ d¢‘ and w ~ d¢>‘ The adjoint operators are identified
with the dual vectors, 1? ~ g”@- i ~ ¢'79;, where §; = = 0/0¢* and o5 = 8/07. The
supercharges are

Q+ = wiﬂiv
Q— = E’Lﬂ.i’
L (3.29)
Q+ = 'd) 777,
Q.= 1/)77T;-

Here 7; is the momentum canonically conjugate to ¢;. In the field theory this can be thought
of as the functional derivative §/8¢;. Restricted to the constant modes, this reduces to the
ordinary partial derivatives 9; and &;. The supercharges can be related to the Dolbeault
operators and their adjoints,

Q— Nd¢ioaia
Q, ~d¢’ 0 5.

So the Ramond ground states of a Calabi-Yau sigma model correspond to harmonic forms
on the Calabi-Yau. By spectral flow these can be mapped to (¢, ¢) or (a, c) primaries.

In the following sections, various different constructions of ' = (2, 2) conformal mod-
els are briefly reviewed, most notably Landau-Ginzburg models and coset cft’s. There exist
such models at ¢ = d € Z, which have been used in numerous ways as supersymmetric
string compactifications, of the form C(¢ = d) x M 19=2¢ to leave a Minkowski factor

(3.30)

1Of course ‘constant’ means ‘no dependence on the spatial coordinate’.
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M19-2¢_ In the next chapter we will consider ¢ € Z models which describe either non-
compact ‘decompactification’ limits, or ‘throat’ geometries. Such models are constructed
out of the conformal field theories discussed in the following section, but at non-integer
values of é, combined with the Euclidean black hole cft, or a Liouville model, to obtain
Ciotal € Z.

3.3 INFRARED LIMITS OF NONCONFORMAL
FIELD THEORIES

3.3.1 LANDAU-GINZBURG MODELS

In this section N' = (2,2) superconformal field theories will be discussed, which arise
as infrared fixed points of the renormalization group flow of nonconformal N’ = (2,2)
supersymmetric quantum field theories. Consider a 2d N = (2, 2) quantum field theory of
a set of chiral superfields. Its Lagrangian contains a D-term

/d% fd‘*ek(cb,-,a,-),

where K can be interpreted as a Kiahler potential for a nonlinear sigma model. In addition
the Lagrangian can also contain an F-term

%/d% (/ d2ow (®;) +c.c.) ,

where the superpotential W is a holomorphic function of the ®;, or viewing the ®; as
coordinates on the target space of a sigma model, W is a holomorphic function on the target
space. In general such a theory does not have conformal invariance, but renormalization
group flow to the infrared gives some, possibly trivial, scale invariant, and hence in 2d
conformally invariant, fixed point.

For Landau-Ginzburg models of the above form it is believed that any weighted homo-
geneous superpotential, up to analytic field redefinitions, corresponds to a unique conformal
fixed point. Due to A" = (2, 2) supersymmetry, the D-terms do not enter in the renormalized
F-terms. A way to convince oneself of this statement goes as follows. One may promote the
couplings in the D-term to twisted chiral fields that are much heavier than the mass scale
of interest. Effectively these are frozen out and act as nothing but parameters. But twisted
chirals can not appear in the F-term. On the other hand, the parameters in the superpotential
may be thought of as frozen out chiral superfields. The supersymmetry does not preclude
these fields to enter in the D-term, and hence, they may alter the form of the D-term at low
energies.

For a general superpotential which is not weighted homogeneous, the axial R-symmetry
is broken. Consider the couplings in front of the various terms of different scaling weight
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as heavy fields, with the right axial R-charges so as to render the superpotential weighted
homogeneous. As a consequence of the supersymmetry, the F-terms are not renormal-
ized, whereas the superpotential receives only wavefunction renormalization. So under a
rescaling of coordinates, z — Az and # — A~1/24 all the chiral superfields, including the
couplings, are rescaled by some factor &; — A“:®,;, such that W — AW. Consider, for
concreteness, a superpotential

W = gnq>n + gn+1q)n+1'

Let ® — Al/"®, then g,, does not rescale, while gn4, — A~/"g,,1. In the infrared limit
A — oo the effective coupling of the term g, 1®"*! vanishes and only the coefficients
multiplying terms with the lowest scaling weight survive.

The idea is that conformal fixed points are uniquely labeled by weighted homogeneous
superpotentials, up to analytic field redefinitions. A suitable D-term is renormalized along
the RG flow in a way dictated by the superpotential, so as to get a conformally invariant
theory at the endpoint of the flow. Ofien as a starting point the D-term corresponding to a
sigma model on flat C**2 is taken.

The A = (2,2) supersymmetry is enhanced to a superconformal symmetry. Under a
2d rescaling the chiral superfields scale as ®; — A:®; and the superpotential is weighted
homogeneous,

WY ®y,..., A% D) = AW (D, ..., D.,). 331

But this scaling of the fields precisely says that their anomalous dimension, their scaling

weight, is w;. As the scaling weight satisfies A = h + h the conformal dimension of a field
q)i is w
2

h = 5 (3.32)

Using generic properties of superconformal symmetry and unitarity it is also possible to
find the central charge of the conformal field theory corresponding to (3.31) [20]. The ex-
pression for the central charge is given in (3.35). This expression is obtained consideration
of the (c, ¢) ring, and more particularly, the element with largest UU(1) charge in this ring,
as will be done now.

The fields ®; have conformal weight h and axial charge ¢ 4 related as g4 = 2h = w;.
This is the proportionality possessed by a chiral primary field. Furthermore, the derivatives
of the superpotential 9W/0®; are proportional to some superderivatives acting on combi-
nations of the chiral and antichiral primaries.In cft terminology, combinations of ® ;’s and
® ;s that contain a factor 9W/0®; are descendant fields. The chiral primary ring of the con-
formal field theory is then obtained as quotient ring of complex polynomials in the fields ® ;
modulo the ideal generated by the partial derivatives of the superpotential, 3W/8® ;:

C[®;]

Any fields appearing as ®? is the superpotential, do not change the (c, c) ring.
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The degeneracies of U (1) charges of the (c, ¢) ring are encoded in the Poincaré poly-
nomial. This is computed in terms of the weights of W [20]. Conventionally the scaling
properties of W are characterized by the (positive) integers @ ; = w; -d, such that the greatest
common denominator of all a;’s equals one, so that

W(Azy,. .., A% xm) = W (z1,...,2m).

Then the Poincaré polynomial is?

L _ (+F\d—a;
P(t,7) = 1:[1 % (3.34)

There is a unique (c, c) primary state of weight h = h = 0 and a unique one of highest
conformal weight, which has h/2 = h/2 = ¢ = é. From inspection of the (¢, c) ring it
follows that the central charge is

é=Y_ (1-2w), (3.35)

i=1

where w; = a;/d. The dimension of the chiral ring is also easily found from the Poincaré
polynomial, as

- (1
p=Pt=17I=1) 1;[1 (wi 1). (3.36)

Having started from a field theory with (twisted) chiral superfields, at the infrared fixed
point a theory lies with a non-trivial (¢, ¢) ring and a trivial (e, ¢) ring (or vice versa). The
holomorphic and antiholomorphic U (1) charges satisfy ¢ — § = 0 (or ¢ + ¢ = 0 for twisted
chirals). The U(1) charges of states are generally multiples of 1/d and thus not necessarily
integer. In particular, the top (c, ¢) primary state has ¢ = ¢, which is generically not an
integer, see (3.35).

It is possible to project out states of non-integer ¢ by an orbifold construction [49], for
which it is important that ¢ — § € Z. This last property ensures that a projection on integer
left- and right-moving U (1) charges can be achieved by a left-moving operator alone. More
to the point, one should orbifold by the action of

j =€t (3.37)

Denote by J the cyclic group generated by j. The J-orbifold projects out (c, c) states with
g ¢ Z but one also needs to add all j-twisted sectors and project onto j-invariant states in
each of these sectors as well.

2The Poincaré polynomial in 3.34 is slightly different from the definition in 3.2. Really in 3.34 is written
P(t?, fd). In 3.34 the term (££)99 corresponds to {c, c) primaries of charge ¢ =g.
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Such an orbifold projection can get rid of some (c, ¢) states and add extra (a, ¢) states.
If the central charge é € Z the physical states in the orbifold model all have integer U(1)
charges. Such a model, W/J with é € Z satisfies the requirements for a spacetime super-
symmetric string compactification [50, 49].

The action of j has an interpretation in terms of the superpotential. It is the Z 4 C C*
part of the weighted homogeneous scalings which leave the superpotential invariant:

G W(D1,..., Bpm) = W(e™1d,,...,e*™ D) = W(d,...,0,). (3.38)

It is clear that any weighted homogeneous polynomial has such a symmetry, irrespective
of whether ¢ € Z. Actually, any superpotential that is the sum of k separate weighted
homogeneous pieces of weighted degree d, with appropriate charge assignments to the chiral
fields, possesses k such cyclic symmetries. It can be regarded as the tensor product of k&
separate conformal field theories, each with their own j,, 1 < £ < k. Each factor theory is a
superconformal model by itself and hence admits a separate J-orbifolding. The projection
onto integral charges is achieved by acting with the operator in the tensor product model
Jtot = ®Je.
Let us consider a simple example of a superpotential,

W = ¢k+2'

The corresponding Poincaré polynomial is

k
P(t,E) =) _(t)".

=1

There is one (c, ¢) primary at each U(1) charge ¢ = ¢/(k + 2) for0 < ¢ < k. The (a,c)
ring is trivial, it consists of the vacuum only. The central charge is

51 2

cC—1— E
There is a unique conformal field theory with these properties and it can be constructed
in different ways. One way is as the k-th A/ = (2,2) minimal model based on the A-
type modular invariant [51]. With the explicit modular invariant partition function of the
model, one can construct the j-orbifold. Only the vacuum of the original model survives
the j-projection. There are k + 1 twisted sectors, and from each but one a single state
survives the orbifold projection [49]. The states surviving in the orbifold model have U(1)
charges (—q, g = q), whereas the states in the unorbifolded model have (g, 7 = ¢). In other
words, the orbifolded model looks like the original unorbifolded Landau-Ginzburg model
with a twisted chiral field instead of a chiral field (up to an overall minus sign). But the two
possibilities in the overall choice of taking chiral superfields or twisted chiral superficlds
are related by the Zo automorphism of the super(-conformal-)algebra (3.1).
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The example treated above is perhaps the simplest case that illustrates an isomorphism
between somewhat different looking conformal field theories (here related by the j-orbifold)
which are related by the Z, automorphism of the superconformal algebra (3.1), which is
known as the mirror automorphism. In the context of the defining Landau-Ginzburg models
the isomorphism in this case amounts to exchanging all chiral superfields for twisted chiral
superfields.

3.3.2 PHASES OF A GAUGED LINEAR SIGMA MODEL

At this point, there is no apparent geometric interpretation of the isomorphism of conformal
field theories as seen in Landau-Ginzburg models of the preceding section. In order to
get at such an interpretation, we shall proceed to discuss a beautiful connection between
Landau-Ginzburg models and nonlinear sigma models [18], which do have a quite direct
geometric interpretation. Both the Landau-Ginzburg model, or more accurately, the W/J
Landau-Ginzburg orbifold, and the nonlinear sigma model arise as deep infrared limits of
certain supersymmetric Abelian gauge theories, in opposite regions of the value of an order
parameter: the Fayet-Iliopoulos parameter. This parameter is a modulus and labels a family
of conformal field theories, some of which have a geometric interpretation.

The U(1)" gauged linear sigma model of section 3.1 has the parameter f = 7 — 8 in
front of the twisted F-term in the classical Lagrangian. The auxiliary component field D of
a U(1) gauge field appears in the Lagrangian as

—D2 + D (Z 'Lq,|¢1| - r)

where 7 is the ‘bare’ Fayet-Iliopoulos parameter. Integrating out the high frequency modes
of the ¢; in arange & < |k| < o, one finds

1
2k
<|¢z—/dm,

|kl=n

where o denotes the expectation value o = (o) of the scalar field that is the bottom compo-
nent of the field strength (twisted chiral) superfield ¥, as in (3.13). Consequently

(%?)w—r-i—log( )Zq,.

Unless Y g; = 0, the physical Fayet-Iliopoulos must be specified at some scale pg, to
be r(uo) and the effective FI-parameter runs with the energy scale as r{u) = r(uo) +
>(gi) log(x/ o). The RG flow is specified by the dynamically generated scale A according
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r(p) = (Z%) log (%) -

From the opposite viewpoint, the classical value r¢ of the Fayet-Iliopoulos parameter in a
quantum theory depends on the dynamical scale and the ultraviolet cut-off as

To = (Z qz‘) log (A%) (3.39)
i=1

If 3 q; # 0, the fermionic components of the charged chiral superfields induce an
anomaly under axial R-transformations. Under an axial rotation by e *® the #-angle is shifted
by 0 — 8 — 2} ¢; = 8 + 2-ya, which breaks the axial R-symmetry to Z,.,. The value of
r at any scale is determined from the dynamical scale. Once A is specified, () is fixed.

When the sum of charges of each U(1) C U(1)" vanishes, the axial symmetry is pre-
served. Also, the Fayet-Iliopoulos term is a genuine parameter of the quantum theory. In
other words, this parameter labels an entire family of theories. In the infrared it is a modulus
labeling a family of conformal field theories.

Consider the infrared limit of such a model. For the sake of simplicity, take the gauge
group to be just U(1) and take m = n + 1 chiral superfields ®; of gauge charge one
and one chiral superfield P of gauge charge ¢ = —n — 1, such that the Fayet-Iliopoulos

parameter does really parametrize a family of quantum theories. Also add a gauge invariant
superpotential W = aP - F(®,,...,®, + 1), which can be switched off by setting o = 0.
Also let F = dF' = 0 have a solution only at the origin, ®; = 0 Vi. In this case the scalar
potential reads

From kjnetic and Fl-term

n+1 n+1 -
U= o ((n S |¢k|’“) +E (—r — PP+ Y |¢>k|2>

k=1 k=1

n+1 BF (3.40)
+ [af?|FI? + |of® 'P'22|a¢

N o~
o p—

From F-term (i.e. from superpotential)

Consider the infrared limit, while taking the gauge coupling e — oo, which has the
effect that the gauge field is non-dynamical. The only effect of the gauge symmetry is that
it identifies different values of the chiral superfields. For the moment, switch off the F-
term, that is to say, set the superpotential to zero, so the second line of (3.40) disappears.
If r > 0, the vacuum manifold consists of points " |¢;|?> = 7 + |p|2, modulo the U(1)
symmetry. This is the total space of O(-n — 1) — P™. The Fl-parameter r sets the size of
the base space. If » < 0, the vacuum manifold consists of [p|? = |r|+ 3_ |¢:|?, up to gauge
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transformations. By a gauge transformation one can align p along the positive real axis.
This completely fixes p, but there is a group Z,,+1 C U(1) of gauge transformations which
do this. These act nontrivially on the ¢;’s. The vacuum manifold is thus C**! /Z,, ;.

Now we switch on the F-term. For r >> 0 the coordinate on the line bundle is completely
fixed to p = 0 and the homogeneous coordinates ¢; of P* satisfy F(¢1,...,¢n+1) = 0.
As the degree of F'is n + 1 this is a Calabi-Yau hypersurface. For r < 0 all ¢; coordinates
on C"*1/Z,, . are forced in the origin. As p # O there is however a homogeneous super-
potential for the ®;. There is no target space, but the cft is described as a Landau-Ginzburg
orbifold.

Generalizing this example, linear sigma models connect projective hypersurfaces
F~1(0) in a weighted projective space and Landau-Ginzburg orbifolds (W = F)/J. Using
U(1)" gauge groups, this connection extends to complete intersections in toric manifolds
[18]. There are some important points to note, regarding this connection.

First of all, the sum of the gauge charges of each U(1) should vanish, so that it makes
sense to talk about different values of r in the quantum gauge theory. Secondly, conformal
models corresponding to positive and negative values of r are part of a single moduli space
of conformal field theories. In order to show this, one should not pass through the singular
point 7 = 0. Fortunately, one can move around this point in the ultraviolet, using the -
angle, which is part of the same single complex parameter [18].

Finally, for now, as long as there is no F-term, the above analysis applies to situations
where m chiral fields have positive gauge charges g; and n have negative charges g, as long
as the sum of all charges vanishes. The corresponding vacuum manifolds are

P o-1gl) = Plas, .- , gl
J

and

@ O(=q:) = Pllaul, . - - |dnl]

But with a F-term, the situation can become more complicated. Yet, one might like to add
such an F-term, hoping to describe a hypersurface in affine complex space, or an orbifold
thereof.

WORLDSHEET MODELS FOR SUPERSYMMETRIC CONES

The supersymmetric cones of chapter 2 can be regarded as hypersurfaces in affine C"*! or
as line bundles over projective varieties of positive first Chern class. The coordinate on such
a line bundle is the scalar component of a chiral superfield ® o of negative charge.
Consider a polynomial which defines a Fano subvariety in an appropriate weighted pro-
jective space,
FOO%zy, ..., Az,) = XNF(zy,. .., Zm). (3.41)
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| Chiral superfield ®; | U(1) charge a; |

@1,...,@4 ai=1
q)—l a_; = -3
4’0 ag = -1

Table 3.1: Charge assignments for cubic cone in C*.

If F~1(0) is Fano, the weights need to satisfy
m
d< > a;= A (3.42)
=1

The total space of a Calabi-Yau line bundle over the Fano variety is given by the affine
hypersurface F~1(0) C C™. In the remainder of this section, a variation on the linear
sigma models will be discussed. This variation can, in the infrared, be viewed as a nonlinear
sigma model on a hypersurface in O (d — A) — Pla,...,ap42]. This line bundle has an
affine coordinate patch which looks like C™*2, or actually C**2/Z;_ 4. Therefore, such
model can be useful to describe supersymmetric affine hypersurfaces.

The advantage of having an ultraviolet theory, is that it may unify conformal field theo-
ries at different points in moduli space, depending on the particular value of certain expecta-
tion values. For example, in Witten’s gauged linear sigma model [18] this expectation value
is the Fayet-Iliopoulos parameter and theta angle, which can be viewed as an expectation
value of a spurious twisted chiral superfield. The value of the Fayet-Iliopoulos parameter
determines which chiral superfields acquire an expectation value in the infrared, and if the
low energy conformal field theory is in a sigma model ‘phase’ or Landau-Ginzburg ‘phase’.

For the variation discussed below, the situation is slightly different. First we present a
description as close as possible to the Witten-type linear sigma model. This description will
hopefully be useful to introduce the model. In this model a Fayet-lliopoulos parameter plays
a réle similar to that in Witten’s discussion. However, there are some disturbing differences.
It turns out that our first description is not correct, and it is better to consider a second, more
accurate formulation. This is presented at the end of this section, and it will be used in the
T-dualities in chapter 4.

Consider an affine hypersurface, defined as the zero locus of a weighted homogeneous
polynomial F(z1,...,Zny2). How to construct a linear sigma model description? The
coordinates x; become chiral superfields of charge a;. In addition there are two more chiral
superfields, ¢ _; of charge —d and ® of charge —(A — d). In all, a sigma model with such
charge assignment has no axial anomaly.

For definiteness and simplicity, consider a specific example. Take a linear sigma model
with 4 + 2 chiral superfields with U (1) charges as specified in table 3.1. The scalar potential
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due to the D-term reads

4
Up=—r—3l¢_1* — |go]* + D I¢al*.

i=1
If there were no F-term, the vacuum manifold M p would be
Mp = [0(=3) & O(-1)] - P?,
ifr > 0 and .
Mp =EPo(-1) - P[1,3],

i=1

if r <« 0. But adding a term with superpotential

4
W=0_, <u<1>53 +y @?) ,

i=1
The vacuum manifold is reduced by the additional constraint that U p = 0, where
2

4
Ur = |udg® + > _ 6%

i=1

4
+ 91 /? (|¢0|_8 +3 |¢,»|4) : (3.43)

i=1

In case 7> 0, (3.45) sets {(¢_1) = 0, so that there is no effective superpotential. That
means that M p is reduced to the tautological line bundle of P3. The remaining restriction
from 3.45 reduces the vacuum manifold to a hypersurface in this space. In terms of ‘inhomo-
geneous’ coordinates ¢; = ¢q¢;, the vacuum manifold of the theory with the superpotential
is

4
Mp={d ¢} +p=0}cC* (r>0). (3.46)

i=1

The singular variety is approached as |p| — 0.

When r < 0, the situation is more complicated than in the cases of [18]. The condition
Up = 0 implies that ¢_; and ¢ cannot both vanish simultaneously. From Ur = 0 it
follows that either ¢_; = 0 or 1/¢o = 0. This means that of the base manifold P[1, 3] only
a dimension zero subspace is left over. Clearly, if the latter condition is satisfied, ¢ ¢ is not
a good variable and one should find a more justifiable interpretation. This will be left for
later. For now, consider the situation in the present variables.

Define

p=—r—|¢of>. (3.47)

Then the condition Up = 0 is expressed as

4
BlpaP=p+ Yl (348)

=1
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If p <0, then Up = 0 requires that ¢_; = 0. So there is no effective superpotential.

Using Up = 0 and the gauge symmetry one can fix

4
|+ Il =€t
=1

This fixes the gauge completely. Finally U = 0 says

4
> 6 +uc® =0. (3.50)

i=1

If —r >> 1, then € ~ 0 and the vacuum manifold looks like a slightly deformed hypersurface
singularity, as in the » < 0 case. If 7 & 0, then the analysis of [18] is unjustified in this
case.

If p=0, then Up = 0 implies that p_y = ¢; = @2 = ¢35 = ¢4 = 0. There is no
superpotential, the gauge symmetry is unbroken and the ‘bad’ variable ¢ ¢ is pushed out to
infinity. This can only be consistent when r — —ooc.

The case 1/¢9 = 0 may seem strange. The field ¢ is pushed out to infinity in the
extreme infrared. This is not entirely unlike the Liouville theory. The Liouville interaction
e~Y prevents low energy excitation from propagating to small values of Y. In chapter 4 this
will be put into perspective. Note that if e =¥ has a definite U(1) charge, then shifts of the
imaginary part of Y are gauged. The kinetic term of such a field looks something like

L“nea,=/d49— Y +7+Vv)". (3.51)

When p > 0, then (¢_1) # 0, so there is an effective superpotential. From Ur = 0 it
follows that¢; = ... = ¢4 = 0. Again ¢ is pushed out to infinity and r — —oc. The U(1)
gauge invariance can be partly fixed by setting (¢ _;) € Rs¢. This leaves a Z3 subgroup
acting on ®; and the other ;. The resulting theory is a Landau-Ginzburg orbifold,

Wo + Wr

Zs (3.52)

Where
Wr = /p/3 (23 + &3 + @} + 8), (3.53)

And Wy is written in ‘bad’ variables,

Wo = /p/3®0;°. (3.54)

This example generalizes to models with a gauge invariant superpotential
=d_
W=%&_, (/;Lq)(?—d + Fd(‘bl, - ,(I’m) )
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where Fy; is a weighted homogeneous polynomial of weighted degree d. The sum of the
weights of its argumentsis A = Y _a; > d. In the r >> 0 phase, the vacuum manifold is
a hypersurface in O(—(A — d)) — Play,...,amn]. This can also be regarded as an affine
hypersurface F; ' (—pu) in C™, quotiented by Z, C U(1) that remains unfixed by the gauge
condition ¢9 € Rsq. The order of Z, depends on the relative divisibility of the gauge
charges, r < (A — d). For r « 0 the same geometry appears when (¢ _;) = 0. There is a
Landau-Ginzburg orbifold regime as 7 — —oo and ¢9 — oo such that p = |r|—(A—d)|do|?
is a positive finite number:

=4
W =0F7 + Fy(@y,...,0m)
Zq '

(3.55)

Where Z acts as the j-orbifold of section 3.3.1. Also, not apparent in the above notation,
there is a background charge for the field log ®,.

The discussion above should have raised some eyebrows. Essentially, we should treat
the field ®¢ differently, as this is the cause of the problems. Actually, perhaps a clearer
picture of the above type of theory is presented by really treating ® ¢ as e¥, where ¥ is a
‘shift-gauged’ chiral superfield (4.72), the periodicity of ¥ being

U~ U+ 2mi, (3.56)

And take a kinetic term typical of such a ‘shift-gauged’ field. To be explicit, consider the
Lagrangian

d _ n+2
L= /d“a [4 (\I/+\I/+V)2+|<I>_1|2e'dv+2|®i|2e“fv}
[aol i=1 (3.57)

+ /d20 d_, [ue_d‘p/lao' + F (<I’1, Cey ¢n+2)] +c.c

Here F is a transverse weighted homogeneous polynomial of weighted degree d, the weights
of the ®; are a;, and
n+2

ap=d-Y a;<0. (3.58)
i=1

There is no explicit Fayet-Iliopoulos term, since it can be absorbed in ¥ and the coefficient
. A change of the Fayet-Iliopoulos parameter r — r + dr is effected by a shift

lag|ér

d "’ (3.59)
57"

v -0 —
p—pe”
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The different kinetic term results in a different scalar potential U = Up + Up,

n+2
Up | |RC'([J d|¢ 1|2+Ea1|¢1| s
i=1
Up = |pe™ /10l L F(¢1,...,¢ns2) 2 (3.60)

+|¢ 1|2 /"2 (i) 2d1/1/a0 + g

- ag a¢z
Perhaps the most notable difference, compared to (3.43), is that the real part of ¢ appears in
Up, much like a Fayet-Iliopoulos parameter. The vacuum structure of the model depends
on the sign of Re 9.

If Re ¢ < 0 the situation resembles the r > 0 case. Some of the ¢; acquire an expec-
tation value. Consequently (¢_;) = 0, which in turn means there is no effective super-
potential, but the fields ¢ and ¢; obey a relation that ensures the top line of U in (3.60)
vanishes. This relation is satisfied on F~1 (—y) in affine C™*2. This affine space describes
O(ap) — Play, . . ., ant2), with ‘inhomogeneous coordinates’ £; = pie®¥/laol

On the other hand, one could have (¢ _1) # 0. In that case all other ¢; must have a
vanishing expectation value, in order to minimize U g. This in turn means that Re o) > 0.
Actually, to really set Ur = 0, the potential for 1) pushes Re 1 out all the way to infinity.
In this case, ¥ is somewhat of an awkward variable. The U(1) gauge symmetry can be
used to transform (¢ _1), to that it lies along the positive real axis. This gauge condition is
preserved by a Z 4 subgroup. So the effective model is a Z 4 orbifold of a ‘Landau-Ginzburg’
model, with superpotential W = Wy + Wg.

The latter part of the superpotential is simply the weighted homogeneous polynomial

F(®1,...,012).

The former part can be written as

Wo = pe™ Y, (3.61)

where ¥ = ﬁ‘l’. The periodicity of ¥ thus is 2mid/|ao|. The kinetic term of ¥ then
becomes

Liin = / d40|“°| M (3.62)
These terms are characteristic of a Liouville theory [26], with central charge
é=1+ _2_ (3.63)
d/laol '

as its infrared fixed point. The Liouville theory also has a linear dilaton, which is not
apparent in the way the Lagrangian is characterized above. The slope of the linear dilaton
is proportional to —d/|ao|.
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3.4 COSET MODELS

In addition to the sigma models and Landau-Ginzburg models, there are other ways to con-
struct N = (2,2) superconformal models. In some instances apparently very different
constructions may describe the same conformal field theory. This equivalence of descrip-
tions is established most rigorously for ¢ < 1 models, where the superconformal algebra
constrains the models most. The conformal field theories in this range are constructed ab-
stractly as minimal models, but also as LG-models and as supersymmetric versions of GKO
coset models, which may have a target space interpretation, to some extent, as gauged WZW
models.

More N' = (2,2) models, with & > 1, can be constructed as G/H cosets of N' = 1
conformal field theories. A clear discussion of the properties of general coset models with
N = (2,2) superconformal symmetry is found in [45, 55]. A particular subclass of N =
(2, 2) coset models is made up of the Kazama-Suzuki models [42, 43]. In these models the
coset manifold G/ H is a Hermitean symmetric space (HSS). To construct a coset conformal
field theory, the levels of the Kac-Moody algebras of the various factors must be specified.
Starting with a bosonic model based on g,(cl), the numerator of the Kazama-Suzuki (KS)
model is based on the reductive subalgebra h C g. The HSS condition in particular means
that the rank of g equals the rank of h. Furthermore, using the Killing form on g, write
g = h @ t. The HSS condition says that ¢t must decompose as t = ¢, @ t_ into two
separately closed Lie algebras of equal dimension, and the Killing form restricted to either
subspace must vanish.

Write h = €, h; ® u(1)™ and dim g — dim h = 2d. The levels of the h; factors are
determined by the level & of g, and the embedding of & C g as

k(hi) = Li(k +g") ~ h{, (3.64)

where gV and h) are the dual Coxeter numbers of the respective algebras and I; is the
Dynkin index of the embedding?.

In addition to the bosonic factors above, there are fermions in the superconformal coset.
These form a so(2d); theory and can be taken as d complex free fermions, ¢ @. The index a
can be viewed as a cotangent index in T*(G/H ), parametrizing a basis of ¢, given by the
rootsint,.

The Kazama-Suzuki models have a Lagrangian formulation as gauged WZW models
[46]. If the level is large, the gauge fields can be integrated out to one-loop to get a justified
target space interpretation. The resulting target space generally may have a non-trivial B-
field and a varying dilaton. Thus it looks very different from the Hermitean symmetric space
G/ H, which is a globally symmetric Kihler manifold. Largely this difference is due to the
different action of H on G, in the symmetric space it acts as g ~ gh and in the gauged
WZW model as g ~ h~1gh. The dilaton is a one-loop effect.

3The Dynkin index I; is the ratio of lengths squared of the highest roots of g and kk C g. I, =
(6g,89)/(8:.6:).
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All states in the Kazama-Suzuki models have R-charges which satisfy ¢ — § € Z, like
Landau-Ginzburg models. Most cannot admit LG descriptions, as the form of the (¢, ¢) ring
is such that it cannot be obtained as a a quotient ring C[z;]/8W (z;). The models based on
simply laced algebras at level & = 1 however, have {c, ¢) rings which can be reproduced
by a Landau-Ginzburg construction [21), i.e. they are of the form C[z ;|/0W (z;). Further-
more, the (c, ¢} rings of these models are isomorphic to the Dolbeault cohomology rings
of the corresponding Hermitean symmetric spaces. This is related to the correspondence
between Ramond ground states and Dolbeault cohomology classes in the case of nonlinear
sigma models, as mentioned in section 3.2. In the Kazama-Suzuki case, the situation is
more involved, and explained in [21]. In the simplest case, simply laced level one models,
many subtleties are inconsequential. In this case the Ramond ground states are found by
considering the Lie algebra cohomology of ¢, with coeflicients in some representation of
g and decomposing this into irreducible representations of 2. Each irrep of h corresponds
to a Ramond ground state in the Gx—;/H model. But this is precisely the way to get the
generators of the cohomology of a symmetric space. The number u of such h-irreps is in-
dependent of the chosen g— representation (see [21] and references therein). This number
is also the dimension of the {c, ¢) ring, and it is given by the ratio of dimensions of the Weyl

groups,

_w(e)
P wa)

(3.65)

The vector space H*(G/H) can also be obtained from a particular representation of
g [21, 56]. The algebra h C g for a Hermitean symmetric space is obtained by delet-
ing a node* from the Dynkin diagram of g and replacing it with a u(1). The particular g
representation = ;) which gives the (c,c) ring of the level k = 1 simply laced level one
Kazama-Suzuki model is obtained by putting a weight £ = 1 on this node in the Dynkin
diagram of g and zeroes on all others. The Poincaré polynomial is obtained as the character
of this g-representation with respect to the U (1) charge corresponding to the element p - H
of the Cartan sub-algebra, where p¢ is one half of the sum of the positive roots of G.

As pointed out in [21], it had been known that the grading of the cohomology ring
H*(G/H) precisely coincides with the grading of the representation = ;) with respect to
this U (1) charge. Similar g-representations = ;) with a weight &£ > 1 at the ‘deleted’ node,
with the same p¢ - H grading, are generally not isomorphic to the (¢, ¢) rings of the Kazama-
Suzuki models at levels £ > 1, nor is the author aware of a geometric cohomological
interpretation of these representations. The central charges of the simply laced Kazama-
Suzuki models and the = characters are collected in table 3.2. Yet in some particular
cases, the (c,¢) rings of k > 1 Kazama-Suzuki models are reproduced. In these cases,
the level £k > 1 KS models are believed to be isomorphic to level one models based on a
different Hermitean symmetric space.

“Deleting several nodes, one can construct Kahler spaces which are also homogeneous, but are not Riemannian
symmetric spaces.
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(G/H)k é=c/3 trs(k)(tf)pG'H
SU(m+n) kmn ﬁ ﬁ 1—(£)4-G+-D
SU(m)xSU(n)xU(1) k+m+n i1 el 1—(tt)i+i-1
SO(n+2 kn 1-(t)d—"/2 “ﬁl 1-(tp)¢ ¢
50(n)x50(2) k+n -7 LTI
S0(2n kn(n—1 nl:ll 1—(#7)4-0+i-D
SU(n)xU(1) 2(k+2n—2) G2 1—(¢t)206+i-1)
4,y=
Sp(2n) k(n+1) ﬁ 1- ()¢~ C¢+9)
SU(n)xU(1) 2(k+n+1) i3=1 1—(tt)its
11 —4_: 8 s
E, 16k H 1— ()¢ * 11 1—(t5)2~7
SO(0) XU F+12 1§ S perrssTal § S Wy ¥
i=1 j=4
E; 27k 1-(t5)4—° ﬁ 1-(t)?" 11‘3[ 1-(tg)?~
Eox U(D) k+18 1-(t5)° GRS SO

Table 3.2: G/H defining Hermitean symmetric spaces used in Kazama-Suzuki construction of (2, 2)
superconformal field theories. The integer &k denotes the level of the numerator.The number d is the
denominator in the corresponding expression for ¢.

There are various conjectured isomorphisms between A = (2, 2) coset models. Even
though explicit isomorphisms of the Hilbert spaces are lacking, the conjectures hold up to
tests of varying refinement, such as

o agreement of central charges
e identical Poincaré polynomials
e isomorphic (¢, c¢) rings
A look at table 3.2 suggests a possible isomorphism of the Grassmannian KS models

SU(m + n)x x SO(2mn);
SUM)ntk X SUM)m+k X U(D)mn(min)(m+n+k)

~ (m — k). (3.66)

Already in the original construction of these models by Kazama and Suzuki, it was shown
that the form of the supercurrent is compatible with this exchange. It has also been shown
[21] that for SU(m + 1)i/SU(m), with arbitrary & the Poincaré polynomial, as properly

determined by group theoretical considerations, is given by the = () character of table 3.2
and hence coincides with that of the Grassmannian coset at level one

SU(m+ n),
SU(m) x SU(n) x U(1)"
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And a one-to-one map between the primary fields has been constructed [47] for arbitrary
m, n, k as long as they have no common divisor, or only a prime common divisor.
Other isomorphisms have also been proposed and tested. In particular

SO(m + 2); x SO(2m),
SO(M)ix+2 x U(1)g(m+k)

~ (m < k), (3.67)

for m and k odd, when the two CFTs are based on the diagonal modular invariant. And
also the case m even and k odd, with the right hand theory based on the D type modular
invariant, rather than the diagonal one [44]. The latter models thus is not strictly speaking
a Kazama-Suzuki model. Moving away even farther from the Kazama-Suzuki case, N =
(2, 2) coset models have been constructed for which the corresponding coset manifold G/ H
not a globally symmetric space, though still a Kidhler manifold, e.g. see [45]. For such
models ‘duality’ relations have been derived [44],

Sp(n) x SO(4n =2k _ Sp(k + 1)ny X SO(4k + 2)ns

~ , 3.68
P — Vs x Uzternss) P % Ulagesmen) (3.68)
. . n?
which have central charge ¢ = 2n — 1 - Zn-iT—{-l’ and
Sp(2)2n+1 X 50(6)1 - 50(271 + 5)1 X SO(STL +6)1 (3 69)

Sp(1)2n+2 X U(1)4n+3 - SO(?TL + 1)5 X SU(2)2n+2 X U(1)4n+3‘

The Kazama-Suzuki models which are part of a dual pair and also have a Poincaré
polynomial that can be reproduced by a Landau-Ginzburg model are particularly interesting.

Notably such models are
SU(n+ 1)

SU(n) x U(1)
Note that the Poincaré polynomial specifies the superpotential only up to marginal defor-
mations. This relation of KS and LG up to marginal deformations will be used in the next
chapter.
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4

SINGULARITIES OR FLUXES:
NONPERTURBATIVE T-DUALITY

This chapter deals with ‘impurities’ in supersymmetric backgrounds of string theory.
Broadly speaking, it deals with two kinds of such ‘impurities’. First, there are isolated
singularities of the background geometry. One might call this a ‘geometric impurity’. Sec-
ond, in contrast to the geometric impurities, there are ‘objects’ in string theory, the various
branes, which are sources of gauge fields and curve the geometry. The archetypal example
which will play a rdle, is the NS fivebrane.

Unlike the geometric impurities, those of the second kind are sources of gauge fields;
one might call these ‘flux impurity’. The distinction between the two kinds of impurity is
somewhat artificial from the point of view of string theory. This is so, because there are
string dualities which may relate one kind to the other.

Again, the best known example is T-duality which relates asymptotically locally Eu-
clidean spaces with an Ay singularity to a background in which there is a stack of k + 1
fivebranes present. In fact, it is a general feature of T-duality, that a non-trivial circle fibra-
tion, which is a purely geometric characteristic of a background, is dual to a background
with NS-flux.

T-duality can be formulated in perturbative string theory, it is an isomorphism between
a pair of conformal field theories that gives rise to an equivalence of a pair of string back-
grounds for perturbative string theory. In order to find a pair of T-dual string backgrounds,
one should thus find the pair of isomorphic worldsheet conformal field theories, and if pos-
sible, their target space interpretations.

This can be done in a perturbation expansion in a’, regarding a worldsheet cft as a
nonlinear sigma model. The pair of dual worldsheet cft’s is obtained as different effective
theories of one overarching theory, so that manifestly the pair of theories should be isomor-
phic.
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In practice it is hard to explicitly find the pair of effective theories, when a perturbative
treatment in terms of o’ is not sufficient. This is the case when T-duality is considered along
a circle that degenerates. A typical situation when this occurs, is at a Calabi-Yau singularity.

When the cycle degenerates, worldsheet instanton effects must crucially be taken into
account to find a correct dual theory. One important effect of the worldsheet instantons,
is that they typically break a symmetry which seemed to be present classically. In the
present circumstances, this symmetry can be interpreted as a translation symmetry in the
flux background (which seems to come from the translation symmetry in the geometric
background).

One might ask for example the following two questions. Why is this symmetry broken
in the full, nonperturbative T-duality transformation? And second, what is the significance
of the fact that this symmetry is broken?

To begin with the first point, a physical argumentation why a translation symmetry need
not be preserved by T-duality is the following. Essentially, T-duality exchanges winding
modes and momentum modes of a string. The momentum modes are like the modes of a
point particle, they depend on the ‘ordinary’ geometry of a target space. One such ‘ordinary
geometric’ notion, is the presence of a translation symmetry. But there is another part of
geometry which is probed by strings: the geometry to which winding modes are sensitive.

At a singular point, the modes winding around the orbits of the translation symmetry
can become light, as the orbits degenerate near the apex. These winding modes, worldsheet
instantons, have a consequence for the ‘ordinary’ geometry of the T-dual background, which
need not have a translation symmetry.

To reflect on the second point, why is the absence of this symmetry important, let us say
this. Both kinds of ‘impurities’, geometric and flux, are important in for string theory for a
special reason. At such impurities there is ‘localized physics’ which takes place just at the
impurity. This local physics can be decoupled by applying appropriate scaling limits. As
we are dealing with ‘localized physics’, it is clearly relevant if the impurity is ‘localized’
(there is no translation symmetry, as non-perturbative (worldsheet) effects have broken it),
or if it is not localized, as this difference matters for physics ‘near the impurity’.

There is another important aspect, which we will not discuss much, but is a crucial mo-
tivation for the study of these dualities. The decoupling limits near impurities can be used
not only to isolate ‘localized physics’ at the impurity, they can also be used to construct
new superstring backgrounds. Essentially, these backgrounds are related ‘holographically’
to the localized physics. In the construction and study of such string backgrounds, often it
is very useful to know of an impurity and a scaling limit which produces this background,
think for example, of D-brane setups which give rise to anti-de Sitter geometries. In this re-
spect, it promises to be useful to know T-dual descriptions of geometric and flux impurities.
These can give rise either to linear dilaton backgrounds of string theory, or anti-de Sitter, by
deforming the worldsheet conformal field theory, or adding various branes.

The outline of this chapter is as follows. First we will discuss impurities, of geometric
and of flux type, and their scaling limits. Next, it tumns out that especially the scaling lim-
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its may admit an exact worldsheet cft descriptions, while the ‘full’ backgrounds, before a
scaling limit, do not. Then the T-duality will be discussed. The special features of T-duality
in the context of a degenerating isometry are discussed. We continue with the proposed
T-duality relation for Calabi-Yau singularities which have a description as certain affine hy-
persurfaces or discrete quotients thereof. For quite special hypersurfaces, the T-dual admits
a genuine geometric interpretation, this case involves Kazama-Suzuki models which admit a
Landau-Ginzburg description, for other cases, a geometric description is not known is such
concrete terms. Finally, we conclude with some final observations.

4.1 IMPURITIES AND SCALING LIMITS

In this section two kinds of string theory impurity are considered. One is entirely geometric:
a singularity in a compactification manifold A that features in a supersymmetric string
vacuum of the form R-2™1 x M,,,, without any fluxes and a trivial dilaton. Hence
Ma,, is a Calabi-Yau or hyper-Kéhler manifold, and an isolated singularity locally is of
the sort discussed in chapter 2. The other kind of impurity is a Neveu-Schwartz fivebrane,
the magnetic dual of the fundamental string, or a collection of fivebranes. This object is a
source of magnetic flux and also curves space around it.

Both sorts of impurity have physical consequences at certain low energy scales. In the
presence of a singularity there are special massless states coming from branes wrapping the
vanishing cycles. In the presence of a stack of fivebranes there are massless states which
originate from D-branes that end on the fivebranes. In either case the special massless
states are ‘localized’ at the impurity. By appropriately tuning deformations of the impurity
(blowing up a singularity or separating the fivebranes in a stack), which set the energy scale
of the ‘localized’ states, and simultaneously tuning string parameters as g s and ¢,, the region
near the impurity can be isolated. States not associated with the impurity decouple, and one
is left with a different string vacuum than one originally started out with before the scaling
limit.

There are two important features of the string theory vacua that one ends up with after
the scaling process. First of all, they have isolated the physics that has to do with the
impurity. Second, they are generally simpler than the original backgrounds, and it is not
uncommon that the ‘near impurity’ backgrounds have an exact cft description, when the
“full’ global backgrounds do not have a known exact description.

4.1.1 SINGULARITIES
Consider a geometric string vacuum of the form
R9—2m,1 x M2m

which preserves some supersymmetry. This means that M 5., is a Calabi-Yau manifold,
or even hyper-Kihler. Usually one takes a compact M 3,,,. From the ten-dimensional low
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energy effective action
1
Sio = 53 d%v-GR + ..., @.1)

one gets a low energy effective action on R®—2m:1,

1
S10-2m = CY /d10_2m$\/ —Gro—2mRio—2m + ... 4.2)
10—-2m

The couplings are related as

2k? = (271')75393,

2k2 4.3)
Vol(Mam ) 2™

2 —
2K10—2m =

So there is an effective low energy theory on R®—2™! that is gravitational, having taken the
volume of M, finite.

A Calabi-Yau manifold is usually part of a continuous family of Calabi-Yau manifolds,
labeled by the moduli. The moduli govern the size of certain homology cycles of a Calabi-
Yau. At some values of the moduli, some cycles may shrink to zero size, and a singularity
develops. An example of this, is found for the deformations of a (non-compact) A4 ;. singu-
larity, in section 2.1.2.

More explicitly, an explicit metric on a smoothed Ay singularity, is provided by the
multi-centered Taub-NUT space[12, 13],

ds? = U~ (d8 + &d)? + U di®, (4.4)

where 7 coordinatizes flat R® and 4 is a periodic coordinate. Furthermore

2 Y
U=1+Zﬁ,
|7 =7 4.5
VU = -V x&

This metric is regular at ¥ = 7; provided that the periodicity of 8 is
f~0+4mA. (4.6)

In the metric (4.4) k blown-up two-spheres are seen as circle fibrations over the line
segment between 7 = 7; and 7 = 7;11. At the end points of this interval U ~! = 0 and the
fiber, parametrized by 8, shrinks to zero size. The volume of S fj, the sphere between ©* = 7;
and 7 = 7;.,, is given by

Vs, (|7 — 751) = / dgu 172 / drU? = amA|F7; — 7). @.7)
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Figure 4.1: A two-sphere as a circle fibration over the line segment between 7; and 7;, where the
function U™, of the multi-center Taub-NUT metric vanishes, as in equation (4.4).

If N > 1 centers coincide, 7; = 7 the corresponding two-spheres S;; shrinks to zero
size. Also, a conical singularity develops at that center, as effectively the periodicity of the
#-coordinate is reduced from 47\ to 47\ /N.

To get a bit more feeling for this metric, consider the single center Taub-NUT metric,
with
U(r)=1+ % (4.8)

Explicitly, the metric reads

L _ 2
) (df + A(1 — cosv)do) 49)

+U(r) (dr2 +r? [de + sin? wquQ]) :

2
dSTN =

Near r =~ 0, redefining coordinates » = p? and scaling A = 1, the metric can be written as
ds? ~ dp? + p? (dwz‘ 4+ sin? ¥de? + [d0 + (1 — cos)dd] ) .

The p?(...) term is a circle bundle over S2. It is the Hopf fibration S — S3 — §?
precisely when the periodicity of 8 is 47, and the metric cone over S 3 is just smooth R*.

This reasoning sets the periodicity of 6 in a smooth multi-center Taub-NUT to be 47 \.
If N are moved on top of one another, locally the metric will look like

ds? ~ dp? + p? <dw2 + sin? 1d¢? + le—z [df + (1 — cos z/))qu}Q) ,
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which is a metric on the metric cone over the lens space S3/Zy.

The metric in (4.4) describes a non-compact space. The sort of singularities that can
occur in a compact manifold may be restricted by global properties of the manifold, more
specifically, by its homology. For example, the only family of 4d compact hyper-Kahler
manifolds are the K3 surfaces, which have the following Hodge diamond,

h0:0 1
h1O  pol 0 0
20 RpL1 p02 — 1 20 1. (4.10)
h2,1 h1’2 0 0
h2? 1

So a singularity with a Milnor number ¢ > 22 can certainly not occur in a K3 surface.

However, it is justified and interesting to not restrict the attention only to singularities
that can occur in compact manifolds M ,,,,, but also consider singularities that occur in non-
compact Mo,,,. The justification comes from the existence of a scaling limit that isolates
the physics at the singularity. States localized at the singularity couple to ‘far away’ states
through gravitational interaction. In isolating the states at the singularity, the gravitational
interaction is switched off. This is a different kind of physical situation than the one which
is considered in a ‘compactification’ as discussed above, and M ,,, need not be compact for
this scaling to make sense.

Let us consider a scaling limit which isolates the physics near a singularity. Around a
p-cycle in some M, there can be wrapped Dp-branes. The tension of a Dp-brane has the
following proportionality: .
gs[€+l .

If it wraps a p-cycle of volume V,¢2, the mass of the Dp-brane thus is proportional ! to

(4.11)

T, ~

Ve
gsbs .

Mp(Vy) ~ (4.12)

By simultaneously tuning the moduli ; in a way that the volume? V,, = V,(z) — O and
‘switching off gravity’, scaling the Planck length £, = ¢, gg/ 4 0, while keeping the mass
of a wrapped Dp-brane fixed, the states near the singularity are isolated. On the one hand,
some states become very massive and can be integrated out to get the low energy dynamics,
like, for example states associated to branes wrapping large cycles that are not scaled down.
On the other hand the gravitational modes decouple.

Several comments are in order. First, note that it is not necessary to scale £, — 0 in
this limit. But after the scaling one has isolated the physics near the (almost) singular point.

I There may also be a nontrivial B-field flux through any of the 2-cycles, corresponding to the imaginary part

of the complexified Kiahler class. Such a flux also contributes to the mass of a wrapping D-brane.
2 Also, the B-field flux through the cycle should vanish.
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So in a sense, it is a ‘decompactification’ limit that keeps only the local geometry near the
singularity.

Second, the physics due to the light degrees of freedom localized near the singularity
can be described in various different ways, related by dualities, which are discussed later in
this chapter. For the moment, consider one particular viewpoint. Take a space of the form

R5'1 x M4,

where M is a multi-centered Taub-NUT space, like (4.4). Regarding this as a vacuum of
IIA string theory, it can be lifted to an M-theory background

R>! x 8! x C.

This, in turn descends [79] to another [IA vacuum, taking the M-theory circle to be the fiber
coordinatized by #; the ‘original’ M-theory circle can be decompactified. In this vacuum
there is a D6-brane at each center of the metric. As several Dé-branes move together, the
fundamental strings stretching between them become light. The open strings give rise to a
low energy SU(k + 1) gauge theory. The W-bosons from strings stretching between branes
at 7; and ; have masses that are proportional to |7; — r;|. This is the proportionality of
masses of wrapped D2-branes in the original configuration. Indeed, the D2 branes lift to
M2-branes which are extended in the §-direction.

These descend to fundamental strings stretched between the D6 branes. In {79] an analogous
analysis is also carried out for (resolved) D2 spaces. In that case the resolved geometry
is somewhat more complicated, because of the additional Z, of the dihedral groups. In the
geometric picture this gives an extra ‘center’, of a different sort that the Taub-NUT centers.
The ‘metric link’ of this center is a circle bundle over RP2, rather that P! (see section 2.1.2).
After the 9-11 flip this extra center gives on orientifold O6-plane [79, 80]. Note that in one
picture the ‘impurities’ are purely geometric, whereas in the dual picture the impurities are
manifested as branes, so there are fluxes.

4.1.2 FIVEBRANES

An interesting class of non-geometric impurities is formed by configurations of Neveu-
Schwartz fivebranes®. The simplest configuration is formed by a stack of superimposed
fivebranes that occupy a R%! worldvolume and have R* transverse to their worldvolume.
Such a stack of N coincident fivebranes curves space, is a source of 3-form H-flux and

3Throughout the discussion it is assumed we are dealing with fivebranes of a Type II theory. Usually we have in
mind IIB theory, when we discuss fivebranes as ‘flux impurities’ T-dual to hyper-Kihler surface singularities. But
depending on the situation, one should consider IIA theory. This is the case if the T-dual theory has a geometric
singularity which is deformed, in the scaling process, by blowing up a three-cycle (like the deformed conifold) and
D3 branes wrapping the three-cycle play a réle in the scaling limit under consideration. As the discussion focuses
on the bosonic sector, where the distinction between IIA and IIB is not always so important here
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induces a non-trivial dilaton. More precisely, the field configuration of these fields is

No'
2(P—Poo) _ _
e )—h(r)—1+r—2,
5
ds® = —dt* + ) " dzida; + h(r) [dr? + r2d0F] 4.13)
i=1

Cy =h7'(r)[dt Adzi A --- Adzs],

which can be obtained from the string equations of motion in the approximation to lowest
order ina’. Here Cj is the dual of the 2-form NS-NS gauge potential. Alternatively, in terms
of the 3-form flux H, the field configuration can be written as

Himnp = ~ €100, 9, (4.14)
where m, n, p, q are indices in the space R* transverse to the fivebrane worldvolume. Sev-
eral related field configurations can be obtained, by taking several parallel stacks at different
points in the transverse R4,

As the fivebranes are BPS objects, any such configuration forms a good string vacuum,
with an amount of supersymmetry that corresponds to two copies of N = 1in d = 6 (for the
type Il theories). If the positioning of the stacks has enough symmetry, it may be possible to
sum the contributions of all stacks explicitly. The resulting field configuration then looks a
lot like the ‘single stack’ configuration above, only with a changed harmonic function h(7).
Some such configurations will be discussed later.

SCALING LIMIT OF A STACK OF FIVEBRANES

There is also a way to get a simpler background. The harmonic function simplifies in the
region 7 < v No/, where the constant term can be dropped, so h(r) ~ 7 ~2. Unlike the full
background (4.13), this scaled background has a known exact worldsheet conformal field
theory description [15]. This exact worldsheet cft is actually a N' = (4, 4) superconformal
theory, corresponding to the d = 6 spacetime supersymmetry of the target space*. The
target space of a V' = 4 superconformal model does not suffer o’ corrections beyond the
level at which the geometry (4.13) was derived. From this geometry it is possible to identify
the exact conformal field theory.
Choosing a new radial coordinate

1 1 r?
— 0 —
vNo g Na'’
4By dimensional reduction d = 4 ' = 2 supersymmetry is obtained fromd = 6 N = 1. The N/ = 2d = 4

algebra has three supercharges, which are related to three worldsheet U(1) currents, similar to the argumentation
in section 3.2 relating d = 4 A = 1 with N = 2 extended superconformal symmetry.

¢ = (4.15)
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the region near the stack of fivebranes looks like a ‘throat’, R 4 x 53, with field configuration,

ds? = ld¢2 + No/dQ3,

4
®_ &, = _Na’¢ 4.16)
2 b
H = —Nd'e,

where € is the volume form on S3, [ € = 2n2.

From these expressions it can be seen that a change in the string coupling asymptotically
far from the fivebranes, g, = e®°, accompanied by a rescaling of r, does not change the
field configuration down the throat. This feature allows the physics ‘localized” down the
throat to be decoupled, by sending g, — 0 and simultaneously descending in the throat.

The background (4.16) is the target space field configuration of a couple of exact con-
formal field theories. The S3 with N units of H-flux is the target space of a SU(2) WZW
model at level £ = N. Actually, this part of the string background is described by a super-
symmetric WZW model. The worldsheet fermions are free, after doing a gauge rotation.
This gauge rotation is anomalous®. Its effect is to change the central charge of the bosonic
piece of the WZW model from ¢ = 3N/(N + 2) toc = 3(N — 2)/N, i.e. the level of the
SU(2) current algebra of the decoupled bosonic part SU(2) &, of the supersymmetric WZW
model,isk =N — 2

The R, part, is described by a scalar, and the linear dilaton is reflected as a background
charge for this scalar, so R4 is described by (a supersymmetric analogue of) a Feigin-Fuchs
cft. The background charge of the scalar is @ = —+/1/N. The central charges of the
Feigin-Fuchs and WZW models are

+ =, 4.17)

. -2
Cwzw = 5 + T, (418)

Cp =

= | -
2|2

where ¢ = ¢/3, so the throat superconformal model has ¢ = 6. A complete string vacuum
is obtained by tensoring these cft’s with three free chiral superfields, corresponding to the
worldvolume directions of the stack.

Note that the conformal field theory description only makes sense in case the number of
fivebranes is NV > 2, but not for a single fivebrane. Another noteworthy point is that down
the throat,  — —oo the dilaton grows without bound. On the one hand, the fact that the
string coupling grows in the throat, allows for a decoupling limit to exist, in which string
propagation seems to be described by an exact cft. But on the other hand, where the string
coupling becomes large, a worldsheet cft does not relyably reflect the string dynamics, as
string loop effects may not be ignored.

5See, for example, [15].
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OTHER FIVEBRANE CONFIGURATIONS

As mentioned earlier, any configuration of parallel fivebranes, located at different points
in the transverse R* has the same amount of supersymmetry as the single stack configura-
tion. More precisely, the field configuration of (4.13) is that of extremal fivebranes, which
preserve half of the supersymmetry of the string theory, and any parallel configuration of
such branes is a stable one, as the branes exert no force on one another. The only change
in field configuration with respect to (4.13) is manifested through a change in the harmonic
function. The single center function is replaced by the superposition

~ Nio/
h(r"):1+zm, 4.19)

with centers at every location of a fivebrane. Of course, such configurations can be regarded
as deformations of the single stack configuration. In the remainder of this section some
special configurations are reviewed, which are both of physical interest, and for which the
summation yields a reasonably neat result.

SO(3) x U(1) ISOMETRY

Perhaps the simplest configuration one can consider, is that of a large number of fivebranes,
smeared over a transverse direction, either R or S!, with a uniform density. Essentially
the harmonic function that solves the four-dimensional Laplace equation Ah(74) = 0 in
the localized single stack configuration (4.13), is replaced here by a solution of the three-
dimensional Laplace equation,

where v is the fivebrane density. Note that a function of the same form appears in the Taub-
NUT metric. Indeed, the Taub-NUT metric and a fivebrane are related by T-duality, but in
a rather more complicated way [11] than a naive application of the rules for T-duality [9]
would indicate.

SO(3) x Z ISOMETRY

It is also possible to get the field configuration for a stack of N coincident fivebranes with
transverse space R® x S! by taking 7 = 7 + nés. The resulting harmonic function was
obtained long ago in connection with a periodic array of instantons in R 4 [105]. Essentially,
one uses the standard expression from complex analysis

Z fln =35 ]{fz)ﬂ*cot (mz2) le{eezsf

n=-—00
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In this case f(z) = (1+ 22)~! has poles at z = =4, and the summation yields

1
Z— = mrcothm.
1+ n?

Similarly,

a2+ (Bn—?  2mi ez (82— )
nETee (4.20)

%cot (%)
ﬁzgg% a2 + (Bz — )%

i 1 1 4 cot (%‘Z)

The contour C'is taken appropriately large and avoiding the poles at 2 = (ymia) /8. The
residues at z = (v + i) /3 are

ol o Ty | T«
ot =L 4+ —
208 (m [z )
respectively. Expanding the hyperbolic tangents in exponentials, the result is

sinh 2—553

cosh 2 — cos %’1

Using this result, the harmonic function describing a stack of fivebranes on R3 x S1is
found. Let the circumference of 5! be 27 Rg, then the harmonic function for a stack of N

fivebranes is
- No/ sinh (r3/Rg)

h(rs,§) =1+ 2Rgr3 cosh (r3/Rg) — cos (£/Rg)’

where £ is a coordinate on S! with periodicity 27 Ry.

(4.21)

SO(2) x Z,, ISOMETRY

Another interesting configuration is that of n stacks of ¢ fivebranes each, the stacks being
positioned at

75 = (0,0, pssin(27j/n), ps cos(2nj/n)) j=0,...,n— 1. 4.22)

This configuration has been considered in [25]. The R* transverse to the fivebranes splits
into an R? with polar coordinates (rq, 8) perpendicular to the ‘ring’ of fivebranes, and an
R? with polar coordinates (p, ¢), in which the ring of fivebrane is situated, .i.e.

7= (re sinf,re cosh,p sing,p cos¢).
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The configuration is invariant under SO{2) x Z, shifts (8, ¢) — (6 + ¢, ¢ + 2mik/n). The
harmonic function that characterizes this configuration can be obtained in a way similar to
the previous case [25],

i _ ngo! sinh (nz)
h(z,p,¢) =1+ 2p,psinh () cosh (nz) — cos (ng)’

2 1/2
Tt [r§+p§] )
2p.p 2p.p

This configuration in its own right may not look particularly illuminating. However,
it does play an important role as a deformation of the single stack configuration, which
exhibits a various regimes at different scales. From afar, p2 < 72 = r2 + p? < ngo/, a
small deformation of the ‘single stack’ looks much like a single stack of N = ng fivebranes.
Near the ring, the behavior depends on the density of centers. In particular, in case n is very
large, and nz is also large, so that one is not so close as to see the separate stacks, the
configuration looks like a continuous ring of fivebranes. The coordinates on R 4 transverse
to all the fivebranes,

(4.23)

7= (T(1),7(2),T(3), T(4))
= (ro sinf,ry cosé,p sing, p cos ),

used above, are rewritten in more convenient coordinates,

T(1) = p«sinh g cosx cosT,
T(2) = p«sinh ¢ cosx sinT,
T(3) = ps coshp sinx cos®,
T(4) = pscoshp sin x siny),

so that the ring is located at ¢ = 0 and x = /2. In these coordinates, the field configuration
is written as

ds? = No' (dg2 +dx? +

tan? x dy? + tanh? p dr2 )
1+ tanh? p tan® x

Nao'

"~ 1+ tanh®p tan? X
280

dr A dy,

29 _ € '
cosh? p cos? y + sinh? psin® x

e

This configuration as it stands has various features which are familiar from relatively simple
exact conformal field theories (for a good discussion, see [5]).
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SOME ASPECTS OF THE DEFORMED THROAT

First of all, there is the limit ¢ — co. There, the target space looks like a S3 with N = ng
units of B-field flux, i.e. the SU(2) WZW model, which is of course expected, since at
large o the configuration looks like a single stack. One can also consider the limit ¢ — 0,
i.e. the space ‘at the ring of fivebranes’. One part of the metric is

ds? = No' (dx? + tan® x dv?). (4.25)

This is a disk, with a dilaton
e?~%o = gecy, (4.26)

which diverges at the boundary of the disk, x = 7/2, where the fivebranes are located.
This is the geometry of a gauged WZW model, SU(2)/U (1), at least as N > 1 (see also
the examples in section 4.2), which is presently the case. The level of the SU(2) current
algebra is N, and when this is large, the U/ (1) gauge field may be eliminated by its classical
equations of motion to give the resulting target space geometry. At one loop the elimination
of the gauge field generates the non-trivial dilaton. The coordinate 7, appropriately rescaled,
corresponds to a (non-compact) U (1), i.e. a free boson, but with a periodicity that has been
scaled up from 27 to infinity, by the rescaling of 7. This rescaling also eliminates the B-
field.

The coordinate g interpolates between SU(2)/U(1) x U(1) and SU(2). This is a fa-
miliar situation [81, 82]. The coordinate g can be seen almost as a deformation parameter,
o = o~ ! that deforms a SU(2) WZW model by an exactly marginal deformation

8S(a) Na-/dzz JJ,

where J is a U(1) current of the SU(2) WZW model. However, g is also a dynamical field
itself, so in that sense it is not just a parameter that can be tuned ‘externally’.

In speaking of a gauged WZW model G/U (1), one should usually specify how the
U(1) acts in G. Either the vector action g ~ h~!gh or the axial action g ~ hgh might
be gauged leading to generally different anomaly free models. However, the SU(2)/U(1) ,,
and SU(2)/U(1), models are isomorphic. In terms of the geometry (4.25), the two are
interchanged by changing x — 7/2 — x. This isomorphy can be seen in many different
ways. For example, looking at the Landau-Ginzburg representation of the SU(2)/U(1)
model, W = ®V, the mapping is effected by an orbifold by the group J =~ Z  generated
by j, constructed out of the holomorphic U (1) R-current, as discussed in section 3.3.1. This
orbifold changes the spectrum in a way that can be undone by the mirror automorphism.
This means, that if the LG model with W = &~ where & is a chiral superfield, is the
SU(2)/U(1), model, then exchanging ¥ for a twisted chiral superfield Y, changes the
model to the SU(2)/U(1), one. Also, this change can be thought of in a more geometric
fashion, in terms of T-duality which, for this model, is nothing but mirror symmetry. This is
discussed in subsequent sections. However, do note that changing x < /2 — x essentially
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inverts the radii of the circle fibers in the geometry (4.25), which is typical feature of T-
duality. Interestingly, there is another way to connect SU(2)/U(1), and SU(2)/U(1),.
Starting from the undeformed SU(2) WZW model at p = oo, or correspondingly a = 0,
the vector-gauged model arises as the limiting deformation @ — oc. The dual model,
SU(2)/U(1), arises in the limit @ — —oo. This is another way to look at the effect of
T-duality [83], which has no obvious interpretation in the fat throat geometry (4.24).

Another relatively simple geometry is obtained from (4.24), not by fixing g, but by
taking x fixed to a constant value. Similar to the exposition above, there are two special
values of x. At x = 0 the space looks like

ds? = No! (d92 + tanh? g2 dr? + dz/?) ,
. (427)
Q e

coshp’

Again, a change of coordinates has been done, so © corresponds to a ‘decompactified’ U (1).
This limit kills the B-field. The geometry of the ¢ and 7 coordinates is, at large N, that of
the gauged WZW model SL(2;R)/U(1), at level N. On the other hand, at x = /2, the
geometry looks like

ds? = No/ (dg2 + coth? g? dr? + dz/;2> ,
e (4.28)
sinh p’

with a differently rescaled ¥, that again coordinatizes a ‘decompactified’ U(1). The rest
of the geometry is that of a SL(2;R)/U(1), model at level N. Again, both limiting cases
can be seen as exactly marginal deformations of SL(2;R) [84]. The two geometries can
again be seen as T-duals of one another, both being circle fibrations over a half line, but with
reciprocally related lengths of the circle fiber.

In this section, the term T-duality has been mentioned several times. It relates vari-
ous parts of the ‘fat throat’ geometry. It tumns out that actually singular geometries and
backgrounds with NS fivebranes are also related by T-duality, in quite a complicated way.
Essentially, the complications are caused by the singularity. To honestly describe the T-
duality completely clearly from first principles in a transparent way is quite difficult. In
most cases, more can be said in a scaling limit of the geometry, where string propagation is
related to an exact conformal field theory®. The full ‘unscaled’ backgrounds may not have
a (known) exact cft description. Still, also the scaling limits are of interest, as there is some
physics localized in the region kept by the scaling process.

6The string coupling may be large, in certain regimes, so it is not always justified to use the worldsheet confor-
mal field theories as a means to compute string dynamics
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4.2 GENERALITIES OF T-DUALITY

Target space configurations which look quite different from the point of view of ‘classical’
geometry, may be equivalent as string backgrounds. This is the case for string theory back-
grounds that are related by T-duality. In that case, there is a pair of isomorphic worldsheet
conformal field theories, and the spectra and scattering matrices of perturbative string the-
ory are hence isomorphic, too. Crucially, T-duality maps a weakly coupled string theory to
another weakly coupled one, so that the conformal field theories relyably reflect the string
dynamics.

There are various ways to think about T-duality. Usually one has a worldsheet conformal
field theory that has a target space interpretation and the target space has a U(1) 1sometry
The archetypal case is that of bosonic string theory on a target space M = M x S}, which
is a product space, with a factor that is a circle of radius R. T duality relates this string
background to one in which the circle has a new radius R and the string coupling is changed
as well, g; — J,, where the relation is

-t
R (4.29)
gs = ﬁ g:.

PATH INTEGRAL PICTURE OF T-DUALITY

The two conformal field theories are isomorphic because both arise as effective theories
of one single overaching theory, see, for example [53]. This overarching theory may be
obtained from the action

=L (a2, vE Ll pes i/
s_%/zd 2 Vhomsh® BaBg + 5 | BAds, (4.30)

of a scalar field ¢, with periodicity 27, and a one-form B, defined on a worldsheet . If B
is eliminated by its classical equations of motion,

B =iR? xd¢, (4.31)

this action reduces to
Sip= % / d2z VhR?h*P 9,056, (4.32)
by

which is the action of a sigma model on a circle of radius R.

On the other hand, one may eliminate ¢ to obtain an effective action for B. The classical
equation of motion for ¢ sets dB = 0. This means that B is a linear combination of an
exact form and harmonic forms. It is convenient to write the harmonic piece of B in a
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specific fashion. On a worldsheet of genus g, the vector space of harmonic forms in 2g-
dimensional. One may choose 2g homology cycles v, € H;(X;Z) and 2g dual harmonic
forms w! € H(%; Z), such that

/ w =6l 4.33)
i
There is a natural inner product on H 1(%; Z),
(Wi w) = / W AW =mY. (4.34)
b

Where (m*) is an matrix with only integers as its entries that has an inverse (m;j), with
only integers as entries as well.
Now a generic B satisfying the equation of motion of ¢, i.e. dB = 0, can be written as

2g
B=dfo+ ) aw'. (4.35)

i=1

Consider the term

i/B/\qu
2 Jx

in the action. Recall that ¢ is a periodic field with periodicity 27. In other words, ¢ need
not be a single valued function. Or more to the point, d¢ integrated over any cycle need not
be zero, but can be any integral multiple of 2. That is to say, one can write

2n
dp =dpo + _ 2mnw’, (4.36)

i=1

where ¢y is a single valued function and the n; are integers. Now, ‘integrating out’ ¢ does
not only mean solving for the equation of motion coming from the variation of ¢ ¢, which
says dB = 0. One also needs to sum over the lattice of n;’s. The above term in the action
now reads

1 g
2—7;/EBAd¢=27rzZJ:aim3nj. 4.37)
The summation over the lattice of n;’s in the partition function

Z=/[d...] 3 e

ﬁ€Z2g

fixes the a; to be multiples of 27. That is to say, one can write B = df, where @ is not single
valued, but has periodicity 2, just as ¢ had. The effective action obtained from (4.30), after
integrating out ¢, thus becomes

1 1
Sio = 2= /E 422 Vi =h"0,00, @38)
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which is the sigma model action with target space a circle of radius 1/R.

Conceptually, the procedure above amounts to the following. An ‘overarching’ action is
obtained by introducing a gauge field, so that this global symmetry is made into a local one.
This gauge field is non-dynamical. In addition, an extra term is introduced in the action,
which forces the gauge field strength to zero. Integrating out the gauge field, B in the
example above, gives one effective theory, whereas integrating out the Lagrange multiplier,
¢ in the example above, leads to the T-dual theory. If one also takes into account one-loop
effects in ‘integrating out’ the field from the path integral, there is also a shift in the dilaton,
as in (4.29).

This can be generalized to a target space that is a circle bundle [9], provided that transla-
tions along the circle fiber are isometries of the total space. Two additional features occur in
this more general setting. First, if the size of the circle fiber varies over the base, then in the
T-dual model, the dilaton will vary. In particular, if the original fiber is small somewhere,
then in the dual model, there will be a region where the string coupling is large. Second, if
the circle bundle is not a product manifold, there will be a B-field in the dual target space.
Explicitly, after T-duality along a fiber with coordinate 6 the metric, B-field and dilaton are

mapped (gob, bab, ®) — (Jab, bas, P) according to the Buscher rules [9]:

_ goages — bgabes

gab =Gab— —, doo = 9y
966
Gab = Gap — 202960 = boabes Gon = bga
@ 966 ’ T gsa’ (4.39)
. by — b 3
by = bap — 964065 GaQOb’ boo = 96a :
goe goe
=0 - log go9.

In the derivation of [9] effects of up to one loop are taken into account. The one-loop
effect generates the shift of the dilaton, while the change of g, and by is determined by
solving classical equations of motion. This evaluation is justified, corrections of O ((a')?)
are relatively small, provided that the circle fiber does not degenerate anywhere. It is a
requirement in the derivation, that translation along the circle fiber, is an isometry. Note
that it is a consequence of (4.39) that the T-dual geometry also has an isometry that the
dual background also has an isometry. If the target space has an isometry, then the sigma
model has a corresponding conserved current. T-duality acts on this current in a way that is
familiar from the R — o'/ R case.

There is a related, but somewhat different perspective to regard the R «— «’/R duality.
The scalar field ¢ that solves the equation of motion of (4.32), describing string propagation
on a circle, can be split into a left moving and a right moving part. T-duality is effected by
changing the sign of the right-moving part. This sign flip has an effect on the zero modes
of ¢: it exchanges momentum modes and winding modes. This effect is also seen from the
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equation of motion (4.31), which says
Il% df = iR *dg, (4.40)

where in the sigma model on a circle, with action (4.32), R d¢ is the conserved current
which measures the momentum along the circle and iR * d¢ measures the winding on
the circle. Both these currents are conserved thanks to the fact that one the one hand,
translations along the circle are isometries and on the other, field configurations winding
along the circle are topologically stable.

In a general circle bundle S! — M — B, there may be no conserved winding, if
71 (M) = {id}. One can expect that in the T-dual space, there is non-conservation of the
corresponding momentum. In other words, the isometry of (4.39) might not be present, even
though there is an isometry in the original, undualized, model. From the perspective of the
perturbative derivation of T-duality, which leads to the Buscher rules (4.39) this is not very
clear at all. This point is discussed in section 4.3.

T-DUALITY FOR SUPERFIELDS

So far, T-duality has been discussed from the point of view of bosonic sigma models.

The models relevant for supersymmetric string backgrounds have extended superconfor-

mal symmetry. There is an aesthetic way to formulate T-duality in terms on N = (2, 2)

superfields [10]. Essentially, it is a direct analogue of the bosonic path integral procedure

discussed above. The supersymmetric version is illustrated in the following example.
Consider the Lagrangian

1 [ 4, (R -
L=§/d0(7B —(Y+Y)B>. 4.41)
Here B is a general real superfield, B = B, and © is a twisted chiral superfield, D.Y =
0 = D_Y, with a periodic imaginary part y ~ y + 21, so it parametrizes a cylinder. Now
one can obtain a effective Lagrangian by integrating out either B or Y and Y. The equations
of motion coming from Y and Y read

D,D_B=0=D,D_B. (4.42)

This says that B is the sum of a chiral superfield ¢ and an antichiral superfield, and since
B is real, one can write _
B=%o+®. (4.43)

The periodicity of @ is fixed by the periodicity of Y, which in terms of component fields
can be seen exactly analogously to the bosonic case treated earlier. The periodicity is ¢ ~
¢ + 2mi. Substituting the above expression for B in the Lagrangian yields
R? =2 R? =
Lyy=— / a0 (®+9) = - / d*099. (4.44)
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This is the supersymmetric sigma model on a cylinder with radius R. Shifts of ¢ are isome-
tries. Alternatively, one could integrate out B. Its equation of motion reads

1 —
B= VD (Y+Y), (4.45)
so that the effective Lagrangian becomes
-1 4 >\ 2 -1 P
L|B=4_R2/d (Y +Y) =ﬁ§/d aY'Y. (4.46)

This is the sigma model of a cylinder with radius 1/R.

Thus the T-duality procedure eliminates a chiral superfield and introduces a twisted
chiral one, or vice versa. Note that réle of chiral and twisted chiral fields can be exchanged
by the mirror automorphism of the A" = (2, 2) super algebra (3.1). Recall from section 3.1
that a sigma model with Lagrangian

b-<

L= /d40K(¢i,6i;Ya7 a)7

that depends on both chiral and twisted chiral fields, is a sigma model on a target space [48]
with metric

0 K, 0 0
(Gu) = Koz, O 0 0 , (4.47)
0 0 0 —Ky.5,
0 0 ~Ky.g, O
and B-field
0 0 0 Ky3,
0 0 K - 0
_ yb¢,‘
Bw)=1| , K- 0 0 : (4.48)
Yoo,
~Kgg, 0 0 0

where a subscript denotes differentiation with respect to the corresponding variable. So a
B-field is present if mixed derivatives of the Lagrangian with respect to both a chiral and a
twisted chiral field do not vanish. Consequently, one cannot get rid of a B-field by acting
with a mirror automorphism. On the other hand, a sigma model based on both chirals and
twisted chirals need not have a B-field. In particular, if

L= /d40K(<I>i+75i;Ya+?a),
(4.49)
K =K1(q>7; +$i) + Kz(Ya + ?a)-

according to (4.48) there is no B-field. Moreover, such a Lagrangian describes a model
which is the tensor product of a model defined by K'; and one defined by K5, and one can
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appropriately map all twisted chiral fields of K5 to chirals, using the mirror automorphism
within the model defined by K; alone.

Sigma models of the sort discussed above are used as part of a worldsheet conformal
field theory. Therefore, they should have conformal symmetry; this means that the beta
functions of the sigma model should vanish. In many cases, the conformal symmetry is
kept thanks to a non-trivial dilaton, which couples to the worldsheet curvature tensor, and
was not really discussed. In any case, the beta functions, determined to first order in o’
read’

1
ﬁGuu =R“V N ZHI"MHVP” + 2VMVV¢ +0 (a’) =0,
Bc,., =V,H?,, —2 (V,®) Hf,,+0O (@)y=0,

(4.50)

where Hy,, = OBy, +0, B, + 0, B),. And the central charge is determined by the beta
function of the dilaton,

_3 ’ 2 1 "2
c_i(D+a [4(:7@) —4V2¢+EH2—RD+O((Q)), @.51)

where %D is the number of chiral and twisted chiral superfields appearing in K, or, in other
words, D is the (real) dimension of the target space.

EXAMPLES OF DUAL SIGMA MODELS

First consider sigma models based on a single chiral superfield, see, for example [48],
K = K(UV).

These have no B-field. In addition to the case K = U with a constant dilaton and central
charge ¢ = ¢/3 = 1, the following cases occur. In the absence of a B-field, 8¢,, = 0 is
solved by a dilaton

= % logdet K5 + C (‘IJ +W) , (4.52)

where C can be any real constant. First consider the case C' = 0. The Kéhler potential can
then be formally expressed as

B YU d
/ Zlog(4+2), 453)
1

which defines a good metric, _
ds® = K gdydy.

"There is some variation in the literature, depending on various conventions, see for example [85] and [86].

Our expression follows [48] and references therein.
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The dilaton profile is
1 —
¢ = —ilog (A+ BUY).
The different possibilities are in correspondence with different choices of signs of A and B

[48]; they are the following.
First, if A > 0 and B < 0, the metric is written as

.k
1-[yf?

This is the metric of the coset SU(2)/U(1). After a coordinate transformation the above
metric on the disk, and the dilaton are written as

ds® =k (d6? + tan® 8d¢?)
® =logcosé.

ds? dydy. 4.54)

(4.55)

The metric is invariant under phase rotations of ¥. One can perform a corresponding
T-duality, following the procedure of [10]. Phase rotations of ¥ are gauged, introducing
a real superfield B and replacing YU — ¥We®. One can gauge fix ¥ = 1 = U. An
overarching Lagrangian can be written as

eB

do —
Koesing = = [ ‘- log (1= ) + B (Y +7), (4.56)

where Y is a twisted chiral superfield. On the one hand, by the equations of motion of Y’
and Y, B is forced to be pure gauge, i.e. B = ©+6, where O is a chiral superfield. Writing
¥ = €9, this gives a Kihler potential

e
Kyy= / %}z log(1-a).
On the other hand, one can use the equation of motion of B instead, which reads
ef=XX -1,
where X is a twisted chiral superfield, X = e~Y . Plugging this into K overarching, ONE Obtains

1-1Xx)?
d
Kig= / ?" log (1 — a) — log (| X|*) log (1 — | X|?) .

Essentially the Kéhler potential for SU(2)/U (1) is the dilogarithm,

0

Lig(z) = /%log(l - ).

z
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One of the major functional relations of the dilogarithm is
72
Liz(2) + Liz(1 - 2) = i log(z) log(1 — z),

see, for example, [87]. Using this relation, the T-dual Kahler potential reads

|X|?

Kp=+ / d—:—log(l—a).

This just differs a minus sign from K (|\I! |2) , and, since X is twisted chiral, this minus sign
ensures that the kinetic term for X is positive, just like that of ¥ in the original model. So
this model is self-dual, the metric being written as

k dyde) k dxdx

Tl T TP @37

Here k indicates a scale of the metric In fact, as T-duality inverts the radius of the dual-
ized circle, it maps 12 — 1 — z2. The dilaton profile is & = —log (1 — |¥|?). Writing
1 = sin xe*?, this geometry is expressed as the one appearing in (4.25) in section 4.1,

ds? =k (dx? + tan® xd6?),
e?~%0 = _logcosx.
This is the metric the coset model SU(2)x_2/U(1).

As a chiral superfield is exchanged for a twisted chiral, the right-moving U (1) g charges
change sign. In a coset SU(2)/U(1), the change in charge assignment can be done by
changing from a vector gauging to gauging of the axial action of U(1). The same change
of charge assignments can be accomplished by changing doing a Z . orbifold, by the group
generated by j = e?™Jo,

A second possible two dimensional model is obtained by taking A < 0 and B > 0. The

metric can be written as .

[P -1
This is the metric of SL(2;R)/U(1),. To be precise, if SL(2;R) is generated by o1, io2
and o3, where 0} 2 3 are the ordinary Pauli matrices, then the U(1) which is gauged, is
generated by io2. By a coordinate transformation this is written in the form of section 4.1,

ds? = dwdw (4.58)

ds® =k (dr? + coth? rd7?), 4.59)
— log sinh p. ‘

The central charge of this model is ¢ = ¢/3 = 1 + 2. This is the central charge of

SL(2; R)/U(1) at level k + 2.
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This metric also has an isometry corresponding to phase rotations of ¥. It is not self-
dual, though. Instead, in a fashion analogous to the previous case, see, e.g. [48], T-duality

maps it to the metric
k

[¥)2 +1

This metric corresponds to the choice A > 0 and B > 0. It is the metric of the axially
gauged SL(2;R)/U(1), also written as

ds? = ————dydy (4.60)

ds® =k (dr® + tanh? rdr?),

(4.61)
® =log cosh p.

Next, if A = 0 and B > 0, the resulting metric can be written as

ds? =—dd
wwd)d)

With a change of coordinates z = log v, this is written as the standard flat metric on C, with
a linear dilaton

ds® =kdzdz, 4.62)
®=z+2. '
Finally one can take a dilaton profile as in (4.52) with C' # 0, in particular,
1 1
d = §K¢E + 3 log (w@
The metric then can be written as
ds? = dzdz. (4.63)

24z
This is the T-dual of the previous case [48]. These two cases can also be obtained as an
exactly marginal deformation of SL(2; R) [84]

k
ar

Z

S(a) = /d2z ~0zdz + . 6’y+8’y_

where the duals lie at opposite extreme limits of the deformation parameter a — +oo. The
trumpet and cigar geometries,

% /d2z6p5p+ f(p)0608,

with f(p) = coth? p and tanh® p are also related as extreme limits of an exactly marginal
deformation of SL(2; R), however, they are deformed by a J,.J> deformation.
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All these two-dimensional examples have no fluxes. An important example of duality
in a four dimensional background is [16]
_ SU(2)

SU(2) x U(1) ~ ) x U(1) x U(1).

The left hand side has flux. Its ‘Kéhler potential” has the following form:
da —
Ksu@yxvu) = — / - log (1+ @)+ log ¥ log¥ (4.64)

where ¥ is a chiral and Y a twisted chiral superfield. The metric that follows from this
potential is
2 140 + ldy?
W2+ [yl
which exhibits the SU (2) rotation symmetry and the scaling symmetry. The potential above
can be obtained from an overarching potential

CB
d — -
Koverarching = - / ?a log (1 + 01) + 10g (@'I)) +c (B + log (d)@)) (e + é) !

dependent on chiral superfields ® and ©, and a real superfield B. If the equations of motion
of ©, © are used, K su(@)xu(1) is recovered. On the other hand, using the equation of
motion of B gives a dual model, with a potential dependent of a pair of chiral superfields,
and so there is no flux. After some manipulation, see [16], the target space of this dual
model turns out to be the product of SU(2)/U(1) and a torus.

One particular reason why this example is important, is that the SU(2) WZW model
features in the description of the throat geometry of fivebranes. In fact, the complete throat
geometry is described also by SU(2) x U(1), but the U (1) has a background charge so that
the central charge of the throat background is ¢ = 2, for any number of fivebranes (recall that
the number of fivebranes corresponds to the level of the SU(2) current algebra and to the
value of the background charge). The above duality suggests, that a throat background might
be related to a purely geometric one, that is to say, one without fluxes. And actually, the
dual backgrounds correspond to exact conformal field theories. More about such dualities
is discussed in section 4.3.

Finally, T-duals of Kazama-Suzuki models can be constructed [28]. This is accom-
plished by writing a Kazama-Suzuki model as a gauged WZW model

G
(H xU(1)),’

so that there is a U(1) symmetry, essentially the axial action of U(1) on G. Using this
symmetry an overarching Lagrangian can be constructed which reduces to either that of
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the original Kazama-Suzuki model or its dual, depending on which field is integrated out.
Unlike in the two dimensional cases, the general procedure is dot done in an off-shell for-
mulation, but in component fields.

Before treating the general case as it was studied in [28], let us consider the example of
SU(2)/U(1). This model is self-dual. T-duality essentially exchanges the chiral superfield
for a twisted chiral one, as discussed earlier. This exchange basically amounts to inverting
the sign of, say, the left-moving U(1) g charge. Next to exchanging the chiral field for a
twisted chiral field, there is another way to flip the sign of this U (1) charge of all states of
the SU(2)/U(1) model. It is also accomplished by taking an orbifold with respect to the
Zx+2 symmetry generated by j = e2™*/o_ where Jj is the holomorphic U(1) current of the
N = (2,2) superconformal algebra. Now, T-duality relates

SU@2k _  SUQ2)k
Uy — U X Zira’ (4.65)

Now, in a general gauged WZW model of Kazama-Suzuki type, one can ‘gauge’ the
residual U(1), symmetry, add a Lagrange multiplier term to the action which forces the
gauge connection to be flat, and integrate out the gauge field, following the same philosophy
as discussed in the earlier examples. The result is [28] that

Gy T Gk
HxU(l)y,  HxU(l)g X Zgygv

(4.66)

That is to say, under T-duality vector and axial gauging of the U (1) are exchanged. Further-
more, an orbifold is done with respect to the Z ;. ov subgroup of the U(1),, symmetry, that is
a global symmetry of the axially gauged model (g ¥ is the dual Coxeter number of G). While
in the SU(2) case, on could be somewhat sloppy with the indication of the extra orbifold,
because the orbifolded and unorbifolded theories are related by a sign flip (more accurately,
by action of the mirror automorphism), in a general Kazama-Suzuki model, the orbifold
acts in a more complicated way. In other words, in the two dimensional models, T-duality
acts as mirror symmetry: it acts quite non-trivially on the target space geometry, but almost
trivially on the cft spectrum. In general Kazama-Suzuki models, it is an isomorphism which
acts on the states and interactions in a more complicated fashion.

4.3 T-DUALITY AND FIVEBRANES

The Buscher rules (4.39) of the preceding section are applicable when the circle fiber along
which the duality is done, is large with respect to the string length. When the fiber is not
large, two problems occur. First, one must take into account corrections of higher order in
the sigma model coupling; usually there are corrections which are non-perturbative in o '
Second, according to the Buscher rules, when a fiber degenerates in the dual sigma model,
the string coupling becomes large, so that the utility of a worldsheet cft for the description
of string dynamics is questionable.
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Roughly speaking, the Buscher rules exchange B-field and ‘non-product’ structure of
the target geometry, or in other words, the degree to which a circle bundle is non-trivial.
In particular, starting with a target space that has no B-field, one expects to end up with
a dual target space in which the dual circle is ‘untwisted’. Furthermore, following the
Buscher rules, one would expect that either space of a pair of T-dual target spaces has a
circle isometry. But this is not always the case.

In the language of R < 1/ R duality, momentum modes are mapped to winding modes
and vice versa, when a T-duality transformation is done. In the case of R < 1/R duality,
momentum along the circle is conserved because translations are isometries, and winding is
conserved as well, because of the topology of a circle. However, a more general target space
may well have a U (1) isometry while at the same time there is no good notion of a ‘winding
number’ along the integral curves of the isometry, due to the topology of the total space.
This is a normal situation when the circle fiber degenerates somewhere, so that ‘strings’
winding along the fiber can be continuously contracted to a point. When this happens,
‘winding’ strings can become light, as they move to a region where the fiber is small. Such
additional light modes, should also be taken into account in the low energy dynamics, which
is not done in the derivation of the Buscher rules. So if winding is not conserved in a space
that nonetheless does have a U(1) isometry, one expects that the T-dual space does not have
the isometry predicted by a formal application of the Buscher rules.

THE DUAL OF TAUB-NUT

A well known instance in which the Buscher rules do not yield the correct dual geometry, is
in the case of a Taub-NUT space. The rules applied to the Taub-NUT metric, see also (4.4),

ds® = h(r)"1 (46 + & - d7)* + h(r)di2,
1 1 “4.67)

h(r) = ﬁ-{-g,

where the §-circle (8 ~ 6 + 2) is dualized, yield a metric
ds = hir) (462 + ar*) (4.68)

and a B-field, too. The harmonic function appearing in the metric and B-field is a three-
dimensional one. The geometry is just the ‘transverse’ geometry of a fivebrane, smeared
along the dual circle, parametrized by 6, of radius R.

However, the fundamental group of a Taub-NUT space is trivial, so there is no good
notion of a winding number. Indeed, the proper T-dual geometry is not (4.68), but that of a
fivebrane which is localized at a point on R3 x S! [11). The Buscher rules do not suffice,
but get corrections which are non-perturbative in o’. These worldsheet instantons break the
symmetry of translations along #, and the harmonic function is changed to the form,

1 1 ] 1 sinhr

+

4 . 4.
R 2r coshr — cos @’ (4.69)
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asin (4.21).
This harmonic function can be expanded as a sum of Fourier modes with different mo-
menta in the @ direction [14],

o0

h(rs,0) = Z cn(rs)e™. 4.70)

n=—oo

The zero mode cq is the harmonic function for the smeared fivebrane. The rest of the
coefficients c,, can be viewed as arising from condensates of strings with various non-zero
momenta along the f-circle. In the dual geometry, there are corresponding condensates of
winding modes, which, indeed become light as the circle fiber shrinks. Alternatively, the
breaking of translation symmetry can be viewed via the standard duality recipe of gauging a
symmetry and integrating out the auxiliary gauge field. This is perhaps more closely related
to the viewpoint of [11].

The procedure followed in [11] to determine the quantum-corrected dual of a Taub-
NUT space uses a philosophy which is very powerful in two dimensional T-duality, and
more generally, in mirror symmetry in higher dimensions, viewed as several T-dualities,
completely dualizing the fiber of a toric variety {53]. But it also works for a single T-
duality, along one circle, of Taub-NUT, as well as the asymptotically locally flat singular
spaces that are obtained from putting multiple Taub-NUT centers on top of one another.

The main idea is to perform the duality transformation, a la [10], not in the (conformally
invariant) non-linear sigma model, where the field configurations are complicated, but in-
stead to find a simpler non-conformal field theory which flows to the desired conformal
non-linear sigma model in the infrared limit of renormalization group flow. Essentially the
simplification is obtained by introducing U (1) gauge fields in the field theory, i.e. it is the
same philosophy that uses gauged linear sigma models to describe non-linear sigma models
at low energy, where the dynamics of the gauge field in ‘frozen’.

The particular models used in [11] are N = (4,4) supersymmetric two dimensional
theories, as they should be, describing superstring compactifications to six dimensions. It
was shown that a pair of models is related by a duality transformation similar to the N =
(2, 2) one of [10]. Actually the classical vacuum manifolds of these models are Taub-NUT
for one and the smeared brane geometry for the dual. But by taking into account instanton
corrections, which the gauge theory for the smeared brane geometry has, Tong [11] has
provided evidence [11] that the quantum corrected vacuum manifold is that of a localized
fivebrane.

T-DUALITY VIA NON-CONFORMAL MODELS

It is a very powerful philosophy to do a T-duality via the following steps, which was devel-
oped in [53]. First, find a non-conformal field theory which has a U(1) symmetry that is
realized in a simple fashion, the U (1) being the ‘T-duality circle’. This theory should at low
energies behave like the conformal field theory that one wishes to dualize. Typically, the
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ultraviolet theory is a gauged linear sigma model and at low energies the gauge dynamics is
frozen out, so that the effective theory is a non-linear sigma model®. This low-energy non-
linear sigma model has a circle symmetry, descending from a symmetry in the ultraviolet
theory.

Next, one can perform a duality transformation, integrating out the appropriate auxiliary
fields, in the ultraviolet theory. Integrating out the fields is slightly more subtle than in
the cases discussed earlier, since the ultraviolet theory has gauge symmetries, which affect
the transformations, both on the classical level, and by quantum corrections. However,
these effects are under control. The quantum corrections come from vortex configurations,
which are typical for U (1) gauge fields in two dimensions. The modifications to the duality
transformations are briefly discussed below.

The vortex corrections can break the circle symmetry that one might expect from looking
only at the classical dualization procedure. Now the task is to find a description of the dual
ultraviolet theory. This dual theory need not be a simple linear sigma model, as the quantum
corrections typically give rise to (twisted) F-terms in the theory.

Finally, having obtained a dual ultraviolet theory, one should identify its low-energy
limit. Not only may this model lack the circle isometry of the original low-energy model
before the duality, but it may have no (direct) geometric interpretation whatsoever. In partic-
ular, an ultraviolet theory with a (twisted) superpotential characterizes a low-energy Landau-
Ginzburg theory. That is to say, the D-terms may get renormalized in a very complicated
and incomputable way, precluding a direct geometrical interpretation, as a sigma model.
The twisted superpotential, which is better behaved under renormalization group flow, may
still to a large extent characterize the low-energy theory as a Landau-Ginzburg model.

There are considerable classes of models for which this approach to T-duality can be
carried out successfully. In the first place, T-duals of interesting two dimensional back-
grounds can be constructed. In particular, there is the derivation of the duality of the ‘cigar’
Euclidean black hole, SL(2; R)/U(1),and N' = 2 Liouville theory [26]. The existence of
this duality plays a significant role in the next section. The ultraviolet model that features
in the derivation of [26] is actually not quite an ordinary gauged linear sigma model. In
the model the gauge symmetry not only acts on phases of chiral fields, corresponding to
D-terms of the form

Liphase = / d*0®e® VP, 4.71)
but it also acts as shifts on another chiral field, corresponding to a D-term of the form
Litinear / 0@ +T+V)2 (4.72)

The two different ways that a gauge symmetry can act, (4.71) and (4.72) result in somewhat
different dualization properties, which will be briefly discussed momentarily.

8The low energy theory actually need not be scale invariant, it is possible to carry through the same approach
for a non-linear sigma model on a positively curved target space.
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Secondly, duals of geometries of more than two dimensions can be constructed. The
prime example of this, is the Taub-NUT gauge theory of [11], which actually also con-
tains a field which has a gauge symmetry acting as shifts, i.e. like in (4.72). As it stands,
this model, and its cousins describing A-type asymptotically locally flat spaces, are quite
exceptional. Much more often, mirror models have been constructed [53] of higher dimen-
sional target spaces, but not strictly speaking T-duals. In a toric variety mirror symmetry
can be seen as the composition of several T-dualities, such that every one-cycle of the toric
fibers is dualized [52]. Toric varieties are naturally described in terms of gauged linear
sigma models, and the ultraviolet theory corresponding to the mirror is obtained by dual-
izing the phase of every chiral superfield appearing in the linear sigma model. Note that
a toric variety (C™*"\S)/(C*)™ is described by a linear sigma model with m + n chiral
superfields charged under U(1)™. A T-duality along a single S! in the toric variety would
correspond to dualizing m + 1 combinations of phases of chiral superfields in the linear
sigma model.

DUALITY WITH GAUGE SYMMETRY

Let us now explicitly recall how the duality transformations act in a model with gauge
symmetries, as introduced in [53]. The quantum corrections in the ultraviolet model, due to
the gauge fields, correspond to corrections to Buscher’s rules, breaking isometry in the dual
model, at low energies, where no gauge symmetry is visible. Consider, as an example, the
following part of a D-term of a simple gauged linear sigma model with a chiral superfield
of U(1) charge q,

Ls = / d46Pe??V &. 4.73)

There is another part of the D-term, that gives the dynamics of the gauge field V, which
reads

-1
Lgauge = @rzv?, 4.74)

where © = —2D,.D_V. As e — oo, the gauge field becomes non-dynamical and this
term can be forgotten, which is the case in the low energy non-linear sigma model limit,
discussed in section 3.3.2.

The term (4.73) can be obtained from an overarching Lagrangian

/ d‘e (e2qV+B - %B (Y +ﬂ) (4.75)

by integrating out the twisted chiral superfield Y and its conjugate. On the other hand,
solving the classical equation of motion of the ‘auxiliary gauge field’ B, gives a dual La-
grangian, at least classically, that reads

Ly= /d40 (qV (Y+7) - % (Y +Y)log (Y + ?)) . (4.76)

97




Chapter 4 - T-duality and Fivebranes

Now, the first term can be written as a twisted F-term, since Y is a twisted chiral field,

D.Y=D_Y =0,
/ devy = % / d24%, Y.

Such a term looks like a Fayet-Iliopoulos/theta-angle term, with the difference that the ‘FI-
parameter’ here is not a fixed number, t = r — i6, but a dynamical field Y.
In all, at the level of classical equations of motion, the linear sigma model Lagrangian

1 1
_ 4 2,2qV _ 2 ~ {429 —
L= /d 9 <|<I>| eV — [Ty ) +3 (d g tE+c.c.) @.77)
is dual to
/d4e (YT log (Y + T) — o sy P
2 2e?

1 (4.78)
+‘2‘ /d252v [qY — t] + c.c.

Note the role of the twisted chiral Y, or more accurately, the real part of the expectation

value of its scalar component y, as a shift of the effective Fayet-Iliopoulos parameter in the

dual model,

Teff = Toriginal — Re (Y). 4.79)

However, solving the classical equation of motion of B does not suffice to determine
the effective action. There are configurations in which the phase of ¢ has winding, compen-
sated by a vortex configuration of the gauge field B. These configurations contribute to the
effective Lagrangian of the dual theory, and modify the twisted F-term [53],

1 x vortices =
5/<12(92V [qY — 1] "% %/(Pa (Zv Y —t] +pe™™). (4.80)

This is a generic feature that appears when a chiral superfield is dualized, of which the
phase is gauged. On the other hand, if a field is dualized which has a shift gauged, like
in (4.72), there are no vortex configurations, and no e ~¥ term is generated in the twisted
superpotential.

Now that a dual ultraviolet Lagrangian has been written down, consider the interpre-
tation of the dual model it describes. Actually, the model with a single charged chiral
superfield may be a bit too restricted. The target space of its non-linear sigma model limit
is given by

0="U=1¢* - qlog (Aﬂ) :
A
modulo gauge equivalence ¢ ~ e, which leaves a point for a target space. So perhaps it
is better to expand the model a little, and have two charged chiral superfields and a single
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U(1) gauge group. Take the Lagrangian
1 1 ~
L= /d49 [(|<I>1|2 +|®2]%) eV - %5|2|2] + §/d26 —r% 4cc. 4.81)

The scalar potential, as e — oo, reads

A
U =|¢1|? + |¢2|? — 4log (—X—V) , (4.82)

so at low energy scales it behaves as a non-linear sigma model on a large P 1
If the phases of both chiral superfields are dualized, using two auxiliary gauge fields,
the resulting Lagrangian can be written as

L= /d“a —-2-%|2|2+ 3 (Yi+Y)log (Yi + Vi)
i=1,2 (4.83)

+% /d2é [C@Y; +4Y2—t)+e 1 + e %] e

The low energy theory is then obtained by taking e — oc and integrating out X, which
enforces the constraint ;

Y2 = Z —_ Yl-
The resulting model is defined in terms of a single twisted chiral superfield with a twisted
superpotential, i.e. it is a Landau-Ginzburg model.

This is the viewpoint of [53]. Dualizing the phases of all chiral superfields amounts to
going to the mirror description. In the present example, the sigma model on P ! is not scale
invariant and correspondingly, the Landau-Ginzburg superpotential is not weighted homo-
geneous. This viewpoint of mirror symmetry is very interesting and it can be applied to toric
varieties with ¢; > 0, leading to Landau-Ginzburg (-orbifold) models with superpotentials
that are weighted homogeneous (c; = 0) or not (c; > 0).

For a two dimensional space, like P!, T-duality is mirror symmetry. As remarked earlier,
the mirror transformation entails dualizing all chiral superfields. To do a genuine T-duality
along a single one-cycle, one should dualize m + 1 chirals, if the gauge group of the ul-
traviolet model is U (1)™. In general this not only introduces m + 1 twisted chiral fields,
it also leaves some charged chiral fields. Such a field content, of both chirals and twisted
chirals, in a sigma model may give rise to flux, like in [48]. However, typically a model that
arises from such a duality transformation will also have (twisted) F-terms, so that finding
a geometrical interpretation is more complicated than would be for a sigma model. Also,
depending on which combinations of phases or shifts are dualized, it may be impossible
to perform the duality transformation in a N' = 2 superfield formalism, i.e. the constraint
equations coming from integrating out some auxiliary superfields may have no solution in
terms of elementary functions.
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OTHER GEOMETRIES AND FIVEBRANES

To recapitulate, applying the classical T-duality rules to a Taub-NUT geometry, gives a
geometry R® x S? in which a fivebrane is smeared along the circle. Taking into account
quantum effects, the fivebrane turns out to be localized at a point in R3 x S'. An analogous
statement is true for a stack of N coincident fivebranes. This dualizes to an asymptotically
locally flat space with an A x_; singularity.

It is natural to ask how this correspondence of T-dual backgrounds extends to other
geometries, also higher dimensional geometries which are part of string compactifications
that preserve less supersymmetry than Taub-NUT, such as Calabi-Yau three- and four-folds.
In particular, it would be interesting to understand how the dual looks, presuming that a
geometric interpretation exists. It is difficult to do an honest and exact quantum duality, for
a variety of reasons, some of which are the following.

First, it is probably almost hopeless to consider duality of a compact geometry. How-
ever, one might consider non-compact spaces which generalize the Taub-NUT geometry.
These might be smooth or have a singularity, depending on the particular situation, though
most cases will be singular. In particular, there are very interesting generalizations of the
Taub-NUT geometry to higher dimensions [88]. The geometry of these spaces looks like

ds? = A%(r)dr? 4+ C2%(r)ds% + B%(r) (df + A)?, (4.84)

where ds% is a metric on a compact homogeneous Kihler manifold, like for example the
Hermitean symmetric spaces of chapter 2. Furthermore, A is a section of the cotangent bun-
dle of Z, and is related to the Kihler form, = dA, locally. The coordinate  parametrizes
a circle and r is a ‘radial’ coordinate. The functions A, B, C depend on the radial coordi-
nate only, and have been determined in [88]. Furthermore, these functions depend only on
the dimension of Z, and on one positive parameter ¢, which essentially describes the size
of the circle fiber at infinity. As 7 — oo, A and B tend to constant values, where B ~ ¢
sets the size of the fiber, and C'(r) — r. So the asymptotically the space looks locally
like the product of a circle, times a ‘cone’ over the Kihler manifold Z, which is however
not a metric cone. The ‘center’ of the space is located at 7 = ¢ (one can always choose
C?(r) = r? — ¢®). At the center the space looks like a metric cone®. This space is regular
only in the ‘metric link’ is a round sphere.

What would a background look like, obtained by T-dualizing the é circle of such a gen-
eralized Taub-NUT? If one would take an approach similar to [11], the first step would be to
find an ultraviolet gauge theory, which in the infrared flows to a nonlinear sigma model on
the generalized Taub-NUT. Such a gauge theory has in general less supersymmetry than the

-1
0 . TR et o Y a0 .
The general expression for A(r) in [88] is: A%(r) = re f 7z dt + 3 , where n is the

(complex) dimension of Z. Also B = gA™!. If the integration constant 3 is chosen equal to zero, the space looks
like a metric cone near the center.
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N = (4,4) of the model of [11]. Having found a satisfying gauge theory, one should per-
form a N = (2, 2) T-duality transformation, which gets rid of some chiral superfields, but
not all, which would be the case for mirror symmetry, and introduces some twisted chirals.
The next question would be to find a (geometric) interpretation of this model, or rather, of its
infrared limit. This interpretation might, for example, be some more complicated fivebrane
configuration, or something more complicated.

For example, as a four dimensional smooth space, one can take instead of a Taub-NUT,
the Atiyah-Hitchin space, which should dualize to an orientifold O(5) plane, instead of a NS
fivebrane, see [79] and references therein. The Atiyah-Hitchin space, combined with multi-
center Taub-NUT can be used to get D-type hyper-Kihler singularities, rather than A-type.
But what would be the dual geometric interpretation of an exceptional hyper-Kéahler surface
singularity, for example, is unclear.

There are two possible approaches to get a simpler description. First, one could consider
only the classical duality. In this case, the dual background has too much isometry. An
example of this situation will be considered below. Second, one could consider singular
geometries, and take a scaling limit. For example, these could be metric cones, say over
Hermitean symmetric spaces, as local models of the singularities of the generalized Taub-
NUT geometries of [88]. But also these could be other singularities as discussed in chapter
2, which may not have a known metric description at all.

One might hope to be in a better position to find a dual description in such a scaling
limit. The motivation for this hope, in part, lies in the observation that an exact conformal
field theory description is known for the throat geometry of fivebranes, whereas no exact
cft is known for the full ‘global’ background of a stack of fivebranes. If in more general
scaling limits, there are exact conformal field theory descriptions as well, then one might
employ known and conjectured facts about abstract conformal field theories to perform the
duality, and perhaps hope that after the dust has settled, the dual cft also has a geometric
interpretation. Still, one might then ask what are the ‘global’ backgrounds that correspond
to the scaling limit conformal field theories. This second approach, a full quantum duality
of a scaling limit will be considered in the next section.

CLASSICAL DUALS OF GENERALIZED TAUB-NUT METRICS

Consider a generalized Taub-NUT metric [88],

ds? = Lg(r)dr? + (r* — ¢%) G zdz°dz’
s? -, 2 (4.85)
+Lq(7') [d& + Au(x,X)dz"]

Here G 3 is a Kihler metric of an 2n dimensional compact homogeneous Kahler manifold,
Z, with Eoordinates z#, where 1 runs over n holomorphic indices a and n anti-holomorphic
indices b. Locally, in a coordinate patch, one can obtain the Kéhler metric from a Kahler
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potential G,; = 20,0;K (x,T). The coordinate § parametrizes a circle fiber. The nontriv-
iality of the fibration is expressed through the A, which can be seen as a gauge field on
Z. The gauge field A is related to the Kihler metric. In a coordinate patch, one can write
A, = 10,K, where u runs over holomorphic and anti-holomorphic indices.

For example, taking Z = P!, using spherical coordinates on P!, and taking A ~
cos 8d¢, so that dA is the volume form on $? ~ P!, the resulting metric is the familiar
Taub-NUT. Its classical dual is a the smeared fivebrane on R3 x S!.

For Z ~ P! x P!, one can write a Taub-NUT like metric which is of the form

ds® = L(p)dp® + (o* + 2¢%) Z dé? + sin® 6,d¢?
i=1,2
2
< ay Y cosfidg
+—= + COs 0;dQ;
L(p) it

3 (p+29)°
p)= —— (4.87)
(0)= 3 p(p+4q)
The parameter g governs the size of the y-circle. In the (classically) T-dual geometry, it is
related to the asymptotic string coupling,

Applying the Buscher rules, results in a ‘smeared’ dual background

ds2 = L(p) (dp2 + q""qu) +(0? +2¢%) 3 [d6? +sin® 6,d¢?]
1=1,2

B= Z cos 0;dy A dgy,

1=1,2
® = @ + log L(p).

In this background, one may recognize the ‘transverse’ space of a pair of intersecting five-
branes. Both fivebranes share a common worldvolume R %! and both are smeared along a
commonS'. This leaves five dimensions, in which the fivebranes intersect in a point (to get
a picture, say, both NS5 and NS5’ have common worldvolume directions z o123, furthermore
NS5 has worldvolume directions x 45, NS5° has worldvolume directions zg7 and both NS5
and NS5’ are smeared along g, which is a circle. The only direction in which the entire
configuration is point-like is 2g). For instance, the 1/p behavior in the metric at small val-
ues of p, indicates there is a single direction in which the whole configuration is localized.
By quantum effects, one might expect the fivebranes to localize along the v direction.

CONCLUDING OBSERVATIONS ABOUT CLASSICAL DUALITY

This picture as it is presented above is obviously quite crude. There are some questions
which arise immediately. For example, in a brane interpretation, two charges appear natu-
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rally, labeling the numbers of NS5 and NS5’ branes. One may wonder what the correspond-
ing interpretation is of these integers on the geometric side. A natural guess, presents itself,
when zooming in on the local geometry.

In the Taub-NUT case, we have seen that the local geometry looks like a metric cone
over a lens space. The degree to which the circle is fibered non-trivially over the base P!,
i.e. the Chern class, indicates the fivebrane charge in the dual background. Similarly, there
one would consider circle fibrations over P! x P!, which give rise to a pair of integers.

However, the analogy seems not to go through completely. Whereas the metric cone
over any lens space S3/Zy 4 is a supersymmetric metric cone with a smooth link, there
are only two metric cones on smooth circle bundles over P! x PL. The links are 7! and
T'!/Z,, as discussed in chapter 2. Nevertheless, one can consider many more supersym-
metric singularities in six dimensions, which keep a relation to P! x P!. For instance, one
can consider orbifolds of the ordinary conifold, and related spaces that are connected via
blowups and blowdowns of various cycles.

There is another interesting question. It seems perfectly legitimate to consider a ‘scaling
limit’ on the geometric side of the picture, keeping only the geometry near a singular point,
similar to scaling from (N + 1)-center Taub-NUT to an A y singularity. The question is
what such a scaling limit would correspond to in the dual background. First of all, it is
clear that this question cannot be answered using the classical Buscher rules. This is so
not only because the fact whether a brane configuration is smeared or not, affects what the
background looks like near this configuration. But also, it is precisely the localized stack
which has a throat geometry that can be decoupled from the bulk, through an appropriate
scaling limit. For an intersecting configuration of fivebranes, how should one imagine taking
an analogous scaling limit?

For instance, consider a configuration of two stacks of intersecting fivebranes, NSS with
worldvolume directions x 12367 and NS5’ branes with worldvolume directions x gy2389. In
such a geometry one can approach the NSS$ branes while remaining far away from the NS5’
branes, and it is not readily clear that there is a distinguished ‘radial’ direction, to perform
a decoupling limit. Such a decoupling limit should yield a linear dilaton in the ‘radial’
direction. As it turns out, there is such a limit, which has been found, assuming a linear
dilaton from the outset, in [106].

A final question for now is: ‘Is it possible to find general ‘flux impurity’ configurations,
in the same numbers as there are geometric impurities, and how should these be interpreted
and a scaling limit taken?’. Or alternatively: ‘Are there ‘scaling limits’ of flux impurities, are
they described by exact conformal field theories, like the simple stack of parallel fivebranes,
and how are these conformal field theories related to the geometry?. These questions form
the starting point for section 4.4.
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4.4 THE DUAL OF A CONE

One can take a ‘local’ view on the issue of quantum T-duality. In this approach, one con-
siders only the local geometry near a singularity and only a ‘throat geometry’ in the dual,
where there are no ‘localized branes’ visible, but only their effect on the nearby ambient
space: fluxes and a linear dilaton. It is quite generic to consider T-duality in such a ‘lo-
cal’ approach, since all supersymmetric singularities, discussed in chapter 2, have a (circle)
isometry which degenerates at the singular point.

In order that one may consider only the ‘localized’ physics, it must be decoupled from
the bulk through some decoupling limit. On the geometric side the decoupling limits involve
deforming the singularity slightly, by a parameter 1z, which is taken to zero in the decoupling
limit. In order to keep the masses of localized excitations finite (think of these as branes
wrapping the almost vanishing cycle), the asymptotic string coupling is scaled to zero, too.

In the case of the hyper-Kihler surface singularities, the decoupled theories are Little
String Theories [3], non-gravitational theories of the worldvolume physics of fivebranes.
An important way to study these theories, is via a holographic dual: linear dilaton back-
grounds, like the throat geometry [4], [23, 24]. A similar view can be taken with regard to
other ‘impurities’, which can be interpreted as Calabi-Yau singularities, or as certain ‘flux
impurities’ which might be intersecting fivebranes, or other complicated sources of flux.
An important inspiration and motivation for us to consider affine hypersurface singularities,
lies in the work of Ooguri and Vafa [19], who discussed T-duality between ADE surface
singularities and fivebrane throat conformal field theories in an abstract cft approach, and
the work of Giveon, Kutasov and Pelc [22] who have proposed a relation between general
affine hypersurface singularities to Landau-Ginzburg conformal field theories.

OUTLINE

In this section we shall begin with a discussion of a non-conformal field theory which is
proposed to relate the nonlinear sigma model on an affine hypersurface (or a discrete quo-
tient thereof, depending on details), to another conformal field theory, which we shall call a
‘half-dualized’ theory. The idea is that the ‘half dualized’ theory takes into account all non-
perturbative contributions to the T-duality. Then in order to get the T-dual to the non-linear
sigma model on a hypersurface, one needs only to perform a classical T-duality transforma-
tion on the ‘half dualized’ theory. The resulting dual theory generically contains a linear
dilaton (i.e. the conformal field theory of a scalar with background charge). The rest of the
theory depends much more on the hypersurface one starts out with,

We proceed to discuss some concrete examples of hypersurfaces and dual theories. First,
we recover the duals to the ADE surface singularities, which consist of a dilaton and an
SU(2) superconformal field theory, as originally found by Ooguri and Vafa [19]. The ADE
surfaces are quite special, as the are the only hypersurfaces we know that are both described
exactly by our kind of ultraviolet theory, and whose duals have an interpretation with a
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WZW model. As it will turn out, in general hypersurfaces of ‘anticanonical type !°° are
described by our ultraviolet gauge theories. If a hypersurface is not of anticanonical type,
(and —d + ) a; divides d), then there is an ultraviolet theory which describes a cyclic
quotient to the affine hypersurface.

We continue with some examples of special non-anticanonical hypersurfaces. In general
their defining polynomials are of the form

F(z1,...,Zn42) = H(z1,...,20) + T} 122 0

When the polynomials H are of the type that defines a Landau-Ginzburg superpotential of a
model that also has a Kazama-Suzuki coset model interpretation, G/ (H x U(1)), then the
T-dual model is of the form

. . G
linear dilaton x T

We conclude with some finishing remarks about hypersurfaces which have no Landau-
Ginzburg/Kazama-Suzuki interpretation, and regarding Anti-de Sitter target spaces in lieu
of linear dilaton backgrounds.

SIGMA MODELS FOR CONES
Consider an affine hypersurface
C=F710) ccCcrt? (4.89)
defined by a weighted homogeneous defining polynomial
F(A"'zy, ..., A%n+2, 0 0) = AF (21, ..., Tnt2)- (4.50)

The ‘weights’ can be written as

a;

wi= =, @ €{2,34,..}, 4.91)

where also

cd ({a;}) =1,
ged ({aq}) 4.92)
lem ({a;}) =4
Let C have only a single, isolated, singularity which is located at x = 0. That is to say,
(F(x) =0anddF(x)=0) <= x=0. (4.93)

10Recall that by this term we refer to hypersurfaces defined by a weighted homogeneous polynomiat of weighted
degree d and with weights a; suchthat 3_a;, = d + 1
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According to Tian and Yau [27] this affine cone, at least without the apex x = 0, is Calabi-

Yau, if and only if
n+2

d< Y ai=A4, (4.94)
=1

and we assume that it is.
How is this hypersurface described via a gauged linear sigma model? The equation

F(IEl,. ..,.’En+2) =0

defining C is an equation in affine space C"*2\ {0}. Usually, a gauged linear sigma model
is used to describe hypersurfaces in a projective space [18]. The idea is to view the affine
C™*?2 as a ‘patch’ with ‘inhomogeneous’ coordinates of a larger space, that does have a
U (1) gauge equivalence. Actually, in general, the patch described through such a gauged
linear sigma model is not C™*2, but rather a cyclic quotient C**2/Z,,, in the fashion of the
model of section 3.3.2 on page 61. This point of view is discussed below.

First note that F' = 0 is also the defining equation of a hypersurface in

Play, az, .. ., @nyo).
If this hypersurface is well-formed, see (2.57),

ged(ay, ..., @4, ap2) =1 1<i<n+2,

R R o (4.95)
ged(ar, .-, @iy-..,85,...,an42) | d Vi, ]

then (4.94) says that it is Fano. We assume that the a, and d are such, that it actually is
Fano.
In a U(1) gauged linear sigma model description of the hypersurface I = 0 in

P[alaa‘27 ey an+2]7

the variables z; correspond to chiral superfields ®; of U(1) (gauge) charge ¢; = a;. Intro-
duce another chiral superfield, ® of charge

go=a =d—A<0. (4.96)

In order to avoid the axial anomaly, one should introduce another chiral superfield, & _;,
with U(1) charge
g1 = —d, (4.97)

so that the sum of all gauge charges vanishes.
Now consider the ‘linear sigma model” with Lagrangian

L=Lp+Lfr+Lg, (4.98)
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where
d —_
Lp= /d40|<1>_1|26‘dv + 507 (P+T+ v)®
0

2n 1 (4.99a)

. 2, a;V - 2

+;|®,| e 50712
Lp= /d20 &_, [ue—ld/aoq’l L F(®,... ,¢n+2)] +ee., (4.99b)
Lz= / d*6 —tT +ce. (4.99¢)

Note that this Lagrangian is not quite that of an ordinary gauged linear sigma model with a
gauge invariant superpotential. The above Lagrangian has a gauge invariant superpotential,
but the kinetic term for &, = e¥ is somewhat special. The field ¥ does not transform ho-
mogeneously under gauge transformations, but rather it is shifted. But on the other hand, the
superpotential for ¥, does transform homogeneously. In some respects, it is convenient to
think in terms of the field ¥, in others it is more natural to reason in terms of the condensate
®¢. Both points of view will be used in the following.

The F-term (4.99b) is gauge invariant, and it can also be made invariant under the vecto-
rial U (1) R-transformations. This is accomplished by choosing the U (1) y charges of all ®,
proportional to their gauge charges, v; = 2w; except for the U(1)y charge of & _1, which is
chosen to vanish. A negative U(1)y charge for &y may seem strange, but one should keep
in mind that the ‘fundamental’ field is .

Also, from the definition of a¢ it does not follow that |ag| should necessarily divide d. In
some interesting cases, |ap| does not divide d. Some examples of such cases are discussed
later. The prime case where |ao| is guaranteed to divide d, is ap = —1. Precisely in this
case, the hypersurface F = 0 in Play, ag, . . ., an42] is anticanonically embedded. For ex-
ample this is the case for the ADE hyper-Kahler surfaces, in table 2.2 and for the del-Pezzo
surfaces collected in table 2.6. It is for anticanonically embedded hypersurfaces in weighted
projective space, that the method of Kollar and Johnson applies to possibly determine the
existence of quasi-smooth Kihler-Einstein metrics on the projective hypersurface {34, 35],
which is a foundation to apply the methods of Boyer, Galicki et al.[78, 37, 32] to prove ex-
istence of Sasaki-Einstein metrics on the link, so that the affine hypersurface can be viewed
as a metric cone.

Precisely when the embedding is anticanonical, one can recover the affine cone from the
linear sigma model, as opposed to a cyclic quotient of the affine cone. This cone is recovered
in the infrared limit, if the Fayet-lliopoulos parameter r > 0. When the embedding is not
anticanonical, |ag| > 1, and |ao| divides d, then in this ‘phase’ of the sigma model, one
recovers a Z ,,| quotient of the affine cone F ~! (0). When |ao| does not divide d, a possible
interpretation seems to be more subtle. Let us illustrate these cases with some examples.
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EXAMPLES
ADE HYPER-KAHLER SURFACE
The hyper-Kihler surfaces are described as hypersurfaces in C3, defined by the polyno-

mials listed in table 2.2. These hypersurfaces are anticanonically embedded, so ag = —1.
The gauge invariant superpotential of an ADE linear sigma model reads

W =&_; (ubo? + Fr (&1, 82, 03)) . (4.100)

In the non-linear sigma model phase, r >> 0, the vacuum manifold (cf. equation 3.46 on
page 61)is
{n®5¢ + Fr (21,22, 85) = 0} /U (L), (@.101)

which is a hypersurface in O(—d) — Pla1, a2, a3]. By passing to ‘inhomogeneous coordi-
nates’ =; = <I>i<1>8'/ laol _ &,&2", this can be viewed as the affine hypersurface
Fr (51,52,53) +p =0 (4.102)

in C3. That is to say, the deformed ADE-singularity. A similar argumentation applies to
any anticanonically embedded hypersurface (i.e. ag = —1).
To be more specific, consider a deformed A, +; singularity. It is described as a hyper-
surface
Apy1 242l p=0. (4.103)

The gauged linear sigma model that describes this model in its infrared regime, for large
positive Fl-parameter, has U(1) charge assignments

la_1, a0, a1, az, a3] = [—a(n +2),—a,a, %(n +2), %(n + 2)] , (4.104)
where a=1 (a=2) if nn is even (n is odd). The superpotential reads
W==&_; (u®;™ % + &7 + 03 + 03). (4.105)

As discussed in section 3.3.2, when r >> 0, the scalar potential is minimized on a hypersur-
face in O(—a) — P [, $(n + 2), $(n + 2)], and the hypersurface is given by

HOe" 2 + 977 + 85 + 9% = 0. .

This can be rewritten, defining =; = @, <I>g"/ % so that the Z; are uncharged under the

gauge group, and recalling &, = e?, as
e? (u+EMt? + 22453 =0. (4.107)

The part between brackets is the defining equation of a deformed A ,,; singularity. Also,
the =; are good coordinates on C3. Note that ¥ ~ W 427, or, in terms of &¢, &g ~ 2™ ®.
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This periodicity could affect the interpretation of the =;’s: Z; ~ €™ (a;/ag). Since ap =
—1, the Z; are ‘single valued’. In other words, the =; are coordinates on C3, and not on
some discrete quotient of C3, thanks to |ag| being equal to one.

There are many anticanonically embedded hypersurfaces possible. The anticanonically
embedded log del Pezzo surfaces and log Fano threefold hypersurfaces in weighted projec-
tive spaces are exhaustively collected in [34] and [35] respectively. From the point of string
theory, and more particularly, the T-duality discussed in this section, most of these seem not
to have an apparent elegant interpretation in string theory.

SOME GENERALIZED CONIFOLDS

Beside the anticanonically embedded hypersurfaces, there many hypersurfaces that are
not anticanonically embedded, but do have an interesting interpretation, from the perspec-
tive of string theory and T-duality. Instead of discussing the widest possible kinds of classes,
let us focus on the ‘generalized conifolds’, or actually, as subset of these.

In a generalization of the usual conifold, which can be regarded as the affine hypersur-
face

2+ 23+l +a;=0 (4.108)
in C%, consider hypersurfaces in cyclic quotients of C* or C®, which will be specified
shortly, of the form

n
F(z1,...,Tn42) = D 27" + T2y + Thio, (4.109)
=1
taking n = 2 or n = 3. Call the corresponding surfaces F ~*(0) generalized conifolds.

Hypersurfaces with two pure squares in the defining polynomial, like in (4.109) are
never anticanonically embedded (except for the A ;. surface singularities, which are defined
in C**2 ~ (3, here hypersurfaces for which n > 2 are considered). For the sake of
the future interpretation of the model, restrict to the subclass of generalized conifolds with
(integer) exponents 7n; > 2, such that

1
2, (4.110)
where m is a positive integer
me {1,2,3,...}. 4.111)
Note that m may also be equal to one, unlike the m ;.

There is a ‘Gepner model’ sort of interpretation of this condition on the exponents.
Although it may seem an observation very much disconnected from the present context,
notice that a superpotential

n
W=Xe™+ Y XM+ X2+ X2, (4.112)

i=1
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‘defines’ a conformal field theory, quite analogous to the sort discussed in the seminal paper
[19] of Ooguri and Vafa on T-duality of the fivebrane, and ADE surface singularities, which
has a central charge
2 ) =n, (4.113)
m;
using the familiar formula for the central charge of a Landau-Ginzburg model, and not
worrying about the negative weight!!.

The characterization above, in terms of exponents rather than weights, a ;, is quite conve-
nient. However, perhaps it obscures some aspects discussed earlier in terms of the a ;. Recall
that from the definition (4.96) of a it does not follow that this weight is necessarily a divi-
sor of d, the weighted degree of F'. Since the degree of homogeneity of T is d = —may,
integrality of m just says that |ao| is indeed a divisor of d. However, the embeddings of the
generalized conifolds not being anticanonical, |ag| properly divides d, |ag| > 2.

For concreteness, consider some particular example of a generalized conifold. First take

F(z1,22,23,74) = 22™ + 22™ + 22 + 22. 4.1149)
The charge assignments in the linear sigma model, for this model are
l[a_1,a0,a1,0a2,03,a4] = [-2m,—2,1,1,m, m]. (4.115)

The F-term reads

Lp =/d20 D_) (uPy™ + F (D1, D, D3, P4)) (4.116)

and the linear sigma model, for large positive Fayet-Iliopoulos parameter, flows to a non-
linear sigma model on F ~!(—p) in C*/Z,, where Z acts on the coordinates of the covering
C* as

(5176276&54) ~ (_517 -621 (_1)771 {39 (_l)m 64) . (4117)

Similarly, one can consider the generalized conifold defined as F ~!(—p) in C*/Z3,
with
F(z1,z2,23,24) = 25™ + 3™ + 23 + 22, (4.118)

Or, F~!(u) in C®/Zg defined by a polynomial like

F(x1,22,23,24,25) = 9:}27" +z8™ + z3™ + 22 + z2. (4.119)

11 At least, not worrying more than in [19]. Very loosely speaking, one can think of the negative weight term as
a SL(2;R) Kazama-Suzuki model, by analogy with the sound SU(2)/U(1) (minimal model) interpretation of
X™i terms, like Ooguri and Vafa observed (also see [91]). On the other hand, remembering the interpretation of
®p = eV, where ¥ is a ‘shifi-gauged’ field, one can argue for the interpretation of this negative weight term, as
a ¢ = 1+ 2/m cft, through the reasoning of Hori and Kapustin [26]. In that interpretation, the negative weight
term in the superpotential indicates a Liouville theory factor, while in the linear sigma model which describes the
hypersurface, the field ®g of negative gauge charge is part of a SL(2; R) Kazama-Suzuki model, in the infrared.
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Surfaces like these above have quite interesting duals, as will be discussed shortly. First
note that, unlike the ADE hyper-Kihler surfaces, these higher dimensional varieties admit
deformations by terms of the same weighted degree. That is to say, one can add monomials
in the z;’s which leave the polynomial weighted homogeneous, but not all such terms can
be gotten rid of by redefinition of the variables ;. Such deformations of the a polynomial in
the F-term of the linear sigma model, correspond to marginal deformations in the conformal
infrared non-linear sigma model.

In the following exposition, regarding T-duality of the models, one should keep in mind
such marginal deformations. Rather than performing a duality relating two precise cft’s,
the dual models will be related up to marginal deformations. That is to say, the ‘dual’
models describe string backgrounds in the same moduli space. This ‘imprecision’ is large a
consequence of the unfortunately too poorly understood cft isomorphisms, which underlie
the proposed duality relation.

DUALIZATION 1: QUANTUM EFFECTS

The (quotients of) weighted homogeneous affine cones, as discussed above, all have a char-
acteristic U(1) action, which degenerates at the apex (the singularity). Consequently, one
may wonder if a corresponding T-dual description can be found, and if it has a reasonable
geometric interpretation. For one, it is expected that worldsheet instantons play a crucial
rdle in the dualization process, since the U (1) action has a fixed point.

The characteristic U (1) action of a hypersurface can be effected in the linear sigma
model by a phase rotation of ®g,

W=a_, (;@g/‘“’ +F(®y,.. .,¢I>n+2))
(4.120)
=@t/ (1t F (@169, @y ppemnea¥/®)),

or, thinking of the ‘shift-gauged’ field ¥, the characteristic action is achieved by simply
shifting the imaginary part of ¥. So it is natural to think to dualize shifts of ¥ in order to
get a model which describes the background dualized along the characteristic I/ (1) action.

In the ‘sigma model phase’ ($ _;) = 0, and it is not clear if or how the field ® _; should
be involved in the duality operation. A duality operation similar to the ones discussed so
far (introducing an auxiliary gauge field and an ‘overarching” model and integrating out
the auxiliary gauge field) would get rid of one, or perhaps more, chiral superfields and
introduce twisted chirals instead. So the dual model would have a formulation involving
a combination of both chiral and twisted chiral superfields, unlike the Hori-Vafa mirror
symmetry dualizations [53].

In addition the (twisted) F-terms complicate matters. It is not at all obvious how the
various chirals and the twisted chirals should be coupled in the dual model. In any case, this
coupling would need to be consistent with A’ = 2 supersymmetry. Note that in (4.99b) all
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the (chiral) fields are coupled to each other, although the &4, ..., P, 2 couple to ¥ only
through & _;.

If one were to ignore the superpotential, the dualization of ¥ is quite straightforward.
As a ‘shift-gauged’ field (4.72), its kinetic term is replaced by one for a twisted chiral, like
J d*60 —|Y|?, and there is a contribution to the twisted F-term, of the form [ d26 — Y'%, but
there is no e~Y term generated, as there are no vortex configurations for a ‘shift-gauged’
field. Taking into account the superpotential is known to be quite subtle, also in the context
of 2d mirror symmetry [53] of compact or non-compact manifolds.

Clearly, it is totally incorrect to simply replace ¥ by a twisted chiral, since a direct
coupling to the chiral field ® _; would be inconsistent with supersymmetry. On the other
hand, one might imagine that & _; might need to be dualized as well, yielding another
twisted chiral which could be coupled to the dual of ¥ in a simple fashion. However, in that
case the question presents itself how the dual of ® _; would couple to the various ;.

If not along the lines of gauging ¥ and integrating out the auxiliary gauge field, how
else to obtain a dual? Recall the recurring philosophy followed in the dualization procedure
of backgrounds with a degenerating circle isometry. As a first step, a classical duality gives
a ‘smeared’ dual background. This ‘smeared’ background has an isometry, which the exact
T-dual should not have. In a second step, one gets the ‘full” dual background by including
the nonperturbative quantum effects, the worldsheet instantons, which break the ‘unwanted’
classical symmetry.

In an inversion of the order of these steps of the philosophy, could one alternatively
first take into account the non-perturbative effects, in terms of some ‘half-dual’ model, and
in a second step, get the ‘full’ T-dual model from a more manageable classical duality?
In fact, the claim here is that this is indeed possible, and that the ‘half-dual’ model has a
conjectured simple description in terms of the ‘linear sigma model’ (4.99). It is conjectured,
that the non-perturbative effects of the duality give a non-zero expectation value to ¢ _;.

The non-zero expectation value of ¢_; is expected to arise due to worldsheet instantons
which contribute crucially in the T-duality, taken along a degenerating cycle in the cone. In
a non-linear sigma model, the rdle of worldsheet instantons is conceptually clear: there are
explicit field configurations in the non-linear sigma model which are interpreted as strings
embedded in the target space in such a way that they are wound around the T-duality circle.

In the present model, as remarked, the situation is more subtle. Some intuition can be
gained from the analogous situation which occurs with 2d mirror symmetry [53]. Note
that we are at this point not discussing ‘our’ model, but mirror symmetry. In this case,
several T-dualities are performed at once, and each T-duality corresponds to integrating out
an auxiliary gauge field. The role of the non-linear sigma model worldsheet instantons is
taken over in this case by vortex configurations of the auxiliary gauge field. The effect of
these vortex contributions, is that effectively the Fayet-Iliopoulos parameter is ‘shifted’. It
is shifted in in the following way. First of all, the dual (twisted chiral) field couples to the
U(1) GLSM gauge field as a dynamical Fayet-Iliopoulos parameter. Second, in the mirror
symmetry applications, a twisted superpotential is generated for this dual field. A twisted
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superpotential can give an expectation value to a field, in the infrared limit. If the twisted
chiral field gets an expectation value due to the twisted superpotential, then effectively the
Fayet-Iliopoulos parameter is shifted, because of the Fayet-Iliopoulos-like coupling of the
twisted chiral to the gauge field. The shift of FI-parameter, in turn has a consequence for
the expectation values of all the fields, because the scalar potential is changed.

Now consider our T-duality. In our ultraviolet gauge theory, there is a superpotential
present from the outset, but no ‘dynamical Fayet-Iliopoulos’ coupling between the matter
fields and the gauge field. When we are to dualize shifts of ¥ (if ¥ is shifted, the gauge
invariant combinations e%¥/190!®; transform in such a way that F is rotated by a phase
factor, as it is expected it should), we expect that a dual field will couple as a dynamical
Fl-parameter to the gauge field. But from the outset, ¥ has a superpotential e ~4¥/120l go
it is natural to expect that the dynamical FI-parameter acquires an expectation value, as a
consequence of this potential. This means the effective FI-parameter is shifted or, in the
language of the original ultraviolet theory, that effectively ¥ is shifted. This in turn is seen
as a resulting expectation value of ¢_;, which minimizes the scalar potential part Up as
in (3.60). At this point ¥ becomes somewhat of an awkward field, as the potential pushes
it out to infinity. But this is not too strange; the exponential potential defines a Liouville
theory.

In terms of the formulation of the linear sigma model in terms of ®, this change
amounts to a drastic change of the Fayet-Iliopoulos parameter, from r >> 0,to r = —oo,
which could qualitatively be regarded as a change of a Kihler modulus, in the non-linear
sigma model, albeit a very severe change. From the point of view of ¥, with kinetic term
ﬁgdd;z for its scalar component, it also seems like shift infinitely far away in moduli space.

Unfortunately, a clear understanding of this shift is lacking. However, loosely speaking,
it is the exponential interaction of ¥ that pushes out ¢ all the way to infinity, when {¢ _1) #
0, at very low energies. But in the infrared, ¥ is somewhat of an awkward variable to
characterize the theory, which is actually A/ = 2 Liouville theory. One can think of this
theory, at large values of i as a sigma model on R4 x S, where there is a background
charge for the R, scalar. Clearly, such ‘half-dual’ backgrounds look nothing like the cone
one started out with. In fact, as an orbifold of a product (Liouville) x (Landau-Ginzburg),
it is not at all clear if a geometric description characterization of this worldsheet cft exists
at all. Yet, in order to perform the usual dualization procedure, albeit only classically, one
should have a sigma model interpretation.

SOME LITERATURE

Before discussing the possibility of such sigma model interpretations, and the second half of
the dualization procedure, note that a considerable amount of quite related and very interest-
ing literature exists, which connects conformal field theories such as the above, consisting
of a Liouville factor and a Landau-Ginzburg factor, to geometric singularities.
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‘global’ Calabi-Yau

scaling limit | isolating ‘localized’ physics
— classical
C™"2 5> F 1 (—p) : ‘smeared’ flux background
T-duality
IR-flow IR-flow
. lassical
lin. o-model ({¢-1) =0 : ?
(<¢ 1> ) T-duality |
‘half-duality’ | (non-pert. part) worldsheet instantons
. classical .
lin. o-model ({(¢_) # 0) : “full’ T-dual, in UV
T-duality
[R-flow | IR-flow IR-flow
. classical .
‘LG-orbifold’ - ‘localized’ flux background
T-duality
scaling limit | isolating ‘localized’ physics

‘global’ configuration with localized flux sources

Figure 4.2: Diagram of duality relations. The pair of lines in the middle of the figure concern non-
conformal (ultraviolet) models. The ‘full’ T-duality is in this section regarded for the ‘localized’
physics, like for example, the CHS fivebrane throat and A singularities. The ‘localized’ physics is
isolated (by a scaling limit) from a ‘global’ background, such as for example a stack of fivebranes or
Taub-NUT. The exactly T-dual global backgrounds appear in the top left and bottom right corners of
the diagram.
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A selection of salient literature is presented in the following paragraphs. There is no pre-
tense that this selection is representative of all related and important work, but it is hoped
that the following selection will provide the reader with an idea of other work in three inter-
related topics. Firstly, there is work on relation between singularities and Landau-Ginzburg
models. Secondly, important work exists on linear dilaton backgrounds and Little String
Theory. Thirdly, such ‘flux impurity” throat backgrounds are related to AdS backgrounds.

First, a major inspiration and, as far as the author is aware, the first work discussing
a connection between ADE surface singularities, and deformations thereof is the paper of
Ooguri and Vafa [19]. In this work Landau-Ginzburg orbifold models are taken, with super-
potentials of the form

Wape = pzg® + Fape(z1, T2, 73), (4.121)

which are proposed to describe deformed ADE surface singularities, motivated by the usual
Calabi- Yau-Landau-Ginzburg correspondence [92], without worrying about the negative
gauge charge of zo. For hypersurfaces in projective spaces, the CY/LG-correspondence
was put on a firm footing by Witten through the interpolating linear sigma model [18].
As discussed in section 3.3.2, the connection is found to be more involved for the affine
hypersurfaces, like also the ADE surface singularities

Ooguri and Vafa take the Landau-Ginzburg orbifold as a starting point of a description of
the ADE surface singularities and interpret the = part as a SL(2; R)/U (1) Kazama-Suzuki
model, the ‘cigar’, which indeed has a U (1) isometry, considering it an ‘analytic continua-
tion’ of SU(2)/U (1) minimal models, for their purposes. The rest of the Landau-Ginzburg
superpotential defines a minimal model with a corresponding ADE SU(2) modular invari-
ant [17]. In the ‘scaling limit’ that isolates the local physics at a singularity, one of the pa-
rameters scaled is ¢ — 0. For the ‘cigar’ coset model, this means that the ‘tip’ moves ever
further into the large g, region, and a target part looks like the “dilatonic cylinder’ R 4 x S*.
Taking Ry x U(1), which has a decoupled U (1), instead of SL(2; R)/U(1), and studying
carefully the partition function of the orbifold [U(1) x (SU(2)/U(1))} /T, Ooguri and
Vafa find the partition function for a SU(2)r conformal field theory. In addition to this
SU(2)r, the complete background also has the remaining scalar with a background charge.
So the total cft, in the scaling limit, so 2 — 0, has the partition function of R¢ x SU(2).
That is, they are identical as conformal field theories and hence the string backgrounds can
be related by T-duality. For the A-type singularities, this is nothing but the CHS throat cft
of a stack of coincident fivebranes [15].

Although the work of Ooguri and Vafa is a fundamental paper, some important earlier
related work, considering cft partition functions, is the earlier [91], and also [93], regarding
the réle of SL(2)/U(1) in the description of the conifold singularity which, like the A
surface singularity, has no non-trivial cft factor coming from the polynomial F', which is
simply quadric.

In a spirit like Qoguri and Vafa, considering cft partition functions, is the work of
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Eguchi, Sugawara and others, such as [94] and later works, which show that certain
[SL(2; R) x Landau-Ginzburg] /T

conformal field theories have partition functions consistent with spacetime supersymmetry
(basically, they are modular invariant). A very interesting paper in particular [95], considers
partition functions of models consisting of an N = 1 Liouville modelanda N = 1 G/H
coset models. These models are precisely cases of ‘flux impurities” which admit a geometric
(gauged WZW) interpretation. The G/H coset models considered are are such that the
homogeneous spaces G/H lead to metric cones of special holonomy, just as in our case.
Even coset conformal field theories are discussed based on current algebras G and H, such
that the coset manifold G/ H is a homogeneous nearly Kihler or weak G » manifold (leading
to metric cones of G2 and Spin(7) holonomy respectively). Our methods, using N = (2, 2)
worldsheet models, are not adept to treat such cases.

In [95], the relation with metric cones is most definitely observed, and it is a central point
in that work. The spacetime supersymmetry of the ‘flux impurity’ cft’s is found to agree
with the expectation of a cone special holonomy. However, a clear connection with the ‘ge-
ometric impurities’, is not made. We believe that our T-duality relation, making use of the
hypersurface description and an overarching ultraviolet theory provides a complementary
picture to [95], as it allows to relate a geometric (hypersurface) impurity to a ‘half-dualized’
model. However [95] is very important, in exposing the isomorphy of the ‘half dualized’
models (A = 2 Liouville times a Kazama-Suzuki coset) and the true ‘flux impurity’ (linear
dilaton times G/ H coset), much in the spirit of the formal partition function considerations
of Ooguri and Vafa.

The work discussed above is essentially concerned with a study of partition functions of
the conformal field theories, and show equivalences between SL(2; R) (or A = 2 Liouville)
times one coset cft on one side, and a linear dilaton times another coset (essentially with a
U (1) factor in the ‘denominator’ deleted) on the other side. In some other very important
work, a connection is made between supersymmetric singularities and Landau-Ginzburg
models in considerable generality. Very important in this respect is the work on linear
dilaton backgrounds as holographic duals to Little String Theories by Giveon, Kutasov,
Seiberg and others, such as [23, 24] and [3, 4].

Perhaps the most important inspiration to consider T-duality for hypersurfaces, is the
paper of Giveon, Kutasov and Pelc [22]. This proposes a general connection between hyper-
surface singularities and the ‘half-dualized’ models R 4 x U(1) x Landau-Ginzburg, identify-
ing the Landau-Ginzburg superpotential with the defining polynomial of the hypersurface.
Also, hypersurfaces are discussed with a defining polynomial of a the following particular
form

F(z1,%2,. .., T342) = H(x1,22,73) + 75 + 3.

The affine hypersurfaces F'~!(0) are argued to be T-dual descriptions of a fivebrane with
worldvolume R! x L, where L = H1(0) C C3. The T-duality which achieves this
is done fiberwise along (e*®u, e~**v), where uv = 2 + x2. This is not the U(1) action
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which we consider. We consider the generic weighted homogeneous action on any weighted
homogeneous polynomial. We find that our model describes not precisely affine hypersur-
face singularities of the form above, but discrete quotients of these, essentially because the
weights and weighted degree of are such, that F’ does not define an anticanonically embed-
ded hypersurface in weighted projective space. Non-compact Calabi-Yau varieties of the
form uv + H(z,y) = 0 are also interesting from the point of view of topological string
theory, see, for example [107, 108].

Finally, there is a considerable amount of very interesting work on worldsheet confor-
mal field theories describing fivebrane backgrounds, which often have a g, — oo region,
and deformations which keep g, finite, such as the ‘fivebrane ring’ in (4.22) discussed in
[25] by Sfetsos, and many other papers, mainly by Sfetsos, Kounnas, Kiritsis and others,
such as [5] [96]. Some deformations involve separating the fivebranes, like the ‘ring’ ge-
ometry, while another possibility is to add fundamental strings, to keep the dilaton finite
near the fivebranes, see, i.a. [97]. The effect of the fundamental strings is quite drastic.
Not only is the dilaton made constant, rather than linearly growing down a throat, as a con-
sequence, the decoupling limit is fundamentally changed. No longer is it required to take
gs — 0, as usual for Little String Theories, but rather, there is a Maldacena type of decou-
pling limit, which yields AdS3 x A backgrounds, rather than a throat-like (linear dilaton)
background. A central paper, in this respect regarding the requirements on A to yield a
supersymmetric background is [98] and also [101], in addition there are important papers
by Elitzur, Giveon, Kutasov, Seiberg and others. Some interesting papers discussing ex-
plicit AdS3 x G/H backgrounds are [99, 100]. Deformations of the linear dilaton ‘near
flux impurity’ backgrounds can thus lead to interesting related Anti-de Sitter backgrounds.
It would be interesting to study the Anti-de Sitter backgrounds, and the dual conformal field
theories in particular, obtained by deforming the ‘near flux impurity’ backgrounds which we
obtain. These can be considered T-duals of geometric impurities with fundamental strings.

DUALIZATION 2: GEOMETRIC INTERPRETATION

Let us continue with the dualization procedure, proceeding from the ‘half-dualized’ models
as in figure 4.2. The Liouville part of the model has a Lagrangian

_ [ jaglaol 32
L—/d02d|\I/|

N (4.122)
+ /dzﬂue_‘p +c.c.
The central charge of the Liouville theory is
. 2
CLiouville = 1 + m (4.123)

In the region of large Re ¥, it has a target space interpretation as a ‘dilatonic cylinder’
Ry x S!. The radius of the circle is quantized in units of \/d/|ao| and determined by
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the periodicity of Im . Actually, the periodicity of ¥ is 27d /|ao| (or an integer multiple
thereof, set by the overarching ‘linear sigma model’ as discussed in section 3.3.2.

Now consider the Landau-Ginzburg part, with superpotential W = F. For a general
weighted homogeneous F that describes an affine Calabi-Yau hypersurface, i.e. satisfy-
ing (4.94), the Landau-Ginzburg model with W = F has no known geometric interpre-
tation. However, for some special polynomials F it does. That is to say, some special
weighted homogeneous polynomials describe (marginal deformations of) certain Kazama-
Suzuki models. In particular, the Kazama-Suzuki models based on Hermitean symmetric
spaces at level one have a Landau-Ginzburg formulation [21], see section 3.4. Also, some
Kazama-Suzuki models at levels k > 1 can be related to level one Kazama-Suzuki models,
utilizing the (conjectured) isomorphisms of coset models discussed in section 3.4. These
Kazama-Suzuki models have a sigma model interpretation, as gauged WZW models, and
they have a distinguished U/(1) symmetry. This symmetry is the axial action the U(1) of
which the vector action is gauged in

_ G
HxUQ1),

The fermions in the Kazama-Suzuki models are essentially decoupled from the bosons,
the fermions realize a SO (dimG/(H x U(1))), current algebra and the bosons realize an
ordinary bosonic coset model. The dualization can be considered simply on the bosonic part

G G

which is a generalization of the familiar duality
[SUQ@)r/UM) x U] /T ~ SU2)r, (4.125)

which for the A-type modular invariants has an explicit interpretation as T-duality, using
a sigma model realization [16]. For general ADE modular invariants, this identity can be
obtained from the consideration of partition functions [19].

EXAMPLES

In order to get a feeling for the duality, consider some specific examples, using the Landau-
Ginzburg/Kazama-Suzuki equivalences of section 3.4.

A-TYPE SURFACE SINGULARITIES

An A, surface singularity can be viewed as a metric cone on the link
St — 837y — SU(2)/U1).
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[ Chiral superfield ®; | U(1) chargea; |

®_, a_1 = —(k+2)a
q)o apg = —«

‘1)1 a; =«

P az3 = 2a

Table 4.1: Charge assignments for Ag.1 singularity, @ = 1 (o = 2) if k is even (odd).

The polynomial which defines such a singularity as a hypersurface in C3, see table 2.2, has
such weights and weighted degree that ag = —1.
For S3/Z 2 the polynomial is

Fa,,, = 25" + 2% + z3. (4.126)

The overarching model can be characterized, roughly speaking, as a U(1) ‘linear sigma
model’ with chiral superfields with charges as in table 4.1, but strictly speaking, the chi-
ral superfield ®o should be regarded as a ‘composite’ field, e ¥, where ¥ appears in the
Lagrangian as a ‘shift-gauged’ field and ¥ ~ ¥ + 2m:

The Lagrangian reads
19 |9 T 2 2 —dV
L= /d 6 [Z(\IJ+\I/+V) +]®_11%
+ |®1]%eY + |®,]2e?V/2 + |B3)%e?V/2 — %mz (4.127)
€

+/d20 O_y (pe? + 8% + 92 + ®3) + cc.,

where d = a(k+2). The ‘half-dualized’ model is a Z 4 orbifold of a product cft. One factor
of the product is the Landau-Ginzburg model with the superpotential

W, = &4, (4.128)

and the other factor is a Liouville model, which is the IR limit of the theory with the follow-
ing Lagrangian
1 —~ -~
Liiouville = /d49 %f‘m + /d2 pe ¥ +cc., (4.129)
where the periodicity of U is 2mid. The central charge of the Landau-Ginzburg model is
éi=1- % and the central charge of the Liouville model is ép oy, = 1 + %.
As p — 0, the region where the Liouville potential is weak encompasses a larger part
of negative Re 1 values. Where the Liouville potential is small, there is a target space

119



Chapter 4 - The Dual of a Cone

interpretation as a dilatonic cylinder. Writing v = p + idq the metric on the dilatonic
cylinder is
1
dsgy = 5dp” + ddg”. (4.130)

The Landau-Ginzburg factor can be viewed as a SU(2)/U (1) coset model, with metric
dsgs = d (dx? + tan® xd¢?) . (4.131)

The coordinates ¢q and ¢ are periodic with periodicity 27, while 0 < x < 7/2 The Z4
orbifold acts along the integral curves of 6% + ai-
The T-dual geometry is obtained by applying the Buscher rules to the above geometry,

dualizing % (6% + a%) . Concretely, gauging translations along this circle using a Lagrange
multiplier A, and gauge fixing ¢ = O this yields
2
ds? =d (dp? + dy? + sin? xde?) + %d}?
B =cos? x d\Add,

(4.132)

where A ~ A + 27/d is the dual coordinate. There is also a background charge for p.
Redefining A = 6/d, the above metric and B-field look exactly like the throat geometry, x,
¢ and 6 are coordinates on S3, with d units of flux through it. This is in agreement with
[19].

Note that the level of the SU(2); WZW model, which is interpreted as the number
of fivebranes down the throat, corresponds to the first Chern class of the bundle S 5
S3/Zk+2 — SU(2)/U(1). Curiously, for the A; singularity the half-dualized model has
a Landau-Ginzburg part with superpotential W; = &2, which defines a trivial model with
¢ = 0, containing only the vacuum state. So the complete information of the A ; singularity
is contained in the Liouville factor.

GENERALIZED CONIFOLDS

Consider the conifold, which is a metric cone over 7' 11, The homogeneous Sasaki-Einstein

manifold
N SU(2) x SU(2)

T ~
U(1)
can be regarded as a circle bundle over

SU@2)  SU(2)

vy T U

as discussed in chapter 2, and it is one of the few regular Sasaki-Einstein manifolds of
dimension five. It is also defined as a hypersurface in C*,

2129 = 2324. (4.133)
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The conifold can be quotiented by the Z,, action

2ni/n
zZ3 ~E Z;
: 3 (4.134)
24 N€_21”/"24.
Define the Z,,-invariant combinations
Y1 =23,
Y2 =2y, (4.135)
t =2324.

The quotiented conifold is then described by the pair of equations y 13> = t* and 212, = ¢,
or by the single relation
ny2 = (2122)". (4.136)

So the weighted homogeneous hypersurface in C* defined by F = 0 with
ﬁ(.’L‘l,(L‘z,;L‘3,$4) = (:clxz)" +.’E§ +IEZ (4137)

is a Zy, quotient of the conifold. Unlike the defining polynomials of the ADE surface sin-
gularities, polynomials such as F admit ‘marginal deformations’. That is to say, there are
monomial terms d F' of the same weighted degree which one can subtract from F, such that
these subtractions cannot be undone by a change of coordinates = ; — &;(x;) that respects
the weights of the coordinates. _

One particular ‘marginal deformation’ of F is F,

F(x1,T2,73,24) = 22" + 22" + 22 + 22, (4.138)

This is a very interesting equation, for our purposes, though actually, not as an equation in
C*, but as an equation in C*/Z.. The weights and the weighted degree of F" are such, that
ap = —2. Therefore, there is a U(1) gauge theory, of the sort discussed earlier, that in the
infrared flows to a non-linear sigma model on F ~!(—pu) in C*/Z,. The group Z, acts on
the coordinates z; of C* as

T1,2 ~(—1)712,

4.139
:ll3,4 N(—l)nfcg,,;. ( )

The Lagrangian of this gauge theory reads
L= /d49 g (T+T+V) 4 (8122 + 3 @2 + Y [@if2en”
i=1,2 i=3,4

+/d20¢'_1 (€™ + F (®1, %2, 3, 4)).
(4.140)
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And the periodicity of the chiral superfield ¥ is ¥ ~ ¥ + 277i.

The hypersurface admits a /(1) action, as it is weighted homogeneous. The ‘half-dual’
model is a Zs,, orbifold of a product of three separate cft’s, L ® W ® W, where W is a
Landau-Ginzburg model with superpotential W = ®2, i.e. a SU(2)/U(1) model, and L is
a Liouville model which is the IR fixed point of the model with a Lagrangian

L= /d49 %|€17|2 + /d26 eV tee (4.141)

and ¥ ~ ¥ + 2rin. In the region where the real part of ¥ is large, the target space of the
Liouville model looks like a dilatonic cylinder. In the scaling limit corresponding to the
generalized conifold singularity, 4 — 0, the Liouville potential is small for a larger portion
of values of Re 1[1

The metric on the cylinder looks like

ds2; = n (dp® + d¢?), (4.142)

where p € R is a scalar with a background charge, corresponding to the real part of ¥ and
q ~ g + 27 is a free periodic scalar. The central charge of the Liouville model (or dilatonic
cylinder)is é = 1 + Z. The pair of SU(2)/U(1) coset models have metrics

ds} ; = 2n(dx} + tan® x; d¢?) . (4.143)

The central charge of each copyisé =1+ % so the total central charge is ¢ = 3. And the
Zs,, orbifold identifies (g, ¢1, d2) ~ (¢ — 27i/n, $1 + wi/n, ¢3 + 7i/n).

Applying the Buscher rules to this geometry, along the ‘homogeneous’ U(1) direction
(same as of the orbifolding), yields a dual geometry that looks like

dsﬁual =n dp2 +2 Z dXzz

i=1,2
+ - x
2+ 5 tan? y; (4.144)
i=1,2
2 2 2 tan? X1 tan? X2 2
x | 2dA\% + Z tan® y;do; + — [der —dea]” |,
i=1,2
with a B-field n Z
B= — tan? x;d\ A dg;. (4.145)
2 R 1 1
2+ 1=212 tan® x; gt

The dilaton profile is also somewhat complicated. First of all, there is a linear dilaton
in the p direction, already from the Liouville/dilatonic cylinder. But there are also other
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contributions, from the Buscher rules. In all, the dilaton profile looks like

® = ®( — linear dilaton along p

1 tan? tan?
_ Z log cos x; — 3 log (1 + an2 Xy an2 X2) . (4.146)
i=1,2

OTHER SINGULARITIES WITH A KAZAMA-SUZUKI INTERPRETATION

Some other interesting hypersurfaces are obtained from other weighted homogeneous poly-
nomials that (up to marginal deformations) characterize Landau-Ginzburg/Kazama-Suzuki
models.

For example, the Kazama-Suzuki models

SU{(3)«
SU(2)yxU(1)

have a Landau-Ginzburg realization with a superpotential W = F that has weights and
degree such that

F(z1,22,23,24) =H(z1,22) + 73 + 7}

4.147
H(/\.’Itl s )\2.’)32) Z/\k+3H(.’E1 y .’Eg). ( )
The weights of the coordinates are
(1,2, %43 E£3) if kis odd
’ 3 ) = . N 4.148
(01,2, a3, as) {(2,4,k+3,k+3) if k is even ( )
The weighted degree of F is k + 3 (2k + 6) if k is odd (even), so ap = —a1 — a2
—3if kis odd
= 4.149
0 {—ﬁifkiseven @199

Furthermore, to have a UV mode] which describes a simple cyclic quotient of a hypersur-
face, we need —ao|d, so k should be an integer multiple of 3. Define

k
nE—1+§, (4.150)
and
lifni
o, = 4 Lifnisodd (4.151)
2if n is even
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With these definitions, we consider weighted homogeneous polynomials F, (z1, T2, 23, T4)
of weighted degree d = 3, (n + 1) and weights

3an(n+1) 3ap(n+ 1))

(a1,a2,03,a4) = (an,2an, 5 , 3
thena_; = —dand ap = —3a,. Thereis a UV gauge theory which flows to a sigma model
on the hypersurface F,; ! (—u) in C*/Z,,,, analogous to the models discussed in the earlier
cases.

The ‘half-dual’ model is Z3,3 orbifold of a product cft, containing a Liouville fac-
tor and a Landau-Ginzburg factor with W = F,. Weighted homogeneous deformations
correspond to Landau-Ginzburg cft’s that differ by marginal deformations. In the moduli
space of Landau-Ginzburg conformal field theories with weighted homogeneous superpo-
tentials of the form of Fl,, there is a particular point where the Landau-Ginzburg model
is the SU(3)3n/ (SU(2) x U(1)) Kazama-Suzuki coset model. To find the precise form
requires a detailed analysis, under the assumption that the ‘level-rank’ isomorphisms of the
Kazama-Suzuki models, as discussed in section 3.4 are indeed true.

The Liouville model is the infrared fixed point of a model with Lagrangian

L= /d40 mm? + /dze,ue—“’, (4.152)
where ¥ is a chiral superfield with periodicity 27i(n + 1). In the scaling limit when the
hypersurface develops its singularity 4 — 0, the Liouville model can be interpreted as a
dilatonic cylinder, as before.

When there is a Kazama-Suzuki interpretation of the Landau-Ginzburg factor, the clas-
sical T-duality that remains to be done is

SU(3)3n

T SU(3)3n
SU@2) x U(1)

X S‘r'lz+l /Zgn+3 ~ SU(Q) . (4153)
The Kazama-Suzuki model has a canonical S! symmetry, which is the axial action of the
U(1) that appears as a vectorially gauged subgroup in the denominator (an interesting
closely related duality is discussed in [28]). The T-duality transformation is taken along
the combined action of the axial U (1) in the coset and translations along the S ! factor.
The above duality can be derived through a process similar to that in [28]. In [28] the
extra S! was not considered, but rather T-duality was derived between the coset models

G. T Gk
HxU(l)y, HxUQQ)gX Ziygv

~

(4.154)

Inclusion of the extra circle ‘eats’ the axially gauged U (1). Compare this to the classic case

SU@ _ SU(2)
U(l)y  U(Da x Z¢ +2

(4.155)
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(see, for example [102] for a nice exposition) versus the duality

SU2
U(1)w

x U(1) ~ SU(2)k/Zk+2, (4.156)

in, for example [19].

One can consider such a dualization for bosonic coset models, as the fermionic part of
Kazama-Suzuki is essentially free (although decoupling the fermions has some effects, like
shifting the level of the bosonic coset and affecting the order of the orbifold quotient by the
dual Coxeter number of G, see [28]). The T-duality is performed by introducing an auxil-
iary gauge field which gauges the isometry of the T-duality and a Lagrange multiplier term
which sets the gauge connection to be flat. In choosing a particular gauge fixing condition,
one usually picks up a non-trivial dilaton profile. In the next step, of the T-duality, integrat-
ing out the gauge field, again a non-trivial dilaton profile may be generated. In [28], where
the Kazama-Suzuki model alone is dualized, without the extra U(1), through a cunning
choice of gauge fixing condition, the generation of a dilaton is avoided. A similar tactic can
be employed for the present T-duality. But also another choice of gauge fixing should not
affect the end result. Indeed, the dilaton generated in the first step is cancelled in the second,
thus leading indeed to the duality (4.154). Consequently, similar T-dualities can be consid-
ered for other Landau-Ginzburg-Kazama-Suzuki models, such as SU(4)/SU(3) x U(1)
at arbitrary level. Also, the work of Eguchi and Sugawara [95] provides a demonstration
of such dualities for many different cosets, including cases not related to Landau-Ginzburg
models and cases related to G and Spin(7) singularities.

4.4.1 INTERPRETATION OF THE DUALITY

What can be said about the relation between the supersymmetric singularities and their T-
dual backgrounds? First of all, the procedure that was discussed relies on the formulation
of a singularity as a weighted homogeneous affine hypersurface, or as a quotient of such a
hypersurface, depending on the value of ag. It is reasonable to think of a weighted homo-
geneous hypersurface singularity as a metric cone, qualitatively speaking. After all, such a
hypersurface admits a C* action while on a (Calabi-Yau) metric cone the Euler and Reeb
vector fields act in an analogous fashion.

However, explicit Sasaki-Einstein metrics on the links of supersymmetric affine hy-
persurfaces are scarcely known. The exceptions are mainly homogeneous spaces and and
the most special cases are the hyper-Kihler surface singularities. Another reason why the
ADE surface singularities are very special is, that they have no marginal deformations.
This means that the polynomials which define them as hypersurfaces have no weighted ho-
mogeneous deformations other than ones which correspond to changes of variables. And
in addition the ADE polynomials, see table 2.2, define Landau-Ginzburg models which
have a coset interpretation. Other hypersurfaces, of dimension larger than four, either have
no Landau-Ginzburg ‘half-dual’ model which has a coset cft interpretation, or they have
ag < —1, and usually both matters occur at once. Also, they have marginal deformations.
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Geometric [ Flux H
Rx Y2 Ry x SU(2)p
SU(2) isometry SU(2) affine symmetry
r'csU(2) I modular invariant
quotient by discrete subgroup of isometries based on affine symmetry

Table 4.2: Remarkable correspondences between ADE ‘geometric’ and ‘flux’ impurities.

SURFACE SINGULARITIES
The correspondences between the ADE surface singularities and their duals are remarkable.
The surfaces can be viewed as metric cones

- SU(2)
Rx T

while the duals are conformal field theories
Ry x SU(2)r.

The isometry of the homogeneous link appears as an affine symmetry in the dual. The
possible links are the homogeneous SU(2)/I" and correspond one-to-one to the discrete
subgroups I" of SU(2), which in turn correspond to the modular invariants that can be used
to construct each dual SU(2) conformal field theory.

The simplest geometric interpretation exists for the A-type singularities. Their links
are circle bundles over P!, distinguished by an integer, the Chern class. The dual SU(2)
conformal field theories are realized as WZW models, which are labeled by one integer, the
level. Because the cft is formulated as a sigma model, the target geometry can be interpreted
and it is viewed as the throat of a stack of a number of fivebranes.

Put together, the remarkable correspondences are summarized in table 4.2.

KAZAMA-SUZUKI/LANDAU-GINZBURG SINGULARITIES

It is tempting to try and generalize the correspondences in table 4.2 to cones over other
homogeneous spaces. Many such cones have no hypersurface description, and it is not at
all clear how exactly such a correspondence would look in detail./lfgexample, there is no
one-to-one relation between discrete subgroups of SU(3) and SU(3) modular invariants.
Some more comments about this will be made later. Here we wish to briefly elaborate on
the ‘flux impurities’ which have a coset cft interpretation.

To be more specific, the proposed duality applies to flux impurities of the form

linear dilaton x g

H
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where G/H x U(1) is a Kazama-Suzuki model with a Landau-Ginzburg interpretation. The
U(1) current in G/H has a very general r6le. Any flux background R , x N needs to be
such that N is a A’ = 1 superconformal field theory with an affine U(1) current, such that
N/U(1) is a N = 2 superconformal theory [22], see also [98]. The Kazama-Suzuki mod-
els provide a very explicit realization of this, combined with a geometric (gauged WZW)
interpretation of the ‘flux impurity’.

The geometric impurities dual to the coset models which have a Landau-Ginzburg re-
alization are cyclic quotients of affine hypersurfaces. Coset models with a LG realization
are the coset models based on simply laced Hermitean symmetric spaces (see table 3.2) at
level one (sometimes cailed SLLOHSS) , and those coset models which are related by a
level/rank isomorphism to SLLOHSS models, such as notably the Grassmannian Kazama-
Suzuki models at any level '?

SU(m + 1),
SU(m) x U(1)’

The reason that they quotients, and not simply hypersurfaces F' ~1(0) € C"*2, is that F is
not ‘anticanonical’, i.e.

F(z1,...,Tny2) = H(z1,...,20) + 321 + 225, (4.157)

and consequently ag = d — _ a; < —1, which causes the non-linear sigma model target
space to be a Z_,, quotient of F~1(0) C C"*2.

How should we think of this target space? We believe that in the same moduli space
as the hypersurface quotient above, there is a particular metric cone with an interesting
description, as follows. The weighted homogeneous polynomial F' can be deformed by de-
formations, polynomial in the z;, which preserve the weighed degree. Such deformations
are marginal deformations of the Landau-Ginburg model, and correspond to deforming the
geometric impurity by changing moduli. At a particular point in moduli space, where cer-
tain cycles have been blown up and others have been blown down, there is, we believe, a
geometric impurity with a ‘nice’ metric cone / Sasaki-Einstein description.

For example, consider the generalized conifolds, defined by F = 2™ + z3™ + 23 + z3.
As discussed earlier, these are marginal deformations of a Z,, quotient of z% + 23 + 22 + 2
which defines the Z3 quotient of the conifold (i..e. the metric cone on the regular Sasaki-
Einstein manifold T'!'! /Z5). So the Kazama-Suzuki flux impurity

SU(2)2n x SU(2)2n
U()

R¢X

is related by T-duality to the metric cone on T'1:! /Z,,,, if we tune the moduli appropriately.
The Z, quotient can be regarded as a Z» quotient of the fiber of T} together with a Z,,

12There are other level/rank isomorphism known, discussed in section 3.4, but these are either not based on
simply laced groups, or on modular invariants other than the diagonal one, so not Kazama-Suzuki. It would be
interesting to relate these models, or orbifolds of these models to Landau-Ginzburg models, but to the author’s
knowledge, this remains yet to be done.
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quotient which acts on P! x P! as well (it is the action u — €2™*/"u, v — e~ 2P¥/™y on the
conifold uv = zy).

Interestingly, if we simply take the polynomial F' = %™ + 22™ + z2 + z2 and interpret
that in the appropriately weighted homogeneous space, we find, that the Hodge diamond is
[75]

h00 1
RLO 01 0 0
K20 RLD RO2 = 1 2n L (4.158)
Rl pl2 0 0
h2:2 1

And P x P, the C* quotient of Rx 71! or RxT:! /Z, has the above Hodge diamond with
n=1

A final interesting feature of the Kazama-Suzuki type impurities, is that we can take
the level of the coset model to be large. In that case the supergravity approximation of the
gauged WZW target space is meaningful. In the example of the generalized conifolds above
we see that a metric cone on the total space S — L — Z/T", when the order of the discrete
group I' becomes large, is T-dual (up to marginal deformations) to the background

R¢X2.

Here L is a circle bundle over is the homogeneous space [SU(2)/U(1)]? /T (which is only
quasi-smooth, not smooth, due to fixed points of I"), where the U(1)’s act from the left on
the SU(2)’s. But on the dual side Z is [SU(2) x SU(2)] /U(1), which is the target space
of a gauged WZW model. The U(1) acts vectorially (in an opposite fashion on both SU(2)
factors). This space has B-field flux and a non-trivial dilaton.

OTHER IMPURITIES

For geometric impurities which cannot be interpreted in the above fashion, we have only
some general comments to make.

The Kazama-Suzuki models are essential for us to find a geometric target space inter-
pretation of the flux impurity. Generally speaking, the Landau-Ginzburg model which we
find should be thought of as N/U (1), where the flux impurity is a background

R¢XN.

It remains an interesting task to find such N, connected to geometric singularities, which fit
in the T-duality procedure we described.

In particular it may be interesting to consider hypersurfaces which correspond to projec-
tive varieties which have a smaller group of isometries than the homogeneous spaces, like
P! x P! or P? etcetera. For example, it seems interesting to find duals to affine hypersur-
faces that are C* bundles over del Pezzo surfaces, not only smooth del-Pezzo surfaces, but
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also quasi-smooth log-del Pezzo surfaces found by Johnson and Kollar and Johnson [34, 35]
some of these come in infinite families, which might allow for a ‘supergravity approxima-
tion’ on the side of the flux impurity. To do this, would require a geometric interpretation of
the Landau-Ginzburg models with a superpotential that is a polynomial in the lists of Kollar
and Johnson. Such an interpretation, analogous to the Kazama-Suzuki/Landau-Ginzburg
relation, remains to be found.

4.5 CONCLUDING REMARKS AND DIRECTIONS FOR FU-
TURE WORK

We have presented a connection of geometric impurities, singular geometries realized as hy-
persurfaces, and flux impurities, backgrounds which contain fluxes and generically a linear
dilaton. The best understood examples are the ADE surface singularities, and in particu-
lar the A-type singularities, for which the geometric interpretation is simple, both of the
geometric impurity, and of the dual flux impurity.

The T-duality procedure works for more general weighted homogeneous affine hyper-
surfaces, with some conditions on the weights and the degree. Essentially, the condition
is that the sum of weights is larger than the degree, and that the difference of this sum
of weights with the degree, is a divisor of the degree. The flux impurities associated to
Kazama-Suzuki coset models have a natural target space interpretation, these correspond
to specific hypersurfaces. By a change of moduli, the hypersurface is related to a simple
metric cone. We have seen an example of the generalized conifolds that illustrates this.

There are various interesting directions which remain to be explored. First, there is the
issue to better understand ‘flux impurities’ described by coset cft’s which have no Landau-
Ginzburg realization, such as the many of the cosets of Eguchi et al. [95]. Conversely there
are many interesting hypersurfaces for which the LG model has no known equivalent which
illuminates a target space interpretation. For example one might try to find a geometric
interpretation of LG models with a superpotential that defines a del Pezzo surface. This
would presumably not directly admit an interpretation in a ‘supergravity limit’ as the degree
of the defining polynomial is low. Also, there are known infinite series of polynomials
which define log Fano varieties [34, 35]. It seems hard to find a geometric interpretation for
their ‘flux duals’, but it there is such an interpretation, there might be a ‘supergravity limit’
taking the degree of the defining polynomial large.

It would also be interesting to consider the dualization procedure for complete intersec-
tions. Another direction would be, to consider hyper-Kahler hypersurfaces with regards to
non-abelian duality. The hyper-Kahler singularities can be regarded as cones on tri-Sasaki
manifolds. These can be viewed as SU(2) bundles on quaternionic Kihler spaces. Also, be-
cause of the three Sasaki structures, these hypersurfaces may lead to a number of connected
flux backgrounds.

Finally, very generally the linear dilaton backgrounds can be deformed to AdS 3 back-
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grounds. On the geometric singularity side, this deformation is achieved by putting funda-
mental strings in the singularity. Thus, the singularities provide a way to construct a plethora
of backgrounds of the form AdS3 x N and the geometric singularity description may be a
good tool to learn about AdS/CFT in such cases. The construction of AdS 3 backgrounds
by means of fundamental strings in singularities can be regarded as a method which is com-
plementary to the construction of backgrounds as a near horizon limit of FI/NSS brane
configurations, or D1/D5, by S-duality. Hopefully such constructions will provide a further
understanding and intuition about AdS; x NN backgrounds and holography. In particular,
using singularities may open a way to the construction of AdS3 x IV vacua which cannot
be obtained as near horizon limits of simple D1/D5-brane configurations.
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SAMENVATTING

Dit proefschrift behandelt een onderwerp in de snaartheorie, een onderdeel van de heden-
daagse theoretische fysica. Voordat wij enkele aspecten van de snaartheorie aan de orde
stellen en de hoofdpunten van dit proefschrift recapituleren, zullen wij pogen een context te
schetsen van ontwikkelingen in de theoretische natuurkunde waarin de snaartheorie in het
algemeen, en dit proefschrift in het bijzonder, geplaatst kunnen worden.

FYSICA

Wat is fysica eigenlijk? Fysici, of natuurkundigen, houden zich bezig met het het observe-
ren van natuurverschijnselen en het begrijpen daarvan, door fundamentele wetmatigheden
te zoeken en te formuleren waaraan deze natuurverschijnselen gehoorzamen. Deze wetma-
tigheden worden geformuleerd in een fysische theorie, die in de praktijk geformuleerd is in
wiskundige termen.

Hoewel de bekende fysische theorieén geformuleerd zijn in wiskundige termen en fysici
een zekere esthetiek appreciéren in de formulering van deze theorieén, waarover later meer,
is natuurkunde niet een onderdeel van de wiskunde. De eerste prioriteit van een natuur-
kundig model, is dat het de empirische werkelijkheid accuraat beschrijft. Daarnaast wordt
het zeer gewaardeerd als een model ‘economisch’ geformuleerd is, dat wil zeggen, dat het
een klein aantal basisprincipes en regels kent, aan de hand waarvan een groot aantal diverse
fenomenen beschreven kan worden. Als een model deze eigenschappen heeft, wordt het
gewoonlijk aangeduid als een fysische theorie.

Er is een belangrijke manier om een fysische theorie te testen. Door de theorie zorg-
vuldig te bestuderen, kan men proberen zekere gevolgtrekkingen te formuleren die nog niet
eerder empirisch geverifieerd werden, en dus niet deel uitmaakten van de input die leidde
tot de formulering van de theorie. Door experimenten en empirische observaties kan men
zo het domein van geldigheid van een theorie markeren.

Het is belangrijk om te beseffen, dat het domein van geldigheid van elke fysische the-
orie beperkt is. Per slot van rekening zijn de empirische consequenties van een theorie in
de praktijk altijd slechts onder een beperkt aantal omstandigheden experimenteel gecontro-
leerd. Dit heeft als consequentie, dat verschillende fysische theorieén ‘waar’ kunnen zijn,
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Andere theorie,
gedeeltelijk overlappend
domein van toepasbaarheid &=

/ Deeltheorie,

beperkt domein van
toepasbaarheid

ook al voorspellen ze verschillende empirische consequenties. Dit is acceptabel als tenmin-
ste de twee fysische theorieén in kwestie verschillende domeinen van geldigheid hebben.
Als er een domein is waar twee theorieén toepasbaar zijn, dan moeten ze daar uiteraard wel
gelijke uitkomsten voorspellen.

Beschouw bijvoorbeeld de geometrische optica; hierin worden lichtstralen veronder-
steld in rechte lijnen te bewegen en kan weerkaatsing en breking van lichtstralen beschreven
worden. Dit is heel anders dan de fysische optica, waarin licht een golfverschijnsel is, en
diffractie en interferentie kan optreden: verschijnselen die niet voorkomen binnen de geo-
metrische optica. Niettemin is zowel de fysische optica als de geometrische optica ‘waar’.
De geometrische optica is bruikbaar wanneer de golflengte van het licht klein genoeg is om
verwaarloosbaar te zijn. In dat geval kan reduceren de uitkomsten van de fysische optica,
tot die van de eenvoudigere geometrische optica. Dit nu, is een voorbeeld van een cruciaal
principe: een overkoepelende theorie, met een groter domein van geldigheid kan nieuwe
fenomenen voorspellen die niet gerealiseerd zijn binnen een theorie met een ander, meer
beperkt domein van geldigheid. Maar als de beperkte theorie ‘waar’ is binnen haar gelimi-
teerde gebied van geldigheid, dan moeten de voorspellingen van de overkoepelende theorie
in dit gelimiteerde domein overeenkomen met die van de beperktere theorie.

Bij het zoeken van nieuwe, breder geldige fysische theorieén is het bovengenoemde
principe van groot belang. Bekende fysische theorieén met een zeker gebied van toepas-
baarheid vormen een grote hulp bij het beperken van de mogelijke eigenschappen van een
overkoepelende theorie. Zo’n overkoepelende theorie moet reduceren tot de welbekende en
beproefde ‘oude’ theorieén in de corresponderende deelregimes waarin de oude theorieén
ook ‘waar’ zijn.

FYSISCHE THEORIEEN
Wellicht is de eerste fysische theorie die een overweldigend breed gebied van toepasbaar-
heid heeft, de mechanica zoals ontwikkeld door Newton. De wetten van de Newtoniaanse

mechanica beschrijven de beweging van objecten onder invloed van krachten. Een van die
krachten is de zwaartekracht. Deze kracht werd ook door Newton theoretisch beschreven, en
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de Newtoniaanse mechanica in combinatie met de zwaartekrachtswet van Newton beschrijft
bijvoorbeeld de dynamica van ons zonnestelsel met een zeer hoge nauwkeurigheid.

Het regime van toepasbaarheid van de Newtoniaanse mechanica en de Newtoniaanse
zwaartekracht is echter beperkt. In het bijzonder vallen objecten met hoge snelheden, in
de orde van de lichtsnelheid, en mechanica op zeer kleine afstands- of tijdschalen buiten
het domein van de Newtoniaanse mechanica. Ook geldt de zwaartekrachtswet van New-
ton niet voor objecten met een zeer grote massadichtheid, en op zeer kleine en zeer grote
afstandsschalen.

In sommige deelregimes zijn in de twintigste eeuw ‘overkoepelende’ theorieén gevon-
den, maar er is nog geen definitief gevestigde theorie die in elk van de deelregimes toepas-
baar is. Laten we inventariseren welke theorieén er bekend zijn. Indien we de zwaartekracht
buiten beschouwing laten, en ons dus enkel op de mechanica concentreren, zijn er twee rich-
tingen mogelijk om Newton’s mechanica uit te breiden.

Ten eerste, is er een speciale, hoge, snelheid in de natuur, de hoogst mogelijke snelheid.
Het bestaan van een dergelijke ‘universele” snelheid werd gesuggereerd door de wetten van
de electrodynamica die door Maxwell werden geformuleerd in de negentiende eeuw. Daarin
duikt een universele snelheid op, geinterpreteerd als de lichtsnetheid. Het bestaan van een
dergelijke universele snelheid, gelijk voor alle waarnemers ongeacht hun onderlinge eenpa-
rige beweging, is niet strikt compatibel met de wetten van Newton’s mechanica. Deze wet-
ten werden door Einstein gemodificeerd in zijn speciale relativiteitstheorie. Bij snelheden
veel lager dan de lichtsnelheid, reduceren de principes van de speciale relativiteitstheorie
tot die van de Newtoniaanse mechanica.

Een andere uitbreiding van het Newtoniaanse regime is in de richting van kleine afstan-
den of korte tijdsduren. In dit regime is de quantummechanica geldig '°.

Een belangrijk onderdeel van de hedendaagse fysica wordt gevormd door theorieén die
in elk van deze regimes toepasbaar zijn, dit zijn relativistische quantumtheorieén. Specifieke
exponenten van zulke theorieén beschrijven bijna alle fundamentele fysica die tot op heden
is geobserveerd. Ze beschrijven echter een zeer belangrijke categorie van geobserveerde
fenomenen niet, namelijk fenomenen waarin zwaartekracht een rol speelt.

Er is wel degelijk een uitbreiding van de Newtoniaanse zwaartekrachtstheorie bekend.
Deze uitbreiding is de algemene relativiteitstheorie van Einstein. Bij grote massa’s wijken
de voorspellingen van de algemene relativiteitstheorie af van die van de theorie van Newton,
evenals bij hoge snelheden. De algemene relativiteitstheorie neemt echter geen quantum-
mechanische effecten in beschouwing.

Aangezien zowel de algemene relativiteitstheorie als quantumtheorieén een degelijke

13Gtrikt genomen wordt het regime waarin quantumeffecten van belang zijn niet aangegeven door een afstands-
schaal (vergelijkbaar met een snelheidsschaal, de lichtsnelheid, die aangeeft wanneer relativistische effecten van
belang zijn) maar door een schaal van actie, i. In de mechanica kan aan de evolutie van een systeem van een zekere
begin toestand naar een eindtoestand volgens een ‘pad’ van intermediaire configuraties een grootheid worden toe-
gekend: een getal met de dimensie van K: een ‘actie’. De klassieke mechanica zegt ons, dat een systeem evolueert
langs een pad waarvan de actie minimaal of maximaal is. De cruciale modificatie van de quantummechanica is,
dat ook paden met een actie die niet extremaal is bijdragen aan de evolutie van het systeem.
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empirische rechtvaardiging hebben, is het een legitieme vraag om een theorie te zoeken die
zowel relativistische en gravitationele als ook quantumeffecten in beschouwing neemt. Niet
alleen vanuit het oogpunt van volledigheid is het wenselijk om een dergelijke theorie te
kennen: we weten nu eenmaal dat quantum effecten bestaan, en dat gravitationele effecten
bestaan en het ligt voor de hand dat er een regime gedefinieerd kan worden waarin beide
effecten een belangrijke rol spelen. Er zijn ook concrete fysische situaties denkbaar, aan
de rand de domeinen van geldigheid van de empirisch beproefde fysische theorieén, waarin
een theorie van quantumgravitatie nodig is om een zinnige analyse te kunnen doen. Een
voorbeeld is de fysica van ons heelal in een zeer jong stadium.

Het is echter zeer moeilijk gebleken om een consistente overkoepelende theorie te for-
muleren die zowel gravitatie als quantumtheorie bevat. Tot op heden wordt een veelbelo-
vend en intrigerend pad naar een dergelijke theorie gevormd door het onderzoeksgebied dat
bekend is als ‘snaartheorie’.

SNAARTHEORIE

De snaartheorie is in het huidige stadium niet een fysische theorie zoals bijvoorbeeld de
Newtoniaanse mechanica of de algemene relativiteitstheorie. Deze theorieén zijn ‘af’: ze
hebben een duidelijke bondige logisch consistente en complete formulering en zijn funda-
menteel gezien goed begrepen. Andere theorie€n, zoals relativistische quantumtheorieén
hebben een voor natuurkundigen acceptabele definitie, maar deze definitie heeft ons nog
niet in staat gesteld om sommige belangrijke fysische fenomenen vanuit de definitie van de
theorie af te leiden'®. Bij de snaartheorie is echter zelfs een fundamentele formulering niet
volledig bekend; er is ‘slechts’ een aantal formuleringen bekend die elk een zinvolle be-
schrijving kunnen vormen van een beperkte deelgroep van oplossingen van de, grotendeels
ongekende, volledige theorie die wel wordt aangeduid met de naam ‘M-theorie’.

De naam ‘snaartheorie’ volgt uit de bekende formulering van de theorie, waarin een-
dimensionale objecten, ‘snaren’, de fundamentele vrijheidsgraden in de beschrijving van
de theorie vormen. Dit is anders dan in de conventionele relativistische quantumtheorieén,
waarin de fundamentele vrijheidsgraden worden gevormd door puntdeeltjes. Het feit dat de
fundamentele vrijheidsgraden die van snaren zijn, heeft verscheidene consequenties. Ten
eerste is het een bijna direct gevolg van de ruimtelijke uitgebreidheid van snaren, dat de
theorie zwaartekracht kent. Het zou hier te ver voeren om dit in enig detail te bespreken,
maar een essentieel punt hierin is het volgende.

Anders dan een puntdeeltje, kent een snaar oneindig veel ‘interne vrijheidsgraden’; een
snaar kan op verschillende manieren trillen, zoals een vioolsnaar, bijvoorbeeld. Deze vrij-

4Denk hierbij aan confinement, of opsluiting, van kleurlading in theorieén zoals die van de sterke kernkracht.
Hoewel er vele aanwijzingen zijn, uit computersimulaties en theoretische beschouwing van vergelijkbare theorieén
met meer structuur, ontbreekt een goed begrip van confinement. Gedurende het promotieonderzoek heeft de auteur
onderzoek verricht naar sommige van zutke quantumtheorieén, resulterend in de publicaties [109, 110], welke niet
tot basis hebben gediend van dit proefschrift.
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heidsgraden kent een puntdeeltje niet. De verschillende trillingswijzen van een snaar wor-
den geinterpreteerd als verschillende ‘deeltjes’. In het bijzonder heeft een snaar die op een
bepaalde specifiecke wijze trilt, de eigenschappen van het deeltje dat verantwoordelijk is
voor de zwaartekracht: het graviton.

Een quantumtheorie van gravitonen alleen, of gecombineerd met een eindig aantal ande-
re deeltjes (zoals het geval is bij zogenoemde ‘supergravitatie’ theorie€n) zijn tot op heden
niet gebleken consistente quantumtheorieén te zijn. Dankzij het bestaan van oneindig veel
verschillende trillingswijzen van een snaar (alle ‘boventonen’), die gezien kunnen worden
als een oneindige collectie verschillende deeltjes, is het mogelijk dat snaartheorie typische
problemen van een zwaartekrachtstheorie van puntdeeltjes omzeilt.

De uitgebreidheid van snaren heeft nog andere consequenties. Een uitgebreid object als
een snaar is gevoelig voor andere eigenschappen van zijn omgeving dan een puntdeeltje.
Een snaar kan bijvoorbeeld ergens omheen gewonden zijn maar een puntdeeltje niet. Dit
soort eigenschappen heeft grote consequenties: als een snaar de wereld ‘anders ziet’ dan
een puntdeeltje en snaartheorie is een relevante theorie van onze wereld, dan zouden we
eigenlijk ook een beschrijving van de ‘wereld” willen die precies die eigenschappen onder-
scheidt, die door snaren ‘gezien’ worden. In het bijzonder kunnen twee ruimtes die er heel
verschillend uitzien voor puntdeeltjes ononderscheidbaar zijn voor snaren. Het bestuderen
van dit soort ruimtes, en de relaties tussen die ruimtes, staat centraal in dit proefschrift.

Het begrijpen van de onderlinge verbanden tussen schijnbaar verschillende maar feite-
lijk equivalente ruimtes is niet alleen interessant op zich. De verschillende beschrijvingen
kunnen van pas komen bij het bestuderen van andere eigenschappen van snaartheorie: de
ene beschrijving kan bepaalde aspecten duidelijk op de voorgrond brengen terwijl de andere
beschrijving andere aspecten kan verhelderen. Hierover zullen wij later meer zeggen.

SNAARTHEORIE EN DUALITEITEN

De titel van dit proefschrift is: ‘Dual Views of String Impurities’, wat in het Nederlands
vertaald kan worden als: ‘Duale gezichtspunten op onzuiverheden in snaartheorie.” De
term ‘dualiteit’ kan vele verschillende betekenissen hebben in snaartheorie. Meestal kan
een dualiteit gezien worden als een equivalentierelatie tussen twee theorie€n. Het bestaan
van een dergelijke equivalentierelatie kan erg praktisch zijn. Denk bijvoorbeeld aan de
situatie dat de ene theorie, in een regime waarin berekeningen moeilijk zijn, equivalent
beschreven wordt door een anders uitziende theorie in een regime waarin berekeningen veel
gemakkelijker zijn. In zo’n geval kan een lastig toegankelijk regime van de ene theorie
bestudeerd worden met behulp van een duale theorie.

Hoewel er vele berekeningen en analyses zijn die het bestaan van vele dualiteiten in
snaartheorie ondersteunen, is het in een groot aantal gevallen tot op heden onmogelijk ge-
bleken om het bestaan van vele dualiteiten rigoureus te bewijzen. Een uitzondering hierop
vormen zogenoemde ‘T-dualiteiten’. Vaak kunnen deze expliciet bewezen worden, omdat
ze geformuleerd kunnen worden in de bekende en vertrouwde formulering van snaartheorie
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als een theorie van propagerende snaren, en wel in een regime waarin deze beschrijving de
basis van zinvolle berekeningen vormt.

INTERMEZZO: SNAARTHEORIE EN MODULI

Alvorens in te gaan op enkele specificke eigenschappen van T-dualiteit, is het nuttig om
onze ideeén over snaartheorie en dualiteiten uit te breiden. Een opmerkelijke eigenschap
van snaartheorie is dat snaartheorie verondersteld wordt ‘uniek’ te zijn. Dat wil zeggen:
er zijn geen parameters die a priori gespecificeerd dienen te worden om te karakteriseren
over welke specifieke snaartheorie we praten. Dit soort parameters is gewoonlijk wel nodig
om te specificeren over welke quantum(velden-)theorie we praten: denk bijvoorbeeld aan
de ladingen van de deeltjes, of meer algemeen, aan koppelingsconstanten. Er is slechts een
snaartheorie!

Deze uitspraak behoeft enige nuancering. Hoewel er niet meerdere snaartheorieén zijn,
geparametriseerd door de waarden van zekere a priori te specificeren parameters, zijn er
wel andere belangrijke grootheden in snaartheorie: de verwachtingswaarden van verschil-
lende toestanden van collecties, of condensaten van snaren. Deze verwachtingswaarden zijn
grotendeels analoog aan de verwachtingswaarden van quantumvelden in een quantumvel-
dentheorie. Het bijzondere van snaartheorie is dat er naast deze verwachtingswaarden geen
‘externe’ parameters zijn.

Er is een speciale verwachtingswaarde, de verwachtingswaarde van het zogenaamde di-
latonveld, die effectief de rol speelt van een koppelings-‘constante’ van de snaartheorie.
Wanneer deze verwachtingswaarde klein is, is de formulering van snaartheorie als een the-
orie van propagerende snaren zinvol en kan ermee gerekend worden.

De concrete waarde van sommige verwachtingswaarden kan worden bepaald door de
vergelijkingen waaraan oplossingen van snaartheorie voldoen. Deze vergelijkingen zijn
slechts ten dele bekend, en vele verwachtingswaarden worden door de nu bekende verge-
lijkingen niet bepaald. Er zijn dus families van oplossingen van snaartheorie, die worden
geparametriseerd door deze vrije verwachtingswaarden. Deze vrije verwachtingswaarden
worden ‘moduli’ genoemd.

Met andere woorden: hoewel er maar één fundamentele theorie is, zeg M-theorie, zon-
der a priori te specificeren parameters, zijn er vele verschillende oplossingen van deze the-
orie (voor zover het huidige begrip reikt). Bij deze oplossingen horen zekere waarden van
de moduli, in het bijzonder worden de oplossingen alleen zinvol beschreven door propa-
gerende snaren, zoals in de conventionele beschrijving van snaartheorie, wanneer een zeer
specifieke modulus klein is, nl. de verwachtingswaarde van het dilaton, oftewel de effectie-
ve snaarkoppeling.

Met dit begrip kunnen we ook dualiteiten in snaartheorie, of eigenlijk M-theorie, beter
omschrijven. De dualiteiten zijn equivalentierelaties tussen een-en-dezelfde M-theorie bij
verschillende waarden van de moduli. Rond specificke waardes van de moduli is er een
beschrijving van M-theorie bekend, namelijk als snaartheorie, wanneer de effectieve snaar-
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koppeling van de snaartheorie klein genoeg is. Sterker nog, er zijn vijf consistente snaar-
theorieén bekend, die elk een gedeelte van de volledige M-theorie beschrijven, en sommige
dualiteiten verbinden die vijf snaartheorieén.

SNAARTHEORIE EN DUALITEITEN: VERVOLG

Zoals gezegd, zijn veel dualiteiten niet rigoureus bewezen. Een essentiéle reden hiervoor is
dat ze twee dusdanige delen van de ruimte van moduli van M-theorie verbinden, dat er niet
een enkele snaartheorie is die zwak gekoppeld is in beide delen, en wanneer de snaartheorie
sterk gekoppeld is, zijn er maar weinig berekeningen die vertrouwd kunnen worden.

T-dualiteit verbindt echter twee delen van de moduli ruimte van M-theorie, die zodanig
zijn, dat er een afleiding van de dualiteit mogelijk is die alleen gebruik maakt van zwak
gekoppelde snaartheorie. Om deze reden is het vaak mogelijk om T-dualiteit rigoureus af te
leiden.

T-dualiteit heeft enkele opmerkelijke eigenschappen, waarvan we er een paar inventa-
riseren. Ten eerste is T-dualiteit vaak rigoureus af te leiden, zoals eerder gezegd, maar in
sommige gevallen is het lastiger: dit is het geval bij de ‘onzuiverheden in snaartheorie’
waar dit proefschrift over gaat. Hierover later meer. Ten tweede relateert T-dualiteit twee
ruimtes, of achtergronden, waarin snaren propageren, die op een opmerkelijke manier gere-
lateerd zijn. Zoals eerder gezegd, ‘ziet’ een snaar niet dezelfde eigenschappen van de ruimte
als een puntdeeltje. Beter gezegd: een snaar ziet alles wat een puntdeeltje ziet, en meer. Bij-
voorbeeld: een snaar kan volkomen samengetrokken zijn, en er uit zien als een puntdeeltje,
maar een snaar kan ook om een object in de ruimte gewonden zijn, bijvoorbeeld om een
‘onzuiverheid’. T-dualiteit relateert twee achtergronden van snaartheorie zodanig dat de
eigenschappen van de ene achtergrond die alleen een gewonden snaar, maar niet een punt-
deeltje ziet, gerefiecteerd worden door de eigenschappen die een puntdeeltje juist wel ziet
in de T-duale achtergrond.

T-DUALITEIT, GEOMETRIE EN ONZUIVERHEDEN

T-dualiteit relateert de ‘gewone’ geometrie van de ene ruimte aan de ‘snaar-geometrie’ van
de duale ruimte en vice versa. Dit is op zichzelf een motivatie om T-dualiteiten te bestu-
deren, maar er zijn nog andere motivaties. Hoewel T-dualiteiten vaak rigoureus afgeleid
kunnen worden, is dit niet altijd het geval. In het bijzonder is het moeilijk om een rigou-
reuze T-dualiteit uit te voeren in een geometrie die een singulariteit heeft. Denk bij een
singulariteit bijvoorbeeld aan de punt van een kegel: overal, behalve aan de punt is een ke-
gel glad en overal behalve aan de punt ziet een klein stukje van een kegel er bij benadering
uit als een stukje van het platte vlak.

Singulariteiten in geometrieén komen veelvuldig voor in snaartheorie: een gladde geo-
metrie die een goede achtergrond is (dat wil zeggen, die voldoet aan de vergelijkingen van
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snaartheorie) kan worden gedeformeerd tot een singuliere geometrie door sommige moduli
op een bepaalde wijze te vari€ren. Zulke singuliere geometrieén worden in dit proefschrift
aangeduid als ‘geometrische onzuiverheden’ (geometric impurities).

Niet alleen zijn geometrische onzuiverheden volkomen legitieme en ‘normale’ oplossin-
gen van snaartheorie, ze hebben ook speciale eigenschappen. Typisch wordt een singuliere
geometrie verkregen uit een gladde geometrie door een specifieke modulus aan te passen,
nl. de modulus die het volume van een cykel bepaalt. Een cykel is een geometrisch object in
de geometrie waaromheen een membraan gewikkeld kan zijn (of eigenlijk meer algemeen
een p-braan, d.w.z. een p-dimensionale generalisatie van een membraan of 2-braan). Wan-
neer het volume van de cykel erg klein wordt, wordt de energie die nodig is om een p-braan
om deze cykel te wikkelen klein. Vergelijk dit met de energie die het kost om een ballon
op te blazen, deze energie hangt af van de elasticiteit van de ballon, en van het volume tot
waar de ballon wordt opgeblazen; een analoog mechanisme geldt voor p-branen en p-cykels
in snaartheorie. Wanneer het volume van zo’n cykel nul wordt, ontstaat er een singulariteit.
Bovendien kost het geen energie om p-branen te wikkelen om een cykel met volume gelijk
aan nul. De ‘lichte p-branen’ die om een minuscule cykel in een singulariteit gewikkeld
zijn, zorgen voor nieuwe lichte fysische vrijheidsgraden die gelokaliseerd zijn op de sin-
gulariteit. Dus een bijzondere eigenschap van een geometrische onzuiverheid is, dat deze
gelokaliseerde lichte vrijheidsgraden heeft.

Een andere bijzondere eigenschap van de onzuiverheden die in dit proefschrift be-
schouwd worden, is meer meetkundig van aard. De vergelijkingen van snaartheorie heb-
ben speciale, zogenaamde supersymmetrische oplossingen. Deze oplossingen zijn goed
onder controle, en alle geometrische onzuiverheden die supersymmetrisch zijn, zijn van een
zodanige vorm, dat men een T-dualiteit zou kunnen uitvoeren. In technische termen: de su-
persymmetrische geometrische onzuiverheden hebben een isometrie die degenereert in de
singulariteit.

Wanneer er een isometrie is, kan men pogen een T-dualiteit vit te voeren. Dit is rigoureus
mogelijk wanneer de isometrie niet degenereert. Maar bij de geometrische onzuiverheden
degenereert deze isometrie juist altijd, en dit compliceert het uitvoeren van de dualiteit.

In hoofdstuk 2 van dit proefschrift worden geometrische aspecten en verschillende be-
schrijvingen van geometrische onzuiverheden behandeld. In sommige beschrijvingen is de
isometrie en andere differentiaal meetkundige eigenschappen manifest. In andere beschrij-
vingen zijn meer analytische of algebraisch meetkundige eigenschappen duidelijker. In het
bijzonder treden differentiaal meetkundige eigenschappen op de voorgrond in de ‘metrische
kegel’ beschrijvingen van sectie 2.2, terwijl meer algebraische eigenschappen, en deforma-
ties tot gladde geometrieén duidelijker zijn in de beschrijving als hyperoppervlakken, in
sectie 2.3. In hoofdstuk 2 blijken bovendien verbanden tussen deze beschrijvingen.

T-dualiteit wordt altijd afgeleid door gebruik te maken van de beschrijving van snaarthe-
orie als een theorie van propagerende snaren, of technisch gezegd, door gebruik te maken
van de worldsheet conforme veldentheorie die zwak gekoppelde snaartheorie karakteriseert.
Hoofdstuk 3 behandelt verscheidene karakteriseringen van dergelijke theorieén en generali-
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saties daarvan die van nut zijn om T-dualiteit voor geometrische onzuiverheden uit te voeren.

De verscheidene karakterisaties van de tweedimensionale conforme veldentheorieén
zijn van belang, omdat het degenereren van de isometrie in de geometrische onzuiverheid
tot gevolg heeft, dat de T-dualiteitstransformatie gecompliceerd is, in termen van de confor-
me veldentheorie. In technische termen: er zijn niet-perturbatieve bijdragen in de tweedi-
mensionale veldentheorie. Deze kunnen, zo wordt, in hoofdstuk 4 beweerd, in aanmerking
genomen worden door over te gaan van ¢én tweedimensionale veldentheorie, met een zeke-
re geometrische beschrijving (een sigma model, om precies te zijn) op een andere theorie
met een andere, in het algemeen niet-geometrische beschrijving (een Landau-Ginzburg mo-
del). In hoofdstuk 3 worden naast sigma modellen en Landau-Ginzburg modellen, ook
nog andere, niet-conforme modellen besproken, die het mogelijk maken om verschillend
geformuleerde conforme veldentheorieén aan elkaar te relateren. Bovendien worden zoge-
noemde coset modellen besproken, die in sommige gevallen een geometrische interpretatie
van zekere Landau-Ginzburg modellen mogelijk maken.

Hoofdstuk 4 behandelt T-dualiteit, de geometrische consequenties in het algemeen en
T-dualiteit voor geometrische onzuiverheden in het bijzonder. In het algemeen relateert
T-dualiteit puur metrische eigenschappen in één achtergrond aan flux in de duale achter-
grond. Deze flux kan soms worden gezien als het ‘magnetisch’ veld dat in de achtergrond
aanwezig is ten gevolge van een ‘flux onzuiverheid’: een object in snaartheorie, in het een-
voudigste geval een specifiek soort p-braan: de NS5-braan. Men kan zeggen dat T-dualiteit
een ‘geometrische onzuiverheid’ relateert aan een ‘flux onzuiverheid’, zoals bijvoorbeeld
de NS5-braan.

Ten gevolge van de niet-perturbatieve bijdragen aan de T-dualiteit heeft de flux onzui-
verheid geen isometrie, terwijl de geometrische onzuiverheid wel een isometrie heeft (maar
deze ontaardt in de singulariteit, en dit is precies de reden dat er niet-perturbatieve bijdra-
gen zijn). Het ontbreken van de isometrie in de flux achtergrond maakt het mogelijk om een
‘schalingslimiet’ uit te voeren, die de fysica gelokaliseerd op de flux onzuiverheid isoleert.
Een analoge schalingslimiet bestaat voor de corresponderende geometrische onzuiverheid,
waar de lokale fysica wordt gerealiseerd door p-branen in de singulariteit). Deze schalings-
limieten worden in hoofstuk 4 uiteengezet.

Een belangrijke eigenschap van de schalingslimieten is, dat deze ‘nieuwe’ achtergron-
den van snaartheorie opleveren die worden beschreven in termen van bekende exacte con-
forme veldentheorieén. Dit stelt ons in staat om de kennis uit hoofdstuk 3 aan te wenden,
om dualiteiten in schalingslimieten van geometrische onzuiverheden uit te voeren. Er wordt
een voorstel gedaan hoe de niet-perturbatieve bijdragen aan de dualiteit in aanmerking te
nemen en dit wordt in verscheidene concrete situaties geillustreerd.

In het bijzonder zijn er bepaalde ‘symmetrische’ onzuiverheden die aan intrigerende re-
laties voldoen. De geometrische onzuiverheden in deze categorie zijn metrische kegels over
speciale homogene Sasaki-Einstein variéteiten G/H en hun duale flux onzuiverheden zijn
snaar achtergronden die bestaan uit een lineair dilaton en een coset conforme veldentheorie
gebaseerd op een Hermitesche symmetrische ruimte G/ (H x U(1)).
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TOEPASSINGEN

Een belangrijke toepassing van dit werk, zou kunnen liggen in de studie van dualiteiten van
een heel ander soort: equivalenties van snaartheorie in specifieke achtergronden (technisch
gezegd: Anti-de Sitter ruimtes) en ‘gewone’ quantumveldentheorie€n, dat wil zeggen: niet-
gravitationele theorieén. Dergelijke dualiteiten (bekend als AdS/CFT dualiteiten, of meer
algemeen als gesloten/open snaardualiteiten) kunnen ons niet alleen veel leren over snaar-
theorie, maar zeker ook over quantumveldentheorieén.

Een veelgebruikt pad om AdS/CFT dualiteiten te construeren is om de beginnen met
speciale, overzichtelijke configuraties van p-branen van een speciaal soort. Er zijn dan twee
manieren om tegen deze configuratie aan te kijken. Enerzijds vervormt de configuratie de
ruimte waarin ze is ingebed. Er is een schalingslimiet waarin de ruimte nabij de branen
‘ontkoppelt’ van de ruimte verder weg. De ontkoppelde ruimte nabij de branen heeft een
geometrie van de vorm AdS x N, waarin gesloten snaren propageren en de vrijheidsgraden
vormen. Hier is N een zekere ruimte, in eenvoudige gevallen een bol. Deze ruimte kan
worden beschouwd als de geometrie die de braanconfiguratie omsluit. Anderzijds kunnen
open snaren eindigen op de branen. In de ontkoppelingslimiet vormen deze open snaren de
vrijheidsgraden van een veldentheorie.

De eigenschappen van de ruimte N hebben consequenties voor de duale veldentheorie.
Men kan zich afvragen welke N gerealiseerd kunnen worden. Door de beproefde route
te volgen, en te beginnen met een overzichtelijke braanconfiguratie, is maar een beperkte
klasse van ruimtes NV te realiseren. Men zou echter ook flux onzuiverheden zoals uit dit
proefschrift kunnen gebruiken. Om precies te zijn, zijn de flux onzuiverheden van de vorm
[lineair dilaton] x N. Gecompliceerde lijkende flux onzuiverheden kunnen gerelateerd zijn,
via T-dualiteit, aan meer overzichtelijke geometrische onzuiverheden.

De geometrische onzuiverheden op zichzelf zijn gerelateerd aan niet-graviationele the-
orieén die geen gewone veldentheorieén zijn, maar zogenaamde Little String Theories. Dit
zijn niet-lokale quantumtheorieén waarover weinig bekend is. Door fundamentele snaren
in de singulariteit van een geometrische onzuiverheid te plaatsen, is het mogelijk om lokale
quantumveldentheorieén te krijgen, in een AdS/CFT correspondentie.
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