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1 1 

INTRODUCTIO N N 

GEOMETRYY AND STRING THEORY 

Thee language of geometry has proved remarkably adept to formulate the presently known 
fundamentall  physical theories. The general theory of relativity on the one hand, but also 
gaugee theories such as the standard model of particle physics can be formulated in essen-
tiallyy differential geometric language. 

Stringg theory, as a candidate to provide a unified framework for the description of both 
gravitationn and the other known fundamental forces should, and does contain both familiar 
gravitationall  and gauge theory in appropriate regimes. But this is not all. Crucially, in string 
theory,, a theory in which the fundamental objects are extended, the röle of geometry is quite 
differentt than in theories of point particles. Even the very notion of what we would mean 
byy geometry can be very different than is familiar from 'ordinary' differential geometry. 

Inn the perturbative approach1 to string theory, to a large extent the role of geometry is 
takenn over by worldsheet conformal field theory. 

Inn many situations, the worldsheet conformal field theory has a target space interpreta-
tion.. It is interpreted as describing the embedding of the string worldsheet in a spacetime 
background,, which has an 'ordinary geometric' interpretation. Yet in many other cases 
worldsheett conformal field theories can have all the properties required of them to define a 
stringg 'background', yet no target space interpretation is apparent. This situation is possible 
becausee the definition of a conformal field theory can be made in ways very different than 
ass a sigma model. 

'Wee mean perturbation theory in the string worldsheet genus expansion. This is not to be confused with the 
a'a' expansion, a perturbation expansion in the string scale used in worldsheet conformal field theory. The term 
'non-perturbativee T-duality' which permeates the setup of this work, alludes to perturbation theory in 6. 
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ChapterChapter 1 - Introduction 

T-DUALIT Y Y 

Att least equally interesting, is the situation that two different sigma models can define iso-
morphicc conformal field theories. Such isomorphic conformal field theories define equiv-
alentt string backgrounds which have different 'ordinary geometric' interpretations. Intu-
itivelyy speaking, the reason why backgrounds that look different to a classical geometer 
mayy look indistinguishable to a string theorist, is that strings are not in general located at 
aa 'point' in spacetime, but they trace out a curve. Thus, a closed string can wind around a 
closedd curve. 

T-dualityy essentially exchanges winding modes in the string worldsheet theory with mo-
mentumm modes. The momentum modes, are nothing but the modes that a theory of point 
particless would also have. Consequently, T-duality exchanges the 'intrinsically stringy' part 
off  geometry (probed by winding strings) in one background, with the 'ordinary' geometry 
(ass probed by point particles) in the dual background. 

Thee archetypal relation of T-duality is the R <-  1/R duality of strings on a circle. 
Onn a circle of radius R, the winding modes have energy levels which are spaced with an 
energyy difference proportional to R, while momentum modes are spaced with energy levels 
proportionall  to R~l. On a circle of radius 1/R, the level spacing of winding and momentum 
modess is interchanged. 

IMPURIT IESS 1: G E O M E T R IC IMPURITIES 

T-dualityy can have more complicated implications in more complicated backgrounds. The 
backgroundss which we consider in this work can be called 'impurities'. There are two kinds 
off  impurities which we distinguish. 

Thee first kind is a 'geometric impurity'. In this case there are no background fields, other 
thann a metric. The metric defines a singular geometry, more precisely, a geometry which 
preservess some spacetime supersymmetry2 and which has an isolated singularity. Often an 
explicitt metric of the background wil l not be known. Instead, we use other more implicit 
meanss to characterize the background geometry. 

InIn chapter 2 different ways are discussed to characterize supersymmetric singular back-
groundd geometries. Of the methods discussed, two play a prominent role later, in chapter 
4.. The first method is the characterization as a metric cone. In this method the differen-
tiall  geometry of the background is emphasized. Supersymmetry imposes a restriction on 
thee holonomy of the background. The structure of a metric cone, together with restricted 
holonomyy leads to differential geometric constraints on the base of the cone. In particular, it 
turnss out that all of the bases of supersymmetric complex metric cones have a Killin g vector 
field,field, which degenerates at the apex of the cone. This is interesting because when there is 
ann isometry, it is usually possible to consider a T-dual background. 

22 We concern ourselves with complex geometry. It would be an interesting but quite separate undertaking 
too transform the methods discussed to a form suitable for supersymmetric singular geometries which admit no 
complexx structure. 
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ChapterChapter I - Introduction 

Thee second kind of characterization, describes the geometric impurity as a hypersur-
face.. In this description, the differential geometry is less explicit. However, there are ana-
lytic,, algebraic and topological properties which can be studied and have been studied by 
mathematicians. . 

Actually,, the hypersurfaces which we consider, bear a similarity to metric cones. The 
afflnee hypersurfaces under consideration are defined by weighted homogeneous polynomi-
als.. These are equivariant under aC* action. Compare this to the supersymmetric metric 
cones,, they admit a scaling of the base, and the base has a Killin g vector field, which in 
alll  cases that are discussed by us, has closed orbits, so defines a U(l) action. So both the 
hypersurfacess and metric cones we use, admit alR x U{1) action. 

Describingg a singularity as a hypersurfaces offers some advantages which a metric cone 
descriptionn does not have. First, deformations of the space, and more specifically desin-
gularizations,, which smooth out the space completely, are described as simple analytic 
deformationss of the defining polynomial. Second, weighted homogeneous polynomials, 
usedused to describe the hypersurfaces, can also be used to describe conformal field theories, as 
Landau-Ginzburgg theories. Both these properties are very important in the construction of 
backgroundss which are T-dual to the geometric impurities. 

IMPURITIESS 2: FLUX IMPURITIES 

Thee second kind of impurities can be called 'flux impurities'. These are, as the name indi-
cates,, sources of gauge field flux. So in backgrounds with flux impurities, there are other 
non-triviall  background fields than just the metric. 

Thee flux impurities are sources of Kalb-Ramond field. The archetypal example is a 
simplee Neveu-Schwarz fivebrane. Also, these impurities create a non-constant dilaton: near 
thee impurity the effective string coupling is large. 

LOCALIZE DD PHYSICS NEAR AN IMPURITY 

Intuitivelyy speaking, because the string coupling grows large near a flux impurity, it may be 
possiblee to decouple the physics localized near this impurity by sending the string coupling 
asymptoticallyy far from the impurity to zero. Then the bulk degrees of freedom, coupling 
too the 'localized' degrees of freedom through gravity, can decouple, and one can restrict 
attentionn to the degrees of freedom localized near the impurity alone. 

Suchh decoupling limits have various interesting properties. First, typically the 'local-
ized'' physics has a holographic description. That is to say, the decoupled subsector of 
stringg theory in the original background, which contains just the 'localized' physics of the 
impurity,, is equivalently described by the full string theory in another background (think of 
Anti-dee Sitter backgrounds, and also of linear dilaton backgrounds). 

Next,, it happens often, as we will see, that these 'decoupling limit backgrounds' admit 
ann exact worldsheet conformal field theory description, while such a description is unknown 
forr the full, unsealed backgrounds with a local impurity. 
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Onn the other hand, geometric impurities also have localized physics. Essentially, it 
comess from branes wrapping vanishing cycles in the singularity. The notion of vanishing 
cycless is also useful to understand that geometric impurities are quite generic. One may 
startt with a smooth geometric background. Such a background is usually one in a family 
off  connected backgrounds, parametrized by moduli. At certain perfectly fine values of the 
moduli,, a homology cycle in the geometric background may shrink to zero size. Then a 
singularity,, or geometric impurity, develops. A scaling limit which isolates the physics 
localizedd at the singularity, typically involves tuning the size of a vanishing cycle to zero, 
whilee also scaling other parameters, usually the string coupling, analogous to the limit for 
fluxx impurities. Especially the hypersurface singularities are suited to such a scaling limit, 
ass blowing up certain cycles corresponds to simply deforming the defining polynomial. 

DUALIT YY BETWEEN G E O M E T R IC AND FLUX IMPURITIES 

Geometricc impurities and flux impurities are related by T-duality. In practice it is difficult to 
explicitlyy carry out the duality transformation. A reason for this difficulty is, that worldsheet 
instantonn effects are crucial to the duality. These worldsheet instantons break spacetime 
symmetriess which seem to be present if one considers only the perturbative physics. 

Iff  one performs a perturbative analysis and dualizes a geometric impurity, it appears 
thatt the dual flux impurity has an isometry, which turns out not to be present in reality, 
whenn considering non-perturbative contributions to the duality. The prime example of such 
aa duality, is that between IIA strings in an asymptotically Euclidean space, with an A k 
singularity,, and IIB string theory o n R5 , 1x ] R 3 x 51 , with a stack of k + 1 Neveu-Schwartz 
fivebranesfivebranes localized at a point in E3 x 51. 

Itt is easier to consider duality in the 'near impurity background', rather than the full 
background,, before zooming in on the impurity. The 'localization' of the flux impurity is 
off  course crucial to get the correct 'decoupling limit ' or, as we just referred to this limit, a 
'nearr impurity limit' . 

Wee wil l see exact worldsheet conformal field theory descriptions in the 'near impurity 
limit '' of both the geometric and the dual flux impurity. Actually, in certain cases the world-
sheett conformal field theory of the dual flux impurity will have an explicit construction and 
interpretationn as a sigma model. In other cases, a geometric interpretation of the 'near flux 
impurity'' worldsheet theory remains to be discovered. 

W H YY IMPURIT IES? 

Whatt are the motivations for the study of'geometric' and 'flux' impurities and the T-duality 
relationn between the two? 

First,, there are the intriguing relations between the descriptions of geometric and flux 
impurities.. We will find flux impurities which can be viewed as a background of the form 

Q Q 
(linearr dilaton) x — 
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ChapterChapter 1 - Introduction 

thee right hand factor denotes a coset conformal field theory. When this is realized as a 
gaugedd WZW model and when the level of G is large, the target space can be approximated 
byy a one-loop calculation in the gauged WZW model. This gives a target space G/H — L, 
wheree H acts as a vector gauging, g ~ h~xgh. Note that this target space looks very 
differentt from the coset manifold G/H, where group elements are identified as g ~ gh. 

Wee shall see intriguing cases that flux impurities of this kind are related, by T-duality 
andd adjusting the moduli, to geometric impurities, that are described as follows. These 
impuritiess are metric cones on a base space L, where L is a fiber bundle 

7T T 

V V 

z z 
withh base Z, which is a homogeneous space Gj (H x T), and T is a discrete subgroup of 
G,G, related to modular data of the coset model. 

Soo there are some intriguing similarities and differences going on, which must point at 
somee stringy geometric phenomena. It seems worthwhile to try and understand such stringy 
geometricc aspects better. 

Theree is also a quite different motivation. This is related to holographic duality: string 
theoryy in certain backgrounds is believed to be exactly equivalent to a non-gravitational 
theoryy in a spacetime that has one dimension less. The two types of string background that 
aree widely believed to exhibit such behavior are linear dilaton backgrounds and Anti-de 
Sitterr backgrounds. 

Veryy generically, the flux impurities we find have a linear dilaton. The linear dilaton 
backgroundss are believed to holographically describe certain exotic quantum theories in 
dimensionss d < 6: Littl e String Theories. These theories are non-local, and littl e is known 
aboutt them. Clearly it would be highly interesting to better understand such unfamiliar 
quantumm theories. 

Alsoo very generically, the linear dilaton backgrounds can be 'deformed' to AdS back-
grounds.. Therefore the flux impurities are of interest to study AdS backgrounds, and their 
holographicc duals, which are conformal field theories. 

Thenn why are the geometric impurities of interest? A fruitful way to gain knowledge 
aboutt AdS/CFT, is to take certain non-dilatonic brane configurations, that is, impurities of a 
sort,, and take a scaling limit which isolates the physics near the branes. This physics can be 
characterizedd in two different looking ways, one can think in terms of open string degrees of 
freedom,, describing the physics on the worldvolume of the branes, or closed string degrees 
off  freedom describing the dual, gravitational physics in the background near the branes, 
whichh is deformed by the branes. A lot can be learned about AdS/CFT by realizing the 
AdSS background and the dual field theory through a brane setup. However, simple brane 
configurationss only give a limited number of geometries AdS x N. 
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AA lot of geometries can be obtained by also considering 'geometric impurities', that is, 
singularities.. In particular, many interesting AdS/CFT realizations are possible by consid-
eringg D3branes in a Calabi-Yau singularity. These produce AdS geometries of the form 
AdSss x TV, where N is an Sasaki-Einstein manifold, which can be viewed as the base of a 
metricc Calabi-Yau cone. 

Apartt from considering D3 branes, there is another way to get AdS backgrounds from 
geometricc impurities, which is an important motivation for the study of these impurities 
andd their T-duality. One can take a geometric impurity and put fundamental strings at the 
singularity.. This is not a non-dilatonic background as such, but by performing a T-duality 
itt becomes non-dilatonic. The dilaton contribution of the fundamental string, in the 'near 
impurityy limit ' compensates the linear dilaton that is generated by the T-duality. In this way 
manyy backgrounds of the form AdS 3 x Nj might be realized, which cannot be obtained from 
otherr simple brane configurations. Therefore, we hope that the knowledge about T-duality 
off  these impurities will also lead to a better understanding of holographic duality. 

O U T L I N E E 

Thee outline of this thesis is as follows. 
Inn chapter 2 geometric impurities are discussed. Mainly two characterizations of su-

persymmetricc (and complex) singularities are presented: metric cones with holonomy con-
tainedd in SU(n) on the one hand, and weighted homogeneous affine hypersurfaces on the 
other. . 

Differentiall  geometric aspects of the metric cones are discussed. A particular röle is 
playedd by quasi-regular Sasaki-Einstein manifolds. Many known examples are homoge-
neouss spaces, or related to homogeneous spaces. Sasakian(-Einstein) manifolds have a 
characteristicc Killin g vector field, which is used to relate these spaces to quasi-smooth 
Kahler-Einsteinn varieties. These are the subject of study of algebraic geometers. 

Weightedd homogeneous polynomials can also be used to characterize supersymmetric 
complexx singular hypersurfaces. Aspects of such hypersurfaces are discussed. As somewhat 
off  an aside, some topological properties of such hypersurfaces are discussed. Weighted 
homogeneouss polynomials also define Kahler varieties in weighted projective space. These 
cann be interpreted as base spaces of Sasaki-Einstein circle fibrations. This establishes a 
connectionn between metric cones and affine hypersurfaces. 

Inn chapter 3 various aspects are discussed of superconformal field theories, which are 
putt to use later, in chapter 4, to describe strings in the background of impurities. Some par-
ticularlyy important constructions are Landau-Ginzburg models, which are defined through 
aa weighted homogeneous polynomial and thus make contacts with hypersurface singular-
ities.. Also coset conformal field theories play a role, since the best understood dualities 
betweenn geometric and flux impurities involve coset conformal field theories, which are ac-
tuallyy coset models that are closely related to Landau-Ginzburg (and Kazama-Suzuki coset-) 
models.. Of course an important class of conformal field theories is formed by sigma models. 
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ChapterChapter 1 - Introduction 

Finallyy in chapter 3 non-conformal models are discussed which interpolate between 
sigmaa models on hypersurfaces, and Landau-Ginzburg theories. Models of this kind are 
employedd to formulate the T-duality of impurities in chapter 4. 

Chapterr 4 begins with a discussion of geometric and flux impurities (in particular: five-
branes)) in string theory, and the 'near impurity geometry' and exact conformal field theo-
riesries for 'near impurity' geometries. Next generalities of T-duality are discussed: classical 
T-dualityy rules, the röle of degenerating isometries, and breaking of isometries in the dual 
modell  by worldsheet instantons. Finally, in section 4.4, T-duality for a large class of im-
puritiess is discussed. Agreement is found with the known result of hyper-Kahler surface 
singularitiess and ADE-throat geometries, and some further examples are discussed, and 
somee final observations are made. 

BASISS FOR THI S THESIS AND OTHER WORK BY THE AUTHOR 

Perhapss it may be difficult for the reader to separate original work by the author from previ-
ouslyy known results obtained by others, which serve as a basis for the author's work, solely 
fromm the references throughout the body of this thesis. In order to draw a clearer picture 
off  the original contribution of the author, we wish to spend a few paragraphs here, before 
commencingg our exposition in the subsequent chapters. 

Thee central objective and main work of the author presented in this thesis, is the propo-
sitionn for a way to T-dualize singular supersymmetric string backgrounds. In the dualiza-
tionn of such backgrounds, worldsheet instantions contribute in a crucial way. It has proved 
veryy difficult to take into account these crucial contributions in a systematic fashion. The 
propositionn entails a manner to take into account these contributions, using an intermedi-
atee 'half-dualized' model. This proposition is an essential original element of this thesis 
andd it is presented in section 4.4. The relations between original, 'half-dualized' and fully 
duall  model are phrased making use of a collection of notions and ideas from geometry and 
fromm (conformal) field theory and string theory. Separate elements of these had been known 
inn circles of geometers or string theorists, but arguably not in the context provided by the 
propositionn for T-duality. 

Fromm the various existing characterizations of singular supersymmetric string back-
grounds,, it is found that affine hypersurfaces provide a description that is directly connected 
too the dualization proposal. In particular, the affine hypersurfaces are defined by weighted 
homogeneouss polynomials. These polynomials define the 'half-dual' intermediate models 
ass Landau-Ginzburg field theories. 

AA connection between, on the one hand, the sigma model which describes string propa-
gationn on the singular background and, on the other hand, the 'half-dual' model is provided 
byy embedding these models in a family of non-conformal 'worldsheet' field theories. These 
familiess of models are first presented in section 3.3, and the full connection with T-duality 
iss presented in section 4.4. Essentially, within these families of non-conformal field theories 
thee effect of worldsheet instantons is argued to be described in a concise fashion, as turning 
onn a vacuum expectation value of a certain field. Earlier parts of chapters 3 and 4 are to a 
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largee extent intended to provide the necessary context, from existing literature, to arrive at 
thee author's proposals regarding these families of theories and the T-duality. 

Theree is a number of ideas from older literature that play an important part in the appre-
ciationn of the duality proposition. We name a few of these. 

Inn chapter 2 mostly geometric ideas are discussed that have a place in earlier, to a large 
extentt mathematical literature. These ideas include characterization of a class of supersym-
metricc backgrounds by means of weighted homogeneous polynomials. Such polynomials 
inn turn appear in string theory as Landau-Ginzburg superpotential, which is a point of view 
nott considered in the mathematical literature. On the other hand, for the very special ADE 
hyper-Kahlerr surface singularities, the connection between Landau-Ginzburg model and 
geometryy was proposed by Ooguri and Vafa [19], without the here discussed duality pre-
scription. . 

Inn section 3.4 particular Kazama-Suzuki coset models are reviewed. It has been strongly 
believedd in existing literature, cited in that section, that some of these coset models have a 
Landau-Ginzburgg description. Using these known correspondences it is possible to pro-
videe geometric interpretations of some models T-dual to some special singularities. These 
interpretationss are discussed in chapter 4. 

Thee ideas put forward in this thesis shall be presented in more condensed form in a 
forthcomingg publication. 

Finally,, we should mention some work which has been done by the author in collabo-
rationn with Boels, de Boer and Wijnhout, [109, 110] which is not discussed in this thesis. 
Thiss work deals with non-perturbative aspects of three- and four-dimensional gauge theo-
ries.ries. This work is apparently quite unrelated to the work that is discussed in this thesis. 
However,, there is an overarching theme common to that work as well as the work that has 
gonee into this thesis, although any concrete aspects of this remain to be formulated. 

Bothh the work discussed in this thesis and [109, 110] are connected to worldvolume de-
scriptionss of certain 'impurities' or brane configurations. On the one hand, gauge theories 
ass considered in [109, 110] can be viewed as worldvolume theories of certain brane config-
urations.. On the other hand, the geometric singularities discussed in this thesis can be used 
too construct AdS/CFT relations. In [109, 110] certain three-dimensional gauge theories are 
studiedd using Toda models. Curiously, these appear also in T-duals of geometric singular-
ities,, although these are T-duals performed in a somewhat different way than discussed in 
thiss thesis. It seems that many interesting U-duality relations might be studied through the 
usee of families of non-conformal field theories which flow to various different conformal 
worldsheett eft's in the infrared. An example of the use of such families of theories is formed 
byy the T-duality application that is central in this thesis. 
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2 2 

GEOMETRYY AND 

SINGULARITIES S 

Thee objective of this chapter is to collect and expose several different geometric perspectives 
whichh can be used to describe supersymmetric 'compactifications' of string theory. The 
termm 'compactification' is somewhat inappropriate, as most of the 'compactification' spaces 
discussedd are not compact and also often singular. Such spaces are considered as local 
modelss of degenerate limits of smooth but not necessarily compact manifolds which can 
makee up part of a string vacuum. In chapter 4 the physical motivation of such degenerate 
limitss is discussed. Very briefly stated, it is possible that some cycles in a smooth manifold 
becomee small. Then some massive nonperturbative degrees of freedom of the compactified 
theoryy become light and make up physics which is localized at the degeneration of the 
manifold.. This 'localized physics' can be decoupled in appropriate scaling limits. It depends 
onn the local geometry near such a degeneration. 

Att present we are concerned with the geometry of such local models. Differential and 
algebraicc geometric methods exist to characterize some of these. The various characteri-
zationss are interconnected in intriguing and insufficiently understood ways, and also con-
nectedd to various descriptions of possible worldsheet conformal field theories, which are 
discussedd in chapter 3. In this chapter the following topics are discussed. 

Iff  a space is part of a supersymmetric string vacuum, it must satisfy certain differential 
geometricc requirements. For example, it might have to be Ricci flat and Kahler. Such 
requirementss also hold for singular spaces. The four dimensional singular spaces which 
fitfit  the bill are the hyper-Kahler surface singularities. These have various interchangeable 
descriptions,, notably as quotient singularities, as hypersurfaces embedded in E 6 ~ C3 and 
ass metric cones. 

Thesee descriptions can be used to describe many higher dimensional singularities as 
well,, where the focus wil l be on complex singularities. It is however not true, that any 
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ChapterChapter 2 - Supersymmetry, Spinors and Holonomy 

givenn singularity can be described in all of the above fashions. Metric cones are interesting 
becausee the differential geometric constraints on the cone lead to constraints on the base 
off  the cone. Typically the base, also known as the link of the cone is a Sasaki-Einstein 
manifold.. Sasaki manifolds have a circle isometry and the corresponding orbit space is 
Kahler.. For a Sasaki-Einstein manifold, it is Kahler-Einstein. 

Somee examples of Kahler-Einstein spaces are homogeneous. A considerable number 
cann be constructed as hypersurfaces where a weighted homogeneous polynomial vanishes 
inn an appropriate weighted homogeneous space. Such examples often have orbifold singu-
larities.. The zero locus of such a polynomial in affine space is precisely a supersymmetric 
singularity.. A class of very interesting polynomials are not precisely of the form for which 
thee known proof is valid. These polynomials 'define' certain (Landau-Ginzburg) conformal 
fieldd theories which also have a geometric (sigma model) interpretation. 

Thee generic presence of a circle isometry that exists for a Sasakian manifold partly mo-
tivatess the study of T-duality for complex supersymmetric singularities in chapter 4. Some 
ingredientss in the description of such singularities return in an apparently quite different 
contextt in chapter 3, where they are used to construct abstract conformal field theories which 
describee supersymmetric string vacua. In particular, weighted homogeneous polynomials 
aree quite generally used to construct superconformal field theories. Some specific choices 
off  the polynomial correspond to conformal field theories which have a known interpretation 
ass coset conformal field theories. The corresponding symmetric spaces are Kahler-Einstein. 

2.11 SUPERSYMMETRY, SPINORS AND HOLONOMY 

2.1.11 SUPERSYMMETRY AND DIFFERENTIA L GEOMETR Y 

Wee are interested in supersymmetric vacua of string theory of the form 

_Mioo = R9_<M x M d , (2.1) 

inn the absence of fluxes and with a constant dilaton. If M d is a smooth d-dimensional man-
ifold,, the low energy effective theory is the appropriate supergravity theory in this back-
ground.. If this geometry is indeed a vacuum, the Ricci tensor of M io must vanish. To find 
thee number of conserved supersymmetries in this background one considers the supersym-
metricc variations of all the fermionic fields. In the backgrounds of this form, these variations 
aree parametrized by a spinor field. They are proportional to the spinor or to its covariant 
derivative.. The number of conserved supersymmetries is equal to the number of covariantly 
constantt sections of the spinor bundle over R9 - ^ 1 x Md, times the number of independent 
supersymmetryy transformations that can be constructed out of one section, which is n = 1 
forr heterotic and n = 2 for Type II theories. The spinors can be decomposed into spinors 
overr M d and spinors over R9_d>1. The number of supersymmetry charges conserved by the 
backgroundd R9-**' 1 x Md is 

s - n 2 L ^ ,, (2.2) 

10 0 



ChapterChapter 2 - Supersymmetry, Spinors and Holonomy 

Dimensionn d of Aid is d 

d=2n d=2n 
dd = 2n 
dd = An 
dd = An 
d=7 d=7 
d=8 d=8 

Holonomyy group Hol(Af d) 
U(n) U(n) 

SU{n) SU{n) 
Sp{n) Sp{n) 

Sp(n)Sp(l) Sp(n)Sp(l) 
GG2 2 

Spin(7) Spin(7) 

Namee of Aid 
Kahler r 

Calabi-Yau u 
Hyper-Kahler r 

Quaternionicc Kahler 
GiGi -Manifold 

5pm(7)-Manifold d 

Tablee 2.1: Berger's list of possible reduced holonomy groups of simply connected irreducible non-
symmetricc Riemannian manifolds. 

wheree n = 1 for heterotic theories and n = 2 for Type II theories. The number 2 L—sH 
iss the number of covariantly constant spinors on Rd _ 1 ,1 and I is the number of covariantly 
constantt spinors on Md  So the condition for supersymmetry is that Md has at least one 
covariantlyy constant spinor. 

Manifoldss which admit covariantly constant spinors are characterized by their holo-
nomy.. The holonomy group of a general M d is SO{d), but if its spinor bundle admits a 
covariantlyy constant section, the holonomy group has to be a proper subgroup H c SO(d). 
Afterr all, the covariantly constant spinor obviously transforms in the trivial representation 
off  H, but this representation must be obtained by decomposing the spinor representation of 
SO{d)SO{d) into representations of if . 

Thee possible subgroups that can appear are classified. If M d is a product manifold, its 
holonomyy group is the product group of the individual holonomy groups. If M d is a simply 
connectedd Riemannian symmetric space it can be written as G/H where G is a Lie group of 
isometriess that acts transitively and H C G is the isotropy subgroup, which leaves a point 
fixed,, then Hoi (Aid) = H. If Aid is a simply connected Riemannian symmetric space 
G/HG/H,, the holonomy group is H. This was shown long ago by Cartan. Finally, if M d is a 
simplyy connected Riemannian manifold that is not a product manifold and non-symmetric, 
theree is a list of possible holonomy groups, due to Berger. In addition to the generic case 
SO(d),SO(d), there are the cases listed in table 2.1. 

Thee holonomy groups in table 2.1 imply certain parallel tensors, and hence certain geo-
metricc structures, see, for example [65]. If the holonomy is U(n), it is possible to split the 
tangentt bundle into a holomorphic and an antiholomorphic part. Such a split is effected by 
thee complex structure J(.,.) which is an endomorphism of the complexified tangent bundle 
off  M. To speak of holonomy, there must be a connection. It is always possible to choose a 
Hermiteann metric g compatible with J, i.e. # ( . , . ) =#( J., J.). From these two structures it 
iss possible to construct a two-form w(.,.) = g( J.,.), using the property that J 2 = - 1 . This 
two-formm is non-degenerate. If it is also closed, u> is symplectic and, by compatibility with 
J,J, Kahler; the Hermitian connection coincides with the Christoffel connection and it is the 
summ of a holomorphic one-form taking values in the endomorphisms of the holomorphic 
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tangentt bundle, in addition there is an entirely antiholomorphic equivalent. This means that 
underr parallel transport (anti-)holomorphic tangent vectors remain (anti-)holomorphic, so 
thee holonomy is contained in U(n). Using this connection J is covariantly constant, and so 
iss UJ. 

Onn a Kahler manifold one can construct the Ricci form from the Riemann tensor of 
thee Kahler metric, using the complex structure: using the Dolbeault differentials d and d it 
cann be expressed as 7Z = idd log i/det g. This is manifestly closed, but usually not exact, 
becausee detg is not a scalar. The cohomology class of the Ricci form is 2TT times the first 
Chernn class of the (tangent bundle of the) Kahler manifold. The Chern class is an analytic 
invariant:: continuous changes of the metric do not alter the cohomology class of 11. 

Inn addition to preserving some supersymmetry, the geometry of (2.1) should solve 
thee equations of motion, which means that the Ricci tensor of M d must vanish. The 
U(l)U(l)  ^-> U(n) part of the holonomy is generated by Ricci tensor. So if the Ricci tensor 
vanishes,, the holonomy is SU(n) c U(n). But given a Kahler manifold with Kahler form 
u)u) it is possible to deform this to u' without altering the cohomology class of the Kahler 
formm (the Kahler form cannot be exact, because that would be contradictory to it being non-
degenerate).. The new Kahler form u' is such that its associated Ricci form is precisely the 
firstfirst Chern class. Yau's theorem implies that such a choice of a/ is always possible. So a 
Kahlerr manifold with SU(n) holonomy admits a metric with vanishing Ricci tensor. The 
restrictionss on a hyper-Kahler metric are so strong, that necessarily any such metric is Ricci 
flat. flat. 

Thee hyper-Kahler and Calabi-Yau manifolds, and singularities, wil l play a considerable 
rolee in the rest of this chapter. Some important reasons for this are the following. As com-
plexx manifolds, powerful tools from algebraic geometry are known to study such spaces. 
Thee Kahler structure of these manifolds appears naturally in M = 2 superconformal mod-
elss discussed in chapter 3. The properties of these models are used in chapter 4 to relate 
hyper-Kahlerr and Calabi-Yau singularities to other backgrounds of string theory. 

2.1.22 HYPER-KAHLE R SURFACE SINGULARITIE S 

Thiss section discusses the geometry of the best understood supersymmetric singularities: 
complexx surface singularities which are hyper-Kahler. These are complex surfaces, so lo-
callyy they look like C2 ~ R4, have holonomy group Sp(l) ~ SU(2), with an isolated 
singularity.. A great deal is known about these, both from a mathematical point of view and 
alsoo from the perspective of string theory. Because so much is known about them, they take 
aa special place. Some of the special properties they have are: 

 They are classified; 

 The classification is isomorphic to that of many other interesting objects in mathe-
maticss and string theory; 
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 They have a number of different descriptions which illustrate descriptions of higher 
dimensionall  singularities; 

 For the hyper-Kahler surface singularities all descriptions are interchangeable, unlike 
forr higher dimensional ones; 

 The hyper-Kahler singularities are a motivation and the clearest example of the T-
dualityy for cones discussed in chapter 4. 

Onee way to describe the hyper-Kahler surface singularities, is as quotients of C 2. On a 
spacee of SU(2) holonomy there is a parallel holomorphic two-form. On the covering C 2 

suchh a two from can be taken as UJ = dzi A dz2. This two-form is preserved by SU(2) 
mixingg the holomorphic coordinates. This group has a fixed point at the origin. Take an 
discretee subgroup T C SU{2). Then the quotient space C2/T is a complex surface with 
aa singularity at the origin and SU{2) holonomy, with the constant holomorphic two-form 
givenn by projection of dzi A Ó.Z2 on the covering space. 

Thee discrete subgroups of SU{2) were classified in the nineteenth century by Klein and 
thee quotient singularities C2/T are also referred to as Kleinian singularities. The Kleinian 
singularitiess exhaust the hyper-Kahler surface singularities. There is a one-to-one corre-
spondencee of the subgroups Y C SU(2) and Dynkin diagrams of simply laced Lie algebras. 
Thiss motivates the name 'ADE-singularities' which is also commonly used. In fact, there is 
aa huge web of connections, containing the topology of desigularizations of these singulari-
ties,, the representation theory of r C 577(2) [60] and a lot of different areas of mathematics 
andd physics, such as conformal field theory [17] and gauge theories [61]. 

Fromm the description as quotients, one can obtain a different description. One can think 
off  a point in C2 as the zero of a monomial 

zozo <-» (z - ZQ) = 0. (2.3) 

Suchh monomials are the prime divisors of polynomials with complex coefficients, and the 
algebraicc structure of polynomials can be used to study geometry. An arbitrary divisor in 
thee polynomial ring C[z\, 22] is of the form 

k k 

X[{z-X[{z-ZiZir, r, 

andd can be viewed as the divisor 
fc fc 

i= l l 

inn the sense of algebraic geometry. 
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rcc2 2 

AAn n 

DDn n 

EE6 6 

EE7 7 

EE8 8 

Fr(zi,Fr(zi, z2,z3) 

zzll  "t"  z2 "+"  z3 

z^~z^~ll + z^z\ + z\ 

z ll  ~^~ z2 ~^~ z3 

zfzf + ziz% + z% 

z\z\ + z% + z% 

Tablee 2.2: The hyper-Kahler surface singularities as quotients C 2 / r and as surfaces FT
 1(0) C C3. 

Fromm the point of view of algebraic geometry it is the polynomial ring C [z 1, z2] , gener-
atedd by zi and z2 which characterizes the space. Consider the An singularity 

AAnn = c2/r, 
2 ^^  _ 2 *  (2.4) 

TT : (z1,z2)  ̂ (e*+iz1,e ^z2). 

Nott every polynomial inC[zi, z2]  is invariant under the action of r . The subset of r invariant 
polynomialss is generated by the three generators 

u=zï+\ u=zï+\ 
v=z%v=z%++ \\ (2.5) 

XX = ZiZ2, 

whichh clearly satisfy the relation 
uvuv = zn+l. (2.6) 

Soo the divisors on An are those polynomials in C[w, v, x] which vanish on the hypersurface 
definedd by (2.6). Or, put differently, as far as algebraic geometry is concerned, the quotient 
singularityy C2 / Z n + i is the hypersurface z™+1 + z\ + z\ = 0 in C3. 

Similarlyy all the ADE-singularities1 have a description as surfaces F Ê(0) in C3. The 
polynomialss FADE(zi,z2} z3) are collected in table 2.2. Note that all the polynomials are 
weightedd homogeneous, i.e. for each F? there exists a set of weights aj which are (positive) 
integers,, such that 

F(\F(\aaizizllll \\
aa*z*z22,\,\

a3a3zz33)=\)=\ ddF(zF(z11,z,z22,z,z33).). (2.7) 

Thee description as a quotient singularity C2/T also provides a third description, which 
iss more differential geometric in nature. The space C 2\{0 }  can be fibered by three-spheres. 

'Thee Dk+2 singularity can be obtained by a IQ quotient of the Ak singularity. The Ak singularity is C2/Z f c + 1 

wheree Z f c + 1 acts on the coordinates of C2 as (21,22) ~ (e
2 7 r iA f c + 1)Z l j e-27ri /( fc+i)Z 2y Quoti enting further 

byy Z2 : (zi, 22) ~ (22, —21) yields a Dk singularity. 
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Thee metric ds2 = dzidzi + dz2dl2 is written as ds2 = dr2 + r2df22, i.e. a cone over the 
threee sphere. As SU(2) acts on C2 in a way that leaves invariant r2 = |zi|2 4- \z21

2, an 
ADE-singularityy can be written as the metric cone 

c2/rr  = R+ x 53/r , 
d s2 = d r22 + r2d£2, ( 2 ' 8 ) 

wheree d£2 is the line element on the smooth space S3/T. The action of F on S3 is obtained 
fromfrom the action in the embedding C2. The spaces S3/F are simple examples of a more 
generall  class discussed in section 2.2, which can all be viewed as circle fibrations. 

Thee base of each Ak metric cone, S3/Zk+i is a circle bundle over S2, and in fact 
alll  circle bundles over the two-sphere are of this form (they are so-called lens spaces). 
Onee way to view the lens spaces 53/Zjt+i , is as quotient spaces (S3 x 51)/C/(1), see for 
examplee [80]. Let S3 be parametrized by z = (21,22) € C2 that satisfy the condition 
\zi\zi1122 + \z2\2 = 1- Let S1 be parametrized by a = el°. The U(l) equivalence relation 
identifiess (zi, z2) ~ (e^zi, e * ^ ) and a ~ e~^k+1^cr. By an equivalence transformation 
onee can always set a = 1, unless k + 1 = 0. This 'gauge choice' fixes the U(l) action 
upp to a Zfc+i subgroup. So quotient space is S3/Zk+i- This is bundle over 52 , with the 
projection n 

wheree a indicates the three Pauli matrices. The vector TThas unit length, because |2i |2 + 
I22I22 = 1» and hence parametrizes S2. When k + 1 = 0, the total space is the trivial 
bundlee S2 x S1, and when k + 1 = 1, the fiber bundle structure is the Hopf fibration 
S11 -  S3 -> P1 ~ 52. 

Thee bases of the £>fc+2 metric cones can be considered in a similar fashion, as quotient 
spacess (53 x 51)/(Ï7(1) x Z2). The t/"(l) part acts as it does in the Ak case, the Z2 acts as 

Z22 : {(z1,z2);s) ~ ((22,-*!>;?). (2.10) 

Thee Z2 action also acts on the image of the projection it. The image is not the entire S 2, but 
ratherr S2/^, with antipodal points identified, i.e. the bases of the Dk+2 metric cones are 
circlee bundles over the base RP2. 

Thee different descriptions each have their advantages, emphasizing different properties 
off  the ADE-singularities. The algebraic geometric description as surfaces in C3 emphasizes 
thee complex structure of the singularity. Actually, since these are hyper-Kahler spaces, they 
havee three independent complex structures I\,I2,h and a\I\ + a^li + 03/3 is again a 
complexx structure if the three real numbers a*  satisfy a2 + a2 + a2 = 1. So it is better 
too say that it emphasizes one particular complex structure out of the whole S 3 's worth. A 
deformationn of the polynomial defining the hypersurface corresponds to a deformation of 
thee complex geometry of the singularity. 
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Considerr the example of an A i singularity, defined as uv — x2 = 0 in C3. This can be 
deformedd to uv = (x + e)(x — e). The surface defined by this deformed equation no longer 
passess through u = v = 0, where the singular point was. Instead, the product of the moduli 
|u|| and \v\ is determined by the equation, and it vanishes at x = . Only the difference of 
phasess of u and v is free. In the surface uv = (x + e)(x — e) there is a two sphere which 
iss a circle fibration over the line segment from x = —e to x = +e. This is an example of a 
kindd of deformation which can be applied to any polynomial which defines a hypersurface 
withh an isolated singularity at the origin: 

F(xi,...,xF(xi,...,xnn)) —> F(xi,...,xn) +/x. (2.11) 

Thiss deformation wil l be considered in chapter 4. 
Itt is possible to characterize all deformations of the ADE-singularities. The number of 

independentt deformations actually equals the rank of the corresponding ADE Lie algebra. 
Byy successive deformations a singular surface can be 'desingularized' by blowing up two-
spheres.. Hyper-Kahler metrics on the resulting smooth non-compact manifolds are known 
[62,, 63, 64]. The construction of these metrics makes use of the fact that the singular 
spacess are quotient singularities C2/T and the McKay correspondence [60] which relates 
thee representation theory of F and the topology of the smoothed space. Far away from the 
origin,, the smoothing does not change much and the smooth metrics asymptote to the metric 
coness R + x ( 53 / r ) . 

Crucially,, in one description the differential geometry of a singularity is explicit but 
deformationss of the singularity are not at all apparent: this is the metric cone description. In 
anotherr description deformations are apparent, but there is no hyper-Kahler metric apparent: 
thee description as surfaces in C3. The logical connection between these two descriptions, is 
thee realization as quotient singularities. The deformation parameters in the polynomials are 
relatedd to the representation theory of the quotient group. 

Inn higher dimensions, not all descriptions of supersymmetric singularities are inter-
changeable.. That is to say, there are supersymmetric singularities which are not quotient 
singularities.. Such singularities may have descriptions as Ricci flat metric cones with the 
rightright holonomy, SU{n) or Sp(n/2), but whose base manifolds are not 52 n _ 1/ r . It is not 
soo clear how to deform such a metric conical singularity to a smooth space which still ad-
mitss a Calabi-Yau or hyper-Kahler metric if there is no apparent hypersurface description 
F _ 11 (0) C Cn + 1. Nor is it immediately clear if there might be a hypersurface description. 
Inn fact, for a lot of interesting singularities there is no hypersurface description, like for 
examplee C3/Z3. Approaching the matter from the other direction, starting with a hypersur-
facee singularity, it is often difficult to find a differential geometric description of it, like an 
explicitt metric, or the group of isometries of the space 

Thesee issues are discussed in the subsequent sections. Typical questions are the follow-
ing.. What are the conditions on a polynomial F so that F _ 1 (0) in Cn + 1 is a supersymmetric 
singularityy which can be used as a string vacuum? What can be said about the geometry 
off  a singularity defined by such a polynomial? If the singularities are not quotient singu-
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larities,, what is left of existing and conjectured correspondences in the spirit of the McKay 
correspondence,, and what new correspondences are gained by leaving the set of quotient 
singularities?singularities? Some questions will be answered in the following sections, and some inter-
connectionss wil l be discussed. Together with the ingredients of chapter 3 these will be put 
too use in chapter 4. 

2.22 METRI C CONES 

Ann acceptable supersymmetric singularity of dimension d = 2n which can serve as a string 
backgroundd must be Ricci flat and have a holonomy group which is contained in SU(n). 
Takee as such a singularity the metric cone C(L), 

C(L)C(L) =R+xL 
(2.12) ) 

d«in=dr 2+r 2dJs3n_1. . 

Thatt is to say, it is the warped product of the manifold L of dimension 2n — 1 with the 
halff  line r > 0, with the above metric. The question is: what are the properties of the base 
manifoldd Z>2n+i? 

Ann answer was given by Bar [7], who studied metric cones of restricted holonomy. 
Essentially,, one uses the canonical vector field on a metric cone, rd/dr, called the Euler 
vectorr field. With this vector field, the different special tensor fields on the cone can be 
mappedd to special tensor fields on L2n+i-

First,, if the Ricci tensor of C(L) vanishes, then L is a positively curved Einstein mani-
fold.. We call a manifold Einstein if there is a constant number A such that the Ricci tensor 
RicRic and the metric tensor g satisfy 

RicRic = \g, (2.13) 

i.e.. its scalar curvature is a constant. Only the sign of the Ricci curvature is really interesting, 
sincee the absolute value can be changed by rescaling L. Conversely, if B is an Einstein 
manifoldd of positive curvature, it can always be appropriately scaled to make C(L) a Ricci 
flatflat cone2. 

TH EE GEOMETR Y OF L 

Next,, the restricted holonomy of C gives rise to various parallel tensors on the cone. The 
Kahlerr form w on C(L) satisfies do; = 0 and / \ n w ^ 0 . Contracting the Euler vector with 
LJLJ yields a one-form 77 on L. This one-form satisfies 

777 A (dr;)""1 ^ 0 , (2.14) 

2Thee rescaling is proportional t o n - 1, with some constants of proportionality dependent on conventions, 
nn = d/2 being the complex dimension of the cone. 
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everywheree on L. This equation states that 77 is a contact form on L. A symplectic metric 
conee C{L) has a base L that is a contact manifold. 

Inn addition to the contact form, a contact manifold also has a unique vector field, dual 
too 77: the Reeb vector field £. It satisfies 

let)let) = 1 
**  (2.15) 

2^0777 = 0. 

Thee Reeb vector field on L is obtained from the complex structure J on C(L), by acting 
withh J on the Euler vector field of C(L). The contact form 77, Reeb vector field £ and an 
endomorphismm T of the tangent bundle TL together define an almost contact structure on 
L.L. They satisfy 

%% (2.16) 
TT22 = -id + £ g> 77. 

AA compatible metric g must satisfy 

g{T.,T.)=g{.,.)-rg{T.,T.)=g{.,.)-rll(.)Ti{-),(.)Ti{-), (2-17) 

analogouss to an almost Hermitean metric on an almost complex manifold. 
Onn B the endomorphism T : TL —> TX is obtained as 

T(0)) = - V ^ , (2.18) 

viaa the covariant derivative, where (j>  is any section of TL. The tensor fields £, 7/, T and # on 
LL form a special kind of metric contact structure because L is the base of a metric cone C(L) 
whichh is Kahler, i.e. on which the complex structure, Hermitean metric and symplectic form 
aree compatible. This special kind of metric contact structure is called a Sasaki structure, and 
LL is a Sasaki manifold. 

Onee definition of a Sasaki manifold, is precisely that the metric cone over a manifold 
iss Kahler iff the manifold is Sasaki. An equivalent definition, see for example [8], is a 
Riemanniann manifold (M, g) with a Killin g vector field of unit length £, and endomorphism 
TT defined as T(4>) — — V^£ for any section <j>  of TM that satisfies 

(vxr) ^^  = 0(x,VO-s(e,̂ )x, 

forr all vector fields x5 Â-
Iff  the cone C(L) is hyper-Kahler, it has three independent complex structures which 

formm a quaternion algebra. Analogously, L inherits three related Sasakian structures and L 
iss a tri-Sasakian manifold. A good overview of the properties of (tri-) Sasakian manifolds 
usedd in this section and the next, is [8]. 

Thee Reeb vector field £ that any Sasaki manifold L has (often called its characteristic 
vectorr field), gives rise to some important consequences. For one thing, it means that a 
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metricc cone has a Killin g vector field which degenerates at the apex r = 0. One might be 
temptedd to perform a T-duality along this isometry, and we are tempted to do so in chapter 
4.. The vector field £ is also very interesting from a purely geometric point of view. Note 
thatt because £ is nonvanishing, its integral curves define a one-dimensional foliation of L. 

Thee space of leaves of this foliation turns out to be quite interesting. We call the space 
off  leaves Z. When the leaves are closed curves, so the Reeb vector field is a Killin g vector 
fieldfield of a U[l)  isometry, L is called quasi-regular. In this case Z is a Kahler space which 
cann have finite quotient singularities. When Z is a smooth Kahler manifold, L is called 
regular.. If Z has finite quotient singularities, L is called non-regular (L is called irregular if 
thee leaves do not close). 

Regularityy is a very strong condition and many examples of Sasaki-Einstein manifolds 
aree non-regular. Explicit metrics are rarely known, with the exception of homogeneous 
spaces.. As we wil l see shortly, methods and results from algebraic geometry have provided 
meanss to prove the existence of (quasi-regular) Sasaki-Einstein metrics on a much larger 
classs of spaces. However, these methods are not constructive, and they give only limited in-
formationn about the differential geometry of the spaces. The spaces for which these methods 
apply,, are described as specific kinds of affine hypersurfaces. This description is compatible 
inn a natural way with our duality prescriptions discussed in chapter 4. 

Recentlyy explicit metrics have been found for many five and seven dimensional Sasaki-
Einsteinn manifolds, including the first irregular ones [104, 73, 74], using a supergrav-
ity/stringg theory approach. Our present interest will be with quasi-regular Sasaki-Einstein 
manifolds,manifolds, but within an adapted framework, irregular ones should be of great interest as 
well,, especially for string theory. For example, they could be related to rather exotic irra-
tionall  conformal field theories, through a gauge/gravity correspondence. We will not dis-
cusss these further. Rather, we focus of the geometry of the leaf-space Z of a quasi-regular 
Sasaki-Einsteinn manifold. 

T H EE GEOMETRY OF Z 

Iff  each point in B has a neighborhood such that any leaf of the characteristic foliation 
intersectss the transversal at most a finite number of times k, then L is called quasi-regular. 
Equivalentlyy B is quasi-regular if the leaves are compact. So all Sasaki manifolds which 
appearr as compact bases of cones are quasi-regular. If k = 1, L is called regular. A quasi-
regularr L that is not regular, is called non-regular. Regularity is a very strong condition. 
Thee vast majority of compact Sasaki spaces is non-regular. 

Att this point we have seen that the particular structure of a metric cone, or the Euler 
vectorr field, led to geometric structures on the link L <-*  C(L). The metric Calabi-Yau 
coness have Sasaki-Einstein links, either regular or non-regular. The hyper-Kahler cones 
havee tri-Sasaki links, which will be discussed in more depth later. Now focus on the Sasaki-
Einsteinn manifolds3, and to be more specific, on the regular Sasaki-Einstein manifolds. It is 

3Thee curvature of a Sasaki-Einstein manifold is necessarily positive and hence it can always be used to construct 
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G/H G/H 
SU(m+n) SU(m+n) 

SU(m)xSU(n)xU(l) SU(m)xSU(n)xU(l) 
SO(n+2) SO(n+2) 

SO(n)xS0(2) SO(n)xS0(2) 
SO{3) SO{3) 
SO{2) SO{2) 

SO(2n) SO(2n) 
SU(n)xU(l) SU(n)xU(l) 

Sp(n) Sp(n) 
SU(n)xU(l) SU(n)xU(l) 

SO(10)xU(l) SO(10)xU(l) 
EE7 7 

EE66xU(l) xU(l) 

R-dimension n 

2mn 2mn 

2nn + 1 

2 2 

n22 - n - 2 

n22 + n + 2 

32 2 

54 4 

Tablee 2.3: Hermitean symmetric spaces. 

usefull  to consider the leaf space Z of the foliation of L by the Reeb vector field, 

7TT ; L —+ Z. 

Thee regular Sasaki structure ensures that 5 is a smooth Kahler manifold, and the fact that 
LL is Sasaki-Einstein results in Z being Kahler-Einstein. Moreover Z is positively curved, 
c i ( Z ) > 0 : Z i saa Fano4 variety with a smooth Kahler-Einstein metric. 

Explicitt realizations of Kahler-Einstein Fano manifolds are provided by Hermitean sym-
metricc spaces. These are compact Kahler manifolds and Riemannian symmetric spaces, and 
positivelyy curved. As an aside, as such these spaces are geometrically formal, that is to say, 
thee wedge product of harmonic forms is again a harmonic form. It is proved in [66] that 
anyy geometrically formal Kahler manifold of non-negative Ricci curvature is Einstein. The 
Hermiteann symmetric spaces play an important part in the construction of superconformal 
fieldfield theories 3.4. The harmonic forms on the Hermitean symmetric spaces are in one-to-one 
correspondencee with (c, c) primary operators in the conformal field theory. These special 
fieldss have the property that under the naive operator product, they form a nilpotent ring. 

Thee Hermitean symmetric spaces are classified. Only spaces of which the dimension 
iss not too large can be used to build metric cones for a superstring compactification. The 
Hermiteann symmetric spaces are listed in table 2.3. 

Inn dimension d = 2, the only Kahler-Einstein manifold with ci > 0 is 

P11 ~SU(2)/U{\). 

InIn dimension d — 4, the manifolds with c\ > 0 are known as del Pezzo surfaces, those 
whichh admit a Kahler-Einstein metric have been classified [38] and are collected in table 
2.4.. On the del Pezzos obtained by blowing up P 2 at three to eight generic points, no explicit 

aa Calabi-Yau metric cone. 
4AA manifold with c\ > 0 is called a Fano manifold. 
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L,L, del Pezzo surface 
p2 2 

pii  x p l 

dPdPnn = P2#P2 , 3 < n < 8 

Homogeneous,, G/H 
3U(3) 3U(3) 

SU(2)xU{l) SU(2)xU{l) 
SU{2)SU{2) SU(2) 
u(i)u(i) x U(l) 

no o 

Tablee 2.4: Smooth del Pezzo surfaces admitting a Kahler-Einstein metric. 

metricss are known. The del Pezzo surfaces dP\ and dP2 do not feature in the classification 
[38]]  of Tian and Yau. It is a well known fact in the mathematics community, that the del 
Pezzoo surfaces dP\ and dP2 do not admit a Kahler-Einstein metric5. 

InIn general there can be several Sasaki-Einstein circle bundles over a base Z 

C{L)C{L) <- L 

(2.19) ) 

Z Z 

Thee first Chern class of the circle fibration L must divide the first Chern class of Z [36, 67] 
inn order to get a smooth total space. In concreto this means that the possible regular Sasaki-
Einsteinn manifolds are6 

i. i. 

ii . . 

iii . . 

iv. . 

v. . 

S55 -  P2, 

S5/Z 33 -  P2, 

y i , ii  _>pl x P1, 

T i . i /Z 22 -^ p1 x 

SSnn > dPn. 

P1, , 

Thee metric cone over S5 is just R6 and therefore not interesting from the point of view 
off  singularities. The manifold T1 '1 ~ SO{4)/SO{2) ~ (SU(2) x SU(2))/U{1) is the 
linkk of the conifold. There is a natural interpretation why only the Z 3 quotient of S5 gives a 
regularr Sasaki-Einstein space, from the perspective of quotienting C 3 by a discrete subgroup 
TT c SU(Z). C3 can be viewed as the total space of the tautological bundle over P2 . The 
U(l)U(l)  <—> SU(3) which acts only on the fiber but not on the base, acts on the homogeneous 
coordinatess as [z\ : z2  23]  \r)Z\ : 7722,^3]. The only nontrivial discrete subgroup 

5Thiss is because their automorphism groups are not reductive. But a theorem of Matsushima says that a Kahler-
Einsteinn manifold with c\ > 0 must have a reductive automorphism group. 

6Thee spaces Tx , 1/Z2 and S5 / ^3 a re regular because the canonical class of P1 x P1 is 2H, twice the hyper-
planee class, and similarly ACp2 = 3if. The other del Pezzo surfaces in the list have K. = H. 
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TT e U(l) that leaves the holomorphic three-form invariant is generated by e2™/3. This 
preciselyy 'shortens' the fiber by a factor of three, and so increases the Chern class of the 
bundlee by three. 

InIn for string theory, the case d — 6 is also interesting. The Kahler-Einstein Fano mani-
foldss of dimension d — 6 have not been classified. The homogeneous manifolds are known, 

i. . 

ii . . 

iii . . 

iv. . 

v. . 

P3, , 

p22 x p l? 

P11 X P1 X 

<M5,2), , 

F(l,2|3), , 

P1, , 

wheree Gr(5,2) is the real Grassmannian 50(5) / (50(3) x SO(2) and F ( l , 2|3) is the flag 
manifoldd (SU{3) x SU(2))/{SU(2) x U(l) x (7(1)). There are homogeneous Sasaki-
Einsteinn manifolds that are circle bundles over these spaces7. These manifolds are known 
fromfrom the study of compactifications of eleven dimensional supergravity of the form AdS_4 x 
M.-JM.-J [68]. Some of these spaces are even tri-Sasakian. Examples of inhomogeneous Kahler-
Einsteinn manifolds are P1 x dPn. 

Aboutt tri-Sasakian manifolds, more stringent results can be stated. These can be found 
inn [8]. Al l homogeneous tri-Sasakian manifolds in any dimension are known and construc-
tionss exist which given one tri-Sasakian space yield others. At the base of these results lies 
thee structure of tri-Sasakian manifolds. As Sasaki-Einstein manifolds, they can be seen as 
circlee bundles over Kahler-Einstein spaces. But the tri-Sasakian structure allows them to be 
seenn also as SU(2) fibrations over quaternionic Kahler manifolds. Also, the twistor space of 
thee quaternionic Kahler manifold is the Kahler-Einstein manifold. A very good discussion 
iss presented in [8]. 

Tri-Sasakiann manifolds wil l not be further discussed here. Yet, they are very interesting 
forr a number of reasons. Explicit geometric constructions of such manifolds exist, based 
onn the hyper-Kahler quotient [62]. The hyper-Kahler cones preserve more supersymmetry 
thann a generic Calabi-Yau cone and the structure as Sp{\) bundles might provide a way to 
considerr non-abelian duality for hyper-Kahler cones in a spirit similar to that of T-duality in 
chapterr 4. This, however remains a subject left entirely for future study. 

SUMMARY Y 

Perhapss the main lesson from the description of supersymmetric singularities as metric 
cones,, is that such cones genetically have a £7(1) isometry which degenerates at the apex of 

77 A homogeneous Sasaki-Einstein manifold has a transitive group of isometries which preserve the Sasakian 
structure. . 
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Metricc Cone C (L) 

symplectic c 
Kahler r 

Calabi-Yau u 

hyper-Kahler r 

L L 

contact t 
Sasaki i 

Sasaki-Einstein n 

tri-Sasaki i 

Z~L/U{1) Z~L/U{1) 
symplectic c 

Kahler r 
Kahler-Einstein n 

andd Fano 
Kahler-Einstein,, Fano, 

twistorr space of quaternionic Kahler 

Tablee 2.5: Relation of geometries of some metric cones and associated spaces 

thee metric cone. This isometry is generated by the characteristic (or Reeb) vector field that 
anyy Sasaki manifold has. Some particular simple, exceptionally symmetric Sasaki-Einstein 
manifoldss are U(l) bundles over Hermitean symmetric spaces. The Hermitean symmetric 
spacess also appear in the construction of some particularly symmetric worldsheet conformal 
fieldfield theories which can be used to describe supersymmetric string compactifications, which 
appearr in section 3.4. 

Thee largest class of Sasaki-Einstein spaces fall outside this category. They are non-
regularr and thus 17(1) bundles over Einstein-Kahler spaces with isolated quotient singular-
ities.. Recently many such spaces were found, using algebraic geometric considerations. 
Thesee constructions show that an orbifold Kahler-Einstein metric must exist on a large class 
off  varieties, but does not explicitly construct such metric, not unlike the proof that certain 
varietiess admit a Calabi-Yau metrics, based on algebraic geometric criteria. This construc-
tionn can be used to construct supersymmetric cones as well, and it does so in terms of 
hypersurfacess defined by complex polynomials. These matters are discussed in section 2.3. 

2.33 HYPERSURFACES 

Thee description of singularities as hypersurfaces C = F_ 1(0) C Cn +2 provides a direct 
wayy to deform a singularity. By deforming the defining polynomial, a hypersurface may 
bee completely smoothed. A deformation of the defining polynomial can be interpreted as a 
deformationn of the complex structure of C. There is no simple way to smooth a singularity in 
aa metric cone or quotient description. A smoothing operation normally has negligible effect 
asymptoticallyy far away from the singular point, but does not fit with a global description in 
termss of a quotient or a metric cone that is also applicable near the smoothed singularity. 

Ann asymptotic metric cone description is useful, as it provides a differential geometric 
picturee with a characteristic Killin g vector field on a Sasaki-Einstein link, which is generic 
forr any supersymmetric metric cone. Hypersurface descriptions turn out to be not only 
usefull  to consider deformations of singular cones, but also to characterize Sasaki-Einstein 
manifoldss in a way unlike those used in section 2.2. In particular, projective hypersurfaces, 
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definedd as the zero locus of a single weighted homogeneous polynomial in an appropriate 
weightedd projective space, can be an algebraic geometric way to describe varieties that 
admitt Kahler-Einstein metrics, possibly with orbifold singularities. Such varieties can be 
usedd to construct metric cones on non-regular Sasaki-Einstein manifolds, as Sl bundles 
overr the Kahler-Einstein base. Additionally, the links of projective hypersurfaces can be 
relatedd to fiber bundles over a Sl base. Topological properties of these bundles are related 
too the analytic properties of the hypersurface singularity. It is the object of this section to 
introducee these two viewpoints, both for hypersurfaces in C 3 and in higher dimensions. 

2.3.11 TH E ADE-SINGULARITIE S AS HYPERSURFACES 

Thee ADE-singularities have descriptions as hypersurfaces F Ê(0) C C3. The polynomi-
alss FADE are listed in table 2.2. These singularities are quite special, as discussed in section 
2.1.2,, for many reasons. For one, they also have descriptions as quotients C 2/T and hence 
alsoo as metric cones. As quotient singularities, the McKay correspondence relates the ho-
mologyy of resolutions to the representation theory of the quotient groups, a point which has 
aa beautiful string theoretic interpretation [61]. As surface singularities, both resolutions and 
deformationss blow up two-cycles. The distinction between complex and Kahler deforma-
tionss is not an invariant notion, because of the Sp(l)-fa,mi\y of complex structures on these 
hyper-Kahlerr surfaces. In higher dimensions, not all of these properties are simultaneously 
presentt in general. 

Thee polynomials FADE are weighted homogeneous, they satisfy (2.7), 

F(Aa izi,Aa2z2,A a3z3)) = \dF{zuz2,zz). 

Soo a hypersurface C = F_ 1(0) admits aC* = R+ x U(l) action, like a supersymmetric 
metricc cone does. The link L of a metric cone C(L) is obtained as L = C(L)/R+. Anal-
ogously,, one can fix the R+ scaling of C = F~l C Cn+2 by intersecting the hypersurface 
withh a small sphere, 

S?S?n+3n+3 = {zeCn+2:J2\Zl\
2 = r2}, 

i = 11 (2.20) 
CC = {z e Cn + 2 : F(z) - 0} , 

LLrr=Cr\S=Cr\S2n+32n+3. . 

whichh envelops an isolated singularity at the origin. For any hypersurface C = F _1(0) 
definedd by a weighted homogeneous F with an isolated singularity at the origin it makes 
sensee to consider its link Lr in this way and write C{L). 

Onee may ask to what extent this notion of a link is related to the link of a metric cone. 
Thee ADE-singularities have descriptions as metric cones, and one can compare the two 
notions.. Let's call these the 'metric link' and the 'analytic link'. First of all, the metric links 
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aree S3/T and are Sasaki-Einstein manifolds. The base space of each S3/T is S3/U(l) ~ 
(C2\{0})/C **  ~ P1. The analytic links can be viewed as U(\) bundles over certain base 
spacess Z(T). The space Z(T) is characterized as the projective hypersurface F - 1 ^ ) in a 
weightedd projective space denned by the weighted C * action on the weighted homogeneous 
polynomiall  F. 

Thee projective hypersurfaces Z(T) are characterized using the adjunction formula. Re-
calll  the adjunction formula in ordinary projective space, see, for example [76]. It gives the 
canonicall  bundle of a hypersurface V = F_ 1(0) c Pm . Such a hypersurface is the zero 
locuss of a section of the line bundle 0pm (d), where d is the degree of the homogeneous 
polynomiall  F that defines the hypersurface V. It can also be viewed as a submanifold of 
Pm .. There is the following short exact sequence, 

00 _> TV i T¥m\v ^ G(d)Fm \v - 0. (2.21) 

Thee meaning of this sequence is as follows, reading from left to right. The tangent bundle 
too V is a subbundle of the tangent bundle to the embedding P m, restricted to V, so there is 
ann inclusion map. The next arrow maps every tangent vector Xi V» G TPm\r to a section 
off  0pm (d), i.e. to a homogeneous polynomial of degree d. Its kernel is formed by vectors 
tangentt to V. The map that achieves this is the covariant gradient, 

VVxxFF = Xi{F,i+TlF). 

Thee second term involves a connection Ti on 0Pm(d), but restricted to V it drops out, as 
FF = 0 on V by definition. The vectors mapped to zero are the vectors tangent to V since 
byy definition V is the surface of which F has the constant value F = 0. The short exact 
sequencee (2.21) implies for the determinant line bundles 

dett 7 Tm \v ~ det TV ® 0Pm \v. 

Thee determinant bundle of the cotangent bundle to a complex manifold is also called the 
canonicall  bundle fC, and its dual, the determinant bundle of the tangent bundle, is the anti-
canonicall  bundle, denoted by -K, or K*. The above expression implies that the canonical 
bundlee of V is given by 

£ P ^ ( / C P ».. ®0(d)) |T>. (2.22) 

Thiss relation is the statement of the adjunction formula. As /Cp™ ~ ÖF>m(-m - 1), the 
adjunctionn formula can be written as 

KKVdVdccpmpm ~ 0Vm(d-m-l)\Vd, (2.23) 

Forr a degree d hypersurface in Pm . 
Thee adjunction formula can be generalized to weighted projective hypersurfaces (see 

sectionn 2.3.3). The ordinary projectivee space Pm is a special case, with all weights 

a\a\ = . .. = am + i = 1. 
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Thee adjunction formula applied to the complex curves Z r , written as zero loci of the ADE 
polynomialss FY in the appropriate weighted projective space gives the first Chern class of 
Zr.Zr. Hence gives its Euler characteristic, x = -2c i, in terms of the first Chern classes of 
thee embedding space and a that of the line bundle with section Fp. The result is 

3 3 

ccll(Z(Zrr)) = -d+^ai = l. (2-24> 

Forr all ADE-polynomials, listed in table 2.2, the relation between weights and weighted 
degreee is as in (2.24). Such hypersurfaces are called anticanonically embedded, 

-KADE-KADE = 0(1). 

Manyy higher dimensional hypersurfaces are not anticanonically embedded, while their 
definingg polynomial does define a supersymmetric qffine hypersurface. Consequently, they 
aree of importance for string theory. But from the mathematicians' point of view the anti-
canonicallyy embedded ones have received special attention. It will turn out that the distinc-
tionn between anticanonically embedded hypersurfaces and others also has a (slight) con-
sequencee for the string theory duality transformation. In particular, the worldsheet field 
theoriess employed in the formulation of the duality transformation describe exactly affine 
hypersurfacess of the 'anticanonical' kind, and particular cyclic quotients of surfaces which 
aree not of the 'anticanonical' kind. These worldsheet models are discussed at the end of 
sectionn 3.3.2 and in section 4.4. 

2.3.22 TOPOLOG Y OF AFFIN E HYPERSURFACES 

Thiss section is relatively disconnected from the rest. We discuss some aspects of affine 
hypersurfacee singularities, defined by a weighted homogeneous polynomial, in arbitrary 
dimension.. So these results in particular hold for six and eight dimensional singularities, 
whichh are of interest in string theory. 

Thee description as a hypersurface obscures any differential geometric data of the space. 
However,, there is a remarkable connection between analytic properties of the polynomial 
definingg the affine hypersurface and topological properties. The 'topological properties' 
conceptuallyy split into two sorts. First, there is the topology of a resolution of the singularity. 
Thiss is related to deformations of the defining polynomial; essentially this is a statement in 
thee context of Morse theory. 

Second,, there is the topology of the 'base of the cone', the analogue of L for metric 
cones.. Topological properties of L, or rather its equivalent in the hypersurface context, 
aree related to analytic properties of the defining polynomial as well. This may seem quite 
remarkable.. This may seem quite remarkable, since L, regarded as the 'base' very far from 
thee apex of a cone, is quite insensitive to small deformations of the singular apex. 
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SASAKII  AND MILNOR : CIRCL E FIBE R OR CIRCL E BASE? 

Inn higher dimensions, many interesting 'supersymmetric' hypersurface singularities are not 
anticanonicallyy embedded, but the ones that are play a special role, as it can be proved 
thatt some admit Kahler-Einstein metrics. This requirements seems more of a technical 
conditionn in the proof than a fundamental necessity. We will return to the higher dimensional 
casess in the next section. In any case, the Kahler-Einstein base manifolds Z  ̂ of all ADE-
hypersurfacess are P1, as x = — 2ci = —2. This coincides with the base of the metric cone 
descriptionn C2/T -> (C2\{0})/C *  ~ P1. 

Cann the links of the metric cones, S3/T and the links of the hypersurface singularities 
FjT^O)) D S5 also be identified? Given the weights a*  of Fr there is a natural Sasakian 
structuree on S5 C C3 with contact form 7?a and characteristic vector £a defined in terms of 
thee coordinates Zk = Xk + iyk on C3, 

3 3 
J2J2 (xkdyk -yfcdxfc) 

__ fc=i 
VV**  ~ ak {x2

k + y2
k) (2.25) 

Thiss Sasakian structure is in general non-regular. It generalizes to g2 n+ 3 spheres for any 
n.n. This restricts to a Sasakian structure on Lp = S5 (~) FIT

1(0), and the question is to 
findd a metric on Lp that is not only compatible with this Sasakian structure, but that is also 
Sasaki-Einstein,, i.e. the U{\) action above should be an isometry and it should be the action 
off  a characteristic vector field on a Sasakian manifold. Analytic sufficient conditions can 
bee found, discussed in a more general case in the next section, which are met by the ADE-
hypersurfaces.. Much like the proof of existence of Calabi-Yau metrics, it is not constructive. 
Butt from the hypersurface, some topological information about the analytic link can be 
found. . 

Thee link of a weighted homogeneous hypersurface singularity can be viewed not only as 
aa circle bundle over a projective variety, such as P1 in the case of the ylo.E'-hypersurfaces. 
Itt can also be seen as the 'boundary' of a fiber bundle with a relatively complicated fiber, but 
withh S1 for a base. The topology of the link is studied via the topology of its complement 
g2n+3g2n+3 p| £ yjjjg approach is essentially similar to the study of one-dimensional knots and 
linkss via their embedding in 53 , related to complex curve singularities 

C22
 D C -  L c S3. 

Topologicall  information about the link is related to topological information about its com-
plement,, which in turn is related to analytic information about the hypersurface. 

Moree specifically, deformations of the defining polynomial of a hypersurface correspond 
too smoothings of the singular point. Such smoothings do not change the asymptotic form 
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off  the hypersurface toward infinity. The link of a weighted homogeneous hypersurface 
iss obtained by intersecting it with a sphere that contains the singular point, and may be 
large.. The deformations of the singularity occur inside the enveloping sphere and may 
nott affect the asymptotic geometry near the sphere. Yet, the possibility of these analytic 
deformationss far inside, which can smooth out the singularity, have a consequence for the 
topologyy of the link as well. The connection between singularity theory and topology is a 
veryy interesting matter and only a very small part wil l be discussed, in the context of not only 
ADE-hypersurfacess but also higher dimensional cases. A nice starting point, containing 
manyy classic references is [72]. 

AA polynomial F : Cn + 2 —*  C defines an affine hypersurface M. = F- 1 ( 0 ). This 
hypersurfacee is singular where the dF — 0, in other words, at the critical points of F, 
wheree in addition F = 0. We assume that F has isolated critical points. Around such a 
criticall  point F can be expanded as 

n+2 2 

F{zF{zuu  - , zn+2) = Yl *?' (<**? + 4 ? + i^ + , (2-26) 
i = i i 

andd the multiplicity of the critical point is 

n+2 2 fifi  = ^2(ki-l).  (2.27) 
i = l l 

Forr a weighted homogeneous polynomial, 

F (A a i* i , . .. , Aa»+a* n+2) = \dF{Zl,..., zn+2) (2.28) 

thiss number is determined by the weights and the weighted degree, 

n+2 2 

"=E E dd — aT 

*.. (2.29) 
i=\ i=\ 

Thee number fi is called the Milnor number of the hypersurface. 
AA polynomial F with a degenerate critical point can be deformed, F —  F so that F has 

/ii  non-degenerate critical points. The Milnor number can also be expressed as the dimension 
off  the following quotient ring 

p.p. = dimc — T^p L. (2.30) 

Thee 'numerator' is the polynomial ring generated by all variables in F and the 'denomina-
tor'' is the ideal generated by the first derivatives of F, known as the Jacobian ideal of F. 
Thiss quotient ring is also the (c, c) ring of a N = (2,2) Landau-Ginzburg model, as dis-
cussedd in section 3.3.1. Every (c,c) state corresponds to a critical point of F and to count 
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Figuree 2.1: Homology cycles in H(F, <ƒ>; Z) for a deformed hypersurface singularity. 

thee multiplicity correctly, one can deform F —> F so that the degenerate critical point of 
F,F, at the origin, splits into p non-degenerate critical points, z j e Cn + 2, of F, such that 
||zi||| < r. These critical points are mapped to \x critical values, F(ZJ) = Q e C. 

Thee function F is continuous with non-degenerate critical points which maps the ball 
BBrr = {||z|| < r}  c Cn + 2 containing all //critical points into the disk Dp = {\z\ < p) c C 
containingg all critical values. Such a function is a Morse function and it can be used to 
extractt topological information about the hypersurface, see for example [72]. Define 

r-*-'(*, )) n* . 
**  = -F-'(0, 

wheree Q is a generic point. The function F can be used to find the relative homology [72] 

HHkikir^z),{lr^z),{l HtZll WW ifk = n + 2. 

Thee function F can be used to explicitly visualize a basis of Hn+2(T, (j>;  Z). Choose a 
pointt 5 on the boundary of the disk Dp. Non-intersecting paths from 5 to the critical values 
dd are the images of homology cycles in the deformed hypersurface. These cycles shrink as 
criticall  points move together, see figure 2.1. 

Whenn the deformation is turned off completely, F —> F, all critical points coincide at 
thee origin, and F _ 1 (£) is smooth, except when £ = 0, in which case the hypersurface has 
itss only singularity isolated at the origin z = 0. 

Bothh the cone C = F- 1(0) and its complement Cn + 2\C admit a C* action. One can 
dividee out the E+ part by intersecting with S^n+3 = dBr. Using the fact that F has no 
criticall  points outside the origin, it can be shown that L = F_ 1(0) n 52 n+3 and M = 
SS2n+32n+3\L\L are smooth manifolds. M can be viewed as a fiber bundle with base U(l). The 
projectionn map M —* U(l) is given by 

TT:: M->£/(!)> 
F(z)) (2.33) 

29 9 



ChapterChapter 2 - Hypersurfaces 

Thee fiber is a 2n + 2-dimensional manifold, $ ~ $o — TT l{él0)i known as the Milnor 
fiber.fiber. And the total space 

$$ ^ M 

(2.34) ) 

iss the Milnor fibration [71]. Clearly the complement of the M in the sphere, or dM = 
~M\M,~M\M, is the link L. 

Itt was shown by Milnor [71] that 3> ~ dM and also, taking a Modification F of F 
whichh has /j nondegenerate critical points inside a ball Z?r and /i corresponding critical 
valuess inside a disk D^, that 

/ / t ( r , 0 ; Z ) . { ° Z MM * i » + j t (2.35) 

takingg T = F- 1(£>p) n Sr and 0 = F_ 1(ei e) n 5 r . Furthermore he showed that this T is 
contractible.. Using this together with the long exact sequence for relative homology groups, 

<f>c<f>c r , 
. ... ^ Hk(4>)  ̂ Hk(T)  ̂ Hk(r,<j>)  •£ Hfc_i(0) i . . . , (2.36) 

itt is found that the homology of the Milnor fiber is given by 

Thiss means that the Milnor fiber is homotopy equivalent to a bouquet of (n +1)-spheres, 

LL ~ Sn+1 V. VSn+\. (2.38) 

Thee number of spheres in the bouquet is the Milnor number /i. A bouquet of spheres 

SSn+1n+1 v S n + 1 v . . . v S n + 1 

iss the topological space obtained by taking the union of the topologies of the separate copies 
off Sn+1 and identifying a marked point on each sphere to a single point, like in figure 2.2. 

Thee total space M of the Milnor fibration is obtained by gluing the Milnor fibers over 
thee circle in an appropriate way, using a homeomorphism 

hh : $ -H. $ , (2.39) 

knownn as the characteristic map, 

MM = { * X [ 0 , 2 T T ] ) / ~ , 

(0,* )~(27T, fe(*) ) .. ^  } 
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o 0 0 
Figuree 2.2: Three S1 's glued into a bouquet 

Figuree 2.3: Simplified version of a Milnor fibration. The link is a bouquet of three circles, a point 
onn each of the three circles in the fiber is identified, see figure 2.2. The base space is the large circle 
direction.. Traversing the base, the fibers are glued together in a non-trivial fashion. 

31 1 



ChapterChapter 2 - Hypersurfaces 

Ann attempt to illustrate this point of view of the Milnor fibration in made in figure 2.3. 
Thee topology of the Milnor fiber does not yet clarify the topology of the link. Note that 

thee for a (2n + 2)-dimensional hypersurface C = F~l(0) c Cn + 2, the link is a manifold 
off  dimension dim(L) = 2n + 1, the complement of the Milnor fibration in S2n+3, which 
hass a (2n + 2)-dimensional Milnor fiber. The homeomorphism h : $ —• <£> induces a linear 
map p 

h.h. : J W * ; C ) - ff«+i(*;C). (2.41) 

Thiss map can be used to construct the exact sequence [70], using the fiber bundle structure8 

off M and dM = L, 

00 -> Hn+1(L;Z) -> tfn+1($;Z) ^ H„+i(*,Z) - Hn(L;Z) -* 0. (2.42) 

Thiss implies that Hn+i(L,Z) = Ker{I — h*) is a free Abelian group. And Hn(L;Z) = 
Coker(II — /i*). This may have torsion, but its free part is isomorphic to Ker(I — h + ) as 
well.. The kernel of I - h* is determined from the characteristic polynomial 

A(£)) = de t (H* - / i * ) . (2.43) 

Theree is an algorithmic way [70] to determine A(t) in terms of the a, and d of a weighted 
homogeneouss polynomial like (2.28) on page 28, and from that, the Betti numbers b n+i(L) 
andd bn(L). This recipe is as follows. 

Forr the Milnor fibration associated with a hypersurface F _ 1 ( 0 ) defined by F as in 
(2.28),, the homeomorphism h can be chosen to act on the coordinates as 

ee «* zi,...,e d zn+2J • (2.44) 

Inn order to write down A(t), it is convenient to introduce different notation. Define r j = 
d/di,d/di, and write these as fractions of relatively prime pairs rj — Si/U. Associate divisors to 
polynomialss as follows, 

k k 

divisorr J | ( i -an) = (ai) + ... + (ak). 

AA divisor, like the one denoted on the right hand side of the above equation, can be regarded 
ass a formal linear combination of points in C. More clearly, a divisor is an element of a free 
Abeliann group9. Each generator (a*) of this group is in one-to-one correspondence with 
aa point in C, which can be regarded as the zero of a complex monomial function t - Q j . 

88 In particular the Wang sequence is used, for fiber bundles over odd-dimensional spheres. 
99 One could even say the divisors form the group ring Z C , which is formally a better way to think of them. 

Thee 'special' divisors En are then considered not to form a subgroup, but a genuinely different group ring: QC 
(thee coefficients of the (7jh) are rational numbers). 
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Eachh («i) generates a subgroup isomorphic to Z. The group operation in this group can be 
denotedd as addition, and one can concisely write 

{Qi )) + {ai ) = 2(ai). 

Wee can introduce some additional structure, multiplication, on a subgroup, if we realize 
thatt the ai are also complex numbers, not just labels for geometric points. We restrict to a 
speciall  subgroup of divisors. Define 

EEnn = -divisor (tn - 1) = - Va r /n ) * } , 
1=0 1=0 

wheree r)n is a primitive n-th root of unity. Now a multiplication rule for these special 
divisorss is proposed, inspired by complex multiplication of roots of unity. The Ek form a 
ringg with multiplication rule 

EkEiEkEi = E[kj], 

wheree [k, I] denotes the least common multiple of k and /. With this notation the divisor of 
A(t)A(t) associated to the Milnor fibration of F~1(0) as in ((2.28) reads 

n+2 2 

divisorAA = Y[ {rkESk - 1). (2.45) 
fc=i fc=i 

Thee Betti numbers 6n+i = bn of the link L = F- 1 ( 0) n S2n+S are equal to the number of 
factorss of (t - 1) in A(t) [70]. 

Recapitulating,, the weights and degree of a weighted homogeneous polynomial F de-
terminee the Milnor number fi of the hypersurface F - 1 (0). This number counts the number 
off  deformations of the singularity or in other words, the multiplicity of the critical point 
att the singularity. As such, it is related to Landau-Ginzburg models, counting the number 
off  (c, c) primary states (see section 3.3.1). But /i also gives the dimension of the middle 
integrall  homology of the Milnor fiber $ -• M -> S1; $ ~ Sn+l V . . . V Sn+1. The 
totall space of the Milnor fibration M is obtained by gluing $ along the base, twisting it by 
thee characteristic map h. The boundary of M is the link F - 1 D S2n+3. Its Betti numbers 
bbnn(L)(L) = bn+i(L) are determined, employing the h, in terms of the weights and degree of 
F.F. The link itself is a circle fibration over a projective variety S1 —> L —> Z. 

Forr the A-type hypersurfaces, Z ~ P 1 , which admits a Kahler-Einstein metric of pos­
itivee curvature. This is in agreement with the observation that the FADE in table 2.2 are 
preciselyy those weighted homogeneous polynomials that satisfy, 

J2ai>d+l.J2ai>d+l. (2.46) 
i=i i=i 

Thee FADE even saturate this inequality. 
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Onee can consider other weighted homogeneous hypersurfaces F _ 1 (0), as 'cones' in C3 

orr projective surfaces in a weighted projective space (C3\{0})/C*[a] . Notably, one might 
considerr projective hypersurfaces with ci < 0. The corresponding cones will not be suitable 
too serve as supersymmetric compactifications by themselves, only the ADE-cones do. Yet 
theree are still some interesting points to note. 

Thee simplest of ADE-hypersurfacesare those of Brieskorn-type: the .4„-series together 
withh EQ and Eg. These are of the form z[x + zr

2
2 + z3

3 = 0. Intersected with 5 j = 1 C C3 

thesee define the Brieskorn manifolds M(ri, 7-2, r3) . The three dimensional Brieskorn man-
ifoldss were studied by Milnor [69]. He demonstrated that M( r 1,7-2, r3) are homogeneous 
spacess which fall into three categories, depending on the canonical class of the correspond-
ingg projective hypersurface. 

—— + — + — > 1 ci = l , (2.47) 
7*11 r 2 r 3 

—— + — + — = 1 ci = 0, (2.48) 
T-ii  r 2 r 3 

11 1 1 
—— + — + — < 1 ci < 1. (2.49) 
T-II  T-2 r 3 

Inn the cases (2.47) the homogeneous spaces M( r i , r 2 , r3) are of the form SU{2)/T, as 
familiarr from the quotient description. In the case (2.49) the spaces M( r i , r2 , r3) are 
PSL(2]PSL(2] R)/T, quotients of the universal cover of the projective version of SL(2; R) by 
discretee subgroups. The case (2.48) is different, there M(r 1, 7*2, r3) ~ G/H where G is the 
Heisenbergg group, with elements the matrices 

// 1 a c \ 
[o,, 6, c] = I 0 1 6 , a, b, c e E, (2.50) 

\ oo 0 1 / 

andd H are subgroups where a,b,c e k% for some integer k, see [69]. . 
Thee polynomials which define Brieskorn manifolds of type (2.48) are 

FFÈgÈg(zi,z(zi,z22,Z3),Z3) =zf +zl + zl {+aziz2z3), 

FFE7E7(zi,z(zi,z22,z,z33)=zf+zi)=zf+zi + zi (+<*zlz%), (2.51) 

FFÈaÈa(zi,z(zi,z22,z,z33)=z%+z%)=z%+z% + z% (+azfz2). 

Thee conformal field theories defined by these polynomials, as Landau-Ginzburg models (see 
sectionn 3.3.1) have c = 1, with the Brieskorn polynomials (a = 0) corresponding to eft's 
withh enhanced symmetry. The polynomials in (2.51) define tori in the appropriate weighted 
projectivee spaces, as is seen from the adjunction formula10. The links of the singularities 
aree circle bundles over tori, in these cases, and are homogeneous spaces. 

100 In fact, this enhanced symmetry of the eft can be interpreted as the tori being at the self-dual radius. This wil l 
nott be discussed. The connection between Landau-Ginzburg models, which a priori have no geometric interpreta-
tion,, and sigma models, is discussed in section 3.3, 
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Theree is an interesting correspondence between the polynomials in (2.51) that define 
curvess with trivial anticanonical class and thus cannot be used to make supersymmetric 
coness directly, and the del Pezzo surfaces dP§, dP7 and dPg, that not only can be used to 
constructt supersymmetric cones (as metric cones over regular Sasaki-Einstein manifolds), 
butt also have descriptions as projective hypersurfaces, but are not homogeneous. 

2.3.33 KAHLER-EINSTEI N HYPERSURFACES 

Thee 4d supersymmetric singularities are classified, have different but equivalent descrip-
tions,, and are related, via the ADE classification, to an enormous number of apparently 
veryy different objects that appear in mathematics. Each different description of one sin-
gularityy highlights different aspects. For example, the metric cone shows there is a Z7(l) 
isometry,, degenerating at the apex. The quotient description relates singularities to homo-
geneouss spaces It also relates metric cones and hypersurfaces to one another, at least in the 
casee of the complex surface singularities. 

Inn the hypersurface description possible deformations are more apparent. In addition, 
importantt for our purposes, the defining polynomials of hypersurfaces play a role in world-
sheett conformal field theories describing strings moving on a hypersurface and also T-dual 
spaces.. Finally, many weighted homogeneous hypersurfaces give rise to Sasaki-Einstein 
manifolds,, mostly non-regular ones. This section deals with the relation between hypersur-
facess and metric cones in dimension d > 4. 

AFFINEE CALABI-YA U HYPERSURFACES 

Thee condition on a metric cone to be part of a supersymmetric string vacuum, i.e. a Calabi-
Yauu cone, is that its link is Sasaki-Einstein. Is there an analogous condition on hypersur-
faces?? The answer is: "yes". Consider an affine hypersurface C = F_ 1( 0) C (Cn+2\{0} ) 
definedd by a weighted homogeneous polynomial, 

F(\F(\aa*z*zuu . . ., Xa^zn+2) = \dF(Zl,..., zn+2), (2.52) 

withh a singularity only at the origin. If the weights ai and the weighted degree d of F are 
suchh that 

n+2 2 

33 = - d + ^ a i > 0 , (2.53) 
i=l i=l 

thenn C is Calabi-Yau [27]. 
Notee that the condition (2.53) is different from the Calabi-Yau condition for hypersur-

facess in a projective space. Such hypersurfaces are Calabi-Yau iff 3 = 0, as a consequence 
off  the adjunction formula and Yau's proof of the conjecture of Calabi. But (2.53) deals with 
affinee hypersurfaces, not projective ones. Nevertheless, since F is a weighted homogeneous 
polynomial,, one may consider the hypersurface V = F_ 1(0) in an appropriate weighted 
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projectivee space. Such hypersurfaces, which satisfy (2.53) are called Fano. In terms of the 
firstt Chern class, c\ > 0 for a Fano manifold. 

Suchh a projective hypersurface is Kahler, since it is embedded holomorphically in a 
weightedd projective space. It can be positively curved, as c i > 0. So maybe it can be 
thee leaf space of a Sasaki-Einstein manifold. But this is only possible if the hypersurfaces 
admitss a positive Kahler-Einstein metric (possibly with orbifold singularities). 

Onee important question is: "What are necessary and sufficient conditions that such a 
VV admit a positive Kahler-Einstein metric?". And a following question is: "Can a Sasaki-
Einsteinn manifold be constructed from a V that admits such a metric, and if so, how?". 

Thee latter question can be answered affirmatively. Given a hypersurface that has a 
Kahler-Einsteinn with positive scalar curvature, and at worst cyclic orbifold singularities, 
aa Sasaki-Einstein manifold can be constructed, using the C * action on the weighted ho-
mogeneouss polynomial F [33, 32, 37]. The answer to the former question is a lot more 
involved.. It is possible to find sufficient conditions, that V admit a Kahler-Einstein metric 
withh at worst cyclic quotient singularities, but part of these conditions is likely to be too 
strictt [39, 34, 35]. Many hypersurfaces which are interesting from the perspective of string 
theoryy do not satisfy all of these sufficient conditions. 

W E I G H T EDD PROJECTIVE BASICS 

First,, let us recall some basic definitions and properties of weighted projective spaces; see, 
forr example [75]. Weighted projective spaces F[a i , . . ., an+2] are generalizations of or-
dinaryy projective spaces Pn + 1 = P [ l , . . ., 1]. Points in Cn + 2\ {0}  are identified by the 
weightedd C* action, 

( z i , . . .,, zn+2) ~ (AQ1 zu . . ., A a" + 2zn + 2), 

wheree A £ C*. Unlike ordinary projective spaces, weighted projective spaces can have 
singularities.. These are seen in the affine coordinate patches where Zi / 0. In such a patch, 
onee can set z^ = 1 by a weighted C* transformation. The coordinates is such a patch are 
QQ = Zj/zi If the weight en of the coordinate Zi is larger than one, then a Zai subgroup of 
thee weighted C* action leaves invariant Zi = 1, but does act on the other coordinates: 

{z{zUU...,Zi...,Zi = l , . . . , 2 n + 2 ) *-+ (f]aiZi,...,Zi = l , . . . , 7 7 °n + 2 Z n + 2 ) , 

wheree 77 is a primitive a^-th root of unity. So the affine coordinate patches where Zi 7̂  0 can 
havee cyclic quotient singularities. These singularities occur at the so-called vertices Pi of 
thee weighted projective space. The vertex Pi is the point {ZJ — 0} , j ^ i. The singularity 
att Pi is said to be of type ^ ( a i , . . ., d,,. . ., an+2)- A hat over an element means that that 
elementt is omitted from the list. If some of the weights have common factors, there may also 
bee singular lines, planes etc. The singular lines occur at edges PiPj (i.e Zk = 0, i ^ k ^ j) 
andd are of type 8Cd̂ . i t t j )(Qi, . . . ,<&,. . ., d j , . . ., on + 2) , an so on. 
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Clearlyy the weight vectors ( a i , . . ., an+2) and {ka\,..., kan+2) correspond to isomor-
phicc weighted projective spaces, for any integer k. So one can assume that all a i'ss are rel-
ativelyy prime. In fact, there are further isomorphisms between weighted projective spaces, 
andd every weighed projective space is isomorphic to a well formed one, so says a theorem 
byy Delorme11. A well formed projective space P [a i , . . ., an+2[ has a weights such that 

gcd(ai, ... . , ó i , . . . , an + 2) = 1 1 < i < n + 2. (2.54) 

AA hat over an element means that the element is omitted. In a well formed projective space, 
thee affine coordinate charts (zi ^ 0) have Zfl i quotient singularities. Some examples of 
somee weighted projective spaces are 

P[p,9]~P[ l , l ]]  Vp,q 

P[6,10,15]]  ~ P[6,2,3] ~P[3,1,3] ~ P[l, 1,1] 

AA hypersurface in a weighted projective space inherits singularities from the embedding 
spacee if it passes through vertices, singular lines, etc. In general a hypersurface cannot avoid 
alll  vertices. It can avoid all vertices if 

a{a{ | d Vz. (2.56) 

AA hypersurface with singularities that are all due to the singularities of P [a i , . .. ,an+2] 
alone122 is called quasi-smooth. Its singularities are all cyclic quotient singularities. Math-
ematicianss know how to deal with such 'mild' sorts of singularities, and objects familiar 
fromm the algebraic geometry in ordinary projective spaces can be generalized [75]. In par-
ticularr there is an adjunction formula if a hypersurface does not contain any singularities of 
codimensionn 2. Such a hypersurface is called well formed. A hypersurface V = F - 1(0), 
definedd by a polynomial of weighted degree d in P[a i , . . ., an+2] is called 'well formed' iff 
thee following conditions are satisfied, 

P [a i , . . .,, an+2] is well formed, and 

gcd(ai,.. . . ,a* , . .. ,an+2) | d Vt. 

Thee adjunction formula gives the canonical class of the V in terms of the weights a i 
andd the weighted degree d of F, which can be seen as a section of the sheaf Of{d). The 
adjunctionn formula tells us 

Tl+2 2 

KKvv~ö{d~J2~ö{d~J2aai)-i)-  <2-58) 
i= l l 

111 Consider a weighted projective space P[a i , . .. ,an+2]- It can be shown that this space is isomorphic to 
P[ai,, 02/5,03/9, • • • , On+2/5]» where g = gcd(o2, •• •, an+2)- Making use of this equivalence at most n + 2 
timess produces a well formed projective space. 

l2Itt is to say, that there are no singularities due to the way the hypersurface is embedded, i.e F = dF = 0 has 
noo solutions in P [ a i , . . . , an+2]-
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Surfacee F_ 1(0) C P[ai, 02, a3,a4] 
p-2 2 

pii  x pi 
dPdP6 6 

dPdP7 7 

dPdP8 8 

FF = 0 
z\z\ + z2 + Z3 + Z4 = 0 
zi+z%zi+z% + z% + z% = 0 
zfzf + z% + z% + zl = Q 
zizi + z$ + zi + zl = 0 
z\z\ + z\ + z\ + z\ = 0 

P[ai ,a2,a3,a4] ] 

P[l,, 1,1,1] 
P[l,, 1,1,1] 
P[l,, 1,1,1] 
P [ l , l , l ,2] ] 
P[l,2,3,3] ] 

Tablee 2.6: Smooth del Pezzo hypersurfaces admitting a Kahler-Einstein metric. 

AA well formed hypersurface is Fano iff 3 = -d+ai + ... + an+2 > 0. Such hypersurfaces 
standd a chance of having positive Kahler-Einstein metrics, thus providing a connection with 
metricc cones. 

HYPERSURFACESS ADMITTIN G KAHLER-EINSTEIN M E T R I CS 

Whichh quasi-smooth hypersurfaces admit a Kahler-Einstein metric? A general answer is 
nott known, but there are many examples, in various dimensions. First of all, there are the 
complexx curves defined by the ADE polynomials, in table 2.2. As discussed earlier, all 
thee ADE polynomials define a P1 hypersurface, which of course admits a Kahler-Einstein 
metric.. Next, we know from section 2.2 which smooth complex surfaces admit positive 
Kahler-Einsteinn metrics. These are P2, P1 x P1 and the del Pezzo surfaces dPn for 3 < n < 
8.. Of these, the ones that can be realized as hypersurfaces in weighted projective space are 
listedd in table 2.6. 

Inn addition to these smooth surfaces, there are many more quasi-smooth cases. Quasi-
smoothnesss and well-formedness, see (2.54) and (2.57), impose conditions on the weights 
andd degree similar to the smoothness condition (2.56). These conditions13 are not quite 
strongg enough to determine all surfaces. It is possible to determine all surfaces and three-
foldss that satisfy one more condition, which is that they be anticanonically embedded, 

3=3= -d + ai + ... + an+2 = 1, (2.59) 

Al ll  the conditions impose a set of linear relations among the weights a,i, which were orga-
nizedd in such a way [35, 34] that all solutions were found using a computer program. 

Thee authors of [35, 34] also discuss the existence of Kahler-Einstein orbifold metrics 
onn these hypersurfaces. The criteria that are used are sufficient but not necessary. Many 

133 The conditions are the following, see [34] 2. Quasi-smoothness requires that for every i there exist a j and a 
monomiall  z™* Zj Zj of weighted degree d. The case i — j gives the smoothness condition (2.56). Well-formedness 

furthermoree requires that if gcd (at ,a.j) > 0, then there must be a monomial zi' z,j of weighted degree d. Also, if 
everyy hypersurface of weighted degree d contains a coordinate axis % = zi = 0, then a general such hypersurface 
mustt be smooth along it, or have only a singularity at the vertices. This is the case if for all i, j there is either a 
monomiall  zi

 i z? of degree d or a pair of monomials z^ 2 J z^ and zt
 i z,} z\ of degree d. 
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hypersurfacess which are very interesting from the point of view of string theory are not 
anticanonicallyy embedded. For example, the hypersurfaces defined by 

F{zF{zuu . . ., zn+2) = H(zu. . . , * „ ) + 4 +i + 4+2 (2-60) 

aree not, except for those defined by the Ak polynomials of table 2.2. Yet such polynomials 
havee a special role in chapter 4. 

InIn fact, from the point of view of string theory the single essential condition on an affine 
hypersurfacee is 

n+2 2 33 = ~d+12ai > °'  <2-53) 
i = l l 

whichh ensures that it is Calabi-Yau, assuming that the only singularity is at the origin. Ac-
tually,, it ensures that the cone without the apex at the origin is Calabi-Yau. For string theory 
onee would also like that there are deformations of the singular hypersurface to a smooth 
onee and that the smooth hypersurfaces as well as the singular limit are Calabi-Yau. This is 
indeedd the case [77]. It would be interesting to know to what extent (2.53) is sufficient for 
thee existence of a Kahler-Einstein metric (with singularities) on the projective hypersurface 
thatt it defines, and what additional conditions are necessary and sufficient. 

AA sufficient condition, based on [39] and [35, 34] and references therein, is given in 
[78].. They consider a Brieskorn hypersurface F _ 1 (0), i.e. one defined by a polynomial of 
thee form 

n+2 2 
^ = £ < %% (2-61) 

withh F = dF = 0 only at the origin. F has weighted degree 

d=d= R = lcm{a;} . (2.62) 

Thee weighted homogeneous action on the coordinates z i is 

(21,, . .. , Zn+2) * (XR/ri * l , . .. , \R/rn+2Zn+2). (2.63) 

Actually,, they consider any deformation of such a hypersurface by a polynomial 

f(zi,...,zf(zi,...,zn+2n+2) ) 

off  weighted degree d, 
F^FF^F + f, 

providedd that the intersections with any number of hyperplanes zi = 0 are smooth away 
fromm the origin. The condition of [78] that a hypersurface admit a Kahler-Einstein orbifold 
metricc of positive scalar curvature, is 

,, V ? 1 , n + 1 . f 1 1 I 

i<E-<ii  + — - H ^ O T (2-64) 
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Heree the hi are somewhat complicated expressions, in terms of the a j , 

CC33 = lcm{ri , . . . , rj , . . . , rn + 2 } , 

b ^ g c d ( r „ ^ ) . . 

Thee lower bound is a necessary condition. It is thee requirement that the hypersurface 
bee Fano. The upper bound is a sufficient condition. It derives from certain estimates that 
guaranteee the existence of a Kahler-Einstein metric [39]. These wil l not be discussed. The 
estimatess are related to those used to find smooth Kahler-Einstein metrics on del Pezzo 
surfacess [38]. Essentially, it comes down to the question if a particular nonlinear partial 
differentiall  equation has a solution, similar to the reformulation of the Calabi conjecture in 
thee proof of Yau. 

N OTT ANTICANONICALL Y EMBEDDED: KAHLER-E INSTEIN? 

Thesee estimates discussed above are not sharp enough to determine if a Kahler-Einstein 
metricc exists on many interesting hypersurfaces. For example 

z?z? +42 +zl + zl = 0 

doess not satisfy (2.64). Unfortunately no sharper criteria are known to determine if a Kahler-
Einsteinn orbifold metric exists. It would be especially interesting to find a way to determine 
iff  such metrics exist for hypersurfaces of the form 

F(zF(zuu ..., zn+2) = H(zi,..., zn) + 4 +i + 4+2> 

whichh are important in chapter 4. However, if one has a hypersurface in weighted projective 
spacee that does have a Kahler-Einstein metric with at worst cyclic quotient singularities, 
thenn there is always a Sasakian-Einstein metric on the link L = F ~l (0) n S2n+S of the cor-
respondingg affine hypersurface [33]. Basically, the weighted projective C * action restricts 
too a weighted S1 action on S2n+3 C C2 n\ {0} , and also on the link. This weighted S1 

actionn is that of a characteristic vector field of a Sasakian manifold. There is a Sasakian 
structuree on the link with such a characteristic vector field that also has a compatible metric 
thatt is an Einstein metric. 

2.44 SUMMARY AND CONTEXT 

W H A TT HAVE WE DONE? 

Variouss spaces have been discussed which can feature as part of a supersymmetric string 
vacuumm of the form 

R9-2m,ll  x Q2m 
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Alll  Cïm must preserve some supersymmetry and have a metric with a vanishing Ricci tensor. 
Also,, C2m are non-compact and have an isolated singularity. There are numerous different 
wayss to describe such spaces, among those discussed the most prominent two are metric 
coness and (weighted homogeneous) affine hypersurfaces. 

Anyy particular exponent of a space C^m may have a description in both of these ways, 
inn just one of the two, or in neither of them. Either way of describing a Cim emphasizes 
somee characteristics of the space. A metric cone has a characteristic S1 isometry which 
degeneratess at the apex. This isometry is interesting for T-duality of such a space. 

Butt possible deformations of the singularity are obscured in the description as a metric 
cone.. On the other hand, a description as a hypersurface manifests some possible defor-
mations,, to be specific, deformations of the complex structure. Some such deformations 
cann even smooth out a singularity completely, without affecting the asymptotic form of the 
space. . 

Ass we have seen, the number of such deformations is indicated by the Milnor number of 
thee singularity. But this number also describes aspects of the topology of the hypersurface 
awayy from the singularity. It does so in two different ways. First, the hypersurface C 2m cuts 
outt a link in a S2m~*  surrounding the singular point. This link is a fiber bundle with a circle 
fiber.fiber. The Milnor number roughly speaking indicates how far the fibration is from being 
trivial.. Second, the complement of the link is a fiber bundle with a circle as a base. The 
fiberfiber is a special manifold, the Milnor fiber and the Milnor number determines its complete 
homology.. Finally, in a somewhat different context, the Milnor number counts the number 
off  ground states in certain superconformal field theories, as discussed in section 3.3.1. 

Soo these two descriptions, metric cones and affine hypersurfaces highlight different as-
pectss and obscure others. Is it possible to construct one description from the other? A 
connectionn between metric cones and hypersurfaces is clearly present in some cases, most 
notablyy the C4 ADE singularities. In those instances, there is a direct connection via the 
quotientt description C2/TADE- In higher dimensional cases, if there is a connection at all, 
itt is more indirect. 

Inn specific cases, a connection can be established. The most obvious similarity between 
thee metric cones and the hypersurfaces, is that both admit a special C * action. For metric 
cones,, this comes partly from the definition, the R + scaling, and partly from the requirement 
off  supersymmetry, the S1 of the characteristic isometry of a Sasakian base. The Sasakian 
basee of a supersymmetric metric cone is itself a circle bundle over a Kahler manifold (pos-
siblyy with quotient singularities). On the other hand, a weighted homogeneous polynomial, 
suchh as defines the affine hypersurfaces under consideration, also defines a hypersurface in 
aa weighted projective space. Such a hypersurface is Kahler. 

Iff  it is Kahler-Einstein, then the affine hypersurface is Calabi-Yau, and it can be viewed 
ass a metric cone. There is also a sufficient condition, due to Tian and Yau, that an affine hy-
persurfacee be Calabi-Yau. If is phrased in terms of the scaling weights a i and the weighted 
degreee d of the defining polynomial: 3 = -d + J2 a*  > 0. Some of these Calabi-Yau hy-
persurfacess C certainly give rise to Kahler-Einstein C/C* and can thus be viewed as metric 
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cones,, with a S1 isometry. It is not known what the minimal sufficient conditions are, for 
thiss to be the case. It would be interesting to know such conditions, so that metric cones and 
hypersurfacess can be related. 

Fromm the point of view of the T-duality of chapter 4 and further string applications, there 
aree many affine hypersurfaces (or actually, discrete quotients of hypersurfaces, see section 
4.4)) which are not known to be connected to Kahler-Einstein hypersurfaces with the present 
statuss of mathematical knowledge. 

W H YY ARE WE DOING THIS? 

Ultimatelyy the interest of the connection of metric cones and hypersurfaces might be mo-
tivatedd from the T-duality of Calabi-Yau singularities, in chapter 4, which, where 'under-
stood',, relates almost all objects which have an ADE classification. A broad question would 
be:"If,, as it seems, such a T-duality holds for a wider range of singularities, what objects 
doess it relate, and how can these objects be interpreted in string theory, particularly from a 
stringyy geometric point of view?" 

Butt this met get ahead of the ideas presented to this point. Let us put hypersurfaces 
andd metric cones in some perspective. Both metric cone and hypersurface descriptions 
emphasizee certain objects which are important in another context, that is not discussed much 
inn this chapter, but becomes more important in later ones. These objects have to do with 
worldsheett descriptions of string backgrounds. The weighted homogeneous polynomials 
thatt describe hypersurfaces, also describe Landau-Ginzburg conformal field theories. These 
cann be used to build worldsheet conformal field theories that do not have a direct target 
spacee interpretation. However, in some cases, Landau-Ginzburg models are related to a 
targett space. 

Oftenn Landau-Ginzburg models can be considered to describe string backgrounds that 
aree compact Calabi-Yau hypersurfaces in weighted projective space. Or rather, a Landau-
Ginzburgg (-orbifold) describes a "Kahler" deformation of such a background to a non-
geometricc 'phase'. It may be that a similar connection exists to non-compact Calabi-Yau hy-
persurfacess in affine space. A very different geometric interpretation of a Landau-Ginzburg 
modell  exists in a much more limited collection of cases. Sometimes a Landau-Ginzburg 
modell  has an interpretation as a coset model, and a coset model may have a geometric tar-
getget space interpretation when the levels of the Kac-Moody algebras are large, so that stringy 
modificationss to ordinary geometric concepts are small. In particular, the coset models that 
preservee the same amount of supersymmetry as the C2m of this chapter, are so-called Her-
miteann symmetric space coset models. Even if the levels are large so that there is a classical 
geometricc target space interpretation, the target space of the Hermitean symmetric space 
cosett models is very different from the geometry of the Hermitean symmetric spaces, which 
featuree in the present chapter as particular examples of Kahler-Einstein manifolds. From 
these,, Sasaki-Einstein manifolds can be built and from these, metric cones C2m-
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SUPERCONFORMALL  FIEL D 

THEORIE S S 

Wheree chapter 2 deals with different views of geometric objects, in the sense of different 
descriptions,, the present chapter could be said to deal with a different kind of geometry 
altogether.. The way that strings probe their ambient space cannot be described simply 
byy 'ordinary' geometry. An intuitively clear reason for this, is that strings are extended 
objects.. The basic tool in the description of string theory in a perturbative formulation,, is the 
worldsheett conformal field theory. One important observation regarding 'string geometry' 
thatt can be made using worldsheet eft, is that some backgrounds that look different from the 
pointt of view of 'ordinary' geometry, are indistinguishable for strings. 

Beforee dealing with such issues in chapter 4, here we present aspects and formulations 
off  two dimensional quantum field theories, which appear as worldsheet models in string 
theory.. Some have a quite direct 'ordinary geometric' target space interpretation: think 
off  sigma models when a' —• 0, for instance. Others may have a somewhat 'fuzzy' target 
spacee interpretation, like general WZW models, for example. Also, there are abstractly con­
structedd conformal field theories which at best have an indirect target space interpretation. 
Thee kinds of these which we will be concerned with most, are Landau-Ginzburg models 
andd more generally, conformal field theories which are defined as the low energy endpoint 
off the renormalization group flow of non-conformal 'ultraviolet' field theories. 

Thee various models are important for us, not so much each in their own right, but be­
causee there exist remarkably useful interconnections, and strong evidence even for equiva­
lencess between different formulations of some conformal models. These equivalences are 
putt to use in chapter 4. 

Thee worldsheet conformal field theory corresponding to a generic Type II string back­
groundd is M = (1,1) superconformal field theory. More specifically, a background that is 
aa vacuum preserving some spacetime supersymmetry is described by a worldsheet theory 
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withh more (super-) symmetry. In the cases of interest to us, 'compactifications' on Calabi-
Yauu cones, the worldsheet theories have M — (2,2) superconformal symmetry. A number 
off  different constructions to obtain such theories are reviewed, such as Landau-Ginzburg 
effectivee field theories and coset models. Even though such conformal field theories have 
noo direct geometric interpretation as sigma models, in some cases they can be related to 
sigmaa models in various ways. Often, the theory is a marginal deformation of one with a 
geometricc interpretation. 

Differentt objects in this chapter which play a role in the construction of 'non-geometric' 
conformall  field theories show intriguing resemblances to the objects in the differential and 
algebraicc geometric constructions of chapter 2. 

3.11 j\f = (2,2) SUPERSYMMETRY 

Thiss section serves to set notation regarding jV = (2,2) supersymmetry, superfields and 
R-chargess which appear in later discussions. 

MM = (2,2) superspace has bosonic coordinates x  = x°  x1 and fermionic coor-
dinatess #*  and $ . The spacetime signature is Minkowski. The 6 are seen as complex 
conjugatess to 9 . Write  for d/dx . Differential operators generating supersymmetry 
transformationss on superspace are 

QQ

Q

Thee operators 

commutee with the Q , Q and generate supersymmetry transformations on superfields, 
whichh are functions on superspace. The superfields can be expanded as a finite sum of 
monomialss in the fermionic coordinates, due to their anticommuting nature. The non-zero 
anticommutatorss are 

{Q{Q ,Q,Q }} =

 = +2id . 

Soo supersymmetry transformations square to Lorentz transformations. 

++ iÖ d , 
dede

dt dt 
i9i9

99 - * * * , , 

d d 

dd' dd' 
++ i6
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Thee supersymmetry algebra has a vector and an axial f/(l ) R-symmetry. On the fermi-
onicc coordinates and on general superfields with vector (axial) charge q y (£4) these sym-
metriess act as 

eeiaFviaFv : T(x ,e ,ë ) - eiaqvJ'(x ,e'ia9 ,e+ia9 )1 

eei0FAi0FA : T(x ,9 ,0 ) -> e ^ ^ . e ^ V ^ ) . 

Chirall  superfields obey  = 0. The conjugate field $ is an antichiral superfield and 
iss annihilated by  A twisted chiral superfield satisfies D+Y = 0 = DJY and its 
conjugatee is twisted antichiral and annihilated by D _ and D+. Due to the linearity of the 
differentiall  operators, the product of two chiral superfields is a chiral superfield. Similar 
statementss hold for twisted chirals and the conjugate fields. The notions 'untwisted' and 
'twisted'' are interchanged as the notions of vector and axial U(l) rotations are interchanged. 
Suchh a change corresponds to an outer automorphism of the supersymmetry algebra that 
interchangess the generators 

FFVV*->F*->FA A 

__ (3.1) 

Inn a quantum theory the conserved charges become operators. Their commutation relations 
followw from the classical commutation relations of the symmetry generators. However, it is 
possiblee to have central charges in the anticommutation relations 

{Q-,Q{Q-,Q++}} = Z. 

Thesee central charges break some of the R-symmetry. If the vector symmetry is conserved, 
ZZ must vanish and Z = 0 if FA is conserved. The automorphism (3.1) also exchanges Z 
andZ. . 

Usingg superfields it is straightforward to write down Lagrangians which are invariant 
underr supersymmetric transformations. The general D-term 

ƒƒ d2x f d2<9 ƒ d2ÖK{Ti) (3.2) 

iss invariant when Jf is a function of general superfields Ti. More specifically, one can con-
structt a nonlinear sigma model, taking chiral and antichiral superfields as holomorphic and 
antiholomorphicc coordinates on a Kahler manifold M, and K($ i, $i) a Kahler potential on 
MM which defines a positive definite Kahler metric 

gg{{jj = didjK(zm,~zn). 

Insteadd of only chiral fields, one could equivalently have taken only twisted chirals, 
usingg the automorphism of the algebra. When K is a real valued function of both chirals $ i 
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andd twisted chirals Ya with bottom component fields the bosons <f>i and ya respectively, the 
purelyy bosonic term in the Lagrangian reads [48] 

r^-d^fcd^jr^-d^fcd^j - — dtiyad^yb 

+e e 
rr d2K „ , „  d2K 

flU flU ddlili(f)id(f)idl/l/yyaa + -=——dM<^d„ya 
d$idYd$idYaa "•' "°a d*idYa 

(3.3) ) 

Thee derivatives of K in the top line are interpreted as a sigma model metric on a target space 
onn which the 0's and y's are coordinates. If there are either no chirals or no twisted chirals, 
thee metric is a Kahler metric and the second line in (3.3) equals zero. If K depends on both 
chirall  and twisted chiral superfields, the derivatives of K together with e M„  behave as an 
antisymmetricc tensor background on the target space. 

Inn addition to a D-term it is possible to have an F-term, 

ƒ*,ƒ ƒ dd220W($i)0W($i) + c.c. 

wheree W is a holomorphic function of the chiral superfields and c.c. stands for the complex 
conjugatee function (of the antichiral fields). Similarly it is possible to add a twisted F-term, 

j*,j j*,j d9d9 dB+W(Yi) + c.c. 

Iff  we are considering a sigma model on a Kahler manifold coordinatized by chiral super-
fieldsfields $>i, then W($i) is a holomorphic function on the Kahler manifold. 

Thesee various terms in a possible action are invariant under transformations generated 
byy the four supersymmetry generators, but they are not all invariant under both F y and FA-
Furthermore,, even if Fy or FA is a symmetry of the classical theory, it may be anomalous 
inn the quantum theory. 

Firstt consider the symmetries at the classical level. The measure d40 of the D-term is by 
itselff  invariant under both Fy and FA- If the Kahler potential of a nonlinear sigma model 
dependss on the chiral superfields only through the combination $ $, then it is invariant for 
anyy values of qy and qA of the chiral superfields. The measure of the F-term, d9+d6~ is 
invariantt under FA, and has vector charge —2. Choosing qA = 0 for all chiral superfields in 
thee F-term makes it FA -invariant. If the superpotential is a weighted homogeneous function 
off  the chiral superfields, it is possible to assign a definite vector charge to it, which compen-
satess the transformation of the chiral measure if the qy of the chiral superfields are chosen 
properly: : 

W ( A ^ 1 * i J . . . , A ^ * n )) = A 2W ( $ i , . . . , * n ) . 

AA similar argument holds for the twisted F-term, exchanging vector and axial symmetries. 
Quantummechanicallyy the symmetries may be anomalous. For models based on chiral 

superfieldss only, sigma models on a Kahler space, possibly with a superpotential that is a 
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holomorphicc function on the target space, the following statement holds. A model based 
onlyy on chiral superfields cannot have an anomaly of Fy, but it turns out that the D-term 
cann have a FA anomaly, see e.g. [18]. This anomaly is proportional to the first Chern class 
off  the target space. So a nonlinear sigma model with a Calabi-Yau target space has both 
FyFy and FA symmetry, and the addition of a superpotential that is a weighted homogeneous 
functionn on the Calabi-Yau preserves both Fy and FA-

InIn addition to the models discussed above, an important role is played by gauged linear 
sigmaa models, see for example [18] . The sigma model on Cm is invariant under linear 
shiftss of coordinates on Cm , $*, which are chiral superfields in the sigma model. Also, it is 
invariantt under rigid phase shifts $k —• e27Ttak$k- To construct a model which is invariant 
underr superspace dependent phase transformations of the chiral superfields, 

* f c(a: lö )) - e - ^ ' ^ f c f c O ^ O » (3-4) 

parametrizedd by the chiral superfield A, the kinetic term for the chiral superfields must be 
changed,, from Lkin = ƒ d 4 0$ i$ i + . . . + $ m $ m to 

/

m m 

d40£*fce*fcV*fc,, (3.5) 
k=l k=l 

wheree V is a vector superfield. It is a real superfield, V — V, taking values in £7(1), or 
moree generally, in U(l)r, with r <m. The gauge group index will be suppressed for now. 
Inn order to compensate for the gauge transformations (3.4), the vector superfield transforms 
as s 

VV ^V + i{A~A). (3.6) 

Too the vector superfield corresponds a field strength superfield which can be written as 

VV = D+D-V. (3.7) 

Thee field E is a twisted chiral superfield. It can be used to construct a gauge kinetic term in 
thee Lagrangian, 

LLgau9gau9ee = J d 4 0^EE. (3.8) 

Givenn the naturally appearing twisted chiral field E, the field strength for a (7(1) gauge 
field,, one can add a twisted F-term to the Lagrangian, 

'FI 'FI == ~ (-t fdd+dO E J +C.C. , (3.9) 

wheree the constant t = r—i9 contains the theta angle 9 and the Fayet-Iliopoulos parameter r. 
Thee Fayet-Iliopoulos parameter plays a central röle in connecting different conformal field 
theoriess via the gauged linear sigma model [18] as is discussed in section 3.3.2. This twisted 
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F-termm is Fy -invariant choosing qy = 0 for E and, as it is linear in E it is classically also 
FAFA invariant if the axial charge of E is taken to be q A = 2. A linear twisted superpotential 
iss the only kind compatible with axial R-symmetry. In general it is possible to have a more 
generall  twisted superpotential, say, generated as a quantum effective superpotential, but it 
wil ll  break (part of) the FA symmetry. In addition it is possible to add an F-term using the 
$fc,, as long as the superpotential is gauge invariant. 

Thee total gauge invariant Lagrangian thus consists of four terms. The D-terms L kin and 
Lgauge,Lgauge, both kinetic terms, 

/ / 

mm T -. 

d40£$ie«i°V -$fc++ Y. J^—SaEb, (3.10) 
k=\k=\ a, 6=1 6(a,6) 

thee Fayet-Iliopoulos (and #-angle) term L FI 

-- / d#+d0 Y. -£ Ea + c-c-' <3-n) 
22 J a=l 

whichh is a twisted F-term, and possibly a gauge invariant F-term L w 

d6d6++d9-W{$d9-W{$kk)) + c.c. (3.12) 
/

Writtenn out in components the superfields are 

$$ = 0 + e+ip+ + e~^- + 0+0-F 

vv = e-T{v0 - vi) +e+e+ - e-0+a - G+TÜ 

++ ie-e+(ö~\~+ö+\+) + $+'ö~{o-\- + o+\+) (3.i3) 

++ G-B+Ö+TD 

EE = a + i0+A+ - iFA_ + 0+0" (£> - ivoi). 

Wheree v§\ = doV\ — 0\VQ is the gauge field strength. The component fields of a chiral 
(twistedd chiral) superfield depend only on the combinations of superspace coordinates x  — 
i0i0 00 (x  ^9^9 ). Using the convariant derivative D^ = <9M + iv^, the various terms in 
thee Lagrangian can be expressed as 

ddAAG$eG$eqVqVÖ>=Ö>= -D^DpQ 

++ D\4>\2 + \F\2-\a\2\4>\2 
/

++ i [i^{\+^- - \-ip+) + (PW+X- - VLA+)] , 
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and d 

^^ ƒ d40E£ = i [ - c ^ M <r + ^ + D2] + ^ [A_Ö+A_ + A+ - <9_A+] , (3.15) 

and d 

dd229-ti:)+c.c.9-ti:)+c.c. =-rD + Ovoi- (3.16) 
! ( /

Thee potential energy for the scalar component fields is found to be [18] 

UU = I ^ I W + ^ (« fW - r.) (ft««|A|'  - rt) + £) |f£|>. (3.17) tt  = l 

Heree f̂c are scalar components of the chiral superfields and aa are scalar components of the 
twistedd chiral field strengths and (e(a,b))2 is the inverse of the coupling matrix, for a £7(1)r 

gaugee group, appearing in (3.10). 

3.22 GENERALITIE S OF 

A/**  = (2,2) SUPERCONFORMAL THEORIE S 

Thee symmetry algebra common to most of the models discussed in this chapter is the N = 2 
superconformall  algebra, or more accurately, a holomorphic and an antiholomorphic copy of 
thiss algebra. The A/" = 2 superconformal algebra contains the Virasoro algebra, two sets of 
fermionicc partners to the Virasoro generators and generators of a U(l) R-symmetry which 
rotatess the two sets of fermionic generators. The nonzero (anti-) commutation relations are 
thee following: 

[L[Lmm,, Ln] = (m - n)Lm+n + -m(m2 - l)<Sm+n,o 

[J[Jmm,J,Jnn\\ = COm+nfi 

lLlL mm,GÏ,GÏ  ( 3 1 8) 

{G+ + a,G~_ a}} = 2Lm+n + {m-n + 2a)Jm+n + c ((m + a)2 - - j <5m+n,o 

Notee that (G  )f = Glm and c = c/3. 
Thee parameter 0 < a < 1 determines the boundary conditions of the fermionic currents, 

GG {e{e2iri2iriz)z) = -e^27TiaG {z), (3.19) 
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soo in fact there is a family of N — 2 superconformal algebras, including the Ramond 
(integrall  moding) and Neveu-Schwarz (half-integral moding) cases. 

Al ll  the algebras in this family are isomorphic and the isomorphism is provided by spec-
trall  flow. The U(l) current can be written in terms of a free scalar boson as 

J(z)J(z) = iVèd<f>{z), (3.20) 

andd a spectral flow operator as 
UUvv = e~

lVlri<t>_ (3.21) 

Spectrall  flow shifts operators as Ö —* U^OU'1 and on states as | ) —• Uv\ ). It changes the 
boundaryy conditions of the fermionic currents, but not the structure of the algebra. 

Thee representations of the differently moded algebras look different as spectral flow 
shiftss the £7(1) charge and conformal weight. Of special interest are chiral and antichiral 
statess [21]. These are states annihilated by G+1/2 and GZ1/2 respectively. Among these 
statess the primary states, annihilated by all positive modes, take a special place. The confor­
mall weight h and the J 0 charge q of chiral (antichiral) primaries are h = q/2 (h = —q/2), 
whichh saturate the bound 2h > \q\ that holds for any state, from unitarity. In a non-
degeneratee unitary conformal field theory (so the spectrum of L o is discrete) the number 
off chiral primary fields is finite as their weights satisfy h < c/2. There is a unique chiral 
primaryy which saturates this bound. 

Thee operator algebra of chiral primary fields is special, as there are no singularities to 
subtract,, (x4>)(z) = lim </>(z')x(z). Because of additivity of the U(l) charge, for chiral 

z'—*z z'—*z 
primaryy fields it holds that hX(f, = (qx + <?</>)/2 = hx + h^. The general form of the 
operatorr product is (p(z)x(z') = J2^(z ~ 2') / l*~ / l* - / l* Tp(z). Note that the product of two 
chirall (primaries) is again chiral, but not necessarily primary. Non-primary terms vanish as 
z'z' —t z while primary terms occur with finite coefficients. So operator product induces the 
structuree of a finite commutative nilpotent ring on chiral primary states. This chiral ring can 
alsoo be thought of as the operator algebra of general chiral states, modulo the equivalence 
relationn that sets descendant states to zero. Of course a similar argumentation goes through 
forr antichiral states. Having a holomorphic and an antiholomorphic part of the algebra, 
theree are thus four rings (c, c), (a, c) and by conjugation (a, a) and (c, a). 

Spectrall flow | ) —• Uv\ ) changes the U{\) charge and conformal weight 

QQ - » Qn = q - crj 

cc (3-22) 
hh —> hv = h-qrj+ -rj 

Byy spectral flow of half a unit a chiral primary state | } MS can be mapped to a Ramond 
groundd state | ) R = Ui/2 \ }NS, and flowing yet another half a unit, to an antichiral primary. 
Thee conformal weight and U(l) charge of states connected by spectral flow varies: 

Ui/2Ui/2 : \q,h)NS = \Q,Q/2)NS-+\Q-c/2,c/8)R->\-Q,Q/2}NS. 
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Itt is possible to apply spectral flow to the holomorphic and the anti-holomorphic sectors 
separately.. Flowing by the same amount in both sectors the difference of U(l) charges 
qq - q is unchanged. The (c, c) primary states and the Ramond-Ramond ground states are 
relatedd by symmetric spectral flow. The 17(1) character of the Ramond ground states and 
thee (c, c) states are related 

Tr f ii [tJHJo] \G  = (tt)-è/2rftNS [tJotl0] |(C)C) = (tt)-^2P(t,t). (3.23) 

Thee Poincaré polynomial P(t, t) = £ bPiQtptq encodes the degeneracies bPtq of (c, c) pri-
mariess with U(l) charge (j>,q). From P(i, t) one can also read off the Witten index, to 
whichh only Ramond ground states contribute, 

T r ( -1 )FF = TrR U-iyo-JoqL0-c/s^L0-c/8 

== ^ ein(qk^k) = P(ei 7 r ,e_ i7 r). 
ke(c,c) ke(c,c) 

(3.24) ) 

InIn case all C/(l) charges are integral, P(t,t) looks like the Poincaré polynomial of the 
Dolbeaultt cohomology ring of a complex manifold with Hodge numbers bPyq. When all 
chargess are integral then in particular c = d is an integer, as there is a unique state with 
qq = c in any M = (2,2) model. Then spectral flow in the holomorphic sector relates 
(NS,(NS, NS) and (R, NS) states and furthermore, with integral charges it is possible to define 
(-1)(-1)FLFL = einJo and {-1)FR = e~iirl° to make a GSO projection. Such models can be 
usedused as factors in a supersymmetric string 'compactification', also if the model has no direct 
geometricc interpretation. 

Thee invariance of Ramond ground states under charge conjugation implies 

P{t,t)P{t,t) = (ttfP{l{tMt). (3.25) 

Inn terms of the coefficients this says 6P)9 = be-P,c-q, which looks like Poincaré duality for 
aa d dimensional complex manifold. 

Thee connection between supersymmetric ground states and cohomology classes is very 
general.. Because of the relations {Q, Q] = 0 and {Q, Q^} = 2H, supersymmetric ground 
statess are representatives of the cohomology classes of the supercharge. In supersymmetric 
sigmaa models, the ground states necessarily must have zero momentum [57]. It suffices to 
considerr quantize only those modes which do not depend to the spatial coordinate, so the 
supersymmetricc ground states are determined from supersymmetric quantum mechanics. 

Forr a Af = (2,2) sigma model the target space is Kahler and the Lagrangian restricted 
too the constant modes, written out in component fields is [59] 

JtfOK&i&i)JtfOK&i&i) = 9i3<j>i4>j + igi3 U
JDtr+^DtipA + Rfjk-$i>k^\ (3.26) 
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Soo the bosonic components <j>i and <fc are coordinates on the target manifold (pulled back 
too the worldline). The supercharges are 

QQ++ = 9i3¥4J 
__ , (3.27) 

andd their conjugates. 
Noww these constant1 modes can be canonically quantized. The fermions become cre-

ationn and annihilation operators, 

11 _ / (3.28) 

Itt is natural to map these anticommuting objects with cotangent space indices to differential 
formss on the target manifold, tp ~ d<j>1 and ip ~ d 0\ The adjoint operators are identified 
withh the dual vectors, ^ ~ g^&j, $ ~ g^dit where di = d/dfi and dj = d/d*. The 
superchargess are 

QQ++ = ^7T i , 

__ -j (3.29) 

QQ++=1p=1p 7Tj, 

Q_Q_ = 1pj7Tj. 

Heree ^ is the momentum canonically conjugate to <f> j . In the field theory this can be thought 
off  as the functional derivative S/Sfc. Restricted to the constant modes, this reduces to the 
ordinaryy partial derivatives di and dj. The supercharges can be related to the Dolbeault 
operatorss and their adjoints, 

__ -r (3.30) 
QQ++ ~ d<̂  o dj. 

Soo the Ramond ground states of a Calabi-Yau sigma model correspond to harmonic forms 
onn the Calabi-Yau. By spectral flow these can be mapped to (c, c) or (a, c) primaries. 

InIn the following sections, various different constructions of M = (2,2) conformal mod-
elss are briefly reviewed, most notably Landau-Ginzburg models and coset eft's. There exist 
suchh models at c = d e Z, which have been used in numerous ways as supersymmetric 
stringg compactifications, of the form C{c = d) x M 1 , 9 _ 2d to leave a Minkowski factor 

'Off  course 'constant' means 'no dependence on the spatial coordinate'. 
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MMl,9l,9~~2d2d.. In the next chapter we will consider c e Z models which describe either non-
compactt 'decompactification' limits, or 'throat' geometries. Such models are constructed 
outt of the conformal field theories discussed in the following section, but at non-integer 
valuesvalues of c, combined with the Euclidean black hole eft, or a Liouvill e model, to obtain 
Ctotall  € Z. 

3.33 INFRARE D LIMIT S OF NONCONFORMA L 

FIEL DD THEORIE S 

3.3.11 LANDAU-GINZBURG MODELS 

InIn this section M = (2,2) superconformal field theories wil l be discussed, which arise 
ass infrared fixed points of the renormalization group flow of nonconformal M = (2,2) 
supersymmetricc quantum field theories. Consider a 2d M = (2,2) quantum field theory of 
aa set of chiral superfields. Its Lagrangian contains a D-term 

jdjd22xx Jd*0K(*i,*i), 

wheree K can be interpreted as a Kahler potential for a nonlinear sigma model. In addition 
thee Lagrangian can also contain an F-term 

ii  fd2x (jd2dW{^i)+c.c\ 

wheree the superpotential W is a holomorphic function of the $ ;, or viewing the $i as 
coordinatess on the target space of a sigma model, W is a holomorphic function on the target 
space.. In general such a theory does not have conformal invariance, but renormalization 
groupp flow to the infrared gives some, possibly trivial, scale invariant, and hence in 2d 
conformallyy invariant, fixed point. 

Forr Landau-Ginzburg models of the above form it is believed that any weighted homo-
geneouss superpotential, up to analytic field redefinitions, corresponds to a unique conformal 
fixedfixed point. Due to N = (2,2) supersymmetry, the D-terms do not enter in the renormalized 
F-terms.. A way to convince oneself of this statement goes as follows. One may promote the 
couplingss in the D-term to twisted chiral fields that are much heavier than the mass scale 
off  interest. Effectively these are frozen out and act as nothing but parameters. But twisted 
chiralss can not appear in the F-term. On the other hand, the parameters in the superpotential 
mayy be thought of as frozen out chiral superfields. The supersymmetry does not preclude 
thesee fields to enter in the D-term, and hence, they may alter the form of the D-term at low 
energies. energies. 

Forr a general superpotential which is not weighted homogeneous, the axial R-symmetry 
iss broken. Consider the couplings in front of the various terms of different scaling weight 
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ass heavy fields, with the right axial R-charges so as to render the superpotential weighted 
homogeneous.. As a consequence of the supersymmetry, the F-terms are not renormal-
ized,, whereas the superpotential receives only wavefunction renormalization. So under a 
rescalingg of coordinates, z —> Xz and 0 —> A - 1/2# all the chiral superfields, including the 
couplings,, are rescaled by some factor $i —• A"^^, such that W —> XW. Consider, for 
concreteness,, a superpotential 

W=gW=gnnQQnn+g+gn+ln+lQQn+1n+1. . 

Lett <£> —• A1/"*!?, then gn does not rescale, while gn+i —• X~1^ngn+i. In the infrared limit 
AA —• oo the effective coupling of the term gn+i$n+1 vanishes and only the coefficients 
multiplyingg terms with the lowest scaling weight survive. 

Thee idea is that conformal fixed points are uniquely labeled by weighted homogeneous 
superpotentials,, up to analytic field redefinitions. A suitable D-term is renormalized along 
thee RG flow in a way dictated by the superpotential, so as to get a conformally invariant 
theoryy at the endpoint of the flow. Often as a starting point the D-term corresponding to a 
sigmaa model on flat C n + 2 is taken. 

Thee M = (2,2) supersymmetry is enhanced to a superconformal symmetry. Under a 
2d2d rescaling the chiral superfields scale as $ j —• XWi$i and the superpotential is weighted 
homogeneous, , 

W(A W 1 $ 1 , . . . ,, \u"*m) = AW(*! , . . . , * m ) . (3.31) 

Butt this scaling of the fields precisely says that their anomalous dimension, their scaling 
weight,, is wl. As the scaling weight satisfies A = h + h the conformal dimension of a field 
®i®i is 

Usingg generic properties of superconformal symmetry and unitarity it is also possible to 
findfind the central charge of the conformal field theory corresponding to (3.31) [20]. The ex­
pressionn for the central charge is given in (3.35). This expression is obtained consideration 
off the (c, c) ring, and more particularly, the element with largest U(l) charge in this ring, 
ass will be done now. 

Thee fields &i have conformal weight h and axial charge qA related as q^ = 2h = W{. 
Thiss is the proportionality possessed by a chiral primary field. Furthermore, the derivatives 
off the superpotential dW/d$i are proportional to some superderivatives acting on combi­
nationss of the chiral and antichiral primaries.In eft terminology, combinations of $ i 's and 
$-,, 's that contain a factor dW/d^i are descendant fields. The chiral primary ring of the con­
formall field theory is then obtained as quotient ring of complex polynomials in the fields $ i 
moduloo the ideal generated by the partial derivatives of the superpotential, dW/d&f. 

Anyy fields appearing as <&2 is the superpotential, do not change the (c, c) ring. 
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Thee degeneracies of £7(1) y charges of the (c, c) ring are encoded in the Poincaré poly-
nomial.. This is computed in terms of the weights of W [20]. Conventionally the scaling 
propertiess of W are characterized by the (positive) integers a,i = Wi-dt such that the greatest 
commonn denominator of all a i's equals one, so that 

W(XW(Xaa
lXllXl,...,,..., A > m ) = XdW{Xl,...,xm). 

Thenn the Poincaré polynomial is2 

i = i i 

Theree is a unique (c, c) primary state of weight h = h = 0 and a unique one of highest 
conformall  weight, which has h/2 = h/2 = q = c. From inspection of the (c, c) ring it 
followss that the central charge is 

m m 

c = £ ( l - 2 « ; i ) ,, (3.35) 
»=i i 

wheree Wi = cn/d. The dimension of the chiral ring is also easily found from the Poincaré 
polynomial,, as 

HH = P(t = 1,1 = 1) = f\ (— - l V (3.36) s(=-) ) 
Havingg started from a field theory with (twisted) chiral superfields, at the infrared fixed 

pointt a theory lies with a non-trivial (c, c) ring and a trivial (a, c) ring (or vice versa). The 
holomorphicc and antiholomorphic 17(1) charges satisfy q — q = 0 (or q + q — 0 for twisted 
chirals).. The C/(l) charges of states are generally multiples of 1/d and thus not necessarily 
integer.. In particular, the top (c, c) primary state has q — c, which is generically not an 
integer,, see (3.35). 

Itt is possible to project out states of non-integer q by an orbifold construction [49], for 
whichh it is important that q — q^TL. This last property ensures that a projection on integer 
left-- and right-moving £/(l) charges can be achieved by a left-moving operator alone. More 
too the point, one should orbifold by the action of 

jj = e2niJo ( 3 3 7 ) 

Denotee by J the cyclic group generated by j . The J-orbifold projects out (c, c) states with 
qq £ Z but one also needs to add all j-twisted sectors and project onto j-invariant states in 
eachh of these sectors as well. 

2Thee Poincaré polynomial in 3.34 is slightly different from the definition in 3.2. Really in 3.34 is written 

P{tP{tdd,, t ). In 3.34 the term (ti)qd corresponds to (c, c) primaries of charge q —~q. 
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Suchh an orbifold projection can get rid of some (c, c) states and add extra (a, c) states. 
Iff  the central charge c € Z the physical states in the orbifold model all have integer £7(1) 
charges.. Such a model, W/J with c e Z satisfies the requirements for a spacetime super-
symmetricc string compactification [50,49]. 

Thee action of j has an interpretation in terms of the superpotential. It is the Z^ c C* 
partt of the weighted homogeneous scalings which leave the superpotential invariant: 

jj : W($1,...^m)^W(e2^$ll...,e
2*i^$m) = W($1,...,$rn). (3.38) 

Itt is clear that any weighted homogeneous polynomial has such a symmetry, irrespective 
off  whether c E Z. Actually, any superpotential that is the sum of k separate weighted 
homogeneouss pieces of weighted degree d, with appropriate charge assignments to the chiral 
fields,fields, possesses k such cyclic symmetries. It can be regarded as the tensor product of A; 
separatee conformal field theories, each with their own ji, 1 < £ < k. Each factor theory is a 
superconformall  model by itself and hence admits a separate J-orbifolding. The projection 
ontoo integral charges is achieved by acting with the operator in the tensor product model 

jj tot = <S>jt-
Lett us consider a simple example of a superpotential, 

WW = <j>fc+2. 

Thee corresponding Poincaré polynomial is 

P(M)) = £ ( « ) '• 

Theree is one (c, c) primary at each U(l) charge q = C/(k + 2) for 0 < i < k. The (a, c) 
ringring is trivial, it consists of the vacuum only. The central charge is 

2 2 

Theree is a unique conformal field theory with these properties and it can be constructed 
inn different ways. One way is as the fc-th J\f = (2,2) minimal model based on the A-
typee modular invariant [51]. With the explicit modular invariant partition function of the 
model,, one can construct the j-orbifold. Only the vacuum of the original model survives 
thee j-projection. There are k + 1 twisted sectors, and from each but one a single state 
survivess the orbifold projection [49]. The states surviving in the orbifold model have £7(1) 
chargess (—q, q = q), whereas the states in the unorbifolded model have {q,q = q). In other 
words,, the orbifolded model looks like the original unorbifolded Landau-Ginzburg model 
withh a twisted chiral field instead of a chiral field (up to an overall minus sign). But the two 
possibilitiess in the overall choice of taking chiral superfields or twisted chiral superfields 
aree related by the Z2 automorphism of the super(-conformal-)algebra(3.1). 
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Thee example treated above is perhaps the simplest case that illustrates an isomorphism 
betweenn somewhat different looking conformal field theories (here related by the j-orbifold) 
whichh are related by the Z2 automorphism of the superconformal algebra (3.1), which is 
knownn as the minor automorphism. In the context of the defining Landau-Ginzburg models 
thee isomorphism in this case amounts to exchanging all chiral superfields for twisted chiral 
superfields. . 

3.3.22 PHASES OF A GAUGED LINEA R SIGM A MODE L 

Att this point, there is no apparent geometric interpretation of the isomorphism of conformal 
fieldd theories as seen in Landau-Ginzburg models of the preceding section. In order to 
gett at such an interpretation, we shall proceed to discuss a beautiful connection between 
Landau-Ginzburgg models and nonlinear sigma models [18], which do have a quite direct 
geometricc interpretation. Both the Landau-Ginzburg model, or more accurately, the W/J 
Landau-Ginzburgg orbifold, and the nonlinear sigma model arise as deep infrared limits of 
certainn supersymmetric Abelian gauge theories, in opposite regions of the value of an order 
parameter:: the Fayet-Iliopoulos parameter. This parameter is a modulus and labels a family 
off  conformal field theories, some of which have a geometric interpretation. 

Thee U(l)r gauged linear sigma model of section 3.1 has the parameter t = r — iO in 
frontfront of the twisted F-term in the classical Lagrangian. The auxiliary component field D of 
aa C/(l) gauge field appears in the Lagrangian as 

wheree r is the 'bare' Fayet-Iliopoulos parameter. Integrating out the high frequency modes 
off  the (pi in a range fi <\k\ < HQ, one finds 

HO HO 

<i*i')= ftt ƒ d\2 + | g; 2+ , 
l * l = M M 

wheree a denotes the expectation value a = (a) of the scalar field that is the bottom compo-
nentt of the field strength (twisted chiral) superfield U, as in (3.13). Consequently 

< ^ > ~ -- + >og(£)|> 

Unlesss J^Qi = 0, the physical Fayet-Iliopoulos must be specified at some scale /io, to 
bee r(no) and the effective FI-parameter runs with the energy scale as r((i) = r(/io) + 
^2(qi)^2(qi) \og(n/no). The RG flow is specified by the dynamically generated scale A according 
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to o 

r{p)r{p) --

Fromm the opposite viewpoint, the classical value ro of the Fayet-Iliopoulos parameter in a 
quantumm theory depends on the dynamical scale and the ultraviolet cut-off as 

r„=(£>)log(^f).. 0.39) 

Iff  H Qi ¥" 0, the fermionic components of the charged chiral superfields induce an 
anomalyy under axial R-transformations. Under an axial rotation by eia the #-angle is shifted 
byy 9 \—> 9 — 2a J2 Qi = & + 27a, which breaks the axial R-symmetry to Z27. The value of 
rr at any scale is determined from the dynamical scale. Once A is specified, r(p) is fixed. 

Whenn the sum of charges of each f/(l ) c U(l)r vanishes, the axial symmetry is pre-
served.. Also, the Fayet-Iliopoulos term is a genuine parameter of the quantum theory. In 
otherr words, this parameter labels an entire family of theories. In the infrared it is a modulus 
labelingg a family of conformal field theories. 

Considerr the infrared limit of such a model. For the sake of simplicity, take the gauge 
groupp to be just t / ( l ) and take m = n + 1 chiral superfields $; of gauge charge one 
andd one chiral superfield P of gauge charge q = —n — 1, such that the Fayet-Iliopoulos 
parameterr does really parametrize a family of quantum theories. Also add a gauge invariant 
superpotentiall  W — aP • F ( $ i , . . . , $ n + 1), which can be switched off by setting a = 0. 
Alsoo let F = dF = 0 have a solution only at the origin, $i — 0 Vi. In this case the scalar 
potentiall reads 

Fromm kinetic and FI-term 
- * • • 

UU = \a\2 ( (n + 1)2M2 + ] T |<Mfe ) + f ( - r - (n + l) |p|2 + g \<j>k 

Fromm F-term (i.e. from superpotential) 

Considerr the infrared limit, while taking the gauge coupling e —• 00, which has the 
effectt that the gauge field is non-dynamical. The only effect of the gauge symmetry is that 
itt identifies different values of the chiral superfields. For the moment, switch off the F-
term,, that is to say, set the superpotential to zero, so the second line of (3.40) disappears. 
Iff r » 0, the vacuum manifold consists of points £) \<j>i\2 — r + \p\2, modulo the U(l) 
symmetry.. This is the total space of 0(-n — 1) —• P n . The FI-parameter r sets the size of 
thee base space. If r <§; 0, the vacuum manifold consists of |p|2 = \r\ + J2 I0i|2> U P t 0 gauge 
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transformations.. By a gauge transformation one can align p along the positive real axis. 
Thiss completely fixes p, but there is a group Z n + i C U(l) of gauge transformations which 
doo this. These act nontrivially on the <f>i's. The vacuum manifold is thus Cn + 1/ ^n+ i-

Noww we switch on the F-term. For r » 0 the coordinate on the line bundle is completely 
fixedfixed to p = 0 and the homogeneous coordinates <fo of Pn satisfy F(<t>\,..., <t>n+\) = 0-
Ass the degree of F is n + 1 this is a Calabi-Yau hypersurface. For r «C 0 all <j>i coordinates 
onn Cn + 1/ ^n+i are forced in the origin. As p ^ 0 there is however a homogeneous super-
potentiall  for the $i. There is no target space, but the eft is described as a Landau-Ginzburg 
orbifold. . 

Generalizingg this example, linear sigma models connect projective hypersurfaces 
F _ 11 (0) in a weighted projective space and Landau-Ginzburg orbifolds (W = F)/J. Using 
U(l)U(l)rr gauge groups, this connection extends to complete intersections in toric manifolds 
[18].. There are some important points to note, regarding this connection. 

Firstt of all, the sum of the gauge charges of each £7(1) should vanish, so that it makes 
sensee to talk about different values of r in the quantum gauge theory. Secondly, conformal 
modelss corresponding to positive and negative values of r are part of a single moduli space 
off  conformal field theories. In order to show this, one should not pass through the singular 
pointt r = 0. Fortunately, one can move around this point in the ultraviolet, using the 6-
angle,, which is part of the same single complex parameter [18]. 

Finally,, for now, as long as there is no F-term, the above analysis applies to situations 
wheree m chiral fields have positive gauge charges qi and n have negative charges cjj, as long 
ass the sum of all charges vanishes. The corresponding vacuum manifolds are 

©0(-|ftl)->Pfel,...,9m] ] 
3 3 

and d 
0 O H / i ) - >> P[|$l|,...,|?n|] 

i i 

Butt with a F-term, the situation can become more complicated. Yet, one might like to add 
suchh an F-term, hoping to describe a hypersurface in affine complex space, or an orbifold 
thereof. . 

WORLDSHEETT MODEL S FOR SUPERSYMMETRIC CONES 

Thee supersymmetric cones of chapter 2 can be regarded as hypersurfaces in affine C n +1 or 
ass line bundles over projective varieties of positive first Chern class. The coordinate on such 
aa line bundle is the scalar component of a chiral superfield 3>o of negative charge. 

Considerr a polynomial which defines a Fano subvariety in an appropriate weighted pro-
jectivee space, 

F (A a ix i , . . .,, \amxm) = XdF(x1}..., xm). (3.41) 
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Chirall  superfield $i 

$ 1 , . . . , $4 4 

* - i i 

$o o 

U(l)U(l) charge a* 

ÜiÜi  = 1 

a_ii  = - 3 
a00 = - 1 

Tablee 3.1: Charge assignments for cubic cone in C4. 

Iff  F 1 (0) is Fano, the weights need to satisfy 

m m 

d<^2ad<^2att = A. (3.42) 

Thee total space of a Calabi-Yau line bundle over the Fano variety is given by the affine 
hypersurfacee F_ 1(0) C Cm. In the remainder of this section, a variation on the linear 
sigmaa models will be discussed. This variation can, in the infrared, be viewed as a nonlinear 
sigmaa model on a hypersurface in Ö (d - A) —> F[ai,..., an+2\. This line bundle has an 
affinee coordinate patch which looks like Cn + 2, or actually Cn+2/Zd-A- Therefore, such 
modell  can be useful to describe supersymmetric affine hypersurfaces. 

Thee advantage of having an ultraviolet theory, is that it may unify conformal field theo-
riesries at different points in moduli space, depending on the particular value of certain expecta-
tionn values. For example, in Witten 's gauged linear sigma model [18] this expectation value 
iss the Fayet-Iliopoulos parameter and theta angle, which can be viewed as an expectation 
valuee of a spurious twisted chiral superfield. The value of the Fayet-Iliopoulos parameter 
determiness which chiral superfields acquire an expectation value in the infrared, and if the 
loww energy conformal field theory is in a sigma model 'phase' or Landau-Ginzburg 'phase'. 

Forr the variation discussed below, the situation is slightly different. First we present a 
descriptionn as close as possible to the Witten-type linear sigma model. This description will 
hopefullyy be useful to introduce the model. In this model a Fayet-Iliopoulos parameter plays 
aa röle similar to that in Witten 's discussion. However, there are some disturbing differences. 
Itt turns out that our first description is not correct, and it is better to consider a second, more 
accuratee formulation. This is presented at the end of this section, and it wil l be used in the 
T-dualitiess in chapter 4. 

Considerr an affine hypersurface, defined as the zero locus of a weighted homogeneous 
polynomiall  F(xll..., xn+2). How to construct a linear sigma model description? The 
coordinatess Xi become chiral superfields of charge a,. In addition there are two more chiral 
superfields,, <I>_i of charge ~d and $0 of charge —{A — d). In all,, a sigma model with such 
chargee assignment has no axial anomaly. 

Forr definiteness and simplicity, consider a specific example. Take a linear sigma model 
withh 4 + 2 chiral superfields with 17(1) charges as specified in table 3.1. The scalar potential 
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duee to the D-term reads 
4 4 

UUDD = -r- 3|0_!|2 - |0o|2 + Y, N 2 - <3-43> 
i = l l 

Iff  there were no F-term, the vacuum manifold M D would be 

MMDD = [Ö{-Z)®Ö(-1)]->F3, 

iff  r » 0 and 
4 4 

M DD = 0 < ? ( - ! ) - P [ l , 3 ], 

iff  r <C 0. But adding a term with superpotential 

^^ = ^ _ 1 ( ^ ö 3 + ^ $ n , (3.44) 
i = i i 

Thee vacuum manifold is reduced by the additional constraint that UF = 0, where 

tftfFF = 

4 4 
3 3 A^oA^o  3 + 5Z ̂ : 

t = l l 

++ 9 | 0 - i |2 ( | 0 o r8 + £ | & | 4 ) . (3-45) 
i = l l 

InIn case r > 0, (3.45) sets (4>-i) = 0, so that there is no effective superpotential. That 
meanss that MD is reduced to the tautological line bundle of P3. The remaining restriction 
fromm 3.45 reduces the vacuum manifold to a hypersurface in this space. In terms of 'inhomo-
geneous'' coordinates <fo = <f>o(f>i, the vacuum manifold of the theory with the superpotential 
is s 

4 4 

MMFF = {Y,4>Ï+» = 0}CC4 ( r » 0 ). (3.46) 
i = l l 

Thee singular variety is approached as |/J| —• 0. 
Whenn r <C 0, the situation is more complicated than in the cases of [ 18]. The condition 

UDUD = 0 implies that <^_i and <fo cannot both vanish simultaneously. From Up = 0 it 
followss that either 0_i = 0 or l/<£0 = 0. This means that of the base manifold P[l, 3] only 
aa dimension zero subspace is left over. Clearly, if the latter condition is satisfied, 4> o is not 
aa good variable and one should find a more justifiable interpretation. This will be left for 
later.. For now, consider the situation in the present variables. 

Define e 
pp=-r-\d>=-r-\d>00\\

22.. (3.47) 
Thenn the condition Up = 0 is expressed as 

4 4 

3|0_i|22 = p + £ > i | 2 . (3.48) 
i=l i=l 
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Iff  p < 0, then UF = 0 requires that 0_i = 0. So there is no effective superpotential. 
Usingg UD = 0 and the gauge symmetry one can fix 

' oo  = 
\ \ 

4 4 

\r\ \r\ ++ £ |&|2=C- 1. (3.49) 

Thiss fixes the gauge completely. Finally Up = 0 says 

4 4 

5 > ?? + M€3 = 0. (3.50) 

Iff  — r » 1, then e « 0 and the vacuum manifold looks like a slightly deformed hypersurface 
singularity,, as in the r < 0 case. If r « 0, then the analysis of [18] is unjustified in this 
case. . 

Iff  p = 0, then t /F = 0 implies that 0_i = ^ = <£2 = 03 = <f>A = 0. There is no 
superpotential,, the gauge symmetry is unbroken and the 'bad' variable 0 o is pushed out to 
infinity.. This can only be consistent when r —• -oo. 

Thee case l/<f>0 = 0 may seem strange. The field 0O is pushed out to infinity in the 
extremee infrared. This is not entirely unlike the Liouville theory. The Liouville interaction 
e~e~YY prevents low energy excitation from propagating to small values of Y. In chapter 4 this 
willl be put into perspective. Note that if e~Y has a definite U{\) charge, then shifts of the 
imaginaryy part of Y are gauged. The kinetic term of such a field looks something like 

L\h L\h == fd46-(Y + Y + V)2. (3.51) 

Whenn p > 0, then (4>-i) ^ 0, so there is an effective superpotential. From UF = 0 it 
followss that 4>i = ... = fa = 0. Again 0o is pushed out to infinity and r —> — oo. The U(l) 
gaugee invariance can be partly fixed by setting (<f>-i) e R>0. This leaves a Z3 subgroup 
actingg on <£0 and the other <J>j. The resulting theory is a Landau-Ginzburg orbifold, 

WoWo + WF 

Where e 

(3-52) ) 

W>> = y/pjs ($? + $2 + $3 + $1), (3.53) 

Andd Wo is written in 'bad' variables, 

WW00 = \Zp/S%3. (3.54) 

Thiss example generalizes to models with a gauge invariant superpotential 

- d d 
.. A-d WW = $_! [H$td +Fd(*1,...,$r 
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wheree Fd is a weighted homogeneous polynomial of weighted degree d. The sum of the 
weightss of its arguments is A = £] ai > d. In the r » 0 phase, the vacuum manifold is 
aa hypersurface in O {-{A - d)) —• P [a i , . . . , am]. This can also be regarded as an affine 
hypersurfacee Fd

_ 1 (-/x) in Cm , quotiented by Z r C £7(1) that remains unfixed by the gauge 
conditionn <f>0 e R>o- The order of Z r depends on the relative divisibility of the gauge 
charges,, r < (A - d). For r <C 0 the same geometry appears when (0_i) = 0 . There is a 
Landau-Ginzburgorbifoldd regime as r —• -ooand^>0 —* oo such that p = \r\—(A-d)\4>o\2 

iss a positive finite number: 

WW = $*-d ++ F d ( $ i , . . . , $ m ) 

^ d d 
(3.55) ) 

Wheree Zd acts as the j-orbifold of section 3.3.1. Also, not apparent in the above notation, 
theree is a background charge for the field log $o. 

Thee discussion above should have raised some eyebrows. Essentially, we should treat 
thee field $o differently, as this is the cause of the problems. Actually, perhaps a clearer 
picturee of the above type of theory is presented by really treating $ 0 as e*, where * is a 
'shift-gauged'' chiral superfield (4.72), the periodicity of ^ being 

^^ ~ # + 2m. (3.56) ) 

Andd take a kinetic term typical of such a 'shift-gauged' field. To be explicit, consider the 
Lagrangian n 

(H/(H/  + V + V) + |$_i|2e-dV + ^2 l**l 2ea 

++ ƒ d2e $_! [^ e-
rf*/i a°i + F($!, . . . ,$n + 2)] + C.C 

i v v 

(3.57) ) 

Heree F is a transverse weighted homogeneous polynomial of weighted degree d, the weights 
off the <&i are a*, and 

n+2 2 
aoo = d - Ylai < °- (3-58) 

t = i i 

Theree is no explicit Fayet-Iliopoulos term, since it can be absorbed in \I> and the coefficient 
fi.fi. A change of the Fayet-Iliopoulos parameter r —• r + Sr is effected by a shift 

** ^ty -
|ao|<5r r 

/ ii  —>//e 
—<5r r 

(3.59) ) 
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Thee different kinetic term results in a different scalar potential U = UD + Up, 

UUDD = — R e i> - d|<£_i|2 + Yl ai\<f>i\2, 

UUFF = | / ie-^/ la° l + F ( f c , . . ., 4>n+2) |
2 (3.60) 

( (( , v 2 n +2 OFF 2> 

Ö& & 

Perhapss the most notable difference, compared to (3.43), is that the real part of V> appears in 
UD,UD, much like a Fayet-Iliopoulos parameter. The vacuum structure of the model depends 
onn the sign of Re ip. 

Iff  Re ij) < 0 the situation resembles the r > 0 case. Some of the 4>i acquire an expec-
tationn value. Consequently (0 - i) = 0, which in turn means there is no effective super-
potential,, but the fields 4> and fa obey a relation that ensures the top line of UF in (3.60) 
vanishes.. This relation is satisfied on F " 1 (—fjt) in affine Cn + 2. This affine space describes 
O(ao)O(ao) —*• P [a i , . . ., an+2\, with 'inhomogeneous coordinates' f. = ^ e0 * ^ ' 0 0 ' . 

Onn the other hand, one could have (<f>-\) ^ 0. In that case all other <pi must have a 
vanishingg expectation value, in order to minimize UF- This in turn means that Re ift > 0. 
Actually,, to really set UF = 0, the potential for ip pushes Re V> out all the way to infinity. 
Inn this case, \I> is somewhat of an awkward variable. The U(l) gauge symmetry can be 
usedd to transform (</>-i), to that it lies along the positive real axis. This gauge condition is 
preservedd by a %d subgroup. So the effective model is a Z<* orbifold of a 'Landau-Ginzburg' 
model,, with superpotential W = Wo + WF-

Thee latter part of the superpotential is simply the weighted homogeneous polynomial 

F ( * i , . . . , * n + 2 ) . . 

Thee former part can be written as 

WoWo = fie-*, (3.61) 

,, i l l T V i o rwar " i r tH i r * i t \ 7 f\ 

Kl l 
wheree \I> = r^ r * . The periodicity of \I> thus is 2irid/\a0\. The kinetic term of * then 
becomes s 

2 2 

-ƒL k i n = /d^ a° l l 
* * 

2d 2d 

Thesee terms are characteristic of a Liouvill e theoryy [26], with central charge 

(3.62) ) 

c=lc=l + -£— (3.63) 

ass its infrared fixed point. The Liouvill e theory also has a linear dilaton, which is not 
apparentt in the way the Lagrangian is characterized above. The slope of the linear dilaton 
iss proportional to — d/\ao\. 
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3.44 COSET MODEL S 

InIn addition to the sigma models and Landau-Ginzburg models, there are other ways to con-
structt M = (2,2) superconformal models. In some instances apparently very different 
constructionss may describe the same conformal field theory. This equivalence of descrip-
tionss is established most rigorously for c < 1 models, where the superconformal algebra 
constrainss the models most. The conformal field theories in this range are constructed ab-
stractlyy as minimal models, but also as LG-models and as supersymmetric versions of GKO 
cosett models, which may have a target space interpretation, to some extent, as gauged WZW 
models. . 

Moree M = (2,2) models, with c > 1, can be constructed as G/H cosets of Af = 1 
conformall  field theories. A clear discussion of the properties of general coset models with 
JVV = (2,2) superconformal symmetry is found in [45, 55]. A particular subclass of M = 
(2,2)) coset models is made up of the Kazama-Suzuki models [42, 43]. In these models the 
cosett manifoldd G/H is a Hermitean symmetric space (HSS). To construct a coset conformal 
fieldd theory, the levels of the Kac-Moody algebras of the various factors must be specified. 
Startingg with a bosonic model based on g\.\ the numerator of the Kazama-Suzuki (KS) 
modell  is based on the reductive subalgebra hag. The HSS condition in particular means 
thatt the rank of g equals the rank of h. Furthermore, using the Killin g form on g, write 
gg = h © t. The HSS condition says that t must decompose as t = t+ © £_ into two 
separatelyy closed Lie algebras of equal dimension, and the Killin g form restricted to either 
subspacee must vanish. 

Writee h = 0 i hi © w(l)m and dim g — dim h = 2d. The levels of the hi factors are 
determinedd by the level kofgk and the embedding of h C g as 

k{hk{hii)=I)=Iii(k(k + g)<)-hy, (3.64) 

wheree gv and hY are the dual Coxeter numbers of the respective algebras and Ii is the 
Dynkinn index of the embedding3. 

Inn addition to the bosonic factors above, there are fermions in the superconformal coset. 
Thesee form a so(2d) i theory and can be taken as d complex free fermions, ip a. The index a 
cann be viewed as a cotangent index in T*{G/H), parametrizing a basis of t+, given by the 
rootss in t+. 

Thee Kazama-Suzuki models have a Lagrangian formulation as gauged WZW models 
[46].. If the level is large, the gauge fields can be integrated out to one-loop to get a justified 
targett space interpretation. The resulting target space generally may have a non-trivial B-
fieldd and a varying dilaton. Thus it looks very different from the Hermitean symmetric space 
G/H,G/H, which is a globally symmetric Kahler manifold. Largely this difference is due to the 
differentt action of H on G, in the symmetric space it acts as g ~ gh and in the gauged 
WZWW model as g ~ h~lgh. The dilaton is a one-loop effect. 

33 The Dynkin index U is the ratio of lengths squared of the highest roots of g and hi C g. h — 
(o(ogg,0,0gg)/(0)/(0ll.e.eii). ). 
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Al ll  states in the Kazama-Suzuki models have R-charges which satisfy q - q 6 Z, like 
Landau-Ginzburgg models. Most cannot admit LG descriptions, as the form of the (c, c) ring 
iss such that it cannot be obtained as a a quotient ring C[xi]/dW(xi). The models based on 
simplyy laced algebras at level k = 1 however, have (c, c) rings which can be reproduced 
byy a Landau-Ginzburg construction [21], i.e. they are of the form C[x i]/dW(xi). Further-
more,, the (c, c) rings of these models are isomorphic to the Dolbeault cohomology rings 
off  the corresponding Hermitean symmetric spaces. This is related to the correspondence 
betweenn Ramond ground states and Dolbeault cohomology classes in the case of nonlinear 
sigmaa models, as mentioned in section 3.2. In the Kazama-Suzuki case, the situation is 
moree involved, and explained in [21]. In the simplest case, simply laced level one models, 
manyy subtleties are inconsequential. In this case the Ramond ground states are found by 
consideringg the Lie algebra cohomology of t +, with coefficients in some representation of 
gg and decomposing this into irreducible representations of h. Each irrep of h corresponds 
too a Ramond ground state in the G^^\jH model. But this is precisely the way to get the 
generatorss of the cohomology of a symmetric space. The number p of such Zwrreps is in-
dependentt of the chosen g— representation (see [21] and references therein). This number 
iss also the dimension of the (c, c) ring, and it is given by the ratio of dimensions of the Weyl 
groups, , 

W(G)\ W(G)\ 

"" ==ww\-ww\- (3,6S) 

Thee vector space H*(G/H) can also be obtained from a particular representation of 
gg [21, 56], The algebra h c g for a Hermitean symmetric space is obtained by delet-
ingg a node4 from the Dynkin diagram of g and replacing it with a w(l). The particular g 
representationn S(i) which gives the (c,c) ring of the level k = 1 simply laced level one 
Kazama-Suzukii  model is obtained by putting a weight k — 1 on this node in the Dynkin 
diagramm of g and zeroes on all others. The Poincaré polynomial is obtained as the character 
off  this g-representation with respect to the U{\) charge corresponding to the element pcH 
off  the Cartan sub-algebra, where pc is one half of the sum of the positive roots of G. 

Ass pointed out in [21], it had been known that the grading of the cohomology ring 
H*{G/H)H*{G/H) precisely coincides with the grading of the representation S(i) with respect to 
thiss U(l) charge. Similar ^-representations E(fc) with a weight k > 1 at the 'deleted' node, 
withh the same pcH grading, are generally not isomorphic to the (c, c) rings of the Kazama-
Suzukii  models at levels k > 1, nor is the author aware of a geometric cohomological 
interpretationn of these representations. The central charges of the simply laced Kazama-
Suzukii  models and the E^) characters are collected in table 3.2. Yet in some particular 
cases,, the (c, c) rings of k > 1 Kazama-Suzuki models are reproduced. In these cases, 
thee level k > 1 KS models are believed to be isomorphic to level one models based on a 
differentt Hermitean symmetric space. 

44 Deleting several nodes, one can construct Kahler spaces which are also homogeneous, but are not Riemannian 
symmetricc spaces. 
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(G/H)(G/H)k k 

SU(m+n) SU(m+n) 
SU(m)xSU(n)xU(l) SU(m)xSU(n)xU(l) 

SO(n+2) SO(n+2) 
SO(n)xSO(2) SO(n)xSO(2) 

SO(2n) SO(2n) 
SU(n)xU(l) SU(n)xU(l) 

Sp{2n) Sp{2n) 
SU(n)xU{l) SU(n)xU{l) 

EEe e 

SO(lO)xU(l) SO(lO)xU(l) 

EE7 7 

Bext/(1) ) 

cc = c/3 

kmn kmn 
k+m+n k+m+n 

kn kn 
fc+n fc+n 

kn(nkn(n — l) 
2(k+2n-2) 2(k+2n-2) 

k(n+l) k(n+l) 
2(k+n+l) 2(k+n+l) 

16k 16k 
fc+12 fc+12 

27k 27k 
fc+18 fc+18 

tvstvsik)ik)(tty°-(tty°-H H 

.U.UU 1_{tï) .+J-1 

l_ («)« /22 11 l - ( t t ) " 
1=1 1 

y,y,11 i - ( t t ) - - ^ - ) 
111 l - ( t ( ) 2 ( i + J -D 

111 !-(«)*+> 

|44 i - («)d- ' A i-(«)d-^ 

l - ( t t ) 99 .11 l - ( « ) ' 11 1-(«)J 
1=11 j=b 

Tablee 3.2: G/ i/ defining Hermitean symmetric spaces used in Kazama-Suzuki construction of (2,2) 
superconformall  field theories. The integer k denotes the level of the numerator.The number d is the 
denominatorr in the corresponding expression for c. 

Theree are various conjectured isomorphisms between N = (2,2) coset models. Even 
thoughh explicit isomorphisms of the Hubert spaces are lacking, the conjectures hold up to 
testss of varying refinement, such as 

•• agreement of central charges 

•• identical Poincaré polynomials 

•• isomorphic (c, c) rings 

AA look at table 3.2 suggests a possible isomorphism of the Grassmannian KS models 

SU{mSU{m + n)k x SO{2mn)i 

SU(m)SU(m)n+n+kk X SU(n)m+k X £ / ( l ) m n (m+n) (m+n+fc ) 
(mm <-• k). (3.66) 

Alreadyy in the original construction of these models by Kazama and Suzuki, it was shown 
thatt the form of the supercurrent is compatible with this exchange. It has also been shown 
[21]] that for SU(m + l)k/SU(m)t with arbitrary k the Poincaré polynomial, as properly 
determinedd by group theoretical considerations, is given by the E ^ character of table 3.2 
andd hence coincides with that of the Grassmannian coset at level one 

SU(mSU(m -f- n)i 

SU{m)SU{m) x SU(n) x U(l) 
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Andd a one-to-one map between the primary fields has been constructed [47] for arbitrary 
m,, n, k as long as they have no common divisor, or only a prime common divisor. 

Otherr isomorphisms have also been proposed and tested. In particular 

SO(m)SO(m)k+2k+2 x U(l)4{m+k) 

forr m and fc odd, when the two CFTs are based on the diagonal modular invariant. And 
alsoo the case m even and A: odd, with the right hand theory based on the D type modular 
invariant,, rather than the diagonal one [44]. The latter models thus is not strictly speaking 
aa Kazama-Suzuki model. Moving away even farther from the Kazama-Suzuki case, M = 
(2,2)) coset models have been constructed for which the corresponding coset manifoldd G/H 
nott a globally symmetric space, though still a Kahler manifold, e.g. see [45]. For such 
modelss 'duality' relations have been derived [44], 

Sp{n)Sp{n)kk x SO{4n - 2)fc Sp(k + l ) n_i x SO(4k + 2)n_L 

Sp(nSp(n - l)k+1 x U(l)2(k+n+i) ~ Sp(k)n x £/(l)2(fc+n+i) 

whichh have central charge c = 2n — 1 - /T O^+ 1 ), and 

Sp{2)Sp{2)2n2n+i+i x 50(6)1 SO(2n + 5)i x SO{8n + 6)i 

(3.68) ) 

Sp(l)Sp(l)2n2n+2+2 x C/(l)4n+8 SO(2n + 1)5 x SU(2)2n+2 x U(l)4n+8 
(3.69) ) 

Thee Kazama-Suzuki models which are part of a dual pair and also have a Poincaré 
polynomiall  that can be reproduced by a Landau-Ginzburg model are particularly interesting. 
Notablyy such models are 

SU(n+l)SU(n+l)k k 

SU(n)xU(l)' SU(n)xU(l)' 

Notee that the Poincaré polynomial specifies the superpotential only up to marginal defor-
mations.. This relation of KS and LG up to marginal deformations will be used in the next 
chapter. . 
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SINGULARITIESS OR FLUXES: 

NONPERTURBATIVEE T-DUALIT Y 

Thiss chapter deals with 'impurities' in supersymmetric backgrounds of string theory. 
Broadlyy speaking, it deals with two kinds of such 'impurities'. First, there are isolated 
singularitiess of the background geometry. One might call this a 'geometric impurity'. Sec-
ond,, in contrast to the geometric impurities, there are 'objects' in string theory, the various 
branes,, which are sources of gauge fields and curve the geometry. The archetypal example 
whichh wil l play a role, is the NS fivebrane. 

Unlikee the geometric impurities, those of the second kind are sources of gauge fields; 
onee might call these 'flux impurity'. The distinction between the two kinds of impurity is 
somewhatt artificial from the point of view of string theory. This is so, because there are 
stringg dualities which may relate one kind to the other. 

Again,, the best known example is T-duality which relates asymptotically locally Eu-
clideann spaces with an Ak singularity to a background in which there is a stack of k 4- 1 
fivebranesfivebranes present. In fact, it is a general feature of T-duality, that a non-trivial circle fibra-
tion,, which is a purely geometric characteristic of a background, is dual to a background 
withh NS-flux. 

T-dualityy can be formulated in perturbative string theory, it is an isomorphism between 
aa pair of conformal field theories that gives rise to an equivalence of a pair of string back-
groundss for perturbative string theory. In order to find a pair of T-dual string backgrounds, 
onee should thus find the pair of isomorphic worldsheet conformal field theories, and if pos-
sible,, their target space interpretations. 

Thiss can be done in a perturbation expansion in a ', regarding a worldsheet eft as a 
nonlinearr sigma model. The pair of dual worldsheet eft's is obtained as different effective 
theoriess of one overarching theory, so that manifestly the pair of theories should be isomor-
phic. . 
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Inn practice it is hard to explicitly find the pair of effective theories, when a perturbative 
treatmentt in terms of a' is not sufficient. This is the case when T-duality is considered along 
aa circle that degenerates. A typical situation when this occurs, is at a Calabi-Yau singularity. 

Whenn the cycle degenerates, worldsheet instanton effects must crucially be taken into 
accountt to find a correct dual theory. One important effect of the worldsheet instantons, 
iss that they typically break a symmetry which seemed to be present classically. In the 
presentt circumstances, this symmetry can be interpreted as a translation symmetry in the 
fluxflux background (which seems to come from the translation symmetry in the geometric 
background). . 

Onee might ask for example the following two questions. Why is this symmetry broken 
inn the full, nonperturbative T-duality transformation? And second, what is the significance 
off  the fact that this symmetry is broken? 

Too begin with the first point, a physical argumentation why a translation symmetry need 
nott be preserved by T-duality is the following. Essentially, T-duality exchanges winding 
modess and momentum modes of a string. The momentum modes are like the modes of a 
pointt particle, they depend on the 'ordinary' geometry of a target space. One such 'ordinary 
geometric'' notion, is the presence of a translation symmetry. But there is another part of 
geometryy which is probed by strings: the geometry to which winding modes are sensitive. 

Att a singular point, the modes winding around the orbits of the translation symmetry 
cann become light, as the orbits degenerate near the apex. These winding modes, worldsheet 
instantons,, have a consequence for the 'ordinary' geometry of the T-dual background, which 
needd not have a translation symmetry. 

Too reflect on the second point, why is the absence of this symmetry important, let us say 
this.. Both kinds of 'impurities', geometric and flux, are important in for string theory for a 
speciall  reason. At such impurities there is 'localized physics' which takes place just at the 
impurity.. This local physics can be decoupled by applying appropriate scaling limits. As 
wee are dealing with 'localized physics', it is clearly relevant if the impurity is 'localized' 
(theree is no translation symmetry, as non-perturbative (worldsheet) effects have broken it), 
orr if it is not localized, as this difference matters for physics 'near the impurity'. 

Theree is another important aspect, which we will not discuss much, but is a crucial mo-
tivationn for the study of these dualities. The decoupling limits near impurities can be used 
nott only to isolate 'localized physics' at the impurity, they can also be used to construct 
neww superstring backgrounds. Essentially, these backgrounds are related 'holographically' 
too the localized physics. In the construction and study of such string backgrounds, often it 
iss very useful to know of an impurity and a scaling limit which produces this background, 
thinkk for example, of D-brane setups which give rise to anti-de Sitter geometries. In this re-
spect,, it promises to be useful to know T-dual descriptions of geometric and flux impurities. 
Thesee can give rise either to linear dilaton backgrounds of string theory, or anti-de Sitter, by 
deformingg the worldsheet conformal field theory, or adding various branes. 

Thee outline of this chapter is as follows. First we will discuss impurities, of geometric 
andd of flux type, and their scaling limits. Next, it turns out that especially the scaling lim-
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itss may admit an exact worldsheet eft descriptions, while the 'full ' backgrounds, before a 
scalingg limit, do not. Then the T-duality wil l be discussed. The special features of T-duality 
inn the context of a degenerating isometry are discussed. We continue with the proposed 
T-dualityy relation for Calabi-Yau singularities which have a description as certain affine hy-
persurfacess or discrete quotients thereof. For quite special hypersurfaces, the T-dual admits 
aa genuine geometric interpretation, this case involves Kazama-Suzuki models which admit a 
Landau-Ginzburgg description, for other cases, a geometric description is not known is such 
concretee terms. Finally, we conclude with some final observations. 

4.11 IMPURITIE S AND SCALIN G LIMIT S 

Inn this section two kinds of string theory impurity are considered. One is entirely geometric: 
aa singularity in a compactification manifold M that features in a supersymmetric string 
vacuumm of the form R9-2" 1-1 x Mim-, without any fluxes and a trivial dilaton. Hence 
M.2mM.2m is a Calabi-Yau or hyper-Kahler manifold, and an isolated singularity locally is of 
thee sort discussed in chapter 2. The other kind of impurity is a Neveu-Schwartz fivebrane, 
thee magnetic dual of the fundamental string, or a collection of fivebranes. This object is a 
sourcee of magnetic flux and also curves space around it. 

Bothh sorts of impurity have physical consequences at certain low energy scales. In the 
presencee of a singularity there are special massless states coming from branes wrapping the 
vanishingvanishing cycles. In the presence of a stack of fivebranes there are massless states which 
originatee from D-branes that end on the fivebranes. In either case the special massless 
statess are 'localized' at the impurity. By appropriately tuning deformations of the impurity 
(blowingg up a singularity or separating the fivebranes in a stack), which set the energy scale 
off  the 'localized' states, and simultaneously tuning string parameters as g s and Cs, the region 
nearr the impurity can be isolated. States not associated with the impurity decouple, and one 
iss left with a different string vacuum than one originally started out with before the scaling 
limit . . 

Theree are two important features of the string theory vacua that one ends up with after 
thee scaling process. First of all, they have isolated the physics that has to do with the 
impurity.. Second, they are generally simpler than the original backgrounds, and it is not 
uncommonn that the 'near impurity' backgrounds have an exact eft description, when the 
'fuirr global backgrounds do not have a known exact description. 

4.1.11 SINGULARITIE S 

Considerr a geometric string vacuum of the form 

R 9 - 2 m ,ll  x M 2 m 

whichh preserves some supersymmetry. This means that M. 2m is a Calabi-Yau manifold, 
orr even hyper-Kahler. Usually one takes a compact M 2m- From the ten-dimensional low 
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energyy effective action 

Sioo = 2 2̂ f d10xy^GH + .. •, (4.1) 

onee gets a low energy effective action on JR 9 _ 2 m l , 

5"l0-2mm = 7~2 ƒ d TnXy/ —Gfi0-2m^-10-2m + (4.2) ) 

Thee couplings are related as 

2K22 = {2*)7i*agl 

22 _ 2K2 (4.3) 

2« io-2m-- V o l (A4 2 m ) e» ' 

Soo there is an effective low energy theory on IR9-2171-1 that is gravitational, having taken the 
volumee of «M 2m finite. 

AA Calabi-Yau manifold is usually part of a continuous family of Calabi-Yau manifolds, 
labeledd by the moduli. The moduli govern the size of certain homology cycles of a Calabi-
Yau.. At some values of the moduli, some cycles may shrink to zero size, and a singularity 
develops.. An example of this, is found for the deformations of a (non-compact) A k singu­
larity,, in section 2.1.2. 

Moree explicitly, an explicit metric on a smoothed Ak singularity, is provided by the 
multi-centeredd Taub-NUT space[12, 13], 

ds22 = U-l{d6 + udr)2 + t / d r 2 , (4.4) 

wheree f coordinatizesflat E 3 and9 is aperiodic coordinate. Furthermore 

f^\r-rf^\r-rtt\\ (4.5) 

VUVU = - V XÜJ. 

Thiss metric is regular at f = fi provided that the periodicity of 9 is 

00 ~ 9 + 4TTA. (4.6) 

Inn the metric (4.4) k blown-up two-spheres are seen as circle fibrations over the line 
segmentt between f—fi and f = ri+i. At the end points of this interval U~l = 0 and the 
fiber,, parametrized by 6, shrinks to zero size. The volume ofSfj, the sphere between f=fi 
andd f = ?i+i, is given by 

VVSijSij{\ri{\ri ~ O I) = fd6U-1/2 fdrU1/2 = 47r\\fi - fj\. (4.7) 
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Figuree 4.1: A two-sphere as a circle fibration over the line segment between n and fj, where the 
functionn £/_1, of the multi-center Taub-NUT metric vanishes, as in equation (4.4). 

Iff  N > 1 centers coincide, ft = fj the corresponding two-spheres Sij shrinks to zero 
size.. Also, a conical singularity develops at that center, as effectively the periodicity of the 
ö-coordinatee is reduced from ATT\ to 4nX/N. 

Too get a bit more feeling for this metric, consider the single center Taub-NUT metric, 
with h 

U(r)U(r) = l+-. (4.8) 
r r 

Explicitly,, the metric reads 

d*7ww = 77TT (d9 + A ( ! - cos0)d0)2 

U(r)U(r) (4.9) 
++ U(r) (dr2 + r2 [dt/;2 + sin2 xpdcj)2}) . 

Nearr r « 0, redefining coordinates r = p2 and scaling A = 1, the metric can be written as 

ds22 w dp2 + p2 U^)2 + sin2 ipd(f>2 + [d6 + (1 - cos^)d0]2) . 

Thee p2(...) term is a circle bundle over S2. It is the Hopf fibration S1 —> S3 —> S2 

preciselyy when the periodicity of 9 is 47r, and the metric cone over S3 is just smooth K4. 
Thiss reasoning sets the periodicity of 9 in a smooth multi-center Taub-NUT to be 4-7TA. 

Iff  N are moved on top of one another, locally the metric will look like 

ds22 « dp2 + p2 (dip2 + sin2 ipdcf)2 + - L [d6> + (1 - cos ip)d4>]2 J , 
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h°>° h°>° 
h 1 ' 00 h°<1 

^2,00 ^1,1 ^0,2 = 

/ l 2 ' 11 /l1' 2 

hh22''2 2 

1 1 
00 0 

11 20 
00 0 

1 1 

whichh is a metric on the metric cone over the lens space 53 / Z J V. 

Thee metric in (4.4) describes a non-compact space. The sort of singularities that can 
occurr in a compact manifold may be restricted by global properties of the manifold, more 
specifically,, by its homology. For example, the only family of 4d compact hyper-Kahler 
manifoldss are the K3 surfaces, which have the following Hodge diamond, 

1.. (4.10) 

Soo a singularity with a Milnor number \i > 22 can certainly not occur in a K3 surface. 
However,, it is justified and interesting to not restrict the attention only to singularities 

thatt can occur in compact manifolds M2m, but also consider singularities that occur in non-
compactt M.2m- The justification comes from the existence of a scaling limit that isolates 
thee physics at the singularity. States localized at the singularity couple to 'far away' states 
throughh gravitational interaction. In isolating the states at the singularity, the gravitational 
interactionn is switched off. This is a different kind of physical situation than the one which 
iss considered in a 'compactification' as discussed above, and M 2m need not be compact for 
thiss scaling to make sense. 

Lett us consider a scaling limit which isolates the physics near a singularity. Around a 
p-cyclee in some M.2n there can be wrapped Dp-branes. The tension of a Dp-brane has the 
followingg proportionality: 

r P ~ - ^ r .. (4.11) 

Iff  it wraps a p-cycle of volume VpfP8, the mass of the Dp-brane thus is proportional' to 

MMPP{V{VPP)) ~ - ^ . (4.12) 
9s*-s 9s*-s 

Byy simultaneously tuning the moduli \i in a way that the volume2 Vp = Vp(n) -+ 0 and 
'switchingg off gravity', scaling the Planck length £p — lsgj —> 0, while keeping the mass 
off  a wrapped Dp-brane fixed, the states near the singularity are isolated. On the one hand, 
somee states become very massive and can be integrated out to get the low energy dynamics, 
like,, for example states associated to branes wrapping large cycles that are not scaled down. 
Onn the other hand the gravitational modes decouple. 

Severall  comments are in order. First, note that it is not necessary to scale £s —> 0 in 
thiss limit . But after the scaling one has isolated the physics near the (almost) singular point. 

11 There may also be a nontrivial £?-field flux through any of the 2-cycles, corresponding to the imaginary part 
off  the complexified Kahler class. Such a flux also contributes to the mass of a wrapping D-brane. 

22 Also, the B-field flux through the cycle should vanish. 
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Soo in a sense, it is a 'decompactification' limit that keeps only the local geometry near the 
singularity. . 

Second,, the physics due to the light degrees of freedom localized near the singularity 
cann be described in various different ways, related by dualities, which are discussed later in 
thiss chapter. For the moment, consider one particular viewpoint. Take a space of the form 

R5'11 x MA, 

wheree MA is a multi-centered Taub-NUT space, like (4.4). Regarding this as a vacuum of 
IIAA string theory, it can be lifted to an M-theory background 

E5'11 x S1 x C. 

This,, in turn descends [79] to another IIA vacuum, taking the M-theory circle to be the fiber 
coordinatizedd by 6; the 'original' M-theory circle can be decompactified. In this vacuum 
theree is a D6-brane at each center of the metric. As several D6-branes move together, the 
fundamentall  strings stretching between them become light. The open strings give rise to a 
loww energy SU(k + 1) gauge theory. The W-bosons from strings stretching between branes 
att fi and fj have masses that are proportional to \?i — f]\. This is the proportionality of 
massess of wrapped D2-branes in the original configuration. Indeed, the D2 branes lif t to 
M2-braness which are extended in the ^-direction. 
Thesee descend to fundamental strings stretched between the D6 branes. In [79] an analogous 
analysiss is also carried out for (resolved) Dk+2 spaces. In that case the resolved geometry 
iss somewhat more complicated, because of the additional Z2 of the dihedral groups. In the 
geometricc picture this gives an extra 'center', of a different sort that the Taub-NUT centers. 
Thee 'metric link' of this center is a circle bundle over MP2, rather that P1 (see section 2.1.2). 
Afterr the 9-11 flip this extra center gives on orientifold 06-plane [79, 80]. Note that in one 
picturee the 'impurities' are purely geometric, whereas in the dual picture the impurities are 
manifestedd as branes, so there are fluxes. 

4 .1.22 FlVEBRANES 

Ann interesting class of non-geometric impurities is formed by configurations of Neveu-
Schwartzz fivebranes3. The simplest configuration is formed by a stack of superimposed 
fivebranesfivebranes that occupy a IR5,1 worldvolume and have R4 transverse to their worldvolume. 
Suchh a stack of N coincident fivebranes curves space, is a source of 3-form H-Üux and 

33 Throughout the discussion it is assumed we are dealing with fivebranes of a Type II theory. Usually we have in 
mindd IIB theory, when we discuss fivebranes as 'flux impurities' T-dual to hyper-Kahler surface singularities. But 
dependingg on the situation, one should consider IIA theory. This is the case if the T-dual meory has a geometric 
singularityy which is deformed, in the scaling process, by blowing up a three-cycle (like the deformed conifold) and 
D33 branes wrapping the three-cycle play a role in the scaling limit under consideration. As the discussion focuses 
onn the bosonic sector, where the distinction between IIA and IIB is not always so important here 

75 5 



ChapterChapter 4 - Impurities and Scaling Limits 

inducess a non-trivial dilaton. More precisely, the field configuration of these fields is 

Na' Na' 
e2<*-*~ >> = h(r) = \ + 

r* r* 
5 5 

dsds22 = -dt2 + £ dxidXi + h(r) [dr2 + r2dÜ2] , <4-13> 
i = i i 

C(6)) = h 1(r) [dt A dx! A • • • A dxb], 

whichh can be obtained from the string equations of motion in the approximation to lowest 
orderr ina'. Here C6 is the dual of the 2-formNS-NS gauge potential. Alternatively, in terms 
off the 3-form flux H, the field configuration can be written as 

HHmnpmnp = - e m n p ' 0 , $ , (4.14) 

wheree m, n, p, q are indices in the space E 4 transverse to the fivebrane worldvolume. Sev­
erall related field configurations can be obtained, by taking several parallel stacks at different 
pointss in the transverse R4. 

Ass the fivebranes are BPS objects, any such configuration forms a good string vacuum, 
withh an amount of supersymmetry that corresponds to two copies of AT = 1 in d = 6 (for the 
typee II theories). If the positioning of the stacks has enough symmetry, it may be possible to 
summ the contributions of all stacks explicitly. The resulting field configuration then looks a 
lott like the 'single stack' configuration above, only with a changed harmonic function h{r). 
Somee such configurations will be discussed later. 

SCALINGG LIMI T OF A STACK OF FIVEBRANE S 

Theree is also away to get a simpler background. The harmonic function simplifies in the 
regionn r <C y/Na', where the constant term can be dropped, so h(r) ~ r _ 2 . Unlike the full 
backgroundd (4.13), this scaled background has a known exact worldsheet conformal field 
theoryy description [15]. This exact worldsheet eft is actually a N = (4,4) superconformal 
theory,, corresponding to the d = 6 spacetime supersymmetry of the target space4. The 
targett space of a M = 4 superconformal model does not suffer a' corrections beyond the 
levell at which the geometry (4.13) was derived. From this geometry it is possible to identify 
thee exact conformal field theory. 

Choosingg a new radial coordinate 

11 *2 
(4.15) ) 

4Byy dimensional reduction d — 4 H = 2 supersymmetry is obtained from d = 6 Af Af = 1. The N = 2 d = 4 
algebraa has three supercharges, which are related to three worldsheet U(l) currents, similar to the argumentation 
inn section 3.2 relating d = 4 N = 1 with A/" = 2 extended superconformal symmetry. 
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thee region near the stack of fivebranes looks like a 'throat', R $ x 53, with field configuration, 

ds22 = -dcf)2 + Na'dül, 

HH = -Na'c, 

wheree e is the volume form on 53 , ƒ e = 2ir2. 
Fromm these expressions it can be seen that a change in the string coupling asymptotically 

farr from the fivebranes, gs = e*°, accompanied by a rescaling of r, does not change the 
fieldfield configuration down the throat. This feature allows the physics 'localized*  down the 
throatt to be decoupled, by sending gs —• 0 and simultaneously descending in the throat. 

Thee background (4.16) is the target space field configuration of a couple of exact con-
formall field theories. The S3 with N units of #-flux is the target space of a SU(2) WZW 
modell at level k = N. Actually, this part of the string background is described by a super-
symmetricc WZW model. The worldsheet fermions are free, after doing a gauge rotation. 
Thiss gauge rotation is anomalous5. Its effect is to change the central charge of the bosonic 
piecee of the WZW model from c = 3N/(N + 2) to c = 3(N - 2)/N, i.e. the level of the 
SU(2)SU(2) current algebra of the decoupled bosonic part 51/(2) jt, of the supersymrnetric WZW 
model,, is k = N — 2 

Thee R^ part, is described by a scalar, and the linear dilaton is reflected as a background 
chargee for this scalar, so R^ is described by (a supersymrnetric analogue of) a Feigin-Fuchs 
eft.. The background charge of the scalar is Q = - y/l/N. The central charges of the 
Feigin-Fuchss and WZW models are 

11 N <A 1TX 

^ = 22 + T'  ( } 

ccwzwwzw = - + —jj-, (4.18) 

wheree c = c/3, so the throat superconformal model has c = 6. A complete string vacuum 
iss obtained by tensoring these eft's with three free chiral superfields, corresponding to the 
worldvolumee directions of the stack. 

Notee that the conformal field theory description only makes sense in case the number of 
fivebranesfivebranes is N > 2, but not for a single fivebrane. Another noteworthy point is that down 
thee throat, 4> —• — oo the dilaton grows without bound. On the one hand, the fact that the 
stringg coupling grows in the throat, allows for a decoupling limit to exist, in which string 
propagationn seems to be described by an exact eft. But on the other hand, where the string 
couplingg becomes large, a worldsheet eft does not relyably reflect the string dynamics, as 
stringg loop effects may not be ignored. 

5See,, for example, [15]. 
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O T H ERR FIVEBRANE CONFIGURATIONS 

Ass mentioned earlier, any configuration of parallel fivebranes, located at different points 
inn the transverse R4 has the same amount of supersymmetry as the single stack configura-
tion.. More precisely, the field configuration of (4.13) is that of extremal fivebranes, which 
preservee half of the supersymmetry of the string theory, and any parallel configuration of 
suchh branes is a stable one, as the branes exert no force on one another. The only change 
inn field configuration with respect to (4.13) is manifested through a change in the harmonic 
function.. The single center function is replaced by the superposition 

7/-*7/-* - V ^ NiQ.' 

^f^f \r -Ti\2 

withh centers at every location of a fivebrane. Of course, such configurations can be regarded 
ass deformations of the single stack configuration. In the remainder of this section some 
speciall  configurations are reviewed, which are both of physical interest, and for which the 
summationn yields a reasonably neat result. 

SO(3)) x U(l) ISOMETRY 

Perhapss the simplest configuration one can consider, is that of a large number of fivebranes, 
smearedd over a transverse direction, either R or S1, with a uniform density. Essentially 
thee harmonic function that solves the four-dimensional Laplace equation A/i( r 4) = 0 in 
thee localized single stack configuration (4.13), is replaced here by a solution of the three-
dimensionall  Laplace equation, 

/i(f 3)) = l + — , 

wheree v is the fivebrane density. Note that a function of the same form appears in the Taub-
NUTT metric. Indeed, the Taub-NUT metric and a fivebrane are related by T-duality, but in 
aa rather more complicated way [11] than a naive application of the rules for T-duality [9] 
wouldd indicate. 

SO{3)SO{3) X Z ISOMETRY 

Itt is also possible to get the field configuration for a stack of JV coincident fivebranes with 
transversee space R3 x S1 by taking r» = r0 + ne4. The resulting harmonic function was 
obtainedd long ago in connection with a periodic array of instantons in R 4 [105]. Essentially, 
onee uses the standard expression from complex analysis 

££ /(n) = 2^1 ff{z) vcot^ - £*&/(*)
n=n= — oo * 
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Inn this case ƒ (z) = (1 + z2) 1 has poles at z — -ti, and the summation yields 

7777 = 7T C O t h 7T. 

11 + n2 

Similarly, , 

cott (f ) 

. ^^ a2 + (8n - W 2iriJc ^ aa22 + {0n - i)z 2TT2 Jc a2 + (02 - 7 )' 

^ f ^^ a2 + ( £ 2 - 7 )' 

(4.20) ) 

Thee contour C is taken appropriately large and avoiding the poles at z — (771-10:) If}. The 
residuess at z = (7  ia) //? are 

2 ^ ^C O tV ^ ^ ^ 
respectively.. Expanding the hyperbolic tangents in exponentials, the result is 

s i n h2 ^ ^ 

coshh 2p*  - cos ^ 

Usingg this result, the harmonic function describing a stack of fivebranes on E 3 x S1 is 
found.. Let the circumference of S1 be 2TTRQ, then the harmonic function for a stack of AT 
fivebranesfivebranes is 

^^ 3' ^ * 2R9r3 cosh (r3/R9) - cos (£/R9)' ^ Z 1 ' 

wheree £ is a coordinate on 51 with periodicity 2TTRQ. 

SO{2)SO{2) X Zn ISOMETRY 

Anotherr interesting configuration is that of n stacks of q fivebranes each, the stacks being 
positionedd at 

fjfj = (0,0, p*  sin(27T77n), p*  cos(27rj'/n)) j = 0 , . . ., n - 1. (4.22) 

Thiss configuration has been considered in [25]. The E4 transverse to the fivebranes splits 
intoo an R2 with polar coordinates (r-2,6) perpendicular to the 'ring' of fivebranes, and an 
K22 with polar coordinates (p, 0), in which the ring of fivebrane is situated, .i.e. 

rr = (r2 sin#,r2 cos#, p sin</>, p cos0). 
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Thee configuration is invariant under S0(2) x Z n shifts (9, <f>) —• (9 + ip, <f> + 2nik/n). The 
harmonicc function that characterizes this configuration can be obtained in a way similar to 
thee previous case [25], 

hihi ^ — l n^a' sinh(rax) 
2p*psuih.2p*psuih. (x) cosh (nx) — cos [ncp)' 

where e 

2p*p 2p*p 

'~2'~2 + „n<  V/2 

2p*p 2p*p 

Thiss configuration in its own right may not look particularly illuminating. However, 
itt does play an important role as a deformation of the single stack configuration, which 
exhibitss a various regimes at different scales. From afar, pi <C r2 = T\ + p2 <C nqa', a 
smalll deformation of the 'single stack' looks much like a single stack of N = nq fivebranes. 
Nearr the ring, the behavior depends on the density of centers. In particular, in case n is very 
large,, and nx is also large, so that one is not so close as to see the separate stacks, the 
configurationn looks like a continuous ring of fivebranes. The coordinates on R 4 transverse 
too all the fivebranes, 

r=r= (r(i),r(2),r(3),r(4)) 

== (v2 sin 9, f2 cos 9, p sin <fi, p cos (j>), 

usedd above, are rewritten in more convenient coordinates, 

r(i)) = p*sinh# cosx COST, 
r(2)) = p*smhg cosx sinr, 
r(3)) = P*cos^-Q s m X cos^, 

T(4)) = p*coshg sinx sini/>), 

soo that the ring is located at g = 0 and x = n/2. In these coordinates, the field configuration 
iss written as 

ds22 = Na' (dg2 + d*2 + 
tan22 x <H>2 + tanh2 g dr 2 

e e 

11 + tanh Q tan^ x 
Na' Na' 

BB = - -2 — dr A <ty, (4.24) 
11 + tanh g tan \ 

p2*o o 
2**  _ ^ 

coshh g cos2 x + smh g sin x 

Thiss configuration as it stands has various features which are familiar from relatively simple 
exactt conformal field theories (for a good discussion, see [5]). 
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SOMEE ASPECTS OF THE DEFORME D THROA T 

FirstFirst of all, there is the limit Q —*• oo. There, the target space looks like a S3 with N = nq 
unitss of B-field flux, i.e. the 5(7(2) WZW model, which is of course expected, since at 
largee Q the configuration looks like a single stack. One can also consider the limit Q —+ 0, 
i.e.. the space 'at the ring of fivebranes'. One part of the metric is 

dsds22-- = Not' (dx2 + tan2 x di/>2). (4.25) 

Thiss is a disk, with a dilaton 
e * - * °=secx,, (4.26) 

whichh diverges at the boundary of the disk, x = 7 r/2, where the fivebranes are located. 
Thiss is the geometry of a gauged WZW model, SU(2)/U(1), at least as N » 1 (see also 
thee examples in section 4.2), which is presently the case. The level of the ££7(2) current 
algebraa is N, and when this is large, the £7(1) gauge field may be eliminated by its classical 
equationss of motion to give the resulting target space geometry. At one loop the elimination 
off  the gauge field generates the non-trivial dilaton. The coordinate r, appropriately rescaled, 
correspondss to a (non-compact) £7(1), i.e. a free boson, but with a periodicity that has been 
scaledd up from 2n to infinity, by the rescaling of r. This rescaling also eliminates the B-
field. field. 

Thee coordinate Q interpolates between SU(2)/U(1) x £7(1) and SU(2). This is a fa-
miliarr situation [81, 82], The coordinate g can be seen almost as a deformation parameter, 
aa = Q~X that deforms a SU(2) WZW model by an exactly marginal deformation 

SS{a)SS{a) ~ a fd2zJJ, 

wheree J is a £7(1) current of the 5£7(2) WZW model. However, Q is also a dynamical field 
itself,, so in that sense it is not just a parameter that can be tuned 'externally'. 

Inn speaking of a gauged WZW model G/U(l), one should usually specify how the 
£7(1)) acts in G. Either the vector action g ~ h~lgh or the axial action g ~ hgh might 
bee gauged leading to generally different anomaly free models. However, the 5£7(2)/£7(l) v 

andd SU(2)/U(l)a models are isomorphic. In terms of the geometry (4.25), the two are 
interchangedd by changing x ^ f / 2 — X- This isomorphy can be seen in many different 
ways.. For example, looking at the Landau-Ginzburg representation of the 5£7(2)/£7(l) 
model,, W — $N, the mapping is effected by an orbifold by the group J ~ Z N generated 
byy j , constructed out of the holomorphic £7(1) R-current, as discussed in section 3.3.1. This 
orbifoldd changes the spectrum in a way that can be undone by the mirror automorphism. 
Thiss means, that if the LG model with W = $JV, where & is a chiral superfield, is the 
SU(2)/U(1)SU(2)/U(1)VV model, then exchanging $ for a twisted chiral superfield Y, changes the 
modell  to the SU(2)/U(l)a one. Also, this change can be thought of in a more geometric 
fashion,, in terms of T-duality which, for this model, is nothing but mirror symmetry. This is 
discussedd in subsequent sections. However, do note that changing x «-• TT/2 — x essentially 
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invertss the radii of the circle fibers in the geometry (4.25), which is typical feature of T-
duality.. Interestingly, there is another way to connect SU(2)/U(l)v and SU(2)/U(l)a. 
Startingg from the undeformed SU(2) WZW model at Q = oo, or correspondingly a = 0, 
thee vector-gauged model arises as the limiting deformation a —• oo. The dual model, 
SU(2)/U(l)SU(2)/U(l)aa arises in the limit a —• — oo. This is another way to look at the effect of 
T-dualityy [83], which has no obvious interpretation in the fat throat geometry (4.24). 

Anotherr relatively simple geometry is obtained from (4.24), not by fixing Q, but by 
takingg \ fixed to a constant value. Similar to the exposition above, there are two special 
valuess of x- At x = 0 the space looks like 

ds22 = Not' (dg2 + tanh2 Q2 dr 2 + d ^ 2 ) , 

e*oo (4-27) 

COstl£ £ 

Again,, a change of coordinates has been done, so ip corresponds to a 'decompactified' £7(1). 
Thiss limit kills the B-field. The geometry of the Q and r coordinates is, at large N, that of 
thee gauged WZW model 5X(2; R)/U{l)a at level N. On the other hand, at \ = *!% t he 
geometryy looks like 

ds22 = Not' ( V + coth2 Q2 dr 2 + d^ 2 ) , 

$00 (4.28) 
$$ " 

sinhh Q ' 

withh a differently rescaled ip, that again coordinatizes a 'decompactified' 17(1). The rest 
off the geometry is that of a SL(2; M.)/U(l)v model at level N. Again, both limiting cases 
cann be seen as exactly marginal deformations of SL(2; R) [84]. The two geometries can 
againn be seen as T-duals of one another, both being circle fibrations over a half line, but with 
reciprocallyy related lengths of the circle fiber. 

Inn this section, the term T-duality has been mentioned several times. It relates vari­
ouss parts of the 'fat throat' geometry. It turns out that actually singular geometries and 
backgroundss with NS fivebranes are also related by T-duality, in quite a complicated way. 
Essentially,, the complications are caused by the singularity. To honestly describe the T-
dualityy completely clearly from first principles in a transparent way is quite difficult. In 
mostt cases, more can be said in a scaling limit of the geometry, where string propagation is 
relatedd to an exact conformal field theory6. The full 'unsealed' backgrounds may not have 
aa (known) exact eft description. Still, also the scaling limits are of interest, as there is some 
physicss localized in the region kept by the scaling process. 

6Thee string coupling may be large, in certain regimes, so it is not always justified to use the worldsheet confor­
mall field theories as a means to compute string dynamics 
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4.22 GENERALITIES OF T-DUALIT Y 

Targett space configurations which look quite different from the point of view of 'classical' 
geometry,, may be equivalent as string backgrounds. This is the case for string theory back-
groundss that are related by T-duality. In that case, there is a pair of isomorphic worldsheet 
conformall  field theories, and the spectra and scattering matrices of perturbative string the-
oryy are hence isomorphic, too. Crucially, T-duality maps a weakly coupled string theory to 
anotherr weakly coupled one, so that the conformal field theories relyably reflect the string 
dynamics. . 

Theree are various ways to think about T-duality. Usually one has a worldsheet conformal 
fieldfield theory that has a target space interpretation and the target space has a U(l) isometry. 
Thee archetypal case is that of bosonic string theory on a target space M = M' x S#, which 
iss a product space, with a factor that is a circle of radius R. T duality relates this string 
backgroundd to one in which the circle has a new radius R and the string coupling is changed 
ass well, gs —*  gs, where the relation is 

- 2 ^ 2 2 

99ss = -jp9s 

(4.29) ) 

PATHH INTEGRAL PICTURE OF T-DUALIT Y 

Thee two conformal field theories are isomorphic because both arise as effective theories 
off  one single overaching theory, see, for example [53], This overarching theory may be 
obtainedd from the action 

off  a scalar field <f>, with periodicity 2TT, and a one-form B, defined on a worldsheet S. If B 
iss eliminated by its classical equations of motion, 

thiss action reduces to 

BB = iR2 *d<j>, (4.31) 

S,S,BB = -L  f d2z y/hR2ha0da<f>d0<!>, (4.32) 
47TT 7 E 

whichh is the action of a sigma model on a circle of radius R. 
Onn the other hand, one may eliminate <p to obtain an effective action for B. The classical 

equationn of motion for <p sets dB = 0. This means that B is a linear combination of an 
exactt form and harmonic forms. It is convenient to write the harmonic piece of B in a 
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specificc fashion. On a worldsheet of genus g, the vector space of harmonic forms in 2g-
dimensional.. One may choose 2g homology cycles 7*  € Hi(E; Z) and 2g dual harmonic 
formss ui* e Hl (E; Z), such that 

ff u>j = 5{. (4.33) 

Theree is a natural inner product on H 1(E; Z), 

(<y,, u;J' > = ƒ J A a>J' = mi j . (4.34) 

Wheree (mIJ) is an matrix with only integers as its entries that has an inverse (rriij), with 
onlyy integers as entries as well. 

Noww a generic B satisfying the equation of motion of <f>> i.e. dB = 0, can be written as 

BB = d0o + J2aiiüi- (4" 35) 
i = i i 

Considerr the term 
11 f 

BAd<t> BAd<t> 

inn the action. Recall that 0 is a periodic field with periodicity 2-K. In other words, 0 need 
nott be a single valued function. Or more to the point, d0 integrated over any cycle need not 
bee zero, but can be any integral multiple of 2ir. That is to say, one can write 

2n n 

d(f>d(f> = d^o + 5 3 27 rn»a ; i '  (4-36) 
1 =1 1 

wheree 4>o is a single valued function and the rii are integers. Now, 'integrating out' 4> does 
nott only mean solving for the equation of motion coming from the variation of <f> 0, which 
sayss dB = 0. One also needs to sum over the lattice of ni's. The above term in the action 
noww reads 

—— f B A d(j> = 2ir V aimijnj. (4.37) 
2irJ2irJEE ^ 

Thee summation over the lattice of n^'s in the partition function 

fixess the a*  to be multiples of 2-K. That is to say, one can write B — dO, where 9 is not single 
valued,, but has periodicity 27r, just as <f> had. The effective action obtained from (4.30), after 
integratingg out <j>, thus becomes 

S ^ ^ h ii  ^Z ^1? ha0da9d09, (4.38) 
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whichh is the sigma model action with target space a circle of radius l/R. 

Conceptually,, the procedure above amounts to the following. An 'overarching' action is 
obtainedd by introducing a gauge field, so that this global symmetry is made into a local one. 
Thiss gauge field is non-dynamical. In addition, an extra term is introduced in the action, 
whichh forces the gauge field strength to zero. Integrating out the gauge field, B in the 
examplee above, gives one effective theory, whereas integrating out the Lagrange multiplier, 
00 in the example above, leads to the T-dual theory. If one also takes into account one-loop 
effectss in 'integrating out' the field field from the path integral, there is also a shift in the dilaton, 
ass in (4.29). 

Thiss can be generalized to a target space that is a circle bundle [9], provided that transla-
tionss along the circle fiber are isometries of the total space. Two additional features occur in 
thiss more general setting. First, if the size of the circle fiber varies over the base, then in the 
T-duall  model, the dilaton will vary. In particular, if the original fiber is small somewhere, 
thenn in the dual model, there wil l be a region where the string coupling is large. Second, if 
thee circle bundle is not a product manifold, there wil l be a Z?-field in the dual target space. 
Explicitly,, after T-duality along a fiber with coordinate 8 the metric, B-field and dilaton are 
mappedd (gab,bab,$) —• (gab, bab,&) according to the Buscher rules [9]: 

- i i 99a99b99a99b — beabob 
9ab9ab = 9ab , 9ee = 9&e > 

999 999 
90a99b90a99b — beab$b - boa 

9ab9ab = 9ab , 99a = , 
999999 99a (4.39) 

ii , 9eab$b - b$ageb r goa 
OabOab = Oab , V9a = , 

999999 999 

êê = $- log soa. 

Inn the derivation of [9] effects of up to one loop are taken into account. The one-loop 
effectt generates the shift of the dilaton, while the change of gab and bab is determined by 
solvingg classical equations of motion. This evaluation is justified, corrections of O ((a')2) 
aree relatively small, provided that the circle fiber does not degenerate anywhere. It is a 
requirementt in the derivation, that translation along the circle fiber, is an isometry. Note 
thatt it is a consequence of (4.39) that the T-dual geometry also has an isometry that the 
duall background also has an isometry. If the target space has an isometry, then the sigma 
modell has a corresponding conserved current. T-duality acts on this current in a way that is 
familiarr from the JR <-• a' /R case. 

Theree is a related, but somewhat different perspective to regard the R <-• a'/R duality. 
Thee scalar field <j> that solves the equation of motion of (4.32), describing string propagation 
onn a circle, can be split into a left moving and a right moving part. T-duality is effected by 
changingg the sign of the right-moving part. This sign flip has an effect on the zero modes 
off <j>'. it exchanges momentum modes and winding modes. This effect is also seen from the 
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equationn of motion (4.31), which says 

-d0-d0 = iR * &<j), (4.40) 
R R 

wheree in the sigma model on a circle, with action (4.32), R d0 is the conserved current 
whichh measures the momentum along the circle and iR * d(f> measures the winding on 
thee circle. Both these currents are conserved thanks to the fact that one the one hand, 
translationss along the circle are isometries and on the other, field configurations winding 
alongg the circle are topologically stable. 

InIn a general circle bundle S1 —• SA —* B, there may be no conserved winding, if 
7Tii (M) = {id}. One can expect that in the T-dual space, there is non-conservation of the 
correspondingg momentum. In other words, the isometry of (4.39) might not be present, even 
thoughh there is an isometry in the original, undualized, model. From the perspective of the 
perturbativee derivation of T-duality, which leads to the Buscher rules (4.39) this is not very 
clearr at all. This point is discussed in section 4.3. 

T-DUALIT YY FOR SUPERFIELDS 

Soo far, T-duality has been discussed from the point of view of bosonic sigma models. 
Thee models relevant for supersymmetric string backgrounds have extended superconfor-
mall symmetry. There is an aesthetic way to formulate T-duality in terms on M = (2,2) 
superfieldss [10]. Essentially, it is a direct analogue of the bosonic path integral procedure 
discussedd above. The supersymmetric version is illustrated in the following example. 

Considerr the Lagrangian 

L=\JdL=\Jd4400 [^B2 - (y + F) B ) . (4.41) 

Heree B is a general real superfield, B = B, and 0 is a twisted chiral superfield, D+Y = 
00 = D-Y, with a periodic imaginary part y ~ y + 2ni, so it parametrizes a cylinder. Now 
onee can obtain a effective Lagrangian by integrating out either B or Y and Y. The equations 
off motion coming from Y and Y read 

~D~D++D-BD-B = 0 = D+D.B. (4.42) 

Thiss says that B is the sum of a chiral superfield $ and an antichiral superfield, and since 
BB is real, one can write 

BB = $ + $ . (4.43) 

Thee periodicity of $ is fixed by the periodicity of Y, which in terms of component fields 
cann be seen exactly analogously to the bosonic case treated earlier. The periodicity is <f> ~ 
4>4> + 2iri. Substituting the above expression for B in the Lagrangian yields 

LLlY>ylY>y = ^ ƒ d40 (S + $ ) 2 = ~ ƒ d 4 0$$ . (4.44) 
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Thiss is the supersymmetric sigma model on a cylinder with radius R. Shifts of <f> are isome-
tries.. Alternatively, one could integrate out B. Its equation of motion reads 

S = ^ ( yy + y ) ' 

soo that the effective Lagrangian becomes 

^^  = ^ /d^( r  + F)2
 = ^/dWF . 

(4.45) ) 

(4.46) ) 

Thiss is the sigma model of a cylinder with radius 1/R. 
Thuss the T-duality procedure eliminates a chiral superfield and introduces a twisted 

chirall  one, or vice versa. Note that role of chiral and twisted chiral fields can be exchanged 
byy the mirror automorphism of the ftf = (2,2) super algebra (3.1). Recall from section 3.1 
thatt a sigma model with Lagrangian 

LL = ƒd4^(^,^;y a)ya), 

thatt depends on both chiral and twisted chiral fields, is a sigma model on a target space [48] 
withh metric 

(4.47) ) 

andd £?-field 

(<V)) = 

(B^)(B^) = 

(° (° 
<Pi<Pj <Pi<Pj 

0 0 

f° f° 
0 0 
0 0 

\\ -Kfcy 

<t>i<f>j <t>i<f>j 

0 0 

0 0 
0 0 

0 0 
0 0 

0 0 

0 0 

0 0 

0 0 
KK -7 

Vb<PVb<Px x 

bb o 0 0 

°° \ 
0 0 

~Ky~Kyaayyb b 

00 / 

KK4iVb4iVb \ 
0 0 
0 0 

oo / 

(4.48) ) 

wheree a subscript denotes differentiation with respect to the corresponding variable. So a 
B-fieldd is present if mixed derivatives of the Lagrangian with respect to both a chiral and a 
twistedd chiral field do not vanish. Consequently, one cannot get rid of a S-field by acting 
withh a mirror automorphism. On the other hand, a sigma model based on both chirals and 
twistedd chirals need not have a B-field. In particular, if 

L=L= J d^K^i + Si-Ya + Ya), 

K=KK=K11(^(^ll+^+^ii)) + K2(Ya + Ya). 
(4.49) ) 

accordingg to (4.48) there is no B-field. Moreover, such a Lagrangian describes a model 
whichh is the tensor product of a model defined by K\ and one defined by K2, and one can 
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appropriatelyy map all twisted chiral fields of K2 to chirals, using the mirror automorphism 
withinn the model defined by i f 2 alone. 

Sigmaa models of the sort discussed above are used as part of a worldsheet conformal 
fieldfield theory. Therefore, they should have conformal symmetry; this means that the beta 
functionss of the sigma model should vanish. In many cases, the conformal symmetry is 
keptt thanks to a non-trivial dilaton, which couples to the worldsheet curvature tensor, and 
wass not really discussed. In any case, the beta functions, determined to first order in a' 
read7 7 

/ f c^^ = * W - \n/°H„pa + 2VM V„ *  + O (a') = 0, 

/fcM„„  = V „ # V - 2 (VPS) # V + O (a') = 0, 

wheree Hx^u — dxB^v + d^B^x + d^Bx^. And the central charge is determined by the beta 
functionn of the dilaton, 

c=^(Dc=^(D + a' 4 (V$)2 - 4V2$ + j-H2 -1l\+ö ( (a ' )2) , (4.51) 

wheree \D is the number of chiral and twisted chiral superfields appearing in K, or, in other 
words,, D is the (real) dimension of the target space. 

EXAMPLESS OF DUAL SIGMA MODELS 

Firstt consider sigma models based on a single chiral superfield, see, for example [48], 

KK = K{VU). 

Thesee have no S-field. In addition to the case K = ty^i with a constant dilaton and central 
chargee c = c/3 = 1, the following cases occur. In the absence of a B-field, &G^ = 0 is 
solvedd by a dilaton 

$$ = i logdet K** + C (*  + W), (4.52) 

wheree C can be any real constant. First consider the case C = 0. The Kahler potential can 
thenn be formally expressed as 

BB * * 

/

dx dx 
—— \og{A + x), (4.53) 

1 1 

whichh defines a good metric, 
ds22 = Kq^dip&ip. 

7Theree is some variation in the literature, depending on various conventions, see for example [85] and [86]. 
Ourr expression follows [48] and references therein. 
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Thee dilaton profile is 

$ == - - l o g (A + £ * * ) . 

Thee different possibilities are in correspondence with different choices of signs of A and B 
[48];; they are the following. 

First,, if A > 0 and B < 0, the metric is written as 

d*22 = 1 _ , , a d W . (4.54) 

Thiss is the metric of the coset SU(2)/U(l). After a coordinate transformation the above 
metricc on the disk, and the dilaton are written as 

dsds22=k(d$=k(d$22+t(m+t(m22ed<ped<p22) ) 

<PP = log cos 9. 

Thee metric is invariant under phase rotations of W. One can perform a corresponding 
T-duality,, following the procedure of [10]. Phase rotations of \[> are gauged, introducing 
aa real superfield B and replacing tyty —• ^^eB. One can gauge fix Vl> = 1 = f̂. An 
overarchingg Lagrangian can be written as 

eeB B 

//
I I 

- ^^ log (1 - a) + B (Y + F ) , (4.56) 

wheree y is a twisted chiral superfield. On the one hand, by the equations of motion of Y 
andd Y, B is forced to be pure gauge, i.e. B = 9 + 0 , where 9 is a chiral superfield. Writing 
\I>> = e e , this gives a Kahler potential 

l*l2 2 

K\Y?=K\Y?= J ^ l o g ( l - a ) . 

Onn the other hand, one can use the equation of motion of B instead, which reads 

eeBB = XX-1, 

wheree X is a twisted chiral superfield, X = e~Y. Plugging this into ÜT0verarching, one obtains 

1-|X|2 2 

K\K\BB== J ^ l o g ( l - a ) - l o g ( | X | 2 ) l o g ( l - | X | 2 ) . 

Essentiallyy the Kahler potential for SU(2)/U(1) is the dilogarithm, 

UU22(z)(z) = I ^log(l-a). 

89 9 



ChapterChapter 4 - Generalities ofT-duality 

Onee of the major functional relations of the dilogarithm is 

7T2 2 

UU22(z)(z) + Li 2(l -z) = — - log(z) log(l - z), 
0 0 

see,, for example, [87]. Using this relation, the T-dual Kahler potential reads 

KKlBlB=+=+ J — log(l-a) 

Thiss just differs a minus sign from K ( |* |2), and, since X is twisted chiral, this minus sign 
ensuress that the kinetic term for X is positive, just like that of ^ in the original model. So 
thiss model is self-dual, the metric being written as 

kk di[)dtp k dxdx 

Heree k indicates a scale of the metric. In fact, as T-duality inverts the radius of the dual-
izedd circle, it maps i>2 <-> 1 - x2. The dilaton profile is $ = — log (l — |-0|2). Writing 
tptp = sin xei e, this geometry is expressed as the one appearing in (4.25) in section 4.1, 

ds22 = k (dX
2 + tan2 xd<?2) } 

e*-$ oo _ _ log cos x-

Thiss is the metric the coset model SU(2)k-2/U(l). 
Ass a chiral superfield is exchanged for a twisted chiral, the right-moving U(1)R charges 

changee sign. In a coset SU(2)/U(1), the change in charge assignment can be done by 
changingg from a vector gauging to gauging of the axial action of U(l). The same change 
off  charge assignments can be accomplished by changing doing a Z k orbifold, by the group 
generatedd by j = e2niJ°. 

AA second possible two dimensional model is obtained by taking A < 0 and B > 0. The 
metricc can be written as 

d*22 = r r ^ - r d ^ d ^ <4-58) 
mm22 -1 

Thiss is the metric of SL(2\R)/U(1)V. To be precise, if SX(2;R) is generated by aït ia2 

andd cr3, where 0-1,2,3 are the ordinary Pauli matrices, then the £7(1) which is gauged, is 
generatedd by icr2. By a coordinate transformation this is written in the form of section 4.1, 

ds22 =k (dr2 + coth2 rd r2) , 
xx ' (4.59) 

$$ = — log sinh p. 

Thee central charge of this model is c = c/3 = 1 + jr. This is the central charge of 
SL(2;SL(2; R)/U(l) at level k + 2. 
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Thiss metric also has an isometry corresponding to phase rotations of \P. It is not self-
dual,, though. Instead, in a fashion analogous to the previous case, see, e.g. [48], T-duality 
mapss it to the metric 

d*22 = WTi^^ <4-60> 
Thiss metric corresponds to the choice A > 0 and B > 0. It is the metric of the axially 
gaugedd SL(2; R)/U{1), also written as 

dsds22 =k (dr2 + tanh2 rdr2) , vv } (4.61) 
$$ = log cosh p. 

Next,, if A = 0 and B > 0, the resulting metric can be written as 

ds22 = ^=dipdij). 

Withh a change of coordinates z = log ip, this is written as the standard flat metric on C, with 
aa linear dilaton 

ds22 =kdzd~z, 

$$ =z + z. 

Finallyy one can take a dilaton profile as in (4.52) with C ^ 0, in particular, 

Thee metric then can be written as 

A; ; 
ds22 = -dzdz. (4.63) 

zz + z 

Thiss is the T-dual of the previous case [48]. These two cases can also be obtained as an 
exactlyy marginal deformation of SL(2; R) [84] 

s{a)s{a) = 4^Jd2z \dxBx + Y=~^dl+Bl~' 
wheree the duals lie at opposite extreme limits of the deformation parameter a —> . The 
trumpett and cigar geometries, 

- f f 47r7 7 
dd22zdpdzdpdPP + f(p)deBe, 

withh f(p) = coth2 p and tanh2 p are also related as extreme limits of an exactly marginal 
deformationn of SL(2; R), however, they are deformed by a J2J2 deformation. 
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Al ll  these two-dimensional examples have no fluxes. An important example of duality 
inn a four dimensional background is [16] 

SU(2)xU(l)^^-xU(l)xU(l). SU(2)xU(l)^^-xU(l)xU(l). 

Thee left hand side has flux. Its 'Kahler potential' has the following form: 

-^-^ log (1 + a) + log * log * (4.64) 

wheree ^ is a chiral and Y a twisted chiral superfield. The metric that follows from this 
potentiall  is 

,, 2^ IdVf + |dy[2 

IVff + M2 ' 
whichh exhibits the SU{2) rotation symmetry and the scaling symmetry. The potential above 
cann be obtained from an overarching potential 

eeB B 

tfovcnochmgtfovcnochmg = - ƒ ^ log (1 + a) + log (*¥ ) +c(B + log ($$)) (0 + ë) , 

dependentt on chiral superfields <I> and 6, and a real superfield B. If the equations of motion 
off  G, G are used, Ksu(2)xu(i) ls recovered. On the other hand, using the equation of 
motionn of B gives a dual model, with a potential dependent of a pair of chiral superfields, 
andd so there is no flux. After some manipulation, see [16], the target space of this dual 
modell  turns out to be the product of SU(2)/U(l) and a torus. 

Onee particular reason why this example is important, is that the SU(2) WZW model 
featuress in the description of the throat geometry of fivebranes. In fact, the complete throat 
geometryy is described also by 5Ï7(2) x 17(1), but the U(l) has a background charge so that 
thee central charge of the throat background is c = 2, for any number of fivebranes (recall that 
thee number of fivebranes corresponds to the level of the SU(2) current algebra and to the 
valuee of the background charge). The above duality suggests, that a throat background might 
bee related to a purely geometric one, that is to say, one without fluxes. And actually, the 
duall  backgrounds correspond to exact conformal field theories. More about such dualities 
iss discussed in section 4.3. 

Finally,, T-duals of Kazama-Suzuki models can be constructed [28]. This is accom-
plishedd by writing a Kazama-Suzuki model as a gauged WZW model 

G G 

(ffxl7(l) V V 

soo that there is a £7(1) symmetry, essentially the axial action of U(l) on G. Using this 
symmetryy an overarching Lagrangian can be constructed which reduces to either that of 
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thee original Kazama-Suzuki model or its dual, depending on which field is integrated out. 
Unlikee in the two dimensional cases, the general procedure is dot done in an off-shell for-
mulation,, but in component fields. 

Beforee treating the general case as it was studied in [28], let us consider the example of 
SU(2)/U{1).SU(2)/U{1). This model is self-dual. T-duality essentially exchanges the chiral superfield 
forr a twisted chiral one, as discussed earlier. This exchange basically amounts to inverting 
thee sign of, say, the left-moving U(1)R charge. Next to exchanging the chiral field for a 
twistedd chiral field, there is another way to flip the sign of this U(l) charge of all states of 
thee SU(2)/U(1) model. It is also accomplished by taking an orbifold with respect to the 
Zfc+22 symmetry generated by j — e2niJ°, where Jo is the holomorphic U(l) current of the 
A/""  = (2,2) superconformal algebra. Now, T-duality relates 

SU(2)SU(2)kk SU(2)k 

U(l)U(l)vv £ / ( l )0x Zfc+2 " 

Now,, in a general gauged WZW model of Kazama-Suzuki type, one can 'gauge' the 
residuall  U(l)a symmetry, add a Lagrange multiplier term to the action which forces the 
gaugee connection to be flat, and integrate out the gauge field, following the same philosophy 
ass discussed in the earlier examples. The result is [28] that 

GGkk T Gk 

HH x U(l)v H x U{\)a x Zfc+flv 
(4.66) ) 

Thatt is to say, under T-duality vector and axial gauging of the U(l) are exchanged. Further-
more,, an orbifold is done with respect to the Z k+gv subgroup of the U(l)v symmetry, that is 
aa global symmetry of the axially gauged model (g v is the dual Coxeter number of G). While 
inn the SU(2) case, on could be somewhat sloppy with the indication of the extra orbifold, 
becausee the orbifolded and unorbifolded theories are related by a sign flip (more accurately, 
byy action of the mirror automorphism), in a general Kazama-Suzuki model, the orbifold 
actss in a more complicated way. In other words, in the two dimensional models, T-duality 
actss as mirror symmetry: it acts quite non-trivially on the target space geometry, but almost 
triviallyy on the eft spectrum. In general Kazama-Suzuki models, it is an isomorphism which 
actss on the states and interactions in a more complicated fashion. 

4.33 T-DUALIT Y AND FIVEBRANE S 

Thee Buscher rules (4.39) of the preceding section are applicable when the circle fiber along 
whichh the duality is done, is large with respect to the string length. When the fiber is not 
large,, two problems occur. First, one must take into account corrections of higher order in 
thee sigma model coupling; usually there are corrections which are non-perturbative in a '. 
Second,, according to the Buscher rules, when a fiber degenerates in the dual sigma model, 
thee string coupling becomes large, so that the utility of a worldsheet eft for the description 
off  string dynamics is questionable. 
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Roughlyy speaking, the Buscher rules exchange B-field and 'non-product' structure of 
thee target geometry, or in other words, the degree to which a circle bundle is non-trivial. 
Inn particular, starting with a target space that has no B-field, one expects to end up with 
aa dual target space in which the dual circle is 'untwisted'. Furthermore, following the 
Buscherr rules, one would expect that either space of a pair of T-dual target spaces has a 
circlee isometry. But this is not always the case. 

InIn the language of R <-> l/R duality, momentum modes are mapped to winding modes 
andd vice versa, when a T-duality transformation is done. In the case of R <-• l/R duality, 
momentumm along the circle is conserved because translations are isometries, and winding is 
conservedd as well, because of the topology of a circle. However, a more general target space 
mayy well have a £7(1) isometry while at the same time there is no good notion of a 'winding 
number'' along the integral curves of the isometry, due to the topology of the total space. 
Thiss is a normal situation when the circle fiber degenerates somewhere, so that 'strings' 
windingg along the fiber can be continuously contracted to a point. When this happens, 
'winding'' strings can become light, as they move to a region where the fiber is small. Such 
additionall light modes, should also be taken into account in the low energy dynamics, which 
iss not done in the derivation of the Buscher rules. So if winding is not conserved in a space 
thatt nonetheless does have a U(l) isometry, one expects that the T-dual space does not have 
thee isometry predicted by a formal application of the Buscher rules. 

TH EE DUAL OF T A U B - N U T 

AA well known instance in which the Buscher rules do not yield the correct dual geometry, is 
inn the case of a Taub-NUT space. The rules applied to the Taub-NUT metric, see also (4.4), 

ds22 = / i ( r )- 1 {dO+Üj- dr)2 + h(r)dr*, 

uf\uf\  l l ( 4 " 6 7 ) 

wheree the 0-circle (6 ~ 9 + 27r) is dualized, yield a metric 

ds*ds* = h{r) (dB2 + df2) (4.68) 

andd a B-field, too. The harmonic function appearing in the metric and B-field is a three-
dimensionall one. The geometry is just the 'transverse' geometry of a fivebrane, smeared 
alongg the dual circle, parametrized by 9, of radius R. 

However,, the fundamental group of a Taub-NUT space is trivial, so there is no good 
notionn of a winding number. Indeed, the proper T-dual geometry is not (4.68), but that of a 
fivebranefivebrane which is localized at a point on R3 x 5 1 [11]. The Buscher rules do not suffice, 
butt get corrections which are non-perturbative in a ' . These worldsheet instantons break the 
symmetryy of translations along 9, and the harmonic function is changed to the form, 

1 1 11 sinhr 
'R'R22~~++2r~*2r~* + 2^coshr-cos6>' ( ' 
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ass in (4.21). 
Thiss harmonic function can be expanded as a sum of Fourier modes with different mo-

mentaa in the $ direction [14], 

oo o 

h(rh(r33,0)=,0)= Yl Cn(r3)eine. (4.70) 
n=n= — oo 

Thee zero mode CQ is the harmonic function for the smeared fivebrane. The rest of the 
coefficientss cn can be viewed as arising from condensates of strings with various non-zero 
momentaa along the 0-circle. In the dual geometry, there are corresponding condensates of 
windingg modes, which, indeed become light as the circle fiber shrinks. Alternatively, the 
breakingg of translation symmetry can be viewed via the standard duality recipe of gauging a 
symmetryy and integrating out the auxiliary gauge field. This is perhaps more closely related 
too the viewpoint of [11]. 

Thee procedure followed in [11] to determine the quantum-corrected dual of a Taub-
NUTT space uses a philosophy which is very powerful in two dimensional T-duality, and 
moree generally, in mirror symmetry in higher dimensions, viewed as several T-dualities, 
completelyy dualizing the fiber of a toric variety [53]. But it also works for a single T-
duality,, along one circle, of Taub-NUT, as well as the asymptotically locally flat singular 
spacess that are obtained from putting multiple Taub-NUT centers on top of one another. 

Thee main idea is to perform the duality transformation, a la [10], not in the (conformally 
invariant)) non-linear sigma model, where the field configurations are complicated, but in-
steadd to find a simpler non-conformal field theory which flows to the desired conformal 
non-linearr sigma model in the infrared limit of renormalization group flow. Essentially the 
simplificationn is obtained by introducing U{\) gauge fields in the field theory, i.e. it is the 
samee philosophy that uses gauged linear sigma models to describe non-linear sigma models 
att low energy, where the dynamics of the gauge field in 'frozen'. 

Thee particular models used in [11] are Af = (4,4) supersymmetric two dimensional 
theories,, as they should be, describing superstring compactifications to six dimensions. It 
wass shown that a pair of models is related by a duality transformation similar to the M = 
(2,2)) one of [10]. Actually the classical vacuum manifolds of these models are Taub-NUT 
forr one and the smeared brane geometry for the dual. But by taking into account instanton 
corrections,, which the gauge theory for the smeared brane geometry has, Tong [11] has 
providedd evidence [11] that the quantum corrected vacuum manifold is that of a localized 
fivebrane. . 

T-DUALIT YY VIA NON-CONFORMA L MODEL S 

Itt is a very powerful philosophy to do a T-duality via the following steps, which was devel-
opedd in [53], First, find a non-conformal field theory which has a C/(l) symmetry that is 
realizedd in a simple fashion, the £7(1) being the 'T-duality circle'. This theory should at low 
energiess behave like the conformal field theory that one wishes to dualize. Typically, the 
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ultraviolett theory is a gauged linear sigma model and at low energies the gauge dynamics is 
frozenn out, so that the effective theory is a non-linear sigma model8. This low-energy non-
linearr sigma model has a circle symmetry, descending from a symmetry in the ultraviolet 
theory. . 

Next,, one can perform a duality transformation, integrating out the appropriate auxiliary 
fields,fields, in the ultraviolet theory. Integrating out the fields is slightly more subtle than in 
thee cases discussed earlier, since the ultraviolet theory has gauge symmetries, which affect 
thee transformations, both on the classical level, and by quantum corrections. However, 
thesee effects are under control. The quantum corrections come from vortex configurations, 
whichh are typical for £7(1) gauge fields in two dimensions. The modifications to the duality 
transformationss are briefly discussed below. 

Thee vortex corrections can break the circle symmetry that one might expect from looking 
onlyy at the classical dualization procedure. Now the task is to find a description of the dual 
ultraviolett theory. This dual theory need not be a simple linear sigma model, as the quantum 
correctionss typically give rise to (twisted) F-terms in the theory. 

Finally,, having obtained a dual ultraviolet theory, one should identify its low-energy 
limit .. Not only may this model lack the circle isometry of the original low-energy model 
beforee the duality, but it may have no (direct) geometric interpretation whatsoever. In partic-
ular,, an ultraviolet theory with a (twisted) superpotential characterizes a low-energy Landau-
Ginzburgg theory. That is to say, the D-terms may get renormalized in a very complicated 
andd incomputable way, precluding a direct geometrical interpretation, as a sigma model. 
Thee twisted superpotential, which is better behaved under renormalization group flow, may 
stilll  to a large extent characterize the low-energy theory as a Landau-Ginzburg model. 

Theree are considerable classes of models for which this approach to T-duality can be 
carriedd out successfully. In the first place, T-duals of interesting two dimensional back-
groundss can be constructed. In particular, there is the derivation of the duality of the 'cigar' 
Euclideann black hole, SL(2; R)/£/( l )0 and TV = 2 Liouvill e theory [26]. The existence of 
thiss duality plays a significant role in the next section. The ultraviolet model that features 
inn the derivation of [26] is actually not quite an ordinary gauged linear sigma model. In 
thee model the gauge symmetry not only acts on phases of chiral fields, corresponding to 
D-termss of the form 

£Phase== / d4 0 $ e2 « v $, (4.71) 

butt it also acts as shifts on another chiral field, corresponding to a D-term of the form 

linearr  ƒ d ^ t f + tf + V - ) 2 . (4.72) 

Thee two different ways that a gauge symmetry can act, (4.71) and (4.72) result in somewhat 
differentt dualization properties, which will be briefly discussed momentarily. 

88 The low energy theory actually need not be scale invariant, it is possible to carry through the same approach 
forr a non-linear sigma model on a positively curved target space. 
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Secondly,, duals of geometries of more than two dimensions can be constructed. The 
primee example of this, is the Taub-NUT gauge theory of [11], which actually also con-
tainss a field which has a gauge symmetry acting as shifts, i.e. like in (4.72). As it stands, 
thiss model, and its cousins describing A &-type asymptotically locally flat spaces, are quite 
exceptional.. Much more often, mirror models have been constructed [53] of higher dimen-
sionall  target spaces, but not strictly speaking T-duals. In a toric variety mirror symmetry 
cann be seen as the composition of several T-dualities, such that every one-cycle of the toric 
fibersfibers is dualized [52]. Toric varieties are naturally described in terms of gauged linear 
sigmaa models, and the ultraviolet theory corresponding to the mirror is obtained by dual-
izingg the phase of every chiral superfield appearing in the linear sigma model. Note that 
aa toric variety (Cm + n\ 5 ) / (C* ) m is described by a linear sigma model with m + n chiral 
superfieldss charged under U(l)m. A T-duality along a single S1 in the toric variety would 
correspondd to dualizing m + 1 combinations of phases of chiral superfields in the linear 
sigmaa model. 

DUALIT YY WITH GAUGE SYMMETRY 

Lett us now explicitly recall how the duality transformations act in a model with gauge 
symmetries,, as introduced in [53]. The quantum corrections in the ultraviolet model, due to 
thee gauge fields, correspond to corrections to Buscher's rules, breaking isometry in the dual 
model,, at low energies, where no gauge symmetry is visible. Consider, as an example, the 
followingg part of a D-term of a simple gauged linear sigma model with a chiral superfield 
off  C/(l) charge q, 

L*=L*= I&4d$e2qV$. (4.73) 

Theree is another part of the D-term, that gives the dynamics of the gauge field V, which 
reads s 

Lgauge=^ |S1 / |2 ,, (4.74) 

wheree E = —2D+D-V. As e —> oo, the gauge field becomes non-dynamical and this 
termm can be forgotten, which is the case in the low energy non-linear sigma model limit, 
discussedd in section 3.3.2. 

Thee term (4.73) can be obtained from an overarching Lagrangian 

ff d46 (e2«v+B  + Y)\ (4.75) 

byy integrating out the twisted chiral superfield Y and its conjugate. On the other hand, 
solvingg the classical equation of motion of the 'auxiliary gauge field' B, gives a dual La-
grangian,, at least classically, that reads 

Zcll = ƒ d40 (qv(Y +  + Y) log (Y + Y)Y (4.76) 
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Now,, the first term can be written as a twisted F-term, since Y is a twisted chiral field, 
DD++YY = D-Y = 0, 

fdfd44OVYOVY = i I'd20ZvY. 

Suchh a term looks like a Fayet-Iliopoulos/theta-angle term, with the difference that the 'FI-
parameter'' here is not a fixed number, t=r-id, but a dynamical field Y. 

Inn all, at the level of classical equations of motion, the linear sigma model Lagrangian 

LL = JdA0 (\$>\2e2«v - ^\^v\2) + \ (d26 - tZ + c.c.) (4.77) 

iss dual to 

+ + 

| d4 ö ( - i ( yy + F)iog(y + + y ) - ^ | ^ |2 ) 

ii  [d2ëXv[qY-t}+c.c. 
(4.78) ) 

Notee the röle of the twisted chiral Y, or more accurately, the real part of the expectation 
valuee of its scalar component y, as a shift of the effective Fayet-Iliopoulos parameter in the 
duall  model, 

refff  = r0nginai - Re (y). (4.79) 

However,, solving the classical equation of motion of B does not suffice to determine 
thee effective action. There are configurations in which the phase of 0 has winding, compen-
satedd by a vortex configuration of the gauge field B. These configurations contribute to the 
effectivee Lagrangian of the dual theory, and modify the twisted F-term [53], 

\\ ƒ d20~£v [qY - t] v ^ e s i ƒ d20 (SV [qY - t] + pe-Y) . (4.80) 

Thiss is a generic feature that appears when a chiral superfield is dualized, of which the 
phasee is gauged. On the other hand, if a field is dualized which has a shift gauged, like 
inn (4.72), there are no vortex configurations, and no e ~Y term is generated in the twisted 
superpotential. . 

Noww that a dual ultraviolet Lagrangian has been written down, consider the interpre-
tationn of the dual model it describes. Actually, the model with a single charged chiral 
superfieldd may be a bit too restricted. The target space of its non-linear sigma model limit 
iss given by 

O = t / = | 0 p - , l o g (^ ^ 

moduloo gauge equivalence 4> ~ eld4>, which leaves a point for a target space. So perhaps it 
iss better to expand the model a little, and have two charged chiral superfields and a single 
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[7(1)) gauge group. Take the Lagrangian 

L-/d*[ ( ( $ 1 | 2 + | < , 2 | 2 ) e 2 VV _ ^ _ | E , 2 _1_ _ 
2? 2? + + 

Thee scalar potential, as e —> oo, reads 

£7=|<M22 + l02|2-41og 

u u 
wv wv 

dd2288 - r S +C.C. (4.81) ) 

(4.82) ) 

soo at low energy scales it behaves as a non-linear sigma model on a large Px . 
Iff  the phases of both chiral superfields are dualized, using two auxiliary gauge fields, 

thee resulting Lagrangian can be written as 

++ i fd2è [S (4Yi + 4V2 -t) + e~Yl + e~Y*] + c.c. 

(4.83) ) 

Thee low energy theory is then obtained by taking e —* oo and integrating out S, which 
enforcess the constraint 

4 4 
Thee resulting model is defined in terms of a single twisted chiral superfield with a twisted 
superpotential,, i.e. it is a Landau-Ginzburg model. 

Thiss is the viewpoint of [53]. Dualizing the phases of all chiral superfields amounts to 
goingg to the mirror description. In the present example, the sigma model on P l is not scale 
invariantt and correspondingly, the Landau-Ginzburg superpotential is not weighted homo-
geneous.. This viewpoint of mirror symmetry is very interesting and it can be applied to tone 
varietiess with c\ > 0, leading to Landau-Ginzburg (-orbifold) models with superpotentials 
thatt are weighted homogeneous (ci = 0) or not {c\ > 0). 

Forr a two dimensional space, like P1, T-duality is mirror symmetry. As remarked earlier, 
thee mirror transformation entails dualizing all chiral superfields. To do a genuine T-duality 
alongg a single one-cycle, one should dualize m + 1 chirals, if the gauge group of the ul-
traviolett model is [7(l) m. In general this not only introduces m + 1 twisted chiral fields, 
itt also leaves some charged chiral fields. Such a field content, of both chirals and twisted 
chirals,, in a sigma model may give rise to flux, like in [48]. However, typically a model that 
arisess from such a duality transformation will also have (twisted) F-terms, so that finding 
aa geometrical interpretation is more complicated than would be for a sigma model. Also, 
dependingg on which combinations of phases or shifts are dualized, it may be impossible 
too perform the duality transformation in a N = 2 superfield formalism, i.e. the constraint 
equationss coming from integrating out some auxiliary superfields may have no solution in 
termss of elementary functions. 
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OTHE RR GEOMETRIE S AND FIVEBRANE S 

Too recapitulate, applying the classical T-duality rules to a Taub-NUT geometry, gives a 
geometryy R3 x S1 in which a fivebrane is smeared along the circle. Taking into account 
quantumm effects, the fivebrane turns out to be localized at a point in R3 x S1. An analogous 
statementt is true for a stack of N coincident fivebranes. This dualizes to an asymptotically 
locallyy flat space with an A^-i singularity. 

Itt is natural to ask how this correspondence of T-dual backgrounds extends to other 
geometries,, also higher dimensional geometries which are part of string compactifications 
thatt preserve less supersymmetry than Taub-NUT, such as Calabi-Yau three- and four-folds. 
Inn particular, it would be interesting to understand how the dual looks, presuming that a 
geometricc interpretation exists. It is difficult to do an honest and exact quantum duality, for 
aa variety of reasons, some of which are the following. 

First,, it is probably almost hopeless to consider duality of a compact geometry. How-
ever,, one might consider non-compact spaces which generalize the Taub-NUT geometry. 
Thesee might be smooth or have a singularity, depending on the particular situation, though 
mostt cases wil l be singular. In particular, there are very interesting generalizations of the 
Taub-NUTT geometry to higher dimensions [88]. The geometry of these spaces looks like 

dsds22 = ^2( r )d r2 + (72(r)ds| + B2(r) (d0 + A)2 , (4.84) 

wheree d s| is a metric on a compact homogeneous Kahler manifold, like for example the 
Hermiteann symmetric spaces of chapter 2. Furthermore, A is a section of the cotangent bun-
dlee of Z, and is related to the Kahler form, Q — dA, locally. The coordinate 6 parametrizes 
aa circle and r is a 'radial' coordinate. The functions A, B, C depend on the radial coordi-
natee only, and have been determined in [88]. Furthermore, these functions depend only on 
thee dimension of Z, and on one positive parameter q, which essentially describes the size 
off  the circle fiber at infinity. As r —• oo, A and B tend to constant values, where B ~ q 
setss the size of the fiber, and C(r) —• r. So the asymptotically the space looks locally 
likee the product of a circle, times a 'cone' over the Kahler manifold Z, which is however 
nott a metric cone. The 'center' of the space is located at r — q (one can always choose 
CC22(r)(r) = r2 - q2). At the center the space looks like a metric cone9. This space is regular 
onlyy in the 'metric link' is a round sphere. 

Whatt would a background look like, obtained by T-dualizing the 6 circle of such a gen­
eralizedd Taub-NUT? If one would take an approach similar to [ 11], the first step would be to 
findd an ultraviolet gauge theory, which in the infrared flows to a nonlinear sigma model on 
thee generalized Taub-NUT. Such a gauge theory has in general less supersymmetry than the 

9Thee general expression for A(r) in [88] is: A2(r) = ^ £ ' ƒ ^ ~a > dt + 0 J , where n is the 

(complex)) dimension of Z, Also B = qA~x. If the integration constant (3 is chosen equal to zero, the space looks 
likee a metric cone near the center. 
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MM = (4,4) of the model of [11]. Having found a satisfying gauge theory, one should per-
formm a N = (2,2) T-duality transformation, which gets rid of some chiral superfields, but 
nott all, which would be the case for mirror symmetry, and introduces some twisted chirals. 
Thee next question would be to find a (geometric) interpretation of this model, or rather, of its 
infraredd limit. This interpretation might, for example, be some more complicated fivebrane 
configuration,, or something more complicated. 

Forr example, as a four dimensional smooth space, one can take instead of a Taub-NUT, 
thee Atiyah-Hitchin space, which should dualize to an orientifold 0(5) plane, instead of a NS 
fivebrane,fivebrane, see [79] and references therein. The Atiyah-Hitchin space, combined with multi-
centerr Taub-NUT can be used to get D-type hyper-Kahler singularities, rather than A-type. 
Butt what would be the dual geometric interpretation of an exceptional hyper-Kahler surface 
singularity,, for example, is unclear. 

Theree are two possible approaches to get a simpler description. First, one could consider 
onlyy the classical duality. In this case, the dual background has too much isometry. An 
examplee of this situation will be considered below. Second, one could consider singular 
geometries,, and take a scaling limit. For example, these could be metric cones, say over 
Hermiteann symmetric spaces, as local models of the singularities of the generalized Taub-
NUTT geometries of [88]. But also these could be other singularities as discussed in chapter 
2,, which may not have a known metric description at all. 

Onee might hope to be in a better position to find a dual description in such a scaling 
limit .. The motivation for this hope, in part, lies in the observation that an exact conformal 
fieldfield theory description is known for the throat geometry of fivebranes, whereas no exact 
eftt is known for the full 'global' background of a stack of fivebranes. If in more general 
scalingg limits, there are exact conformal field theory descriptions as well, then one might 
employy known and conjectured facts about abstract conformal field theories to perform the 
duality,, and perhaps hope that after the dust has settled, the dual eft also has a geometric 
interpretation.. Still, one might then ask what are the 'global' backgrounds that correspond 
too the scaling limit conformal field theories. This second approach, a full quantum duality 
off  a scaling limit wil l be considered in the next section. 

CLASSICALL DUAL S OF GENERALIZED T A U B - N U T M E T R I CS 

Considerr a generalized Taub-NUT metric [88], 

ds22 = Lq(r)dr2 + (r2 - q2) Galdxadxb 

++ -T7^[d* 2 + ^(x,x)dz<f. (4'85) 

Heree Gai is a Kahler metric of an 2n dimensional compact homogeneous Kahler manifold, 
Z,, with coordinates x**, where n runs over n holomorphic indices a and n anti-holomorphic 
indicess b. Locally, in a coordinate patch, one can obtain the Kahler metric from a Kahler 
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potentiall  Ga^ = 2dad^K(x,x). The coordinate 9 parametrizes a circle fiber. The nontriv-
ialityy of the fibration is expressed through the A^, which can be seen as a gauge field on 
Z.Z. The gauge field A is related to the Kahler metric. In a coordinate patch, one can write 
A»A» = id^K, where p runs over holomorphic and anti-holomorphic indices. 

Forr example, taking Z = IP1, using spherical coordinates on P1, and taking A ~ 
coscos 6d4>, so that dA is the volume form on S2 ~ P1, the resulting metric is the familiar 
Taub-NUT.. Its classical dual is a the smeared fivebrane on R3 x S1. 

Forr Z ~ P1 x P1, one can write a Taub-NUT like metric which is of the form 

dsds22 = L(p)dp2 + (p2 + 2q2) 

+ + L(P) L(P) 

Y^Y^ do? + sin2 Öidtf 
i=l,2 i=l,2 

nn 2 (4.86) ) 

Where e 

dtpdtp + V ]  c os &id<j>i 
i=l, 2 2 

L(p)=lL(p)=l iPiP + 2qf 

dsds2 2 L(p)(dpL(p)(dp22+q-+q-22< < 

(4-87) ) 
4p(pp + 4<?) 

Thee parameter q governs the size of the ^-circle. In the (classically) T-dual geometry, it is 
relatedd to the asymptotic string coupling. 

Applyingg the Buscher rules, results in a 'smeared' dual background 

^ 2 ) 4 > 22 + 2g2) £ [ d 0 2 + s i n2 W 2 ] , 
t= l ,2 2 

BB = ^ cosdidï) A d&, (4.88) 
t = l , 2 2 

i>> = $o + logL(p). 

Inn this background, one may recognize the 'transverse' space of a pair of intersecting five-
branes.. Both fivebranes share a common worldvolume M3'1 and both are smeared along a 
commons'1.. This leaves five dimensions, in which the fivebranes intersect in a point (to get 
aa picture, say, both NS5 and NS5' have common worldvolume directions x 0123, furthermore 
NS55 has worldvolume directions x45, NS5' has worldvolume directions xQ7 and both NS5 
andd NS5' are smeared along xg, which is a circle. The only direction in which the entire 
configurationn is point-like is x&). For instance, the 1/p behavior in the metric at small val-
uess of p, indicates there is a single direction in which the whole configuration is localized. 
Byy quantum effects, one might expect the fivebranes to localize along the ^ direction. 

CONCLUDINGG OBSERVATIONS ABOUT CLASSICAL DUALIT Y 

Thiss picture as it is presented above is obviously quite crude. There are some questions 
whichh arise immediately. For example, in a brane interpretation, two charges appear natu-
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rally,, labeling the numbers of NS5 andNS5' branes. One may wonder what the correspond-
ingg interpretation is of these integers on the geometric side. A natural guess, presents itself, 
whenn zooming in on the local geometry. 

Inn the Taub-NUT case, we have seen that the local geometry looks like a metric cone 
overr a lens space. The degree to which the circle is fibered non-trivially over the base Pl , 
i.e.. the Chern class, indicates the fivebrane charge in the dual background. Similarly, there 
onee would consider circle fibrations over P1 x P1, which give rise to a pair of integers. 

However,, the analogy seems not to go through completely. Whereas the metric cone 
overr any lens space S3 / Z J V +I is a supersymmetric metric cone with a smooth link, there 
aree only two metric cones on smooth circle bundles over P1 x P1 . The links are T11 and 
TTuu/Z2,/Z2, as discussed in chapter 2. Nevertheless, one can consider many more supersym-
metricc singularities in six dimensions, which keep a relation to P1 x P1. For instance, one 
cann consider orbifolds of the ordinary conifold, and related spaces that are connected via 
blowupss and blowdowns of various cycles. 

Theree is another interesting question. It seems perfectly legitimate to consider a 'scaling 
limit '' on the geometric side of the picture, keeping only the geometry near a singular point, 
similarr to scaling from (N + 1)-center Taub-NUT to an AN singularity. The question is 
whatt such a scaling limit would correspond to in the dual background. First of all, it is 
clearr that this question cannot be answered using the classical Buscher rules. This is so 
nott only because the fact whether a brane configuration is smeared or not, affects what the 
backgroundd looks like near this configuration. But also, it is precisely the localized stack 
whichh has a throat geometry that can be decoupled from the bulk, through an appropriate 
scalingg limit. For an intersecting configuration of fivebranes, how should one imagine taking 
ann analogous scaling limit? 

Forr instance, consider a configuration of two stacks of intersecting fivebranes, NS5 with 
worldvolumee directions a?oi2367 and NS5' branes with worldvolume directions #012389- In 

suchh a geometry one can approach the NS5 branes while remaining far away from the NS5' 
branes,, and it is not readily clear that there is a distinguished 'radial' direction, to perform 
aa decoupling limit. Such a decoupling limit should yield a linear dilaton in the 'radial' 
direction.. As it turns out, there is such a limit, which has been found, assuming a linear 
dilatonn from the outset, in [106]. 

AA final question for now is: 'Is it possible to find general 'flux impurity' configurations, 
inn the same numbers as there are geometric impurities, and how should these be interpreted 
andd a scaling limit taken?'. Or alternatively: 'Are there 'scaling limits' of flux impurities, are 
theyy described by exact conformal field theories, like the simple stack of parallel fivebranes, 
andd how are these conformal field theories related to the geometry?. These questions form 
thee starting point for section 4.4. 
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4.44 TH E DUAL OF A CONE 

Onee can take a 'local' view on the issue of quantum T-duality. In this approach, one con-
siderss only the local geometry near a singularity and only a 'throat geometry' in the dual, 
wheree there are no 'localized branes' visible, but only their effect on the nearby ambient 
space:: fluxes and a linear dilaton. It is quite generic to consider T-duality in such a 'lo-
cal'' approach, since all supersymmetric singularities, discussed in chapter 2, have a (circle) 
isometryy which degenerates at the singular point. 

Inn order that one may consider only the 'localized' physics, it must be decoupled from 
thee bulk through some decoupling limit. On the geometric side the decoupling limits involve 
deformingg the singularity slightly, by a parameter \x, which is taken to zero in the decoupling 
limit .. In order to keep the masses of localized excitations finite (think of these as branes 
wrappingg the almost vanishing cycle), the asymptotic string coupling is scaled to zero, too. 

Inn the case of the hyper-Kahler surface singularities, the decoupled theories are Littl e 
Stringg Theories [3], non-gravitational theories of the worldvolume physics of frvebranes. 
Ann important way to study these theories, is via a holographic dual: linear dilaton back-
grounds,, like the throat geometry [4], [23, 24]. A similar view can be taken with regard to 
otherr 'impurities', which can be interpreted as Calabi-Yau singularities, or as certain 'flux 
impurities'' which might be intersecting frvebranes, or other complicated sources of flux. 
Ann important inspiration and motivation for us to consider affine hypersurface singularities, 
liess in the work of Ooguri and Vafa [19], who discussed T-duality between ADE surface 
singularitiess and fivebrane throat conformal field theories in an abstract eft approach, and 
thee work of Giveon, Kutasov and Pelc [22] who have proposed a relation between general 
affinee hypersurface singularities to Landau-Ginzburg conformal field theories. 

OUTL IN E E 

Inn this section we shall begin with a discussion of a non-conformal field theory which is 
proposedd to relate the nonlinear sigma model on an affine hypersurface (or a discrete quo-
tientt thereof, depending on details), to another conformal field theory, which we shall call a 
'half-dualized'' theory. The idea is that the 'half dualized' theory takes into account all non-
perturbativee contributions to the T-duality. Then in order to get the T-dual to the non-linear 
sigmaa model on a hypersurface, one needs only to perform a classical T-duality transforma-
tionn on the 'half dualized' theory. The resulting dual theory genetically contains a linear 
dilatonn (i.e. the conformal field theory of a scalar with background charge). The rest of the 
theoryy depends much more on the hypersurface one starts out with. 

Wee proceed to discuss some concrete examples of hypersurfaces and dual theories. First, 
wee recover the duals to the ADE surface singularities, which consist of a dilaton and an 
SU(2)SU(2) superconformal field theory, as originally found by Ooguri and Vafa [19]. The ADE 
surfacess are quite special, as the are the only hypersurfaces we know that are both described 
exactlyy by our kind of ultraviolet theory, and whose duals have an interpretation with a 
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WZWW model. As it wil l turn out, in general hypersurfaces of 'anticanonical type10' are 
describedd by our ultraviolet gauge theories. If a hypersurface is not of anticanonical type, 
(andd — d + J2ai divides d), then there is an ultraviolet theory which describes a cyclic 
quotientt to the affine hypersurface. 

Wee continue with some examples of special non-anticanonical hypersurfaces. In general 
theirr defining polynomials are of the form 

FF ( x i , . .. ,xn+2) = H(xi,...,xn) + x++1xl+2. 

Whenn the polynomials H are of the type that defines a Landau-Ginzburg superpotential of a 
modell  that also has a Kazama-Suzuki coset model interpretation, Gf (H x f/(l)) , then the 
T-duall  model is of the form 

linearr dilaton x —. 
H H 

Wee conclude with some finishing remarks about hypersurfaces which have no Landau-
Ginzburg/Kazama-Suzukii  interpretation, and regarding Anti-de Sitter target spaces in lieu 
off  linear dilaton backgrounds. 

SIGMAA MODELS FOR CONES 

Considerr an affine hypersurface 

CC = r 1 ( 0 ) c Cn + 2 , (4.89) 

definedd by a weighted homogeneous defining polynomial 

F(AW l xi , . . . ,XW n + 2x n + 2 )) = AF(arl s..., xn+2). (4.90) 

Thee 'weights' can be written as 

W i - ^ ,, <*€ {2 ,3 ,4 , . . . }, (4.91) 

wheree also 

gcdd ({ai} ) = 1, 

lcmm ({ai} ) = d 
(4.92) ) 

Lett C have only a single, isolated, singularity which is located at x = 0. That is to say, 

(F(x)) = 0 and dF(x) = 0) <=> x = 0. (4.93) 

10Recalll  that by this term we refer to hypersurfaces defined by a weighted homogeneous polynomial of weighted 
degreee d and with weights at such that ]T a*  = d + 1 

105 5 



ChapterChapter 4 - The Dual of a Cone 

Accordingg to Tian and Yau [27] this affine cone, at least without the apex x — 0, is Calabi-
Yau,, if and only if 

Tll  + 2 

dd < ^2 at = A, (4.94) 

andd we assume that it is. 
Howw is this hypersurface described via a gauged linear sigma model? The equation 

F(xi ,.. ..,xn+2) = 0 

definingg C is an equation in affine space Cn + 2 \ {0} . Usually, a gauged linear sigma model 
iss used to describe hypersurfaces in a projective space [18]. The idea is to view the affine 
Cn + 22 as a 'patch' with 'inhomogeneous' coordinates of a larger space, that does have a 
U{\)U{\) gauge equivalence. Actually, in general, the patch described through such a gauged 
linearr sigma model is not Cn + 2, but rather a cyclic quotient Cn + 2/ Z m , in the fashion of the 
modell  of section 3.3.2 on page 61. This point of view is discussed below. 

Firstt note that F = 0 is also the defining equation of a hypersurface in 

P[ai,a2,.. . ,an+2]--

Iff  this hypersurface is well-formed, see (2.57), 

gcd (a i , . . . , a i , . . . , an + 2)) = 1 1 < i < n + 2, 

gcd (a i , . . . , ö i , . . . , a j , . . . , a „+2)) | d V i , j . 

thenn (4.94) says that it is Fano. We assume that the al and d are such, that it actually is 
Fano. . 

Inn a £7(1) gauged linear sigma model description of the hypersurface F = 0 in 

F[aF[ahhaa22,...,a,...,an+2n+2}, }, 

thee variables Xi correspond to chiral superfields <&i of U(l) (gauge) charge qi = a .̂ Intro-
ducee another chiral superfield, <Ê>o of charge 

qoqo = a0 = d - A < 0. (4.96) 

Inn order to avoid the axial anomaly, one should introduce another chiral superfield, $ _ i, 
withh U(l) charge 

q-iq-i = -d, (4.97) 

soo that the sum of all gauge charges vanishes. 
Noww consider the 'linear sigma model' with Lagrangian 

LL = LD+LF+Lp, (4.98) 
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where e 

LLDD = f tfO\$-X\2e-dV + - i r  (*  + * + Vf 
JJ 2a0 

2n2n , (4.99a) 

2e2 2 

ff d29 $ _! [/ie-'^00* 1 + F (*! , . . . ,$n+2)] + c.c (4.99b) ) 

- -ƒ ƒ L~~ = / d20 - t E + c.c. (4.99c) 
'F 'F 

Notee that this Lagrangian is not quite that of an ordinary gauged linear sigma model with a 
gaugee invariant superpotential. The above Lagrangian has a gauge invariant superpotential, 
butt the kinetic term for $o = e*  is somewhat special. The field ^ does not transform ho-
mogeneouslyy under gauge transformations, but rather it is shifted. But on the other hand, the 
superpotentiall  for \I>, does transform homogeneously. In some respects, it is convenient to 
thinkk in terms of the field field \I>, in others it is more natural to reason in terms of the condensate 
$o-- Both points of view will be used in the following. 

Thee F-term (4.99b) is gauge invariant, and it can also be made invariant under the vecto-
rialrial U{1) R-transformations. This is accomplished by choosing the U(l) v charges of all 3>j 
proportionall  to their gauge charges, v i = 2w?j except for the U( 1) y charge of $ _ i , which is 
chosenchosen to vanish. A negative U{l)y charge for $0 may seem strange, but one should keep 
inn mind that the 'fundamental' field is * . 

Also,, from the definition of ao it does not follow that |ao| should necessarily divide d. In 
somee interesting cases, |ao| does not divide d. Some examples of such cases are discussed 
later.. The prime case where |ao| is guaranteed to divide d, is ÜQ = —1. Precisely in this 
case,, the hypersurface F = 0 in P[ai, 02,.. •, an+2] is anticanonically embedded. For ex­
amplee this is the case for the ADE hyper-Kahler surfaces, in table 2.2 and for the del-Pezzo 
surfacess collected in table 2.6. It is for anticanonically embedded hypersurfaces in weighted 
projectivee space, that the method of Kollar and Johnson applies to possibly determine the 
existencee of quasi-smooth Kahler-Einstein metrics on the projective hypersurface [34, 35], 
whichh is a foundation to apply the methods of Boyer, Galicki et al.[78, 37, 32] to prove ex­
istencee of Sasaki-Einstein metrics on the link, so that the affine hypersurface can be viewed 
ass a metric cone. 

Preciselyy when the embedding is anticanonical, one can recover the affine cone from the 
linearr sigma model, as opposed to a cyclic quotient of the affine cone. This cone is recovered 
inn the infrared limit, if the Fayet-Iliopoulos parameter r » 0. When the embedding is not 
anticanonical,, |oo| > 1, and |oo| divides d, then in this 'phase' of the sigma model, one 
recoverss a Z|Qo| quotient of the affine cone F - 1 (0). When |ao| does not divide d, a possible 
interpretationn seems to be more subtle. Let us illustrate these cases with some examples. 
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EXAMPLES S 

ADEE HYPER-KAHLER SURFACE 

Thee hyper-Kahler surfaces are described as hypersurfaces in C 3, defined by the polyno-
mialss listed in table 2.2. These hypersurfaces are anticanonically embedded, so a o = — 1-
Thee gauge invariant superpotential of an ADE linear sigma model reads 

WW = $ _! (n$öd + FT ( $ I , $2, $3)) • (4.100) 

Inn the non-linear sigma model phase, r ^> 0, the vacuum manifold (cf. equation 3.46 on 
pagee 61) is 

{/i*ödd + ^ r (* i ,*2 , $3) = 0} M l ) , (4.101) 

whichh is a hypersurface in ö(—d) —> P[ai, Ü2, 03]. By passing to 'inhomogeneous coordi­

nates'' Hi = «Êî Q = $ i ^ g \ this can be viewed as the affine hypersurface 

F r (S 1 , S 2 , S 3 )+A tt = 0 (4.102) 

inn C3 . That is to say, the deformed ADE-singularity. A similar argumentation applies to 
anyy anticanonically embedded hypersurface (i.e. ao = —1). 

Too be more specific, consider a deformed An+i singularity. It is described as a hyper­
surface e 

AAn+1n+1 : x\+n + xl + x% + fjt = 0. (4.103) 

Thee gauged linear sigma model that describes this model in its infrared regime, for large 
positivee FI-parameter, has U(l) charge assignments 

rr a ct 
[a_i,oo,Oi,o2 ,a3]] = \-a{n+ 2), -a,a, -(n + 2), - ( n + 2) 

(4.104) ) 

wheree ai=l (a=2) if n is even (n is odd). The superpotential reads 

WW = $_i (/i$o"n~2 + &ï+2 +$l + *l) • (4-105) 

Ass discussed in section 3.3.2, when r > 0, the scalar potential is minimized on a a hypersur­
facee in O (-a) —• P [a, f (n + 2), | ( n -I- 2)], and the hypersurface is given by 

H$öH$önn~~22 + *ï+2 + $ ! + $ ! = 0- (4.106) 

Thiss can be rewritten, defining E* — $; <&Q a ° , so that the E, are uncharged under the 
gaugee group, and recalling $ 0 = e*, as 

e*(, ii + S 7 + 2 + S | + S j ) = 0 . (4.107) 

Thee part between brackets is the defining equation of a deformed A n + 1 singularity. Also, 
thee Ei are good coordinates on C3 . Note that \I> ~ ^+2iri, or, in terms of $0» $0 ~ e2ni$o-
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Thiss periodicity could affect the interpretation of the Si's: Hi ~ e2irt (aj/ao). Since a0 = 
—1,, the Hi are 'single valued'. In other words, the Hi are coordinates on C3, and not on 
somee discrete quotient of C3, thanks to |a0| being equal to one. 

Theree are many anticanonically embedded hypersurfaces possible. The anticanonically 
embeddedd log del Pezzo surfaces and log Fano threefold hypersurfaces in weighted projec-
tivee spaces are exhaustively collected in [34] and [35] respectively. From the point of string 
theory,, and more particularly, the T-duality discussed in this section, most of these seem not 
too have an apparent elegant interpretation in string theory. 

SOMEE GENERALIZED CONIFOLDS 

Besidee the anticanonically embedded hypersurfaces, there many hypersurfaces that are 
nott anticanonically embedded, but do have an interesting interpretation, from the perspec-
tivee of string theory and T-duality. Instead of discussing the widest possible kinds of classes, 
lett us focus on the 'generalized conifolds', or actually, as subset of these. 

Inn a generalization of the usual conifold, which can be regarded as the affine hypersur-
f*£LC 6 6 

xi+xl+xxi+xl+x22
33 + xl = 0 (4.108) 

inn C4, consider hypersurfaces in cyclic quotients of C4 or C5, which wil l be specified 
shortly,, of the form 

n n 

F(xi , . . . ,arn+2)) = £ > r +*n+i + 4 + 2, (4 1°9) 
i = i i 

takingg n = 2 or n = 3. Call the corresponding surfaces F _ 1 (0) generalized conifolds. 
Hypersurfacess with two pure squares in the defining polynomial, like in (4.109) are 

neverr anticanonically embedded (except for the A k surface singularities, which are defined 
inn Cn + 2 ~ C3, here hypersurfaces for which n > 2 are considered). For the sake of 
thee future interpretation of the model, restrict to the subclass of generalized conifolds with 
(integer)) exponents m* > 2, such that 

nn  1 1 

V —— = - , (4.110) 
*-^*-^ m,i m 
i—1 1 

wheree m is a positive integer 
m<E{ l ,2 ,3 , . . . }.. (4.111) 

Notee that m may also be equal to one, unlike the mi. 
Theree is a 'Gepner model' sort of interpretation of this condition on the exponents. 

Althoughh it may seem an observation very much disconnected from the present context, 
noticee that a superpotential 

n n 

WW = X^m + £ Xr + X2
n+l + X2

n+2 (4.112) 
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'defines'' a conformal field theory, quite analogous to the sort discussed in the seminal paper 
[19]]  of Ooguri and Vafa on T-duality of the fivebrane, and ADE surface singularities, which 
hass a central charge 

c = ll  + — + V n 1 J =ra, (4.113) 

usingg the familiar formula for the central charge of a Landau-Ginzburg model, and not 
worryingg about the negative weight] ]. 

Thee characterization above, in terms of exponents rather than weights, a i, is quite conve-
nient.. However, perhaps it obscures some aspects discussed earlier in terms of the a {. Recall 
thatt from the definition (4.96) of a 0 it does not follow that this weight is necessarily a divi-
sorr of d, the weighted degree of F. Since the degree of homogeneity of x ™ is d — —ma0, 
integralityy of m just says that |ao| is indeed a divisor of d. However, the embeddings of the 
generalizedd conifolds not being anticanonical, \CLQ\ properly divides d, |oo| > 2. 

Forr concreteness, consider some particular example of a generalized conifold. First take 

F(x i ,, x2, x3, x4) = x\m + x2
2
m + xj + x\. (4.114) 

Thee charge assignments in the linear sigma model, for this model are 

[a_i,a0,, «1,02,03,04] = [—2m,-2,1,1, m,m]. (4.115) 

Thee F-term reads 

LLFF== fd2d$-1(n®Qm + F^ ! , ^ , ^ , ^ )) (4.116) 

andd the linear sigma model, for large positive Fayet-Iliopoulos parameter, flows to a non-
linearr sigma model on F - 1 (-//) in C4/Z2, where Z2 acts on the coordinates of the covering 
C4as s 

( 6 ^ 2 , 6 , 6)) ~ ( -4 i ,~^2 , ( - l )m«e3 , ( - l )mC4). (4.117) 

Similarly,, one can consider the generalized conifold defined as F_ 1( - / ^ ) in C4/Z3, 
with h 

F(xi,xF(xi,x22,X3,x,X3,x44)) = x\m +xlm +xl+x%. (4.118) 

Or,, F~: (//) in C5/Z6 defined by a polynomial like 

F(xi,xF(xi,x22,x,x33,x,x44,x,x55)) = x\2m + xlm + x4
3
m + x\+ x\. (4.119) 

111 At least, not worrying more than in [19]. Very loosely speaking, one can think of the negative weight term as 
aa SL(2; R) Kazama-Suzuki model, by analogy with the sound SU(2)/U(1) {minimal model) interpretation of 
XXmmii terms, like Ooguri and Vafa observed (also see [91]). On the other hand, remembering the interpretation of 
$00 = e*, where *  is a 'shift-gauged' field, one can argue for the interpretation of this negative weight term, as 
aa c = 1 + 2/m eft, through the reasoning of Hori and Kapustin [26]. In that interpretation, the negative weight 
termm in the superpotential indicates a Liouvill e theory factor, while in the linear sigma model which describes the 
hypersurface,, the field $0 of negative gauge charge is part of a SL(2; R) Kazama-Suzuki model, in the infrared. 
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Surfacess like these above have quite interesting duals, as will be discussed shortly. First 
notee that, unlike the ADE hyper-Kahler surfaces, these higher dimensional varieties admit 
deformationss by terms of the same weighted degree. That is to say, one can add monomials 
inn the Xi 's which leave the polynomial weighted homogeneous, but not all such terms can 
bee gotten rid of by redefinition of the variables x i. Such deformations of the a polynomial in 
thee F-term of the linear sigma model, correspond to marginal deformations in the conformal 
infraredd non-linear sigma model. 

Inn the following exposition, regarding T-duality of the models, one should keep in mind 
suchh marginal deformations. Rather than performing a duality relating two precise eft's, 
thee dual models will be related up to marginal deformations. That is to say, the 'dual' 
modelss describe string backgrounds in the same moduli space. This 'imprecision' is large a 
consequencee of the unfortunately too poorly understood eft isomorphisms, which underlie 
thee proposed duality relation. 

DUALIZATIO NN 1: QUANTUM EFFECTS 

Thee (quotients of) weighted homogeneous affine cones, as discussed above, all have a char-
acteristicc U(l) action, which degenerates at the apex (the singularity). Consequently, one 
mayy wonder if a corresponding T-dual description can be found, and if it has a reasonable 
geometricc interpretation. For one, it is expected that worldsheet instantons play a crucial 
rölee in the dualization process, since the U(l) action has a fixed point. 

Thee characteristic U(l) action of a hypersurface can be effected in the linear sigma 
modell  by a phase rotation of $o» 

WW = $_! tó/ao + F ($!,..., $n+2)) 
(4.120) ) 

== $_ ied* / ao (fi + F ($le
ai*/a°,..., $n + 2ea" + 2* / a° ) ) , 

or,, thinking of the 'shift-gauged' field \I>, the characteristic action is achieved by simply 
shiftingg the imaginary part of $. So it is natural to think to dualize shifts of \I> in order to 
gett a model which describes the background dualized along the characteristic £7(1) action. 

InIn the 'sigma model phase' {$ - i ) = 0, and it is not clear if or how the field $ _i should 
bee involved in the duality operation. A duality operation similar to the ones discussed so 
farr (introducing an auxiliary gauge field and an 'overarching' model and integrating out 
thee auxiliary gauge field) would get rid of one, or perhaps more, chiral superfields and 
introducee twisted chirals instead. So the dual model would have a formulation involving 
aa combination of both chiral and twisted chiral superfields, unlike the Hori-Vafa mirror 
symmetryy dualizations [53]. 

Inn addition the (twisted) F-terms complicate matters. It is not at all obvious how the 
variouss chirals and the twisted chirals should be coupled in the dual model. In any case, this 
couplingg would need to be consistent with M = 2 supersymmetry. Note that in (4.99b) all 
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thee (chiral) fields are coupled to each other, although the $ i , . . ., $n+2 couple to \I> only 
throughh $_i. 

Iff  one were to ignore the superpotential, the dualization of \I> is quite straightforward. 
Ass a 'shift-gauged' field (4.72), its kinetic term is replaced by one for a twisted chiral, like 
ƒƒ dA6 — \Y |2, and there is a contribution to the twisted F-term, of the form ƒ d29 — F £, but 
theree is no e~Y term generated, as there are no vortex configurations for a 'shift-gauged' 
field.field. Taking into account the superpotential is known to be quite subtle, also in the context 
off  2d mirror symmetry [53] of compact or non-compact manifolds. 

Clearly,, it is totally incorrect to simply replace * by a twisted chiral, since a direct 
couplingg to the chiral field <I>_i would be inconsistent with supersymmetry. On the other 
hand,, one might imagine that $_x might need to be dualized as well, yielding another 
twistedd chiral which could be coupled to the dual of ^ in a simple fashion. However, in that 
casee the question presents itself how the dual of $ _i would couple to the various $i. 

Iff  not along the lines of gauging "P and integrating out the auxiliary gauge field, how 
elsee to obtain a dual? Recall the recurring philosophy followed in the dualization procedure 
off  backgrounds with a degenerating circle isometry. As a first step, a classical duality gives 
aa 'smeared' dual background. This 'smeared' background has an isometry, which the exact 
T-duall  should not have. In a second step, one gets the 'full ' dual background by including 
thee nonperturbative quantum effects, the worldsheet instantons, which break the 'unwanted' 
classicall  symmetry. 

Inn an inversion of the order of these steps of the philosophy, could one alternatively 
firstfirst take into account the non-perturbative effects, in terms of some 'half-dual' model, and 
inn a second step, get the 'fuH' T-dual model from a more manageable classical duality? 
InIn fact, the claim here is that this is indeed possible, and that the 'half-dual' model has a 
conjecturedd simple description in terms of the 'linear sigma model' (4.99). It is conjectured, 
thatt the non-perturbative effects of the duality give a non-zero expectation value to 0 _ i. 

Thee non-zero expectation value of 0_i is expected to arise due to worldsheet instantons 
whichh contribute crucially in the T-duality, taken along a degenerating cycle in the cone. In 
aa non-linear sigma model, the role of worldsheet instantons is conceptually clear: there are 
explicitt field configurations in the non-linear sigma model which are interpreted as strings 
embeddedd in the target space in such a way that they are wound around the T-duality circle. 

Inn the present model, as remarked, the situation is more subtle. Some intuition can be 
gainedd from the analogous situation which occurs with 2d mirror symmetry [53], Note 
thatt we are at this point not discussing 'our' model, but mirror symmetry. In this case, 
severall  T-dualities are performed at once, and each T-duality corresponds to integrating out 
ann auxiliary gauge field. The role of the non-linear sigma model worldsheet instantons is 
takenn over in this case by vortex configurations of the auxiliary gauge field. The effect of 
thesee vortex contributions, is that effectively the Fayet-Iliopoulos parameter is 'shifted'. It 
iss shifted in in the following way. First of all, the dual (twisted chiral) field couples to the 
U(l)U(l) GLSM gauge field as a dynamical Fayet-Iliopoulos parameter. Second, in the mirror 
symmetryy applications, a twisted superpotential is generated for this dual field. A twisted 
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superpotentiall  can give an expectation value to a field, in the infrared limit. If the twisted 
chirall  field gets an expectation value due to the twisted superpotential, then effectively the 
Fayet-Iliopouloss parameter is shifted, because of the Fayet-Iliopoulos-like coupling of the 
twistedd chiral to the gauge field. The shift of FI-parameter, in turn has a consequence for 
thee expectation values of all the fields, because the scalar potential is changed. 

Noww consider our T-duality. In our ultraviolet gauge theory, there is a superpotential 
presentt from the outset, but no 'dynamical Fayet-Iliopoulos' coupling between the matter 
fieldsfields and the gauge field. When we are to dualize shifts of ^ (if ^ is shifted, the gauge 
invariantt combinations ea i*/l a°l$i transform in such a way that F is rotated by a phase 
factor,, as it is expected it should), we expect that a dual field wil l couple as a dynamical 
FI-parameterr to the gauge field. But from the outset, \I> has a superpotential e -d*/l aol# So 
itt is natural to expect that the dynamical FI-parameter acquires an expectation value, as a 
consequencee of this potential. This means the effective FI-parameter is shifted or, in the 
languagee of the original ultraviolet theory, that effectively * is shifted. This in turn is seen 
ass a resulting expectation value of 0_i, which minimizes the scalar potential part VD as 
inn (3.60). At this point \I> becomes somewhat of an awkward field, as the potential pushes 
itt out to infinity. But this is not too strange; the exponential potential defines a Liouvill e 
theory. . 

Inn terms of the formulation of the linear sigma model in terms of $o> this change 
amountss to a drastic change of the Fayet-Iliopoulos parameter, from r » 0, to r = — oo, 
whichh could qualitatively be regarded as a change of a Kahler modulus, in the non-linear 
sigmaa model, albeit a very severe change. From the point of view of V, with kinetic term 
TAjd'ipTAjd'ip22 for its scalar component, it also seems like shift infinitely far away in moduli space. 

Unfortunately,, a clear understanding of this shift is lacking. However, loosely speaking, 
itt is the exponential interaction of ^ that pushes out ip all the way to infinity, when (4>-i) ^ 
0,, at very low energies. But in the infrared, ^ is somewhat of an awkward variable to 
characterizee the theory, which is actually M = 2 Liouvill e theory. One can think of this 
theory,, at large values of ip as a sigma model on R^ x S1, where there is a background 
chargee for the E ,̂ scalar. Clearly, such 'half-dual' backgrounds look nothing like the cone 
onee started out with. In fact, as an orbifold of a product (Liouville) x (Landau-Ginzburg), 
itt is not at all clear if a geometric description characterization of this worldsheet eft exists 
att all. Yet, in order to perform the usual dualization procedure, albeit only classically, one 
shouldd have a sigma model interpretation. 

SOMEE LITERATURE 

Beforee discussing the possibility of such sigma model interpretations, and the second half of 
thee dualization procedure, note that a considerable amount off  quite related and very interest-
ingg literature exists, which connects conformal field theories such as the above, consisting 
off  a Liouvill e factor and a Landau-Ginzburg factor, to geometric singularities. 
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'global'' Calabi-Yau 

scalingg limit isolating 'localized' physics 

T T 

CCn+2n+2 D F'1 (-(i) 
i i 

IR-flow w 

lin.. a -model ((<fi-i) = 0) 

'half-duality' ' (non-pert,, part) 

lin.. a-model ( (0_: ) ^ 0) 

'LG-orbifold' ' 

classical l 

T-duality y 

classical l 

T-duality y 

classical l 

T-duality y 

classical l 

T-duality y 

'smeared'' flux background 

IR-flow w 

->-- ? 

worldsheett instantons 

^^ 'full ' T-dual, in UV 

IR-flow w 
f f 

'localized'' flux background 

scalingg limit isolatingg 'localized' physics 

'global'' configuration with localized flux sources 

Figuree 4.2: Diagram of duality relations. The pair of lines in the middle of the figure concern non-
conformall  (ultraviolet) models. The 'full ' T-duality is in this section regarded for the 'localized' 
physics,, like for example, the CHS fivebrane throat and Ak singularities. The 'localized' physics is 
isolatedd (by a scaling limit) from a 'global' background, such as for example a stack of fivebranes or 
Taub-NUTT The exactly T-dual global backgrounds appear in the top left and bottom right corners of 
thee diagram. 
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AA selection of salient literature is presented in the following paragraphs. There is no pre-
tensee that this selection is representative of all related and important work, but it is hoped 
thatt the following selection wil l provide the reader with an idea of otherr work in three inter-
relatedd topics. Firstly, there is work on relation between singularities and Landau-Ginzburg 
models.. Secondly, important work exists on linear dilaton backgrounds and Littl e String 
Theory.. Thirdly, such 'flux impurity' throat backgrounds are related to AdS backgrounds. 

First,, a major inspiration and, as far as the author is aware, the first work discussing 
aa connection between ADE surface singularities, and deformations thereof is the paper of 
Oogurii  and Vafa [19]. In this work Landau-Ginzburg orbifold models are taken, with super-
potentialss of the form 

WADEWADE = / ^ öd + FADE(XI,X2,X3), (4.121) 

whichh are proposed to describe deformed ADE surface singularities, motivated by the usual 
Calabi-Yau-Landau-Ginzburgg correspondence [92], without worrying about the negative 
gaugee charge of XQ. For hypersurfaces in projective spaces, the CY/LG-correspondence 
wass put on a firm footing by Witten through the interpolating linear sigma model [18]. 
Ass discussed in section 3.3.2, the connection is found to be more involved for the affine 
hypersurfaces,, like also the ADE surface singularities 

Oogurii  and Vafa take the Landau-Ginzburg orbifold as a starting point of a description of 
thee ADE surface singularities and interpret the x0 part as a SL(2; R)/U(l) Kazama-Suzuki 
model,, the 'cigar', which indeed has a U(l) isometry, considering it an 'analytic continua-
tion'' of SU(2)/U(1) minimal models, for their purposes. The rest of the Landau-Ginzburg 
superpotentiall  defines a minimal model with a corresponding ADE SU(2) modular invari-
antt [17]. In the 'scaling limit ' that isolates the local physics at a singularity, one of the pa-
rameterss scaled is fi —> 0. For the 'cigar' coset model, this means that the 'tip' moves ever 
furtherr into the large gs region, and a target part looks like the 'dilatonic cylinder' R ^ x S1 . 
Takingg R^ x U(l)> which has a decoupled U{\), instead of SL(2; R)/C/(l), and studying 
carefullyy the partition function of the orbifold \U{\) x (SU{2)/U(l))r] / I \ Ooguri and 
Vafaa find the partition function for a SU(2)r conformal field theory. In addition to this 
SU(2)r,SU(2)r, the complete background also has the remaining scalar with a background charge. 
Soo the total eft, in the scaling limit, so /z —• 0, has the partition function of R<j> x SU(2). 
Thatt is, they are identical as conformal field theories and hence the string backgrounds can 
bee related by T-duality. For the A-type singularities, this is nothing but the CHS throat eft 
off a stack of coincident fivebranes [15]. 

Althoughh the work of Ooguri and Vafa is a fundamental paper, some important earlier 
relatedd work, considering eft partition functions, is the earlier [91], and alsoo [93], regarding 
thee role of SL(2)/U(1) in the description of the conifold singularity which, like the A i 
surfacee singularity, has no non-trivial eft factor coming from the polynomial F, which is 
simplyy quadric. 

Inn a spirit like Ooguri and Vafa, considering eft partition functions, is the work of 
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Eguchi,, Sugawara and others, such as [94] and later works, which show that certain 

[SL(2;[SL(2; R) x Landau-Ginzburg] /T 

conformall  field theories have partition functions consistent with spacetime supersymmetry 
(basically,, they are modular invariant). A very interesting paper in particular [95], considers 
partitionn functions of models consisting of an M = 1 Liouvill e model and a Af — 1 G/H 
cosett models. These models are precisely cases of 'flux impurities' which admit a geometric 
(gaugedd WZW) interpretation. The G/H coset models considered are are such that the 
homogeneouss spaces G/H lead to metric cones of special holonomy, just as in our case. 
Evenn coset conformal field theories are discussed based on current algebras G and H, such 
thatt the coset manifold G/H is a homogeneous nearly Kahler or weak G 2 manifold (leading 
too metric cones of C?2 and Spin(7) holonomy respectively). Our methods, using Af = (2,2) 
worldsheett models, are not adept to treat such cases. 

Inn [95], the relation with metric cones is most definitely observed, and it is a central point 
inn that work. The spacetime supersymmetry of the 'flux impurity' eft's is found to agree 
withh the expectation of a cone special holonomy. However, a clear connection with the 'ge-
ometricc impurities', is not made. We believe that our T-duality relation, making use of the 
hypersurfacee description and an overarching ultraviolet theory provides a complementary 
picturee to [95], as it allows to relate a geometric (hypersurface) impurity to a 'half-dualized' 
model.. However [95] is very important, in exposing the isomorphy of the 'half dualized' 
modelss (N = 2 Liouvill e times a Kazama-Suzuki coset) and the true 'flux impurity' (linear 
dilatonn times G/H coset), much in the spirit of the formal partition function considerations 
off  Ooguri and Vafa. 

Thee work discussed above is essentially concerned with a study of partition functions of 
thee conformal field theories, and show equivalences between SL(2; R) (or Af = 2 Liouville) 
timess one coset eft on one side, and a linear dilaton times another coset (essentially with a 
U(l)U(l) factor in the 'denominator' deleted) on the other side. In some other very important 
work,, a connection is made between supersymmetric singularities and Landau-Ginzburg 
modelss in considerable generality. Very important in this respect is the work on linear 
dilatonn backgrounds as holographic duals to Littl e String Theories by Giveon, Kutasov, 
Seibergg and others, such as [23, 24] and [3, 4]. 

Perhapss the most important inspiration to consider T-duality for hypersurfaces, is the 
paperr of Giveon, Kutasov and Pelc [22]. This proposes a general connection between hyper-
surfacee singularities and the 'half-dualized' models R^xU(l )x Landau-Ginzburg, identify-
ingg the Landau-Ginzburg superpotential with the defining polynomial of the hypersurface. 
Also,, hypersurfaces are discussed with a defining polynomial of a the following particular 
form m 

F{xF{x11,x,x22,...,x,...,x3+23+2)) = H(xi,x2,x3) + x\ + x\. 

Thee affine hypersurfaces F_ 1(0) are argued to be T-dual descriptions of a fivebrane with 
worldvolumee E1 ,1 x L, where L = H'1(Q) c C3. The T-duality which achieves this 
iss done fiberwise along (el^u, e~l<t>v), where uv = x\ + x\. This is not the U(l) action 
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whichh we consider. We consider the generic weighted homogeneous action on any weighted 
homogeneouss polynomial. We find that our model describes not precisely affine hypersur-
facee singularities of the form above, but discrete quotients of these, essentially because the 
weightss and weighted degree of are such, that F does not define an anticanonically embed-
dedd hypersurface in weighted projective space. Non-compact Calabi-Yau varieties of the 
formm uv 4- H{x, y) = 0 are also interesting from the point of view of topological string 
theory,, see, for example [107, 108]. 

Finally,, there is a considerable amount of very interesting work on worldsheet confor-
mall  field theories describing fivebrane backgrounds, which often have a g s —• oo region, 
andd deformations which keep gs finite, such as the 'fivebrane ring' in (4.22) discussed in 
[25]] by Sfetsos, and many other papers, mainly by Sfetsos, Kounnas, Kiritsis and others, 
suchh as [5] [96]. Some deformations involve separating the fivebranes, like the 'ring' ge­
ometry,, while another possibility is to add fundamental strings, to keep the dilaton finite 
nearr the fivebranes, see, i.a. [97]. The effect of the fundamental strings is quite drastic. 
Nott only is the dilaton made constant, rather than linearly growing down a throat, as a con­
sequence,, the decoupling limit is fundamentally changed. No longer is it required to take 
ggss —*• 0, as usual for Little String Theories, but rather, there is a Maldacena type of decou­
plingg limit, which yields AdS3 x J\f backgrounds, rather than a throat-like (linear dilaton) 
background.. A central paper, in this respect regarding the requirements on JV to yield a 
supersymmetricc background is [98] and also [101], in addition there are important papers 
byy Elitzur, Giveon, Kutasov, Seiberg and others. Some interesting papers discussing ex­
plicitt AdS3 x G/H backgrounds are [99, 100]. Deformations of the linear dilaton 'near 
fluxx impurity' backgrounds can thus lead to interesting related Anti-de Sitter backgrounds. 
Itt would be interesting to study the Anti-de Sitter backgrounds, and the dual conformal field 
theoriess in particular, obtained by deforming the 'near flux impurity' backgrounds which we 
obtain.. These can be considered T-duals of geometric impurities with fundamental strings. 

DUALIZATIONN 2: GEOMETRIC INTERPRETATION 

Lett us continue with the dualization procedure, proceeding from the 'half-dualized' models 
ass in figure 4.2. The Liouville part of the model has a Lagrangian 

JJ ^ (4.122) 

Thee central charge of the Liouville theory is 

2 2 
CLiouviUee = 1 + 771—f • (4 .123) 

d/\ad/\a00\ \ 
Inn the region of large Re -0, it has a target space interpretation as a 'dilatonic cylinder' 
1^^ x 5 1 . The radius of the circle is quantized in units of y/d/\ao\ and determined by 
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thee periodicity of Im ip. Actually, the periodicity of \& is 2nd/\ao\ (or an integer multiple 
thereof,, set by the overarching 'linear sigma model' as discussed in section 3.3.2. 

Noww consider the Landau-Ginzburg part, with superpotential W = F. For a general 
weightedd homogeneous F that describes an affine Calabi-Yau hypersurface, i.e. satisfy-
ingg (4.94), the Landau-Ginzburg model with W = F has no known geometric interpre-
tation.. However, for some special polynomials F it does. That is to say, some special 
weightedd homogeneous polynomials describe (marginal deformations of) certain Kazama-
Suzukii  models. In particular, the Kazama-Suzuki models based on Hermitean symmetric 
spacess at level one have a Landau-Ginzburg formulation [21], see section 3.4. Also, some 
Kazama-Suzukii  models at levels k > 1 can be related to level one Kazama-Suzuki models, 
utilizingg the (conjectured) isomorphisms of coset models discussed in section 3.4. These 
Kazama-Suzukii  models have a sigma model interpretation, as gauged WZW models, and 
theyy have a distinguished U(l) symmetry. This symmetry is the axial action the £7(1) of 
whichh the vector action is gauged in 

G G 
HxU(l)HxU(l)vv' ' 

Thee fermions in the Kazama-Suzuki models are essentially decoupled from the bosons, 
thee fermions realize a SO (dimG/(H x U(l)))l current algebra and the bosons realize an 
ordinaryy bosonic coset model. The dualization can be considered simply on the bosonic part 

whichh is a generalization of the familiar duality 

[SU(2)[SU(2)rr/U(l)/U(l) x U(l)\ / r ~ SU(2)r, (4.125) 

whichh for the A-type modular invariants has an explicit interpretation as T-duality, using 
aa sigma model realization [16]. For general ADE modular invariants, this identity can be 
obtainedd from the consideration of partition functions [19]. 

EXAMPLES S 

Inn order to get a feeling for the duality, consider some specific examples, using the Landau-
Ginzburg/Kazama-Suzukii  equivalences of section 3.4. 

A - T Y P EE SURFACE SINGULARITIES 

Ann Ak+i surface singularity can be viewed as a metric cone on the link 

SS11 - S3/Zk+2 - SU{2)jU{\). 

/r r 
G_ G_ 
H H 

(4.124) ) 
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Chirall  superfield $* 

* - i i 

$ 0 0 

* i i 

$2,3 3 

C/(l)) charge a* 

a_ii  = -(k + 2)a 
aoo = —a 
a\a\ = a 

«2,33 = ^ Q ! 

Tablee 4.1: Charge assignments for Ak+i singularity, a — 1 (a = 2) if k is even (odd). 

Thee polynomial which defines such a singularity as a hypersurface in C 3, see table 2.2, has 
suchh weights and weighted degree that a o = — 1. 

Forr S3/Zk+2 the polynomial is 

rJ4fc+11 — Xi + x2 + #3. (4.126) ) 

Thee overarching model can be characterized, roughly speaking, as a U(l) 'linear sigma 
model'' with chiral superfields with charges as in table 4.1, but strictly speaking, the chi-
rall  superfield $o should be regarded as a 'composite*  field, e*, where \I> appears in the 
Lagrangiann as a 'shift-gauged' field and \I> ~ # + 2iri 

Thee Lagrangian reads 

aaee-av -av L=L= fd4d | ^ ( *  + * + V) 2 + | $ - i| 

++ | * i | V + \^2\
2edV'2 + \*3\

2edV* - - ^ | E |2 

++ J d26 $_i (//e"d*  + $? + ^ + $i) + c.c, 

(4.127) ) 

wheree d = a (A; + 2). The 'half-dualized' model is a %d orbifold of a product eft. One factor 
off  the product is the Landau-Ginzburg model with the superpotential 

WW11 = #f, (4.128) ) 

andd the other factor is a Liouvill e model, which is the IR limit of the theory with the follow-
ingg Lagrangian 

Luouviiiee = ƒ d40 i | * | + ƒ d2 tie'* + c.c, (4.129) 

wheree the periodicity of ^ is 2irid. The central charge of the Landau-Ginzburg model is 
cii  = 1 — § and the central charge of the Liouvill e model is CLJOUV. = 1 + \-

Ass ^ —• 0, the region where the Liouville potential is weak encompasses a larger part 
off negative Re rp values. Where the Liouville potential is small, there is a target space 
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interpretationn as a dilatonic cylinder. Writing ip = p + idq the metric on the dilatonic 
cylinderr is 

dsds22^=^dp^=^dp22+ddq+ddq22.. (4.130) 

Thee Landau-Ginzburg factor can be viewed as a SU(2)/U(1) coset model, with metric 

d 4 ss = d (dX
2 + tan2 x^2) • (4-131) 

Thee coordinates q and <fr are periodic with periodicity 27r, while 0 < x < 7r/2 The Z d 
orbifoldd acts along the integral curves of Jj- + ^ . 

Thee T-dual geometry is obtained by applying the Buscher rules to the above geometry, 

dualizingg ^ (jf" + gs ) • Concretely, gauging translations along this circle using a Lagrange 

multiplierr A, and gauge fixing q = 0 this yields 

dsds22 =d (dp2 + dX
2 + sin2

 Xdcf>2) + ^ d A 2
 ( 4 1 3 2) 

BB — cos2 x dA A d(/>, 

wheree A ~ A + 27r/d is the dual coordinate. There is also a background charge for p. 
Redefiningg A = 0/d, the above metric and S-field look exactly like the throat geometry, x-, 
4>4> and 6 are coordinates on S3, with d units of flux through it. This is in agreement with 
[19]. . 

Notee that the level of the SU(2)k WZW model, which is interpreted as the number 
off fivebranes down the throat, corresponds to the first Chern class of the bundle Sl —• 
SS33/Zk+2/Zk+2 —• SU{2)/U(l). Curiously, for the Ai singularity the half-dualized model has 
aa Landau-Ginzburg part with superpotential W\ = <ï>2, which defines a trivial model with 
cc = 0, containing only the vacuum state. So the complete information of the A i singularity 
iss contained in the Liouville factor. 

GENERALIZEDD CONIFOLDS 

Considerr the conifold, which is a metric cone over T 1 1 . The homogeneous Sasaki-Einstein 
manifold d 

l t ll „  SU(2) x SU(2) 

U{1) U{1) 

cann be regarded as a circle bundle over 

SU(2)SU(2) 5/7(2) 
U(l)U(l)  U{\) ' 

ass discussed in chapter 2, and it is one of the few regular Sasaki-Einstein manifolds of 
dimensionn five. It is also defined as a hypersurface in C 4 , 

2i^22 = Z3Z4. (4 .133) 
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Thee conifold can be quotiented by the Z n action 

zz33 ~e2^nz3 

(4.134) ) 
Z4Z4 ~ e ' Z4. 

Definee the Zn -invariant combinations 

2/22 =*?, (4.135) 

tt =Z3Z^. 

Thee quotiented conifold is then described by the pair of equations y \yi = tk and Z1Z2 =t, 
orr by the single relation 

V1V2V1V2 = (ziz2)
n. (4.136) 

Soo the weighted homogeneous hypersurface in C 4 defined by F = 0 with 

F(xi,X2,X3,xF(xi,X2,X3,x4:4:)) = (#1X2)" +£3 +x\ (4.137) 

iss a Zn quotient of the conifold. Unlike the denning polynomials of the ADE surface sin-
gularities,, polynomials such as F admit 'marginal deformations'. That is to say, there are 
monomiall  terms 5F of the same weighted degree which one can subtract from F, such that 
thesee subtractions cannot be undone by a change of coordinates x, —-> Xi(xj) that respects 
thee weights of the coordinates. _ 

Onee particular 'marginal deformation' of F is F, 

F{xuxF{xux22,, X3,34) = x\n + x2,71 + X32 + x j . (4.138) 

Thiss is a very interesting equation, for our purposes, though actually, not as an equation in 
C4,, but as an equation in C4/Z2. The weights and the weighted degree of F are such, that 
ooo = — 2. Therefore, there is a U(l) gauge theory, of the sort discussed earlier, that in the 
infraredd flows to a non-linear sigma model on F _1(—(i) in C4/Z2. The group Z2 acts on 
thee coordinates Xi of C4 as 

X\X\ 2 ~ (— 1)#1 2i 
1,2,, ( 4 1 3 9 ) 

Z3,44 ~ ( - l ) £3,4-

Thee Lagrangian of this gauge theory reads 

L = / d < « « 

++ ƒ d2^_! (e"n*  + F ($!, $2j $3, $4)) 

i= l , 22 i=3,4 

(4.140) ) 
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Andd the periodicity of the chiral superfield ^ is \I> ~ 13> + 2ni. 
Thee hypersurface admits a 17(1) action, as it is weighted homogeneous. The 'half-dual' 

modell  is a "L2n orbifold of a product of three separate eft's, C ® W <S> W, where W is a 
Landau-Ginzburgg model with superpotential W = <I>2, i.e. a SU(2)/U(l) model, and £ is 
aa Liouvill e model which is the IR fixed point of the model with a Lagrangian 

L=L= f d*0 ^-\V\2 + fd26e~*+c.c (4.141) 

andd \I> ~ # + 27rm. In the region where the real part of ip is large, the target space of the 
Liouvill ee model looks like a dilatonic cylinder. In the scaling limit corresponding to the 
generalizedd conifold singularity, //—•(), the Liouville potential is small for a larger portion 
off values of Re V>. 

Thee metric on the cylinder looks like 

dsds22
cylcyl = n(dp2 + dq2), (4.142) 

wheree p 6 R is a scalar with a background charge, corresponding to the real part of i/> and 
qq ~ q + 27T is a free periodic scalar. The central charge of the Liouville model (or dilatonic 
cylinder)) is c = 1 + §. The pair of SU(2)/U(1) coset models have metrics 

dsds22
t2t2 = 2n (dxï + tan2

 Xi d02) . (4.143) 

Thee central charge of each copy is c = 1 + ^ so the total central charge is c = 3. And the 
Z2nn orbifold identifies (q, <j>i,4>2) ~ (Q - 2m/n, <j>\ + ni/n, <fo + m/n). 

Applyingg the Buscher rules to this geometry, along the 'homogeneous' U(l) direction 
(samee as of the orbifolding), yields a dual geometry that looks like 

dsds22
dualdual=nldp=nldp22 + 2j2dxt 

\\ i= l ,2 

n n 
2++ £ t a n 2 * * (4.144) + + 

r=l,2 2 

o^\22 , V* + 2 AJ2 , t an 2 x i t a n 2 * r , , , , ,2 
2dAzz + 2 ^ t a n X* d ( ^ + Ö [d<^i - d<^23 

i= l ,2 2 

withh a i?-neld 

2++ E tan '* f̂  
i= l ,22 l - 1 ' ^ 

YlYl tan2 *dA A d&. (4.145) 

Thee dilaton profile is also somewhat complicated. First of all, there is a linear dilaton 
inn the p direction, already from the Liouville/dilatonic cylinder. But there are also other 
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contributions,, from the Buscher rules. In all, the dilaton profile looks like 

$$ = 3>Q - linear dilaton along p 

logg cos Xi - - log I 1 + — - — + — - — 1 
i= l , 22 ^ ' 

(4.146) ) 

OTHE RR SINGULARITIE S WIT H A KAZAMA-SUZUK I INTERPRETATIO N 

Somee other interesting hypersurfaces are obtained from other weighted homogeneous poly-
nomialss that (up to marginal deformations) characterize Landau-Ginzburg/Kazama-Suzuki 
models. . 

Forr example, the Kazama-Suzuki models 

SU(Z)SU(Z)k k 

SU(2)SU(2) x (7(1) 

havee a Landau-Ginzburg realization with a superpotential W = F that has weights and 
degreee such that 

F(xi,xF(xi,x22,X3,X4),X3,X4) =H{xi,x2) + xl + xl 

H{\xH{\x11,X,X22xx22)) =\k+3H(x1,x2). 
(4.147) ) 

Thee weights of the coordinates are 

,, f (1,2 M  iffcisodd ,. 1/1C, 
( « i . - a ^ ^ )) = ( ; 2 ; 4 i f c

a
+ 3 i ^ 3 ) i f f c i i e v e i l <4148> 

Thee weighted degree of F is k -f 3 (2k + 6) if A; is odd (even), so a0 = -a\ - a2 

f -3i f fc isodd d 
a ° HH afu- (4'149) 

11 — 6 if k is even 
Furthermore,, to have a UV model which describes a simple cyclic quotient of a hypersur-
face,, we need — a0\d, so k should be an integer multiple of 3. Define 

nn = - ! + £, (4.150) 

and d 

))11 i fnisodd 

22 if n is even 
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Withh these definitions, we consider weighted homogeneous polynomials Fn (xi, X2, #3, x4) 
off  weighted degree d — 3an(n + 1) and weights 

// v / 0 3an(n + l) 3c*n(n + l ) 

thenn a-1 = —d and a® = — 3an. There is a UV gauge theory which flows to a sigma model 
onn the hypersurface F~1{-JJL) in C4/Z|ao|, analogous to the models discussed in the earlier 
cases. . 

Thee 'half-dual' model is Z 3 n +3 orbifold of a product eft, containing a Liouvill e fac-
torr and a Landau-Ginzburg factor with W = Fn. Weighted homogeneous deformations 
correspondd to Landau-Ginzburg eft's that differ by marginal deformations. In the moduli 
spacee of Landau-Ginzburg conformal field theories with weighted homogeneous superpo-
tentialss of the form of Fn, there is a particular point where the Landau-Ginzburg model 
iss the SU{3)3n/ {SU{2) x 1/(1)) Kazama-Suzuki coset model. To find the precise form 
requiress a detailed analysis, under the assumption that the 'level-rank' isomorphisms of the 
Kazama-Suzukii  models, as discussed in section 3.4 are indeed true. 

Thee Liouvill e model is the infrared fixed point of a model with Lagrangian 

LL  = / d 4 " 2 ( ^ T j | ï | 2 + / d 2 ^ " ï '  ( 4152) 

wheree * is a chiral superfield with periodicity 2-Ki{n + 1 ). In the scaling limit when the 
hypersurfacee develops its singularity 11 —• 0, the Liouville model can be interpreted as a 
dilatonicc cylinder, as before. 

Whenn there is a Kazama-Suzuki interpretation of the Landau-Ginzburg factor, the clas­
sicall T-duality that remains to be done is 

SU(3)SU(3)3n 3n 

SU(2)SU(2) xC/(l) xSn+\ 
TT SU(3)3n 

/Z3n+33 - ~WW ( } 

Thee Kazama-Suzuki model has a canonical 5 1 symmetry, which is the axial action of the 
U(l)U(l) that appears as a vectorially gauged subgroup in the denominator (an interesting 
closelyy related duality is discussed in [28]). The T-duality transformation is taken along 
thee combined action of the axial 17(1) in the coset and translations along the S * factor. 

Thee above duality can be derived through a process similar to that in [28]. In [28] the 
extraa S 1 was not considered, but rather T-duality was derived between the coset models 

GGkk T Gk 

(4.154) ) HH x U(l)v H x U(l)a x Zfc+gv ' 

Inclusionn of the extra circle 'eats' the axially gauged U(l). Compare this to the classic case 

SU(2)SU(2)kk SU(2)k 

U{l)U{l)vv C / ( l ) 0 x Z f c + 2 
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(see,, for example [102] for a nice exposition) versus the duality 

^ -- x t/( l ) ~ SU(2)k/Zk+2, (4.156) 

in,, for example [19]. 
Onee can consider such a dualization for bosonic coset models, as the fermionic part of 

Kazama-Suzukii  is essentially free (although decoupling the fermions has some effects, like 
shiftingg the level of the bosonic coset and affecting the order of the orbifold quotient by the 
duall  Coxeter number of G, see [28]). The T-duality is performed by introducing an auxil-
iaryy gauge field which gauges the isometry of the T-duality and a Lagrange multiplier term 
whichh sets the gauge connection to be flat. In choosing a particular gauge fixing condition, 
onee usually picks up a non-trivial dilaton profile. In the next step, of the T-duality, integrat-
ingg out the gauge field, again a non-trivial dilaton profile may be generated. In [28], where 
thee Kazama-Suzuki model alone is dualized, without the extra U(l), through a cunning 
choicee of gauge fixing condition, the generation of a dilaton is avoided. A similar tactic can 
bee employed for the present T-duality. But also another choice of gauge fixing should not 
affectt the end result. Indeed, the dilaton generated in the first step is cancelled in the second, 
thuss leading indeed to the duality (4.154). Consequently, similar T-dualities can be consid-
eredd for other Landau-Ginzburg-Kazama-Suzuki models, such as SU(4)/SU{3) x £/(l) 
att arbitrary level. Also, the work of Eguchi and Sugawara [95] provides a demonstration 
off  such dualities for many different cosets, including cases not related to Landau-Ginzburg 
modelss and cases related to G2 and Spin(7) singularities. 

4.4.11 INTERPRETATIO N OF THE DUALIT Y 

Whatt can be said about the relation between the supersymmetric singularities and their T-
duall  backgrounds? First of all, the procedure that was discussed relies on the formulation 
off  a singularity as a weighted homogeneous affine hypersurface, or as a quotient of such a 
hypersurface,, depending on the value of ao- It is reasonable to think of a weighted homo-
geneouss hypersurface singularity as a metric cone, qualitatively speaking. After all, such a 
hypersurfacee admits a C* action while on a (Calabi-Yau) metric cone the Euler and Reeb 
vectorr fields act in an analogous fashion. 

However,, explicit Sasaki-Einstein metrics on the links of supersymmetric affine hy-
persurfacess are scarcely known. The exceptions are mainly homogeneous spaces and and 
thee most special cases are the hyper-Kahler surface singularities. Another reason why the 
ADEE surface singularities are very special is, that they have no marginal deformations. 
Thiss means that the polynomials which define them as hypersurfaces have no weighted ho-
mogeneouss deformations other than ones which correspond to changes of variables. And 
inn addition the ADE polynomials, see table 2.2, define Landau-Ginzburg models which 
havee a coset interpretation. Other hypersurfaces, of dimension larger than four, either have 
noo Landau-Ginzburg 'half-dual' model which has a coset eft interpretation, or they have 
aa00 < - 1 , and usually both matters occur at once. Also, they have marginal deformations. 
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Geometric c 

R x ^ l l 

ST/(2)) isometry 
rr c SU(2) 

quotientt by discrete subgroup of isometries 

Flux x 

R**  x SU{2)r 

SU(2)SU(2) affine symmetry 
TT modular invariant 

basedd on affine symmetry 

Tablee 4.2: Remarkable correspondences between ADE 'geometric' and 'flux' impurities. 

SURFACEE SINGULARITIES 

Thee correspondences between the ADE surface singularities and their duals are remarkable. 
Thee surfaces can be viewed as metric cones 

l xx  v ' 

whilee the duals are conformal field theories 

%% x SU(2)r. 

Thee isometry of the homogeneous link appears as an affine symmetry in the dual. The 
possiblee links are the homogeneous SU(2)/T and correspond one-to-one to the discrete 
subgroupss T of SU(2), which in turn correspond to the modular invariants that can be used 
too construct each dual SU{2) conformal field theory. 

Thee simplest geometric interpretation exists for the A-type singularities. Their links 
aree circle bundles over P1, distinguished by an integer, the Chern class. The dual SU(2) 
conformall  field theories are realized as WZW models, which are labeled by one integer, the 
level.. Because the eft is formulated as a sigma model, the target geometry can be interpreted 
andd it is viewed as the throat of a stack of a number of fivebranes. 

Putt together, the remarkable correspondences are summarized in table 4.2. 

KAZAMA-SUZUKI /LANDAU-GINZBUR GG SINGULARITIES 

Itt is tempting to try and generalize the correspondences in table 4.2 to cones over other 
homogeneouss spaces. Many such cones have no hypersurface description, and it is not at 
alll  clear how exactly such a correspondence would look in detail. For example, there is no 
one-to-onee relation between discrete subgroups of SU(3) and SU(3) modular invariants. 
Somee more comments about this will be made later. Here we wish to briefly elaborate on 
thee 'flux impurities' which have a coset eft interpretation. 

Too be more specific, the proposed duality applies to flux impurities of the form 

linearr dilaton x — 
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wheree G/H x U(l) is a Kazama-Suzuki model with a Landau-Ginzburginterpretation. The 
U(l)U(l) current in G/H has a very general role. Any flux background R $ x N needs to be 
suchh that N is a JV = 1 superconformal field theory with an affine £7(1) current, such that 
N/U(l)N/U(l) is a Af = 2 superconformal theory [22], see also [98]. The Kazama-Suzuki mod-
elss provide a very explicit realization of this, combined with a geometric (gauged WZW) 
interpretationn of the 'flux impurity'. 

Thee geometric impurities dual to the coset models which have a Landau-Ginzburg re-
alizationn are cyclic quotients of affine hypersurfaces. Coset models with a LG realization 
aree the coset models based on simply laced Hermitean symmetric spaces (see table 3.2) at 
levell  one (sometimes called SLLOHSS) , and those coset models which are related by a 
level/rankk isomorphism to SLLOHSS models, such as notably the Grassmannian Kazama-
Suzukii  models at any level12 

SU(mSU(m + l)k 

SU{m)xU{l)' SU{m)xU{l)' 

Thee reason that they quotients, and not simply hypersurfaces F ~1 (0) € Cn + 2, is that F is 
nott 'anticanonical', i.e. 

F(xF(x11,...,x,...,xn+2n+2)) = H(x1,...,xn) + xl+l +xl+2, (4.157) 

andd consequently ÜQ = d — ^a,i < — 1, which causes the non-linear sigma model target 
spacee to be a Z_ao quotient of F~l (0) C Cn + 2. 

Howw should we think of this target space? We believe that in the same moduli space 
ass the hypersurface quotient above, there is a particular metric cone with an interesting 
description,, as follows. The weighted homogeneous polynomial F can be deformed by de-
formations,, polynomial in the Xi, which preserve the weighed degree. Such deformations 
aree marginal deformations of the Landau-Ginburg model, and correspond to deforming the 
geometricc impurity by changing moduli. At a particular point in moduli space, where cer-
tainn cycles have been blown up and others have been blown down, there is, we believe, a 
geometricc impurity with a 'nice' metric cone / Sasaki-Einstein description. 

Forr example, consider the generalized conifolds, defined by F = x \m + x^171 + x\ + x\. 
Ass discussed earlier, these are marginal deformations of a Z m quotient ofx\ + x\ -f x\ + x\ 
whichh defines the %2 quotient of the conifold (i..e. the metric cone on the regular Sasaki-
Einsteinn manifold T1,1/!®)- So the Kazama-Suzuki flux impurity 

„„ SU(2)2n x SU(2)2n 
RR** xx——W)W)— — 

iss related by T-duality to the metric cone on T1 '1/^™, if we tune the moduli appropriately. 
Thee Z2« quotient can be regarded as a Z2 quotient of the fiber of T 1 1 together with a Zn 

12Theree are other level/rank isomorphism known, discussed in section 3.4, but these are either not based on 
simplyy laced groups, or on modular invariants other than the diagonal one, so not Kazama-Suzuki. It would be 
interestingg to relate these models, or orbifolds of these models to Landau-Ginzburg models, but to the author's 
knowledge,, this remains yet to be done. 
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quotientt which acts on P1 x P1 as well (it is the action u —• e27ri/nu, v —• e~2pil/nv on the 
conifoldd uv = xy). 

Interestingly,, if we simply take the polynomial F — x 2m + x2m + x\ + x\ and interpret 
thatt in the appropriately weighted homogeneous space, we find, that the Hodge diamond is 
[75] ] 

fcfc00''00 1 
hhll>°>° /i0'1 0 0 

hh22''00 /i1 '1 /i0 '2 = 1 2n 1. (4.158) 
hh22''11 h1'2 0 0 

/ i 2 ' 22 1 

Andd P x P, the C* quotient of K x T u or RxTl>l/Z2 has the above Hodge diamond with 
n=n= 1. 

AA final interesting feature of the Kazama-Suzuki type impurities, is that we can take 
thee level of the coset model to be large. In that case the supergravity approximation of the 
gaugedd WZW target space is meaningful. In the example of the generalized conifolds above 
wee see that a metric cone on the total space S1 —> L —• Z/T, when the order of the discrete 
groupp T becomes large, is T-dual (up to marginal deformations) to the background 

R 00 x Z. 

Heree L is a circle bundle over is the homogeneous space [SU(2)/U(1)] /T (which is only 
quasi-smooth,, not smooth, due to fixed points of T), where the f/(l)*s act from the left on 
thee SU(2Ys. But on the dual side Z is [SU{2) x SU(2)] /U{\), which is the target space 
off a gauged WZW model. The £7(1) acts vectorially (in an opposite fashion on both SU{2) 
factors).. This space has B-field flux and a non-trivial dilaton. 

OTHE RR IMPURITIE S 

Forr geometric impurities which cannot be interpreted in the above fashion, we have only 
somee general comments to make. 

Thee Kazama-Suzuki models are essential for us to find a geometric target space inter­
pretationn of the flux impurity. Generally speaking, the Landau-Ginzburg model which we 
findfind should be thought of as N/U(l), where the flux impurity is a background 

Rj,Rj, x N. 

Itt remains an interesting task to find such N, connected to geometric singularities, which fit 
inn the T-duality procedure we described. 

Inn particular it may be interesting to consider hypersurfaces which correspond to projec­
tivee varieties which have a smaller group of isometries than the homogeneous spaces, like 
P 11 x P1 or P2 etcetera. For example, it seems interesting to find duals to affine hypersur­
facess that are C* bundles over del Pezzo surfaces, not only smooth del-Pezzo surfaces, but 
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alsoo quasi-smooth log-del Pezzo surfaces found by Johnson and Kollar and Johnson [34,35] 
somee of these come in infinite families, which might allow for a 'supergravity approxima-
tion'' on the side of the flux impurity. To do this, would require a geometric interpretation of 
thee Landau-Ginzburg models with a superpotentiall  that is a polynomial in the lists of Kollar 
andd Johnson. Such an interpretation, analogous to the Kazama-Suzuki/Landau-Ginzburg 
relation,, remains to be found. 

4.55 CONCLUDIN G REMARK S AND DIRECTION S FOR FU-

TUREE WORK 

Wee have presented a connection of geometric impurities, singular geometries realized as hy-
persurfaces,, and flux impurities, backgrounds which contain fluxes and generically a linear 
dilaton.dilaton. The best understood examples are the ADE surface singularities, and in particu-
larr the A-type singularities, for which the geometric interpretation is simple, both of the 
geometricc impurity, and of the dual flux impurity. 

Thee T-duality procedure works for more general weighted homogeneous affine hyper-
surfaces,, with some conditions on the weights and the degree. Essentially, the condition 
iss that the sum of weights is larger than the degree, and that the difference of this sum 
off  weights with the degree, is a divisor of the degree. The flux impurities associated to 
Kazama-Suzukii  coset models have a natural target space interpretation, these correspond 
too specific hypersurfaces. By a change of moduli, the hypersurface is related to a simple 
metricc cone. We have seen an example of the generalized conifolds that illustrates this. 

Theree are various interesting directions which remain to be explored. First, there is the 
issuee to better understand 'flux impurities' described by coset eft's which have no Landau-
Ginzburgg realization, such as the many of the cosets of Eguchi et al. [95]. Conversely there 
aree many interesting hypersurfaces for which the LG model has no known equivalent which 
illuminatess a target space interpretation. For example one might try to find a geometric 
interpretationn of LG models with a superpotential that defines a del Pezzo surface. This 
wouldd presumably not directly admit an interpretation in a 'supergravity limit ' as the degree 
off  the defining polynomial is low. Also, there are known infinite series of polynomials 
whichh define log Fano varieties [34,35]. It seems hard to find a geometric interpretation for 
theirr 'flux duals', but it there is such an interpretation, there might be a 'supergravity limit* 
takingg the degree of the defining polynomial large. 

Itt would also be interesting to consider the dualization procedure for complete intersec-
tions.. Another direction would be, to consider hyper-Kahler hypersurfaces with regards to 
non-abeliann duality. The hyper-Kahler singularities can be regarded as cones on tri-Sasaki 
manifolds.. These can be viewed as SU(2) bundles on quaternionic Kahler spaces. Also, be-
causee of the three Sasaki structures, these hypersurfaces may lead to a number of connected 
fluxflux backgrounds. 

Finally,, very generally the linear dilaton backgrounds can be deformed to AdS 3 back-
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grounds.. On the geometric singularity side, this deformation is achieved by putting funda-
mentall  strings in the singularity. Thus, the singularities provide a way to construct a plethora 
off  backgrounds of the form AdS3 x N and the geometric singularity description may be a 
goodd tool to learn about AdS/CFT in such cases. The construction of AdS 3 backgrounds 
byy means of fundamental strings in singularities can be regarded as a method which is com-
plementaryy to the construction of backgrounds as a near horizon limit of F1/NS5 brane 
configurations,configurations, or D1/D5, by S-duality. Hopefully such constructions will provide a further 
understandingg and intuition about AdS 3 x N backgrounds and holography. In particular, 
usingg singularities may open a way to the construction of AdS 3 x N vacua which cannot 
bee obtained as near horizon limits of simple Dl/D5-brane configurations. 
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Ditt proefschrift behandelt een onderwerp in de snaartheorie, een onderdeel van de heden-
daagsee theoretische fysica. Voordat wij enkele aspecten van de snaartheorie aan de orde 
stellenn en de hoofdpunten van dit proefschrift recapituleren, zullen wij pogen een context te 
schetsenn van ontwikkelingen in de theoretische natuurkunde waarin de snaartheorie in het 
algemeen,, en dit proefschrift in het bijzonder, geplaatst kunnen worden. 

FYSICA A 

Watt is fysica eigenlijk? Fysici, of natuurkundigen, houden zich bezig met het het observe-
renn van natuurverschijnselen en het begrijpen daarvan, door fundamentele wetmatigheden 
tee zoeken en te formuleren waaraan deze natuurverschijnselen gehoorzamen. Deze wetma-
tighedenn worden geformuleerd in een fysische theorie, die in de praktijk geformuleerd is in 
wiskundigee termen. 

Hoewell  de bekende fysische theorieën geformuleerd zijn in wiskundige termen en fysici 
eenn zekere esthetiek appreciëren in de formulering van deze theorieën, waarover later meer, 
iss natuurkunde niet een onderdeel van de wiskunde. De eerste prioriteit van een natuur-
kundigg model, is dat het de empirische werkelijkheid accuraat beschrijft. Daarnaast wordt 
hett zeer gewaardeerd als een model 'economisch' geformuleerd is, dat wil zeggen, dat het 
eenn klein aantal basisprincipes en regels kent, aan de hand waarvan een groot aantal diverse 
fenomenenn beschreven kan worden. Als een model deze eigenschappen heeft, wordt het 
gewoonlijkk aangeduid als een fysische theorie. 

Err is een belangrijke manier om een fysische theorie te testen. Door de theorie zorg-
vuldigg te bestuderen, kan men proberen zekere gevolgtrekkingen te formuleren die nog niet 
eerderr empirisch geverifieerd werden, en dus niet deel uitmaakten van de input die leidde 
tott de formulering van de theorie. Door experimenten en empirische observaties kan men 
zoo het domein van geldigheid van een theorie markeren. 

Hett is belangrijk om te beseffen, dat het domein van geldigheid van elke fysische the-
oriee beperkt is. Per slot van rekening zijn de empirische consequenties van een theorie in 
dee praktijk altijd slechts onder een beperkt aantal omstandigheden experimenteel gecontro-
leerd.. Dit heeft als consequentie, dat verschillende fysische theorieën 'waar' kunnen zijn, 
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ookk al voorspellen ze verschillende empirische consequenties. Dit is acceptabel als tenmin-
stee de twee fysische theorieën in kwestie verschillende domeinen van geldigheid hebben. 
Alss er een domein is waar twee theorieën toepasbaar zijn, dan moeten ze daar uiteraard wel 
gelijkee uitkomsten voorspellen. 

Beschouww bijvoorbeeld de geometrische optica; hierin worden lichtstralen veronder-
steldd in rechte lijnen te bewegen en kan weerkaatsing en breking van lichtstralen beschreven 
worden.. Dit is heel anders dan de fysische optica, waarin licht een golfverschijnsel is, en 
diffractiee en interferentie kan optreden: verschijnselen die niet voorkomen binnen de geo-
metrischee optica. Niettemin is zowel de fysische optica als de geometrische optica 'waar'. 
Dee geometrische optica is bruikbaar wanneer de golflengte van het licht klein genoeg is om 
verwaarloosbaarr te zijn. In dat geval kan reduceren de uitkomsten van de fysische optica, 
tott die van de eenvoudigere geometrische optica. Dit nu, is een voorbeeld van een cruciaal 
principe:: een overkoepelende theorie, met een groter domein van geldigheid kan nieuwe 
fenomenenn voorspellen die niet gerealiseerd zijn binnen een theorie met een ander, meer 
beperktt domein van geldigheid. Maar als de beperkte theorie 'waar' is binnen haar gelimi-
teerdee gebied van geldigheid, dan moeten de voorspellingen van de overkoepelende theorie 
inn dit gelimiteerde domein overeenkomen met die van de beperktere theorie. 

Bijj  het zoeken van nieuwe, breder geldige fysische theorieën is het bovengenoemde 
principee van groot belang. Bekende fysische theorieën met een zeker gebied van toepas-
baarheidd vormen een grote hulp bij het beperken van de mogelijke eigenschappen van een 
overkoepelendee theorie. Zo'n overkoepelende theorie moet reduceren tot de welbekende en 
beproefdee 'oude' theorieën in de corresponderende deelregimes waarin de oude theorieën 
ookk 'waar' zijn. 

FYSISCHEE THEORIEËN 

Wellichtt is de eerste fysische theorie die een overweldigend breed gebied van toepasbaar-
heidd heeft, de mechanica zoals ontwikkeld door Newton. De wetten van de Newtoniaanse 
mechanicaa beschrijven de beweging van objecten onder invloed van krachten. Een van die 
krachtenn is de zwaartekracht. Deze kracht werd ook door Newton theoretisch beschreven, en 
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dee Newtoniaanse mechanica in combinatie met de zwaartekrachtswet van Newton beschrijft 
bijvoorbeeldd de dynamica van ons zonnestelsel met een zeer hoge nauwkeurigheid. 

Hett regime van toepasbaarheid van de Newtoniaanse mechanica en de Newtoniaanse 
zwaartekrachtt is echter beperkt. In het bijzonder vallen objecten met hoge snelheden, in 
dee orde van de lichtsnelheid, en mechanica op zeer kleine afstands- of tijdschalen buiten 
hethet domein van de Newtoniaanse mechanica. Ook geldt de zwaartekrachtswet van New-
tonn niet voor objecten met een zeer grote massadichtheid, en op zeer kleine en zeer grote 
afstandsschalen. . 

InIn sommige deelregimes zijn in de twintigste eeuw 'overkoepelende' theorieën gevon-
den,, maar er is nog geen definitief gevestigde theorie die in elk van de deelregimes toepas-
baarr is. Laten we inventariseren welke theorieën er bekend zijn. Indien we de zwaartekracht 
buitenn beschouwing laten, en ons dus enkel op de mechanica concentreren, zijn er twee rich-
tingenn mogelijk om Newton's mechanica uit te breiden. 

Tenn eerste, is er een speciale, hoge, snelheid in de natuur, de hoogst mogelijke snelheid. 
Hett bestaan van een dergelijke 'universele' snelheid werd gesuggereerd door de wetten van 
dee electrodynamica die door Maxwell werden geformuleerd in de negentiende eeuw. Daarin 
duiktt een universele snelheid op, geïnterpreteerd als de lichtsnelheid. Het bestaan van een 
dergelijkee universele snelheid, gelijk voor alle waarnemers ongeacht hun onderlinge eenpa-
rigerige beweging, is niet strikt compatibel met de wetten van Newton's mechanica. Deze wet-
tenn werden door Einstein gemodificeerd in zijn speciale relativiteitstheorie. Bij snelheden 
veell  lager dan de lichtsnelheid, reduceren de principes van de speciale relativiteitstheorie 
tott die van de Newtoniaanse mechanica. 

Eenn andere uitbreiding van het Newtoniaanse regime is in de richting van kleine afstan-
denn of korte tijdsduren. In dit regime is de quantummechanica geldig13. 

Eenn belangrijk onderdeel van de hedendaagse fysica wordt gevormd door theorieën die 
inn elk van deze regimes toepasbaar zijn, dit zijn relativistische quantumtheorieën. Specifieke 
exponentenn van zulke theorieën beschrijven bijna alle fundamentele fysica die tot op heden 
iss geobserveerd. Ze beschrijven echter een zeer belangrijke categorie van geobserveerde 
fenomenenn niet, namelijk fenomenen waarin zwaartekracht een rol speelt. 

Err is wel degelijk een uitbreiding van de Newtoniaanse zwaartekrachtstheorie bekend. 
Dezee uitbreiding is de algemene relativiteitstheorie van Einstein. Bij grote massa's wijken 
dee voorspellingen van de algemene relativiteitstheorie af van die van de theorie van Newton, 
evenalss bij hoge snelheden. De algemene relativiteitstheorie neemt echter geen quantum-
mechanischee effecten in beschouwing. 

Aangezienn zowel de algemene relativiteitstheorie als quantumtheorieën een degelijke 

133 Strikt genomen wordt het regime waarin quantumeffecten van belang zijn niet aangegeven door een afstands-
schaall  (vergelijkbaar met een snelheidsschaal, de lichtsnelheid, die aangeeft wanneer relativistische effecten van 
belangg zijn) maar door een schaal van actie, h. In de mechanica kan aan de evolutie van een systeem van een zekere 
beginn toestand naar een eindtoestand volgens een 'pad' van intermediaire configuraties een grootheid worden toe-
gekend:: een getal met de dimensie van h: een 'actie'. De klassieke mechanica zegt ons, dat een systeem evolueert 
langss een pad waarvan de actie minimaal of maximaal is. De cruciale modificatie van de quantummechanica is, 
datt ook paden met een actie die niet extremaal is bijdragen aan de evolutie van het systeem. 

141 1 



Samenvatting Samenvatting 

empirischee rechtvaardiging hebben, is het een legitieme vraag om een theorie te zoeken die 
zowell  relativistische en gravitationele als ook quantumeffecten in beschouwing neemt. Niet 
alleenn vanuit het oogpunt van volledigheid is het wenselijk om een dergelijke theorie te 
kennen:: we weten nu eenmaal dat quantum effecten bestaan, en dat gravitationele effecten 
bestaann en het ligt voor de hand dat er een regime gedefinieerd kan worden waarin beide 
effectenn een belangrijke rol spelen. Er zijn ook concrete fysische situaties denkbaar, aan 
dee rand de domeinen van geldigheid van de empirisch beproefde fysische theorieën, waarin 
eenn theorie van quantumgravitatie nodig is om een zinnige analyse te kunnen doen. Een 
voorbeeldd is de fysica van ons heelal in een zeer jong stadium. 

Hett is echter zeer moeilijk gebleken om een consistente overkoepelende theorie te for-
mulerenn die zowel gravitatie als quantumtheorie bevat. Tot op heden wordt een veelbelo-
vendd en intrigerend pad naar een dergelijke theorie gevormd door het onderzoeksgebied dat 
bekendd is als 'snaartheorie'. 

SNAARTHEORIE E 

Dee snaartheorie is in het huidige stadium niet een fysische theorie zoals bijvoorbeeld de 
Newtoniaansee mechanica of de algemene relativiteitstheorie. Deze theorieën zijn 'af: ze 
hebbenn een duidelijke bondige logisch consistente en complete formulering en zijn funda-
menteell  gezien goed begrepen. Andere theorieën, zoals relativistische quantumtheorieën 
hebbenn een voor natuurkundigen acceptabele definitie, maar deze definitie heeft ons nog 
niett in staat gesteld om sommige belangrijke fysische fenomenen vanuit de definitie van de 
theoriee af te leiden14. Bij de snaartheorie is echter zelfs een fundamentele formulering niet 
volledigg bekend; er is 'slechts' een aantal formuleringen bekend die elk een zinvolle be-
schrijvingg kunnen vormen van een beperkte deelgroep van oplossingen van de, grotendeels 
ongekende,, volledige theorie die wel wordt aangeduid met de naam 'M-theorie'. 

Dee naam 'snaartheorie' volgt uit de bekende formulering van de theorie, waarin een-
dimensionalee objecten, 'snaren', de fundamentele vrijheidsgraden in de beschrijving van 
dee theorie vormen. Dit is anders dan in de conventionele relativistische quantumtheorieën, 
waarinn de fundamentele vrijheidsgraden worden gevormd door puntdeeltjes. Het feit dat de 
fundamentelee vrijheidsgraden die van snaren zijn, heeft verscheidene consequenties. Ten 
eerstee is het een bijna direct gevolg van de ruimtelijke uitgebreidheid van snaren, dat de 
theoriee zwaartekracht kent. Het zou hier te ver voeren om dit in enig detail te bespreken, 
maarr een essentieel punt hierin is het volgende. 

Anderss dan een puntdeeltje, kent een snaar oneindig veel 'interne vrijheidsgraden': een 
snaarr kan op verschillende manieren trillen, zoals een vioolsnaar, bijvoorbeeld. Deze vrij -

14Denkk hierbij aan confinement, of opsluiting, van kleurlading in theorieën zoals die van de sterke kernkracht. 
Hoewell  er vele aanwijzingen zijn, uit computersimulaties en theoretische beschouwing van vergelijkbare theorieën 
mett meer structuur, ontbreekt een goed begrip van confinement. Gedurende het promotieonderzoek heeft de auteur 
onderzoekk verricht naar sommige van zulke quantumtheorieën, resulterend in de publicaties [109,110], welke niet 
tott basis hebben gediend van dit proefschrift. 
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heidsgradenn kent een puntdeeltje niet. De verschillende trillingswijzen van een snaar wor-
denn geïnterpreteerd als verschillende 'deeltjes'. In het bijzonder heeft een snaar die op een 
bepaaldee specifieke wijze trilt , de eigenschappen van het deeltje dat verantwoordelijk is 
voorr de zwaartekracht: het graviton. 

Eenn quantumtheorie van gravitonen alleen, of gecombineerd met een eindig aantal ande-
ree deeltjes (zoals het geval is bij zogenoemde 'supergravitatie' theorieën) zijn tot op heden 
niett gebleken consistente quantumtheorieën te zijn. Dankzij het bestaan van oneindig veel 
verschillendee trillingswijzen van een snaar (alle 'boventonen'), die gezien kunnen worden 
alss een oneindige collectie verschillende deeltjes, is het mogelijk dat snaartheorie typische 
problemenn van een zwaartekrachtstheorie van puntdeeltjes omzeilt. 

Dee uitgebreidheid van snaren heeft nog andere consequenties. Een uitgebreid object als 
eenn snaar is gevoelig voor andere eigenschappen van zijn omgeving dan een puntdeeltje. 
Eenn snaar kan bijvoorbeeld ergens omheen gewonden zijn maar een puntdeeltje niet. Dit 
soortt eigenschappen heeft grote consequenties: als een snaar de wereld 'anders ziet' dan 
eenn puntdeeltje en snaartheorie is een relevante theorie van onze wereld, dan zouden we 
eigenlijkk ook een beschrijving van de 'wereld' willen die precies die eigenschappen onder-
scheidt,, die door snaren 'gezien' worden. In het bijzonder kunnen twee ruimtes die er heel 
verschillendd uitzien voor puntdeeltjes ononderscheidbaar zijn voor snaren. Het bestuderen 
vann dit soort ruimtes, en de relaties tussen die ruimtes, staat centraal in dit proefschrift. 

Hett begrijpen van de onderlinge verbanden tussen schijnbaar verschillende maar feite-
lij kk equivalente ruimtes is niet alleen interessant op zich. De verschillende beschrijvingen 
kunnenn van pas komen bij het bestuderen van andere eigenschappen van snaartheorie: de 
enee beschrijving kan bepaalde aspecten duidelijk op de voorgrond brengen terwijl de andere 
beschrijvingg andere aspecten kan verhelderen. Hierover zullen wij later meer zeggen. 

SNAARTHEORI EE EN DUALITEITE N 

Dee titel van dit proefschrift is: 'Dual Views of String Impurities', wat in het Nederlands 
vertaaldd kan worden als: 'Duale gezichtspunten op onzuiverheden in snaartheorie.' De 
termm 'dualiteit' kan vele verschillende betekenissen hebben in snaartheorie. Meestal kan 
eenn dualiteit gezien worden als een equivalentierelatie tussen twee theorieën. Het bestaan 
vann een dergelijke equivalentierelatie kan erg praktisch zijn. Denk bijvoorbeeld aan de 
situatiee dat de ene theorie, in een regime waarin berekeningen moeilijk zijn, equivalent 
beschrevenn wordt door een anders uitziende theorie in een regime waarin berekeningen veel 
gemakkelijkerr zijn. In zo'n geval kan een lastig toegankelijk regime van de ene theorie 
bestudeerdd worden met behulp van een duale theorie. 

Hoewell  er vele berekeningen en analyses zijn die het bestaan van vele dualiteiten in 
snaartheoriee ondersteunen, is het in een groot aantal gevallen tot op heden onmogelijk ge-
blekenn om het bestaan van vele dualiteiten rigoureus te bewijzen. Een uitzondering hierop 
vormenn zogenoemde 'T-dualiteiten'. Vaak kunnen deze expliciet bewezen worden, omdat 
zee geformuleerd kunnen worden in de bekende en vertrouwde formulering van snaartheorie 
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alss een theorie van propagerende snaren, en wel in een regime waarin deze beschrijving de 
basiss van zinvolle berekeningen vormt. 

INTERMEZZO ::  SNAARTHEORI E EN MODUL I 

Alvorenss in te gaan op enkele specifieke eigenschappen van T-dualiteit, is het nuttig om 
onzee ideeën over snaartheorie en dualiteiten uit te breiden. Een opmerkelijke eigenschap 
vann snaartheorie is dat snaartheorie verondersteld wordt 'uniek' te zijn. Dat wil zeggen: 
err zijn geen parameters die a priori gespecificeerd dienen te worden om te karakteriseren 
overr welke specifieke snaartheorie we praten. Dit soort parameters is gewoonlijk wel nodig 
omm te specificeren over welke quantum(velden-)theorie we praten: denk bijvoorbeeld aan 
dee ladingen van de deeltjes, of meer algemeen, aan koppelingsconstanten. Er is slechts een 
snaartheorie! ! 

Dezee uitspraak behoeft enige nuancering. Hoewel er niet meerdere snaartheorieën zijn, 
geparametriseerdd door de waarden van zekere a priori te specificeren parameters, zijn er 
well  andere belangrijke grootheden in snaartheorie: de verwachtingswaarden van verschil-
lendee toestanden van collecties, of condensaten van snaren. Deze verwachtingswaarden zijn 
grotendeelss analoog aan de verwachtingswaarden van quantumvelden in een quantumvel-
dentheorie.. Het bijzondere van snaartheorie is dat er naast deze verwachtingswaarden geen 
'externe'' parameters zijn. 

Err is een speciale verwachtingswaarde, de verwachtingswaarde van het zogenaamde di-
latonveld,, die effectief de rol speelt van een koppelings-'constante' van de snaartheorie. 
Wanneerr deze verwachtingswaarde klein is, is de formulering van snaartheorie als een the-
oriee van propagerende snaren zinvol en kan ermee gerekend worden. 

Dee concrete waarde van sommige verwachtingswaarden kan worden bepaald door de 
vergelijkingenn waaraan oplossingen van snaartheorie voldoen. Deze vergelijkingen zijn 
slechtss ten dele bekend, en vele verwachtingswaarden worden door de nu bekende verge-
lijkingenn niet bepaald. Er zijn dus families van oplossingen van snaartheorie, die worden 
geparametriseerdd door deze vrije verwachtings waarden. Deze vrije verwachtingswaarden 
wordenn 'moduli' genoemd. 

Mett andere woorden: hoewel er maar één fundamentele theorie is, zeg M-theorie, zon-
derr a priori te specificeren parameters, zijn er vele verschillende oplossingen van deze the-
oriee (voor zover het huidige begrip reikt). Bij deze oplossingen horen zekere waarden van 
dee moduli, in het bijzonder worden de oplossingen alleen zinvol beschreven door propa-
gerendee snaren, zoals in de conventionele beschrijving van snaartheorie, wanneer een zeer 
specifiekee modulus klein is, nl. de verwachtingswaarde van het dilaton, oftewel de effectie-
vee snaarkoppeling. 

Mett dit begrip kunnen we ook dualiteiten in snaartheorie, of eigenlijk M-theorie, beter 
omschrijven.. De dualiteiten zijn equivalentierelaties tussen een-en-dezelfde M-theorie bij 
verschillendee waarden van de moduli. Rond specifieke waardes van de moduli is er een 
beschrijvingg van M-theorie bekend, namelijk als snaartheorie, wanneer de effectieve snaar-
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koppelingg van de snaartheorie klein genoeg is. Sterker nog, er zijn vijf consistente snaar-
theorieënn bekend, die elk een gedeelte van de volledige M-theorie beschrijven, en sommige 
dualiteitenn verbinden die vijf snaartheorieën. 

SNAARTHEORI EE EN DUALITEITEN : VERVOL G 

Zoalss gezegd, zijn veel dualiteiten niet rigoureus bewezen. Een essentiële reden hiervoor is 
datt ze twee dusdanige delen van de ruimte van moduli van M-theorie verbinden, dat er niet 
eenn enkele snaartheorie is die zwak gekoppeld is in beide delen, en wanneer de snaartheorie 
sterkk gekoppeld is, zijn er maar weinig berekeningen die vertrouwd kunnen worden. 

T-dualiteitt verbindt echter twee delen van de moduli ruimte van M-theorie, die zodanig 
zijn,, dat er een afleiding van de dualiteit mogelijk is die alleen gebruik maakt van zwak 
gekoppeldee snaartheorie. Om deze reden is het vaakk mogelijk om T-dualiteit rigoureus af te 
leiden. . 

T-dualiteitt heeft enkele opmerkelijke eigenschappen, waarvan we er een paar inventa-
riseren.riseren. Ten eerste is T-dualiteit vaak rigoureus af te leiden, zoals eerder gezegd, maar in 
sommigee gevallen is het lastiger: dit is het geval bij de 'onzuiverheden in snaartheorie' 
waarr dit proefschrift over gaat. Hierover later meer. Ten tweede relateert T-dualiteit twee 
ruimtes,, of achtergronden, waarin snaren propageren, die op een opmerkelijke manier gere-
lateerdd zijn. Zoals eerder gezegd, 'ziet' een snaar niet dezelfde eigenschappen van de ruimte 
alss een puntdeeltje. Beter gezegd: een snaar ziet alles wat een puntdeeltje ziet, en meer. Bij -
voorbeeld:: een snaar kan volkomen samengetrokken zijn, en er uit zien als een puntdeeltje, 
maarr een snaar kan ook om een object in de ruimte gewonden zijn, bijvoorbeeld om een 
'onzuiverheid'.. T-dualiteit relateert twee achtergronden van snaartheorie zodanig dat de 
eigenschappenn van de ene achtergrond die alleen een gewonden snaar, maar niet een punt-
deeltjee ziet, gereflecteerd worden door de eigenschappen die een puntdeeltje juist wel ziet 
inn de T-duale achtergrond. 

T-DUALITEIT ,, GEOMETRI E EN ONZUIVERHEDE N 

T-dualiteitt relateert de 'gewone' geometrie van de ene ruimte aan de 'snaar-geometrie' van 
dee duale ruimte en vice versa. Dit is op zichzelf een motivatie om T-dualiteiten te bestu-
deren,, maar er zijn nog andere motivaties. Hoewel T-dualiteiten vaak rigoureus afgeleid 
kunnenn worden, is dit niet altijd het geval. In het bijzonder is het moeilijk om een rigou-
reuzee T-dualiteit uit te voeren in een geometrie die een singulariteit heeft. Denk bij een 
singulariteitt bijvoorbeeld aan de punt van een kegel: overal, behalve aan de punt is een ke-
gell  glad en overal behalve aan de punt ziet een klein stukje van een kegel er bij benadering 
uitt als een stukje van het platte vlak. 

Singulariteitenn in geometrieën komen veelvuldig voor in snaartheorie: een gladde geo-
metriee die een goede achtergrond is (dat wil zeggen, die voldoet aan de vergelijkingen van 
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snaartheorie)) kan worden gedeformeerd tot een singuliere geometrie door sommige moduli 
opp een bepaalde wijze te variëren. Zulke singuliere geometrieën worden in dit proefschrift 
aangeduidd als 'geometrische onzuiverheden' (geometrie impurities). 

Niett alleen zijn geometrische onzuiverheden volkomen legitieme en 'normale' oplossin-
genn van snaartheorie, ze hebben ook speciale eigenschappen. Typisch wordt een singuliere 
geometriee verkregen uit een gladde geometrie door een specifieke modulus aan te passen, 
nl.. de modulus die het volume van een cykel bepaalt. Een cykel is een geometrisch object in 
dee geometrie waaromheen een membraan gewikkeld kan zijn (of eigenlijk meer algemeen 
eenn p-braan, d.w.z. een p-dimensionale generalisatie van een membraan of 2-braan). Wan-
neerr het volume van de cykel erg klein wordt, wordt de energie die nodig is om een p-braan 
omm deze cykel te wikkelen klein. Vergelijk dit met de energie die het kost om een ballon 
opp te blazen, deze energie hangt af van de elasticiteit van de ballon, en van het volume tot 
waarr de ballon wordt opgeblazen; een analoog mechanisme geldt voor p-branen en p-cykels 
inn snaartheorie. Wanneer het volume van zo'n cykel nul wordt, ontstaat er een singulariteit. 
Bovendienn kost het geen energie om p-branen te wikkelen om een cykel met volume gelijk 
aann nul. De 'lichte p-branen' die om een minuscule cykel in een singulariteit gewikkeld 
zijn,, zorgen voor nieuwe lichte fysische vrijheidsgraden die gelokaliseerd zijn op de sin-
gulariteit.. Dus een bijzondere eigenschap van een geometrische onzuiverheid is, dat deze 
gelokaliseerdee lichte vrijheidsgraden heeft. 

Eenn andere bijzondere eigenschap van de onzuiverheden die in dit proefschrift be-
schouwdd worden, is meer meetkundig van aard. De vergelijkingen van snaartheorie heb-
benn speciale, zogenaamde supersymmetrische oplossingen. Deze oplossingen zijn goed 
onderr controle, en alle geometrische onzuiverheden die supersymmetrisch zijn, zijn van een 
zodanigee vorm, dat men een T-dualiteit zou kunnen uitvoeren. In technische termen: de su-
persymmetrischee geometrische onzuiverheden hebben een isometrie die degenereert in de 
singulariteit. . 

Wanneerr er een isometrie is, kan men pogen een T-dualiteit uit te voeren. Dit is rigoureus 
mogelijkk wanneer de isometrie niet degenereert. Maar bij de geometrische onzuiverheden 
degenereertt deze isometrie juist altijd, en dit compliceert het uitvoeren van de dualiteit. 

Inn hoofdstuk 2 van dit proefschrift worden geometrische aspecten en verschillende be-
schrijvingenn van geometrische onzuiverheden behandeld. In sommige beschrijvingen is de 
isometriee en andere differentiaal meetkundige eigenschappen manifest. In andere beschrij-
vingenn zijn meer analytische of algebraïsch meetkundige eigenschappen duidelijker. In het 
bijzonderr treden differentiaal meetkundige eigenschappen op de voorgrond in de 'metrische 
kegel'' beschrijvingen van sectie 2.2, terwijl meer algebraïsche eigenschappen, en deforma-
tiess tot gladde geometrieën duidelijker zijn in de beschrijving als hyperoppervlakken, in 
sectiee 2.3. In hoofdstuk 2 blijken bovendien verbanden tussen deze beschrijvingen. 

T-dualiteitt wordt altijd afgeleid door gebruik te maken van de beschrijving van snaarthe-
oriee als een theorie van propagerende snaren, of technisch gezegd, door gebruik te maken 
vann de worldsheet conforme veldentheorie die zwak gekoppelde snaartheorie karakteriseert. 
Hoofdstukk 3 behandelt verscheidene karakteriseringen van dergelijke theorieën en generali-
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satiess daarvan die van nut zijn om T-dualiteit voor geometrische onzuiverheden uit te voeren. 
Dee verscheidene karakterisaties van de tweedimensionale conforme veldentheorieën 

zijnn van belang, omdat het degenereren van de isometrie in de geometrische onzuiverheid 
tott gevolg heeft, dat de T-dualiteitstransformatie gecompliceerd is, in termen van de confor-
mee veldentheorie. In technische termen: er zijn niet-perturbatieve bijdragen in de tweedi-
mensionalee veldentheorie. Deze kunnen, zo wordt, in hoofdstuk 4 beweerd, in aanmerking 
genomenn worden door over te gaan van één tweedimensionale veldentheorie, met een zeke-
ree geometrische beschrijving (een sigma model, om precies te zijn) op een andere theorie 
mett een andere, in het algemeen niet-geometrische beschrijving (een Landau-Ginzburg mo-
del).. In hoofdstuk 3 worden naast sigma modellen en Landau-Ginzburg modellen, ook 
nogg andere, niet-conforme modellen besproken, die het mogelijk maken om verschillend 
geformuleerdee conforme veldentheorieën aan elkaar te relateren. Bovendien worden zoge-
noemdee cosef modellen besproken, die in sommige gevallen een geometrische interpretatie 
vann zekere Landau-Ginzburg modellen mogelijk maken. 

Hoofdstukk 4 behandelt T-dualiteit, de geometrische consequenties in het algemeen en 
T-dualiteitt voor geometrische onzuiverheden in het bijzonder. In het algemeen relateert 
T-dualiteitt puur metrische eigenschappen in één achtergrond aan flux in de duale achter-
grond.. Deze flux kan soms worden gezien als het 'magnetisch' veld dat in de achtergrond 
aanwezigg is ten gevolge van een 'flux onzuiverheid': een object in snaartheorie, in het een-
voudigstee geval een specifiek soort p-braan: de NS5-braan. Men kan zeggen dat T-dualiteit 
eenn 'geometrische onzuiverheid' relateert aan een 'flux onzuiverheid', zoals bijvoorbeeld 
dee NS5-braan. 

Tenn gevolge van de niet-perturbatieve bijdragen aan de T-dualiteit heeft de flux onzui-
verheidd geen isometrie, terwijl de geometrische onzuiverheid wel een isometrie heeft (maar 
dezee ontaardt in de singulariteit, en dit is precies de reden dat er niet-perturbatieve bijdra-
genn zijn). Het ontbreken van de isometrie in de flux achtergrond maakt het mogelijk om een 
'schalingslimiet'' uit te voeren, die de fysica gelokaliseerd op de flux onzuiverheid isoleert. 
Eenn analoge schalingslimiet bestaat voor de corresponderende geometrische onzuiverheid, 
waarr de lokale fysica wordt gerealiseerd door p-branen in de singulariteit). Deze schalings-
limietenn worden in hoofstuk 4 uiteengezet. 

Eenn belangrijke eigenschap van de schalingslimieten is, dat deze 'nieuwe' achtergron-
denn van snaartheorie opleveren die worden beschreven in termen van bekende exacte con-
formee veldentheorieën. Dit stelt ons in staat om de kennis uit hoofdstuk 3 aan te wenden, 
omm dualiteiten in schalingslimieten van geometrische onzuiverheden uit te voeren. Er wordt 
eenn voorstel gedaan hoe de niet-perturbatieve bijdragen aan de dualiteit in aanmerking te 
nemenn en dit wordt in verscheidene concrete situaties geïllustreerd. 

Inn het bijzonder zijn er bepaalde 'symmetrische' onzuiverheden die aan intrigerende re-
latiess voldoen. De geometrische onzuiverheden in deze categorie zijn metrische kegels over 
specialee homogene Sasaki-Einstein variëteiten G/H en hun duale flux onzuiverheden zijn 
snaarr achtergronden die bestaan uit een lineair dilaton en een coset conforme veldentheorie 
gebaseerdd op een Hermitesche symmetrische ruimte Gj (H x £/(!)). 
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TOEPASSINGEN N 

Eenn belangrijke toepassing van dit werk, zou kunnen liggen in de studie van dualiteiten van 
eenn heel ander soort: equivalenties van snaartheorie in specifieke achtergronden (technisch 
gezegd:: Anti-de Sitter ruimtes) en 'gewone' quantumveldentheorieèn, dat wil zeggen: niet-
gravitationelee theorieën. Dergelijke dualiteiten (bekend als AdS/CFT dualiteiten, of meer 
algemeenn als gesloten/open snaardualiteiten) kunnen ons niet alleen veel leren over snaar-
theorie,, maar zeker ook over quantumveldentheorieèn. 

Eenn veelgebruikt pad om AdS/CFT dualiteiten te construeren is om de beginnen met 
speciale,, overzichtelijke configuraties van p-branen van een speciaal soort. Er zijn dan twee 
manierenn om tegen deze configuratie aan te kijken. Enerzijds vervormt de configuratie de 
ruimtee waarin ze is ingebed. Er is een schalingslimiet waarin de ruimte nabij de branen 
'ontkoppelt'' van de ruimte verder weg. De ontkoppelde ruimte nabij de branen heeft een 
geometriee van de vorm AdS x N, waarin gesloten snaren propageren en de vrijheidsgraden 
vormen.. Hier is N een zekere ruimte, in eenvoudige gevallen een bol. Deze ruimte kan 
wordenn beschouwd als de geometrie die de braanconfiguratie omsluit. Anderzijds kunnen 
openn snaren eindigen op de branen. In de ontkoppelingslimiet vormen deze open snaren de 
vrijheidsgradenn van een veldentheorie. 

Dee eigenschappen van de ruimte N hebben consequenties voor de duale veldentheorie. 
Menn kan zich afvragen welke N gerealiseerd kunnen worden. Door de beproefde route 
tee volgen, en te beginnen met een overzichtelijke braanconfiguratie, is maar een beperkte 
klassee van ruimtes N te realiseren. Men zou echter ook flux onzuiverheden zoals uit dit 
proefschriftt kunnen gebruiken. Om precies te zijn, zijn de flux onzuiverheden van de vorm 
[lineairr dilaton] x N. Gecompliceerde lijkende flux onzuiverheden kunnen gerelateerd zijn, 
viaa T-dualiteit, aan meer overzichtelijke geometrische onzuiverheden. 

Dee geometrische onzuiverheden op zichzelf zijn gerelateerd aan niet-graviationele the-
orieënn die geen gewone veldentheorieën zijn, maar zogenaamde Little String Theories. Dit 
zijnn niet-lokale quantumtheorieën waarover weinig bekend is. Door fundamentele snaren 
inn de singulariteit van een geometrische onzuiverheid te plaatsen, is het mogelijk om lokale 
quantumveldentheorieënn te krijgen, in een AdS/CFT correspondentie. 
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