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Abstract

Supersymmetric grand unified theories (SUSY GUTs) are very in-

teresting extensions of the minimal supersymmetric standard model

(MSSM). They unify strong and electroweak interactions explaining

the MSSM quantum numbers, account for presicion gauge coupling

unification and stabilize the weak scale. Most importantly, they

make remarkable predictions that allow to test them experimen-

tally. Here we discuss two aspects of SUSY GUTs. First we present

a short work on the impact of intermediate scales on gauge coupling

unification. We provide a concise and systematic description of the

subject by introducing “magic” fields contents. These are sets of

chiral superfields that do not form complete SU(5) multiplets, but

exactly preserve the one-loop unification of the MSSM indepen-

dently of their mass scale. Unlike full SU(5) multiplets, these fields

can raise (or lower) the GUT scale. Magic fields can play an impor-

tant role in GUT model building, as we illustrate in two examples

in the context of Orbifold GUTs and Gauge Mediation.

The second part contains the main subject of this thesis. We pro-

pose a new mechanism to explain the origin of soft SUSY break-

ing terms in the MSSM, which we call tree-level gauge mediation

(TGM). SUSY breaking is communicated by the tree-level, renor-

malizable exchange of superheavy gauge messengers, which natu-

rally arise in the context of grand unified theories. We demonstrate

that this mechanism is viable despite the well-known arguments

against tree-level SUSY breaking. In TGM sfermion masses are gen-

erated at tree-level and are flavor-universal, while gaugino masses

arise at one-loop, but the loop factor is partially (or fully) compen-

sated by numerical factors. The ratio of different sfermion masses

is determined by group theoretical factors only and thus provides a

distinct prediction that allows to test this mechanism at the LHC.

We discuss the basic ideas and their implementation both in a gen-

eral setup and a simple SO(10) model.
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Introduction and Outline

The unified description of apparently different phenomena in nature has been one

of the main goals of modern physics since its very beginning. In the late 17th

century Isaac Newton demonstrated that the motion of celestial bodies and falling

objects on earth can be described by the same equations derived from a universal

gravitational theory [1]. Almost two hundred years later James Clerk Maxwell

showed that magnetism, electricity and light were all manifestations of the same

phenomenon that can be described by a single theory of electromagnetism [2]. The

electromagnetic forces were then unified with the weak interactions about a century

later in the electroweak theory by Sheldon Lee Glashow [3], which is today part of

the standard model of particle physics [3, 4].

In modern physics unification is closely related to symmetry. Apparently differ-

ent concepts are connected by symmetry transformations and unified into a single

entity on which the symmetry group acts. In the case of electrodynamics for ex-

ample magnetic and electric fields are related by Lorentz transformations and form

the components of a single tensor of the Lorentz group. During the process of

understanding weak interactions it became clear that the underlying symmetries

do not have to be manifest [5]. If the symmetries are spontaneously broken at

some energy scale, the resulting phenomenology below that scale does not even

approximately exhibit the features of the unified theory above. Indeed weak and

electromagnetic interactions look very different at energies below the weak scale,

where the SU(2)×U(1) gauge symmetry is broken spontaneously. Symmetries play

an important role in the attempt to unify matter and forces also beyond the stan-

dard model (SM). Such theories can make remarkable predictions that allow to test

them experimentally, even if the symmetry breaking scale is very high.

One possible path is taken by grand unified theories (GUTs). These theories

unify strong and electroweak interactions by embedding the SM gauge group into

a simple group like SU(5) [6] or SO(10) [7]. Quarks and leptons are unified into
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irreducible representations of this group which allows the derivation of their SM

quantum numbers. In particular the quantization of hypercharge in the SM can

be explained, because the unified group is simple. The embedding of quarks and

leptons into a single multiplet indicates that baryon and lepton number are in gen-

eral not conserved. Nothing can therefore prevent the decay of the proton, which

is indeed the main phenomenological consequence of grand unification [8]. While

additional proton decay channels are strongly model-dependent, the decay via the

exchange of the additional gauge bosons always takes place, but the decay rate is

suppressed by the fourth power of their mass scale. The experimental bounds on

proton lifetime require this mass scale and therefore the breaking scale of the uni-

fied group to be extremely large, around 1016 GeV, which is already enough to rule

out simple models [9]. The breaking of the enlarged gauge symmetry to the SM

gauge group at such large energy scales also implies that the SM gauge couplings

are strongly affected by the renormalization group (RG) evolution. Under the as-

sumption that this evolution is determined solely by the low-energy field content

one can test the unification of gauge couplings experimentally. While unification in

the standard model works rather poorly, it works remarkably well in the presence

of supersymmetry [10, 11].

Supersymmetry (SUSY) is a spacetime symmetry that unifies fermions and

bosons in single entities called superfields [12]. This leads to a dramatic improve

of the UV-behavior of supersymmetric field theories, because scalar mass terms are

now protected from the influence of heavy scales by the same chiral symmetries

as fermions. In particular this is true for the Higgs mass terms which determine

the weak scale, and thus supersymmetry provides a solution to the technical as-

pect of the Hierarchy Problem. It is however clear that SUSY cannot be an exact

symmetry of nature because it predicts equal masses of fermion and bosons in the

same superfield and therefore a plethora of unobserved scalar particles. In order

to break SUSY but conserving its benefits regarding unification and stabilization

of the weak scale, SUSY must be broken in the low-energy theory only softly [13],

that is by dimensionful operators with an associated scale that is not much larger

than the weak scale. Such soft SUSY breaking operators include mass terms for

the unobserved superpartners which allow to shift them beyond the reach of past

experiments. These particles should however not be significantly heavier than the

TeV scale and are therefore expected to be discovered soon at the Large Hadron

Collider (LHC), which finally started to take data for beam energies in the TeV

regime half a year ago.
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The minimal low-energy realization of supersymmetry is provided by the min-

imal supersymmetric standard model (MSSM) [14]. Every field of the standard

model is promoted to a superfield that contains the SM field and a superpartner

with opposite statistics. In particular this requires the existence of a new fermion

with the quantum number of the Higgs. This field then contributes to the trian-

gular anomalies and spoils the neat cancellation which takes place among the SM

fermions. Therefore another Higgs superfield with conjugate quantum numbers is

added in the MSSM to obtain a vectorlike Higgs sector that does not contribute to

triangular anomalies. The most general renormalizable supersymmetric Lagrangian

that can be written down with this field content is however not realistic. In contrast

to the SM baryon and lepton number are not accidental symmetries but are violated

by renormalizable operators that induce fast proton decay. In order to forbid these

dangerous operators one can define a new discrete symmetry called R-parity [15]

which does not commute with SUSY. Under this symmetry SM fields are even while

the superpartners are odd. This also implies that the lightest supersymmetric par-

ticle (LSP) is stable and can be a good Dark Matter candidate. The most general

supersymmetric operators which respect R-parity are then the Yukawa couplings

and a mass term for the Higgs fields. In addition the MSSM contains all possible

terms which respect R-parity and break SUSY only softly. The associated scale is

called the soft susy breaking scale and should not exceed the TeV scale in order to

provide a solution to the Hierarchy Problem. The MSSM defined in this way has

then many virtues beyond the stabilization of the weak scale. The most prominent

success is to account for precision gauge coupling unification which in turn suggests

that the MSSM is just the low-energy effective theory of a supersymmetric grand

unified theory. This is the setup on which the work presented in this thesis is based

on.

The MSSM however gives rise also to new problems, mainly related to its soft

SUSY breaking part. The soft terms introduce a lot of new parameters whose

structure is constrained by experiments, in particular flavor physics. For example,

the soft masses for the sfermions, the scalar superpartners of the SM fermions, are

matrices in flavor space which in general are not diagonal in the same basis where the

fermion masses are. This gives rise to flavor-violating processes like K −K mixing

or µ → eγ that are strongly suppressed or absent in the standard model. The SM

however well explains the experimental data and therefore any new source of flavor

violation must be very small. This requires a non-generic flavor structure of the soft

terms which should be explained by the underlying mechanism of SUSY breaking.
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This is referred to as the Flavor Problem of the MSSM, see e.g. [16]. Another

problem is related to the vectorlike structure of the MSSM Higgs sector. It allows

for a supersymmetric mass term with parameter µ that enters the scalar potential

together with the soft SUSY breaking parameters (soft masses for both Higgses and

a bilinear term denoted by Bµ) and therefore participates in the determination of

the Z mass. This means that it should be of the same order as the soft terms,

despite it is a supersymmetric mass term that in principle is allowed to be very

large. To explain why the µ-term is connected to the soft SUSY breaking scale is

referred to as the µ-Problem [17].

The soft terms of the MSSM have to be generated by some mechanism of SUSY

breaking, which should explain their non-generic flavor structure and provide a

solution to the µ-Problem. Generically SUSY is broken spontaneously by vacuum

expectation values (vevs) of the auxiliary components of some superfields. Since it

is difficult to couple such SUSY breaking fields directly to the MSSM, the common

paradigm is that SUSY is broken in some “hidden” sector of the theory and then

communicated to the “observable” sector by means of a “messenger” sector. What

typically governs the structure of the soft terms is not how SUSY is broken in

the hidden sector, but how it is communicated to the observable sector. In four

spacetime dimensions there are two popular scenarios : either hidden and observable

sector are coupled only gravitationally or there are additional chiral superfields

that couple directly to SUSY breaking but only to the gauge fields of the MSSM.

In the first case, referred to as gravity mediation [18], all soft terms arise from

Planck suppressed operators. In the second case, which is referred to as gauge

mediation [19], soft terms arise at loop-level. While gravity mediation can elegantly

explain the µ-Problem with the Giudice-Masiero mechanism [20], it has no good

solution to the Flavor Problem. Gauge mediation instead provides flavor-universal

soft terms, but has difficulties with the µ-term. More precisely, it is not complicated

to generate the µ-term at loop-level, but typically the same operator induces also the

Bµ term at a scale which is a loop factor too large [21]. The problem of generating

the soft terms in the MSSM is therefore far from being solved. One might hope

that LHC will find some of the superpartners and give a hint of their mass patterns.

This could provide the experimental input needed to reveal the origin of soft SUSY

breaking in the MSSM.

In summary supersymmetric grand unified theories are very interesting exten-

sions of the standard model. They unify strong and electroweak interactions and

can explain the quantization of hypercharge and the smallness of the weak scale.
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They also make remarkable predictions that allow to test them at currently running

experiments. The low-energy effective theory of SUSY GUTs should be given by

the MSSM, possibly up to additional light gauge singlets. One prediction is there-

fore the existence of superpartners at the TeV scale that could be tested at the

LHC, depending on the structure of the soft SUSY breaking terms. These terms

also influence the prediction of proton decay by grand unification. It is therefore

difficult to make precise predictions on the decay rate without making assumptions

on the soft terms. Nevertheless simple models are already ruled out [22] and others

are pushed to their theoretical limits [23]. If nature is indeed described by SUSY

GUTs, proton decay should therefore be observed soon at Super-Kamiokande or the

next generation of water Cherenkov detectors.

In this thesis we consider two aspects of supersymmetric grand unified theories.

First we present a short work on the impact of intermediate scales on gauge coupling

unification in SUSY GUTs [24]. We introduce “magic” fields, which are sets of SM

chiral superfields that do not form complete SU(5) multiplets, but preserve exactly

the one-loop unification of the MSSM independently of their mass scale. Unlike full

SU(5) multiplets, such magic field sets can have an impact on the GUT scale. We

analyze the consequences of magic fields for unification and discuss their origin in

the context of SO(10) grand unified theories. Then we extent these considerations

to the important case of a two-step breaking of SO(10). We discuss two applications

of magic fields and finally give a systematic list of examples.

In the second part we propose a new mechanism to explain the origin of soft

terms in the MSSM, which we called tree-level gauge mediation (TGM) [25, 26].

In this scheme SUSY breaking is communicated by the tree-level, renormalizable

exchange of superheavy gauge messengers, which naturally arise in the context of

grand unified theories. We begin with an overview of the basic ideas of TGM

and illustrate their implementation in a simple SO(10) model. In particular we

demonstrate that this mechanism is viable despite the well-known arguments against

tree-level SUSY breaking. In the following chapters we discuss TGM under more

general aspects. First we analyze the viability of this mechanism in the context

of a generic supersymmetric gauge theory and provide general expressions for the

resulting soft terms. Based on this analysis, we proceed to study the model-building

guidelines for a possible realization of TGM in the framework of SUSY GUTs.

Finally, we discuss several possible options for an implemention of the µ-term in

these models.
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Part I

Intermediate Scales in SUSY

GUTs

11





1
Introduction

The unification of gauge couplings within the MSSM is regarded as one of the

major successes of low-scale supersymmetry and gives strong support to the idea of

grand unification. Gauge coupling unification together with low-energy data on the

electroweak gauge sector allows the prediction of the strong coupling α3 and the

unification scale MGUT ≈ 2 · 1016 GeV. While the former is in good agreement with

the measured value, within the uncertainties associated with low-energy and high-

energy thresholds, the latter is large enough to avoid rapid proton decay, despite it

is starting to be challenged by currently running experiments on proton lifetime.

These predictions for α3 and MGUT in the MSSM are however based on the

assumption that there are no new degrees of freedom all the way up to the unification

scale, referred to as the bleak scenario of the “grand desert”. Regarding the fact

that many models for BSM physics are based on additional matter at intermediate

scales, it is important to derive constraints on the new particle content, requiring

that unification of gauge couplings and thus the successful prediction for α3 are

(approximately) maintained. Moreover, since unification might be fixed simply by

carefully adjusting the threshold scales, it is desirable to obtain constraints that

involve gauge quantum numbers only, so that unification is preserved independently

of the mass scale of the new fields.

An important aspect is the possible impact of new fields on the unification

scale, since keeping the prediction for α3 does not imply that MGUT is unchanged.

In particular it might happen that the new fields raise the GUT scale, which is

interesting both for phenomenology regarding the present bound on proton decay,

as well as for theoretical reasons, because many string theory models predict a GUT

13



scale that is about one order of magnitude larger than in the MSSM [27].

It is well known that fields forming complete SU(5) multiplets do not affect the

prediction of α3 nor MGUT at one-loop, independently of their mass scale. Many

authors studied the impact on gauge coupling unification of a more general particle

content, in particular with the motivation to increase the unification scale [27, 28,

29]. In this part we will try to give a concise and systematic description of the

subject, by introducing what we called magic field contents [24]. These are sets

of vectorlike matter superfields that do not form full SU(5) multiplets, but share

their benefits regarding gauge coupling unification: i) they exactly preserve the one-

loop MSSM prediction for α3 and ii) they do it independently of the value of their

(common) mass. Therefore they maintain the predictivity of the MSSM, in the

sense that their mass does not represent an additional parameter that can be tuned

in order to fix α3. On the other hand magic sets do not form full SU(5) multiplets

and therefore typically do have an impact on MGUT and can raise the GUT scale.

This part is organized as follows: We begin with the definition of magic field

sets and discuss their impact on the GUT scale by classifying them according to five

different scenarios of unification. Then we investigate the origin of these fields and

show some examples how they can be obtained in the context of a unified theory.

After that we consider the important special case in which the unified group SO(10)

is broken in two steps, so that the gauge group below the unification scale is not

the SM one. Then we discuss a few applications of magic fields. First we consider

the possibility to suppress Kaluza-Klein threshold effects in the context of unified

theories with extra dimensions (Orbifold GUTs). Then we briefly analyze gauge

mediated supersymmetry breaking models that have magic fields as messengers. In

the last chapter, we present a systematic collection of magic field sets.
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2
Magic Fields

2.1 Definition

We consider the MSSM with additional vectorlike matter superfields at a scale

Q0 > MZ . Let us denote by bi, i = 1, 2, 3 the one-loop beta function coefficients for

the three SM gauge couplings. At scales MZ < µ < Q0, the MSSM spectrum gives

(b1, b2, b3) = (33/5, 1,−3) ≡ (b01, b
0
2, b

0
3). At µ > Q0, the beta coefficients include the

contribution bNi of the new fields, bi = b0i + bNi and the one-loop running gives

1

αi(µ)
=

1

αi(MZ)
− b0i

2π
log

(
µ

MZ

)
− bNi

2π
log

(
µ

Q0

)
. (2.1)

The MSSM one-loop prediction for α3,

1

α3
=

1

α2
+
b03 − b02
b02 − b01

(
1

α2
− 1

α1

)
(2.2)

is exactly preserved independently of the scale Q0 if [28]

bN3 − bN2
bN2 − bN1

=
b03 − b02
b02 − b01

=
5

7
. (2.3)

In this case, the unification scale MGUT becomes

MGUT = M0
GUT

(
Q0

M0
GUT

)r
, (2.4)
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and the unified gauge coupling αU is

1

αU
=

1

α0
U

− (1− r)bNi − rb0i
2π

log

(
M0

GUT

Q0

)
, (2.5)

with the parameter

r =
bN3 − bN2
b3 − b2

, (2.6)

and M0
GUT ≈ 2 · 1016 GeV and α0

U ≈ 1/24 denote the corresponding values in the

MSSM.

Complete GUT multiplets give the same contribution to the three beta functions

and thus trivially satisfy Eq. (2.3); they preserve gauge coupling unification and

leave the GUT scale unchanged. We call “magic” all other vectorlike sets of fields

that satisfy Eq. (2.3) and therefore preserve the one-loop MSSM prediction for

α3. They fall into two categories: those with r = 0, which just mimic the effect

of complete GUT multiplets and those with r 6= 0, which change the GUT scale

according to Eq. (2.4).

The parameter r also determines the relative order of the three scales Q0, M0
GUT

and MGUT. There are five different possibilities:

• r = 0 ⇒ Q0 < M0
GUT = MGUT: Standard unification.

This corresponds to bN3 = bN2 = bN1 . The GUT scale is unchanged. The new

fields can form complete GUT multiplets, but do not necessarily have to.

• −∞ < r < 0 ⇒ Q0 < M0
GUT < MGUT: Retarded unification.

The new fields slow down the convergence of the gauge couplings. The sim-

plest example of magic fields leading to retarded unification is
(
Q+Q

)
+G1,

which gives (bN3 , b
N
2 , b

N
1 ) = (5, 3, 1/5) and r = −1. The running of the gauge

couplings is shown in Fig 2.1.

• r = ±∞ ⇒ Q0 = M0
GUT < MGUT: Fake unification.

This case corresponds to b3 = b2 = b1. The unified group is broken at a scale

MGUT ≥ M0
GUT, but the couplings run together between Q0 = M0

GUT and

MGUT, thus faking unification at the lower scale M0
GUT. Note that in this

case MGUT is undetermined, while Q0 is fixed.

1Here and below we denote the new fields according to their quantum numbers as in Table 2.1
which can be found in Section 2.5.
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Figure 2.1 Example of retarded unification. The fields
(
Q+Q

)
+ G have been

added at the scale Q0.

A simple example is provided by adding the fields (6, 2)−1/6 + c.c.2, which

gives (bN3 , b
N
2 , b

N
1 ) = (10, 6, 2/5) (see Fig 2.2). This possibility was previously

considered in [30].

 15
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10
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10
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10
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10
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10
18

α
i-1

µ (GeV)

Q0 ≡  M
0
GUT

MGUT

Figure 2.2 Example of fake unification. The fields (6, 2)−1/6 +c.c. have been added
at the scale Q0 = M0

GUT.

• 1 < r < +∞ ⇒ M0
GUT < Q0 < MGUT : Hoax unification.

In this scenario the magic set turns a convergent running into a divergent

one and vice versa. Therefore such a field content cannot be added at a scale

smaller than M0
GUT, or the gauge couplings would diverge above Q0 and never

meet. However unification is preserved if the magic fields are heavier than

M0
GUT. Then the couplings, after an hoax crossing at M0

GUT, diverge between

M0
GUT and Q0, start to converge above Q0 and finally unify at MGUT, the

2This representation is contained for example in the 210 of SO(10).
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scale where the unified group is broken. For example, the fields W + 2 ×(
(8, 2)1/2 + c.c.

)
3 give (bN3 , b

N
2 , b

N
1 ) = (24, 18, 48/5) and r = 3 (see Fig 2.3).
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M
0
GUT

Q0 MGUT

Figure 2.3 Example of hoax unification.The fields (1, 3)0 + 2 ×
(
(8, 2)1/2 + c.c.

)
have been added at the scale Q0 > M0

GUT.

• 0 < r < 1 ⇒ Q0 < MGUT < M0
GUT: Anticipated unification.

The magic content accelerates the convergence of the gauge couplings and the

unification takes place before the usual GUT scale. This possibility can be

useful in combination with other types of magic sets at different scales.

Some comments are in order:

• In the above considerations, the scale Q0 is arbitrary, as long as unification

takes place before the Planck scale, MGUT . MPl ∼ 2 · 1018 GeV and the

unified gauge coupling is in the perturbative regime, αU . 4π.

• If we restrict our analysis to representations that can be obtained from the

decomposition of SU(5) multiplets under GSM, then both bN3 −bN2 and 5
2(bN2 −

bN1 ) are integers. In this case the magic condition requires bN3 − bN2 to be even

and bN2 − bN1 to be a multiple of 14/5 [28]. Therefore in the case of retarded

unification the only possibility is bN3 − bN2 = 2, which corresponds to r = −1.

The expression for the GUT scale (2.4) becomes particularly simple:

MGUT

M0
GUT

=
M0

GUT

Q0
. (2.7)

In this scenario therefore Q0 cannot be lower than 1013 − 1014 GeV, in order

to keep MGUT .MPl.

3
(
(8, 2)1/2 + c.c.

)
is contained both in the 120 and 126 of SO(10).
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• An important property following from Eq. (2.3) is that combinations of magic

sets at different scales do not spoil unification. In particular, merging two or

more sets at the same scale gives again a magic set. Two simple rules are:

adding two retarded solutions gives a fake solution, and adding a fake to a

retarded solution or to another fake gives a hoax solution4.

2.2 The Origin of Magic Fields

By definition magic field sets do not form complete SU(5) multiplets. Therefore the

question arises if they can easily be obtained from complete multiplets of a unified

group. As the example of the doublet-triplet splitting problem illustrates, this might

be not a trivial problem. In this section we show that magic field sets at a scale

Q0 < MGUT can indeed arise from the spontaneous breaking of a supersymmetric

SO(10) GUT at the scale MGUT. We will illustrate this in three examples for the

case of retarded, fake, and hoax unification.

• Retarded unification

The simplest magic field content leading to retarded unification is

(
Q+Q

)
+G,

which can be obtained by splitting the components of a 16+16+45 of SO(10).

As an example, such a splitting is provided by the following superpotential:

W = 16 45H16 + 16H 16 10 + 16H 16 10 + 45H 45 54

+ 16H 45 16
′
+ 16H 45 16′ +M 10 10 +M 54 54 +M 16

′
16′. (2.8)

Here and below, all dimensionless couplings are supposed to be O (1) and

M ∼ MGUT. The 45H is assumed to get a vev of order MGUT along the

T3R direction, while 16H gets a vev in its SU(5) singlet. Then the above

superpotential gives a mass of order MGUT to all matter fields except Q, Q,

4Note that the classification based on r can be rewritten in terms of the parameter q = bN3 − bN2
used by [28]. Anticipated unification then corresponds to q < 0, standard unification to q = 0,
retarded to q = 2, fake to q = 4, and hoax to q > 4. The q of a combination of magic fields sets is
the sum of the individual q’s, from which the rules follow trivially.
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G, which are assumed to get a mass at a lower scale Q0. A two-loop analysis

shows that the prediction for α3(MZ) does not significantly differ from the

MSSM one.

• Fake unification

An example of fields leading to fake unification is

2× (L+ L) + 2×G+ 2×W + 2× (E + E) +
(
(8, 2)1/2 + c.c

)
,

which can be embedded into a 45 + 45 + 120 of SO(10). This magic field set

can be obtained from the following superpotential

W = 45 45H 45′ + 120 45H 120′ +M 120′ 120′, (2.9)

if 45H gets a vev of order M ∼ MGUT along the B − L direction. Another

example is 2× (Q+Q+G), which can be obtained by a generalization of the

superpotential in Eq. (2.8).

• Hoax unification

As an example for hoax unification, we consider the set

4× (L+ L) + 3×
(
(8, 2)1/2 + c.c

)
,

which can be embedded into a 120 + 2 × (126 + 126) of SO(10). This field

set can for example be obtained from the superpotential

W = 126 45H 126 + 126′ 45H 126
′
+ 120 45H 120′ +M 120′ 120′, (2.10)

again with a vev of 45H along the B − L direction.

2.3 Magic Fields in two-step Breaking of SO(10)

The necessity of achieving gauge coupling unification in the presence of fields not

forming full unified multiplets is particularly important in the context of a two-

step breaking of SO(10), meaning that SO(10) is broken at the scale MGUT to the

intermediate group Gi, which is then broken to the SM at a lower scale Mi. In
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this case, the presence of an intermediate gauge group at a lower scale Mi < MGUT

often spoils gauge unification if no further fields are added. This is because the

additional gauge bosons of Gi/GSM are not necessarily in full SU(5) multiplets, as

in the case of the Pati-Salam (PS) group Gi = GPS ≡ SU(2)L × SU(2)R × SU(4)c

and the Left-Right group Gi = GLR ≡ SU(2)L × SU(2)R × SU(3)c × U(1)B−L. In

this section we repeat the previous analysis of magic fields for these two important

cases. Some examples which are related to this discussion can be found in [31].

We consider a set of fields at the scale Q0, with Mi < Q0 < MGUT, which consists

of multiplets of the gauge group Gi. The condition (2.3) for preserving unification

has to be modified, since we now have to take into account the additional vector

superfields and to express the condition in terms of the beta coefficients of the gauge

couplings of the group Gi.

2.3.1 The case Gi = GPS

We denote a PS multiplet by (R4,RL,RR), where R4,RL,RR are the representa-

tions of SU(4)c, SU(2)L, SU(2)R respectively. The three PS gauge couplings g4, gL,

gR are matched to the SM ones at the PS breaking scale MPS as follows:

1

α4
=

1

α3
,

1

αL
=

1

α2
,

1

αR
=

5

3

1

α1
− 2

3

1

α3
. (2.11)

In terms of the corresponding beta function coefficients b4,bL, bR, the condition (2.3)

becomes
b4 − bL
bL − bR

=
1

3
. (2.12)

The contribution of MSSM fields and PS gauge bosons is (b04, b
0
L, b

0
R) = (−6, 1, 1).

Thus, the Pati-Salam couplings do not unify if no extra matter is added, because

condition (2.12) is not satisfied. A simple possibility to restore unification is to add

a single (6,1,3) field, which exactly cancels the contribution of the PS gauge bosons

to the beta function coefficients. This field acquires a mass together with the PS

gauge bosons at the PS breaking scale. Note that some extra matter is also needed

in order to achieve this breaking.

If the field content below the PS scale is the MSSM one, the classification given in

Section 2.1 can be carried over to the scenario considered here, by simply replacing

r in Eq. (2.6) with

r =
bN4 − 3− bNL
b4 − bL

. (2.13)
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The formula (2.4) for the GUT scale is then still valid. A more general expression

for the new unification scale valid for an arbitrary (magic) field content below Mi

is

ln
MGUT

M0
GUT

=

(
b3 − b2
b4 − bL

− 1

)
ln
M0

GUT

MPS
, (2.14)

where b2, b3 are the MSSM beta coefficients just below the PS scale.

2.3.2 The case Gi = GLR

The magic condition can be written in terms of the beta coefficients (bL, bR, b3, bB−L)

as
b3 − b2L

b2L − 3
5b2R − 16

15bB−L
=

5

7
. (2.15)

The contribution of the MSSM and the additional GLR gauge bosons to the beta

coefficients is (bL, bR, b3, bB−L) = (1, 1,−3, 16) and the expression for r is the same

as in the MSSM Eq. (2.6) with b2 = bL.

2.4 Applications

Clearly, the previous discussions would be just academic exercises unless there is a

good motivation to consider additional fields at intermediate scales, which do not

merely serve to change the running of gauge couplings. While there are plenty

of specific models which require such fields for various reasons, in this section we

focus on two applications of magic field contens. First we discuss Orbifold GUTs

where the Kaluza-Klein states form magic sets, then we consider the case of gauge

mediation where the messengers of SUSY breaking make up a magic field content.

A multi-scale model of fermion masses and mixings that makes extensive use of

magic fields was presented in [32].

2.4.1 Orbifold GUTs

An interesting application arises in unified theories with extra dimensions com-

pactified on an orbifold. Such orbifold GUTs have several advantages over unified

theories in four dimensions, for example they allow for an easy breaking of the

unified group by orbifold boundary conditions, a straightforward solution of the

doublet-triplet splitting problem, and the suppression of dangerous dimension-five

operators causing fast proton decay [33]. In these theories, fields living in the bulk of
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the extra dimension correspond to Kaluza-Klein (KK) towers of fields in the effective

four-dimensional theory, whose masses are multiples of the compactification scale.

Because of the very mechanism of GUT breaking by orbifolding, the KK fields with

a given mass do not form full multiplets of the unified group. As a consequence,

the KK towers associated to the bulk fields introduce new thresholds affecting the

prediction of α3. While such thresholds are often used to improve the agreement

with data (if they are not too large), it is interesting to note that it is possible to

get rid of such effects if the fields corresponding to a given KK mass form magic

sets.

As an example, let us consider a 5D supersymmetric SO(10) model on S1/(Z2×Z ′2)

with a Pati-Salam brane and a SO(10) brane (see [34] for a description of such mod-

els). The vector fields (V,Σ) live in the bulk together with a chiral hypermultiplet

(Φ1,Φ2) in the adjoint of SO(10), while the SM matter, the Higgses and other fields

live on the branes. The bulk fields can be classified in terms of their two orbifold

parities (P1, P2) = (±1,±1). The orbifold boundary conditions are chosen such that

the SO(10) adjoints V , Σ, Φ1, Φ2 split into their PS adjoint components and the

orthogonal component, with orbifold parities defined as follows

(V,Σ) (Φ1,Φ2)

V++,Σ−− Φ1++,Φ2−− PS adjoints

V+−,Σ−+ Φ1+−,Φ2−+ SO(10)/PS adjoints

.

The massless zero-modes are given by the gauge fields V
(0)
++ and an adjoint field

Φ
(0)
1++. The odd KK states contain fields of the SO(10)/PS adjoint representation,

while the even KK states contain those of the PS adjoint.

Clearly, neither the even nor the odd states correspond to full SO(10) (or SU(5))

multiplets. Still, both of them could form magic sets, in which case the threshold

effects associated to the KK tower of fields would vanish at the one-loop level. This

is indeed the case in the example we are considering, The easiest way to see it is

to observe that the (V,Σ) and (Φ1,Φ2) multiplets together form an N = 4 SUSY

hypermultiplet, which gives no contribution to the beta functions (the contribution

of three chiral multiplets Σ,Φ1,Φ2 cancels exactly the one of the gauge fields V ).

Therefore both the even and the odd levels of the KK towers do not spoil unification.

In order to avoid experimental bounds, the zero-mode Φ1++ cannot be too light.

It should have a mass at some intermediate scale MΦ, which can be identified with

the PS breaking scale. In order to maintain unification it is sufficient to add some
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fields of mass MΦ on the PS brane which form a magic field content together with

Φ1++, for example

(4,1,2) + (6,1,1) + (1,1,3).

2.4.2 Gauge Mediation

In gauge mediated supersymmetry breaking (GMSB), the messenger sector is usu-

ally assumed to be made up of full SU(5) multiplets in order not to spoil gauge

coupling unification. In the light of the above discussion, it is natural to consider

also the case of a messenger sector composed of magic field sets. Gauge mediation

with incomplete GUT multiplets was previously studied in [35]. This analysis was

however restricted to messengers with SM matter quantum numbers (and their con-

jugates), which moreover were not required to maintain gauge coupling unification.

Here instead we insist that gauge coupling unification remains intact and therefore

obtain additional constraints on the low-energy sparticle spectrum, despite many of

the conclusions in [35] apply also to this case.

We assume the usual superpotential

W = SΨiΨi +MΨiΨi, (2.16)

where Ψi,Ψi form a magic set of fields and S is the spurion with 〈FS〉 6= 0. The

gaugino masses at the scale µ are given by

Ma(µ) =
αa(µ)

4π
bNa
FS
M
, (2.17)

while the scalar masses are

m̃2
i (µ) =

∑
a

2

(
αa(µ)

4π

)2

Ciab
N
a

[
α2
a(Q0)

α2
a(µ)

− bNa
b0a

(
1− α2

a(Q0)

α2
a(µ)

)] ∣∣∣∣FSM
∣∣∣∣2 , (2.18)

where Cia is the quadratic Casimir, a is the index of the gauge group, i runs over the

matter fields, and bNa is the contribution from the messengers to the beta function

coefficients. On the basis of the above expression, the sum rules for sfermion masses

that hold in gauge mediation models [35, 36] are still valid. Using condition (2.3),

we obtain a sum rule for gaugino masses valid at all scales:

7
M3

α3
− 12

M2

α2
+ 5

M1

α1
= 0. (2.19)
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In contrast to a messenger sector composed of full SU(5) multiplets, the three beta

function coefficients bNa can all be different when using magic field sets as messen-

gers. This leads to gaugino and scalar mass hierarchies which are typically more

pronounced than in the usual scenario. For instance, if the messenger sector is given

by

Q+Q+G,

the ratio between gaugino masses is strongly hierarchical

M1 : M2 : M3 = 1 : 30 : 200,

and also the scalar masses turn out to be quite split

mẽc/mq̃ ∼ 1/20.

For a less peculiar scenario such as

(Q+Q) +G+ (U c + U
c
) + (Dc +D

c
) +W,

we get

M1 : M2 : M3 = 1 : 5 : 20,

mẽc/mq̃ ∼ 1/15.

A rough estimation of a typical SUSY spectrum for the two retarded solutions above,

with the selectron mass taken close to the present experimental limit is

M1 M2 M3 mẽc mq̃

QQ+G 25 GeV 750 GeV 5 TeV 100 GeV 2 TeV

QQ+G+ U cU
c

+DcD
c

+W 75 GeV 400 GeV 1.5 TeV 100 GeV 1.5 TeV

Although the large hierarchy of gaugino masses signals that these scenarios are more

fine-tuned than in usual gauge mediation, it serves at the same time as a strong

experimental hint of their possible realization.
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Q U c Dc L Ec W G V (n,m)y

SU(3)c 3 3 3 1 1 1 8 3 n
SU(2)L 2 1 1 2 1 3 1 2 m

Y 1/6 -2/3 1/3 -1/2 1 0 0 -5/6 y

Table 2.1 SM quantum numbers associated to a given notation for a SM field.

Field content bN1 bN2 bN3 r type

(6, 2)−1/6 + c.c. 2/5 6 10 ∞ fake(
Q+Q

)
+G 1/5 3 5 -1 retarded(

U c + U
c)

+
(
Dc +D

c)
+W 2 2 2 0 usual(

Dc +D
c)

+G+ ((1, 3)1 + c.c.) 4 4 4 0 usual(
L+ L

)
+
(
(6, 1)1/3 + (1, 3)1 + c.c.

)
5 5 5 0 usual(

Q+Q
)

+
(
Dc +D

c)
+
(
(8, 2)1/2 + c.c.

)
27/5 11 15 ∞ fake

W + 2
(
(8, 2)1/2 + c.c.

)
48/5 18 24 3 hoax

W +
(
(6, 2)−1/6 + c.c.

)
+ ((1, 1)2 + c.c.) 26/5 8 10 -1 retarded(

(3, 3)2/3 + (6, 2)−1/6 + (6, 1)4/3 + c.c.
)

18 18 18 0 usual

2W +
(
(6, 2)5/6 + c.c.

)
10 10 10 0 usual(

(3, 3)2/3 + (6, 2)5/6 + (6, 1)−2/3 + c.c.
)

18 18 18 0 usual(
(8, 1)1 + (3, 1)4/3 + c.c.

)
+ (8, 3)0 16 16 16 0 usual(

(8, 1)1 + (6, 1)1/3 + c.c.
)

+ (8, 3)0 52/5 16 20 ∞ fake

Table 2.2 Simplest irreducible magic sets that can be built from SM representa-
tions belonging to SO(10) representations with dimension up to 210 and do not
correspond to full SU(5) multiplets or anticipated unification.

2.5 Examples

In this section we show the results of a systematic analysis of magic field contents.

Note that merging two or more magic sets still gives a magic set of fields. In par-

ticular, adding a magic content with r = 0 does not modify the type of unification;

adding two retarded solutions gives a fake solution, and adding a fake to a retarded

solution or to another fake gives a hoax solution. Table 2.2 contains the simplest ir-

reducible magic sets that can be built from SM representations belonging to SO(10)

representations with dimension up to 210. The notation for these representations

is explained in Table 2.1. We have not included field sets that form complete SU(5)

multiplets. Table 2.3 shows the simplest irreducible magic sets which provide re-

tarded unification. Table 2.4 shows the simplest irreducible magic contents for the

Pati-Salam case. Again we write only fields belonging to representations of SO(10)

up to 210.

26



Field content bN1 bN2 bN3 r(
Q+Q

)
+G 1/5 3 5 -1(

Ec + E
c)

+ 2W + 2G 6/5 4 6 -1

2
(
L+ L

)
+W + 2G 6/5 4 6 -1(

Q+Q
)

+
(
U c + U

c)
+
(
Dc +D

c)
+W +G 11/5 5 7 -1

3
(
Dc +D

c)
+ 2W +G 6/5 4 6 -1(

U c + U
c)

+
(
L+ L

)
+ 2W + 2G 11/5 5 7 -1(

Q+Q
)

+ 2
(
Dc +D

c)
+
(
Ec + E

c)
+W +G 11/5 5 7 -1

2
(
Q+Q

)
+
(
Dc +D

c)
+ 2

(
Ec + E

c)
+G 16/5 6 8 -1

2
(
Q+Q

)
+
(
U c + U

c)
+ 3

(
Dc +D

c)
16/5 6 8 -1

2
(
Q+Q

)
+ 2

(
U c + U

c)
+
(
L+ L

)
+G 21/5 7 9 -1

2
(
Q+Q

)
+ 2

(
Dc +D

c)
+G+

(
V + V

)
31/5 9 11 -1

Table 2.3 Simplest irreducible magic sets which provide retarded unification. We
show only fields belonging to representations of SO(10) up to 45.

Field content bN4 bNL bNR r

(6, 1, 3) 3 0 12 0

(1, 2, 2) + ((20′, 1, 1) + c.c.) 8 1 1 ∞
(6, 1, 1) + ((10, 1, 1) + c.c.) 7 0 0 ∞
((10, 1, 1) + c.c.) + (15, 2, 2) 22 15 15 ∞

(1, 2, 2) + 2(15, 1, 1) 8 1 1 ∞
(6, 1, 1) + (6, 2, 2) + ((20′, 1, 1) + c.c.) 13 6 6 ∞

(6, 1, 1) + (6, 1, 3) + (1, 2, 2) 4 1 13 0
((4, 1, 2) + (4, 2, 1) + c.c.) + (6, 1, 3) 7 4 16 0
(1, 3, 3) + ((10, 1, 1) + c.c.) + (6, 1, 3) 9 6 18 0

(6, 2, 2) + ((20′, 1, 1) + c.c.) + (15, 2, 2) 28 21 21 ∞
(1, 2, 2) + (6, 1, 3) + (15, 2, 2) 19 16 28 0

(1, 1, 3) + (6, 1, 3) + ((20, 2, 1) + c.c.) 29 20 14 -3
(6, 1, 3) + ((4, 2, 3) + (20, 2, 1) + c.c.) 35 32 44 0
(6, 1, 3) + ((4, 3, 2) + (20, 1, 2) + c.c.) 35 32 44 0

(6, 2, 2) + (6, 3, 1) + (15, 1, 3) 19 18 36 1/3
(1, 2, 2) + (15, 1, 1) + ((10, 2, 2) + c.c.) 28 21 21 ∞

(1, 2, 2) + 2 ((10, 2, 2) + c.c.) 48 41 41 ∞

Table 2.4 Simplest irreducible magic contents for the Pati-Salam case that can be
built from PS representations belonging to SO(10) representations with dimension
up to 210 and do not correspond to full SU(5) multiplets or anticipated unification.
We denote the fields as (a, b, c), where a, b, c are representations of SU(4)c, SU(2)L,
SU(2)R respectively.
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3
Summary

In this part we systematically analyzed “magic” fields, which are sets of SM chiral

superfields that do not form complete SU(5) multiplets, but exactly preserve the

one-loop MSSM prediction for α3, independently of their mass scale. Unlike full

SU(5) multiplets, such magic field sets can have an impact on the GUT scale. In

particular, we have shown that MGUT can be increased in three ways, through a

delayed convergence of the gauge couplings, a fake unified running of the gauge

couplings below the GUT scale, or a late unification after an hoax crossing of the

gauge couplings at a lower scale. We have also shown several examples of dynamics

giving rise to magic field contents below the unification scale.

Magic fields can have several applications. For example they can fix gauge cou-

pling unification in two step breakings of the unified group by compensating the

contribution to the beta function of the additional gauge bosons at the intermedi-

ate scale. Or they can be used to suppress too large thresholds from KK towers in

models in which unification is achieved in extra dimensions. Another possibility is

that they play the role of messengers of supersymmetry breaking in GMSB mod-

els, which typically leads to a more pronounced hierarchy of gaugino masses. In

summary we regard magic fields as a useful tool in GUT model building.

29



30



Part II

Tree-level Gauge Mediation
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4
Introduction

The Minimal Supersymmetric Standard Model (MSSM) is certainly one of the most

popular candidates for physics beyond the electroweak scale. It not only predicts

precision gauge coupling unification at a scale large enough to explain the long pro-

ton lifetime, but it also protects the Higgs mass from the influence of such huge

scales and therefore provides a solution to the technical aspect of the Hierarchy

Problem. The reason for both these successes is that the MSSM becomes approxi-

mately supersymmetric just above the weak scale, meaning that SUSY is violated

by interactions involving MSSM fields only softly and the associated scale lies not

far above the weak scale.

The MSSM however does not explain the origin of soft SUSY breaking oper-

ators, but merely parametrizes all possible soft terms compatible with the other

symmetries. This leads to a plethora of new parameters whose structure is strongly

constrained by experiments, in particular flavor physics. Many models have been

built in order to address the origin of soft SUSY breaking in the MSSM. What typ-

ically matters here are not the details how SUSY broken at first place, but how it is

communicated to the MSSM, because this is what mainly determines the structure

of the soft terms. In four dimensions there are two popular scenarios, in which SUSY

breaking is mediated either by gauge interactions at the loop-level or by gravity. In

this part instead we discuss a novel scenario that we called tree-level gauge mediation

(TGM) [25, 26]. This mechanism might be the simplest possibility to communicate

SUSY breaking to the MSSM: through the tree-level exchange of heavy gauge fields,

motivated by grand unified theories. We will show that this gives rise to tree-level

sfermion masses that are flavor-universal, thus solving the SUSY Flavor Problem.
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This framework is not only simple, but also predictive, leading to a fixed ratio of

sfermion masses that is to a large extent model-independent. Of course one might

wonder why such an attractive scenario has not been considered before1. Two main

reasons seem to have prevented this possibility. The first is related to the existence

of a mass sum rule which constraints the tree-level spectrum. We will show that

these constraints are not as severe as usually stated, but can be satisfied by includ-

ing both heavy matter charged under the SM gauge group and a new gauge U(1)

gauge field, ingredients that are naturally present in grand unified theories. The

other objection regards the fact that in contrast to sfermion masses gaugino masses

cannot arise at tree-level. Generating them on loop-level instead would lead to large

hierarchy between the soft masses and result in very heavy sfermions of O (10 TeV).

In our framework gaugino masses arise at loop-level, but the loop factor can easily

be compensated by numerical factors, reducing or even eliminating the hierarchy

among soft masses. Therefore TGM is a viable and attractive mechanism to explain

the origin of soft terms in the MSSM, leading to distinct predictions that make this

scheme testable at the LHC.

We begin with an overview chapter aiming to explain the framework of TGM

in a concise way. We first discuss the tree-level origin of sfermion masses and show

how the constraints from the mass sum rule are satisfied. Then we turn to one-loop

gaugino masses and sketch how the loop factor can be compensated by numerical

factors. We finally show how these concepts can be realized in a simple SO(10)

model where we illustrate the characteristic features of TGM, regarding both the

implementation of the main ideas and its phenomenological consequences. In the

following two chapters we take a more general point of view. First we provide

complete expressions for tree-level and one-loop soft masses in a generic setup of

TGM, which we then use to define some guidelines for model building. Finally we

discuss the origin of the µ-term in TGM.

1For earlier works in this direction see [37, 38].
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5
Overview

5.1 Tree-Level Sfermion Masses

In the spurion formalism [13] soft sfermion masses arise from the effective operator

∫
d4θ

Z†ZQ†iQj
M2

, (5.1)

where Z is a SM singlet chiral superfield whose F -term vev breaks supersymmetry,

〈Z〉 = Fθ2, and Q is a generic MSSM chiral superfield with flavor index i. We

assume F � M2 such that the above operator gives the dominant contribution to

sfermion masses.

The main idea of tree-level gauge mediation is that this operator arises from a

renormalizable tree-level exchange of heavy vector superfield as in Fig. 5.1. The

V

Z†

Z

Q†
i

Qj

Figure 5.1 Tree-level supergraph inducing sfermion masses.

vector superfield V is a SM singlet and associated to a heavy U(1) factor which is
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non-anomalous1 and part of a simple unified group such as SO(10) or E6. Denoting

the mass of the heavy vector by MV , the corresponding broken generator by X and

the associated charges of Z and Qi by XZ and XQ respectively, the above diagram

induces the Kähler potential operator

−2g2XZXQδij

∫
d4θ

Z†ZQ†iQj
M2
V

(5.2)

in the effective theory below MV ≈MGUT
2. This term gives in turn rise to sfermion

masses

(m̃2
Q)ij = 2g2XZXQδij

(
F

MV

)2

. (5.3)

We make the following observations:

• The sfermion masses do not actually depend on the gauge coupling (and X-

charge normalization), because the vector squared mass M2
V is also propor-

tional to g2 (and two units of X-charges).

• Since they arise from gauge interactions, sfermion masses are flavor-universal.

Therefore this mechanism provides a solution to the SUSY Flavor Problem.

• Ratios of different sfermion masses depend only on the corresponding charge

ratios and thus provide the main prediction of this mechanism, which is dis-

tinct from all other scenarios of SUSY breaking mediation.

• To have positive sfermion masses at tree-level, the embedding of MSSM fields

Qi and the spurion field Z into multiplets of the unified group must be such

that the product XZXQ is positive.

• Since the X-generator is traceless over a complete multiplet, there must be

some sfermions which acquire negative SUSY breaking masses. This is not a

problem since such fields can have large supersymmetric mass terms, to which

the SUSY breaking contribution is just a small correction.

The above result for sfermion masses holds in the effective theory below the GUT

scale where we can integrate out the additional gauge fields. In the full theory at

MGUT instead sfermion masses must arise from a renormalizable operator, which

can only be the coupling of the sfermions to the D-term of the heavy gauge field.

1The possibility that SUSY breaking is mediated by an anomalous U(1) gauge factor has been
considered in [39].

2Throughout this chapter we assume that the U(1) factor is broken near the GUT scale, but in
principle the breaking scale could also be much smaller.
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Indeed a vev for the D-term is induced by the F-term vev of the spurion according

to

〈DX〉 = −2gXZ

(
F

MV

)2

, (5.4)

which in turn generates sfermion masses

(m̃2
Q)ij = −gXQ 〈DX〉 = 2g2XZXQδij

(
F

MV

)2

, (5.5)

reproducing the result obtained in the effective theory.

5.2 The Mass Sum Rule

It is sometimes stated that the restrictions imposed by the supertrace formula rule

out the possibility of tree-level SUSY breaking, e.g. [40]. We therefore review the

potential problems on which these arguments are based on and show how they are

solved in our framework.

As we just have seen, sfermion masses arise at tree-level in a renormalizable theory.

Therefore the spectrum is constrained by the mass sum rule [41], which states that

the supertrace of the squared masses equals the trace over the D-term vevs

StrM2 = −2gDa Tr(Ta), (5.6)

which holds separately for each set of conserved quantum numbers [10]. If the

trace is taken over the full spectrum, the supertrace has to vanish in the absence of

anomalies.

Since the experimental lower bounds on MSSM sfermion masses require them

to be significantly larger than the MSSM fermion masses, we necessarily need a

positive supertrace for the tree-level MSSM spectrum3

StrM2
MSSM > 0. (5.7)

In order to end up with a vanishing supertrace over the full spectrum, we necessarily

have to add new fields (with non-trivial MSSM quantum numbers) with negative

supertrace, such that

StrM2
MSSM + StrM2

new = 0. (5.8)

3Note that gaugino masses do not contribute since they do not arise at tree-level.
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Therefore the mass sum rule requires in general the presence of additional fields

beyond the MSSM ones. This is precisely the case in our TGM framework, where

the tracelessness of the X generator implies the presence of fields with negative X

charge. Their scalar components pick up negative masses from the D-term vev, lead-

ing to a negative supertrace. These additional fields are simply the GUT partners of

MSSM fields, i.e. they are together in the same multiplet of the unified group. They

will get a large supersymmetric mass term so that the SUSY breaking contribution

from D-terms is only a small correction, and all scalars in the theory have positive

masses. As we will see in the next chapter, this splitting can be obtained without

ad hoc model building efforts.

An even stronger implication of the mass sum rule was derived by Dimopoulos

and Georgi [10]. It basically states that one cannot obtain a positive supertrace

for all MSSM fields using only MSSM D-terms. The reason is that only D-terms

associated to the hypercharge and diagonal SU(2) generators can get a vev, but some

of the MSSM fields always carry negative charges under these generators and thus

get negative supertraces, which in term implies the existence of sfermions lighter

than the corresponding fermions. More precisely, one can show that there must be

either an up-type squark lighter than the up quark, or a down-type squark lighter

than the down quark [10, 40]. The above argument is however invalidated in the

presence of a new U(1) gauge factor, under which the all MSSM fields carry positive

charge. This is precisely what happens in our setup, and actually defines it.

5.3 Gaugino Masses

Besides the mass sum rule, another objection against tree-level SUSY breaking is

the argument that (Majorana) gaugino masses cannot arise at tree-level4. Therefore

gaugino masses are expected to be suppressed with respect to scalar masses. If this

suppression is very large, the lower bounds on gaugino masses imply that sfermions

are very heavy, leading to a significant fine-tuning in the determination of the Higgs

mass and approaching the regime of split supersymmetry [38, 42]. Indeed, a toy-

model version of the basic tree-level mechanism was discussed in that context [38].

In the framework we consider here instead, a large hierarchy between sfermion

and gauginos is avoided. Gaugino masses arise at loop-level as in ordinary gauge

4A coupling scalar-gaugino-gaugino that could give rise to such a mass term is forbidden by
supersymmetry.
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mediation, but the loop factor is partially (or fully) compensated by numerical

factors of different origin as we are going to discuss briefly in this section.

In order to generate gaugino masses at loop-level, we need heavy fields with SM

quantum numbers that couple to the SUSY breaking F-term vev. In our scenario

heavy fields charged under the SM are naturally present, and even required as we

have seen in the discussion of the mass sum rule. If we couple them to the same

SUSY breaking F-term vev we used for the sfermion masses, these fields act as the

messengers of gauge mediation and generate gaugino masses at one-loop which are

schematically of the form

Ma ∼ N
g2
a

16π2

F

M
, (5.9)

where M is the mass scale of the messengers and N is the messenger index.

First note that the mass scale of these messengers and the mass scale MV of the

heavy vector inducing sfermion masses could in principle be completely unrelated,

thus leaving any freedom to choose the gaugino mass scale. However, for the sake

of model-building elegance and predictivity, it is clearly desirable that sfermion and

gaugino masses originate from a common single scale, which sets both the mass

of the loop messengers and the scale of U(1) breaking, up to coupling constants.

Still, these coupling constants can give a sizable enhancement of gaugino masses, in

particular if they are related to small Yukawa couplings, as we will see in the next

section.

Another source of O (1) factors that always tends to compensate the loop factor

is the cumulative effect of vevs suppressing sfermion masses and messengers con-

tributing to gaugino masses. That is, the tree-level messenger mass suppressing

sfermion masses receives contributions from all vevs breaking the U(1), and gaug-

ino masses receive contributions from all heavy fields with SM quantum numbers

coupling to SUSY breaking, described by the messenger index. Finally, sfermion

masses depend on a ratio of U(1) charges that can also be small.

We will see in the next section that even in simple models these enhancement

factors are naturally present and can easily reduce the naive loop hierarchy between

sfermion and gaugino masses to a factor 10, leading to sfermions at the TeV scale.

Note also that enhancing the one-loop gaugino masses implies enhancing the usual

two-loop contribution to sfermion masses. Therefore a small suppression of gaugino

masses is actually desirable, since it implies that the novel tree-level contribution

to sfermion masses dominates the ordinary two-loop one.
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5.4 A Simple SO(10) Model

In this section we discuss an explicit SO(10) model that gives rise to tree-level

sfermion masses and one-loop, enhanced gaugino masses along the lines of the pre-

vious sections. The main purpose is to illustrate the characteristic features of TGM

in a simple setup, regarding both the implementation of the main idea and its phe-

nomenological consequences. We do not intend to build a fully realistic model, and

therefore will ignore the details of SO(10) breaking to the SM, the origin of neutrino

masses and the generation of the MSSM flavor structure. Instead we would like to

demonstrate that the peculiar requirements of TGM can be easily realized, namely

i) the large SUSY mass needed for GUT partners of MSSM fields with negative

SUSY breaking masses and ii) the presence of enhancement factors compensating

the loop suppression of gaugino masses. Furthermore we use this simple model

to show that the tree-level result for sfermion masses can easily dominate other

contributions to sfermion masses, in particular the ordinary two-loop contribution

from gauge mediation and the gravity-mediated one. We will also discuss A-terms,

showing that they are mainly generated by the usual RG evolution, although there

are other, strongly model-dependent contributions. Since also the implementation

of MSSM Higgs sector is pretty model-dependent, we comment only briefly on the

possible origin of Bµ and the µ-term. Finally we discuss the main phenomenological

and cosmological consequences of the model, which are again representative for the

whole class of models based on TGM.

5.4.1 Setup

Our aim is to construct a model in which sfermion masses are generated at tree-

level by integrating out heavy vector fields as described in Section 5.1. Such a

mechanism requires specific gauge structures and field contents and we will discuss

these constraints in extenso in the next chapters. Let us nevertheless briefly motivate

the setup we are using in this section.

First of all, the heavy vector field V in Fig. 5.1 must be a SM singlet, as Z is.

Therefore we need a gauge group with a least rank 5 and an obvious choice is to

identify the broken generator with the SU(5) singlet generator X of SO(10). The

SM singlet Z whose F -term breaks supersymmetry must belong to a non-trivial

SO(10) multiplet such that Z has a non-vanishing charge under X. The easiest
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possibility is that Z is the SU(5) singlet component of the spinorial representation

16. We also need a 16 + 16 to break SO(10) at the GUT scale5. In total two

16 + 16 are then required, one getting a vev along the scalar component and the

other along the F -term component. Note that gauge invariance prevents us from

using the same field for scalar and F-term vev.

What regards the matter fields, the embedding of MSSM fields Q into SO(10)

representations must be such that the sign of XZXQ is positive, see Eq. (5.3). In our

charge conventions, the decomposition of the 16 of SO(10) under SU(5)×U(1)X is

given by

16 = 101 + 5−3 + 15,

so XZ = 5. It is clear that the standard embedding of a whole MSSM family into

a 16 of SO(10) cannot work, because sfermions embedded in the 5 of the 16 would

have negative squared masses. But also the 10 of SO(10) contains a 5 according to

10 = 52 + 5−2,

so this one has positive X-charge. We therefore distribute the MSSM fields in three

16 and three 10 of SO(10), where MSSM fields in a 10 of SU(5) are embedded into

the 16 of SO(10) with X10 = 1, while the fields in a 5 of SU(5) are embedded into

the 10 of SO(10) with X5 = 2. The spare fields in these SO(10) representations are

vectorlike under SU(5) and thus can obtain a large supersymmetric mass term. We

will see in a moment that this splitting can be obtained very easily.

The mixed embedding of MSSM matter fields determines the embedding of the

Higgs fields. In order to obtain the Yukawas from SO(10) invariant operators, the

up-type Higgs hu must at least partially reside in a 10 of SO(10) while the down-type

Higgs hd must be at least partially in a 16 of SO(10). If this embedding would be

pure however, both Higgs scalars would acquire negative soft masses. This could be

a potential risk for obtaining correct electroweak symmetry breaking, which requires

m2
hu

+ m2
hd

+ 2|µ|2 > 2|Bµ| at the GUT scale and below. We therefore allow for

the more general possibility that both Higgs fields are linear combinations of the 10

and the 16 and 16, respectively. The sign of their soft masses is then determined

by the mixing angles which we take as free parameters.

Let us summarize the setup of our model. The gauge group is SO(10), and

the matter fields (negative R-parity) are embedded in three families of 16i =

5Another representation such as a 45 is needed to break SO(10) to the SM, but this is not
relevant for sfermion masses which gets contributions only from the heavy U(1) generator.
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(5
16
, 1016

SM, 1
16)i and 10i = (510, 5

10
SM)i, i = 1, 2, 3, where we indicated the MSSM

matter fields. Supersymmetry and SO(10) breaking to SU(5) is provided by pos-

itive R-parity fields 16 = (5
16
, 1016, N), 16 = (516, 10

16
, N), 16′ = (5

′16
, 10′16, Z),

16
′
= (5′16, 10

′16
, Z) , with vevs

〈Z〉 = F θ2,
〈
Z
〉

= 0, 〈N〉 = M,
〈
N
〉

= M, (5.10)

and
√
F �M ∼MGUT. The D-term condition forces |〈N〉| = |〈N〉| and the phases

of all vevs can be taken positive without loss of generality. The MSSM up-type

Higgs hu is a linear combination of doublets in a 10 = (510, 5
10

) and the 16 of

SO(10), while the down-type Higgs hd is a mixture of the doublets in the 10 and

the 16,

10 = cuhu + cdhd + heavy, 16 = sdhd + heavy, 16 = suhu + heavy, (5.11)

where cu,d = cos θu,d, su,d = sin θu,d and 0 ≤ θu,d ≤ π/2 parametrize the mixing in

the up and down Higgs sector.

We have checked that it is possible to generate the required vevs, break SU(5) to

the SM, achieve doublet-triplet splitting and Higgs mixing as above, and give mass

to all the extra fields with an appropriate superpotential Wvev involving additional

SO(10) representations, see Appendix B.

5.4.2 Sfermion and Higgsino Masses

Before specifying the superpotential we can already calculate soft scalar masses by

integrating out the heavy vector fields, using Eq. (5.3) with M2
V = 2g2X2

ZM
2

m̃2
Q =

XQ

2XZ
m2, m ≡ F

M
. (5.12)

Putting in the X-charges, we obtain SU(5) invariant sfermion masses

m̃2
q = m̃2

uc = m̃2
ec = m̃2

10 =
1

10
m2,

m̃2
l = m̃2

dc = m̃2
5

=
1

5
m2, (5.13)
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and Higgsino masses

m2
hu = −2c2u − 3s2

u

10
m2,

m2
hd

=
2c2d − 3s2

d

10
m2, (5.14)

which holds at the scale of the heavy vector messengers MV ∼MGUT. Therefore all

sfermion masses are positive and flavor-universal, with sfermions masses belonging

to the 10 and 5 of SU(5) related by

m̃2
q,uc,ec =

1

2
m̃2
l,dc (5.15)

at the GUT scale. Because gaugino masses are typically small, this peculiar relation

holds approximately also at low energies.

5.4.3 Superpotential and Yukawas

We now write the most general R-parity conserving superpotential for our field

content, except a possible mass term for the 10i
6

W =
yij
2

16i16j10 + hij16i10j16 + h′ij16i10j16′ +Wvev +WNR, (5.16)

where Wvev = Wvev(16, 16, 10, . . .) does not involve the matter fields and takes care

of the vevs, the doublet triplet splitting, and the Higgs mixing. WNR contains non-

renormalizable contributions to the superpotential needed in order to account for

the measured ratios of down quark and charged lepton masses, an issue that we will

ignore in our discussion.

The first two terms reproduce the MSSM Yukawas (at the renormalizable level

and at the GUT scale) given by7

yUij = cos θuyij , yEij = yDij = sin θdhij . (5.17)

Because the 16 gets a vev in its SU(5) singlet component, the second term also

gives rise to large SUSY mass terms for the additional matter fields 5
16
i and 510

i

6Such a mass term would imply that the MSSM fields in the 5 of SU(5) reside in a linear
combination of both 10i and 16i. We insist instead of a pure embedding in order to avoid possible
dangerous flavor-violating effects, see the discussion in Section 7.2.1.

7Note that despite the SO(10) structure, the up-quark Yukawa matrix is not correlated to the
down-quark and charged lepton Yukawa matrix. This allows to accommodate the stronger mass
hierarchy observed in the up quark sector.
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that have negative X-charge. Therefore only the MSSM superfield content survives

at the electroweak scale, provided that the three singlets in the 16i also get a

mass, e.g. from non-renormalizable interactions with the 16. This shows that the

required embedding of the MSSM fields in SO(10) representations can indeed easily

be realized.

The third term provides a large SUSY breaking mass term for the heavy 5
16
i

and 510
i , since the 16′ gets an F-term vev. These fields can therefore act as the

messengers of ordinary gauge mediation and induce one-loop gaugino masses.

5.4.4 Gaugino Masses

While sfermion masses arise at tree-level and only depend on the choice of the

unified gauge group and the MSSM embedding, gaugino masses arise at one-loop

and depend on the superpotential parameters. Because the chiral multiplets 5
16
i

and 510
j get a large supersymmetric mass hijM and a SUSY breaking mass h′ijF ,

they play the role of three pairs of chiral messengers in ordinary gauge mediation.

They generate one-loop gaugino masses, at the GUT scale given by

Ma =
α

4π
Tr(h′h−1)m ≡M1/2, a = 1, 2, 3, (5.18)

where α is the unified gauge coupling and we neglected running effects due the fact

that the contribution of each messenger arises at a separate scale different from

MGUT.

Let us compare this result to sfermion masses. Particularly interesting is the ra-

tio m̃t/M2, because the Wino mass M2 is bounded to be larger than about 100 GeV,

while m̃t dominates the radiative corrections to the Higgs mass. Therefore, the ratio

m̃t/M2 should not be too large in order not to increase the fine-tuning. From

M2

m̃t

∣∣∣∣
MGUT

=
3
√

10

(4π)2
λ, λ =

g2 Tr(h′h−1)

3
(5.19)

we see that the loop factor separating m̃t and M2 is partially compensated by a

combination of numerical factors. The naive loop factor (4π)2 ∼ 100. which would

lead to m̃t & 10 TeV, is replaced by (4π)2/(3
√

10) ∼ 10, leading to m̃t & 1 TeV

for λ = 1. Let us spell out the origin of these enhancement factors: a factor
√

5

is related to the ratio of X charges in Eq. (5.12), another factor
√

2 comes from

the two contributions to the heavy vector mass from both the 16 and 16 vevs and
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the factor 3 corresponds to the number of messengers, here equal to the number

of families (Tr(h′h−1) = 3 for h = h′). A largish value of the factor λ can then

further reduce the hierarchy and even make M2 ∼ m̃t, if needed. Both O (1) and

large values of λ are in fact not difficult to obtain, depending on the overall size and

flavor structure of h and h′8. Note however that a large value of λ enhances also

the standard two-loop contribution to sfermion masses, as we are going to discuss

now.

5.4.5 Other Contributions to Sfermion Masses

Reducing the hierarchy between gaugino and sfermion masses implies reducing the

hierarchy between the two-loop contributions to sfermion masses from standard

gauge mediation and the tree-level result in Eq. (5.12). To quantify the relative size

of these two contributions, let us consider for simplicity the basis in the messenger

flavor space in which the matrix h is diagonal and positive, the limit in which h′

is also diagonal in that basis, and let us call hi and h′i, i = 1, 2, 3 their eigenval-

ues. Neglecting the running between the GUT scale and the mass of the relevant

messengers9, the sfermion masses are given, at the high scale, by

m̃2
Q = (m̃2

Q)tree + 2 η C2(Q)M2
1/2, η =

∑
(h′i/hi)

2

(
∑
i h
′
i/hi)

2
≥ 1

3
, (5.20)

where (m̃2
Q)tree is the tree-level value given in Eqs. (5.13, 5.14) and C2(Q) is the

total SM quadratic casimir of the sfermion Q̃ (or Higgs Q)

Q qi uci dci li eci hu hd

C2(Q) 21/10 8/5 7/5 9/10 3/5 9/10 9/10
. (5.21)

If the contribution of a single messenger dominates gaugino masses, η ≈ 1. In the

numerical example we will consider later, the relative size of the two loop contribu-

tion to sfermion masses ranges from 2% to 10%.

Additional, subleading contributions to sfermion masses can arise from different

8h is related to the down quark Yukawa matrix and has a hierarchical structure, with two
eigenvalues certainly small and the third one, related to the bottom Yukawa, also allowed to be
small, depending on θd and tanβ.

9The relevant messengers are the ones with the largest h′
i/hi. If the most relevant messenger is

the third family one, the effect of the running that we are neglecting is not too large. The third
family messenger mass is in fact given by h3M = mb/(v cosβ sin θd)M (mb is the bottom mass,
v = 174 GeV), not too far (in logarithmic scale) from M ∼MGUT. Still, we expect the messengers
to be lighter enough than the GUT scale in such a way that only the SM casimirs (and not the
GUT ones) are relevant.
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sources. One-loop contributions from an induced U(1)X Fayet-Iliopoulos term [43]

only arise if h′ is non-diagonal in the basis where h is diagonal and |h′ij | 6= |h′ji|.
Moreover, they are suppressed (typically negligible) because U(1)X is broken above

the scale of the loop messengers. Another contribution could come from gravity

effects. Since in our scenario the messenger scale is expected to be around the GUT

scale, the gravity mediated contribution to the spectrum, although subleading, could

be relevant for flavor physics, as it could in principle be strongly flavor violating.

In order to quantify this effect, let us assume that the gravity contribution to an

arbitrary entry of the squared mass matrix of the sfermions in the 10 of SU(5) is

given by m̃2
grav = F 2/M2

Pl, where MPl = 2.4 · 1018 GeV is the reduced Planck mass.

The conservative bound m̃2
grav < 2 · 10−3 m̃2

10, which guarantees that all FCNC

effects are under control, then translates in the following bound on the messenger

scale:

M < 3 · 1016 GeV. (5.22)

Note that this bound is roughly an order of magnitude larger than in ordinary

gauge mediation, due to the absence of the loop factor in the expression for sfermion

masses. If the messenger scale exceeds this bound, we are in a hybrid framework

and contributions to soft terms from gravity mediation become relevant for flavor

observables [44].

Finally, another potentially relevant source of flavor non-universality might come

from one-loop contributions to sfermion masses arising from the superpotential

Yukawa interactions in Eq. (5.16), once the necessary mass terms for the com-

ponents of the 16 and 16′ are taken into account. Such effects are certainly under

control if the matrix h′, as h, has a hierarchical structure and is approximately

aligned to h.

5.4.6 Other Soft Terms and the µ-Problem

Besides sfermion masses also A-terms can arise at one-loop, due to direct couplings

between messengers and observable fields in Eq. (5.16). Assuming for simplicity

that the matrices h′ and y are diagonal in the same basis in which h is, we have

Ali,dci = − 1

4π2

h′i
hi

(
h2
i + h′2i

)
m

Aqi,uci ,eci = − 1

(4π)2

h′i
hi

(
3(h2

i + h′2i ) + 2y2
i

)
m (5.23)
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at the messenger scale10. Within the simplified diagonal flavor structure we are con-

sidering, we can compare the A-terms with the gaugino masses in Eq. (5.18), which

are in this case proportional to
∑
i h
′
i/hi. This means that the largest A-terms at

the high scale are comparable or smaller than the gaugino masses, depending on

which term dominates the sum. One can therefore expect that the dominant contri-

bution to A-terms at low energy comes from the usual RGE evolution proportional

to the gaugino masses. It is desirable to verify this expectation in a complete model,

since it is based on a simplified flavor structure of the couplings and neglects other,

model-dependent sources of one-loop A-terms, due to the necessary presence of mass

terms for the components of the 16 and 16′. We are planning to perform such an

analysis in a future publication.

Next, we comment on the µ-Problem. Relating the µ-term to SUSY breaking

is a highly model-dependent issue, due to the various possibilities of implementing

supersymmetry breaking and embedding the Higgs fields in SO(10). We will discuss

several approaches to the µ-Problem in our framework in Section 7.4. At this

point we want only to anticipate a simple possibility in which both the F -term,

〈Z〉 = F θ2 and µ originate from the same parameter m ∼ TeV in the superpotential

W ⊃ mZN . Once N gets its vev
〈
N
〉

= M ∼ MGUT, Z acquires an F -term

F = mM , so that m is indeed the parameter introduced in Eq. (5.12). Now Z and

N are part of the SO(10) multiplets 16′ and 16 respectively. A µ-term related to the

supersymmetry breaking scale µ ∼ m therefore arises if hu has a component in 16

and hd has a component in 16′. Such a situation can be achieved with an appropriate

superpotential, see Appendix B. Note that in this solution of the µ-Problem it is

the SO(10) structure which relates the µ-term to SUSY breaking.

In contrast to standard gauge mediation there is no µ-Bµ problem here, because

the µ-term does not have to be generated at one-loop and therefore does not give

rise to Bµ at the same level of suppression. Instead Bµ can be generated at the

tree-level, for example as in [38], or it can be induced by the RGE evolution.

5.4.7 Phenomenology

We now briefly discuss the phenomenological aspects of our model which are char-

acteristic for tree-level gauge mediation. We concentrate on the case where λ is not

too large, because otherwise we would merely mimic the phenomenology of ordinary

gauge mediation. The two main predictions at the high scale are then:

10We define the sign of the A-terms according to L ⊃ −
∑

QAQQ̃(∂W (Q̃))/(∂Q).
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• SU(5) invariant sfermion masses with fixed ratio for sfermions embedded in

the 10 and the 5 of SU(5)

• Light gauginos, for λ ≈ 1 roughly a factor 10 lighter than sfermions.

Because gaugino masses are small, these predictions should not be affected much by

the running and are expected to hold approximately also at the low scale. Therefore

the peculiar integer ratio of sfermion masses should be traceable in the low-energy

spectrum, thus providing a clear and testable prediction of our mechanism. More-

over gauginos should be lighter than sfermions also at low scale, and thus the lightest

gaugino is also the lightest ordinary SUSY particle11. Because gauginos run like the

gauge couplings, we therefore expect the Bino to be the NLSP.

We illustrate these properties with a typical example of a low-energy spectrum

that can be obtained from our model. We neglect the small effect of the inter-

mediate scale 5
16
i and 510

j and use the MSSM RGE equations, as implemented in

Suspect 2.41 [45], with boundary conditions at high energy as in Eqs. (5.13, 5.14,

5.20), the A-terms set to zero, and η = 1. We assume the messenger mass to co-

incide with the GUT scale, M = MGUT. The overall normalization of the unified

gaugino masses M1/2 can be considered as a free parameter due to the presence of

the factor Tr(h′h−1) in Eq. (5.18), or equivalently of the factor λ in Eq. (5.19). As

the size of the parameters µ and Bµ is model-dependent, we consider them as free

parameters as well and recover them as usual in terms of MZ and tanβ. Under the

above assumptions, the parameters that specify the model are: m, θu, θd, M1/2,

tanβ and the sign of µ. Table 5.2 shows the low-energy spectrum corresponding

to θu = 0, θd = π/6, tanβ = 30 and sign(µ) = +. The common gaugino mass

is M1/2 = 150 GeV, near the minimal value allowed at present by chargino direct

searches. The value of m is near the minimal value allowed to obtain mh > 114 GeV.

These parameters correspond to λ = 2.5, indicating that two-loop contributions to

sfermion masses from ordinary gauge mediation are small, ranging from 2% to 10%.

In the spectrum of Figure 5.2 one can recognize the characteristic features dis-

cussed above: gauginos are light and the lightest neutralino is dominantly Bino.

Sfermions are roughly a factor 10 heavier than gauginos and clearly split into two

groups corresponding to their SU(5) embedding. From the table one can see that

their mass ratio is close to the high-scale value of
√

2.

11The LSP is the gravitino as in ordinary gauge mediation, provided that the messenger mass is
consistent with Eq. (5.22).
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Figure 5.2 An example of spectrum, corresponding to m = 3.2 TeV, M1/2 =
150 GeV, θu = 0, θd = π/6, tanβ = 30 and sign(µ) = +, A = 0, η = 1. All
masses are in GeV, the first two families have an approximately equal mass.

This shows that there is some confidence to test tree-level gauge mediation at

the LHC, provided that sfermion masses could be measured with sufficient accuracy.

We are planning to study the possible LHC signals of our framework in a future

publication.

5.4.8 Cosmology

We close this chapter with a brief discussion of the cosmological consequences of our

model. As in ordinary gauge mediation the LSP is the gravitino, provided that the

messenger mass is consistent with Eq. (5.22). In fact, the supersymmetry breaking

parameter is given by

√
F ≈ 0.8 · 1010 GeV

(
m̃10

TeV

M

2 · 1016 GeV

)1/2

, (5.24)
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which determines the gravitino mass

m3/2 =
F√
3MP

≈ 15 GeV

(
m̃10

TeV

M

2 · 1016 GeV

)
, (5.25)

where m̃10 is the tree-level mass of the sfermions in the 10 of SU(5) at the GUT

scale. Note that F and the gravitino mass are smaller than in loop gauge mediation,

for a given messenger scale M , because of the absence of a loop factor in Eq. (5.24).

For a stable (on cosmological timescales) gravitino with a mass as large as in

Eq. (5.25), a dilution mechanism such as inflation is necessary in order not to

overclose the universe. The upper bound on the reheating temperature TR depends

on the gravitino and the gaugino masses [46]. The thermal contribution to the

gravitino energy density, for a reheating temperature around 109 GeV is given by

ΩTP
G̃
h2 ≈ 6× 10−2

(
TRH

109 GeV

)(
15 GeV

m3/2

)(
M1/2

150 GeV

)2

. (5.26)

For the example spectrum in Table 5.2, the bound ΩTP
G̃
h2 ≤ ΩDMh

2 = 0.11 trans-

lates in TR < 2 · 109 GeV.

We also have to take care of the decays of the NLSP into the gravitino, which

might spoil big bang nucleosynthesis (BBN) unless it is fast enough. The fate of

BBN depends on what the NLSP is. In the bulk of the parameter space we expect

the NLSP to be the lightest neutralino (or a stau if λ is large). In the example

in Table 5.2, the NLSP is essentially a Bino. For m3/2 ∼ 15 GeV, the decay of a

Bino NLSP through its coupling to the Goldstino component of the gravitino is way

too slow, as one would need m3/2 < 100 MeV in order not to spoil BBN [47]. A

Bino NLSP therefore requires a much faster decay channel, which could be provided

for example by a tiny amount of R-parity violation [48]. Such a possibility is also

consistent with thermal leptogenesis and gravitino dark matter.

The other possibility is that the NLSP is a stau. In this case, all the BBN

constraints can be satisfied if the lifetime of the stau is ττ̃ ≈ 48πm2
3/2M

2
P/m

5
τ̃ .

6 · 103 s [49]. This possibility however requires sizable gaugino masses and there-

fore large λ = O (100). For such large values of λ, the ordinary gauge mediation

contribution to sfermion masses dominate over the tree-level one, and the spectrum

merely resembles the predictions of standard gauge mediation.

We therefore find the first possibility much more appealing, with interesting

cosmological consequences that are quite different from those in usual gauge medi-
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ation. We plan to study the general cosmological implications of models with TGM

together with their phenomenology in a future research paper.
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6
Soft Terms in Tree-level Gauge

Mediation

In tree-level gauge mediation sfermion masses arise from a tree-level exchange of

heavy vector superfields, while gauginos masses are generated via one-loop dia-

grams involving heavy chiral fields, enhanced by numerical factors that partially

compensate the loop factor. In this chapter we identify the conditions under which

this scenario is viable, in the general context of a generic, renormalizable, N = 1

globally supersymmetric gauge theory in four dimensions. We first calculate the

soft terms in the low-energy effective theory obtained from integrating out heavy

vector superfields at tree-level. This includes the general expression for sfermion

soft masses which we discuss also in the full, renormalizable theory. Then we turn

to one-loop contributions to soft terms, focussing mainly on gaugino masses. In

particular we calculate the contributions from both vector and chiral fields, and

show that the latter can include various enhancement factors that can compensate

the loop suppression.

6.1 General Setup

We consider a general supersymmetric gauge theory described by the Lagrangian

obtained from the canonical Kählerpotential K = Φ†e2gV Φ, canonical gauge kinetic

terms and a generic superpotential W (Φ) that is a function of the chiral super-

fields Φ ≡ (Φ1 . . .Φn). The gauge group G is broken by the scalar component vev
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φ0 = 〈φ〉 to the subgroup H at a scale MV ∼ g|φ0| � MZ , at which the theory

is approximately supersymmetric1. Correspondingly, the vector superfields split

into light and heavy ones, associated to the orthonormalized generators T la and Thb

respectively:

V = V laT
l
a + V hb T

h
b , a = 1 . . . Nl, b = 1 . . . Nh.

The mass matrix for the heavy vector superfields is given by

(M2
V 0)ab = g2φ†0{Tha , Thb }φ0. (6.1)

We choose the basis of heavy generators Tha in such a way that the above mass

matrix is diagonal,

(M2
V 0)ab = M2

Vaδab. (6.2)

The heavy vector superfields become massive by eating up a corresponding number

of Goldstone chiral superfields. It is then convenient to split the chiral superfields

as follows

Φ = φ0 + Φ′ + ΦG, ΦG =
√

2 g
ΦG
a

MVa

Tha φ0, Φ′ = Φ′ibi, (6.3)

where ΦGa , a = 1 . . . Nh are the Goldstone superfields associated to the generators

Tha and bi = (bi1 . . . b
i
n), i = 1 . . . n−Nh is an orthonormal basis in the space of the

“physical” chiral fields Φ′, defined by b†iTaφ0 = 0. In the supersymmetric limit, φ0 is

orthogonal to ΦG and ΦG does not mix with the physical superfields. The physical

components of the massive vector superfield Va are2 vµa , λa, ψ
G
a , Re(φGa )/

√
2, all

with mass MVa . The imaginary part of φGa , the Goldstone boson, becomes as usual

the longitudinal component of the massive gauge boson vµa and the spinors ψGa and

λa pair up in a Dirac mass term. This spectrum can be split by supersymmetry

breaking corrections, as we will see in Section 6.3.1.

The supersymmetric mass matrix for the physical chiral superfields Φ′i is given

by

M0
ij =

∂2W

∂Φ′i∂Φ′j
(φ0). (6.4)

1In the phenomenological applications we have in mind, H contains the SM gauge group GSM,
G is a simple grand unified group like SO(10) or E6, and the breaking scale is of the order of the
GUT scale.

2We follow the conventions of Wess and Bagger [50] throughout this thesis.
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Again, we choose the basis bi in such a way that the above mass matrix is diagonal

and positive,

M0
ij = Miδij , Mi ≥ 0. (6.5)

The scalar and fermion components of Φ′ can be split by supersymmetry breaking

corrections, which can also induce a mixing with the scalar and fermion components

of the heavy vector superfields.

Supersymmetry is supposed to be broken at a much lower scale than MV , where

some of the fields Φ′ get an F -term vev,

〈Φ′〉 = F0θ
2, M2

Z � |F0| �M2
V .

Using gauge invariance of the superpotential, one can derive the condition

F †0Taφ0 = 0, (6.6)

which implies that the Goldstone superfields ΦG do not get F -term vevs (the D-

term condition implies that in the supersymmetric limit they do not get scalar vev

either). The F -term vevs give the leading contribution to the F -term and D-term

conditions at the scale MV ,

〈Fi〉 = −∂iW (φ0) = 0 +O (|F0|) , (6.7)

〈Da〉 = −gφ†0Taφ0 = 0 +O
(
|F0/MV |2

)
, (6.8)

for each i, a. The F -terms can indeed induce a non-vanishing vev for the D-terms

Dh
a of the heavy vector superfields. The stationary condition for the scalar potential

V , ∂V/∂φi = 0, together with the gauge invariance of the superpotential give

〈
Dh
a

〉
= −2g

F †0T
h
a F0

M2
Va

, (6.9)

with the light D-terms still vanishing. Clearly, only generators Tha that are singlets

under the unbroken group H can contribute to such D-term vevs. In turn, the

D-terms above give rise to tree-level soft masses for the scalar components φ′i of the
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chiral superfields Φ′i

V ⊃ 1

2
D2 ⊃ −g φ′†Tha φ′

〈
Dh
a

〉
= (m̃2

ij)Dφ
′†
i φ
′
j , (6.10)

(m̃2
ij)D = 2g2(Tha )ij

F †0T
h
a F0

M2
Va

, (6.11)

provided that both F0 and the scalars φ′ are charged under the (broken) gauge

interaction associated to Tha and provided that Tha is a singlet under H.

The tree-level mass spectrum of this theory must necessarily satisfy the super-

trace formula Str(M2) = 0. In the case of the soft terms in Eq. (6.11), this simply

follows from TrTha = 0. In particular, the tracelessness condition implies that posi-

tive soft masses are accompanied by negative ones in Eq. (6.10). This is a potential

phenomenological problem, which has long been considered as an obstacle to models

in which supersymmetry breaking terms arise from renormalizable tree-level opera-

tors, as it is the case here. However, this problem can easily be addressed by adding

a large positive supersymmetric mass term for the chiral superfields whose scalar

components pick up negative SUSY breaking masses.

6.2 Tree-Level Soft Terms and Sfermion Masses

We will now recover the complete list of tree-level soft terms including the above

result for sfermion masses in the effective theory below MV , where the heavy vector

and the Goldstone chiral superfields have been integrated out3. In this theory, the

chiral degrees of freedom are the Φ′, the gauge group is H and it is unbroken in the

limit where we neglect electroweak symmetry breaking. As a consequence, there is

no D-term contribution to supersymmetry breaking. Instead, scalar masses arise

in this context from F -terms vevs through an effective Kähler operator, as we will

show now.

Vector superfields can be integrated out by solving the equations of motion [51,

52, 53]

∂K/∂V ha = 0.

In Appendix A we illustrate the details of such a procedure in a general case, but for

the present purposes, we are only interested in the terms in the effective Lagrangian

which are the dominant sources of soft supersymmetry breaking. Those are con-

3Similar methods were used in [51] for different goals.
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tained in the effective tree-level contribution to the Kähler potential in Eq. (A.10):

δK0
eff = − g2

M2
Va

(Φ′†Tha Φ′)(Φ′†Tha Φ′), (6.12)

where we recall that Φ′ has no vev in its scalar component. The operator in

Eq. (6.12) can be seen to arise from the diagram on the left in Fig. 6.1. The only

Φ′ Φ′†

V

Φ′† Φ′

−→

Z

Z†

V

Q†

Q

+

Z

Z†

V

Q†

Q

Figure 6.1 Tree level gauge mediation supergraph generating the operator in
Eq. (6.12) by integrating out heavy vector superfields.

possible source of supersymmetry breaking in the effective theory are the F -term

vevs of the chiral superfields Φ′. We recall that such F -term vevs must belong to

non-trivial representations of the full group G, in order to play a role in TGM. The

only terms in the Lagrangian containing such F -term vevs, at the tree level and up

to second order in F0, F †0 , and 1/MVa , arise from the superpotential and from the

operator in Eq. (6.12):

−Ltree
soft = −F0i

∂Ŵ

∂Φ′i
− 2g2 (F †0T

h
a ψ
′)(φ′†Tha ψ

′)

M2
Va

+ h.c.

+ 2g2 (F †0T
h
a F0 )(φ′†Tha φ

′)

M2
Va

+ 2g2 (φ†Tha F0 )(F †0T
h
a φ
′)

M2
Va

− F †0F0 , (6.13)

where Ŵ is the superpotential in the effective theory,

Ŵ (Φ′) = W (φ0 + Φ′) (ΦG = 0). (6.14)

Let us analyze the different terms in Eq. (6.13). The first term in the second line

reproduces the contribution to the soft scalar masses in Eq. (6.11). The second term

also contributes4 to soft scalar masses, but is only relevant to superfields that are

4This contribution can be obtained in the context of the full theory by using the unitary gauge
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gauge partners of the Goldstino superfield (and have the same quantum numbers

under H as some of the generators of G). Taking them together, we get

m̃2
ij = 2g2

[
(Tha )ij

F †0T
h
a F0

M2
Va

+
(Tha F0)∗i (T

h
a F0)j

M2
Va

]
. (6.15)

Note that the soft terms do not actually depend on the gauge coupling or on the

normalization of the generators T , as M2
Va

is also proportional to g2T 2.

The second term in the first line of Eq. (6.13) is a Yukawa interaction with

coupling λ = O
(
|F0|/M2

V

)
, usually absent in models of supersymmetry breaking.

It formally reintroduces quadratic divergences in the theory. However, even in the

case in which the fields involved in the Yukawa interactions are light (so that we

might worry about destabilizing their mass hierarchy), such quadratic divergences

have the same parametric dependence on the supersymmetry breaking scale |F0|
and the “cutoff” scale MV as the usual logarithmic divergences induced by soft

supersymmetry breaking terms, except that they are not log-enhanced. In fact, let

us consider for example the radiative contribution δm2 to the mass term m2φ′∗φ′

of the scalar φ′ entering the Yukawa interaction. We then have

δm2 ∼ λ2

(4π)2
M2
V ∼

1

(4π)2

|F0|2
M2
V

. (6.16)

These Yukawa couplings are very small, of the order

λ ∼ msoft/MV ∼ msoft/MGUT ∼ 10−13.

From a phenomenological point of view, such tiny Yukawa couplings might play a

role in neutrino physics, where they could represent naturally small Dirac neutrino

Yukawa couplings [54].

Finally, the first term in Eq. (6.13) represents a potential direct coupling of

light fields to SUSY breaking. In order not to destabilize the hierarchy, the SUSY

breaking sector should be “hidden” from the light fields, in the sense that its effects

are only indirect, mediated by heavy fields and thus suppressed by MV . In the

phenomenological applications we have in mind, the light spectrum will contain

the MSSM chiral superfields, as part of a light, “observable” sector. The latter

will be charged under the residual gauge group H ⊇ GSM. On the other hand,

or in Wess-Zumino gauge from the F -term contribution to the scalar potential using Eq. (6.27)
below.
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the SUSY breaking superfields do not feel the residual gauge interactions. In the

effective theory the SUSY breaking sector is therefore hidden from the observable

sector what regards gauge interactions. In order for the SUSY breaking sector to be

hidden also with respect to superpotential interactions, it is sufficient to make sure

that the first term in Eq. (6.13) does not induce a direct coupling between the two

sectors. To be more precise, we can write the chiral superfields Φ′ of the effective

theory as

Φ′ = (Z,Q,Φh). (6.17)

The superfield Z is the only one getting an F -term vev, 〈Z〉 = |F0|θ2. Its fermion

component is the Goldstino and therefore Z is a massless eigenstate of the mass

matrix M0 in Eq. (6.4). The remaining mass eigenstates are divided in two groups,

the heavy ones, Φhi with massesMh
i � |F0|, and the light or observable onesQi, with

masses MQ
i . |F0|. In order to hide supersymmetry breaking from the observable

sector with respect to superpotential interactions, we require that

∂2Ŵ

∂Z∂Qj
(Z,Q,Φh = 0) = 0. (6.18)

We can then see supersymmetry breaking as arising in a hidden sector and then

communicated to the observable sector by the diagrams on the right-hand side

of Fig. 6.1. This can perhaps be considered as the simplest way to communicate

supersymmetry breaking: through the tree-level renormalizable exchange of a heavy

gauge messenger. Since heavy gauge messengers at a scale not far from the Planck

scale are automatically provided by grand unified theories, this possibility is not

only simple but also well motivated. The reason whyinput it has not been pursued

in the past is an apparent obstacle arising from the supertrace theorem that, as

mentioned, can be easily evaded by providing heavy, supersymmetric masses to

some of the superfields. Such mass terms can naturally arise in the context of grand

unified theories, as we will see in Chapter 7.

We end this chapter with some comments on integrating out heavy chiral su-

perfields and the corresponding possible tree-level contributions to soft terms. The

heavy vector superfields may not be the only fields living at the scale MV , as chiral

superfields could have mass terms of similar size or get it after gauge symmetry

breaking. Such chiral fields should also be integrated out in order to write down

the effective theory below the scale MV in a consistent way.

In general, we want to integrate out all the heavy chiral superfields Φh. Since
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their masses Mh
i are assumed to be much larger than the supersymmetry breaking

scale, it is still be possible to write the effective theory in a manifestly supersym-

metric way. In order to integrate them out, let us write the superpotential as

Ŵ = −|F0|Z +
MQ
i

2
Q2
i +

Mh
i

2
(Φhi )2 +W3(Z,Q,Φh), (6.19)

whereW3 is at least trilinear in its argument. The equations of motion (∂Ŵ )/(∂Φhi ) =

0 give

Φhi = − 1

Mh
i

∂W3

∂Φhi
(Z,Q) +O

(
1

M2
h

)
. (6.20)

The effective superpotential for the light fields Z and Q is therefore

Weff(Z,Q) = Ŵ (Z,Q)− 1

2Mh
i

∑
i

(
∂W3

∂Φhi
(Z,Q)

)2

+O
(

1

M2
h

)
. (6.21)

A contribution to the effective Kähler is also induced

δKΦ =
1

(Mh
i )2

∑
i

∣∣∣∣∂W3

∂Φhi
(Z,Q)

∣∣∣∣2 +O
(

1

M3
h

)
. (6.22)

The effective contributions to the superpotential and to the Kähler in Eqs. (6.21,

6.22) may give rise to “chiral-mediated” tree-level A-terms and (negative) additional

contributions to soft scalar masses respectively. The latter should be subleading with

respect to the (positive) vector mediated contributions in Eq. (6.15), at least in the

case of the MSSM sfermions. Such tree-level contributions could only arise in the

presence of trilinear superpotential couplings in the form ZQΦh. In the following

we will restrict to the case in which such a coupling is absent.

∂3Ŵ

∂Z∂Q∂Φh
(0) = 0, (6.23)

so that the chiral-mediated tree-level contributions vanish. This is often the case,

as illustrated in the model in Section 5.4.

6.3 One-Loop Soft Terms and Gaugino Masses

We now want to calculate gaugino masses arising at one-loop in the full theory above

MV . There are two types of diagrams contributing to gaugino masses, depending

on whether the degrees of freedom running in the loop are components of heavy
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λla λlb

vµ

λh λh

ψh ψh

m∗
cd

(a)

λla λla

φ

ψh ψh

m∗
cd

(a)

λla λla

ψh ψh

φh φhFij

(b)

Figure 6.2 One-loop contributions to light gaugino masses from the exchange of
heavy vector (a) and chiral (b) degrees of freedom.

vector superfields (including the Goldstone superfields), as in Fig. 6.2a, or physical

chiral superfields, as in Fig. 6.2b. Correspondingly, we will distinguish a “vector”

and a “chiral” contribution to the light gaugino masses,

Mg
ab = (Mg

ab)V + (Mg
ab)Φ. (6.24)

Supersymmetry breaking is transmitted to the light gauge sector due to a tree-

level splitting among the components of the heavy vector and chiral superfields

respectively. We now analyze the two contributions in Eq. (6.24) and write the

known results [55] in a form general enough for the subsequent discussion of their

quantitative importance compared to tree-level soft scalar masses.

6.3.1 Vector Contribution to Gaugino Masses

In the supersymmetric limit, the fields vµa , λa, ψ
G
a , Re(φGa )/

√
2 form a massive

vector multiplet with mass MVa . Once supersymmetry is broken, this spectrum is

split by corrections to the fermion and scalar masses, which may also mix them

with the components of the physical chiral superfields. Here we are interested in

the supersymmetry breaking fermion mass term in the form −mabψ
G
a ψ

G
b /2, which

is the source of the vector contribution to gaugino masses from the diagrams in
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Fig. 6.2a. The mass term

mab =
∂2W

∂ΦGa ∂ΦGb
(φ0) (6.25)

vanishes in the supersymmetric limit because of the gauge invariance of W . The

situation is different in the presence of supersymmetry breaking, when the gauge

invariance of W gives

mab = g2F
†
0 {Tha , Thb }φ0

MVaMVb

. (6.26)

Note also the more general expression for the mixed supersymmetry breaking terms

∂2W

∂Φi∂ΦGa
(φ0) =

√
2g
F †0j(T

h
a )ji

MVa

. (6.27)

Before calculating the gaugino masses induced by mab, let us note that the heavy

vector representation is in general reducible, under the unbroken gauge group H, to

a set of irreducible components, each with a definite mass. Let us call M̂VR |1 this

mass in the representation R and denote

g2φ†0{Tha , Thb }F0 = m∗abM̂
2
VR |1 ≡ δabM2

VR |θ2 , (6.28)

if Tha , Thb belong to the representation R. We choose this notation in order to

indicate that M̂2
VR
|1 and M̂2

VR
|θ2 are just the scalar and F-term components of the

superfield function

M̂2
VR ≡

∂2K

∂VR∂VR
(〈Φ〉 , V = 0),

where VR is the vector superfield in the irrep R of H.

In the limit |F0| �M2
V , the supersymmetry breaking source mab can be treated

as a perturbation in the one-loop computation of gaugino masses. At the leading

order in mab, the diagram in Fig. 6.2a generates a contribution to light gaugino

masses given by

(Mg
ab)V = −2

α

4π

∑
R

I(R)m∗ab = −2 δab
α

4π

∑
R

I(R)
M2
VR
|θ2

M2
VR
|1
, (6.29)

where I(R) is the Dynkin index of the representation R : T → R(T ) of the generator

T . The above contribution to gaugino masses arises at the scale MV where the heavy

vectors live.

Let us now discuss the relevance of the above contribution to gaugino masses.

First, let us note that in order for (Mg
ab)V to be non-vanishing we need the following
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two conditions to be verified at the same time

φ†0{Tha , Thb }F0 6= 0 for some a, b, φ†0T
h
a F0 = 0 for all a, (6.30)

as it can be seen from Eqs. (6.28) and (6.6). In particular, we need at least one

irreducible (under the full group G) chiral superfield multiplet to get vev in both

its scalar and F components. At the same time, we need

F †0T
h
a F0 6= 0 for some a, (6.31)

in order for the tree-level contribution to scalar masses to be generated. The con-

ditions in Eqs. (6.30, 6.31) often force the vector contribution to gaugino masses

to vanish. On top of that, (Mg
ab)V is always suppressed by a loop factor g2/(4π)2

compared to the typical scalar mass in Eq. (6.15). As we will see in a moment,

the chiral contribution to gaugino masses can be significantly larger than the vector

contribution, thus reducing or even eliminating the loop suppression with respect to

soft scalar masses. In this case, the vector contribution to gaugino masses typically

ends up to be subdominant.

6.3.2 Chiral Contribution to Gaugino Masses

The chiral contribution to gaugino masses arises from the one-loop diagram in

Fig. 6.2b, as in ordinary loop gauge mediation. The scalar and fermion compo-

nents of the chiral superfields entering the loop are split by a SUSY breaking scalar

mass term −(Fijφ
h
i φ

h
j + h.c.)/2. The scalar mass Fij is given by

Fij = − ∂3Ŵ

∂Φhi ∂Φhj ∂Z
(0)|F0|, (6.32)

which adds to the supersymmetric scalar mass term −M2
i |φ′i|2, see Eq. (6.5).

The physical chiral superfield representation under the unbroken gauge group

H is in general reducible to a set of irreducible components, each with a definite

mass. Let us call M̂h
R|1 the mass in the representation R and denote

∂3Ŵ

∂Φhi ∂Φhj ∂Z
(0)|F0| = −Fij ≡ δijM̂h

R|θ2 . (6.33)

Again M̂h
R|1 and M̂h

R|θ2 are just the scalar and F-term components of the superfield
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function

M̂h
R ≡

∂2Ŵ

∂ΦhR∂Φh
R

(〈Φ〉),

where ΦhR is the heavy chiral superfield in the irrep R of H.

At the leading order in Fij , the diagram in Fig. 6.2b generates a contribution to

light gaugino masses given by

(Mg
ab)Φ = δab

α

4π

∑
R

I(R)
M̂h
R|θ2

M̂h
R|1

. (6.34)

Each of the contributions in the sum in the RHS of Eq. (6.34) arises at the scale

M̂h
R|1 at which the corresponding chiral superfield lives.

Let us now discuss the size of the typical chiral contribution to gaugino masses

Mg and compare it with the typical size of the tree-level scalar soft masses m̃2 in

Eq. (6.15). Let us consider for simplicity the case in which the scalar masses are due

to the exchange of a single heavy vector and the irreducible (under H) components

of the physical chiral superfields have definite charges QR under the corresponding

generators. As for the dynamics giving rise to gaugino masses, let us assume that

there are no bare mass terms in the superpotential. Then both M̂h
R|1 = λRSφ0S

and M̂h
R|θ2 = λRSF0S arise from the same trilinear term in W (Φ). Under the above

assumptions, we have

m̃2 =

∑
R(QR/Q)|F0R|2∑
R(QR/Q)2|φ0R|2

, Mg =
α

4π

∑
R

I(R)

∑
S λRSF0S∑
S λRSφ0S

, (6.35)

where Q is the charge of the scalar acquiring the mass m̃. While the loop factor

g2/(4π)2 suppresses Mg compared to m̃ by a O (100) factor, the expressions in

Eqs. (6.35) can easily cause an enhancement of m̃/Mg reducing or even eliminating

the loop hierarchy:

• In the context of grand unified theories the number of heavy vectors contribut-

ing to the soft scalar masses is typically small (one in the case of SO(10)), while

gaugino masses can may get a contribution from several chiral messengers.

• Sfermion and gaugino masses depend on different group factors. Sfermions

can get a mild suppression if QR/Q > 1.

• The heavy vector masses whose exchange generates m̃ collect all the vevs

breaking the corresponding charge Q. The scalar mass m̃ is therefore sup-
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pressed by all such vevs. On the other hand, gaugino masses are only sup-

pressed by the vevs related to supersymmetry breaking by superpotential in-

teractions λRS . Unless some of them have Q = 0, the vevs suppressing gaugino

masses will be a subset of the vevs suppressing scalar masses, thus leading to

an enhancement of gaugino masses. In the presence of an hierarchy between

the vevs related to supersymmetry breaking and some of the other, Q-breaking

vevs, this enhancement can be quite large.

• Different couplings λRS can appear in the numerator and denominator of the

expression (
∑
S λRSF0S)/(

∑
S λRSφ0S). This is likely to be the case as a

consequence of the relation
∑
S QS(F ∗0Sφ0S) = F †0T

hφ0 = 0, which can be

satisfied without cancellations only in the case in which the fields charged

under Q do not have vevs in both the F and scalar components. If the

couplings appearing in the numerator and the denominator are hierarchical,

gaugino masses can be sizeably enhanced.

The study of simple models shows that the enhancement factors above can naturally

arise, see Sections 5.4.4 and 7.2.1.

6.3.3 Contributions to other Soft Terms

Besides gaugino masses, which can be seen to arise from one-loop corrections to the

gauge kinetic function, a number of soft terms can be generated or get a contribution

from the one-loop corrections to the Kähler. The latter can be computed using the

general results in [56], which give

δK1-loop = − 1

32π2
Tr

[
M†ΦMΦ

(
log

M†ΦMΦ

Λ2
− 1

)]
+

1

16π2
Tr

[
M2
V

(
log

M2
V

Λ2
− 1

)]
,

(6.36)

where

(MΦ)ij =
∂2W

∂Φi∂Φj
(Φ), (M2

V )ab =
∂2K

∂Va∂Vb
(Φ, V = 0) (6.37)

are functions of the chiral superfields, K is the canonical Kählerpotential K =

Φ†e2gV Φ and the indices run over the heavy vector and chiral superfields. The first

term comes from chiral superfields running in the loop, the second term from vector

fields. As in the case of gaugino masses, the soft terms might get a contribution

from both.

Because these contribution to one-loop soft terms are highly model dependent,
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we just collect their general form in terms of δK1-loop. Let us therefore expand

δK1-loop in terms of powers of Q and Z around φ0. The relevant terms are

δK1-loop = α
(1)
ij ZQ

†
iQj +

β
(1)
ij

2
Z†QiQj + h.c.

+ α
(2)
ij Z

†ZQi
†Qj

+
β

(2)
ij

2
Z†ZQiQj + h.c. + . . . , (6.38)

where α(1), α(2), are hermitian, β(1), β(2) symmetric and all are dimensionful. We

have omitted Z†Qi terms, which are well-known to destabilize the hierarchy [57].

Their absence can be ensured for example by requiring that there are no light chiral

fields with the same quantum numbers as Z.

The first term α(1) gives rise to trilinear A-terms

LA1-loop = −AijQ̃i
∂Ŵ

∂Qj
(Q̃), with Aij = |F0|α(1) (6.39)

(and to a two loop contribution to scalar soft masses), where Q̃ is the scalar com-

ponent of Q. The second term β(1) generates a contribution to the µ-term in the

superpotential5

Wµ
1-loop =

µij
2
QiQj , with µij = |F0|β(1), (6.40)

and the fourth term β(2) a contribution to the Bµ-term

LBµ1-loop = −(Bµ)ij
2

qiqj , with (Bµ)ij = −|F0|2β(2). (6.41)

Finally, α(2) gives a one-loop contributions to soft scalar masses

δm̃2
ij = −|F0|2α(2)

ij (6.42)

that add to the tree-level contributions in Eq. (6.15).

Additional one-loop contributions to soft scalar masses can come from an in-

duced Fayet-Iliopoulos term [43] associated for example to the heavy H-singlet gen-

erators, in particular to those involved in the mediation of supersymmetry breaking

at the tree level. Such terms vanish if the heavy chiral mass matrix and the matrix

5A detailed discussion of the µ-term can be found in Section 7.4.

66



of their couplings to the spurion Z are diagonal in the same basis (in which case

the condition in Eq. (6.23) is also automatically satisfied), or if the latter matrix of

couplings is hermitian in one basis in which the mass matrix is diagonal [21].

This completes the list of the soft terms arising at the one-loop level. Two-loop

corrections to soft scalar masses can also arise, as in ordinary gauge mediation,

and are sizable in the presence of an enhancement of one-loop gaugino masses, see

Section 5.4.
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7
Model Building

We now discuss the possibility to obtain a phenomenologically viable model from

the general formalism introduced in the previous chapter. We will see that clear

model building guidelines emerge from this analysis, leading, in economical schemes,

to peculiar predictions for the pattern of MSSM sfermion masses.

7.1 General Guidelines

In a phenomenologically viable model, the unbroken gauge group H should contain

the SM group, GSM ⊆ H, and the light superfield content should contain the MSSM

spectrum, (qi, u
c
i , d

c
i , li, e

c
i ) ⊆ Q, in standard notation, where i = 1, 2, 3 is the family

index. We assume that the full gauge group G is a simple, grand unified group,

motivated by the successful predictions of the SM fermion gauge quantum numbers

and the QCD coupling α3 in the MSSM. The candidates for the unified group G in a

four-dimensional theory are SU(N), N ≥ 5, SO(4n+2), n ≥ 2, and the exceptional

group E6 [58]. In the following we will focus on the smallest representatives of each

class, SU(5), SO(10) and E6.

We want the MSSM sfermions to get a positive mass around the TeV scale

through tree-level gauge mediation. The general form of such mass terms is given in

Eq. (6.15). They arise from two contributions, corresponding to the two diagrams

on the right in Fig. 6.1. In order for the second contribution to play a role for

sfermion masses, the corresponding chiral superfields should live in the same unified

multiplet as the supersymmetry breaking source Z. This will not be the case for
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SO(10) 16 16 10 45 54

SU(5) 1 10 5 1 10 5 5 5 1 10 10 24 24 15 15

X 5 1 −3 −5 −1 3 −2 2 0 −4 4 0 0 −4 4

Table 7.1 Quantum numbers of the non-trivial SO(10) representations with dimen-
sion d < 120 under the SO(10) generator X.

the models we want to consider as a consequence, for example, of a matter parity

telling the supersymmetry breaking multiplet from the matter ones1. The MSSM

sfermions then get their tree-level soft masses from the first term in Eq. (6.15)

only. In order for F †0T
h
a F0 to be non-vanishing, the heavy generator Tha must be a

SM singlet, since F0 is. We therefore need a group G with rank 5 at least, which

means that SU(5) cannot give rise to tree-level gauge mediation. In the following

we concentrate mainly on SO(10) and discuss very briefly E6.

7.2 SO(10) Embedding

In SO(10) there is exactly one (up to a sign) orthonormalized heavy SM-singlet

generator, Th = X/
√

40, where X = 5(B − L) − 4Y is the SU(5) invariant SO(10)

generator. The quantum numbers of the SO(10) representations with dimension

d < 120 under X are given in Table 7.1. The values of the X quantum numbers are

crucial because the soft terms turn out to be proportional to those charges. From

Eq. (6.15) we obtain in fact

m̃2
f =

Xf (F †0XF0 )

φ†0X
2φ0

at the scale MV =
g2

20
φ†0X

2φ0, (7.1)

where Xf is the X-charge of the sfermion f̃ and MV is the mass of the vector

superfield associated to the generator X. In order to calculate the spectrum of tree-

level sfermion masses, we just need to specify the embedding of the three MSSM

families into SO(10), which we will do through their SU(5) embedding into three

light 5
l
i + 10li, i = 1, 2, 3.

We use two constraints to determine the embedding of the 5
l
i + 10li into SO(10)

representations. The first one is related to a nice feature Eq. (7.1): the soft terms

1This second contribution might however contribute to the Higgs masses, if some of the gauge
generators have the same quantum numbers as the Higgses. This is not the case in SO(10), the
group on which we focus in this chapter, but could be possible in E6.
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are family-universal, provided that the three families of each of the MSSM mat-

ter multiplets are embedded in the same type of SO(10) representation. This is

what we want to assume in order to solve the SUSY flavor problem. Second, we

want the MSSM sfermion soft masses in Eq. (7.1) to be positive in order to avoid

spontaneous symmetry breaking of color, electric charge, or lepton number at the

scale m̃. Clearly, the standard embedding of a whole family into a 16 of SO(10)

would not work, as it would lead to negative masses for the sfermions in either the

5 or the 10 of SU(5). Because of the tracelessness of the X generator in SO(10),

every SO(10) multiplet will contain SU(5) representations with negative X-charge,

and thus scalars that pick up negative masses from TGM. This apparent obstacle

can be easily overcome by splitting the SO(10) representation containing the MSSM

multiplet through SO(10) breaking, in such a way that the extra fields with negative

soft masses acquire a large supersymmetric mass term. The negative soft mass will

then represent a negligible supersymmetry breaking correction to that large positive

mass. It turns out that such a splitting is actually expected to arise, as will see, a

fact that reinforces the logical consistency of this framework.

We are now ready to discuss the embeddings of the three 5
l
i and 10li of SU(5)

containing the light MSSM families in SO(10). As φ†0X
2φ0 is positive, the possible

choices depend on the sign of F †0XF0 . We limit ourselves to the SO(10) represen-

tations with d < 120, as in Table 7.1. There are then only two possibilities:

• F †0XF0 > 0. In this case we need to embed the 5
l
i’s and 10li’s into SO(10)

representations containing 5 and 10 of SU(5) with positive charges under

X. From Table 7.1 we see that the only possibility is to use three 16i =

(116
i , 1016

i , 5
16
i ) and three 10i = (510

i , 5
10
i ), where we have explicitly indicated

the SU(5) decomposition, and to embed the 10li’s into the 16i’s, 10li ≡ 1016
i ,

and the 5
l
i’s into the 10i’s, 5

l
i ≡ 5

10
i . The spare components 5

16
i , 510

i get

negative soft masses and need to acquire a large supersymmetric mass term.

• F †0XF0 < 0. In this case we need the 5
l
i’s and 10li’s to have negative charges

under X. The only possibility is then to use three 16i’s as before and three

45i = (145
i , 1045

i , 10
45
i , 2445

i ), with 5
l
i ≡ 5

16
i and 10li ≡ 1045

i . The spare compo-

nents 1016
i , 10

45
i , get negative soft masses and need to acquire a large super-

symmetric mass term.

Note that in both cases the chiral content of the theory is still given by three 16 of

SO(10). We have implicitly discarded the possibility of mixed embeddings in which
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for example the 5i’s of SU(5) are a superposition of the 5i’s in the 10i’s and 16i’s

of SO(10). While this possibility is in principle not excluded, it would introduce a

dependence of the sfermion soft masses on mixing parameters that are in general

flavor violating, thus possibly spoiling the flavor universality result.

Without specifying anything else, the two possibilities above give already rise to

two definite predictions for the ratios of sfermion soft masses at the scale MV :

(m̃2
l )ij = (m̃2

dc)ij = m2
5
δij ,

(m̃2
q)ij = (m̃2

uc)ij = (m̃2
dc)ij = m2

10δij ,

m2
5

= 2m2
10 if F †0XF0 > 0,

m2
5

=
3

4
m2

10 if F †0XF0 < 0. (7.2)

To summarize, these predictions are based on the following hypotheses: “minimal”

unified gauge group SO(10), embedding of the MSSM families in the SO(10) rep-

resentations with dimension d < 120 not containing the Goldstino, and absence of

mixed embeddings to automatically preserve flavor-universality. The ratios m5/m10

in Eq. (7.2) are the main predictions of TGM and peculiar enough to make this

scheme of SUSY breaking testable at the LHC.

What regards the source of supersymmetry breaking, 〈Z〉 = |F0|θ2, we need Z to

have a non-vanishing charge under X. If we limit ourselves again to representations

with d < 120, the only possibility is that Z has a component in the “right-handed

neutrino” direction of a 16 or a 16. With the sign conventions we adopted, a

component in a 16 gives a positive contribution to F †0XF0 , while a component in

a 16 gives a negative contribution.

We now want to show that the two embeddings of the light MSSM families de-

scribed above can be obtained in a natural way. It will turn out that the SO(10)

breaking vevs of a 16 + 16, essential to break SO(10) to the SM (unless represen-

tations with d ≥ 126 are used to reduce the rank) just provide the needed splitting,

i.e. they make heavy precisely the components of the SO(10) representations that

get a negative soft supersymmetry breaking mass. In the following, we first discuss

the 16i + 10i embedding in a general, top-bottom perspective and then turn to the

possibility of the 16i + 45i embedding.
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7.2.1 The Embedding into 16i + 10i

Let us consider the embedding associated to the case F †0XF0 > 0. We assume

the existence of a matter parity symmetry that tells matter superfields from Higgs

superfields. Let 16, 16 be the SO(10) multiplets breaking SO(10) to SU(5). The

most general renormalizable superpotential involving 16, 16, 16i, 10i, i = 1, 2, 3,

and invariant under a matter parity under which the SO(10) Higgs fields 16, 16 are

even and the the matter fields are odd is

W = hij16i10j16 +
µij
2

10i10j +Wvev, (7.3)

where Wvev takes care of providing a vev to the 16, 16 in the SM-singlet direc-

tion2 and does not depend on the matter fields (but can involve additional even

fields). The term hij16i10j16 is just what is needed to split the SU(5) components

of the 16i = (116
i , 1016

i , 5
16
i ) and of the 10i = (510

i , 5
10
i ), making heavy precisely the

unwanted components 5
16
i and 510

j . Once 16 acquires a vev in its singlet neutrino

component, 〈16〉 = MS , a mass term is generated for those components,

Mij5
16
i 510

j , Mij = hijMS . (7.4)

It is remarkable that the components acquiring a large mass are precisely those

that get a negative soft mass term. On the other hand, this is only true in the

limit in which the µij mass term in Eq. (7.3) can be neglected. In the presence of

a non-negligible µij the full mass term would be

(5
16
i Mij + 5

10
i µij)5

10
j , (7.5)

which would give rise to a mixed embedding of the light 5
l
i’s in the 16i’s and 10i’s.

In order to stick to our assumptions, which exclude the possibility of mixed embed-

dings, such a µij term should be absent. This can be easily forced by means of an

appropriate symmetry. Let us however relax for a moment that assumption in order

to quantify the deviation from universality associated to a small, but non-negligible

µij . The MSSM sfermions in the 5 of SU(5) receive in this case two contributions

to their soft mass, a positive one associated to the components in the 10i’s, propor-

tional to X(5
10

) = 2, and a negative one associated to the components in the 16i’s,

proportional to X(5
16

) = −3. The soft mass matrix for the light sfermions in the

2The simplest possibility is Wvev = X(1616−M2
S), where X is an SO(10) singlet.
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5 of SU(5) can be easily calculated in the limit in which the µij mass term can be

treated as a perturbation. In this limit, the light MSSM fields in the 5 of SU(5) are

in fact

5
l
i ≈ 5

10
i − (µM−1)∗ij5

16
j (7.6)

and their soft scalar mass matrix at the scale MV is

(m̃2
5
)ij ≈

2

5
m̃2

(
δij −

5

2

(
µ∗M∗−1MT−1µT

)
ij

)
, (7.7)

where m̃2 is defined below. The mixed embedding induced by the mass term µij

leads to flavor-violating soft-terms. Setting µij = 0 allows to preserve the flavor

blindness of the soft terms and to satisfy the FCNC constraints without the need

of assumptions on the structure of the flavor matrices hij and µij . We therefore

assume that µij is vanishing or negligible. We then have 5
l
i = 5

10
i , 10li = 1016

i ,

with the extra components 5
16
i and 510

i obtaining a large supersymmetric mass term

Mij5
16
i 510

i , as desired. The soft masses for the light sfermions are

(m̃2
l )ij = (m̃2

dc)ij =
2

5
m̃2δij ,

(m̃2
q)ij = (m̃2

uc)ij = (m̃2
dc)ij =

1

5
m̃2δij ,

m̃2 = 5
(F †0XF0 )

φ†0X
2φ0

> 0, (7.8)

as anticipated in Eq. (7.2). The reason for taking out the factor 5 = X(116) will

become clear later.

We now need to identify the embedding of the MSSM Higgs superfields and re-

produce their MSSM superpotential interactions, in particular the MSSM Yukawas.

It is useful to discuss the Yukawa interaction in SU(5) language. The up quark

Yukawa interactions arise from the SU(5) operator

λUij
2

10li10lj5H , (7.9)

where 5H contains the MSSM up-type Higgs hu. Because of 10li = 1016
i , the operator

in Eq. (7.9) can arise at the renormalizable level from a SO(10) invariant operator

only if 5H has a component in a 10H of SO(10), 10H = (510
H , 5

10
H ), with

510
H = cos θu5H + . . . , 0 ≤ θu ≤ π/2, (7.10)
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where cos2 θu measures the size of the 5H component from 10 representations of

SO(10). The operator in Eq. (7.9) will then emerge as

yHij
2

16i16j10H =
λUij
2

10li10lj5H + . . . , with λUij = cos θuy
H
ij . (7.11)

The down quark and charged lepton Yukawa interactions arise at the renormalizable

level3 from the SU(5) operator

λDij10li 5
l
j 5H , (7.12)

where 5H contains the MSSM down-type Higgs hd. Because we have 10li = 1016
i

and 5
l
i = 5

10
i , the operator in Eq. (7.12) can arise at the renormalizable level from

a SO(10) invariant operator only if 5H has a component into a 16H of SO(10),

16H = (116
H , 1016

H , 5
16
H ), with

5
16
H = sin θd5H + . . . , 0 ≤ θd ≤ π/2, (7.13)

where sin2 θd measures the size of the 5H component from 16 representations of

SO(10). The operator in Eq. (7.12) will then emerge as

hHij16i10j16H = λDij10li 5
l
j 5H + . . . , with λDij = sin θdh

H
ij . (7.14)

It is economical to identify the 16H with 16, the field whose vev breaks SO(10)

to SU(5), in which case hH = h and the mass of the heavy extra components 5
16
i

and 510
i in Eq. (7.4) turns out to be proportional to the corresponding light fermion

masses4 (up to non-renormalizable corrections needed to fix the light fermion mass

ratios).

Having introduced the MSSM Higgs fields, let us now discuss their soft mass

terms. To summarize the previous discussion, the up (down) Higgs superfield hu

(hd) can be embedded in either 10’s or 16’s (16’s) of SO(10), in both cases through

the embedding into a 5H (5H) of SU(5). We have denoted by cos2 θu (cos2 θd) the

overall size of the hu (hd) component in the 10’s. The overall size of the component

in the 16’s (16’s) is then measured by sin2 θu (sin2 θd). Correspondingly, the Higgs

3SU(5)-invariant renormalizable Yukawa interactions lead to wrong mass relations for the two
lighter families of down quarks and charged leptons, which may be fixed by including non-
renormalizable operators. We ignore this issue in the following and only consider the renormalizable
part of the superpotential.

4This property can give rise to a predictive model of leptogenesis in the context of type-II see-saw
models [59, 60].
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soft masses get two contributions from the first term in Eq. (7.1) proportional to

two different X charges:

m2
hu =

−2c2u + 3s2
u

5
m̃2,

m2
hd

=
2c2d − 3s2

d

5
m̃2, (7.15)

so that

−2

5
m̃2 ≤ m2

hu ≤
3

5
m̃2,

−3

5
m̃2 ≤ m2

hd
≤ 2

5
m̃2. (7.16)

Let us now consider gaugino masses. A general discussion of all possible contribu-

tions to gaugino masses in the presence of an arbitrary number of SO(10) repre-

sentation with d < 120 would be too involved. We therefore consider just a few

examples meant to generalize the specific model presented in Section 5.4 and to

illustrate the general properties discussed in Section 6.3.

We begin by elucidating the structure of supersymmetry breaking. With the

representation content of Table 7.1, supersymmetry breaking can be associated to

the F -term vevs of superfields in 16, 16, 45, 54 representations, because only these

contain SM singlets. However, only the 16, 16, whose singlets have non-vanishing

X-charges, can contribute to tree-level soft masses. Let us call 16Hα , 16
H
α the matter

parity even superfields in the 16 and 16 representations of SO(10). In a generic

basis, we can parametrize the vevs of their singlet components as

〈
116H
α

〉
= Mα + Fαθ

2,
〈
116H
α

〉
= Mα + Fαθ

2. (7.17)

The D-term condition for the X generator requires

∑
α

|Mα|2 ≈
∑
α

|Mα|2, (7.18)

while gauge invariance gives

∑
α

M∗αFα =
∑
α

M
∗
αFα. (7.19)
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Sfermion masses are proportional to (cf. Eq. (7.8))

m̃2 =

∑
α(|Fα|2 − |Fα|2)∑
α(|Mα|2 + |Mα|2)

, (7.20)

where
∑
α |Fα|2 >

∑
α |Fα|2 by definition in the case we are considering. Note that

m̃2 is suppressed by all vevs contributing to X breaking.

Let us now comment on the vector contribution to gaugino masses. First we

assume that the 16’s do not break supersymmetry. Without loss of generality we

can then assume that supersymmetry breaking is only associated to 16′ ≡ 16H1 . The

gauge invariance condition then gives M1 = 0, i.e. a vev for both the F -term and

scalar components is not allowed. Since the F -term and scalar components belong

to different irreducible representations, no vector contribution to gaugino masses is

generated by the 16’s. A vector contribution can still be generated by the F -term

vev of a 45, for example, for which the gauge invariance condition does now prevent

a vev in both the scalar and F -term component. Or, it can be generated by the

F -terms of the 16’s if some of the 16 also breaks supersymmetry and cancels the

contribution of the 16 to Eq. (7.19).

Now we analyze the chiral contribution to gaugino masses. The massive compo-

nents 5
16
i and 510

j of the matter superfields will act as chiral messengers if they are

coupled to supersymmetry breaking. As before we consider the case in which the

16’s do not break supersymmetry, and supersymmetry breaking is provided by the

F -term vev F of the singlet component of the 16′ and is felt by the chiral messengers

through the h′ij16i10j16′ interaction. Let 16 ≡ 16H2 be the field whose vev gives

mass to the 5
16
i , 510

j through the hij16i10j16 interaction, as in Eq. (7.3). And let us

assume that additional 16Hα ’s and 16
H
α ’s get vevs in their scalar components. The

chiral messengers 5
16
i , 510

j have therefore a supersymmetric mass Mij = hijM and

their scalar components get a supersymmetry breaking term mass term Fij = h′ijF .

The induced one-loop chiral contribution to gaugino masses is then

Mg =
g2

(4π)2
Tr(h′h−1)

F

M
. (7.21)

The tree-level soft mass of the stop (belonging to the 10 of SU(5)) is

m̃2
t =

1

5

|F |2
|M |2 +

∑
α |Mα|2 + |M |2 +

∑
α |Mα|2

. (7.22)

We can then compare stop and gaugino masses (before radiative corrections). Their
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ratio is particularly interesting, as the gaugino mass Mg is at present bounded to be

heavier than about 100 GeV, while m̃t enters the radiative corrections to the Higgs

mass. Therefore, the ratio m̃t/Mg should not be too large in order not to increase

the fine-tuning and not to push the stops and the other sfermions out of the LHC

reach. From the previous equations we find

Mg

m̃t
=

3
√

5k

(4π)2
λ, (7.23)

with

λ =
g2 Tr(h′h−1)

3
,

k =
|M |2 +

∑
α |Mα|2 + |M |2 +

∑
α |Mα|2

|M |2 ≥ 2. (7.24)

Eq. (7.23) illustrates all the enhancement factors discussed in Section 6.3 that can

compensate the loop suppression of gaugino masses. The factor 3 corresponds to

the number of chiral messenger families (Tr(h′h−1) = 3 for h = h′) contribut-

ing to gaugino masses, to be compared to the single vector messenger generating

sfermion masses at the tree level. The factor
√

5 comes from the ratio of charges

X(116)/X(1016) = 5 suppressing the stop mass in Eq. (6.35). The factor k ≥ 2 is

the ratio of the sum of vevs suppressing sfermion masses and the vev suppressing

gaugino masses. Note that in the presence of hierarchies of vevs, the factor k can be

large. Finally, λ represents a combination of couplings that can further enhance (or

suppress) gaugino masses. All in all, we see that the loop factor separating m̃t and

Mg is partially compensated by a combination of numerical factors: (4π)2 ∼ 100

(leading to m̃t & 10 TeV for λ = 1) becomes at least (4π)2/(3
√

10) ∼ 10 (leading

to m̃t & 1 TeV for λ = 1). A largish value of the factors k or λ can then further

reduce the hierarchy and even make Mg ∼ m̃t, if needed.

7.2.2 The Embedding into 16i + 45i

Let us now consider the second type of embedding identified above, corresponding

to F †0XF0 < 0. The most general renormalizable superpotential involving 16, 16

and 16i, 45i, i = 1, 2, 3 and invariant under matter parity is

W = hij16i45j16 +
µij
2

45i45j +Wvev. (7.25)
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The term hij16i45j16 is just what needed to split the SU(5) components of the

16i = (116
i , 1016

i , 5
16
i ) and of the 45i = (145

i , 1045
i , 10

45
i , 2445

i ) and make heavy the

unwanted components 1016
i and 10

45
j . Once 16 acquires a vev M , a mass term is

generated for those components,

Mij1016
i 10

45
j , Mij = hijM. (7.26)

It is remarkable that also in this case the components acquiring a large mass are

precisely those that get a negative soft mass term. On the other hand, this is only

true in the limit in which the µij mass term in Eq. (7.25) can be neglected. In order

to abide to our pure embedding assumption, we will neglect such a term. Let us

note, however, that such a term should arise at some level in order to make the 2445
i ’s

components heavy. Note that the 24i’s do not affect gauge coupling unification at

one-loop and can therefore be considerably lighter than the GUT scale, consistently

with the required smallness of µij . The soft masses for the light sfermions are now

(m̃2
l )ij = (m̃2

dc)ij =
3

5
m̃2δij ,

(m̃2
q)ij = (m̃2

uc)ij = (m̃2
dc)ij =

4

5
m̃2δij ,

m̃2 = −5
(F †0XF0 )

φ†0X
2φ0

> 0. (7.27)

Unfortunately, the embedding we are discussing cannot be implemented with renor-

malizable interactions and d < 120 representations only. The problem is obtaining

the Yukawa interactions. Let us consider the up quark Yukawas, arising as we

saw from the SU(5) operator in Eq. (7.9). Given its size, we expect at least the

top Yukawa coupling to arise at the renormalizable level. As in the present case

10li = 1045
i , the operator in Eq. (7.9) can arise at the renormalizable level from a

SO(10) invariant operator only if 5H has a component in a SO(10) representation

coupling to 45i45j . And the lowest dimensional possibility containing the 5 of SU(5)

is the 210. For this reason, we do not pursue this possibility further here, although

models with large representations are of course not excluded.
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7.3 E6 Embedding

We close this section with a few considerations about the possibility to identify the

unified group with E6. Such a possibility looks particularly appealing in the light

of the discussion of the SO(10) case above. We have seen in fact that the most

straightforward possibility to realize tree-level gauge mediation in SO(10) requires

the matter superfield content to include three 16i + 10i, i = 1, 2, 3. This is pre-

cisely what E6 predicts. The fundamental of E6, a representation of dimension 27,

decomposes under SO(10) as

27 = 16 + 10 + 1. (7.28)

The matter content needed by the 16i+10i embedding can therefore be provided in

the context of E6 by three matter 27i, and the 16H and 10H needed to accommodate

the Higgs fields can also be provided by a single Higgs 27H . All Yukawas can then

in principle follow from the single E6 interaction

λij27i27j27H . (7.29)

We postpone the analysis of this promising possibility to further study.

7.4 The µ-Problem

In this section, we discuss a few approaches to the µ-Problem in the context of tree-

level gauge mediation. The problem is to relate the scale of the supersymmetric

mass W ⊃ µhuhd, to the supersymmetry breaking scale in the observable sector,

which in our case is given by m̃ ∼ |F0|/MV . We discuss in the following three

possible connections. One is peculiar of tree-level gauge mediation, the other two

have been considered in other contexts, but have specific implementations in tree-

level gauge mediation. We classify them according to the dimension D of the SO(10)

operator from which the µ-term arises. Note that we are not addressing the origin

of the smallness of m̃ and µ compared to the Planck scale, just their connection.

The three options we consider are:

• D = 3: µ comes from the operator µhuhd ⊂ W . It is the supersymmetry

breaking scale that is derived from µ, and not viceversa: F0 ∼ µM , where
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M = O (MV ), and m̃ ∼ F0/M ∼ µ.

• D = 4: µ comes from the operator λShuhd ⊂W . The light SM singlet S gets

a vev from a potential whose only scale is m̃, so that µ ∼ λ 〈S〉 ∼ m̃.

• D = 5: µ comes from the operator a(Z†/M)huhd ⊂ K, so that µ = aF0/M .

7.4.1 D = 3

This possibility was already mentionend in Section 5.4, here we will discuss a con-

crete implementation. Let us consider the 16i + 10i embedding. As discussed in

Section 7.2.1, hu is a superposition of the up-type Higgs components in the 16’s

and 10’s (with RP = 1) in the model. Analogously, hd will be a superposition of

the down-type Higgs components in the (RP = 1) 16’s and 10’s. The only possi-

ble D = 3 origin of the µ-term in the context of the full SO(10) theory are then

O (TeV) mass terms for the above 16’s, 16’s, and 10’s. As mentioned above, we do

not address the origin of such a small parameter in the superpotential, as we do not

address the smallness of the supersymmetry breaking scale, but such small scales

could for example be explained by a dynamical mechanism. We want however to

relate such mass parameters, in particular the coefficient of a 1616 mass term, to

the supersymmetry breaking scale. This is actually pretty easy, as the embedding

we are considering provides all the necessary ingredients and the result arises simply

from their combination. We have seen that the model needs a 16, 16 pair to get a

vev in the SM singlet direction of the scalar component, in order to break SO(10) to

the SM. Moreover, an independent 16′, 16
′

pair is required to break supersymmetry

trough the F -term vev of the SM singlet component in the 16′. The simplest way

to achieve such a pattern is through a superpotential like

W1 = λ1Z(1616−M2) +m16′16 + λ2X1616
′
, (7.30)

where X, Z are SO(10) singlets and M ∼ MGUT. This is a generalization of a

U(1) toy model in [38]. Finally, we have seen that the light Higgses may have a

component in 16, 16′, 16, 16
′
. Let α′ be the coefficient of the hd component in the

16′ and α the coefficient of the hu component in the 16. Then a µ-parameter is

generated in the form

µ = α′αm (7.31)
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from the m16′16 term in Eq. (7.30). The parameter m is therefore required to be in

the window 100 GeV/(α′α) . m . TeV/(α′α). In the limit µ = 0, supersymmetry

is unbroken and 16, 16 acquire a vev that we assume to be in the SM singlet

component
〈
116
〉

=
〈
116
〉

= M . A non-vanishing µ instead triggers supersymmetry

breaking and induces an F -term vev for the singlet component of the 16′,
〈
116′〉

=

Fθ2, with F = mM . We therefore have

m̃ ∼ F

M
= m =

µ

α′α
, (7.32)

thus providing the desired connection between µ and the supersymmetry breaking

scale. Tree-level gauge mediation plays a crucial role not only in providing the

ingredients (and no need to stir), but also because it is the very SO(10) structure

providing the heavy vector messengers to relate in a single irreducible representation

(the 16’) supersymmetry breaking (the F -term vev of its SM singlet component) and

the down Higgs entering the µ-term (the lepton doublet-type component of the 16’).

In Appendix B we provide an existence proof of a (perturbative) superpotential that

i) implements the mechanism above, thus breaking supersymmetry and SO(10) to

SU(5), ii) further breaks SU(5) to the SM, iii) makes all the fields that are not part

of the MSSM spectrum heavy, in particular achieves doublet-triplet splitting.

7.4.2 D = 4

This is an implementation of the NMSSM solution of the µ-Problem (see e.g. [61]

and references therein). As we will see, the realization of such a solution in the

context of tree-level gauge mediation avoids some of the problems encountered in

ordinary gauge mediation.

In order to use the NMSSM solution of the µ-Problem, an explicit term µhuhd

should be forbidden, for example by a symmetry. The light fields Q should include a

SM singlet S, coupling to the Higgses through the superpotential interaction λShuhd

and S should develop a non-zero vev. The µ-parameter will then be generated,

µ = λ 〈S〉. In the absence of terms linear or quadratic in S in the superpotential,

the scale of a vev for S can only be provided by the supersymmetry breaking terms

in the soft Lagrangian, 〈S〉 ∼ m̃, in which case µ = λ 〈S〉 ∼ λm̃, as desired.

In order to generate a non-zero vev for S, one would like to have a negative soft

mass for S at the weak scale, along with a stabilization mechanism for large values

of the fields. In ordinary gauge mediation this is not easy to achieve. While the
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stabilization can be simply provided by a S3 term in W , as in the NMSSM (or by a

quartic term in Z ′ extensions of the MSSM [62]), the soft mass term of S vanishes at

the messenger scale because S is typically a complete gauge singlet. A non-vanishing

negative mass term is generated by the RGE running but it is typically too small.

Another problem is that the Higgs spectrum can turn out to be non-viable [63]. A

sizable soft mass can still be generated by coupling S to additional heavy fields.

Such possibilities can be implemented in our setup by promoting S to an SO(10)

singlet and coupling it to the Higgses through a S 16 16 or S 10 10 coupling to the

SO(10) representations containing the Higgs fields.

Tree-level gauge mediation offers a different avenue. A sizable, negative soft

mass term for S can easily be generated by embedding S in a 16 of SO(10) (this is

the only choice within the fields in Table 7.1). On the other hand, the stabilization

of the potential for S is not straightforward. A sizable S3 term is not expected to

arise, as it should involve a SO(10) operator with three 16. However, the S3 term

can be replaced by a term involving a second light singlet N ,

W = λShuhd + κS2N. (7.33)

The latter can come from a 16 16 126 coupling, if N is in the 126 singlet, or from a

16 16 161162/Λ coupling, where N is the 161 singlet and 162 gets a vev.

The scalar potential for V (hu, hd, S,N) can be written as

V = VMSSM + |κS2|2 +m2
S |S|2 + |λhuhd + 2κSN |2 +M2

N |N |2, (7.34)

where VMSSM is the MSSM scalar potential with µ → λS, m2
S = −m̃2, and m2

N =

2m̃2 or m̃2 depending on whether N comes from a 126 or a 16. We have neglected

the A-terms, which play a role in explicitly breaking R-symmetries that could lead

to massless states. The potential above has a minimum with a sizable 〈S〉, and a µ

parameter whose size is controlled by λ.

7.4.3 D = 5

Finally, We discuss the possibility to generate the µ parameter through a D =

5 correction to the Kähler in the form a(Z†/M)huhd, as in the Giudice-Masiero

mechanism [20]. The F -term vev |F0| of Z would give in this case µ = a|F0|/M .

We show first that the operator above cannot arise at the tree level from integrat-
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ing out heavy vector or chiral superfields. The corrections to the Kähler obtained

by integrating out heavy vector superfields are given in Eq. (A.10). All terms are at

least of second order in 1/MV and no trilinear term is present. Moreover, no sizable

trilinear term can be obtained through the vev of Φ′, as by definition the scalar

components of Φ′ do not get a vev (and an F -term vev would give an additional

F0/MV suppression). A similar conclusion can be obtained for the corrections one

obtains by integrating out chiral superfields Φhi with mass M �
√
|F0|. We have

seen in Section 6.2 that the equations of motion allow to express Φhi in terms of

the light fields as in Eq. (6.20). Since W3 contains terms at least trilinear in the

fields, the expression for Φhi is at least quadratic in the light fields. When plug-

ging Eq. (6.20) in the canonical Kähler for Φhi one gets again terms that contain

at least four light fields, with none of them getting a vev in the scalar component.

Therefore, no operator Z†huhd can be generated at the tree-level by integrating out

heavy fields.

Let us now consider the possibility that the D = 5 operator above is obtained at

the one-loop level. This possibility raises two issues. First, µ would be suppressed

compared to, say, the stop mass m̃t by a loop factor O
(
10−2

)
. As for the case of

gaugino masses vs. sfermion masses, such a large hierarchy would lead to sfermions

beyond the reach of the LHC and a significant fine-tuning. However this problem

can be overcome in the same way as for the gaugino masses. Indeed we will see in

an explicit model that µ and M1/2 get a similar enhancement factor. The second

issue is the well known µ-Bµ problem. Bµ is a dimension two parameter generated,

as µ, at the one-loop level. Therefore, we expect an order of magnitude separation

between
√
Bµ and µ:

√
Bµ/µ ∼ 4π. This is however tolerable in a scheme in

which m̃t ∼
√
Bµ ∼ 4πµ ∼ 4πM1/2, with m̃t ∼

√
Bµ ∼ TeV and µ ∼ M1/2 ∼

100 GeV. The explicit model will show that the above pattern can be achieved in

the large tanβ regime. In turn, the large tanβ regime raises a new issue. The

minimization of the MSSM potential shows in fact that large tanβ corresponds

to small Bµ/(m
2
hu

+ m2
hd

+ 2|µ|2), while in the situation we want to reproduce,

m̃t ∼
√
Bµ, we expect Bµ/(m

2
hu

+m2
hd

+2|µ|2) ∼ 1. In order to make tanβ large we

therefore need to cancel the contribution to Bµ we get at one-loop with an additional

contribution, at least in the specific example we consider. Such a cancellation may

not be required in different implementations of the one-loop D = 5 origin of the µ

parameter. That is why we believe it is worth illustrating the example below despite

the cancellation that needs to be invoked.

Let us consider as before a model involving the following RP = 1 fields: 16, 16,
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16′, 16
′
, 10, with

〈
116
〉

=
〈
116
〉

= M ,
〈
116′〉

= Fθ2,
〈
116

′〉
= 0. Let us denote

the coefficients of the hu and hd components in the above SO(10) representations

as follows: 16 ⊃ sdαdhd, 16′ ⊃ sdα
′
dhd, 10 ⊃ cdhd, 16 ⊃ suαuhu, 16

′ ⊃ suα
′
uhu,

10 ⊃ cuhu, where |αd|2 + |α′d|2 = 1, |αu|2 + |α′u|2 = 1, cd = cos θd, sd = sin θd,

etc. The notation is in agreement with the definition of θu, θd in Section 7.2.1. The

µ and Bµ parameters, as the gaugino masses, get a vector and a chiral one-loop

contribution, see Eqs. (6.36, 6.38, 6.40, 6.41). The vector contribution turns out to

be

|(µ)V | =
3

2

g2

(4π)2
susd|α′dαu|

∣∣∣∣ FM
∣∣∣∣ , (7.35)

(Bµ)V =
3

4

g2

(4π)2
susd|α′dαu|

∣∣∣∣ FM
∣∣∣∣2 . (7.36)

As in the case of gaugino masses, the vector contribution to µ is suppressed with

respect to the sfermion masses by a full loop factor. We therefore need a larger

chiral contribution in order to reduce the hierarchy between µ and m̃t. Let us then

consider the one-loop chiral contribution associated to the superpotential

hij16i10j16 + h′ij16i10j16′. (7.37)

That is easily found to be vanishing because of a Peccei-Quinn (PQ) symmetry of

the superpotential. Such a PQ symmetry can however be broken by adding a term

M1
ij

2
116
i 116

j (7.38)

to the above superpotential, coming for example from the non-renormalizable SO(10)

operator (αij/Λ)(1616i)(1616j) after 16 gets its vev (note that Λ � M would give

M1
ij �M). The singlet mass term in Eq. (7.38) is nothing but the right-handed neu-

trino Majorana mass term entering the see-saw formula for light neutrino masses.

Note however that no light neutrino mass is generated here, as the light lepton

doublets do not have Yukawa interactions with the “right-handed neutrinos”, 116
i .

Once the PQ symmetry is broken by the mass term in Eq. (7.38), the µ and Bµ
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parameters get a chiral one-loop contribution given by

|(µ)Φ| =
λtλb
(4π)2

f

(√
(M1M1∗)33

|h33M |

)
|M1

33|√
(M1M1∗)33

∣∣∣∣ h′33F

h33M

∣∣∣∣ , (7.39)

(Bµ)Φ =
λtλb
(4π)2

g

(√
(M1M1∗)33

|h33M |

)
|M1

33|√
(M1M1∗)33

∣∣∣∣ h′33F

h33M

∣∣∣∣2 , (7.40)

where λt, λb are the top and bottom Yukawa couplings respectively and the functions

f , g are given by

f(x) =
1− x2 + x2 log x2

(x2 − 1)2
x, g(x) =

x4 − 2x2 log x2 − 1

(x2 − 1)3
x. (7.41)

We have assumed the Yukawa couplings hij , h
′
ij to be hierarchical in the basis in

which the down Yukawa matrix is diagonal.

We can see from Eq. (7.40) that the one-loop chiral contribution to µ is compara-

ble to the corresponding contribution to M1/2 if i) λb ∼ 1, which corresponds to the

large tanβ regime (remember that the bottom mass is given by mb = λb cosβv,

where v = 174 GeV); ii) |h′33/h3| & |h′ii/hi|, i = 1, 2; iii) |M33| & |M3i|; iv)

|h33M | ∼ |M33|. If the above conditions are satisfied, µ ∼ M1/2 and both pa-

rameters can easily be enhanced, as explained in Section 6.3.2, for example because

|h′33/h33| � 1. The only non-trivial condition is the large tanβ one. In fact tanβ

is determined by Bµ through the minimization of the MSSM potential, which gives

sin 2β =
2Bµ

m2
hu

+m2
hd

+ 2|µ|2

∣∣∣∣∣
MZ

. (7.42)

Therefore large tanβ, i.e. small sin 2β, requires a small Bµ. This is in contrast with

the situation we want to reproduce, m̃t ∼
√
Bµ. The RGE evolution of Bµ from

the scale at which it is generated (|h33M |) down to the electroweak scale can reduce

the value of Bµ but not enough to make it as small as we need. A significant RGE

contribution would in fact require M1/2 & m̃t, in contrast with the m̃t ∼ 4πM1/2

we are trying to reproduce. We are then forced to invoke a cancellation between

the one-loop contribution to Bµ in Eq. (7.40) and an additional contribution. For

example, a tree-level contribution to Bµ can be obtained as in Appendix B or in [38].
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8
Summary and Outlook

In this chapter we have discussed what might be the simplest way to communicate

supersymmetry breaking, namely through the tree-level, renormalizable exchange of

superheavy gauge messengers, which naturally arise in the context of grand unified

theories. We have shown that such a scheme is not only viable and motivated,

but also attractive, leading to flavor-universal sfermion masses, and finally testable,

by making a prediction of sfermion mass ratios that is to a large extent model-

independent.

Sfermion masses arise at tree-level from a supersymmetry breaking source that is

part of a non-trivial GUT multiplet. This is most conveniently seen in the effective

theory in which heavy vector superfields associated to broken U(1) generators are

integrated out at tree-level. This gives rise to flavor-universal sfermion masses whose

sign is determined by their charge under the additional U(1) generators. Because

these generators are embedded into a simple grand unified group, they are traceless

over full GUT multiplets, and thus induce both positive and negative soft masses.

This is connected to the mass sum rule, which has long been considered as an

obstacle to tree-level supersymmetry breaking. The presence of negative soft masses

is however not problematic, because the associated fields can simply have large

(positive) supersymmetric mass terms. This requires a splitting of GUT multiplets

containing the light MSSM fields, but this can be easily achieved at least in the case

of SO(10) GUTs.

Gaugino masses do not arise at the tree level, but can be generated at one-loop,

as in ordinary gauge mediation. The loop factor suppression of gaugino compared

to sfermion masses is however compensated by numerical factors. We have demon-
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strated that such enhancement factors naturally arise, and can easily reduce the

hierarchy of sfermion and gaugino masses to a about a factor of 10, which leads to

sfermions at the TeV scale that are in the LHC reach and a fine-tuning of the Higgs

mass that is not larger than usual.

We discussed the realization of these basic ideas both in a general setup and an

explicit SO(10) model. In a general context we calculated the structure of soft terms

arising from integrating out heavy vector and chiral superfields both at tree-level

and one-loop, concentrating on the expressions for soft sfermion and gaugino masses.

This allowed us to define the general guidelines to obtain phenomenologically viable

models which we discussed to great extent for the case of SO(10) as unified group.

We studied various ways to generate the µ-term in this framework, in particular

the possibility that a tree-level µ is already present in the high-energy theory and

connected to SUSY breaking by the SO(10) structure.

The implementation of the general concepts was performed in a simple SO(10)

model, where we also briefly discussed the phenomenological and cosmological con-

sequences. One of the main predictions is that sfermion masses are SU(5) invariant

with a peculiar ratio of sfermion masses that are embedded in different SU(5) rep-

resentations. This relation holds at the high scale, but because gaugino masses

are typically small, the ratio should be traceable also in the low-energy spectrum

and thus might be measurable at the LHC. We are planning to study the phe-

nomenological consequences including collider signatures as well as the cosmological

implications in much more detail within a future publication.

Another direction of further research might be related to the scale of U(1) break-

ing. In this chapter we concentrated on the case where the heavy vector lives at

the GUT scale, but another interesting possibility could be that SUSY is broken

the TeV scale and communicated to the observable sector by a light Z ′ gauge field.

Gaugino masses would then require also chiral matter at the TeV scale, and since

there are many models which consider such extensions of the MSSM for other rea-

sons, it would be very interesting to see whether such a low-scale implementation

of TGM can be realized.
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Appendices
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A
Integrating out Vector Superfields

In this appendix, we derive the effective theory obtained from integrating heavy

vector superfields at the tree-level in unitary gauge in the context of a generic, non-

abelian, N = 1 globally supersymmetric theory with renormalizable Kähler K and

gauge-kinetic function (the superpotential W is allowed to be non-renormalizable).

The general prescription has been studied in [51, 52, 53, 64]. In particular, it has

been shown in [53] that the usual expansion in the number of derivatives n∂ can be

made consistent with supersymmetry by generalizing n∂ to the parameter

n = n∂ +
1

2
nψ + nF , (A.1)

where nψ/2 is the number of fermion bilinears and nF the number of auxiliary fields

from chiral superfields. With such a definition, a chiral superfield Φ has n = 0 and

dθ integrations and supercovariant derivatives have n = 1/2. Such an expansion

makes sense when supersymmetry breaking takes place at a scale much smaller

than the heavy superfield mass M , and in particular when the F -terms and fermion

bilinears from heavy superfields being integrated out are much smaller than M .

In the presence of vector superfields one should further assume that the D-terms

and gaugino bilinears are small and modify Eq. (A.1) in order to account for the

number nλ of gauginos and the number nD of vector auxiliary fields. We claim that

the correct generalization is

n = n∂ +
1

2
nψ + nF +

3

2
nλ + 2nD, (A.2)

which implies that a vector superfield V has n = 0. Note that the double weight of
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D-terms compared to F -terms is consistent with Eq. (6.9). With such a definition,

the initial Lagrangian has n = 2, except for the gauge kinetic term which has n = 4.

Chiral and vector superfields can now be integrated out at the tree level by using

the supersymmetric equations of motion

∂W

∂Φ
= 0 and

∂K

∂V
= 0, (A.3)

which neglects terms with n ≥ 3 when integrating out chiral superfields and n ≥ 4

when integrating vector superfields (and missing terms originating from the gauge-

kinetic term having n ≥ 6).

From a physical point of view, we are interested not only in the expansion in

n but also, and especially, in the expansion in the power m of 1/M . It is there-

fore important to remark that using Eqs. (A.3) amounts to neglecting terms with

m ≥ 3 when integrating chiral superfields and m ≥ 6 when integrating out vector

superfields.

We are now ready to present our results for the effective theory obtained inte-

grating out the heavy vector superfields in a generic supersymmetric gauge theory

as above. We are interested in operators with dimension up to 6 (m ≤ 2) in the

effective theory. We can then use the equation ∂K/∂V = 0. Neglecting higher

orders in m, the latter equation can be rewritten as

V ha (M2
V )ab = −1

2

∂K2

∂V hb
(Φ′, V l), (A.4)

where Φ′ is defined in Eq. (6.3), K2(Φ′, V ) = Φ′†e2gV Φ′, the indices run over the

broken generators, and M2
V is a function of the light vector superfields:

(M2
V )ab =

1

2

∂2

∂V ha ∂V
h
b

(
φ†0e

2gV φ0

)∣∣∣
V h=0

= (M2
V 0)ab + (M2

V 2)ab, (A.5)

(M2
V 0)ab = g2φ∗0{Tha , Thb }φ0, (A.6)

(M2
V 2)ab =

g4

3
φ∗0T

h
a V

lV lThb φ0 + (a↔ b). (A.7)

In order to solve Eq. (A.4) for V ha , we need to invert the field-dependent matrix

M2
V . In Wess-Zumino gauge for the light vector superfields, we get

(M2
V )−1

ab = (M2
V 0)−1

ab − (M2
V 0)−1

ac (M2
V 2)cd(M

2
V 0)−1

db . (A.8)
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Finally, we obtain for the effective contribution to the Kähler potential

δKeff = −(M2
V )abV

h
a V

h
b = δK0

eff + δK1
eff + δK2

eff, (A.9)

where

δK0
eff = −g2(M2

V 0)−1
ab (Φ′†Tha Φ′)(Φ′†Thb Φ′), (A.10)

δK1
eff = −2g3(M2

V 0)−1
ab (Φ′†Tha Φ′)(Φ′†{V l, Thb }Φ′), (A.11)

δK2
eff = −4

3
g4(M2

V 0)−1
ab (Φ′†Tha Φ′)Φ′†(Thb V

lV l + V lThb V
l + V lV lThb )Φ′

− g4(M2
V 0)−1

ab (Φ′†{Tha , V l}Φ′)(Φ′†{Thb , V l}Φ′)

− 1

3
g4(M2

V 0)−1
ab (Φ′†[Tha , V

l]Φ′)(Φ′†[Thb , V
l]Φ′). (A.12)

In recovering Eq. (A.12) we have used the identity

fαab(M
2
V 0)bc = −fαcb(M2

V 0)ba, (A.13)

where fabc are the structure constants of the gauge group, the Latin indices refer to

broken generators and the Greek one refers to an unbroken one.

We are interested to soft supersymmetry breaking terms arising from Eq. (A.9)

when some of the auxiliary fields get a vev. The relevant terms should contain up to

two F -terms and one D-term, cf. Eq. (6.9). The only relevant terms are therefore

those in (A.10).
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B
Example of SO(10) Superpotential

In this appendix we provide an example of a superpotential which accounts for

supersymmetry breaking and SO(10) breaking to the SM. Moreover it takes care of

the correct light field content (in particular doublet-triplet splitting) and generates

the µ-term of the right order. We do not consider this superpotential particularly

simple or realistic, we are just aiming to provide a proof of existence.

SO(10) will broken to the SM at a scale M ∼ MGUT. Below this scale only

the MSSM fields survive, in particular the Higgs triplets are made heavy via a

generalization of the Dimopoulos-Wilczek mechanism [60, 65]. The µ-term is present

in the theory in the form of a D = 3 operator present at the GUT scale and triggers

supersymmetry breaking. Bµ is generated at the tree-level and is naturally of the

same order as the sfermion masses.
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Superpotential

The superpotential we use is

W = WY +W1 +W2 +W3 +W4, (B.1)

where

WY = yij16i16j10 + hij16i10j16 + h′ij16i10j16′, (B.2)

W1 = λ1 Z(1616−M2) +m 1616′ + λ2X 16
′
16, (B.3)

W2 = 16
′′
(λ3 45 + λ4 U)16 + 16(λ5 45 + λ6 U

′)16′′

+M45 45 45 + λ7 54 45 45 +M54 54 54, (B.4)

W3 = λ8 1616′120 + λ9 16 16
′
120 +M120 120 120, (B.5)

W4 = λ10 10′ 45 10 + λ11 16 16
′′
10 +M1010′10′

+ λ12 16 16
′
10 + λ13 1616′′10 + λ14 Z 10 10. (B.6)

Here we denote the fields according to their SO(10) representation, except the

SO(10) singlet fields Z,X,U, U ′. The mass parameter m is of the order of the

TeV scale (we do not discuss the origin of such a small parameter here), while all

other mass parameters are near the GUT scale

TeV ∼ m�M ∼M45 ∼M54 ∼M10 ∼M120 ∼MGUT.

Let us discuss the role of the different contributions to the superpotential and an-

ticipate the vacuum structure and the spectrum. W1 is responsible for supersym-

metry breaking and the breaking of SO(10) to SU(5): as we are going to show

below, this part of the superpotential generates O (MGUT) vevs for the scalar com-

ponents of 16 and 16 along the SU(5) singlet direction 〈S〉 ∼ M + O(m2/M) and

〈S〉 ∼ M + O(m2/M), and a supersymmetry breaking vev for the F -term compo-

nent of 16′ along the SU(5) singlet direction 〈FS′〉 ∼ mM . It also provides small

supersymmetry breaking vevs for the F -term component of X 〈FX〉 ∼ m2 and for

the D-term of the vector superfield corresponding to the U(1)X generator of SO(10)

〈DX〉 ∼M(〈S〉 − 〈S〉) ∼ m2. This D-term vev will generate sfermion masses along

the lines of Section 7.2.1. This part of the superpotential is a generalization of a

toy model in [38].
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WY contains the MSSM Yukawa couplings and provides supersymmetry break-

ing masses for heavy chiral superfields that will generate gaugino masses at one-loop

as in ordinary gauge mediation. The MSSM matter is embedded in both the 16i

and the 10i, as explained in Section 7.2.1. The MSSM Higgs fields are linear com-

binations of different fields and have components in different representations,

hu ⊂ 10, 16 hd ⊂ 10, 16, 16′, 120.

Therefore the first term in WY contains the up-type Yukawas, while the second

and third terms provide down-type and charged lepton Yukawas. The second term

gives a large mass to the additional matter fields 510
i ⊂ 10i and 5

16
i ⊂ 16i as well.

These fields couple also to the F -term vev in the 16′ and therefore act as one-loop

messengers of supersymmetry breaking. While this gives a subleading contribution

to sfermion masses, it is the only source of gaugino masses in this model.

The role of W2 is to break of SU(5) to the standard model gauge group. It

provides a large vev for the 45 along the B − L direction 〈45B−L〉 ∼ M as needed

for the Dimopoulos-Wilczek mechanism. Also U,U ′ and the SM singlet in the 54

take large vevs. W3 merely gives large masses to components in the 16′ and 16
′
.

Note that since the 120 does not contain SU(5) singlets, the neutrino component in

the 16′ stays massless as it should, being the dominant component of the Goldstino

superfield. W4 takes care of the Higgs sector: it keeps the MSSM Higgs doublets

light and gives a large mass to the corresponding triplets. Its last term provides

the Bµ term because Z gets a small supersymmetry breaking vev and both hu and

hd have components in the 10. The µ term is contained in W1, because hd has a

component also in the 16′.

Vacuum Structure

We are interested in a vacuum that does not break the SM gauge group1. Thus only

that part of the superpotential which involve SU(5) singlets is relevant for the de-

termination of the ground state. We denote the singlets in (16, 16, 16′, 16
′
, 16′′, 16

′′
)

by (S, S, S′, S
′
, S′′, S

′′
) (which is different than the notation used in the main text)

1We were not able to exclude the possible existence of SM breaking vacua with lower energy.
However, the SM conserving vacuum that we will discuss below is at least a local minimum, since
all masses in the theory are positive. If this vacuum is not the global minimum, it might be either
sufficiently longlived or made the global minimum by adding new fields and interactions to the
superpotential.
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and the singlets in the 45, 54 by B, T, V , where B, T are the properly normalized

fields corresponding to the B −L and T3R generators in SO(10). The relevant part

of the superpotential is

W = λ1 Z(SS −M2) +mSS′ + λ2X S
′
S

+ S
′′
(
−λ3

2
T +

λ3

2

√
3

2
B + λ4 U

)
S + S

(
−λ5

2
T +

λ5

2

√
3

2
B + λ6 U

)
S′′

+M45(B2 + T 2) +M54V
2 + λ7 V

(
1

2

√
3

5
T 2 − 1√

15
B2

)
. (B.7)

The F -term and DX-term equations show that SUSY is broken (FS′ 6= 0) and

that all vevs are determined except V,B, T , for which there exist three solutions,

all yielding FT = FV = FB = 0. This tree-level degeneracy is lifted by one-loop

corrections which select the solution with T = 0, B 6= 0, V 6= 0. One can check that

the vevs are given by

S′ = S
′
= S′′ = S

′′
= X = Z = T = 0,

S = M − m2

4M

(
1

λ2
1

− 1

50g2

)
, S = M − m2

4M

(
1

λ2
1

+
1

50g2

)
,

U = −3
√

5

2

λ5

λ6 λ7

√
M45M54, U ′ = −3

√
5

2

λ3

λ4 λ7

√
M45M54, (B.8)

V =

√
15M45

λ7
, B =

√
30

λ7

√
M45M54,

FS′ = −mM, FZ =
m2

2λ1
, DX = −m

2

10g
.

Spectrum and soft terms

In order to identify the light fields (with respect to MGUT), we can set m = 0 and

consider the supersymmetric limit. Most fields are at the GUT scale, while the

light fields are the MSSM ones, the Goldstino superfield S′, and the right-handed

neutrinos in the 16i, which can easily be made heavy through a non-renormalizable

superpotential operator (1616i)(1616j). The MSSM matter fields are embedded in

the 1016
i and in the 5

10
i , as desired. The Higgs doublets are embedded into the 16, 10
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and 10, 120, 16′, 16 according to

hu =
1

Nu

(
L16 + 3

√
5

λ5

λ7 λ13

√
M45M54

M
L10

)
hd =

1

Nd

(
L10 −

λ12

λ9
L120 + 2

λ12

λ8 λ9

M120

M
L16′ +

1

3
√

5

λ7 λ11

λ3

M√
M45M54

L16

)
(B.9)

with normalization factors Nu and Nd, where LR, LR denote the SM component

with the quantum numbers of hd, hd in the SO(10) representation R.

By switching on m, the soft supersymmetry breaking terms and the µ-term are

generated. The µ-term is already present in the high-energy Lagrangian and is of

order m, the vev of DX generates sfermion and Higgs masses of order m2 and the

vev of FX gives rise to a Bµ term of order m2. The heavy fields 510
i and 5

16
i act as

messengers of SUSY breaking to the gauginos who get masses of order m2/(16π2).

The Goldstino will be mainly the fermion in S′ but gets also small contributions

from the gaugino corresponding to the U(1)X generator and the fermion in Z. The

corresponding scalar will get a mass of order m2.
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