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We construct a new class of regular soliton solutions of the gauged planar Skyrme model on the target
space S2 with fractional topological charges in the scalar sector. These field configurations represent
Skyrmed vortices; they have finite energy and carry topologically quantized magnetic fluxΦ ¼ 2πn, where
n is an integer. Using a special version of the product ansatz as a guide, we obtain by numerical relaxation
various multimeron solutions and investigate the pattern of interaction between the fractionally charged
solitons. We show that, unlike the vortices in the Abelian Higgs model, the gauged merons may combine
short-range repulsion and long-range attraction. Considering the strong gauge coupling limit, we
demonstrate that the topological quantization of the magnetic flux is determined by the Poincaré index
of the planar components ϕ⊥ ¼ ϕ1 þ iϕ2 of the Skyrme field.
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I. INTRODUCTION

The past two decades have seen remarkable progress in
our understanding of various soliton solutions in nonlinear
systems. These spatially localized field configurations arise
in many different areas of physics, e.g., physics of con-
densed matter [1,2], solid state physics [3], nonlinear optics
[4], biophysics [5], field theory [6], cosmology [7], and
other disciplines. This development has sparked a lot of
interest in the mathematical investigation of nonlinear
systems, the fascinating techniques developed in this area
of modern theoretical physics, find many other applications.
An interesting example of themodel, which admits soliton

solutions, is the nonlinear Oð3Þ sigma model, which is also
known as the baby Skyrme model. It can be considered as a
planar analog of a (3þ 1)-dimensional Skyrme theory [8].
The baby Skyrme model attracts special attention since this
simple theory finds various direct physical realizations. It
was formulated originally as a modification of the
Heisenberg model of interacting spins [9]. Further, hexago-
nal lattices of two-dimensional Skyrmions were observed in
a thin ferromagnetic layer [10] and in a metallic itinerant-
electron magnet, where the Skyrmion latticewas detected by
results of neutron scattering [11]. The Skyrmions naturally
arise in various condensed matter systems with intrinsic and
induced chirality, and somemodification of the baby Skyrme

model with the Dzyaloshinskii-Moriya interaction term
was suggested to model noncentrosymmetric ferromagnetic
planar structures [12]. Very recently, there has been a new
trend in material science: here, two-dimensional magnetic
Skyrmions have been discussed in the context of future
applications in development of data storage technologies and
emerging spintronics; see, e.g., Refs. [13,14]. The planar
Skyrmions are also known through a specific contribution
to the topological quantum Hall effect [15]. In this frame-
work, the Skyrmion-like states are coupled to fluxes of
magnetic field, and they effectively represent solutions of
the Skyrme-Maxwell theory.
The planar Skyrme-Maxwell model was considered for

the first time in Ref. [16]. Recently, there has been renewed
interest in this model related with construction of multi-
soliton solutions [17] and investigation of the solutions
of the Bogomolny-type equation for the gauged planar
Skyrme model [18,19]. The effect of a Chern-Simons term
on the structure of the solutions of this model was studied in
Refs. [20,21]. An important observation is that the mag-
netic flux of the solutions is not in general quantized, there
is no topological number, associated with the gauge sector
of the model. However, in the strong gauge coupling limit,
the magnetic flux becomes quantized.
Interestingly, besides Skyrmions, the nonlinear Oð3Þ

sigma model supports solutions of a different type, the
merons [22]. They carry topological charge 1=2; however,
the merons are singular solutions, and an isolated meron
has infinite energy.
The aim of the present paper is to revisit the solutions

of the planar Skyrme-Maxwell theory. We introduce a
new class of regular localized soliton solutions with finite
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energy, the gauged merons that are carrying topologically
quantized magnetic flux and possess fractional topological
charges in the scalar sector. Although these solutions
resemble the vortices in the Abelian Higgs model, their
properties are different; in particular, the effective potential
of interaction between the gauged merons may combine a
short-range monopole repulsion and a long-range dipole
attraction.

II. MODEL

We consider the gauged planar nonlinear Oð3Þ sigma
model in (2þ 1) dimensions, defined by the Lagrangian
density

L ¼ −
1

4g2
FμνFμν þ 1

2
Dμϕ⃗ ·Dμϕ⃗ −

1

4
ðDμϕ⃗ ×Dνϕ⃗Þ2

− Vðϕ⃗Þ; ð1Þ

where the triplet of scalar fields ϕ⃗ ¼ ðϕ1;ϕ2;ϕ3Þ is con-
strained as ϕ⃗ · ϕ⃗ ¼ 1 and g is the gauge coupling. We
introduced the usual Maxwell term with the field strength
tensor defined as Fμν ¼ ∂μAν − ∂νAμ. The coupling of the
Skyrme field to the magnetic field is given by the covariant
derivative [16,18,23]

Dμϕ⃗ ¼ ∂μϕ⃗þ Aμϕ⃗ × n⃗ n⃗ ¼ ð0; 0; 1Þ:

Note that the potential breaks the original Oð3Þ symmetry
of the sigma model to Oð2Þ, and the Lagrangian (1) is
invariant under the local Uð1Þ transformations

ϕ⊥ → eiαϕ⊥; Aμ → Aμ þ ∂μαμ; ð2Þ

where ϕ⊥ ¼ ϕ1 þ iϕ2. Henceforth, we consider only static
configurations with A0 ¼ 0, with magnetic field B ¼
∂1A2 − ∂2A1.
In 2þ 1 dimensions, the presence of the potential term

Vðϕ⃗Þ in (1) is necessary for the stability of the solitons.
On the other hand, the structure of the potential is critical
for the properties of multisoliton solutions of the model;
it defines the vacuum of the model and the asymptotic
behavior of the fields.
The most common choice is to consider potentials with a

discrete number of isolated vacua; in the simplest case,
there is a single vacuum at ϕ3 ¼ 1 [16]. Other possibilities
include the double vacuum potential [23], triple vacuum
potential [24], or easy plane potential, which vanishes at the
equator of the target space S2 [25,26].
Here, we consider the planar Maxwell-Skyrme model

with more general symmetry breaking potential,

Vðϕ⃗Þ ¼ 1

2
m2ðϕ3 − cÞ2;

where c ∈ ½−1; 1�. A particular choice c ¼ 0 reduces the
model to the gauged theory with the easy plane potential,
while setting c ¼ �1 yields the vacuum on the north/south
poles of the target space, respectively. In the ungauged
model with such a potential, the asymptotic value of the
fields breaks the residual SOð2Þ internal symmetry, so the
field has only discrete symmetry, and a unit charge Skyrmion
is a bound state of two half-lumps; however, the total charge
of the configuration remains integer valued [27].
The situation changes radically when the system is

coupled to the gauge field, since the vacuum ϕ3 ¼ c
corresponds to a loop on the surface of the target space S2.
The finiteness of the energy of the model (1) in par-

ticular implies that the magnetic field must asymptotically
vanish; it corresponds to the pure gauge vacuum on the
boundary S1. On the other hand, the vacuum boundary
condition implies that ϕ3 ¼ c as r → ∞ and Diϕ⊥ ¼
∂iϕ⊥ − iAiϕ⊥ !

r→∞
0. This yields

ϕ⊥ →
r→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p
eiΨðθÞ; Ai →

r→∞
∂iαðθÞ; θ ∈ ½0; 2π�:

ð3Þ

We thus obtain on the boundary ∂iΨðθÞ ¼ AiðθÞ and
ΨðθÞ ¼ αðθÞ − κ, where κ is an angle of orientation of
the configuration. Using these boundary conditions and
the Stokes theorem, we can see that the magnetic flux is
topologically quantized; the total phase winding is

Φ ¼
I
S1
Aidxi ¼

I
S1
∂iαdxi ¼ 2πn;

where n ∈ Z. Hence, the model (1) supports topological
solitons, classified by the first homotopy group π1ðS1Þ.
The corresponding invariant n is given by the mapping of
the spacial boundary S1 onto the vacuum, which also
represents a loop on the target space. Note that this invariant
is exactly the Poincaré index of the planar components ϕ⊥,
which possesses a zero as ϕ3 ¼ �1. This point corresponds
to the location of the soliton coupled to the magnetic flux.
A peculiar feature of these configurations is that, since

in the vacuum ϕ3 ¼ c, the topological charge in the scalar
sector is no longer an integer. Indeed, the degree of the
map is

Q ¼ −
1

4π

Z
d2xϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ; ð4Þ

and assuming that at the origin ϕ⃗ð0Þ ¼ ð0; 0;−1Þ, we
obtain in the simplest case Q ¼ ð1þ cÞ=2. Alternatively,
as ϕ⃗ð0Þ ¼ ð0; 0; 1Þ, we obtain Q ¼ ð1 − cÞ=2; in particu-
lar, setting c ¼ 0 yields two solutions with half-integer
scalar charge. Note that in the usual Oð3Þ sigma model the
localized Euclidean configurations with a half-unit of
topological charge are known as merons [22]; however,
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they are singular. Similar fractionally charged self-dual
vortex solutions also exist in the N ð2; 2Þ supersymmetric
gauged CP1 model [28] and in the chiral magnetic
systems with external magnetic field [29].
The two meron solutions above are topologically differ-

ent; thus, in the former case, the field configuration will be
denoted as kðQÞS, while in the latter, it is kðQÞN , with the S
and N merons wrapping lower and upper domains of the
target space, respectively—see Fig. 1. Here, the integer k is
the number of the merons of a given type, the Poincaré
index n ¼ k for S merons and n ¼ −k for N merons. The
magnetic flux of the kðQÞS configuration is directed along
the positive direction of the z axis. It is reflected for the
kð1=2ÞN meron. However, the energy density distributions
of both merons are identical.1

We can now construct gauged merons numerically.
The field equations of the model (1) can be written in the
form

�
DμJ⃗

μ þm2ðϕ⃗ · n⃗ − cÞðϕ⃗ × n⃗Þ ¼ 0

∂μFμν − g2n⃗ · J⃗ν ¼ 0;
; ð5Þ

where the current is defined as

J⃗μ ¼ ϕ⃗ ×Dμϕ⃗ −Dνϕ⃗ðϕ⃗ ·Dμϕ⃗ ×Dνϕ⃗Þ: ð6Þ

For the sake of simplicity, we set c ¼ 0. It yields two
types of solutions nð1=2ÞN;S. In our numerical simulations,
we start from an initial field configuration for an ð1=2ÞS
meron, which is produced by the rotationally invariant
ansatz in polar coordinates in the x − y plane,

ϕ⃗ ¼ ðsin f cos nθ; sin f sin nθ; cos fÞ; Ar ¼ 0;

Aθ ¼ AðrÞ; ð7Þ
where fðrÞ ∈ ½π; π=2Þ. An input for a multimeron con-
figuration can be constructed via the product ansatz in

stereographic notation; for example, the two-meron con-
figuration corresponds to

Wð1þ2Þ ¼ Wð1ÞWð2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ c
1 − c

r
; Að1þ2Þ

i ¼ Að1Þ
i þ Að2Þ

i ;

ð8Þ
where W ¼ ϕ⊥

1þϕ3
. However, in our calculations, we do not

adopt any a priori assumptions about spatial symmetries of
components of the field configuration. In particular, the
scalar field of the initial two-meron configuration con-
structed via the ansatz (8), for c ¼ 0, can be written as

ϕð1þ2Þ
⊥ ¼ ϕð1Þ

⊥ ϕð2Þ
⊥

1þ ϕð1Þ
3 ϕð2Þ

3

; ϕð1þ2Þ
3 ¼ ϕð1Þ

3 þ ϕð2Þ
3

1þ ϕð1Þ
3 ϕð2Þ

3

: ð9Þ

As is well known, the asymptotic behavior of the scalar
and magnetic fields almost completely determines the
character of interaction between the solitons [16,25,30].
Note that the rotational invariance of an isolated meron
together with the gauge invariance with respect to the
transformations (2) and asymptotic boundary conditions (3)
imply that a spacial rotation of the configuration can always
be compensated by an appropriate gauge transformation.
In other words, the asymptotic form of the planar compo-
nents of the scalar field ϕ⊥ and relative orientation of the
solitons does not play a special role in the pattern of
interaction between the gauged merons.
Linearization of the field equations (5) yields

8<
:

ðΔ −m2Þϕ3 ¼ 0

ðΔ − g2ÞδAi ¼ 0

∂iδAi ¼ 0;

ð10Þ

thus, the fields of the meron decay asymptotically as

ϕ3ðrÞ ∼ csK0ðmrÞ; AθðrÞ ∼ nþ cvrK1ðgrÞ; ð11Þ

where Ki are ith modified Bessel functions of the second
kind and cs and cv are two constants that can be evaluated
numerically. In particular, we found that for the ð1=2ÞS
configuration (7) at m ¼ 1 and g ∈ ½0; 1.5� these parame-
ters are cv ≃ −1 and cs ∈ ½−3.5;−1.6�. Below, we will
make use of these values to evaluate the net force of the
interaction between the gauged merons; see Fig. 2.
Note that both fields are massive and have a form of

scalar monopole and vector dipole with a fixed phase,
δA⃗ ¼ cv∇ × n⃗K0ðgrÞ. In the decoupling limit g → 0, one
of the components of the scalar field remains massless,
∼d=r, and in the far field limit, it corresponds to a source
with dipole strength d [25].
Using asymptotic (11) and considering the two meron

configuration (8), we can evaluate the potential energy of

FIG. 1. The isovector fields ϕ⃗ of the ð1=2ÞN (left plot) and
ð1=2ÞS (right plot) gauged merons in the x − y plane for g ¼ 0.5,
m ¼ 1.

1Note that for an S=N meron there exists an antimeron S̄=N̄
with opposite sign for both Q and n, so an S meron is not an
antimeron with respect to an N meron, and visa versa. For c ¼ 0,
all four of these merons have the same energy and the magnitude
of the magnetic fluxes.
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the short-range Yukawa interaction between two static
separated merons Uint ¼ Eð1þ2Þ − Eð1Þ − Eð2Þ.
Let us consider field of two widely separated merons in

the vicinity of the first soliton. Then, setting c ¼ 0 gives

ϕð2Þ
3 → 0, and from (9) and (8) we obtain

8>><
>>:

ϕð1þ2Þ0
⊥ ¼ ϕð1Þ

⊥ ϕð2Þ
⊥

ϕð1þ2Þ0
3 ¼ ϕð1Þ

3

Að1þ2Þ0
i ¼ Að1Þ

i þ Að2Þ∞
i

: ð12Þ

However, the field of the second meron here has the form
(3) i.e., up to the corresponding gauge transformation, we

can write ϕð1þ2Þ0
⊥ ¼ ϕð1Þ

⊥ , Að1þ2Þ0
i ¼ Að1Þ

i . Then, expanding

(9) up to first order in ϕð2Þ
3 , we get

(
ϕ⃗ð1þ2Þ ¼ ϕ⃗ð1þ2Þ0 þ ⃗ϵð2Þ × ϕ⃗ð1þ2Þ0

Að1þ2Þ
i ¼ Að1þ2Þ0

i þ δAð2Þ
i

; ð13Þ

where ⃗ϵð2Þ ¼ ϕð2Þ
3 ðϕ⃗ð1þ2Þ0 × n⃗Þ. This expansion can be used

to evaluate the potential energy of interaction between the
solitons following [31]:

Uint ¼ 2πðcð1Þv cð2Þv K0ðgrÞ − cð1Þs cð2Þs K0ðmrÞÞ: ð14Þ

This formula exactly corresponds to the asymptotic inter-
vortex potential in the Abelian Higgs model [30]; however,
the character of interaction depends on the type of the
solitons. The force between the merons can be evaluated as

F ¼ −U0
int ¼ �2πc2smðη2g=mK1ðgRÞ − K1ðmRÞÞ; ð15Þ

where η ¼ cv=cs and the sign “þ” corresponds to the
interaction between the merons of the same type in the NN
pair (or in the SS pair). The opposite sign corresponds to
the interaction between the merons of different types; they
form the NS pair.

Next, for each particular value of the gauge coupling g,
we can evaluate the separation R0∶ FðR0Þ ¼ 0, at which
the forces between the merons are balanced. We expect that
there will be a stable equilibrium for the system of two
merons of different types, N and S, whereas the interforce
balance between the pair of S or N merons will be unstable.
Note that, unlike the case of interaction between the
vortices in the Abelian Higgs model [30], for g=m < 1
the NN (or SS) merons with relatively small initial
separation merge, forming a rotationally invariant configu-
ration with multiple magnetic flux; see Fig. 2 right plot.
We numerically minimized full two-dimensional energy

functional without any restrictions on the symmetry or
gauge on Ai. Typically, we used a lattice with 200 × 200
grid points and spacing dx ¼ 0.5, and the algorithm was
based on the one described in Ref. [17]. The results of
numerical simulations are summarized in Fig. 2; there,
without loss of generality, we fix m ¼ 1. We confirm that
the approximation of the intersoliton force (15) works very
well. It correctly predicts the separation between the N and
S merons in a stable equilibrium; see Fig. 2, left plot.
Remarkably, the pair does not form a rotationally invariant
configuration for any values of the gauge coupling; there is
a short-range repulsive force between the merons of
different types, and the NS pair remains separated.
The equilibrium between the merons of the same type is

unstable. Furthermore, in the case of the weak gauge
coupling, the separation between the merons becomes
rather small, and the asymptotic evaluation above breaks
down; see Fig. 2, right plot.

III. MULTIMERON CONFIGURATIONS

We observe that as g≳ 1 the NNðSSÞ pair always tends
to merge into a rotationally invariant configuration with
double magnetic flux for any initial separation between the
merons. More generally, in the strong coupling regime, the
system of n separated gauged merons of the same type
evolves toward a rotationally invariant configuration with n
units of magnetic flux. In Fig. 3, we present the results of
the full numerical minimization of the energy functional for
the nð1=2ÞS configurations with n ¼ 1–4. As expected, the
field components become less localized, and the core of the
vortex is expanding, as the winding number n increases.
The energy density distribution of the n ¼ 1 configuration
reaches its maximum value at the center of the soliton; for
n > 1, it has the shape of a circular wall with a local
minimum at the origin. Field components of these solutions
along the x axis are displayed in Fig. 3 (top row), and both
ϕ1 and ϕ3 decay exponentially; however, at g ¼ 4, the
former component approaches the vacuum faster than the
latter.
Evaluation of the intersoliton forces above indicates that

for m ¼ 1 and 0.57≲ g < 1 we could construct stable
multisoliton configuration with merons of both types.
Indeed, it is seen in Fig. 4, which displays contour plots

FIG. 2. Interaction of the gauged merons in the SN pair (left)
and in the NNðSSÞ pair (right). Arrows show the direction of
the force. The blueish area corresponds to the scalar field–
domination region, and the purple area represents the vector
field–domination region. The black dashed line indicates the
equilibrium curve F ¼ 0, and the red dots indicate the numerical
solutions of full two-dimensional minimization of the static
energy of the system (1).
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of the magnetic field and the energy density distribution of
various solutions that we constructed numerically, that in
such a case the rotational symmetry becomes broken and the
gauged merons form configurations with discrete symmetry.
Note that the ð1=2ÞS þ ð1=2ÞN pair combines a short-

range repulsion and a long-range attraction, forming a
weakly bound system. Certainly, there is a similarity
with the aloof baby Skyrmions constructed in Ref. [32].
Further, the binary particle model suggested in Ref. [32]
also can be implemented in the case of the gauged multi-
meron configurations.
Our numerical results presented in Fig. 4 agree well with

the qualitative discussion of the intersoliton interaction
above, see Fig. 2. We observe that, as the separation
between the merons of the same type is relatively small,
they tend to merge into a symmetric configuration that
carries multiple magnetic flux. On the other hand, widely
separated merons repel each other. The energy per meron is
decreasing as the number of components is increasing;
thus, the system is stable with respect to decay into
constituents. Also, the configurations with constituents
possessing multiple units of magnetic flux, for example,
ð1=2ÞN þ 2ð1=2ÞS, have lower energy than the chain
ð1=2ÞN þ ð1=2ÞS þ ð1=2ÞN . The latter configuration rep-
resents a local minimum of the energy functional.
Finally, we would like to comment on the limit of the

single vacuum potential. Setting c ¼ �1 reduces it to
Vðϕ⃗Þ ¼ m2ð1 ∓ ϕ3Þ2. In this limit, the magnetic flux is
no longer topologically quantized. However, numerical
simulations show that in the strong gauge coupling limit
it becomes quantized again [16,17]. Numerical simulations
reveal that the maxima of the magnetic field correspond to
the points where ϕ3 ¼ �1; see Fig. 4. This observation
holds for any values of the parameter c and different
multisoliton configurations, for example, for individual
separated merons shown in Fig. 4. In the limit g → ∞,

the magnetic field becomes completely localized at the
ϕ3 ¼ �1 [16].
We can understand the underlying topological reason for

this when we consider the Maxwell equation, which
corresponds to the second of the field equations (5). The
electromagnetic current, which is a source for the magnetic
flux, is ji¼ n⃗·½ϕ⃗×Diϕ⃗þDjϕ⃗ðϕ⃗·Diϕ⃗×Djϕ⃗Þ�. As g → ∞,
we can see that ji ¼ −1=g2∂kFki; thus, ji ¼ 0 apart from
some set of isolated points, where Aθ changes quickly

FIG. 4. Contour plots of the energy density (left column) and
magnetic field (right column) of given meron configurations at
g ¼ 0.7, m ¼ 1.

FIG. 3. Rotationally invariant nð1=2ÞS configurations: Profiles
of the field components ϕ1 (upper left) and ϕ3 (upper right), the
distributions of the magnetic field (bottom left) and the energy
density (bottom right) along the x-axis for n ¼ 1–4, g ¼ 4 and
m ¼ 1.
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from n to 0. Effectively, in such a limit, the magnetic energy
is removed from the system (1). Further, we can simplify
the expression for the current introducing the ratio of
the planar components of the scalar field, σ ¼ arctan
ðϕ2=ϕ1Þ:

ji ¼ ð∂iσ − AiÞ½1 − ϕ2
3 þ ∂jϕ

2
3�

− ∂iϕ3∂jϕ3ð∂jσ − AjÞ ¼ 0. ð16Þ

Evidently, the potential of the gauge field then becomes a
pure gauge, Ai ¼ ∂iσ, everywhere apart from the points
where ϕ3 ¼ �1, and the magnetic flux is entirely deter-
mined by the Poincaré index of the planar components ϕ⊥.
A similar pattern also holds for the gauged Hopfion
solutions in the Faddeev-Skyrme model [33].

IV. CONCLUSIONS

Our investigation confirms the existence of a new type of
regular finite energy solutions of the planar Maxwell-
Skyrme model, the gauged merons. They carry topologi-
cally quantized magnetic flux and possess fractional
topological charges in the scalar sector. The vortex winding
number is set into correspondence with the Poincaré index
of the planar components of the meron. Considering the

interaction between the gauged merons, we have shown
that, unlike the usual vortices in the Abelian Higgs model,
they may combine a short-range repulsion and a long-range
attraction, forming a weakly bound nonrotationally invari-
ant system. The resulting pattern of interaction is more
complicated than that both for the usual vortices in the
Abelian Higgs model and for the solitons in the gauged
baby Skyrme model. It remains a major challenge, deserv-
ing further study, to find a moduli space description for the
low-energy dynamics of the gauged merons.
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