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1. Phases of Strong Interactions from the Lattice

While strong interactions spontaneously break chiral symmetry in ordinary QCD at zero tem-
perature, chiral symmetry is realised either at high temperatures – in the so called quark-gluon
plasma (QGP) phase – and at zero temperature for a large number of flavoursNf > Nc

f [1]. In
the latter case, the theory is expected to become not only chirally but also conformally invariant,
due to the emergence of an infra-red fixed point (IRFP) forNf > Nc

f which prevents the coupling
from growing large enough to break chiral symmetry. The mainphenomena under scrutiny are
non-perturbative : only lattice analysis affords the possibility of ab-initio studies which are indeed
being carried out by many groups[2].

In our studies we have identified two main themes of interest:the physics of the near–
conformal window, and the observation of the conformal window. I will discuss them in the light
of the results we have obtained in recent years.

2. Near-conformal : continuum and lattice

In the near-conformal region[3, 4] we are mostly concerned with precursory effects of confor-
mality when approachingNc

f from the QCD side. Model studies suggest three possible scenarios:

an essential singularity a la Miransky–Yamawaki [5] 1/ξ = exp(−π
2 ε

√

|N f −Nc
f |); a power law

conventional behaviour [6] 1/ξ = K|Nf −Nc
f |−1/θ ; and a ’jump’ into conformality [7] . In the

two first cases the approach to conformality is continuous, and one is likely to observe precursory
effects. The distinction might not be so clear-cut and combinations of the various behaviours can
be observed as well, as in a weak first order transition where an apparent power law behaviour ends
with a small jump at the true critical point.

How do we distinguish a QCD-like dynamics from a more exotic one? In either cases chiral
symmetry is broken. Gauge dynamics, however, can be significantly different. The coupling might
show a so-called walking behaviour: at a variance with the ordinary running, which is regulated
by one unique scaleΛ, a walking behaviour is characterized by two different scales : above the
UV scaleΛUV the coupling runs towards asymptotic freedom, and below theIR scaleΛIR it runs
towards confinement, being nearly constant (walking) in between.

In short, we can observe walking either by assessing the existence of two different scalesΛUV

andΛIR and by observing a pre-critical behaviour when approachinga critical number of flavorNc
f .

Note that 1/ξ in the above expressions denotes any physical quantity witha mass dimension, which
includes the critical temperatureTc(Nf ). This observation paves the way of a study of conformality
based on the analysis of a thermal system.

3. Towards conformality : continuum analysis from lattice results

A first natural way to highlight a pseudocritical behaviour approaching conformality is based
on the analysis of theNf dependence of the critical temperature [3, 4]. On a lattice the critical
temperature is given by

Tc ≡
1

a(β c
L ) ·Nt

. (3.1)
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Figure 1: Scaling atNf = 8 from theNt dependence of the normalised critical temperature. Left: The bare
lattice scheme results. The red symbol× showsTc/ΛL, and the blue� symbols representTc/Λimp

L . Right:

The E-scheme results. The red symbol× showsTc/ΛL , and the blue� symbols representTc/Λimp
E

Table 1: Summary ofTc/ΛL andTc/Λimp
L for various(Nf ,Nt). The first (second) line at fixed(Nf ,Nt) shows

the value ofTc/ΛL (Tc/Λimp
L )

Nf\Nt 4 6 8 12

0 18.11±0.65 18.21±0.91 16.56±0.71
16.29±0.75 17.81±1.02 16.56±0.78

4 21.99±1.04 19.98±0.95 17.12±2.43 − − −
16.56±1.44 18.67±1.38 17.12±3.41

6 25.41±1.43 25.33±1.43 22.94±1.29 22.30±2.52
21.66±1.64 23.87±1.58 22.21±1.40 22.30±2.66

8 − 50.05±0.87 47.06±3.28 34.34±1.91
− 34.32±1.40 42.67±6.33 34.34±3.90

which becomes independent onNt close to the continuum limita → 0. One way to convert to
physical units relies on the normalised critical temperature Tc/ΛL/E whereΛL (ΛE) represents the
lattice (E-scheme) Lambda-parameter defined in the two-loop perturbation theory with or without
a renormalisation group inspired improvement. The resultsfor Tc/ΛL/E for theNf = 8 theory [8, 4]
are shown in Fig. 1, and the full set of results is collected inTable 1.

From Table 1 we can read the results forTc/Λ as a function ofNf in different schemes (Λ = ΛL

or ΛE), which consistently show an increase withNf . This indicates thatΛL/E vanishes faster than
Tc upon approaching the critical number of flavour. Within the various uncertainties discussed
here, this can be taken as a qualitative indication of scale separation close to the critical number of
flavors.

We can now further investigate the vanishing of the criticaltemperature. To this end, we have
to face an apparent puzzle :Tc/Λ increases as a function ofNf ! This however , as mentioned, can
be understood in terms of scale separation withΛ vanishing faster thanTc. To see the vanishing of
Tc atNc

f we need to replaceΛ with a UV scale. To do this, we devised a ’baby-version’ of thescale
setting procedure in the potential scheme. In that scheme. one fixes a value for the renormalised
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Figure 2: Left: TheNf dependence ofTc/M whereM is determined to be a UV scale corresponding to
u0 = 0.79 (red box), 0.80 (blue©), and 0.81 (magenta triangle). Right: Theu0 dependence ofNc

f . The three

data in the left side are determined within the conditionM(g ref
L ) . a−1(g c

L ), while for the othersM(g ref
L )

exceeds the lattice cutoff. This more robust procedure confirms our early results, and should be ultimately
confirmed by use a rigorous lattice scale setting which is in progress [9].

couplingḡ andḡ2 ∝ r2
XF(rX) sets a scaler−1

X . We used our plaquette values to define a coupling at
the scale of the lattice spacing, and we set a common UV scale for diffeent theories by imposing a
constant value for the coupling (or, equivalently, for the plaquette). In short, we use ouru0 = 〈P〉 1

4

to define ¯g, andu0 = X is regarded as the analog of the potential scheme scale setting. For this
procedure to work, the coupling should be weak enough to be inthe UV region, but also large
enough to avoid major lattice artifacts. We have checked – the interested reader is referred to
Ref. [4] for details – that it is possible to meet these requirements and define consistently an UV
coupling over a rather large set of possible choices ofX. The results are shown in Fig. 2

An alternative analysis stems from a discussion presented in Ref. [10]. Since the critical
temperature is zero in the conformal phase, the thermal critical couplingg c

T should equal a zero
temperature critical couplinggc whenNf = Nc

f . One possibility is to use the Schwinger-Dyson
estimate forgc [11]. In this case, the lower edge of the conformal windowNc

f is defined by the
conditiong c

T (Nc
f ) = gc

SD(Nc
f ) We then estimate the intersection ofg c

T andgc
SD – hence the onset of

the conformal window as well as the IRFP coupling atNc
f – at(gc,Nc

f ) = (2.79,13.2)± (0.13,0.6).
One second possibility is to matchg c

T (Nc
f ) and the coupling at IRFP (gIRFP) [12]. We can then

locate the intersection ofg c
T andgIRFP

4l and obtain(gc,Nc
f ) = (2.51,11.8)± (0.15,0.9). In Fig. 3,

we showgIRFP andgc
SD alongside with the numerical results forg c

T , as well as the estimates for the
IRFP.

4. Towards conformality : Lattice analysis

The emergence of the conformal window can also read-off directly from the lattice data them-
selves. Consider the phase diagram in the space spanned by the bare couplinggL and the number
of flavor Nf , and the (pseudo)critical thermal lines which connect the lattice (pseudo)critical cou-
plings for a fixedNt . Based on the properties of the step scaling function in the vicinity of a
IRFP [13], it is easy to convince ourselves that the criticalnumber of flavorNc

f can be identified
with the crossing point the pseudocritical thermal lines obtained for variousNt ’s

4
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Figure 3: The thermal critical coupling (red�) and the fit for them (dashed red line) and the values of
the zero temperature couplings in the conformal phase from different estimates, see text for details. At the
critical number of flavour the thermal critical coupling should equal the critical coupling associated with the
IRFP.

To demonstrate this procedure, we consider the pseudocritical lines obtained forNt = 6 and
Nt = 12 as shown in Fig. 4. Note their positive slope: the lattice critical couplingg c

L is an increasing
function ofNf . Interestingly, the slope decreases with increasingNt , which allows for a crossing
point at a largerNf . Thus, we estimate the intersection at(g c

L ,Nc
f ) = (1.79±0.12,11.1±1.6).

5. Inside the conformal window: continuum results

Conformal symmetry implies chiral symmetry. As we are seeking evidence for conformal-
ity in QCD, a natural strategy is to establish whether the theory realizes chiral symmetry at zero
temperature [14, 15].

A direct observation of chiral symmetry can indeed be attempted: this means extrapolating
the chiral condensate to the chiral limit. Of course there are obvious numerical limitations : firstly,
the functional form depends on the realization of chiral symmetry; second, the extrapolated value
is affected by a residual error. So all one can try is to compare side by side the quality of the
extrapolations carried out with different analytic ansätze. While for a small number of flavors such
procedure would unambiguously indicate the breaking of chiral symmetry, whenNf grows large –
say aboveNf = 8 the results become more ambigous - on which point everyone agrees - with some
groups favoring chiral symmetry restoration (hence conformality), and other chiral breaking.

The analysis of the spectrum might offer a more realiable guidance : it has been noted in the
past that one can devise robust signatures of chiral symmetry based on the analysis of the spectrum
results. One first significant spectrum observable is the ratio mπ/mρ , between the mass of the
lightest pseudoscalar state (pion)mπ and the mass of the lightest vector state (rho)mρ . In QCD at
zero temperature, chiral symmetry is spontaneously brokenand the pion is the (pseudo)Goldstone
boson of the broken symmetry, implying that its mass will behave asmπ ∼√

m.
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Figure 4: (Pseudo) critical values of the lattice couplingg c
L =

√

10/β c
L for theories withNf = 0, 4, 6, 8

and for several values ofNt in the Miransky-Yamawaki phase diagram. We have picked upg c
L at Nf = 6

and 8, and considered “constantNt ” lines with Nt = 6, 12. If the system is still described by one parameter
beta-function in this range of coupling, the IRFP could be located at the intersection of the fixedNt lines .

Within the conformal window chiral symmetry is restored in the continuum limit.
At the IRFP and at infinite volume, the quark mass dependence of all hadron masses in the

spectrum is governed by conformal symmetry: at leading order in the quark mass expansion all
masses follow a power-law with common exponent determined by the anomalous dimension of the
fermion mass operator at the IRFP. Hence we expect a constantratio. Away from the IRFP, for
sufficiently light quarks and finite lattice volumes, the universal power-law dependence receives
corrections, due to the fact that the theory is interacting but no longer conformal. The behaviour of
the ratio is demonstrated in Fig. 5: a conformal scenario seems favoured in the range of masses we
are exploring. Note that themπ/mρ ratio should go to zero in the chiral limit in the broken phase,
and to a constant value if chiral symmetry is restored.

Analgous conclusions can be drawn from the inspection of theso called Edinburgh plot (6).
The difference with the case of ordinary QCD is indeed striking. The modest scattering of the data
points could be ascribed to the deviation from a perfect power law as discussed above. It would
then be of interest to repeat the same plot for different couplings : at the IRFP it should indeed
reduce to a point.

6. Inside the conformal phase : lattice

If we were to use a perfect action the conformal phase discussed above would extend all the
way till the infinite coupling limit. With a naive action instead chiral symmetry appears to be always
broken in the strong coupling limit , at least tillNf is not too large. An obvious consequence of
this is the occurrence of a strong coupling zero temperaturetransition – a bulk transition – within
the conformal window. The role of improvement in this case isreally dramatic! A perfect action
would destroy a phase transition. No suprise, of course: these are strong coupling phenomena

6
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Figure 5: Ratiomπ/mρ as a function of the bare quark
mass for all existing data forNf = 12, andNf = 16:
Nf = 12 data from [16] (red squares),Nf = 12 data
from this work andβL = 3.8,3.9,4.0 (blue circles),
Nf = 16 data from [17] (magenta diamonds).
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Figure 6: Edinburgh plot: Nf = 12 data from [16]
(red squares),Nf = 12 data from this work andβL =

3.8,3.9 (blue circles),Nf = 16 data from [17] (ma-
genta diamonds). The QCD physical point (black star,
leftmost) and the heavy quark limit (free theory) point
(black star, rightmost) are shown.

taking place away from the continuum limit, hence extra terms in the actions which are irrelevant
in the continuum might well become relevant.

But then, how would an ordinary improved action (as opposed to a perfect action) affect the
phase transition? The evidence we have so far is in this case [19, 18] the bulk transition moves
towards stronger coupling (consistently with the fact thatit will eventually disappear with a perfect
action) , and a second transition develops. Among these two transitions we have a phase with an
unusual realization of chiral symmetry, observed also in other studies[20].

From the perspective of the analysis of continuum many flavorQCD these observations are
just due to a peculiar form of lattice artifacts. Bulk transitions are however interesting for several
reasons including fundamental QFT questions like the existence of an interacting, non–trivial UV
fixed point in four dimension away from the perturbative domain as well as modeling of condensed
matter systems, such as graphene, and the new phases discussed here might well be of interest in
these contexts.

7. Summary

In brief summary, we have studied the physics of the near-conformal window and observed
a likely scale separation forNf > 6. We have developed suitable extrapolation techniques and
estimate in several different ways the critical number of flavors to be

Nc
f ∼















11.1±1.6 (from the vanishing thermal scaling ofβ c
L ) ,

12.5±1.6 (from the approach ofg c
T to gc

SD andgIRFP
4l ) ,

10.4±1.2 (from the vanishing ofTc/M with M a UV scale) .

(7.1)

Although these estimates obviously lack precision, they highlight in a simple way the emer-
gence of conformality.
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In the conformal window we have shown how the spectrum analysis can give information on
the realization of chiral symmetry, and we have discussed features of the strong coupling regime
which might be of interest when modeling a rather a wide classof phenomena including phase
transitions in condensed matter.

There are several directions in which this work can, and hopefully will be extended: a more
rigourours scale setting in the preconformal region is on the way. The IRFP should be clearly
observed, and we are aiming at doing it working within the analytically tractableNf = 16 model.
At a more theoretical level, we hope that this analysis will help clarifying the behaviour of the
anomalus dimension in the vicinity and away from the IRFP.

More generally, the interplay of the cold conformal window phase with thermal QCD and
the physics of the Quark Gluon Plasma is an interesting, still largely unexplored, field of research
which we hope to further pursue in a near future.
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