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1. Introduction

Gravitation theory, expressed classically by General Relativity (GR), is known to be partic-
ularly resistent to all attempts of quantization – except in lower dimensional space-times [1, 3].
Perturbative quantum gravity is known to be non-renormalizable – unless itis incorporated in a
broader theory like Superstring Theory [2, 4] which is thought to be perturbatively finite [5, 6].
On the other hand, there is much hope in a nonperturbative approach, likethe one of Regge Cal-
culus [7], or, more recently, that of Loop Quantum Gravity" (LQG) [8, 9, 10, 11, 12, 13], where
some interesting results have being obtained, concerning the general framework, or applications to
black hole physics [13] or cosmology [14, 15]. As opposed to String Theory, which proposes a
unification of all interactions, LQG stays with the a-priori more modest aim of giving a consistent
description of quantum gravity, without attempting unification with the other interactions. Most
of the work done in this latter area up to the present day concerns pure gravity, but matter may be
added anyhow [9], with couplings independent of the gravitational coupling constant.

The purpose of this talk is to expose the most basic concepts of LQG such asconfiguration
space, holonomies, spin networks, Hilbert space and constraints, and togive some examples of
observables. Due to limitation of time, only references to the literature are given for most of the
further developments such as spin foams, loop cosmology, etc.

2. Classical General Relativity

General Relativity is a geometrical description of relativistic gravitation theory [16, 17]. Clas-
sical four-dimensional space-time is given as a differentiable manifoldM4 and a tangent vector
spaceTP at each of its pointsP, equipped with a pseudo-Riemannian metric

ds2 = gµν(x)dxµdxν x= (t,x)

of Lorentzian signature(−1,1,1,1). Most formulations of GR are based on the so-called second
order formalism where the basic variables are the components of the metric tensor, and where the
field equation – the Einstein equation – is second order in the time derivatives of the metric. The
first attempts towards a non-perturbative quantization were performed in this formalism and lead
to the well-known Wheeler-DeWitt equation [18, 16, 19], a timeless Schrödinger type equation,
of which very few solutions are known, not speaking of the difficulty to construct an appropriate
Hilbert space with well-defined operators acting in it.

On the other hand, decisive progress was made using the first order formalism, on which LQG
is based, exploiting its strong analogies with Yang-Mills gauge theories. In thisformalism indeed
the basic variables are, beyond the tetrad field describing the metric, a connection associated to a
gauge invariance, namely the invariance under the local Lorentz transformations.

In the first order formalism, one defines in each tangent plane a pseudo orthogonal moving
frame (“tetrad” or “vierbein”), as illustrated in Fig. 1. It consists of fourvector fields1 eI (x) =
eµ

I (x)∂µ , I = 0, · · · ,3, obeying the pseudo-orthogonality relations

eI ·eJ = gµνeµ
I e

ν
J = ηIJ , (ηIJ) = diagonal(−1,1,1,1) .

1Most of our expressions are written in a system of coordinatesxµ , µ = 0, · · · ,3. Covariance under general changes
of coordinates is of course assumed.
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Figure 1: Manifold M4 and tangent planeTP with frame at pointP.

The dual tangent spaceT∗
P admits the basiseI (x) = eI

µ(x)dxµ , I = 0,1,2,3, with (eµ
I ) =

(
eI

µ
)−1

.
The metric then writesgµν(x) = ηIJ eI

µ(x)eJ
ν(x). The vierbein basis ofTP andT∗

P are defined up
to a (local) Lorentz transformation, e.g.:e′I (x) = ΛI

J(x)eJ(x), with η IJΛI
KΛJ

L = ηKL. We have
thus two local invariances: Lorentz and diffeomorphisms. The infinitesimal transformations read,
in the case of the vierbein:

δLorentzeI = ε I
JeJ , with εIJ =−εJI , εIJ = ηIK εK

J ,

δDiff eI = Lξ eI ,

whereLξ is the Lie derivative along the vector fieldξ whose components correspond to the in-
finitesimal coordinate transformations:δxµ = ξ µ(x).

The Lorentz covariant derivativeD is defined through the introduction of the connection form
(“spin connection”)ω I

J = ω I
Jµ(x)dxµ , with ωIJ −ωJI, transforming as

δLorentzω I
J = dε I

J +[ω ,ε ]I J

under infinitesimal Lorentz transformations. For example, the torsion 2-form is the covariant
derivative of the vierbein form:

T I =
1
2

T I
µνdxµdxν = DeI = deI +ω I

JeJ .

The curvature is another 2-form transforming covariantly under the Lorentz transformations:

RI
J =

1
2

RI
Jµνdxµdxν = dω I

J +ω I
KωK

J .

2.1 Palatini-Holst action

The complete action for pure gravity in the first order formalism is the Palatini-Holst ac-
tion [20]

SPH =− 1
2k

∫

M4

eI ∧eJ ∧
(

1
2

εIJKLRKL−1
γ

RIJ

)

=− 1
2k

∫

M4

d4xεµνρσ eI
µeJ

ν

(
1
2

εIJKLRKL
ρσ−

1
γ

RIJρσ

)
,
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wherek= 8πG with G the Newton constant, andγ is the Barbero-Immirzi [21] parameter.εµνρσ

is the Levi-Civita tensor, withε0123= 1 (and same definition forε IJKL). The classical theory does
not depend on the parameterγ, as shown by the field equations derived from this action: they are
the usual null torsion and null Ricci curvature equations

T I = 0, Rµν ≡ Rλ
µλν = 0.

The first one allows to express the connection in terms of the vierbein components and their deriva-
tives, the second one is the Einstein equation in the absence of matter.

2.2 Canonical formalism and Ashtekar variables

In order to implement the canonical formalism on which quantization will be based, one has
to define some time variable. In GR, this is usually done by introducing a foliation of space-time
M4, defined by a the introduction of a “temporal function”T(P) and the topological assumption
that it can be factorized asM4 = IRT ×M3, whereM3 represents the space slice at constant “time”
T = T(P), as illustrated in Fig. 2.

p-6

M3(T1)

p-6

M3(T2)

p -6

M3(T3)

T = t

x1x2

Figure 2: Spacetime foliation (in the caseT(P) = t). Tangent frames and coordinate frames.

Before beginning the canonical construction, which consists in defining pairs of canonically
conjugated variables and analyzing the constraints associated with the gauge invariances of the
theory according to the Dirac-Bergmann procedure [22], let us proceed to a partial gauge fixing [23,
24], called the “temporal gauge”, which simplifies the formalism and reducesthe non-compact
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Lorentz gauge symmetry group SL(2,|C) to its compact subgroup SU(2). This gauge is defined by
setting to zero three of the vierbein form components2: e0

a = 0, or, equivalently,et
i = 0. Moreover

we choose space-time coordinates in such a way that the three coordinatesxa also parametrize
the space sliceM3. (In other words, we choose the time functionT(x) = t). Geometrically, the
temporal gauge choice means that the basis vectoreI=0 at pointP is tangent to the time coordinate
line passing at this point:e0 = et

0(x)∂t .
With the notationsN ≡ e0

t , Ni ≡ ei
t andNa ≡ ea

iNi , the space-time metric takes the ADM
form ds2 = gµνdxµdxν =−

(
N2−habNaNb

)
dt2+2Nadxadt+habdxadxb, wherehab= δi j ei

aej
b is

the metric of the space sliceM3 at coordinate timet. One recognizes inN(x) andNa the “lapse”
and “shift” functions of the ADM formalism [17].

The Palatini-Holst action reads, in the temporal gauge:

SPH =
∫

dt

(∫
d3xPa

i∂tA
i
a−H

)
,

with
Ai

a =
1
2

ε i jkωi ja + γω0i
a , Pa

i =
1

2kγ
εabcεi jkej

bek
c .

Ai
a is the Ashtekar SU(2) connection in the real formalism of Barbero and Immirzi [21]. Its curva-

ture is
F i

ab = ∂aAi
b−∂bAi

a− ε i
jkA j

aAk
b .

Pa
i is the conjugate momentum ofAi

a, and we have thus the Poisson brackets (only the nonzero
ones are shown): {

Ai
a(x, t), Pb

j(y, t)
}
= δ i

jδ b
a δ 3(x−y) , (2.1)

The Hamiltonian is given by

H =
∫

d3x
(
Λi

Gi −Na
Va−NS

)
. (2.2)

where

Gi = DaPa
i = ∂aPa

i − εi j
kA j

aPa
k ,

Va = Pb
iF i

ab+ terms proportional toGi ,

S =
kγ2

2
√

deth
Pa

iPb
j
(
εi jkFk

ab− (γ2+1)(K i
aK j

b−K i
bK j

a)
)
+ terms proportional toGi andVa ,

Λi = 1
2ε i jkωi jt , andK i

a = ω0i
a is the extrinsic curvature of the space sliceM3. Observing that

the fieldsΛi , Na andN appear linearly in the Hamiltonian and have no conjugate momentum, we
deduce that their coefficients are constraints:

G [Λ] =
∫

d3xΛi(x)Gi(x)≈ 0,

V [~N] =
∫

d3xNa(x)Va(x)≈ 0, (2.3)

S [N] =
∫

d3xN(x)S (x)≈ 0.

2The four coordinate indicesµ are devided in a time indext and and a space indexa= 1,2,3. The tangent space
indicesI are devided inI = 0 andI = i, i = 1,2,3
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The weak equality sign≈ means that the constraints are effectively fulfilled only once all necessary
Poisson Bracket algebra calculations are made.

One checks that these constraints are first class according to Dirac’s terminology, i.e., they
form a closed Poisson bracket algebra and are the infinitesimal generators of the gauge invariances
of the theory. More specifically,G generates the SU(2) gauge transformations (the residual sym-
metry group left from the time gauge fixing),V generates the space diffeomorphisms, whereasS

generates the time diffeomorphisms up to SU(2) transformations, space diffeomorphisms and field
equations.

3. Loop quantum quantization

3.1 Canonical quantization

“Canonical quantization” is intended here as the construction of a quantumtheory along the
following lines:

1. Construct a “kinematical Hilbert space”Hkin whose elements are the wave functionalΨ[A]
(Ψ[A] = 〈A|Ψ〉 in Dirac’s notation) which are functionals of the configuration variables,
taken here as the components of the Ashtekar connectionAi

a(x), elements of a configuration
spaceA , and where the conjugate momentum operators act as:

Pa
i(x)Ψ[A] =−ih̄

δΨ[A]
δAi

a(x)
,

in order to fulfill the commutation rules

[Ai
a(x, t), Pb

j(y, t)] = ih̄δ i
jδ b

a δ 3(x−y) ,

corresponding to the classical Poisson brackets (2.1);

2. Define the configuration spaceA and an integration measureDA in it, in such a way that
the inner product

〈Ψ1|Ψ2〉=
∫

DAΨ1[A]Ψ2[A]

be well defined;

3. Define the constraints (2.3) as well defined operators inHkin;

4. Solve the constraint equations

G [Λ] |Ψ〉= 0, V [~N] |Ψ〉= 0, S [N] |Ψ〉= 0, (3.1)

and define the physical Hilbert spaceHphys as the space of the solutions of these constraint
equations.

We note that, since the Hamiltonian (2.2) is a linear combination of the constraints, fulfilling the
constraints amounts to solve the timeless Schrödinger equation,

H |Ψ〉= 0,
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known as the Wheeler-DeWitt equation in the context of quantum gravity in thesecond order for-
malism, mentioned at the beginning of Section 2. This equation provides an apparently paradoxical
“dynamics without time”. In the present context, canonical quantization is based on a “time” pa-
rametert which is just a coordinate. Invariance under the “time” diffeomorphisms thusmeans that
the “time” evolution is a mere gauge transformation, which has no physical meaning. We refer to
the literature [25] where this “problem of time” has been widely discussed.

3.2 Construction of the kinematical space Hkin

Instead of taking arbitrary functionalsΨ[A] of the classical Ashtekar SU(2) connectionA(x)
as our wave functionals, we first consider functionsf (U1, · · · ,UN), called “cylindrical functions”,
whose arguments are the holonomiesUn of A along a finite set of oriented curvesen (n= 1, · · · ,N) in
the space manifoldM3. Such a set of oriented lines – the “edges” – together with their intersection
points – the “vertices” – form a graphΓ. Examples are shown in Fig. 3 and 4.

sV1

sV2

e3

e1

e2

<

>

>

Figure 3: Graph with 3 edges and 2 vertices

�
�
�
�

��
��
��
��

e

Figure 4: Closed loop graph.

The holonomy of the SU(2) connectionA along the oriented pathe from the pointsP1 to P2,
parameterized bys, with s1 ≤ s≤ s2, (see Fig. 5) is defined as

U ≡U [A,e] = Pexp

[
−
∫

e
A

]
= Pexp

[
−
∫ s2

s1

τiA
i
a(s)dxa(s)

]
,

where theτi =
i
2σi are the generators of the gauge group. The symbol P (“path order”) means that in

the field products appearing in the expansion of the exponential function,factors are ordered withs
increasing from the right to the left. The holonomy is an element of the gauge group SU(2). Under
a gauge transformationA′(x) = g−1(x)dg(x)+g−1(x)A(x)g(x), with g(x) ∈ SU(2), it transforms as

U [A,e]′ = g−1(P2)U [A,e]g(P1) .

7
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r

r

s= s1P1

s= s2
P2

*s

Figure 5: Parameterized oriented curve.

The vector space spanned by all the cylindrical functions, associated toarbitrary graphs, is denoted
by Cyl. A vector |Γ, f 〉 ∈ Cyl associated to a graphΓ of N edges and a functionf : SU(2)×
SU(2)· · ·×SU(2)→ |C is thus given by

〈A|Γ, f 〉= ΨΓ, f [A] = f (U [A,e1], · · · ,U [A,eL]) .

An hermitean scalar product can be defined in Cyl by the integral over thegroup

〈Γ, f1|Γ, f2〉=
∫

dU1 · · ·dUL f1(U1, · · · ,UL) f2(U1, · · · ,UL) , (3.2)

whereUn =U [A,en] anddU is the (normalized) invariant Haar measure on the group SU(2). Note
that it is the compactness of the group SU(2) which assures the normalizabilityof the measure –
or, in other words, the convergence of the integral (3.2) for any locallyintegrable integrant.

This scalar product is invariant under the SU(2) gauge transformationsdue to the invariance
of the Haar measure. It is also invariant under the space diffeomorphismssince it only depends on
the number of the edges of the graph, and not on its location in space. It is however not invariant
under the time diffeomorphisms.

We have defined here the scalar product between vectors both associated to a same graph. In
order to define the scalar product〈Γ1, f1|Γ2, f2〉, with Γ1 6= Γ2, one applies the definition (3.2), but
with a graph̃Γ which is the union of the graphsΓ1 andΓ2.

The space Cyl being the set of all finite linear combinations of cylindrical vectors|Γ, f 〉, we
can complete it to a Hilbert spaceHkin, the kinematical space, defining it as the set of the Cauchy
sequences of Cyl, which are defined through the norm induced by the scalar product we have just
defined.

An orthonormal basis ofHkin can be defined using a generalization of the Peter-Weyl theorem,
according to which any function on a compact Lie group can be expandedin a discrete orthonormal
basis consisting of the matrix elements of all the unitary representations of the group. In the case of
SU(2) these representations are labeled by half-integer spinj. In order to proceed, given a graphΓ,
one associates to each edgeen a spin valuejn, different of 0, and the holonomy in the representation
of spin jn, whose(2 jn+1)× (2 jn+1) matrix elements are denoted byR( jn)αnβn

(U [A,en]). The
indicesαn, βn correspond to the initial point, final point, respectively of the edgeen. This yields a
“colored” graph, an example of which is shown in Fig. 6.

The basis vectors are then given by the products of matrix elements

〈A|Γ, j,α ,β 〉 ≡ 〈A|Γ, j1 · · · jN,α1, · · · ,αN,β1, · · · ,βN〉 ≡ ΨΓ, j,α,β [A]

= R( j1)α1
β1
(U [A,e1]) · · ·R( jN)αN

βN
(U [A,eN]) (3.3)

8
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rV1

rV2

e3, j3

e1, j1

e2, j2

<

>

>

Figure 6: Colored graph with 3 edges and 2 vertices.

taken for all possible graphs, all possible spin values and all values of the matrix element indices
αn, βn. Spin 0 is excluded in order to avoid over counting. Indeed, a colored graph with a spin 0
edge yields the same expression as the graph with this edge deleted.

The Peter-Weyl theorem assures that these vectors, called “spin networks”, form an orthonor-
mal basis ofHkin, provided one includes the "null vector"| /0〉, with Ψ /0[A] = 1, associated to the
empty graphΓ = /0. The orthonormality relations read

〈
Γ, j,α ,β |Γ′, j ′,α ′,β ′〉= δΓΓ′δ j j ′δαα ′δββ ′ .

In particular, basis vectors associated to two different graphs are orthogonal. It follows that the
kinematical Hilbert space admits the orthogonal decomposition

⇒ Hkin =
⊕

Γ
HΓ .

One sees, from the fact that the set of all graphs is not countable, thatthis Hilbert space is not
separable. Separability will be attained after the diffeomorphism constraintis applied.

3.3 Implementing the constraints

3.3.1 The Gauss constraint

This is the first of Eqs.(3.1). It is implemented through the requirement of SU(2) gauge in-
variance. A gauge invariant basis is obtained by inserting invariant tensors, acting as generalized
Clebsch-Gordan coefficients, at each of the vertices of a spin networkgraph (3.3), saturating the
matrix indicesαn andβn. More explicitly, at a vertex such as the one depicted in Fig. 7, one inserts
an invariant tensor – and “intertwiner” –v(i)α1···αm

βm+1···βm+n, where the exponent(i) enumerates the
various possible invariant tensors of the same ranksmandn, and contracts all theα andβ indices.
Due to the invariance property of these tensors:

v(i)α1···αm
βm+1···βm+n = R( jm+1) βm+1ρm+1 · · ·R( jm+n) βm+nρm+nv

(i)
σ1···σm

ρm+1···ρm+n

R−1 ( j1) σ1α1 · · ·R−1 ( jm) σmαm , (3.4)

the result of these insertions is a gauge invariant expression. The vectors thus constructed form a
basis of a SU(2) gauge invariant Hilbert spaceHGauss⊂ Hkin.

9
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Figure 7: Vertex withm outgoing andn ingoing lines.

3.3.2 The vector constraint

The solution of the second of the constraints (3.1) using the group averaging procedure [8, 9]
yields a Hilbert spaceHdiff whose elements are equivalence classes of vectors ofHGauss. Two
vectors ofHGaussare equivalent graphs if they are characterized by the same quantum numbers
(spin and sets of intertwiners), their respective graphs being related bya space diffeomorphism
(see Fig. 8). Through an adequate choice for the class of diffemorphisms under consideration [8],

Figure 8: Two diffeomorphism-equivalent graphs.

the resulting Hilbert spaceHdiff is separable. One can understand this intuitionally observing that
only the topological structure of the graphs is now relevant.

3.3.3 The scalar constraint

The solution of the third of the constraints (3.1), the scalar or Hamiltonian constraint, which

10
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corresponds to the invariance under the time diffeomorphisms, has to yield thephysical Hilbert
space. Whereas the first two previous constraints are pretty well understood, a complete solution of
the last one is not yet known. It is this constraint which produces the dynamics of GR. Indeed, to the
contrary of the first two ones, the scalar constraint operator – which maybe rigorously defined [9] –
makes one leave the space sheetM3. Solving it amounts to calculate transition amplitudes between
geometries ofM3. Let us only mention in this context the spin foam approach [8, 9, 26].

4. Some applications

4.1 Geometric observables

It turns out that the spin network basis vectors (3.3) are eigenstates of the area and volume
operatorsA [Σ] andV [Ω] for a superficiesΣ ∈ M3 and a regionΩ of M3.

In the case of a superficiesΣ in a spin network state|Γ, j1, · · · , jN〉 such that the intersection
pointsP1, · · · ,PN betweenΣ andΓ do not coincide with edge’s endpoints (see Fig. 9) and such that
each edge intersectsΣ at most once, the eigenvalues of the area operator are given by:

Figure 9: Intersection pointsP1, P2 andP3 of a graph with a surfaceΣ.

A [Σ] |Γ, j1, · · · , jN〉= 8πγ l2
P∑

√
jn( jn+1) |Γ, j1, · · · , jN〉 ,

where lP =
√

h̄G/c3 ∼ 10−34m is the Planck length, and the sum is performed on all edges of
Γ which intersectΣ. One notes here the presence, as a numerical factor, of the Barbero-Immirzi
parameterγ. Similar result hold in the general case.

Other geometrical operators are the volume and length operators. The latterhowever is not
diagonal in the spin network basis, but both have discrete spectra as well.

4.2 Other applications

Very interesting applications of LQG ideas to the study of black holes physicsand quantum
cosmology have been made [13, 15, 14]. The black hole singularity of classical GR is removed,
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and its entropy can be calculated in terms of the fundamental constants – with theBarbero-Immirzi
parameter as a factor. In cosmological, dynamics with bounce seem to be preferred – a dynamcics
without the big-bang singularity of the classical theory [14].

Applications o LQG techniques to lower dimensional models, such as Chern-Simons theory,
2−D gravitational model of Jackiw-Teitelboiman 2−D supergravity, may be found in [27, 28, 29].

5. Conclusions

Much material which has not been covered in this seminar may be found in the quoted litera-
ture. I would only like to stress that important difficulties still need to be better faced.

In particular, we are still lacking of a precise definition of the scalar constraint operator and
the solutions of the scalar constraint.

A serious issue is that of the existence of a semi-classical limit yielding the known classical
RG.

The scheme outlined in this lecture relies crucially on the compactness of the gauge group,
realized through the “non-covariant” time gauge fixing. Difficulties are expected in a “covariant
formalism”, since it implies the full Lorentz group, which is not compact (see [30] and references
therein).

Finally, the very difficult question of experimental or observational tests of Quantum Gravity
remains open (see [31] and references therein).

Acknowledgments I thank all my colleagues and students: Alejandro Perez, Clisthenis Con-
stantinidis, Alex Rios, Diego Mendonça, Gabriel Luchini, Ivan Morales Bautista, José André
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