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1. Introduction

Gravitation theory, expressed classically by General Relativity (GR)ndsvk to be partic-
ularly resistent to all attempts of quantization — except in lower dimensionakgpaes [1, 3].
Perturbative quantum gravity is known to be non-renormalizable — unléssnitorporated in a
broader theory like Superstring Theory [2, 4] which is thought to béupeatively finite [5, 6].
On the other hand, there is much hope in a nonperturbative approacthdikee of Regge Cal-
culus [7], or, more recently, that of Loop Quantum Gravity" (LQG) [8.10, 11, 12, 13], where
some interesting results have being obtained, concerning the generalioak, or applications to
black hole physics [13] or cosmology [14, 15]. As opposed to Stringolhevhich proposes a
unification of all interactions, LQG stays with the a-priori more modest ainivafigy a consistent
description of quantum gravity, without attempting unification with the other iotenas. Most
of the work done in this latter area up to the present day concerns m@uigéygbut matter may be
added anyhow [9], with couplings independent of the gravitational loogiponstant.

The purpose of this talk is to expose the most basic concepts of LQG swxinfiguration
space, holonomies, spin networks, Hilbert space and constraints, @ibtsome examples of
observables. Due to limitation of time, only references to the literature ara gwvanost of the
further developments such as spin foams, loop cosmology, etc.

2. Classical General Relativity

General Relativity is a geometrical description of relativistic gravitation thglg, 17]. Clas-
sical four-dimensional space-time is given as a differentiable manilénd a tangent vector
spacelp at each of its point®, equipped with a pseudo-Riemannian metric

ds = guy(X)dxdx’  x= (t,X)

of Lorentzian signaturé—1,1,1,1). Most formulations of GR are based on the so-called second
order formalism where the basic variables are the components of the mesac, tend where the
field equation — the Einstein equation — is second order in the time derivafitles metric. The
first attempts towards a non-perturbative quantization were performedsifotmalism and lead

to the well-known Wheeler-DeWitt equation [18, 16, 19], a timeless Schgéditype equation,

of which very few solutions are known, not speaking of the difficulty tastauct an appropriate
Hilbert space with well-defined operators acting in it.

On the other hand, decisive progress was made using the first ordeliem, on which LQG
is based, exploiting its strong analogies with Yang-Mills gauge theories. Ifatmglism indeed
the basic variables are, beyond the tetrad field describing the metric, aatmmassociated to a
gauge invariance, namely the invariance under the local Lorentz tramesions.

In the first order formalism, one defines in each tangent plane a psetisimonal moving
frame (“tetrad” or “vierbein”), as illustrated in Fig. 1. It consists of faugctor fields$ g (x) =
q“(x)du, | =0,---,3, obeying the pseudo-orthogonality relations

e-e =guwe'e'3=ny, (ny) =diagonal(—-1,1,1,1).

IMost of our expressions are written in a system of coordingtes = 0, - - -, 3. Covariance under general changes
of coordinates is of course assumed.
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Figure 1. Manifold M4 and tangent plan@& with frame at poin®.
The dual tangent spadg admits the basig (x) = €' ,(x)dx*, | =0,1,2,3, with (e*) = (€ “)_l
The metric then writeg,, (X) = Mz € 4 (X)€’y (x). The vierbein basis ofp and T are defined up
to a (local) Lorentz transformation, e.@" (x) = A'3(x)e’(x), with nVAlc AL = nXL. We have
thus two local invariances: Lorentz and diffeomorphisms. The infinitesimastormations read,
in the case of the vierbein:

dorente = €367, with &3 = —¢31, &3 =Nk Xy,
dir € = Z;€

where.Z; is the Lie derivative along the vector fieldwhose components correspond to the in-
finitesimal coordinate transformationdx* = &H(x).

The Lorentz covariant derivativ is defined through the introduction of the connection form
(“spin connection”)w'; = w'Ju(x)dx“, with wyj; — wy;, transforming as

a_orentzwl\] = deJ + [, E]IJ
under infinitesimal Lorentz transformations. For example, the torsionm-ierthe covariant
derivative of the vierbein form:
1
T':Eﬂ“m%w%u:Dézdé+amé.

The curvature is another 2-form transforming covariantly under thentartransformations:

1
R;= éR'J,“,dx“dx" =dw';+ w'k ;.

2.1 Palatini-Holst action

The complete action for pure gravity in the first order formalism is the PalattgtHac-
tion [20]
== Z& R —=
SH K M4e NE N <2 1IKL VRIJ

1y 4y, SUVPO Al 1 KL 1
== Zguk R 5o — =
oK M4d XE e“ejv 2£|JK|_ po leJpU )
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wherek = 871G with G the Newton constant, andis the Barbero-Immirzi [21] parametegHVP?

is the Levi-Civita tensor, witlg?123 = 1 (and same definition fag'’Kl). The classical theory does
not depend on the parametgras shown by the field equations derived from this action: they are
the usual null torsion and null Ricci curvature equations

T'=0, Rw=R'5, =0.

The first one allows to express the connection in terms of the vierbein canisoand their deriva-
tives, the second one is the Einstein equation in the absence of matter.

2.2 Canonical formalism and Ashtekar variables

In order to implement the canonical formalism on which quantization will bedyas®e has
to define some time variable. In GR, this is usually done by introducing a foliafispaze-time
M4, defined by a the introduction of a “temporal functioR(P) and the topological assumption
that it can be factorized a4, = Rt x M3, whereMs represents the space slice at constant “time”
T =T(P), as illustrated in Fig. 2.

Mz3(Ts)

M3(T2)

Figure 2: Spacetime foliation (in the caggP) =t). Tangent frames and coordinate frames.

Before beginning the canonical construction, which consists in defirairg pf canonically
conjugated variables and analyzing the constraints associated with the iggagances of the
theory according to the Dirac-Bergmann procedure [22], let us probteea partial gauge fixing [23,
24], called the “temporal gauge”, which simplifies the formalism and redtlesion-compact
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Lorentz gauge symmetry group SLE2 to its compact subgroup SU(2). This gauge is defined by
setting to zero three of the vierbein form componé&ngs, = 0, or, equivalentlyg’; = 0. Moreover
we choose space-time coordinates in such a way that the three coordihales parametrize
the space slicdls. (In other words, we choose the time functid(x) =t). Geometrically, the
temporal gauge choice means that the basis vegtgrat pointP is tangent to the time coordinate
line passing at this pointy = €9(X)é.

With the notationdN = €%, N' = €, andN2 = e;N', the space-time metric takes the ADM
form ds® = guydxtdx’ = — (N? — hapNaNP) dt? + 2Nadx@dt + hapdX@d X, whereha, = &€ €l is
the metric of the space slidd; at coordinate timé. One recognizes ihl(x) andN? the “lapse”
and “shift” functions of the ADM formalism [17].

The Palatini-Holst action reads, in the temporal gauge:

S:H:/dt </d3xPaithia—H> ,

. 1 .. . 1 .
Na=Se¥wja +yw’a, PY= Z—kysabcsi kelpee.

Al, is the Ashtekar SU(2) connection in the real formalism of Barbero and Imfaitk Its curva-
ture is

with

I:iab = aaAib - abAia —¢ jkAjaAkb-
P3 is the conjugate momentum &f,, and we have thus the Poisson brackets (only the nonzero
ones are shown):
{Aa0c), Py, | = 8a8a%(x—y). (2.1)
The Hamiltonian is given by
H= [d(N% - N~ N.7). (2.2)
where
% = DaP?% = 0:P? — & Al P?,
¥4 = PP, Fip+ terms proportional t¢7
S = ky
2v/deth

N = 1eikgj, andK'y = w”; is the extrinsic curvature of the space slidg. Observing that
the fieldsA/, N2 andN appear linearly in the Hamiltonian and have no conjugate momentum, we
deduce that their coefficients are constraints:

IIN = [N (%0 ~.

PaP°; (&jkFXap— (Y2 +1)(K'aK)p — K'pK14)) + terms proportional t& and 74,

VIN] = / A3XNA(X) Ya(X) ~ 0, 2.3)

FIN] = / d3XN(X).(X) ~ 0.

2The four coordinate indiceg are devided in a time indexand and a space index= 1,2,3. The tangent space
indicesl are devided in =0 andl =i,i=1,2,3



Loop Quantum Gravity Olivier Piguet

The weak equality siger means that the constraints are effectively fulfilled only once all necgssar
Poisson Bracket algebra calculations are made.

One checks that these constraints are first class according to Diranisdéogy, i.e., they
form a closed Poisson bracket algebra and are the infinitesimal gensesitbe gauge invariances
of the theory. More specificallyy generates the SU(2) gauge transformations (the residual sym-
metry group left from the time gauge fixing}; generates the space diffeomorphisms, wheréas
generates the time diffeomorphisms up to SU(2) transformations, spaanaliifehisms and field
equations.

3. Loop quantum quantization

3.1 Canonical quantization

“Canonical quantization” is intended here as the construction of a quathiemny along the
following lines:

1. Construct a “kinematical Hilbert spaceZ;, whose elements are the wave functiowah|
(WAl = (A|W) in Dirac’s notation) which are functionals of the configuration variables,
taken here as the components of the Ashtekar connegtion), elements of a configuration
space</, and where the conjugate momentum operators act as:

WA

PA(X)W[A] = —i SR

in order to fulfill the commutation rules
[Aa(x.t), Pj(y,1)] = iRg| 8% (x - ),
corresponding to the classical Poisson brackets (2.1);

2. Define the configuration spaeg and an integration measufeA in it, in such a way that
the inner product

(W1|W2) = /QAWA]%[A]
be well defined,;
3. Define the constraints (2.3) as well defined operatogi;
4. Solve the constraint equations
YN |W) =0, 7|N||¥)=0, Z[N]|W)=0, (3.1)

and define the physical Hilbert spagéys as the space of the solutions of these constraint
equations.

We note that, since the Hamiltonian (2.2) is a linear combination of the constrailfilting the
constraints amounts to solve the timeless Schrodinger equation,

H W) =0,
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known as the Wheeler-DeWitt equation in the context of quantum gravity isdbend order for-
malism, mentioned at the beginning of Section 2. This equation provides areafipparadoxical
“dynamics without time”. In the present context, canonical quantizationdgedan a “time” pa-
rametett which is just a coordinate. Invariance under the “time” diffeomorphismstiesns that
the “time” evolution is a mere gauge transformation, which has no physicalinipaive refer to
the literature [25] where this “problem of time” has been widely discussed.

3.2 Construction of the kinematical space .#in

Instead of taking arbitrary functiona¥B[A] of the classical Ashtekar SU(2) connecti@(x)
as our wave functionals, we first consider functidrig, - --,Uy), called “cylindrical functions”,
whose arguments are the holonomig®f A along a finite set of oriented curves(n=1,---,N) in
the space manifolf3. Such a set of oriented lines — the “edges” — together with their intersection

points — the “vertices” — form a gragh Examples are shown in Fig. 3 and 4.
€1

Vi

Figure 3: Graph with 3 edges and 2 vertices

Figure 4: Closed loop graph.

The holonomy of the SU(2) connectignalong the oriented pathfrom the pointsP; to P,
parameterized by, withs; <s<'s, (see Fig. 5) is defined as

U=UA€g = Pexp{/eA} = Pexp[/zriAia(s)dxa(s)] ,

where ther; = izoi are the generators of the gauge group. The symbol P (“path ordeai)sikat in
the field products appearing in the expansion of the exponential funtdittors are ordered with
increasing from the right to the left. The holonomy is an element of the ganoge $U(2). Under
a gauge transformatio (x) = g~(x)dg(x) + g1 (X)A(X)g(x), with g(x) € SU(2), it transforms as

U [Av e]/ = gil(pZ)U [A’ e]g(Pl) :
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P =9
Figure5: Parameterized oriented curve.

The vector space spanned by all the cylindrical functions, associasehitary graphs, is denoted
by Cyl. A vector|l", f) € Cyl associated to a gragh of N edges and a functiofi : SU(2) x
SU(2)--- x SU(2)— C is thus given by

(A, f) =Wr¢[Al=f (U[Ae],---,U[Ae]).
An hermitean scalar product can be defined in Cyl by the integral oveyrtheg

(I, fal, f2) = /dul"‘dUL f(Ug,---,UL) f2(Ug,---,UL), (3.2)

whereU, = U[A, e)] anddU is the (normalized) invariant Haar measure on the group SU(2). Note
that it is the compactness of the group SU(2) which assures the normalizabilitg measure —
or, in other words, the convergence of the integral (3.2) for any logaibgrable integrant.

This scalar product is invariant under the SU(2) gauge transformatiom$o the invariance
of the Haar measure. It is also invariant under the space diffeomorpbianssit only depends on
the number of the edges of the graph, and not on its location in space.olves/ér not invariant
under the time diffeomorphisms.

We have defined here the scalar product between vectors both @&sddoia same graph. In
order to define the scalar produ€t, f1|l 2, f2), with 'y # I',, one applies the definition (3.2), but
with a graphl” which is the union of the graptis andr».

The space Cyl being the set of all finite linear combinations of cylindricedors|I", ), we
can complete it to a Hilbert spack;,, the kinematical space, defining it as the set of the Cauchy
sequences of Cyl, which are defined through the norm induced by e groduct we have just
defined.

An orthonormal basis of#;, can be defined using a generalization of the Peter-Weyl theorem,
according to which any function on a compact Lie group can be expandediscrete orthonormal
basis consisting of the matrix elements of all the unitary representations afiine. dn the case of
SU(2) these representations are labeled by half-integerjspirorder to proceed, given a graph
one associates to each edgea spin valug, different of 0, and the holonomy in the representation
of spin jn, whose(2j,+ 1) x (2j,+ 1) matrix elements are denoted B&/jn)o’"ﬁn (U[A&n]). The
indicesay, By correspond to the initial point, final point, respectively of the edgeThis yields a
“colored” graph, an example of which is shown in Fig. 6.

The basis vectors are then given by the products of matrix elements

<A’r7j7a7B> = <A’r7j1"'jN7al7"'7aN7B17"'>BN> = qu.j,a,B[A]
— R(J'l)f’flﬁ1 (UA e1])--- R(jN)aNBN (U[A, en]) (3.3)
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Vi

Figure 6: Colored graph with 3 edges and 2 vertices.

taken for all possible graphs, all possible spin values and all valueg ah#ttrix element indices
an, Bn. Spin 0 is excluded in order to avoid over counting. Indeed, a colorgehgwith a spin 0
edge yields the same expression as the graph with this edge deleted.

The Peter-Weyl theorem assures that these vectors, called “spinrkgtyform an orthonor-
mal basis of’n, provided one includes the "null vecto@), with Wp[A] = 1, associated to the
empty grapi” = 0. The orthonormality relations read

<r, j7G,B“—/, j/,a/,B/> = d—rléjjraaa/apﬁ/ .

In particular, basis vectors associated to two different graphs aregamtial. It follows that the
kinematical Hilbert space admits the orthogonal decomposition

= e%’f(in:@eﬁﬂr-
r

One sees, from the fact that the set of all graphs is not countablethtbatlilbert space is not
separable. Separability will be attained after the diffeomorphism consisapplied.

3.3 Implementing the constraints
3.3.1 The Gauss constraint

This is the first of Eqgs.(3.1). It is implemented through the requirement oRSgHuge in-
variance. A gauge invariant basis is obtained by inserting invariantrignescting as generalized
Clebsch-Gordan coefficients, at each of the vertices of a spin neggvaph (3.3), saturating the
matrix indiceso, andf3,. More explicitly, at a vertex such as the one depicted in Fig. 7, one inserts
an invariant tensor — and “intertwiner” ('2___am5m+l"'ﬁm+n, where the exponert) enumerates the
various possible invariant tensors of the same ramksdn, and contracts all the and indices.

Due to the invariance property of these tensors:

Vg2-~-amﬁm+1"'l3m+n — R(jm+1) /3m+1pm+1 - R(jm+n) anPerani--ampmlMpm*'n

R-1(1) Ulal...Rfl(jm) Om (3.4)

m?’

the result of these insertions is a gauge invariant expression. Theyéuis constructed form a
basis of a SU(2) gauge invariant Hilbert spaé@aussC “kin-
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Figure 7: Vertex withm outgoing anch ingoing lines.

3.3.2 Thevector constraint

The solution of the second of the constraints (3.1) using the group @vgnagpcedure [8, 9]
yields a Hilbert space7ix whose elements are equivalence classes of vectarg®fiss Two
vectors of #Gaussare equivalent graphs if they are characterized by the same quantubersi
(spin and sets of intertwiners), their respective graphs being relatedspace diffeomorphism
(see Fig. 8). Through an adequate choice for the class of diffemanphiader consideration [8],

Figure 8: Two diffeomorphism-equivalent graphs.

the resulting Hilbert space?ix is separable. One can understand this intuitionally observing that
only the topological structure of the graphs is now relevant.

3.3.3 Thescalar constraint

The solution of the third of the constraints (3.1), the scalar or Hamiltoniantraamis which

10



Loop Quantum Gravity Olivier Piguet

corresponds to the invariance under the time diffeomorphisms, has to yiefthylsecal Hilbert
space. Whereas the first two previous constraints are pretty wellstoddr a complete solution of
the last one is not yet known. It is this constraint which produces thardigs of GR. Indeed, to the
contrary of the first two ones, the scalar constraint operator — whichomagorously defined [9] —
makes one leave the space shdgt Solving it amounts to calculate transition amplitudes between
geometries oMs. Let us only mention in this context the spin foam approach [8, 9, 26].

4. Some applications

4.1 Geometric observables

It turns out that the spin network basis vectors (3.3) are eigenstates af¢h and volume
operatorse/ [Z] and¥'[Q] for a superficiex € M3 and a regior© of Ms.

In the case of a superfici@sin a spin network staté, j1,---, jn) such that the intersection
pointsPy, - - -, Ry betweer> andl" do not coincide with edge’s endpoints (see Fig. 9) and such that
each edge intersectsat most once, the eigenvalues of the area operator are given by:

7%,
YOI 4 4
i

.‘ @

Figure 9: Intersection point®;, P> andPs of a graph with a surfack.

%[Z] |r7j17"'7jN> :87Tylgz V Jn(1n+1) ‘rvjla"'7jN> 3

wherelp = vRG/c® ~ 10~%*m is the Planck length, and the sum is performed on all edges of
I which intersec&. One notes here the presence, as a numerical factor, of the Bant@icei
parametey. Similar result hold in the general case.

Other geometrical operators are the volume and length operators. Thenhtastever is not
diagonal in the spin network basis, but both have discrete spectra as well.

4.2 Other applications

Very interesting applications of LQG ideas to the study of black holes phgsidsjuantum
cosmology have been made [13, 15, 14]. The black hole singularity cficld$GR is removed,

11
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and its entropy can be calculated in terms of the fundamental constants — witarttero-Immirzi
parameter as a factor. In cosmological, dynamics with bounce seem tofeggule- a dynamcics
without the big-bang singularity of the classical theory [14].

Applications o LQG techniques to lower dimensional models, such as Climion$ theory,
2— D gravitational model of Jackiw-Teitelboiman-2D supergravity, may be found in [27, 28, 29].

5. Conclusions

Much material which has not been covered in this seminar may be found inithedylitera-
ture. | would only like to stress that important difficulties still need to be bettmda

In particular, we are still lacking of a precise definition of the scalar camgtoperator and
the solutions of the scalar constraint.

A serious issue is that of the existence of a semi-classical limit yielding therkctagsical
RG.

The scheme outlined in this lecture relies crucially on the compactness of the geaup,
realized through the “non-covariant” time gauge fixing. Difficulties areeeigd in a “covariant
formalism”, since it implies the full Lorentz group, which is not compact (s&@] nd references
therein).

Finally, the very difficult question of experimental or observational teE@uantum Gravity
remains open (see [31] and references therein).

Acknowledgments | thank all my colleagues and students: Alejandro Perez, Clisthenis Con-
stantinidis, Alex Rios, Diego Mendonga, Gabriel Luchini, Ilvan MoralesitBta, José André
Lourengo, Rodrigo Martins Barbosa, for their help and the pleasun®ding with them.
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