
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Experience on HTCondor batch system for HEP
and other research fields at KISTI-GSDC
To cite this article: S U Ahn et al 2017 J. Phys.: Conf. Ser. 898 082013

View the article online for updates and enhancements.

Related content
Grids, virtualization, and clouds at
Fermilab
S Timm, K Chadwick, G Garzoglio et al.

-

Geographically distributed Batch System
as a Service: the INDIGO-DataCloud
approach exploiting HTCondor
D C Aiftimiei, M Antonacci, S Bagnasco et
al.

-

Pushing HTCondor and glideinWMS to
200K+ Jobs in a Global Pool for CMS
before Run 2
J Balcas, S Belforte, B Bockelman et al.

-

This content was downloaded from IP address 131.169.5.251 on 03/12/2017 at 21:08

https://doi.org/10.1088/1742-6596/898/8/082013
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032037
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032037
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062030
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062030
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062030

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082013 doi :10.1088/1742-6596/898/8/082013

Experience on HTCondor batch system for HEP and

other research fields at KISTI-GSDC

S U Ahn, A Jaikar, B Kong, I Yeo, S Bae and J Kim

Global Science experimental Data hub Center, Korea Institute of Science and Technology
Information, 245 Daehak-ro Yuseong-gu, 34141 Daejeon, Republic of Korea

E-mail: sahn@kisti.re.kr

Abstract. Global Science experimental Data hub Center (GSDC) at Korea Institute of Science
and Technology Information (KISTI) located at Daejeon in South Korea is the unique datacenter
in the country which helps with its computing resources fundamental research fields dealing
with the large-scale of data. For historical reason, it has run Torque batch system while
recently it starts running HTCondor for new systems. Having different kinds of batch systems
implies inefficiency in terms of resource management and utilization. We conducted a research
on resource management with HTCondor for several user scenarios corresponding to the user
environments that currently GSDC supports. A recent research on the resource usage patterns
at GSDC is considered in this research to build the possible user scenarios. Checkpointing and
Super-Collector model of HTCondor give us more efficient and flexible way to manage resources
and Grid Gate provided by HTCondor helps to interface with the Grid environment. In this
paper, the overview on the essential features of HTCondor exploited in this work is described
and the practical examples for HTCondor cluster configuration in our cases are presented.

1. Introduction
Global Science experimental Data hub Center (GSDC) [1] at Korea Institute of Science and
Technology Information (KISTI) [2] is a datacenter which was built by a national funding
project to promote fundamental research activities in South Korea. Mainly GSDC provides
storage resources to the research groups, who manipulate instruments producing large amounts
of data. The volume of data mentioned here is far exceeding the scale of the size which can be
dealt within a small lab: from tens of terabytes up to more than tens of petabytes. Currently
GSDC supports 6 experiments: ALICE [3], CMS [4], LIGO [5], Belle2 [6], RENO [7] and Genome
project. In addition to storage resources, GSDC provides computing power in order to process
the large scale of data produced by the experiments. The computing resources of GSDC are
managed by the distributed computing resource management system, which is so-called batch
system, and the systems used at GSDC were Torque [8] and HTCondor [9]. Which batch
system should be used was determined by the dependencies of the software suites that are used
or recommended by the research groups. In particular, the Grid middleware suites deployed
for the research communities, e.g. EMI [10] for ALICE and Belle2 experiments, or OSG [11]
for CMS experiment, was one of the crucial factor for the selection of batch system. In GSDC,
Torque batch system was used for ALICE, Belle2 and RENO experiment, and HTCondor batch
system was used for CMS, LIGO and Genome project.

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082013 doi :10.1088/1742-6596/898/8/082013

2. Resource Utilization at GSDC
In 2015, we conducted a research to estimate the utilization of batch systems for ALICE, Belle2,
CMS and LIGO experiment at GSDC [12]. Both Torque batch systems for ALICE and Belle2
experiment were interfaced with EMI middleware while one HTCondor batch system for CMS
was interfaced with the OSG middleware however, the other HTCondor batch system for LIGO
were not interfaced with any Grid middleware. The batch systems for CMS and LIGO were
used by only local users. The research showed that the estimations on resource utilization of
batch systems for ALICE, Belle2, CMS and LIGO were 90%, 65%, 0.7% and 25% respectively
as shown in Figure 1. In the research, the resource utilization was defined as the ratio between

Figure 1. Measurement
on resource utilizations
for ALICE(A), Belle2(B),
CMS(C) and LIGO(D)
based on accounting data
collected by Torque and
HTCondor batch systems
in 2015 [12]. The number
of job slots, which is equal
to the number of logical
cores, provided to the
experiments are 3,500 for
ALICE, 300 for Belle2,
1,000 for CMS and 800 for
LIGO.

the entire time of the year and the sum of total wall clock time consumed by jobs. The data
used in the measurement was the job accounting data of batch systems for 2015. Consistent
trend in utilization for the entire year was shown for ALICE(A) and Belle2(B) due to high job
throughput submitted from Grid. On the contrary, the resource utilization of CMS(C) and
LIGO(D) was very low and the trend was unpredictable behavior throughout the year due to
the chaotic usage performed by local users.

The dramatic discrepancy between the utilizations can be moderated if the idle resources of
one group were allowed to be used by other groups. However, there were two constraints:

• In GSDC, computing resources were dedicated to each experiment according to
Memorandum of Understanding (MoU) agreed with the communities. The fulfillment of
the MoU, i.e. the physical allocation of resource has been audited regularly. Therefore we
provided batch systems separately to each experiment and the fair-sharing was disabled.

• The queues of Torque and HTCondor batch systems cannot be shared since they are different
systems. This implies that jobs submitted by ALICE and Belle2 experiment cannot be
processed in HTCondor batch systems dedicated to CMS and LIGO experiment.

3. Moving towards HTCondor
The goal of this work was to improve the situation in which the resource utilization was
unbalanced between two different batch systems we currently suffer at GSDC. In 2012, we
built up a Torque batch system for WLCG Tier-1 center supporting ALICE experiment and
we have had an instability issue with Torque since then. About 1,500 job slots were available
in Torque batch system and the queue was managed by MAUI scheduler. Because the MAUI
scheduler had to be restarted every 3 to 4 days for unknown reasons, a probe that checks the

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082013 doi :10.1088/1742-6596/898/8/082013

status of the MAUI scheduler was scheduled to run periodically, so that the MAUI service can
be restarted when the MAUI service is malfunctioning. The other issue was with the node list
of Torque batch system in which it is required batch system to be restarted after the update
of the list. These were inefficient for managing a datacenter with large scale of resource pool
(about thousands of nodes).

HTCondor was a promising candidate to replace Torque batch system because we already
had experience on the administration of HTCondor. However there were two constraints on the
replacement of Torque by HTCondor:

• Although we had operation experience of HTCondor batch system, we had few knowledge
on resource scheduling for large pool shared among different experiments since we have had
the resource dedication policy; we ignored the idle resources of a group.

• Torque batch system was preferred for ALICE and Belle2 experiments to interface with the
Grid environment since CREAM-CE, which is a component of EMI middleware functioning
as to authenticate and authorize jobs submitted through the Grid before the local batch
systems, does not officially support HTCondor batch system. Recently HTCondor-CE for
HTCondor batch system to be interfaced with Grid has been getting popular and the ALICE
experiment has started to support HTCondor.

4. Requirements for the New Pool
Our goal was to replace Torque batch system by HTCondor batch system and to share a unified
pool with various experiments we support. As described in the previous section, we need to
gain further knowledge on HTCondor batch system such as dynamic resource allocation or
HTCondor-CE for Grid interface. For this purpose, we built up a test-bed to examine the
following requirements:

• Computing resources allocation in the pool had to be managed dynamically. Idle resources
belonging to one group should be available to other groups in case of which they demand
additional resources exceeding their quota. However, the pledged resources for a group
must be guaranteed when the resources occupied by others are claimed by its owner. This
is called preemption. To give a better user experience, a delicate and complementary policy
on the treatment for the preempted jobs, which are the jobs evicted from where they were
running temporarily, has to be considered and implemented.

• Even though computing resources in the new pool were shared for several groups, we
liked to separate User Interface (UI) among those groups for better user experience and
the convenience of system management. Some cases requiring compilation on real-time
before job submission, which may consume resources of the machine, may affect badly
other user’s experience in case of which UI being shared. Also the exposure of mount
points of experiment data and user’s scratch to other groups may have potential security
vulnerability although the access by others is not permitted.

• Enabling high availability of daemons on submission and central manager nodes was
essential to achieve highly available HTCondor pool. In HTCondor batch system, schedd
daemon on submission node manages submitted jobs, and collector and negotiator daemons
on central manager node collect cluster information in the pool and perform match-making
between job and resource specifications, respectively. In principle, one submission node
runs one schedd daemon and in general the submission node is used as the UI. As described
in the second requirement, we liked to have separate UIs for each group while we have
schedd machines in high availability mode. This implied that the UI machines and schedd
machines are not identical so that jobs should be submitted from UI machines to schedd
machines remotely.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082013 doi :10.1088/1742-6596/898/8/082013

5. A Test-bed Setup for High Availability of Daemons
In order to accommodate the requirements described in the previous section, we have built up
a test-bed by deploying HTCondor batch system to a new pool. As shown in Figure 2, the
architecture of the test-bed was rather simple however user interface, submission and central
manager nodes were deployed on at least two nodes for the configuration of high availability of
the daemons. In the pool, 72 job slots was provided by nine execution nodes. In HTCondor

Figure 2. A brief structure of the test-bed with hostnames of each machine, basic mechanism
among nodes and common configuration shared for HTCondor batch system.

batch system, a basic configuration [13] for high availability of schedd daemon is to make the
schedd daemon on one submission node to be active while the other schedd daemons on other
nodes to be standby. This is because basically only one schedd daemon in a pool can solely
run in the HTCondor batch system. Active-standby mode for schedd daemons was controlled
by locking mechanism. A lock file owned by the active daemon was located in a shared file
system via network so that the other schedd daemons could access the lock file. In such a way
that checking the ownership of the lock file, the other schedd daemons could detect the active
daemon’s status. Ownership can be taken by one of the other standby daemons if the active
daemon is dead or can not temporarily update the file status for unknown reasons. The schedd
daemons, whether active or standby, were referred by a single common name, i.e. ”had schedd”
in this work. In order for center managers to be high availability mode, all candidate central
managers had the same configuration of daemon list and the pool information were shared. In
HTCondor batch system, the replication daemon carries out periodic transfer of any file stated in
”STATE FILE” macro in the configuration from the primary central manager to the secondary
manager. By stating the location of pool information file in the macro, the pool information
can be shared among candidates so that immediate transition of the central manager role can
be done when it is needed.

6. Dynamic Resource Allocation with Accounting Group
A negotiator-side resource management in the HTCondor pool [14] was implemented to achieve
the dynamic resource allocation, which was one of the requirements described in the previous
section. Negotiator daemon of HTCondor supports group quota which can be defined by
accounting group parameters. The essential parameters for accounting group are described
in Table 1. Firstly, we defined accounting group and set limit (quota) on resources based on
the MoU for each experiment. Secondly, we allowed users to exceed their group quota when

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082013 doi :10.1088/1742-6596/898/8/082013

Table 1. A summary of accounting group parameters used in the test-bed.

Parameter Value

GROUP NAMES <arbitrary name for experiment>
GROUP QUOTA <arbitrary name for experiment> <number of slots >
GROUP ACCEPT SURPLUS TRUE or FALSE
NEGOTIATOR CONSIDER PREEMPTION TRUE or FALSE
PREEMPTION REQUIREMENTS <conditional statement >

resources belong to other groups are not claimed. Finally, we enabled prompt preemption
to guarantee group quota of each experiment when the owner claims the resources if theirs
were being used by others. These configurations were placed on negotiator daemon. Practical
examples of negotiator-side configuration used in the test-bed are the following:

GROUP_NAMES = group_alice, group_cms, group_ligo, group_belle, group_reno,

group_genome

GROUP_QUOTA_group_alice = 40

GROUP_QUOTA_group_cms = 12

GROUP_QUOTA_group_ligo = 8

GROUP_QUOTA_group_belle = 4

GROUP_QUOTA_group_reno = 4

GROUP_QUOTA_group_genome = 4

GROUP_ACCEPT_SURPLUS = True

NEGOTIATOR_CONSIDER_PREEMPTION = True

PREEMPTION_REQUIREMENTS = (PREEMPTION_REQUIREMENTS) &&

(((SubmitterGroupResourcesInUse < SubmitterGroupQuota) &&

(RemoteGroupResourcesInUse > RemoteGroupQuota)) ||

(SubmitterGroup =?= RemoteGroup))

A demonstration of the dynamic resource allocation was performed based on the configuration
described in this section. In this demo, we assumed that there is no job processing activity from
group alice while all other groups are sharing the resources belong to group alice, i.e. 40 slots. In
this situation, a group alice user confirms that only 12 slots are available when he or she checked
the status of the pool. This is shown in Figure 3. As any group alice user can claim their quota,

Figure 3. Demo: the status of HTCondor pool when a group alice user logged into the
submission node.

when group alice user submitted 40 jobs, the preemption was placed immediately so that the
jobs submitted by group alice user could be successfully allocated to the reserved resources and
the jobs owned by other groups were evicted as shown in Figure 4 and 5. However, group ligo

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082013 doi :10.1088/1742-6596/898/8/082013

still consumed resources above its quota which was taken from unused resources of group cms
and the quota for group genome.

In this demonstration, we showed that preemption was performed based on accounting group
quota configured on negotiator side however, the behavior of quota was not accurately carried
out, which requires further investigation. HTCondor batch system provides checkpointing for
the evicted jobs which helps the jobs to be gently suspended with saving their progress and to
be resume in other places. In order to enable the checkpointing for a job, the job should be
re-linked with condor compile and submitted within a specific preset provided by HTCondor
batch system, which is called Standard Universe. There is a workaround [15] to feature the
checkpointing with the Vanilla Universe, which is the other preset preferrly used by most of
jobs, exploiting BLCR kernel module.

Figure 4. Demo: group alice user claims the
quota by submitting jobs.

Figure 5. Demo: status of the pool after
group alice user submits jobs.

7. Conclusions
We, GSDC at KISTI, support several experiments as a datacenter and manage the resources
with Torque and HTCondor batch systems. Since we have resource dedication policy and the
resources are managed by two different batch systems, we have experienced inefficient resource
utilization. In order to address this, we need to integrate our batch systems into one and to
enable dynamic resource allocation among several experiments. HTCondor batch system was
chosen because we have experienced unstable behavior of Torque batch system when it manages
large resources and its architecture is not scalable.

In this paper, we described the set-up of a test-bed with HTCondor batch system that accepts
dynamic resource allocation policy based on negotiator-side configuration, using parameters
related to accounting group. At the same time, we examined the default HTCondor configuration
for high availability of the daemons for submission nodes and central manager nodes. We
demonstrated the dynamic resource allocation with accounting group quota with the test-bed
and we need further investigation on the behavior of quota. In the demonstration, we learned
that delicate policies should be established when dealing with preempted (evicted) jobs and their
re-allocation. Checkpointing in HTCondor would help the evicted jobs to be resumed in the
other places not to waste their CPU clock time already consumed. For the future work, we will
enable job to be submitted from separate UIs to remote schedd machines in the test-bed, and
develop and expand the test-bed to be deployed in the production level. And also HTCondor-CE
will be examined for interfacing the HTCondor batch system with Grid middleware suites.

Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) through contract
N-16-NM-CR01-S01 and the Program of Construction and Operation for Large-scale Science
Data Center (K-17-L01-C05-S01).

References
[1] Ahn S U 2017 Proc. International Symposium on Multiparticle Dynamics (Jeju)

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082013 doi :10.1088/1742-6596/898/8/082013

[2] Korea Institute of Science and Technology Information (KISTI) http://en.kisti.re.kr
[3] The ALICE Collaboration http://alice-collaboration.web.cern.ch
[4] The CMS Collaboration https://cms.cern
[5] The LIGO Scientific Collaboration http://www.ligo.org
[6] The Belle II Collaboration https://www.belle2.org
[7] RENO: An Experiment for Neutrino Oscillation Parameter theta 13 Using Reactor Neutrinos at Yonggwang

arXiv:1003.1391 [hep-ex]
[8] Tera-scale Open-source Resource and QUEue manager (TORQUE) http://www.adaptivecomputing.com/prod-

ucts/open-source/torque/
[9] Litzkow M and Linvy M 1990 Proc. IEEE Workshop on Experimental Distributed Systems (Huntsville)
[10] EMI - European Middleware Initiative http://wlcg.web.cern.ch/emi-european-middleware-initiative
[11] OSG - Open Science Grid https://www.opensciencegrid.org
[12] Ahn S U and Kim J 2016 Proc. Int. Conf. on Platform Technology and Service (Jeju)
[13] HTCondor Version v8.4 Manual http://research.cs.wisc.edu/htcondor/manual/v8.4
[14] Maintaining Accounting Group Quotas With Preemption Policy http://erikerlandson.github.io/blog/2012/06/

27/maintaining-accounting-group-quotas-with-preemption-policy/
[15] Checkpointing vanilla jobs with BLCR http://help.uis.cam.ac.uk/supporting-research/research-

support/camgrid/camgrid/technical3/blcr

