
Job scheduling in Grid batch farms

Andreas Gellrich

DESY, Notkestr. 85, 22607 Hamburg, Germany

E-mail: Andreas.Gellrich@desy.de

Abstract. We present here a study for a scheduler which cooperates with the queueing system
TORQUE and is tailored to the needs of a HEP-dominated large Grid site with around 10000
jobs slots. Triggered by severe scaling problems of MAUI, a scheduler, referred to as MYSCHED,
was developed and put into operation. We discuss conceptional aspects as well as experiences
after almost two years of running.

1. Introduction

The EGI [1] Grid site DESY-HH at DESY in Hamburg, Germany, operates a federated multi-VO
Grid infrastructure for 20 VOs and serves as a Tier-2 centre for ATLAS, CMS, and LHCb within
the world-wide LHC Computing Grid (WLCG) [2]. Computing resources are used according to
agreements and contracts, such as the WLCG Tier-2 Memorandum of Understanding (MoU),
in which certain pledges per VO are defined. Additional and temporarily unused resources are
distributed opportunistically among all VOs. The resources are provided by means of a batch
system in a farm of worker nodes (WN), controlled by a queueing system and a scheduler. DESY-
HH, as one of the world-wide largest WLCG Tier-2 centres for CMS, provides as of January
2014 a total of 10000 job slots.
One of the main goals of a Grid site is stable operations while optimally utilizing the computing
resources. At large multi-VO sites computing tasks, called jobs, have a variety of different
characteristics with respect to resource requirements. They range from CPU-dominated
simulation to I/O-intensive analysis jobs, with large differences in CPU and wall-clock time
demands from minutes to days as well as local disk space usage. It is therefore essential to
intelligently distribute the jobs to the worker nodes to avoid bottlenecks of the node resources
as discussed in [3]. This can be achieved by maximizing the number of jobs with different
characteristics per worker node. Since it is not possible to reveal the job characteristics directly,
the number of jobs of different users is maximized instead. We define the job diversity as the
ratio of the number of different users and jobs per worker node.
In this paper we describe conceptional aspects of a scheduler for a batch system and its
requirements in the environment of a multi-VO Grid site. We then present a feasibility study
of a home-grown scheduler, referred to as MYSCHED, which is able to overcome severe scaling
issues of the standard EMI middleware [6] installation, deploying TORQUE [4] and the MAUI [5].
The scheduler MYSCHED may even allow to include further Grid-specific information in the
scheduling process such as the status of the mass storage system or the network. This feature
is not covered by the schedulers usually deployed by Grid sites.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032038 doi:10.1088/1742-6596/513/3/032038

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. The Computing Element

In the Grid a job is submitted to the so-called computing element (CE), which maps the users
X509-proxy to a POSIX users/groups (UID/GID) and submits it to the batch system, which
uses the VO, group, and user of the jobs.

2.1. The batch farm

The queue set-up at DESY-HH is shown in table 1. A configuration with five queues was chosen,
which reflects the mass storage system structure, to allow for easy operations and maintenance.
It contains individual queues for the LHC VOs ATLAS, CMS, and LHCb, a queue for all other
VOs, and a queue for monitoring purposes. The queueing system enforces the adjusted limits
by rejecting excessive jobs directly before they are queued.

Table 1. Queue set-up at DESY-HH.

Queue VO CPU time wall-clock time max running max queueable

atlas atlas, ops 60 h 90 h 4000 10000
cms cms, ops 60 h 90 h 4000 15000
desy others 60 h 90 h 4000 10000
lhcb lhcb, ops 60 h 90 h 4000 10000
operations ops 15 min 1 h 50 1000

Initially one of the standard set-ups of EMI with the queueing system TORQUE and the
scheduler MAUI was deployed for the batch farm. This set-up achieved an occupancy of above
90% of the job slots. It turned out though that the complexity of the scheduling algorithm of
MAUI as well as its manifold configuration options were hard to control. Features to precisely
control the distribution of jobs to the nodes were missing. At DESY-HH the performance
of MAUI did not scale beyond 4800 running plus 10000 queued jobs. Blocking queues and
unused job slots and hence low occupancy were observed. In view of the increasing demand
for computing resources by the LHC experiments, which leads to a significant increase of the
number of job slots, this appeared to be a severe problem.

3. The MYSCHED study

The operational experiences with the batch system at DESY-HH, in particular the problems
with MAUI, let to the considerations described here. The actual development of the scheduler
was finally triggered by the scaling problems of MAUI. Although there is experience with other
batch systems, such as SGE and LSF, at DESY, abandoning TORQUE was considered as too
risky, whereas MYSCHED could be developed and tested while MAUI was still in operation.
Coding and testing of the scheduler MYSCHED started in February 2012. MYSCHED is in
production from summer 2012 on.

3.1. Concept

The following assumptions were made:

• Parallelization is done on the job level. Therefore jobs are independent and self-contained
and can be treated individually.

• So far one job slot per core is assigned. A dynamical assignment of multi- and single-core
jobs is not supported. It is possible though to operate queues with multiple cores per job
slot.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032038 doi:10.1088/1742-6596/513/3/032038

2



• Jobs contain VO, group, and user names.

• There is a variety of users and groups per VO which have potentially different characteristics
with respect to resource requirements. If all jobs of a VO were submitted through one pilot,
there would be no way to intelligently distribute jobs to the worker nodes.

• The computing is data centric because jobs massively access data files which are stored on
so-called storage elements (SE). The access methods are versatile, ranging from copying of
complete files via GridFTP to direct access via NFS4.1.

• Status and load information of the SEs is available and can be utilized.

• The queueing process is performed by TORQUE.

• TORQUE itself does not submit jobs. Job submission is handled by the scheduler.

3.2. Requirements

The following requirements were made. The scheduler should

• achieve close to hundred percent occupancy,

• be light-weighted (e.g. short processing times, little resource usage),

• guarantee at any time the number of running per VO given by the share,

• opportunistically distribute jobs to free slots by considering the wall-clock time consumption
in the past (typically two days),

• optimize resource utilization by trying to maximize diversity,

• allow to adjust the scheduler’s behaviour by way of a configuration file,

• allow to interface to external information (e.g. the load of the SE).

3.3. Algorithm

The scheduler is running as a separate program which is periodically executed. After reading in
the configuration, the scheduling process is carried out in two steps.
Firstly, the list of queued jobs is re-ordered with the goal to have as many jobs per VO running as
the share of the VO guarantees. If free job slots remain, more jobs are submitted by prioritizing
VOs according to their wall-clock time consumption in the past; typically 2 days.
Secondly, in order to optimally distribute the jobs to the worker nodes, the re-ordered job list
is processed job by job. For each job all nodes are checked. Those which have already reached
the maximal number of jobs per VO or group are rejected. From the remaining nodes the one
with the smallest number of jobs of the user and the highest diversity is selected.

3.4. Realization

TORQUE provides a C-API library to obtain information about queues, jobs, and nodes as
well as to execute commands such as submitting jobs. The accounting data are available in
text files. The scheduler MYSCHED was implemented in C++ and contains roughly 8000 lines
of program code. It uses Libconfig, a library for processing structured configuration files [7].
It is compiled and linked for Scientific Linux 6. Besides the MYSCHED program a number
of utility commands is available to obtain status information about nodes, queues, jobs, and
accounting data. Limits on the maximal number of jobs per VO or group in total and per node
can be assigned in a configuration file. In addition, types of worker nodes can be defined, e.g.
to dedicate nodes with write access to the VO software area to certain groups. Nodes can be
explicitly assigned to queues. Moreover, lists of queues, VOs, groups, and users (marked hot)
to by-pass the ordering algorithm can be defined. For a complete list of parameters and some
working example refer to the appendix of the proceedings. Information from the storage systems
is not yet evaluated. This feature is under construction. It would allow to block VOs or groups
if the associated SE is overloaded.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032038 doi:10.1088/1742-6596/513/3/032038

3



3.5. Operations

The MYSCHED program runs on the batch server host. At DESY-HH this is a virtual machine
(Scientific Linux 6) with 2 cores and 4 GB of memory. The program is regularly executed in
a loop; hence does not run as a daemon. MYSCHED logs comprehensive information in files
which can be used for monitoring purposes, e.g. to fill RRDTOOL [8] databases for visualization
as the figures shown in figures 2 and 3.

3.6. Experiences

Since the first production run in July 2012, the number of job slots was increased from 4800
to 10000. The comparison of MAUI and MYSCHED with respect to the job slot occupancy is
shown in figure 1. The drops on the number of slots (NSlots) was caused by nodes which were
temporarily taken offline for maintenance. The figures 2 and 3 show running (R) and queueing
(Q) jobs of a two weeks period in fall 2013 with many active VOs. The occupancy is close
to 100% as long as there are queued jobs to fill free slots. Regularly as well as sporadically
submitting VOs obtain their shares as configured. Since direct information of the load of the
storage elements is not (yet) available for MYSCHED, a limit on the maximal number of jobs
of the VOs saves currently against overload. This limit blocks ’atlas’ and ’cms’ at peak times.
The figures 4 and 5 show the time one scheduler execution takes (decision-time) and the job
submissions of a 24 h period in fall 2013. The MYSCHED process typically consumes 150 MB
of resident and 130 MB of virtual memory. 1-CPU and takes around 100 s for 1000 running plus
5000 queueing jobs in the system. Typically 10 to 100 jobs are submitted per MYSCHED run.

4. Conclusions

MYSCHED was developed as an alternative to MAUI, targeting on a solution which is tailored
to the needs of a Grid site such as DESY-HH with mainly HEP-VOs. The scheduler was
put into operation almost two years ago as a replacement for MAUI at DESY-HH which had
shown severe scaling issues. MYSCHED achieved an occupancy of close to 100% even with an
increased number of job slots of 10000 as of January 2014. The intelligent distribution of jobs
to the worker nodes by maximizing the number of jobs of different users (diversity) allowed to
optimize utilization of the compute resources. The performance in terms of stability, occupancy,
and resource utilization of DESY-HH was significantly increased. One of the key ideas to include
information from the storage system in the scheduling process has not been realized yet. This
feature is investigated and might be added in future versions of the scheduler. MYSCHED can
not mix single- and multi-core jobs per node. This would require mechanisms to reserve nodes
until the requested number of free cores is available. Even with a back-fill mechanism to use free
slots for short jobs, it would be difficult to achieve a high occupancy. The scheduling process
relies on the ability to distinguish job characteristics by the group; this ansatz does not work
for pilot jobs. In the extreme case of only one pilot job per VO, MYSCHED could only try to
achieve a maximal diversity of VOs per node to optimize the resource usage.

References
[1] EGI: http://www.egi.eu,
[2] WLCG: http://wlcg.web.cern.ch
[3] Gellrich A 2012 J. Phys.: Conf. Series 396 4 04022
[4] TORQUE: http://www.adaptivecomputing.com/products/open-source/torque
[5] MAUI: http://www.clusterresources.com/products/maui-cluster-scheduler.php
[6] EMI: http://www.emi.eu
[7] libconfig: http://www.hyperrealm.com/libconfig
[8] RRDTOOL: http://oss.oetiker.ch/rrdtool

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032038 doi:10.1088/1742-6596/513/3/032038

4



Figure 1. Job slot occupancy with MAUI (until Feb 2012) and MYSCHED (since Mar 2013).

Figure 2. Running jobs per VO. Figure 3. Queueing jobs per VO.

Figure 4. Running and queueing jobs.
Figure 5. Time consumption and job
submissions.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032038 doi:10.1088/1742-6596/513/3/032038

5




